

iii

© Allam Fatayer

2014

iv

Dedication

I dedicate this work to My Precious

Parents,

Wife, Sons, Sisters,

And Brothers,

Whose patience, continuous prayers

and

perseverance led to this

accomplishment

v

ACKNOWLEDGMENTS

All praise and thanks are due to Almighty Allah, Most Gracious and Most Merciful, for

his immense beneficence and blessings. He bestowed upon me health, knowledge and

patience to complete this work. May peace and blessings be upon prophet Muhammad

(PBUH), his family and his companions.

Thereafter, acknowledgement is due to KFUPM for the support extended towards my

research through its remarkable facilities and for granting me the opportunity to pursue

graduate studies

.

I acknowledge, with deep gratitude and appreciation, the inspiration, encouragement,

valuable time and continuous guidance given to me by my thesis advisor, Dr. Mayez Al-

Mouhamed. I am also grateful to my Committee members, Dr.Wasfi Ghassan Wasfi Al-

Khatib and Dr. Muhamed Fawzi Mudawar for their constructive guidance and support

and valuable suggestions and comments throughout the study.

Special thanks are due to my colleagues at the university, Dr.Ayaz ul Hassan Khan for

his help in explaining STRASSEN, Amran Al-Aghbari and Mohammed Al-Asali in their

important contributions in the coding used in BARNES HUT N-BODY simulation, and

many others for their help and support.

Finally, I have tried my best to avoid any mistakes or inaccurate data and information in

this study. I apologize for any mistake that was beyond my understanding and

knowledge, and may ALLAH forgive me.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... V

TABLE OF CONTENTS ... VI

LIST OF TABLES .. IX

LIST OF FIGURES ... X

THESIS ABSTRACT .. XII

الرسالة ملخص ... XIII

CHAPTER 1 INTRODUCTION ... 1

 High Performance Computing ... 1 1.1

 Methodology .. 2 1.2

 Contributions Summary .. 5 1.3

 Thesis Skelton ... 7 1.4

CHAPTER 2 LITERATURE REVIEW ... 8

 Many-core Processors ... 8 2.1

 Challenges For Programming Many-core... 11 2.2

 Many-core Programming Model ... 12 2.3
 Explicit Threading ... 13 2.3.1
 Message Passing Interface (MPI) .. 13 2.3.2
 OpenMP ... 14 2.3.3

 Related work ... 16 2.4

CHAPTER 3 THE XEON PHI MANY INTEGRATED CORE ... 23

 Introduction .. 23 3.1

 Many Integrated Core Architecture... 24 3.2

 Cache Structure and Coherency Protocols ... 29 3.3

vii

 Software Stack Architecture View ... 32 3.4

 Programming Model ... 33 3.5

 Thread Execution Model ... 35 3.6
 Thread Affinity .. 38 3.6.1
 Thread Affinity Type ... 40 3.6.2

CHAPTER 4 STATIC PROBLEMS ... 42

 Introduction .. 42 4.1

 Matrix Multiplication .. 43 4.2
 Execution Model for MM ... 44 4.2.1
 Strassen MM (S-MM) .. 45 4.2.2
 Conclusion .. 59 4.2.3

 Jacobi Solving Linear Equations ... 59 4.3
 Jacobi Execution Model .. 61 4.3.1
 Experiment Results ... 67 4.3.2
 Conclusion .. 71 4.3.3

CHAPTER 5 SEMI-STATIC PROBLEM (N-BODY SIMULATION) 72

 Introduction .. 72 5.1

 BARNES-Hut (BH) Algorithm .. 74 5.2

 Related Work .. 76 5.3

 Effective parallelization using Cost Zone ... 80 5.4

 Distribute Work Using Cost Zone .. 80 5.5

 Reserve Locality Using Morton Order.. 82 5.6

 Iterative Cost Zone Load Balancing (ICZB) Implementation ... 83 5.7
 N-body Implementation Steps ... 83 5.7.1
 Load Bodies .. 85 5.7.2
 Oct-Tree Iterative Creation Algorithm ... 85 5.7.3
 Iterative Depth First Tree Traversal.. 87 5.7.4
 Sorting Node and Body Arrays ... 88 5.7.5
 Converting Oct-Tree Into Data Structure ... 89 5.7.6
 Iterative Force Computation .. 90 5.7.7
 Iterative Cost Zone Load Balancing (ICZB) .. 91 5.7.8
 Practical Challenges .. 92 5.7.9

 Implementation Correctness Checking .. 93 5.8

 Body Generation and Dataset ... 94 5.9

viii

 ICZB Evaluation ... 96 5.10
 Algorithm Time Distribution ... 96 5.10.1
 Speedup of STATIC and ICZB .. 98 5.10.2
 Overhead of ICZB .. 99 5.10.3
 Locality ... 100 5.10.4
 Linearity and Effectiveness of Dynamic Load Balancing... 101 5.10.5

 Conclusion .. 105 5.11

APPENDIX A: STRASSEN MATRIX-MATRIX MULTIPLICATION CODE 106

APPENDIX B: JACOBI SOLVER .. 118

APPENDIX C: BARNES-HUT N-BODY SIMULATION... 139

REFERENCES.. 166

VITAE ... 169

ix

LIST OF TABLES

Table 3-1 Extended MESI cache coherency protocol states [29] 31

Table 3-2 Global owned locally shared cache coherency protocol state [29] 32

Table 5-1 Sequential Barns-Hut Algorithm .. 76

Table 5-2 Hotspot analysis of the Algorithm Steps ... 97

x

LIST OF FIGURES

Figure 1-1 Methodology ... 4

Figure 2-1 Master thread forks a team of threads as needed. Parallelism is added until a

desired performance is achieved [23] ... 14

Figure 2-2 OpenMP language extension. (From www.openmp.com) 15

Figure 3-1 General layout of the MIC coprocessor. For simplicity, only 8 of the total

cores and 4 of the total 8 GDDR5 memory controller shown [27] 24

Figure 3-2 Basic building block of the MIC ... 26

Figure 3-3 Core architecture for MIC ... 27

Figure 3-4 MIC pipeline data path .. 29

Figure 3-5 MIC Software stack Architecture .. 33

Figure 3-6 MIC Programming Model ... 34

Figure 3-7 Multi-threading Architectural Support in MIC Core [27] 36

Figure 3-8 MIC Card Thread Context across 60 cores ... 39

Figure 3-9 Scatter Affinity for 6 thread .. 40

Figure 3-10 Compact Affinity for 6 threads ... 41

Figure 3-11 Balanced Affinity for 9 threads ... 41

Figure 4-1 Naive Matrix multiplication code ... 43

Figure 4-2 STRASSEN MM recursion into N level ... 47

Figure 4-3 Pseudo code of Reorder Implementation .. 51

Figure 4-4 Strassen, Submatrix indices... 51

Figure 4-5 Strassen with MKL, 4 core, MIC .. 53

Figure 4-6 STRASSEN with MKL, 16 core, MIC ... 53

Figure 4-7 STRASSEN with MKL, 32 core, MIC ... 54

Figure 4-8 Strassen with MKL, 60 core, MIC .. 54

Figure 4-9 Speed Up of Strassen relative to 1 core, 8 core ... 55

Figure 4-10 Speed Up of Strassen relative to 1 core, 16 core ... 56

Figure 4-11 Speed Up of Strassen relative to 1 core, 32 core ... 56

Figure 4-12 Speed Up of Strassen relative to 1 core, 60 core ... 57

Figure 4-13 Execution time of MKL on smaller matrix size and different number Cores58

Figure 4-14 JACOBI sequential code implementation ... 60

Figure 4-15 Jacobi Data Layout Representation ... 61

Figure 4-16 Direct Jacobi parallelization Code .. 62

Figure 4-17 Synchronous Jacobi implementation, using work sharing constructs and

single construct to optimize overhead ... 63

Figure 4-18 Relaxed Synchronization (RS) execution flow chart 65

Figure 4-19 Percentage time spend in synchronization for 100 iteration 67

Figure 4-20 Jacobi experiment result for SJ, AJ, RJ for matrix size 1920 68

Figure 4-21 Jacobi experiment result for SJ,AJ,RJ, matrix size 3840 69

Figure 4-22 Jacobi experiment result for SJ,AJ,RJ, matrix size 7680 69

file:///C:/Users/pc/Desktop/thesis%20writing/ALLAM_THESIS_last_version.docx%23_Toc408604563

xi

Figure 4-23 Jacobi experiment result for SJ,AJ,RJ, matrix size 15360 70

Figure 4-24 Jacobi experiment result for SJ,AJ,RJ, matrix size 30720 70

Figure 5-1 Adaptive Quad Tree of BH for 2D Simulation ... 75

Figure 5-2 Barnes-Hut approximation in computing force for far bodies 75

Figure 5-3 Oct-Tree for 3D Barns-Hut Simulation .. 76

Figure 5-4 Cost Zone Demonstration of work distribution for 8 threads 81

Figure 5-5 Morton Order representation, left for 2D, Right for 3D [50] 82

Figure 5-6 N-Body with Barns Hut Execution Steps ... 84

Figure 5-7 Oct-tree iterative creation algorithm .. 86

Figure 5-8 illustration of the chosen Morton order in my implementation. The numbers

represents the order of selecting cubes. ... 87

Figure 5-9 Tree traversal algorithm. .. 88

Figure 5-10 An example shows the depth-first traversal order. The nodes are sorted in the

array according to this traversal. The leaves which represent the bodies also sorted in the

array according to this order. Each node also store an index of the next node in the tree 89

Figure 5-11 King Model galaxy, which contains 10^6 bodies. Plotted using TeraPlot

Visualizer .. 94

Figure 5-12 Galaxies generation procedure .. 95

Figure 5-13 Bodies distribution for a data set of 1M .. 95

Figure 5-14 Percentage Execution Time For N-body for Each Step 97

Figure 5-15 Speedup of STATIC and ICZB vs. Problem Size (1M,2M,3M,4M) 98

Figure 5-16 Data Read and Write for Static vs. ICZB for 4M bodies 100

Figure 5-17 Data Read and Write for Static vs. ICZB for 5M bodies 100

Figure 5-18 L2 cache misses for static and ICZB for 4M bodies 101

Figure 5-19 L2 cache misses for Static and ICZB for 5M bodies 101

Figure 5-20 Linearity of ICZB (1M,2M,3M,4M,5M) 240 thread 102

Figure 5-21 Percentage of average relative work deviation of ICZB, 5M, 240 103

Figure 5-22 Percentage of Average Relative Time Deviation, ICZB, 5M 104

Figure 5-23 Speedup of ICZB, problem size 5M, 240 ... 104

xii

THESIS ABSTRACT

Name : ALLAM ABDALGANI M.A FATAYER

Title : EXPERIMENTAL EVALUATION OF PARALLEL

PROGRAM SCALABILITY ON XEON PHI SMP

Degree : Master of Science

Major Field : Computer Engineering

Date : December, 2014

As the time of Moore’s Law and expanding CPU clock rates nears its halting point the condense of

chip and hardware design has moved to expanding the number of cores present on the chip. These

increase can be most clearly seen in the rise of the Many Integrated Core processors (MIC).

Programming for these chips delivers another set of difficulties and concerns In this context, I present

an experimental evaluation of parallel program scalability on the MIC Shared Memory Multiprocessor

(SMP) using OpenMP programing paradigm. I address two classes of applications 1) Static and 2)

Semi static. For first class I select a set of applications from the class of Basic Linear Algebra and

numerical algorithms (Matrix-Matrix Multiplication (MM) and JACOBI SOLVER). Particularly, I

analysis, optimize and implement these applications. For MM I used the STRASSEN matrix

multiplication algorithm. The basic Strassen-MM (S-MM) algorithm time complexity of is O (N
2.807

)

instead of O (N
3
) of standard MM algorithm. my optimizations are based on a reordering approach to

reduce the storage, use of a depth first walk (DFW), and invocation of the MKL optimized library for

matrix-matrix multiplications. The results of MM using STRASSEN outperform Math Kernel Library

(MKL) within large matrix size with percentage from 8% to 24%. For JS, I noticed that it does not

scale well because of the excessive synchronization overhead, which must be implemented across all

the working threads. To improve JS scalability, I explored (1) Synchronous Jacobi (SJ), (2)

Asynchronous Jacobi (AJ), and Relaxed Jacobi (RJ). In SJ I used explicate barrier synchronization. In

AJ a non-exact solution is computed because completing threads start the next iterations using current

data, which is a mixing of new and old. AJ slows down the convergence rate. In RJ, completing

threads at iteration K start the next iteration (k+1) using newly computed data. RJ provides overlap

between two iterations at the cost of managing the availability of currently available intermediate

results. Experiments show that SJ synchronization time takes 50% from the execution time on matrix

size 4096. For exact solutions, my evaluation shows a performance gain of 24.4%, 32.6%, 38.9%, and

57.16% for RJ over SJ for matrices of size 3840, 7680, 15360 and 30720, respectively using 60 cores.

For the second class, I select a semi static classical problem (N-Body simulation). In this application,

an approximated solution using BARNES-HUT algorithm (BH) is implemented. BH uses an oct-tree,

in which each node stores the aggregate mass of all of its children nodes (sub-tree) at their center of

mass. Another problem is that the thread load moderately changes from one iteration to another due to

body motion in space. A Dynamic Load Balancing (DLB) combined with data locality approach is

used to improve Scalability, I call it Iterative Cost Zone Load Balancing (ICZB). My implementation

on MIC shows that the execution time and aggregate load scales linearly with the problem size when

using 60 cores for problem sizes within the range of 1 million to 4 million. In addition, my DLB-BH

provides an increased speedup of 42% and 36% on problem size 1 million and 4 million respectively,

as compared to traditional static BH. DLB is recommended as a compiler strategy as one optimization

strategy for semi-static applications.

xiii

 ملخص الرسالة

 علام عبد الغنً "محمد عادل" فطاٌر :الاسم الكامل

 تقييم تجريبي لتدرجيت البرامج الموازيت في المعالجاث عديدة النواة التماثليت عنوان الرسالة:

 هندسة الحاسب الآلي التخصص:

 :تاريخ الدرجة العلمية

قانون مور اصبح ٌتجه الى نهاٌته، وٌظهر ذلك جلٌا فً ظهور المعالجات متعددة الأنوٌه. البرمجة لهذه الرقائق

تقٌٌم تجرٌبً لتدرجٌة البرامج تظهر تحدٌات ومشاكل جدٌدة فً وجه المبرمجٌن. فً هذا السٌاق، نقوم على

. قمنا باختٌار فئتٌن من OpenMPنموذج برمجة الموازٌة فً المعالجات عدٌدة النواة ذات التماثلٌة باستخدام

التطبٌقات. الفئة الأولى التطبٌقات ذات الحمل الثابت والفئة الثانٌة التطبٌقات ذات الحمل المتغٌر. فً الفئة الأولى

قمنا باختٌار ضرب المصفوفات والتً تصنف من مكتبة علم الجبر الأساسً، واٌضا تم اختٌار تطبٌق من التحلٌل

. فً حقٌقة الأمر قمنا بتحلٌل وتنفٌذ وتحسٌن هذه JACOBIددي فً حل المعادلات الخطٌة ٌطلق علٌه اسم الع

والتً لها حساب تعقٌد اقل من حساب STRASSENالبرامج. فً ضرب المصفوفات قمنا باستخدام خوارزمٌة

رتٌب المصفوفات البٌنٌة لتقلٌل الحجم التعقٌد لعملٌة ضرب المصفوفات الأساسٌة. التحسٌن لدٌنا ٌعتمد على اعادة ت

للمصفوفات ذات الحجم MKLالمطلوب، واستخدام المشً الأولً للمصادر، بالإضافة الى استدعاء المكتبة

لوحدها فً احجام المصفوفات MKLالصغٌر. النتائج اثبتت ان طرٌقتنا استطاعة ان تتغلب على استخدام المكتبة

لوحظ عدم تدرجٌة اداءه بسبب الاحتٌاج الكبٌر JACOBI%. فً تطبٌق 42% الى 8الكبٌرة بنسبه تتراوح من

العاملة. لتحسٌن العمل تم استكشاف Threadللمزامنة فً اثناء التنفٌذ و خصوصا فً التكرٌر ما بٌن جمٌع ال

م استخدام مزامنه (المتزامن المسترخً. فً المتزامن ت3(الغٌر متزامن 4(المتزامن 1ثلاث انواع من التطبٌق

واضحه للعٌان. فً الغٌر متزامن تم حذف المزامنة وفً الحالة الأخٌرة تم اعادة كتابة المزامنة وذلك من خلال

. ٌجدر الإشارة ان الغٌر متزامن Threadالسماح بالتداخل ما بٌن عملٌات التكرار باستخدام النتائج الجزئٌة من كل

كن ان تكون خلٌط من النتائج السابقة والحدٌثة والتً تقلل من سرعة التقاء ٌستخدم النتائج الحالٌة والتً ٌم

. الغٌر 2504% من وقت النفٌذ فً حالة المصفوفة بحجم 05الخوارزمٌة بالحل. النتائج اظهرت ان المزامنة تأخذ

الحل الدقٌق فإن متزامن ٌعطً افضل النتائج بسبب حذف المزامنة ولكن فً حالة قبول الحل التقرٌبً. فً حالة

فً %32.6 ,%32.6 %24.4 %57.16 ,التزامن المسترخً اظهر تحسن بالإداء على التزامن بمقدار

تحاكً نواة. فً الفئة الثانٌة تم اختٌار مشكلة كلاسٌكٌة 45باستخدام 35045 10345 0485 3825الأحجام

. تعتمد Barn-Hutلمشكلة باستخدام خوارزمٌة (. تم تنفٌذ حل تقرٌبً لN-bodyحركة الأجسام فً الفراغ تدعً)

هذه الخوارزمٌة على بنٌة الشجرة الثمانٌة لتمثٌل توزٌع الأجسام بالفراغ. حٌث ٌتم تخزٌن البٌانات التراكمٌة للكتلة

المركزٌة فً كل عقدة، للشجرات الجزئٌة التً اسفلها. واٌضا من تحدٌات الخوارزمٌة هو تغٌر توزٌع الحمل على

عند الانتقال من خطوة الى الثانٌة وذلك بسبب حركة الأجسام فً الفراغ. للتحسٌن تم تطوٌر توزٌع Threadال

للحمل بشكل دٌنامٌكً بالإضافة الى زٌادة محلٌة البٌانات. النتائج اظهرت ان الحمل التراكمً ٌتناسب بشكل خطً

ملٌون. بالإضافة الى ذلك فان هناك تحسٌن 2ى ملٌون ال 1مع وقت التنفٌذ باستخدام احجام مختلفة تتراوح من

ملٌون مقارنه بالطرٌقة الثابتة لتوزٌع 2ملٌون و 1% فً المشاكل بحجم 34% و 24بالتسرٌع للعملٌة بمقدار

ترجمة للمشاكل ذات الأحمال. إن هذه الطرٌقة نوصً باستخدامها كاستراتٌجٌة فً تحسٌن المترجمات عند القٌام ب

 الحمل المتغٌر

1

1 CHAPTER 1

INTRODUCTION

 High Performance Computing 1.1

Traditionally, scientists employ both experimental and theoretical approaches to solve

problems in the fields of science and engineering. With the advent of computer

machinery, scientists have been able to transform a given problem into an algorithm,

analyze and understand the problem through computing and simulations. Hence, the use

of High Performance Computing (HPC) in simulation has now become popular and an

important part of the exploratory process that many people believe that the scientific

model has been extended to include simulation as an additional proportion [1]. In

addition, computing systems have been playing a critical role in scientific computing, and

hardware advances have allowed scientists to investigate problems in more details and

with higher complexity than what the past eras of hardware could achieve.

Currently, the HPC industry is at a real changing point in its processor architecture

because of a decades-long trend of exponentially expanding clock frequencies. The

conventional single-core processor architectures are no more ready to exploit of the

integrated circuit (IC) technology advances due to some basic issues, such as, power

consumption, heat dispersal, and memory wall. Computer architects are searching for

2

different approaches to use the transistor plan. By incorporating a number of simple

processors/cores on a single die, it is considered that this many-core chip technology has

higher power-efficiency, improved heat dissipation, better memory latency tolerance, and

numerouse different profits[2]. Projections and early models indicate that tens, hundreds,

if not thousands of general-purpose and/or special-purpose cores will be included on a

single chip withen a brief period of time. Many researchers suppose that the many-core

architectures are going to become the mainstream for parallel computing later on.

However, unlike previous hardware evolutions, this shift in the hardware roadmap will

have an effiect on the scientific computing by posing uncommon difficulties in the

management of parallelism, locality, scalability, synchronization, load balancing, energy

and fault-tolerance. It is an open question whether the current parallel programming

approaches will keep on to scale to future computing systems built with many-core

processors.

 Methodology 1.2

Scientific phenomena governed by partial differential equations (PDEs) can range from

solid mechanics to fluid mechanics and electrodynamics, including any of the possible

couplings. The solution of these equations can be approximated with the aid of computers

by a discretization (and possibly linearization) and the subsequent numerical solution of

the resulting sparse set of linear equations. This work is concerned with the fast solution

of a set of scientific applications that chosen from Basic Linear Algebra, Numerical

algorithm and N-body classical problem. Although these applications are the simplest

model problem for, e.g., fluid flow simulation, they are still very useful as a building

3

block for the “physics-based” preconditioning of very complex scientific applications

governed by coupled systems of PDEs. The regularly expanding interest of reality in the

simulation of the complex scientific and engineering three-dimensional (3D) problems

faced these days ends up with the solution of very large linear systems with several

hundreds and even thousands of millions of equations/unknowns.

The solution to these systems in a moderate time needs a large amount of computational

resources provided by current MIC machines. It is therefore vital to design parallel

algorithms able to take advantage of their underlying architecture. So, a set of scientific

applications were chosen to study the scalability and performance of MIC coprocessor

using OpenMP programming paradigm. In addition, optimization techniques are

proposed and implemented to reduce the execution time. The main objective of my work

is to increase performance for a set of applications by decreasing the execution, Flow

chart in Figure 1-1 outlines my methodology.

First, the sequential code was implemented and tested. In addition, the performance

metrics are recorded. After that, the parallel code is implemented by inserting the proper

OpenMP construct.. In this step the parallel program errors are solved and elevated from

the applications.

Secondly, application profiling for parallel programs are done to understand constrains

and scalability problems of the applications. Then depending on that an experimental

programming, debugging and profiling are repeated to propose an optimization. So,

optimizations are a handy way.

4

Figure 1-1 Methodology

5

 Contributions Summary 1.3

As the time of Moore’s Law and expanding CPU clock rates nears its halting point the

condense of chip and hardware design has moved to expanding the number of cores

present on the chip. These increase can be most clearly seen in the rise of the Many

Integrated Core processors (MIC). Programming for these chips delivers another set of

difficulties and concerns In this context, I present an experimental evaluation of parallel

program scalability on the MIC Shared Memory Multiprocessor (SMP) using OpenMP

programing paradigm

I address two classes of applications, static problems (basic linear Algebra and numerical

algorithms) where the load is fixed after partitioning, and semi static problem (N-body

Simulation) where the load change moderately after partitioning. For first class I used the

STRASSEN Matrix Multiplication (SMM) and Jacobi Solver (JS) of a system of linear

equations for which the load is static across the iterations. The basic STRASSEN-MM

(S-MM) algorithm having time complexity of O (n
2.807

) instead of O (n
3
) of standard MM

algorithm. My optimizations are based on a reordering approach to reduce the storage,

use of a depth first walk (DFW), and invocation of the MKL optimized library for matrix-

matrix multiplications. In DFW, all available machine parallelism is used in each depth

expansion. Using a few recursions, my approach is useful to reduce execution time over

that of the MKL library using the traditional MM algorithm. The profitability of my

approach over MKL increases with the matrix sizes

6

In iterative JS, the threads need to read a vector that was computed by all the working

threads before starting the next iteration. It is noticed that due to the above data layout JS

does not scale well because of the excessive synchronization overhead, which must be

implemented across all the working threads. To improve JS scalability, I explored (1)

Synchronous Jacobi (SJ), (2) Asynchronous Jacobi (AJ), and Relaxed Jacobi (RJ). In SJ I

used explicate barrier synchronization. In AJ a non-exact solution is computed because

completing threads start the next iterations using current data, which is a mixing of new

and old. AJ slows down the convergence rate. In RJ, completing threads at iteration K

start the next iteration (k+1) using newly computed data. RJ provides overlap between

two iterations at the cost of managing the availability of currently available intermediate

results.

For the second class the N-body simulation is considered as a model of semi static

computations. A brute force approach for computing the gravitational forces for N bodies

is on the O (N
2
). The BH approximation enables treating a group of bodies as one if these

are far enough from a given body. This drops the computational complexity to O (NlogN)

when using BH. BH uses an oct-tree, in which each node stores the aggregate mass of all

of its children nodes (sub-tree) at their center of mass. Another problem is that the thread

load moderately changes from one iteration to another due to body motion in space.

Therefore, a Static problem partitioning strategy for BH (S-BH) is likely to suffer from

accumulated load unbalance. It is well known that dynamic load balancing (DLB)

improves BH scalability. However, DLB is complex because of the need to measure the

Dynamic Load (DL) and adopt an adequate data structure to minimize runtime

overheads. In the beginning of iteration K, the body slowly motion enables estimating the

7

DL for K+1 as being the aggregate load measured by all the treads in iteration K. Thus

DLB is implemented by evenly partitioning the DL over the threads so that to preserve

the data locality to the best possible. I implemented DLB-BH using an efficient data

structure to ease load redistribution together with oct-tree implementation.

 Thesis Skelton 1.4

The rest of the thesis is organized as follows. Chapter 2 presents state of the art for many-

core processors, challenges in programming many-core, programming paradigm and

related work. Chapter 3 shows a brief description and analysis of MIC architecture.

Particularly, I will focus on the hardware point of view and combine it with programming

paradigms that support. Chapter 4 describes my optimization method in static problems

(S-MM, JACOBI). For the S-MM I will present my execution time optimization

technique over the standard MM. On the other hand, for JS I will explain my relaxed

synchronization technique. Chapter 5 reports the N-body simulation problem. First, I will

explain my dynamic load balancing schema for optimization and scalability on MIC.

Second, locality technique applied in N-body Simulation to increase speedup.

8

2 CHAPTER 2

LITERATURE REVIEW

 Many-core Processors 2.1

An evolution happened in Central Processing Units (CPUs) when shifted from single-

core to multi-core/many-core, “Gordon Moore predicted that the transistor density of

semiconductor chips would double approximately every 18 to 24 months”[3], which is

known as Moore’s law. The computers would not only have more transistors but also

faster transistors according to Moore’s law prediction. The traditional single-core

processor frequency has followed it for 40 years. This made it relatively easy to optimize

the performance of the conventional programs, including the scientific computer

applications. Most users relied on the expanding capabilities and speed of uniprocessors

to get performance improvement. However, this frequency increase could no longer be

sustained because of the following problems.

• The absolute important problem is the increasing power density, which is an

unsolvable problem for classical uniprocessor designs. The quantity of transistors

per chip has extraordinarily expanded lately, each of these transistors devours

power and produces heat

• Memory speeds don’t scale well as processor speeds. These diverging rates

intimate that a memory wall problem will happen, in which memory accesses take

9

over code performance. These wasted clock cycles can cancel the benefits of

frequency increases in the uniprocessor [4, 5].

• Innovations in IC technology allow the hardware feature size to keep dropping.

As feature size drops, interconnect delay often overrides gate delay and becomes

absolute serious performance problem to be solved in future IC design and can

eventually cancel the speed of transistors [6].

• Uniprocessor is designed to exploit the instruction level parallelism (ILP) in

program. While exploiting ILP was the primary goal of processor designs for a

long time, the higher level parallelisms, i.e., thread-level parallelism (TLP) and

data-level parallelism (DLP), occurring naturally in a large number of

applications cannot be exploited with the ILP model.

Due of the limits described above, the era of taking advantage of Moore’s law on the

conventional uniprocessor designs appeared to be arriving to an end. Since 2005, the

computing industry changed path when all major manufacturers, such as INTEL, IBM,

SUN, and AMD, turned to multi-core designs, where a number of simple cores are

integrated on a single die. The many-core architectures are believed to be able to take

advantage of Moore’s law by doubling the number of cores per die with every

semiconductor process generation starting with a uniprocessor. There are numerous

advantages to building many-core processors through smaller and simpler cores[2, 7, 8]:

• Decreasing the frequency drops down the power consumption significantly. So,

designers can provide an efficient way to achieve performance by running

multiple cores with lower clock rate.

10

• Configure and shutdown small core is easy, which allows a finer-grained ability

to control the overall power efficiency. Many-core architectures partition

resources, including memory, into individual small parts, and thus attenuate the

effect of the interconnect delay and reduce grappling on the shared main memory.

Each core uses a cache to reduce contention on the shared main memory and

increase overall performance.

• Many-core chip designers support TLP, which is expected to be exploited in

future programs and multiprocessor-aware operating systems and environments.

• Design and functionally verify is easy for a core. In particular, it is more an

acceptable to being tested with formal verification techniques than complex

architectures.

• Performance and power characteristics of smaller core are easier to predict within

existing electronic design systems.

Since the multi-core has been released in commercial servers. A new trend in industry

and academia is rise by incorporating larger number of cores (tens or hundreds) into a

single chip. Two main types of many-core processors are released from industry

community. It is characterized on how main memory consistency applied combined with

the local cache of the core.

 Full Memory System Hierarchy (FMSH): Cache coherency protocols are

responsible to keep the main memory coherence with the local caches of each

11

core. Inconsistent data problem arises, when a core in the system

maintains caches of a common memory resource, . Moreover, if the main memory

has a copy of a memory block from a previous read and the local cache of the

cores changes that memory block, the main memory could be left with an invalid

cache of memory without any notification of the change. Cache coherence is

responsible to manage such conflicts and keep consistency between cache and

memory. An examples like Many integrated Core (MIC) from INTEL, Tile64

from TILERA and POWER7 from IBM [9].

 Flat Memory System (FMS): The consistency problem of the main memory does

not exist. Because the caches in these systems are a read only caches and they are

used by write through. The programmer handles movement operation of the data

from the cache to the main memory and vice versa. An example of this type is the

General Processing Unit (GPU) like KEPLER 20 from NVIDA and

FIRESTREEM from ATI.

 Challenges For Programming Many-core 2.2

A high theoretic performance provides by many-core, this increases of performance

cannot be controlled as simply as what I did with single-core processors. Most of

software developers were very used to the idea of getting increased performance by

upgrading machines with a faster processor [10]. Unfortunately, automatic improvement

will not be possible when one upgrades to a many-core processors. Although, a many-

core processor can run multiple programs at the same time, it does not complete a given

http://en.wikipedia.org/wiki/CPU_cache

12

program in less time, or finish a larger program in a given amount of time, without

changes. The problem is that majority of the programs are written in sequential

programming languages, and these programs must be maintained and optimized to

exploit possible performance gains enabled by underlying hardware. For the first time,

many-core architectures requires that the software developers engage in parallel

computing, which was reserved for the field of supercomputing. On the other hand, this

shift in the hardware roadmap poses never known challenges to the software developers.

For example, the programmer will be faced with the scalability problem of expressing,

coordinating and exploiting multi-level parallelism provided by the many-core machines.

The programmer will also be faced with the locality challenge of optimizing data

movement in a highly non-uniform memory hierarchy. Where there are gaps between

data accesses to core-local memory, card global memory, and intra-node off-chip

memory, and communications with remote nodes. While to exploit architectural features

and eventually obtain the desired performance is the ultimate goal for programmers of

this many-core machines, no majority of opinion has been reached on how to do so. On

the other hand, people have been doing parallel programming development for aperiod of

time on vector machines, clusters, SMP. Many approaches have been proposed and

utilized [11].

 Many-core Programming Model 2.3

The trends go into many-core coprocessors in the community of HPC. The needs for

variant programming models are appear. There are three main programming models for

many-core machines. These models vary in their complexity and scalability. So,

13

evaluations and experiments are done to compare their performance on different

architectures.

 Explicit Threading 2.3.1

Explicit threading model includes POSIX threads (Pthreads), Sun Solaris threads,

Windows threads, and other native threading Application Programming Interfaces

(APIs). It is designed to express the natural concurrency that is present in most programs,

and to improve the performance. This model usually offers an extensive set of routines to

provide control over threading operations, such as create, manage, synchronize threads,

etc. Software developers control the application by explicitly calls these routines. On the

other hand, threads have to be individually managed, this model would be the more

popular choice. By committing sufficient time and exertion, program developers may be

able to parallelize the problem and achieve good performance. However, because explicit

threading is an inherently low-level API that mostly requires multiple steps to perform

simple threading tasks, it demands massive effort from the programmer’s side. Also, this

model does not offer fundamentals of Object Oriented Programming (OOP) such as

encapsulation or modularity. Therefore, manually managing hundreds or thousands

threads definitely would be an unpleasant experience for the majority of programmers.

Due to this reason, researchers have been increasingly looking for other simpler

alternatives.

 Message Passing Interface (MPI) 2.3.2

Message Passing Interface (MPI) is the standard and portable system designed to function

on a wide type of parallel machines. The syntax and semantics are defined in the core

14

library routines. It is useful for a wide range of programmers writing portable message-

passing programs in FORTRAN or the C programming language. There are several

varies and efficient implementations of MPI, including some that are free or from many

hardware manufactures. These allow the development of a parallel software industry and

encouraged development of portable and scalable large parallel applications[12].

 OpenMP 2.3.3

OpenMP, a portable programming interface for shared memory Symmetric

Multiprocessors (SMP). The code starts executing by a master thread. Then it forks a

specified number of threads and a task is divided among them as illustrated in Figure 2-1.

The threads then run simultaneously. The runtime environment manages allocating

threads to different core[13]. OpenMP becomes a de facto standard for writing programs

for SMP machines.

Figure 2-1 Master thread forks a team of threads as needed. Parallelism is added until a desired performance is

achieved [23]

The code may contain many segments. The segment that is intended to run in parallel is

marked through an OpenMP construct. This causes the compiler to parallelize it across

the threads. After the execution of the parallelized code, the threads join back into the

http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/Runtime_environment

15

master thread, which proceeds forward to the end of the program. By default, each thread

executes the parallelized section of code independently. Parallel and work sharing

constructs illustrated in Figure 2-2 can be used to divide the work among the threads. So

that each thread executes its allocated part of the code. Task parallelism and data

parallelism can be implemented using OpenMP.. The number of threads can be controlled

by the runtime environment based on environment variables or in code using API

routines.

Figure 2-2 OpenMP language extension. (From www.openmp.com)

Programming Many-core architectures faces significant hurdles using those models. It is

Hurdles vary from one to another. One of the most difficult is addressing the

programmability problems associated with code. For example, it is notoriously difficult

to debug a parallel application, given the potential interleaving of the various threads of

control in that application. Explicate threading allows the programmer explicitly to

manage and control each thread. But, it will be tough to manage hundreds or even

thousands of threads.

http://en.wikipedia.org/wiki/Task_parallelism
http://en.wikipedia.org/wiki/Data_parallelism
http://en.wikipedia.org/wiki/Data_parallelism
http://en.wikipedia.org/wiki/Environment_variables
http://www.openmp.com/

16

In OpenMP model the compiler takes the job to handle task assignment to the threads or

team of threads. It is more productive environment. However, there is no guarantee to get

high optimized code and difficult to address parallel programming problems like false

sharing and data racing. Experiments show that application needs to be optimized using

OpenMP.

 Related work 2.4

The demand of developing parallel applications increased. Since the hardware

manufacture increases number of cores in the same die. This gives new challenges in

scientific application to gain a speed up from the new machine. MIC launched at the end

of 2012.

In [14] an early performance evaluation of the coprocessor. A focus on OpenMP

programming paradigm and compared the coprocessor with another machine called BCS,

which containes (16 socket, 128 core, Intel Xeon (NAHLAM), 64 GB). They did two

main experiments. The first one to be evaluated memory bandwidth and openMP basic

constructs overheads (parallel for, barrier, reduction) using STREAM benchmark and

EPCC micro benchmark. The second one was for real compute scientific problem called

Conjugate Gradient (CG) which was dependent basically on Sparse Matrix Vector

Multiplication (SMXV). For the memory bandwidth they ran the experiments on the two

machines with different affinity types. They found that the coprocessor has better

performance of the BCS compared to 1 board with 8 processors. Also they computed the

17

overhead of the OpenMP constructs for native and offload on the coprocessor and the

BCS. They found that the overhead for all the OpenMP constructs for the coprocessor

was lower than the BCS which was a key performance issue for the coprocessor. Which

means applications scale on large machines will scale on the coprocessor. Also, no

significant difference between native and offload overhead on the coprocessor found.

For the real application kernel they apply roofline model to estimate the maximum

performance in GFLOPS/s for each system. The roofline model is a visual graph that

shows realistic expectations of performance and productivity of the multi-core and many

core systems depending on its operational intensity for the algorithm. After that they run

the experiments and compare their result to the approximation of the Roofline model.

They achieve results closely near expectation of the model and better than the MKL

library from Intel.

An optimized Geometric Multigrid (GM) problem for important multicore and many-core

architecture have been done[15]. Conventional methods for solving linear system

iteratively such as JACOBI, successive relaxation and Gause Seidle Red Black (GSRB)

were applied. A compact multigrid solver benchmark that creates a global 3D domain

partitioned into sub domains sized to proxy found in real MG application was

constructed. Also, developing many optimization techniques on the KNC. GSRB is

explicitly prefetched, because the compiler fails for prefetching this complex memory

access pattern. To maximize performance of in-cache computations, SIMD intrinsic were

applied to the GSRB kernel. They compute as if doing JACOBI and use masked stores to

selectively update red or black values in memory. Moreover, large (2MB) TLB pages

were used, and the starting address of each array was padded to avoid a deluge of conflict

18

misses when multithreaded cores perform variable coefficient stencils within near power-

of-two grids. Similarly, a certain dimension was padded to a multiple of 64 bytes. To

minimize the number of communicating neighbors, the KNC implementation leverages

the shift algorithm in which communication proceeds in three phases corresponding to

communication in i, j, and k, where in each phase, sub domains only communicate with

their two neighbors. These techniques were applied on the MIC using native mode and

OpenMP programming paradigm.

A study on molecular dynamic and its performance on the CPU-MIC system is carried

out [16, 17]. A development of three thread level parallelism schema is done. Task-level

parallelism between CPU and MIC using offloads techniques, thread-level parallelism

across multiple MIC cores, and data-level parallelism within each MIC core to exploit the

SIMD unit effectively. Also, an applied memory latency hiding and prefetching

techniques is done. To evaluate the proposed approach a comparison between CPU-MIC

and CPU-GPU system is constructed. A gain of speedup 2.25 on the CPU-MIC system

compared to CPU-GPU system. In addition, an evaluation of different machines with

different SIMD width (128 bit, 256 bit, 512 bit) is carried out. Several optimization

techniques applied on the SIMD using hand on analysis to exploit the unit. However, the

experiments show that the compiler can’t handle prefetching schema to gain full

vectorization of the code automatically. For evaluation, the Sandia’s miniMD benchmark

is chosen, which is an MPI ranked implementation. Also three optimization techniques

especially for the KNC include problem decomposition, PCIe bandwidth latency and

code reuse.

19

MIC can also be used for image processing applications that need hundreds of TFLOPS

like in [18]. A Synthetic Aperture Radar (SAR) via back projection has been studied. It is

an image reconstruction mechanism used in the real applications of radar system and can

be extended to other applications like medical imaging. The importance of this work by

using an algorithmic optimization for mathematical operation such as squre root, sine and

cousine by converting them into a few multiplications and additions. The optimization

resembles strength reduction, a well-known compiler optimization. While significant

reduction relies on, and is thus constrained to, mathematical equivalence, their

optimization exploits the method of approximation. Therefore, call of this model

approximate strength reduction (ASR). Also, exploit hardware gather support of MIC for

incessant eccentric memory accesses, thus improving the vectorization efficiency. The

efficiency of gather access is further improved by exploiting geometric properties of back

projection used in SAR imaging. data transfer is pipelined to hide latency. The Parallel

resources in recent computation platforms must exploited. The computation is carefully

partitioned between Intel Xeon and MIC so that the benefits of MIC’s high compute

intensity can be maximized. Data movement is optimized for locality and vectorization,

which is provided by architecture support for irregular memory access. The dimension

space is divided into three level MPI, OpenMP and cache Blocking. The experiment

results show that the application of ASR to the back projection stage achieves 2–4x

speedups, while maintaining a similar level of accuracy. But, in the gather hardware

optimizations they gain 1.4x speedup.

A hyprid evaluation is done in [19] using MPI-OpenMP programming paradigm. A

demonstration of conservative spectral method for the Boltzmann equation originally

20

developed by Gamba and Tharkabhushaman, to parallelize the application. The iteration

space is divided into the number of threads equally size to neglect the load balancing

issue and it is applied directly using the OpenMP directive without any optimization

techniques. For evaluation, MIC is used (Stepmede TACCs) and AMD OPTERON

architecture. The experiments done using both OpenMP and MPI-OpenMP approaches .

The results present a linear speedup when increasing number of cores.

Sparse Matrix with dense Vector (SpMV) has been studies in [20]. Before evaluating the

kernel, an investigation to the new hardware capabilities using micro benchmark.

Compute the read-bandwidth by sum kernel of large matrices. After that write bandwidth

is evaluated. This helps in determining how to deal with the hardware and what is the

limitation of this hardware for real application. after exploration of the machine compiled

the kernel with different optimization options from the compiler options such as no

compiler optimization -0O , compiler optimization level -2O, -3O, vectorization and

without vectorization. One of the interesting experiments is study the useful cache line

density, which is a metric derived for the analysis. For each row, compute the ratio of the

number of nonzero on that row to the number of elements in the cache lines of the input

vector due to that row. The results outline that this is a performance metric comparing

running application without vectorization and with vectorization options.

Colfax tests the MIC coprocessor with a basic N-body simulation, which is basic for a set

of applications in computational astrophysics and biophysics. An implementation for

non-optimized version of the problem is done, and it is run on the coprocessor natively.

Experiments show that they get benefits from it directly. After that, digging into

optimized code and try to understand what the bottleneck in the code is. A profiling using

21

VTune was done. The result shows that the most time is consumed from the Short Vector

Math Library (SVML) provided by Intel. The analysis shows that the library by default

supports denormal numbers accuracy. Turn this option off leads to better performance.

Also, looking at the assembly language produced from the C code using the VTune

profiler. They analyze if the compiler do its job correctly and optimize the code

efficiently. Additionally, they found that the programmer must take care with the types

and precision of variables, constants and functions.

C++ Parallel library construct is created in[21], which makes it easy to insert a function

to every member of an array in parallel and dynamically distributing the work between

the host CPUs and one or more coprocessor cards. A description of the associated

runtime support and use a physical simulation called smoothed particle hydrodynamic

example to demonstrate the library construct can be used to quickly create a C++

application that will significantly benefit from hybrid execution, simultaneously

exploiting CPU cores and coprocessor cores. Experimental results show that one

optimized source code is sufficient to make the host and the coprocessors run efficiently.

The work shows a new way of application development that has been made possible by

the MIC coprocessors. The OFFLOAD_FOR_EACH function template allows the

developers to quickly build new applications that target the architecture. Also, this gives

the developer the ability to create one source code and efficiently using MIC architecture.

From software engineer point of view this makes it easy for the programmer to debug,

troubleshoot and optimize the application on this new machine.

22

Even most already parallel algorithms need some adaptation to run effectively on parallel

architectures. Some research optimizes common parallel programming primitives on the

different architecture and programming languages. The needs to identify the new parallel

architecture become crucial.

23

3 CHAPTER 3

THE XEON PHI MANY INTEGRATED CORE

 Introduction 3.1

New architectures have evolved to satisfy the needs of compute power. Accelerators,

such as Graphical Processing Units (GPUs) and Many Integrated Core (MIC) are two

ways to fulfill the requirements [22]. MIC coprocessors offers all standard programming

models that are available for Intel Architecture: OpenMP, POSIX threads or MPI [23].

The MIC coprocessor plugs into a standard PCIe slot and provides a standard shared

memory architecture. For programmers of higher level programming languages like

C/C++ or FORTRAN using well established parallelization paradigms like OpenMP,

Threading Building Blocks (TBB) or Message Passing Interface (MPI), the coprocessor

appears like a symmetric multiprocessor (SMP) on a single chip. Compared to

accelerators this reduces the programming effort a lot, since no additional parallelization

paradigm like CUDA or OpenCL needs to be applied [24]. However, supporting shared

memory applications with only minimal changes does not necessarily mean that these

applications perform as expected on MIC. In this chapter I will describe the most

important features relevant to better understand the optimization techniques that will be

applied in the next chapters. Most of the information based on information found in the

Intel 64 and IA-32 Architectures Optimization Reference Manual, the Intel Xeon Phi

Coprocessor Instruction Set Architecture Reference Manual [25], Intel C++ compiler XE

24

13.1 user and reference guide [26] and Intel Xeon Phi Coprocessor System Software

Developer's Guide [27].

 Many Integrated Core Architecture 3.2

MIC coprocessor platform is based on the concepts of the Intel Architecture and that

provides standard shared-memory architecture. Figure 3-1 shows the high level

architecture of the MIC coprocessor die. It has more than 50 cores (this may varies

depending on the version of the coprocessor and manufacture), offers full cache

coherency across all cores. The cores connected by a high performance two ways

directional ring interconnect ring. In addition, there are 8 memory controllers supporting

up to 16 GDDR5 expected to deliver up to 5.5 GT/s. Each memory controller supports

two channels per memory controller. This provides a theoretical bandwidth up to 352

GB/s delivered to the coprocessor.

Figure 3-1 General layout of the MIC coprocessor. For simplicity, only 8 of the total cores and 4 of the total 8

GDDR5 memory controller shown [27]

25

The two ways directional ring has three types of rings in each direction. A data block

ring (64 bytes wide), an address ring (send/write commands and memory addresses) and

an acknowledgment ring (flow control and coherency messages). There are a set of tag

directories connected to the ring and mapping address to the tag directories is based on

hash functions over memory addresses, leading to an equal distribution around the ring.

The memory controllers also connected to the ring, providing access to the GDDR5

memory.

Figure 3-2 illustrates basic building block of the coprocessor. At the right it shows the

GBoxes memory controller that access external memory for read and writes. Every

controller has 2 channels with 32 bit wide bus.

The GBoxes contains three types; interfaces to the ring interconnect (FBOX), request

scheduler(MBOX) and the physical layer that interfaces with the GDDR devices

(PBOX). The MBOX contains two CMCs (or Channel Memory Controllers) that are

completely independent from each other. The MBOX provides the connection between

agents in the system and the DRAM I/O block. It is connected to the PBOX and to the

FBOX. Each CMC operates independently from the other CMCs in the system. At the

left, it shows the SBOX controller, it is generation 2 PCI express client logic. This is the

system interface to the host machine support x8, x16 PCI configuration. Also, at the left

there is the DBox controller which is a debug display engine. At the middle of the Figure

it shows how the basic block of each core and how it is connected to each other. In each

core there is a Core Ring Interface (CRI) which includes interface to the core and ring

interconnect, the L2 cache, the tag directory (TD), and asynchronous processor interrupt

controller (APIC) which receives interrupts to redirect the core for response.

26

VBUVBU

Core

CR1

L2

TD

Core

CR1CR1

VBU VBU

CoreCore

TD

CR1

TD

L2L2L2

TD

Core

VBU

TD

CR1

L2

VBUVBU

Core

CR1

L2

TD

Core

CR1CR1

VBU VBU

CoreCore

TD

CR1

TD

L2L2L2

TD

Gbox
Mem
Ch.

Gbox
Mem
Ch.

Dbox
Display
engine

Sbox

Gbox
Mem
Ch.

R
I
N
G
 C
O
N
E
C
T
O
R

R
I
N
G
 C
O
N
E
C
T
O
R

Ring Interconnector

Ring Interconnector

Core

VBU

TD

CR1

L2

Core

VBU

TD

CR1

L2

Core

VBU

TD

CR1

L2

Ring Interconnector

Ring Interconnector

Figure 3-2 Basic building block of the MIC

Figure 3-3 shows the high level architecture of the MIC core. Every core offers four-way

simultaneous multi-threading (SMT) and 512-bit wide Single Instruction Multiple Data

(SIMD) Vector Processing Unit (VPU), which corresponds to eight double-precision

(DP) or sixteen single precision (SP) floating point numbers. Each core in the architecture

has a 32kB L1 data cache, a 32kB L1 instruction cache, and a 512kB L2 cache that

cumulatively produce shared cache among the cores. The architecture of a core is based

on the pentium architecture, but the design has been updated to 64 bit architecture. Each

27

core includes two basic units scalar units (SU) at the left and the Vector Processing Unit

at the right (VPU). Both of them share the same instruction decode unit in each core but

every unit has its own register type. Also the local private L1 cache data and instruction

cache is shared between the two units. In addition, L2 cache with the other cores in the

same coprocessor through the CRI is shared.

MIC has the ability to execute Intel Instruction set Architecture (ISA) in addition to the

MIC ISA. It is a 5 stages dual pipeline; the main pipeline U-pipe and the V-pipe. The

core can execute 2 instructions per clock cycle like Pentium one on the U-pipe and the

other on the V-pipe. The U-pipe executes any instruction include the vector instructions.

But the V-pipe can’t execute all instructions types [28].

Ring

512K L2 Cashe

32k L1 I-Cashe

32k L1 D-cashe

Scaler

Registers

Vector

Registers

Scaler

Unit

Vector

 Unit

Instruction Decode

Figure 3-3 Core architecture for MIC

28

One of the differences over the Pentium is the 64 instruction extensions. Integer register

files, data paths, and major busses were widened from 32 bits to 64 bits. Integer registers

were increased from 8 to 16. Changes were made to the instruction decoder to decode

new opcodes. A four-level page table and RIP-relative addressing have been added.

Extending in new directions from the 64-bit enhanced base line. The cores have hardware

multithreading support that can reduce the impact of latencies to keep the execution units

busy. Each 64-bit in-order short pipeline core supports four hardware threads.

Figure 3-4 shows pipeline data path of the core [25]. At any given clock cycle, the two

instructions each core can issue from any single context can be: 1 vector operation using

the pipe0 and 1 scalar operation using pipe 1 (or prefetch operation to load data to the

cache before processing it), 1 vector operation and 1 (special) vector operation, or 2

scalar operations. Another component is the VPU associated with each core. This is

primarily a sixteen-element wide SIMD engine, operating on 512-bit vector registers with

Fused Multiply Add (FMA).

29

512KB
L2 Cashe

L2
Ctl

T0 IP
T1 IP
T2 IP
T3 IP

L1 TLB and 32KB
Code Cashe

Decode U-Code

Pipe 0 Pipe 1

TLB
MISS

Handler

L2 TLB

VPU RF X87 RF SCALER RF

VPU
512b SIMD

X87 ALU 0 ALU1

L1 TLB and 32KB
DataCashe

X86 Specific Logic <2% of core +L2 area To on- Die Interconnect

Core

4 Threads in
order

Code Cashe Miss

TLB Miss

16B /Cycle (2IPC)

TLB Miss

Dcash Miss

Figure 3-4 MIC pipeline data path

Due to these vectorization capabilities and the large number of cores, the coprocessor can

deliver 1 TFLOPS of DP theoretical performance. VPU supporting a new instruction set

called Intel Initial Many-Core Instructions (Intel IMCI) [23]. The Intel IMCI includes,

among other instructions, the fused multiply-add, reciprocal, square root, power and

exponent operations, commonly used in physical modeling and statistical analysis.

 Cache Structure and Coherency Protocols 3.3

MIC has two levels of caches in each core. The Level One (L1) cache has 32 KB L1

instruction cache and 32 KB L1 data cache. Associativity is 8-way, with a 64 byte cache

line. Bank width is 8 bytes. Data return can be out-of order. The access time has 3-cycle

30

latency. The level two (L2) unified cache has 64 bytes per way with 8-way associativity,

1024 sets, 2 banks, 32GB (35 bits) of cacheable address range and a raw latency of 11

clocks. The expected access time is approximately 80 cycles [25]. The L2 cache has a

streaming hardware pre fetcher that can selectively pre fetch code, read, and Read-For-

Ownership (RFO) cache lines into the L2 cache. There are 16 streams that can bring in up

to a 4-KB page of data. Once a stream direction is detected, the pre fetcher can issue up

to 4 multiple pre fetch requests. The replacement policy for both the L1 and L2 caches is

based on a pseudo Least Recently Used (LRU) algorithm.

The L2 cache is attached to the core-ring interface block. This block also includes the

Tag Directory (TD), and the Ring Stop (RS) which connects to the inter-processor core

network. Within these sub-blocks are the transaction protocol engine which is an

interface to the RS and is equivalent to a front side bus unit. The RS handles all traffic

coming on and off the ring. The TDs, which are physically distributed, filter and forward

requests to appropriate agents on the ring. It is also, responsible for starting

communications with the GDDR5 memory through the on-die memory controllers.

To keep caches coherent through the cores, the coprocessor implements variations of

cache coherency protocols include MESI, Extended MESI and Globally Owned Locally

Shared (GOLS) [29].

MIC cache coherency protocol is a directory protocol based on MESI that uses GOLS to

simulate an owned state, thus allowing the share of a modified line. Table 3-1 and

Table 3-2 illustrate MESI extended protocol state and definition of each state. The aim is

to avoid write backs to memory when another core wants to read a modified cache line.

31

So, the shared state of this protocol does not mean that the line has not been modified.

Each core’s cache uses the MESI state of the lines that it contains and the Distributed Tag

Directories (DTDs) will contain the global GOLS coherency state of each line. Lines are

assigned to each DTD regarding the line address instead of the core that is containing or

requesting the line.

Table 3-1 Extended MESI cache coherency protocol states [29]

Cache State State definition State definition related to memory

M Modified Only this core owns the line(dirty) It has been modified regarding memory

E Exclusive Only this core owns the line(clean) It has not been modified regarding memory

S Shared Several cores can have the line

It may or may not have been modified

regarding memory

I Invalid The core does not own the line It has not been used

When a cache miss occur the core will request the line to the correspondent DTD. This

DTD will answer depending on the GOLS state of the line and will request memory or

the core which owns the line to answer with the data. If another core has the line, it will

notify the DTD and send the data to the requester core, which will also notify to the DTD

that it has received the data. Then, the DTD will update the line state. Any eviction will

also have to request the DTD for allowance before effectively evicting the line.

32

Table 3-2 Global owned locally shared cache coherency protocol state [29]

Cache State State definition State definition related to memory

GOLS
Globally Owned

 Locally Shared

Several cores can have the

line

It have been modified regarding memory

GE/GM Globally

Exclusive/Modified

Only this core owns the line It may or may not have been modified regarding

memory (the core will have the line in M or E)

GS Globally Shared Several cores can have the

line

It has not been modified regarding memory

GI Globally Invalid No core holds the line It has not been used

 Software Stack Architecture View 3.4

The MIC coprocessor software architecture is outlined in Figure 3-5. There are

essentially four layers in the software stack appear at the right of the figure: tool

runtimes, user-level offload libraries, a low-level communication layer that’s split

between user-level libraries and kernel drivers (Comms), and the operating system. There

is a host-side and co-processor-side component for each. Everything below the offload

runtimes is part of the Intel Many Core Platform Software Stack (MPSS).

The software stack of MIC which is shown on the left-hand side is based on a modified

Linux kernel. The operating system on the MIC coprocessor is in fact an embedded

Linux environment which called micro OS (µOS). It provides basic functionality such as

33

process creation, scheduling, or memory management. Multiple options are available for

communication between the host and the card. The card driver provides virtual network

interfaces, so it is possible to use the TCP/IP network stack. This is for management and

compatibility with existing applications. On the other hand, it cannot provide maximum

performance, since the network stack was designed for a different purpose than

communication over PCI Express.

Offloaded

Application code

MPI Application

Intel ® MPI

COI Runtime Daemon

User mod library

Kernal Mode Driver

Linux Card OS

Host Application Code
MPI Application

Intel ® MPI

COI Runtime

User Mode Library

Kernal Mode Driver

Linux Host OS

Offload Compiler Total Runtimes

User- level

Offload

libraries

Comms

Operating

systems

Intel ®
MPSS

Many Integrate Core Host

KNC-PCIe Card

Linux
Kernal
mode

Linux
Kernal
mode

User
mode

User
mode

Figure 3-5 MIC Software stack Architecture

 Programming Model 3.5

MIC supports the majority of compute paradigm for what is available right now. [24].

There are two main approaches; the “Offload” in this case the program is viewed as

running on host and offloading select work to the coprocessor. In “Native” approach the

34

program runs natively on coprocessors which may communicate with other MIC card or

programs by various methods.

Several execution models can be derived from these two approaches. It depends on the

programming paradigm. Figure 3-6 shows it in case of MPI. Figure 3-6 (a) shows offload

model where the communication of the processes take place between the hosts’

processors. But, the coprocessor capabilities used through the offload library between the

host and coprocessor in each subsystem. On the other hand, Figure 3-6 (b) shows the

coprocessor only model (Native) where the communication between the processes is

done between the coprocessors that is in different subsystem. Also, Figure 3-6 (c) shows

the third model where the execution of the MPI process and the related MPI

communications and Message passing is supported inside the coprocessor, inside the host

node and between the coprocessor. In this case I can assume MPI nodes inside the

coprocessor itself and apply communications between them.

Data

DataData

Data

CPUMIC

MIC CPU

N
E
T
W
O
R
K

Data

Data

CPUMIC

MIC CPU

N
E
T
W
O
R
K

Data

Data

CPUMIC

MIC CPU

N
E
T
W
O
R
K

(c) MPI Symmetric Model(b) MPI Native Model(a) MPI Offload Model

MPI

MPIMPI

Offload

Offload

Figure 3-6 MIC Programming Model

35

Other case is using OpenMP programming paradigm. It is a fork-join model supported

through two execution models. However, the “Native” model where the program runs in

the coprocessor only and all the work done on the coprocessor. The other one is the

offload model, where the program runs in host and offloads (send) compute intensive

code by associated data to the device as specified by the programmer via pragmas in the

source code. Also, it supports hybrid model of execution using MPI and OpenMP inside

the coprocessor or between different coprocessors. This is useful in cluster environment.

 Thread Execution Model 3.6

MIC utilizes hyper-threading (HT) or simultaneous multithreading (SMT) on each core

as a key to masking the latencies inherent in an in-order micro architecture. This should

not be conflicted with hyper threading on Xeon processors that exists primarily to more

fully feed a dynamic execution engine [30]. In HPC workloads, very often hyper-

threading may be ignored or even turned off without degrading effects on performance.

MIC offers four hardware threads per core with sufficient hardware components,

floating-point hardware components and memory capabilities. Figure 3-7 at the left

shows 4 in order threads numbered (T0, T1, T2, T3) that is scheduled at a multiplexer.

The four threads used for hiding the latencies and keep the two main units (Scalar, VPU)

in each core busy. From the figure there are 3 stages for handling a thread. It starts from

the Previous Picker Function (PPF) that selects the thread from the L1 instruction cache.

It includes for each thread context branch target prediction, branch recovery address, and

the next segmentation of Instruction Pointer (IP) and old latched address for the specific

thread context. After that, there is a prefetching buffer in the next stage of the picker

36

function. It includes the instructions that is ready to be picked from the thread picker

buffer and to send to the third stage which is the decode stage. The thread picker issues 2

instructions in every cycle from the same thread context. However, as I described before

every core can executes in each cycle 2 instructions (U-pipe, V-pipe).

Figure 3-7 Multi-threading Architectural Support in MIC Core [27]

The PF works in a round-robin style, issuing instructions during any one clock cycle

from the same thread context only. For example, in cycle N, if the PF issues instruction(s)

from Context 3, then in cycle N + 1 the PF will try to issue instructions from Context 0,

Context 1, or Context 2 – in that order. Hence, it is not possible to issue instructions from

the same context (Context 3 in this example) in back-to-back cycles.

In one hand, this makes it generally impossible for a single thread per core to approach

either limit. In general, applications need a minimum of three or four active threads per

37

core to access all of the resources offer. For this reason, the number of threads per core

utilized should be a tunable variable in an application and be set based on experimental

experience of the application. On the other hand, the theoretical flop rate presupposes that

the workload can be decomposed into fused multiply accumulates. This will be true only

in some very unusual situations, or in the innermost loop of some applications. But it's

always good to remember that the total wall time of a real application depends always on

many other lines of code that may not be able to being re factored in this way.

All four hardware threads per core share their local L2 cache but have high speed access

to the caches associated with other cores. Any data used by a specific core will reserve

space in that local L2 cache, and also it can be in multiple L2 caches around the chip.

While MIC has a penalty for “cross-socket” sharing, which occurs after about 16 threads ,

It has a lower penalty across more than 200 threads. There is a benefit to having locality

first organized around the threads being used on a core (up to 4) first, and then around all

the threads across the coprocessor. So I can conclude that the way the threads spread

across the cores will affect the performance. However, the thread consumes the data from

L1 cache in case of miss if the data available in the cache L2 for another thread it will be

delivered to it without needs to deliver from the memory. This is can be done by setting

the KMP_AFFINITY variable for the compilation time when using OpenMP or

I_MPI_PIN_DOMAIN with MPI.

MIC appears as conventional Shared Memory Multiprocessing (SMP). To keep memory

consistence among all of the cores the system implements directory cache coherency

protocol across the cores. This maintains the shared variable consistence in all of the

cores.

38

The core will only be stalled when a load miss occured. When a load miss occured, the

hardware context with the instruction triggering the miss will be suspended until the data

are brought into the cache for processing. This allows the other hardware contexts in the

core to continue execution. Both the L1 and L2 caches can also support up to about 38

outstanding requests per core (combined read and write). The system agent (containing

the PCI Express agent and the DMA controller) may also generate 128 outstanding

requests (read and write) for a total of (38*# of cores + 128). This allows software to

prefetching data aggressively and avoids triggering a dependent stall condition in the

cache. When all possible access routes to the cache are in use, new requests may cause a

core stall until a slot becomes available.

MIC doesn’t support paging to an external device. It has only one DMA engine, so any

communications (network file-system, MPI, sockets, ssh, and so forth) between the

coprocessor and host can interfere with offload data transfers and affecting on the

application performance.

 Thread Affinity 3.6.1

The Intel runtime library and Coprocessor OS; has the ability to bind OpenMP thread

contexts to physical processing unit [26]. The interface is controlled using the

KMP_AFFINITY environment variable. It restricts execution of certain thread context to

a subset of the physical processing units in a multiprocessor computer. Depending upon

the topology of the machine, thread affinity can have a dramatic effect on the execution

speed of a program.

39

There are three levels for interfaces the affinity to the processing unit (high level, mid-

level, low level). The first level assigned implicitly by the operating system according to

specific affinity type (scatter, balanced, compact) by setting an operating system variable.

The second one is explicitly done by the programmer for a specific core id by setting a

variable in the OS environment. The third one, the programmer can use API to assign

thread explicitly to the core.

Figure 3-8 shows how the threads are spread across the cores. The logical processor

number used by the coprocessor OS on MIC architecture is different from that on the

host. There is one logical processor for each hardware thread context. Logical processor 0

is placed on the first hardware context of the highest numbered core. Logical processors

from 1 up to the highest, minus three, are placed consecutively on core 0 context 0, core 0

context 1, core 0 context 2, core 0 context 3, core 1, context 0 and so on, with the last

three logical processors being on the highest numbered core, with hardware thread

contexts 1, 2, and 3.

Core0

(HT0,HT1,HT2,HT3)

Core1

(HTC0,HT1,HT2,HT3)

core2(HT0,HT1,HT2,

HT3)

core2(HT0,HT1,HT2,

HT3)

core57(HT0,HT1,HT2

,HT3)

core58(HT1,HT2,HT3

)

core59(HT1,HT2,HT3

)

core60(HT0,HT1,HT2

,HT3)

Xeon Phi Card Thread Context across cores

Figure 3-8 MIC Card Thread Context across 60 cores

40

 Thread Affinity Type 3.6.2

MIC has three types of thread affinity. These types describe how the thread context is

bind to the hardware thread along the cores; and in which order. Figure 3-9 shows how

scatter affinity distribute 6 threads across 3 cores; The thread context are placed across

the cores; until all cores have at least one thread, after that add the others in round robin

fashion. Figure 3-10 shows how to assign 6 threads context to the hardware threads cores

using the compact Affinity. It assigns the thread contexts to the hardware contexts by

filling the core with 4 threads one at a time. The last one is balanced affinity. Figure 3-11

shows assigning 9 threads in using balanced type. It is only available on the MIC

coprocessor; in this type threads placed on separate cores until all cores have at least one

thread, similar to the scatter type. However, when the runtime must use multiple

hardware thread contexts on the same core, the balanced type ensures that the thread

numbers are close to each other, which scatter does not do.

Coprocessor

Core 0 Core 1 Core 2

HT0 HT1 HT2 HT3 HT0 HT1 HT2 HT3

Scatter Affinity

0 3 2 51 4

HT0 HT1 HT2 HT3

Figure 3-9 Scatter Affinity for 6 thread

41

Coprocessor

Core 0 Core 1 Core i

HT0 HT1 HT2 HT3 HT0 HT1 HT2 HT3

Compact Affinity

0 1 2 3 4 5

Figure 3-10 Compact Affinity for 6 threads

Coprocessor

Core 0 Core 1 Core 2

HT0 HT1 HT2 HT3 HT0 HT1 HT2 HT3

Balanced Affinity

0 1 4 52 3

HT0 HT1 HT2 HT3

7 86

Figure 3-11 Balanced Affinity for 9 threads

From analytical point of view, it is normally beneficial to use cores before threads, so

the compact affinity type is unlikely to yield the best results, because it leaves cores

unused. The thread allocation under scatter is likely to be better than compact, because it

uses cores before threads. However, scatter allocates threads such that threads with IDs in

close numerical proximity are on different cores, and therefore do not share caches.

Because threads with neighboring IDs often operate on closely related data, placing them

on different cores is unlikely to be the best way to allocate them. The thread allocation

under balanced is balanced over the cores and the threads allocated to a core are

neighbors of each other. Therefore, cache utilization should be efficient if the threads

access data that is near in store.

42

4 CHAPTER 4

STATIC PROBLEMS

 Introduction 4.1

In this chapter, I present my work for static problems. I choose from two categories Basic

Linear Algebra and numerical algorithms. For first category, I used the Strassen Matrix

Multiplication (SMM). Matrix-Matrix multiplication (MM) is massively parallel

application with fixed data layout. The basic Strassen-MM (S-MM) algorithm having

time complexity of O (N
2.807

) instead of O (N
3
) of standard MM algorithm. My

optimization is based on a reordering approach to reduce the storage, use of a depth first

walk (DFW), and invocation of the Math Kernel Library (MKL) optimized library from

Intel for smaller matrix-matrix multiplications. In DFW, all available machine parallelism

is used in each depth expansion.

For the second category I used Jacobi Solver (JS) of a system of linear equations for

which the load is static across the iterations. In iterative JS, the threads need to read a

vector that was computed by all the working threads before starting the next iteration. It

is noticed that due to the above data layout JS does not scale well because of the

excessive synchronization overhead, which must be implemented across all the working

threads. To improve JS scalability, I explored (1) Synchronous Jacobi (SJ), (2)

Asynchronous Jacobi (AJ), and Relaxed Jacobi (RJ). In SJ I used explicate barrier

synchronization. In AJ a non-exact solution is computed because completing threads start

43

the next iterations using current data, which is a mixing of new and old. AJ slows down

the convergence rate. In RJ, completing threads at iteration K start the next iteration

(k+1) using newly computed data. RJ provides overlap between two iterations at the cost

of managing the availability of currently available intermediate results.

 Matrix Multiplication 4.2

Matrix-matrix multiplication (MM) is a cornerstone of linear algebra algorithms; when

multiplying matrices, the elements of the rows in the first matrix are multiplied with

corresponding columns in the second matrix. I will use MM (C=AxB) where the size of

the problem is NxN. Figure 4-1 Naive Matrix multiplication outlined naïve matrix

multiplication.

MM nested loop is a loop independent dependency (LID) since there is no data access

between different iteration space and dependency occur only in the same iteration space

for S2.

for(i=0;i<N;i++)

{

 for(j=0;j<N;j++)

 {

 sum=0; // S1

 for(k=0;k<N;k++)

 {

 sum+=A[i][k]*B[k][j]; // S2

 }

 C[i][j]=sum; // S3

 }

}

Figure 4-1 Naive Matrix multiplication code

44

In MM, assumes both A and B are stored in row major order. traditional methods of

matrix multiplication are not cache-friendly. In MM C= AxB , elements in matrix A are

accessed in row major, but elements in Matrix B are accessed in column major order.

Each access to B results in a cache miss since the consecutively accessed elements are not

contiguously stored in memory. Elements of B are repeatedly accessed when computing

different elements of C, but they do not remain in the cache for reuse as the cache

capacity is small. Besides, only small portions of the fetched cache blocks are accessed

before they get replaced due to conflicts. The net result is a large number of cache misses.

The entire computation of MM involves 2N
3
 arithmetic operations (counting additions

and multiplications separately), but produces and consumes only 3N
2
 data elements. As a

whole, the computation shows honorable reuse of data. In general, an entire matrix will

not fit in the cache. The work must therefore be broken into small chunks of computation,

each of which uses a small enough piece of the data. In standard MM I can compute the

number of references to the memory as the following equation.

Memeory reference= N
3
(read each column of B, N times) + N

2
 (read each row of A

once) + 2N
2

 (read and write each element of C once) = 3N
2
 + N

3

If I compare it to access of elements required from the memory (3N
2
). So I can notice

that a lot of overhead and miss reuse. As a conclusion, in this implementation, the

algorithm needs to be optimized to get better performance and scalability.

 Execution Model for MM 4.2.1

Naïve matrix multiplication has no dependency as I describe later, the loop iterations can

be executed independently of each other. So parallelizing the naïve code is

45

straightforward. Insert the #pragma omp for before the outermost loop (i loop). It is

beneficial to insert the pragma at the outermost loop, since this gives the most

performance gain. In the parallelized loop, variables A, B, C and N are shared among the

threads, while variables i, j, and k are private to each thread.

 An early experiments are done, to increase locality and reusing of the cache. They are

tiling and blocking. A comparison of the results have been done with highly optimized

library MKL. It shows that MKL outperforms them on MIC.

To optimize execution time of MM on MIC STRASSEN algorithm is applied. I have

developed a number of implementations. The optimized version is presented in the next

section.

 Strassen MM (S-MM) 4.2.2

Volker Strassen published the Strassen algorithm in 1969 [31] based on a divide and

conquer strategy. Let A, B be two square matrices over a ring R. The objective is to

calculate the matrix product C as follows:

nn xRCBABAC 22,,

If the matrices A, B are not of type 2
n
 x 2

n
, the missing rows and columns will be filled

with zeros. A, B, and C will be partitioned into equally sized block matrices such that

2,21,2

2,11,1
,

2,21,2

2,11,1
,

2,21,2

2,11,1
CC

CC
C

BB

BB
B

AA

AA
A

with

46

1212
,,,,,

nxn
RjiCjiBjiA

then

2,22,22,11,22,2

1,22,21,11,21,2

2,22,12,11,12,1

1,22,11,11,11,1

BABAC

BABAC

BABAC

BABAC

In the above construction still 8 multiplications are needed to calculate Ci,j matrices. In

order to reduce the number of multiplications, the following new matrices have to be

defined.

)2,21,2()2,22,1(7

)2,11,1()1,11,2(6

2,2)2,11,1(5

)1,11,2(2,24

)2,22,1(1,13

1,1)2,21,2(2

)2,21,1()2,21,1(1

BBAAM

BBAAM

BAAM

BBAM

BBAM

BAAM

BBAAM

Now, using only the above 7 multiplications, Ci,j can be express in terms Mk as follows:

63212,2

421,2

532,1

75411,1

MMMMC

MMC

MMC

MMMMC

This matrices partition process can be done recursively until the sub matrices degenerate

into numbers. Figure 4-2 represents level 1 and level 2 of STRASSEN algorithm that

goes into Level N.

47

C=AB

M1 M7M6M5M4M3M2

M1…m7 M1...m7M1…m7M1…m7M1…m7M1…m7M1…m7

Level 1

Level 2

Level N

Figure 4-2 STRASSEN MM recursion into N level

The complexity of S-MM algorithm in terms of arithmetic operations (additions and

multiplications) can be expressed as follows:

f(n)= 7f(n-1)+ l4
n

where f(n) denotes the number of additions performed at each level l of the algorithm.

g(n)= (7+O(1))
n

where g(n) denotes the number of multiplications performed at each level .

Thus, the asymptotic complexity for multiplying matrices of size N = 2
n
 using the

STRASSEN algorithm is)8074.2()
)1(7

2
log

())]1(7([NO
o

NOnoO

 . The

reduction in the number of operations however comes at the price of a somewhat reduced

numerical stability, and the algorithm also requires significantly more memory compared

to the standard algorithm. Both initial matrices must have their dimensions expanded to

the next power of 2, which results in storing up to four times as many elements, and the

seven auxiliary matrices each contain a quarter of the elements in the expanded ones. The

arithmetic complexity of the algorithm is:

48

26
7

2
log

6)(
7

2
log

)(nnn
a

tnn
m

t

Where tm(n) and ta(n) respectively denote the number of multiplications and the number

of additions. The execution model of STRASSEN can be summarized for recursive

implementation as follows:

 Divide matrix C into C1,1 , C1,2 , C2,1 , C2,2

 Compute matrix M1 , M2 …….M7.

 Compute matrices C1,1 , C1,2 , C2,1 , C2,2

 Any multiplication I check if the size of matrices greater than a threshold value ,

call the previous steps again recursively.

 If matrix size less than the threshold call normal MM.

4.2.2.1 Implementation on MIC

Optimization of parallel applications under new many-core architectures is challenging

even for regular applications. However, in modern architectures the arithmetic operations

take aproximatly the same number of cycles. Therefore, the performance of strassen

comes from the lower complexity of addition operation compared to MM multiplication.

Therefore, successful strategies inherited from previous generations of parallel or serial

architectures just return incremental gains in performance and further optimization and

tuning are required [32].

 The Original implementation of S-MM suffers from memory usage [33], and it is not

practical due to the size of memory that it needs for huge matrices. I have implemented a

reorder algorithm of S-MM to reserve memory allocation[34] [35].

49

In this implementation two intermediate matrices (T1,T2) have been reserved in each

level of recursion, of size (N/2L). Where L is the level of recursion and N is dimension of

the matrix NxN.

 My first experiment shows that the original implementation is unpractical on Intel Xeon

Phi with 5.6 Gbyte of memory. I can achieve matrix size up to 3072 with 5 level of

recursion. But in reorder implementations I achieve matrix size up to 10240. So, I will

focus in the next sections on the reorder Implementation.

Figure 4-3 shows pseudo code of the implementation. It has three main operations

addition, subtraction and multiplication. The algorithm called recursively into L level of

recursion depending on the threshold value. For each of the operations mentioned you

need to pass the new size of the matrix and the indices of sub matrices. Because in each

level the size of matrix t is changed. Figure 4-4 shows how to pass the indices to each sub

matrix. I have 4 sub matrices as shown. Each operation of the algorithm called with three

matrices as operand applies the operation using the first two matrices and store the result

in the third matrix operand. The small x denotes to which matrix I use.

 CBLAS_DGEMM from MKL has been used as the engine of the multiplication

operation. It is a highly optimized library from Intel. However, experiments done on

optimization of matrix multiplication using tiling and blocking have shown shows that

CBLAS_DGEMM outperforms them.

50

void strassenMultMatrix(double *x, double *y, double *z,
int size,int srow1 , int scol1,int srow2,int scol2,int srow3,int

scol3,int DIM0,int DIM1,int DIM2

){

 double **t1, **t2;

 int newsize = size/2;

 if (size >= threshold) {

 t1 = (double*)

malloc(sizeof(double*)*newsize*newsize);

 t2 = (double*)

malloc(sizeof(double*)*newsize*newsize);

 addMatrices(a11,a22,t1, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2);

 addMatrices(b11,b22,t2, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2);

 strassenMultMatrix(t1,t2,c21, int size,int srow1 ,
int scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2); // Compute M1

subMatrices(a21,a11,t1, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2);

 addMatrices(b11,b12,t2, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2);

 strassenMultMatrix(t1,t2,c22, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2); // Compute M6

 subMatrices(a12,a22,t1, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2);

 addMatrices(b21,b22,t2, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2);

 strassenMultMatrix(t1,t2,c11, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2); // Compute M7

 addMatrices(c11,c21,c11, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2);

 addMatrices(c21,c22,c22, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2);

addMatrices(a21,a22,t1, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2);

strassenMultMatrix(t1,b11,c21, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2);//Compute M2

subMatrices(b12,b22,t2, int size,int srow1 , int

51

scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2);

strassenMultMatrix(a11,t2,c12, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2) // Compute M3

subMatrices(c22,c21,c22, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2);

 addMatrices(c22,c12,c22, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2);

subMatrices(b21,b11,t2, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2);

strassenMultMatrix(a22,t2,t1, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2); // Compute M4

addMatrices(c11,t1,c11, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2);

addMatrices(c21,t1,c21, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2);

addMatrices(a11,a12,t1, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2);

strassenMultMatrix(t1,b22,t2, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2);subMatrices(c11,t2,c11,newsize);

addMatrices(c12,t2,c12, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2);

 }

 else {

 normalMultMatrix(a,b,c, int size,int srow1 , int
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int

DIM1,int DIM2);

 }

}

Figure 4-3 Pseudo code of Reorder Implementation

Sub matrix Row index Column Index

Sub1,1 Newsize Newsize

Sub1,2 Newsize newsize+scolx

Sub2,1 newsize+srowx Newsize
Sub2,2 newsize+srowx newsize+scolx

Figure 4-4 Strassen, Submatrix indices

52

4.2.2.2 Experiment Results

I implemented several versions of S-MM. Including Single and double precision to

evaluate error lower bound, upper bound and average error. Also the matrix has been

implemented using two dimensional Arrays and one dimensional array. My result shows

that on MIC the best implementation is using one dimensional array. Because MALLOC

with two dimensional arrays didn’t allocate the memory consecutively and this affects the

performance on MIC. I also compute the execution time with 5 levels of recursion and

compare it to a highly optimized library CBLAS_DGEMM from MKL.

4.2.2.2.1 Scalability

To evaluate S-MM scalability on MIC; the execution time is reported. I compared the

results with highly optimized matrix-matrix multiplication library developed by Intel

which is named MKL. In addition, the speed up is computed using different matrix size

and different number of cores; where each core was assigned 4 threads using compact

affinity.

To Test the scalability, I ran the experiments with different matrix sizes and different

number of threads. All the experiments were done by disabling the factorization unit and

using the O2 level of optimization of the Intel compiler 2013. Also the Affinity is set to

compact to increase the locality and sharing between the threads. In my experiments each

core has 4 OpenMP threads. They are bind to the hardware threads depending on the OS

scheduling criteria. Figure 4-5, Figure 4-6, Figure 4-7 Figure 4-8 show the experiments

using different number of cores.

53

Figure 4-5 Strassen with MKL, 4 core, MIC

Figure 4-6 STRASSEN with MKL, 16 core, MIC

0

50

100

150

200

250

300

1024 4096 8192 16384

Ex
e

cu
ti

o
n

 T
im

e
(S

)

Matrix Size

Strassen with MKL , 4 core ,MIC

Str-mkl(N/2) Str-mkl(N/4) Str-mkl(N/8)

Str-mkl(N/16) Str-mkl(N/32) MKL(4)

0

10

20

30

40

50

60

70

80

1024 4096 8192 16384

Ex
e

cu
ti

o
n

 T
im

e
(S

)

Matrix Size

Strassen with MKL , 16 core ,MIC

Str-mkl(N/2) Str-mkl(N/4) Str-mkl(N/8)

Str-mkl(N/16) Str-mkl(N/32) MKL(16)

54

Figure 4-7 STRASSEN with MKL, 32 core, MIC

Figure 4-8 Strassen with MKL, 60 core, MIC

0

5

10

15

20

25

30

35

40

45

50

1024 4096 8192 16384

Ex
e

cu
ti

o
n

 T
im

e
(S

c)

Matrix Size

Strassen with MKL , 32 core ,MIC

Str-mkl(N/2) Str-mkl(N/4) Str-mkl(N/8)

Str-mkl(N/16) Str-mkl(N/32) MKL(32)

0

5

10

15

20

25

30

35

40

45

1024 4096 8192 16384

Ex
e

cu
ti

o
n

 T
im

e
(S

c)

Matrix Size

Strassen with MKL , 60 core ,MIC

Str-mkl(N/2) Str-mkl(N/4) Str-mkl(N/8)

Str-mkl(N/16) Str-mkl(N/32) MKL(60)

55

From the figures (Str-mkl) is the execution time of my strassen using CBLAS_DGEMM

as MM for smaller matrix size along different recursion level. Also, the results of MKL

have been shown. Experiments show that increasing the level of recursion up to level two

decreases the execution time using large matrix size. I obtain an execution time better

than CBLAS_DGEMM (MKL) 8% to 24% on matrix size 8192, 16384 respectively,

when the number of cores greater than 32 core. I can conclude from the results that the

number of cores used is an important factor combined with the size of the matrix and

level of recursion.

Further interesting results can be obtained from the speed up. Figures below depict the

same data, but as a speedup relative to one core.

Figure 4-9 Speed Up of Strassen relative to 1 core, 8 core

0

1

2

3

4

5

6

7

8

9

10

1024 4096 8192 16384

Sp
e

e
d

U
P

 (
 r

e
la

ti
ve

 t
o

 1
 c

o
re

)

Matrix Size

Strassen with MKL , 8 core ,MIC

Str-mkl(N/2) Str-mkl(N/4) Str-mkl(N/8)
Str-mkl(N/16) Str-mkl(N/32) MKL(8)

56

Figure 4-10 Speed Up of Strassen relative to 1 core, 16 core

Figure 4-11 Speed Up of Strassen relative to 1 core, 32 core

0

2

4

6

8

10

12

14

16

18

20

1024 4096 8192 16384

Sp
e

e
d

 U
p

 (
 r

e
la

ti
ve

 t
o

 1
 c

o
re

)

Matrix Size

Strassen with MKL , 16 core ,MIC
Str-mkl(N/2) Str-mkl(N/4) Str-mkl(N/8)

Str-mkl(N/16) Str-mkl(N/32) MKL(16)

0

5

10

15

20

25

30

35

1024 4096 8192 16384

Sp
e

e
d

 U
p

 (
 r

e
la

ti
ve

 t
o

 1
 c

o
re

)

Matrix Size

Strassen with MKL , 32 core ,MIC
Str-mkl(N/2) Str-mkl(N/4) Str-mkl(N/8)

Str-mkl(N/16) Str-mkl(N/32) MKL(32)

57

Figure 4-12 Speed Up of Strassen relative to 1 core, 60 core

It is clear to see that with small matrix sizes (1024 , 4096), the speed up does not scale

well when the number of core increased. But, for larger matrix size the speedup increased

linearly when the number of cores was increased. I got a speed up equals to the number

of cores for matrix size 8192 and 16384.

In summary, experiments show that increasing the level of recursion cause increased of

execution time. The cause of this poor performance of the machine at the level of

recursion refers to the following points:

 When I used maximum number of threads, this increases the time of scheduling

and managing threads in Linux. But this had low percentage of impact on the

performance.

0

10

20

30

40

50

60

1024 4096 8192 16384

Sp
e

e
d

U
P

 (
 r

e
la

ti
ve

 t
o

 1
 c

o
re

)

Matrix Size

Strassen with MKL , 60 core ,MIC

Str-mkl(N/2) Str-mkl(N/4) Str-mkl(N/8)

Str-mkl(N/16) Str-mkl(N/32) MKL(60)

58

 STRASSEN algorithm uses divide and conquer algorithm and the size of the sub

matrices decreases when I increase the level of recursion. So utilization of caches

in the cores decreasing due to that the smaller number of matrices when goes into

deeper recursion level. This depends on the size of the matrix and number of

cores used. These two factors can be used as a collaboration factors for

optimization.

 CBLAS_DGEMM library time increases when the size of the matrix smaller than

2048 and increasing the number of core. Figure 4-13 shows the

CBLAS_DGEMM function from MKL performs with smaller size of matrix and

larger number of Cores

Figure 4-13 Execution time of MKL on smaller matrix size and different number Cores

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 4 8 16 32 56

Ex
e

cu
ti

o
n

 T
im

e
 (

S)

core

Execution Time of MKL on MIC

512

1024

59

 Conclusion 4.2.3

I have implemented the basic S-MM algorithm having time complexity of O(N
2.807)

instead of O(N3) of standard matrix multiplication algorithm following the same

execution steps as proposed by Strassen. In addition, I have also implemented a reordered

approach for Strassen to reduce memory allocations.

But increasing the recursion level in my implementations will increase the execution time

due to the overhead of intermediate additions operations. I have also shown that this

increase in execution time with the level of recursion will be reduced with the large space

size. So, my implementations will be more profitable as the size of the matrices is

increased. On MIC, the results show that the use of up to 2 recursion levels for S-MM

with MKL as the basic MM library outperforms MKL alone by 8 to 24%. This shows the

profitability of S-MM procedure with a few recursion levels to tune performance of

optimized MM libraries.

 Jacobi Solving Linear Equations 4.3

JACOBI is an iterative method used to solve a Linear System Equation AX=B with

number of equations equal N. It start with an initial solution X
0
 and computes the X

k+1

for k times of iteration. Any iteration k

needs all the values of

X from iteration k-1 except

the values of xi . Also it needs the value of B and A which is constant. The equation of xi

can be written as the following:

 for i=1,2,3,….N

N

ijj

k

jiji

ii

k

i

iniNiiii

xab
a

x

bxaxaxa

,1

)()1(

11

1

60

The process is initialized with a solution equal X
0
 and iterate until the value of X

k+1
is

converged or until specific value of K depends on the accuracy and ability of the matrices

to converge. Figure 4-14 below shows sequential code of Jacobi iterative method.

for(k = 0; k < MAX_ITER; k++)

{

 for(i=0; i<N; i++){

 sum = 0.0;

 sum=sum-A[i*N+i] * X_seq[i]; // S1

 for(j=0; j<N; j++){

 sum += A[i*N+j] * X_seq[j]; // S2

 }

 new_x[i] = (B[i] - sum)/A[i*N+i];//S3

 }

 for(i=0; i < N; i++)

 X_seq[i] = new_x[i]; // S4

}

Figure 4-14 JACOBI sequential code implementation

I conclude from the sequential code that there is a dependency distant 0 between (S2, S3)

and (S3, S4). Also, there is a forward loop carried dependency (F-LCD) with dependency

distance =1 between S2, S4.

For Jacobi I have matrix A with size NxN elements, matrix B with six Nx1 and Matrix X

with size Nx1 elements. Figure 4-15 below shows these matrices. Matrix A, B is constant

in the algorithm and stored in the memory in row major but matrix X is changed during

the iteration K as described above. To compute xi for k+1 each element in the aij row is

multiplied by each element in xj column except the elements i=j , after that subtract it

from bi and divide it by aii. If xij not exist in the memory it generates read miss every time

of computation of xij. The most expensive part is the matrix vector multiplication, the

complexity is of O(N
2
).

61

=X

A X B

i

j

i

i

Figure 4-15 Jacobi Data Layout Representation

.

 Jacobi Execution Model 4.3.1

To efficiently parallelize the Jacobi algorithm, the devised schemes should achieve data

locality, minimize the number of synchronization, and maximize the core computations

adjacent thread. By assuming, for simplicity, that the number threads divides exactly the

dimension N of the NxN matrix A and the vectors X and B. From dependency analysis the

outer loop index k could not be carried out due to the F-LCD. So, the parallelization will

occurred for the two loops inside the iteration loop.

Simplest parallelizing of Jacobi is done by inserting the directive on the outer most loop

of the sequential implementation. Figure 4-16, explains the direct execution model of

parallelizing of JACOBI.

62

for(k = 0; k < MAX_ITER; k++)

{

#pragma omp parallel for private(i,j,sum)

 for(i=0; i<N; i++){

 sum = 0.0;

 sum=sum-A[i*N+i] * X[i]; // S1

 for(j=0; j<N; j++){

 sum += A[i*N+j] * X[j]; // S2

 }

 new_x[i] = (B[i] - sum)/A[i*N+i];//S3

 }

#pragma omp parallel for private(i)

 for(i=0; i < N; i++)

 X[i] = new_x[i]; // S4

}

Figure 4-16 Direct Jacobi parallelization Code

The most computation will be in the first loop (L1), where the dimension of matrix N is

divided by the number of threads for the matrices A, B, X. So, each of thread will be

responsible to compute sub solution for the matrix X depending on the thread number.

The spreading of the work is done implicitly by the FOR constructs. In addition, to that

no thread will go into the next iteration until all of the threads finish their work. Which is

controled by the implicit barrier inserted at the end of the construct. After all the threads

have finished their work and have stored the results into new_x the value was copied into

the shared variable X and a new iteration started. The outermost loop keep executing until

finishing the number of iteration.

4.3.1.1 Synchronous Jacobi (SJ)

The simple optimization code clarified above has a drawbacks on parallel programming

style. However, entering and exiting from the parallel for constructs inside the iteration

63

space because an overhead combined with two for constructs. Hence, the code contains

two implicit barriers that synchronize the work of the threads. To solve the previous

problem a work sharing construct is used. Figure 4-17, illustrates an implementation that

handles many issues in the first code. I called this implementation Synchronous Jacobi

(SJ)

#pragma omp parallel shared (A,B,X,N,Xp,T,kk,temp) private(k,i,ii,j,sum)

{

 int tid=omp_get_thread_num();

 ii=tid*kk;

for(k=0;k<MAX_ITER;k++)

 {

 for(i=0; i<kk ; i++){

 sum=0.0;

 sum=sum-(A[(i+ii)*N+i+ii]*X[i+ii]);

 for(j=0; j<N; j++){

 sum+=A[(i+ii)*N+j] * X[j];

 }

 Xp[i+ii]=(B[i+ii]]]-sum)/A[(i+ii)*N+i+ii];

 }

 #pragma omp single

 {

 temp=X;

 X=Xp;

 Xp=temp;

 }

 }

}

Figure 4-17 Synchronous Jacobi implementation, using work sharing constructs and single construct to optimize

overhead

Using the work sharing construct gives the programmer the facility to control the flow of

the program and the work for each thread. I first omit the two parallel for construct and

insert the iteration space into the parallel construct to reduce the overhead for entering

and exiting from a parallel region. In addition, to that the number of the thread is

retrieved depending on the thread ID the indices of the matrices A, B, X, is determined.

After that each thread is responsible to compute a sub solution from matrix X in an

iteration K. To remove the second for construct and copying the data into the shared

variable, another variable is used. Hence, each thread in the iteration will read from a

64

variable X and store the result into the variable Xp in each iteration. To let the threads

read from the last results from the next iteration K+1 I swap the pointers using the single

construct. It is used to make only the master thread swap the pointers and synchronize all

the thread to this point. So, no thread will goes into next iteration until the master thread

finish swapping. In this case I only have one implicit barrier at the end of the single

construct. Also using pointer swapping increases the possibility to find the sub solution X

inside the cache when goes into the next iteration.

4.3.1.2 Relaxed Jacobi (RJ)

To reduce the overhead of synchronization and increase L2 cache reuse a Relaxed Jacobi

(RJ) with blocking is implemented. I will assume there are N threads from (0,N-1). Each

thread will compute partial solution of X denote as Xthi . Also each thread will need partial

matrix of A and all vector of B. Where A and B are constants during the iterative

process. Only vector X is changing during computation process. Relax the

synchronization causing an overlap between the iteration. By analyzing the dependency

between the iteration only overlaps between iteration K and K+1 can be done. This

means that at any given time the thread can compute X(K) and partial solution from

X(K+1). This depends on the proceeding of the other threads computation. To Relax

Synchronization I apply blocking technique using number of threads assigned to the

processor. However, the number of partial solution will be number of threads (T). Also

the number of blocks for matrix A and B will equal number of threads. I simplify the

algorithm in the following flow chart Figure 4-18.

65

Figure 4-18 Relaxed Synchronization (RS) execution flow chart

66

The execution starts by initializing the matrix A and the vectors B, 2X. Where 2X refers to

the vector X which increased into double size to include the results from two iterations at

the same time which are X(0) and X(1). After that I check if K=0, which means that the

computation of the blocks will proceed normally, because initially the solution X is exist

at X(0) and no need for checking if the sub solution exist. When the execution start after

K=0 I need to differ from odd iteration and even iteration to determine the location and

indices of the values that are needed in the computation process.

In both cases the process of execution starts by setting the shared variable work and the

private variable WORK_PRIVATE. In addition, to that the indices is initialized to point to

the correct indices for matrix A, B, X and counter variable is settled.

Each thread starts computing sub solution by its ID. Because that block of solution will

be ready as the thread will not proceed into next iteration until finishes its sub solution.

Each thread computes the sub solution and increases the counter to insure that all the

blocks have been proceeded. In case there is no blocks ready the thread spinning at this

point and waiting for a work to be ready.

After the thread finishing its work at iteration K it copies the values from private variable

WORK_PRIVATE into shared variable X (K). This allows the result to be shared between

the threads. The threads continue computing until finishing all the iteration space.

67

 Experiment Results 4.3.2

An experiment is done to evaluate the over head of the synchronization on JACOBI

SOLVER. I compute the time that is spent in synchronization for one barrier over 100

iterations. Figure 4-19 shows time spent in synchronization one barrier over 100

iterations. To get accurate results the experiment is done 10 thousand times and the

average time is taken.

Figure 4-19 Percentage time spend in synchronization for 100 iteration

From the figure above I can conclude that the synchronization time take more than 95%

of the execution time when matrix size is 1024. But its percentage decreases by 50%

when the matrix size 4096. Also I can notice that when I have a large matrix size (16384)

the percentage time is less than 9% of the total execution time. I can conclude that the

synchronization has an overhead added to the execution time of JACOBI SOLVER

which can affect the overall performance computation of the machine.

0

10

20

30

40

50

60

70

80

90

100

1 4 16 32 64 128

P
e

rc
e

n
ta

ge
 t

im
e

 f
o

r
Sy

n
ch

ro
n

iz
at

io
n

Number of threads

Jacobi , Private Shared blocked , Percentage Synchronization

time , no-vec , compact , 100 iteration , 1 barrier

1024 2048 4096 8192 16384

68

To evaluate my work in reducing the synchronization overhead and increase cache reuse.

A set of experiments have been done on different implementations of JACABI. I

implement Synchronous Jacobi (SJ) which includes one synchronization barrier. Also I

implement Asynchronous Jacobi (AJ) where the synchronization is removed. In addition,

a Relaxed Synchronization (RS) is implemented. All the experiments run over 100

iterations for different matrix size and different number of threads. Figures below show

the results

Figure 4-20 Jacobi experiment result for SJ, AJ, RJ for matrix size 1920

Figure 4-20 shows the execution time for running SJ, AJ and RJ for matrix size 1920

with different number of threads. It appears that the RJ is better than the other two

implementations until number of threads equal to 32 threads. After that the execution

time of the RJ becomes greater than the other. This happened due to that the overhead for

blocking and relax synchronization for more than 32 threads for smaller matrix size will

be greater than the execution time of the SJ, AJ. Therefore, the benefits of this method

can be seen with larger problem size.

0

0.5

1

1.5

2

4 16 32 64 128 240

E
x
ec

u
ti

o
n

 T
im

e
(S

c)

Thread

JACOBI , no-vec, 100 iter SJ AJ RJ

Matrix Size = 1920

69

Figure 4-21 Jacobi experiment result for SJ,AJ,RJ, matrix size 3840

Figure 4-22 Jacobi experiment result for SJ,AJ,RJ, matrix size 7680

0

1

2

3

4

5

6

7

8

4 16 32 64 128 240

E
x
ec

u
ti

o
n

 T
im

e
(S

c)

Thread

JACOBI, no-vecm 100 iter SJ AJ RJ

Matrix Size = 3840

0

5

10

15

20

25

30

4 16 32 64 128 240

E
x
ec

u
ti

o
n

 T
im

e
(S

c)

Thread

JACOBI, no-vec, 100 iter SJ AJ RJ

Matrix Size = 7680

70

Figure 4-23 Jacobi experiment result for SJ,AJ,RJ, matrix size 15360

Figure 4-24 Jacobi experiment result for SJ,AJ,RJ, matrix size 30720

Figure 4-21 until Figure 4-24 show the execution time of SJ, AJ and RJ for matrix size

3840, 7680, 15360 and 30340 respectively with different number of threads. I gain a

percentage of improvement in execution time from RJ 24.4%, 32.6%, 38.9%, 57.16%

respectively over the SJ. The decreasing in execution time of RJ caused by the blocking

matrixes A, B and D which increase the reuse of L2 cache and decreasing the cache

0

20

40

60

80

100

120

4 16 32 64 128 240

E
x
ec

u
ti

o
n

 T
im

e
(S

c)

Thread

JACOBI, no-vec, 100 iter SJ AJ RJ

Matrix Size = 15360

0

100

200

300

400

500

4 16 32 64 128 240

E
x
ec

u
ti

o
n

 T
im

e
(S

c)

Thread

JACOBI, no-vec, 100iter SJ AJ RJ

Matrix Size = 30720

71

misses. However, every time the thread starts computing its new sub solution it will start

from the previous block that is computed by it. So, in this case it is obviously will find it

in the cache before it is evicted. Also, the other threads in this schema can find the block

in other cores all around the MIC. Therefore, the time needed to get the data from cache

of other core will be less than the time needed to read the data from the global memory.

 Conclusion 4.3.3

In summary, I have presented a synchronization optimization technique for JACOBI

SOLVER. My technique includes relaxed synchronization across the iteration space. To

achieve that I apply blocking for the matrixes A, B, X along with the number of threads.

To evaluate my work three implementations of JACOBI SOLVER have been

implemented SJ, AJ, and RJ. SJ contains one synchronization barrier, AJ the

synchronization barrier removed and the RJ which contains a Relaxed Synchronization

with blocking. Results show that my technique outperforms the SJ with a percentage of

improvement up to 57% on large matrix size.

72

5 CHAPTER 5

SEMI-STATIC PROBLEM (N-BODY SIMULATION)

 Introduction 5.1

The nature of real world large and complex problems makes it inefficient to implement in

single normal processing units. The computation of these problems requires more

processing resources and larger storage and memory elements [36]. The N-body

Simulation one of such classical problems that was concord in predicting the individual

motions and forces a group of objects interacting with each other gravitationally. It is a

semi static problem where the load balancing affects computation performance.

Hierarchical methods such as the Barnes-Hut (BH) and Fast Multipole method (FMM)

are recently being used to solve the N-body problem since these methods can be run

faster by utilizing parallelism and applications that use them are likely to be among the

domain of HPC. The challenges of such methods are the problem of partitioning and

scheduling for effectively utilizing the parallelism. In addition, the distribution of the

workload among the processing elements complicate more the computation since the

structure is changing as the computation proceeds. As a result, the issues of load

balancing and data locality were of the main concern.

The simplest approach to tackle N-Body problem is to iterate over a sequence of small

time steps. Within each time step, the acceleration on a body is computed by summing

the contribution from each of the other 1N bodies which is known as brute force

73

algorithm. While this method is conceptually simple, easy to parallelize on HPC, and a

choice for many applications, its 2NO time complexity make it impractical algorithm

for large-scale simulations involving millions of bodies.

To reduce the brute force algorithm time complexity, many algorithms have been

proposed to get approximated solution for the problem within a reasonable time

complexity and acceptable error bounds. These algorithms include Appel [37] and

Barnes-Hut [38]. It was claimed that Appel’s algorithm run in NO and Barnes-Hut

(BH) run in NNO log for uniformly distributed bodies around the space. Greengard

and Rokhlin [39] developed the Fast Multipole Method (FMM) which runs in NO time

complexity and can be adjusted to give any fixed precision accuracy.

For the semi static problem, the N-body simulation is considered as a model of semi

static computations. A brute force approach for computing the gravitational forces for N

bodies is on the O(N
2
). The Barnes Hut (BH) approximation enables treating a group of

bodies as one if these are far enough from a given body. This drops the computational

complexity to O(NlogN) when using BH. BH uses an oct-tree, in which each node stores

the aggregate mass of all of its children nodes (sub-tree) at their center of mass. Another

problem is that the thread load moderately changes from one iteration to another due to

body motion in space. Therefore, a static problem partitioning strategy (S-BH) for BH is

likely to suffer from accumulated load unbalance. It well known that dynamic load

balancing (DLB) improves BH scalability. However, DLB is complex because of the

need to measure the Dynamic Load (DL) and adopt an adequate data structure to

minimize runtime overheads. In the beginning of iteration k, the body slowly motion

74

enables estimating the DL for K+1 as being the aggregate load measured by all the treads

in iteration k. Thus DLB is implemented by evenly partitioning the DL over the threads

so that to preserve the data locality to the best possible. I implemented DLB-BH using an

efficient data structure to ease load redistribution together with oct-tree implementation.

 BARNES-Hut (BH) Algorithm 5.2

BH algorithm is based on dividing the body space that contributes on a given body into

near and far bodies[38]. For near bodies, the brute force algorithm can be used to

compute force applied on that body from other bodies while far bodies can be

accumulated into a cluster of bodies with a mass that equal to the total mass of the bodies

in that cluster and the position of the accumulated cluster is the center of mass of all

bodies in that cluster.

BH suggested the use of tree data structure to achieve this clustering while working

within a reasonable time complexity. Figure 5-1 illustrates an adaptive BH quad tree here

each leave contains only one particle. Tree data structures exploit the idea that an internal

node in the tree will contains the center of mass and total mass of all of its descendants.

In this case, computing the force applied on a far body from a given sub-tree will require

accessing to the parent of the sub-tree and use its center of mass and total mass without

the need to go farther in the sub-tree. This will decrease the time required for computing

force on a given body noticeably. Sequential BH algorithm is sketched in the Table 5-1

which can be applied and implemented for both 2-D and 3-D space. This algorithm is

repeated iteratively as many as required number of iterations.

75

Figure 5-1 Adaptive Quad Tree of BH for 2D Simulation

The nodes of the Quad tree in 2D or Octree in 3D are traversed starting from the root to

calculate the net force on a particular body that illustrates the BH approximation for force

computation. If the center of mass of an internal node is sufficiently far from the body

(p), bodies contained in this sub tree approximated as a single node. Otherwise the

process continues for the other children.

Figure 5-2 Barnes-Hut approximation in computing force for far bodies

76

Similarly the operation is done on 3D space. The difference is an Oct Tree is used.

Figure 5-3 demonstrate that each node will have 8 children.

Figure 5-3 Oct-Tree for 3D Barns-Hut Simulation

Table 5-1 Sequential Barns-Hut Algorithm

For each time step:

 Construct the BH tree (quad-tree for 2-D and Oct-tree for 3-D)

 Compute center of mass and total mass bottom-up for each of the internal nodes.

 For each body:

 Start depth-first traversal for the tree, if center of mass in a given internal

node is far from the body of interest then compute force from that node and

ignore the rest of the sub-tree

 Finished traversing the tree then update the position of the body and its

velocity.

 delete the tree

 Related Work 5.3

The Barnes-Hut algorithm recently has been successfully parallelized using several

techniques on both heterogeneous and shared memory HPC [40-48] . The key challenges

77

in parallelizing the Barnes-Hut algorithm include break down the domain of the BH tree

across the allocated memory resources and load balancing the workloads across the

threads. Load Balancing and Data Locality in hierarchical N-body algorithms, including

the Barnes-Hut algorithm, was studied. The papers concluded that straightforward

separation techniques which an automatic scheduler might implement do not scale well,

because they are unable to simultaneously provide load balancing and data locality.

A source dividing strategy for MPI systems is implemented in [40]. A contra intuitive

method is proposed in which the source points are divided among the processors. Each

processor forms its own tree out of the source points assigned to it, and computes

contributions from these source points on all the target points. Once this evaluation is

complete, the processor communicates the results to the head processor. The head

processor adds up the contributions on each target from all sources, and broadcasts the

results to other processors. Also, a dynamic load balancing scheme for time dependent

applications on heterogeneous systems composed of multiple CPUs and GPUs across

multiple time steps[41] have been used. The load balancing strategy performs fine grain

local modifications to the adaptive decomposition tree to minimize runtime informed by a

time costing model. In addition, incremental global modifications track the evolving

distribution of bodies. The load balancing machinery operates in one of three states:

search, incremental, and observation. During the entire course of the simulation the load

balancer is always in one of these states. Each lasts over multiple time steps. The current

state of the load balancer defines how load balancing functionality is carried out and/or

which actions shall be taken if undesirable run times are seen.

78

Optimizations for parallel BH algorithm based on NoC platform from both aspects of

software and hardware is done in [43]. In terms of software, consider distribution tree

data across physically distributed cache. Their platform is a shared L2 cache system the

shared L2 cache is divided and distributed into different nodes in terms of cache slices. It

is therefore reasonable to distribute the tree data, including body, cell and leaf

information, to the local caches of cores.

A Partitioning global address Space (PGAS) using Unified parallel C (UPC) is

implemented with cost zone [44]. UPC BH inherited from the shared memory SPLASH-2

BH code the cost-zone load-balancing algorithm. However, this algorithm is

computation-centric. On distributed memory the need to access remote cells can disturb

the balance. Because of SFC ordering, boundary processes on a node usually require

more remote cells than do interior processes. Considering computation/ communication

overlapping, the effect is hard to estimate upfront and thus is better attacked by dynamic

scheduling enabled by multithreading. On the other hand, Orthogonal Recursive

Bisection (ORB) is applied in [46]. The domain decomposition is used to divide the space

into as many non-overlapping subspaces as processors, each of which contains an

approximately equal number of bodies, and assign each subspace to a processor.

An introduction to the geometric characterization of a class of communication graphs

that can be used to support hierarchical N-body methods, [23]. The issues that are related

to the practical aspects and implementation of hierarchical N-body methods such as the

depth of the hierarchical structure were also discussed. These confirm the need for

another representation in practice rather than relying on the Oct-Tree. Data structure for

the Barnes-Hut was also implemented by Dekat.al. The Oct-Tree was represented by two

79

arrays; one is the input array that represents nodes in the Oct-Tree and the second is the

nodes organization for the next iteration. This approach was introduced to overcome

limitation in the scalability for parallel implementations of Barnes-Hut and to effectively

utilize and manage the space and memory resources. The scalability of the BH was

deeply analyzed by Speck, [49] using UPC language. They suggested that using shared

memory in which shared variables can be cached locally without changing the reference

used to access them leads to achieving good performance while global references are

being used.

The fundamental complexities to improving performance and scalability of parallel N-

body simulations using the BH algorithm are as follows:

 Dynamic load balancing: A new unique tree is produced in each iteration during

the simulation. Moreover, static load balancing technique is ineffective. It has a

poor load balancing performance.

 Variable workload: In addition to the variation of the work load. These systems

have a variable workload per particles. Therefor predicting work load per particle

is difficult.

 Data-driven computation: BH is a data driven algorithm. Thus it has an irregular

communication data access pattern. This makes conventional parallel

optimization inefficient.

 Data locality: The irregular and unstructured computations in dynamic graphs can

result in poor data locality resulting in degraded performance on conventional

systems which rely on exploitation of data locality for their performance.

80

 Effective parallelization using Cost Zone 5.4

In this section I define the scope of my objective to effectively parallelize force

computation of BH, and the goals of my parallel implementations. As I described later

there are two main issues that affect scalability of BH force computation:

Load Balancing: The goal in load balancing is intuitive: workload should be assigned to

threads evenly. Therefore, the maximum difference between the execution time of the

threads are the minimum.

Data Locality: many cores are built with hierarchical memory systems, in which threads

in each core have faster access to data the same core cache or in other cores. To improve

performance of the applications, I need to increase data locality. Thus, I increase sharing

of data between threads in the cores to decrease cache misses. For this reason, I focus my

discussion of locality primarily on reducing cache misses by ordering the structure of the

array in such way that accesses the same data on the same core. However, I do make all

reasonable efforts to exploit locality within a core effectively.

 Distribute Work Using Cost Zone 5.5

Cost zones partitioning technique takes advantage of another key insight into the BH

hierarchical methods for conventional N-body problems, which is that they already have

a representation of the spatial distribution implicitly found in the tree data structure they

use. I can therefore partition the tree rather than partition space directly. In the cost zones

approach, the tree is conceptually laid out in a two-dimensional plane, with a node’s

81

children laid out from left to right in increasing order of child number. Figure 5-4

demonstrates an example using a quad tree for simplicity.

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7

Figure 5-4 Cost Zone Demonstration of work distribution for 8 threads

 The cost of every particle, as counted in the previous step, is stored with the particle.

Every internal node contains the cumulative count of the costs of all particles that are

contained within it, these node costs have been computed during computation of center of

mass and total mass.

The total cost in the domain is divided among threads so that every thread has a evenly

amount of work. For example, a total cost of 128 would be dividing across 32 threads so

that the zone containing costs 1-4 is assigned to the first thread, zone 5-8 to the second,

and so on. Which cost zone a particle belongs to is determined by the total cost up to that

particle in an in order traversal of the tree. In the cost zones algorithm, threads descend

the tree in parallel, selecting the particles that belong in their cost zone. A thread

therefore performs only a partial traversal of the tree. To preserve locality of access to

internal cells of the tree in later phases, internal cells are assigned to the thread that own

82

most of their children. In my work I concentrate on the effect of applying cost zone in the

force computation, parallelization of tree traversal can be studied later in future work.

 Reserve Locality Using Morton Order 5.6

Preserve locality when applying cost zone should produce partitions that is closer in the

space as in the plane. How well this closeness in the tree corresponds to consecutively in

physical space depends on how the locations of cells in the tree map to their locations in

space. This depends on the order in which the children of cells are numbered. The

simplest ordering scheme to use is the Morton Order (Z-order). Figure 5-5 demonstrates

how it is applied for both 2D and 3D. It is a function that maps multidimensional data to

one dimension while ensure locality of the data points [50].

Figure 5-5 Morton Order representation, left for 2D, Right for 3D [50]

83

 Iterative Cost Zone Load Balancing (ICZB) Implementation 5.7

In this section I will describe main steps of my implementation of the Dynamic Load

Balancing for Barns Hut (DLB-BH). I implemented a dynamic load balancing using cost

zone combined with reserved data locality. I will call it Iterative Cost Zone load

Balancing (ICZB). I construct the tree as a plane data structure (array). Thus, the

overhead of recursive call for traversing the tree is omitted. Moreover, arrays are more

cache friendly with many core machines.

 N-body Implementation Steps 5.7.1

The implementation of the BH N-body algorithm follows a certain Steps. Figure 5-6

below illustrates the main algorithm steps. I will describe them later in the next sections.

 Load bodies

For i=0 to N where N number of iterations

 Oct-tree creation

 Depth-First Tree Traversal

 Sort the nodes array according to the traversal order

 Sort the bodies array according to the traversal order

For each Body

 Compute its force by traversing the arrays

 Update the velocity and the position of each body

 Delete Nodes and free the memory

 Delete Bodies and free the memory

84

Figure 5-6 N-Body with Barns Hut Execution Steps

85

 Load Bodies 5.7.2

The algorithm starts by loading the bodies’ data from a text file. The file consists of 10

columns which represents the mass, position, and velocity (i.e. mass, x, y, z, vx, vy, and

vz respectively). Each row in the file represents a body. The data in each row are space-

separated.

 Oct-Tree Iterative Creation Algorithm 5.7.3

The Oct-tree creation is the first step in the iteration. The iterative algorithm as

implemented illustrated in Figure 5-7. It takes all bodies in turn and inserts them in the

Oct-Tree starting from the root. For each body it calculates the appropriate cube among

the possible eight cubes. If it meets a free node, it puts the body there and loops for the

next body. Otherwise, if it is not a free node, then it goes deeper following the

appropriate path until it reaches the leaf. At this point, it may find an empty cube so it

puts the body. If it meets a body that belongs to the same cube, then both bodies need to

go deeper until getting a separate cube for each.

In Oct-Tree algorithm, the last step could loop forever. Consider an example where there

are two points that are very close together or even exactly in the same location. These

bodies could not be separated easily into two different cubes. It is important to check

whether the cube dimension approached zero. For this case, I added an additional

condition to test the dimension of the current node (e.g. d > 1.0E-6).

86

Figure 5-7 Oct-tree iterative creation algorithm

87

To reserve the locality for my implementation, I implement the Morton order for ordering

the cubes of the Oct-tree as shown in Figure 5-8. Since each node in the tree has eight

children a given body and a node, the following code line says exactly the cube order

within the children of the node.

i = (Body.z > Node.z) * 1 + (Body.y > Node.y) * 2 + (Body.x > Node.x) * 4;

For example, if Body.z is greater than Node.y and Body.y is greater than Node.y while

Body.x is less than Node.x then i = 3.

Figure 5-8 illustration of the chosen Morton order in my implementation. The numbers represents the order of

selecting cubes.

 Iterative Depth First Tree Traversal 5.7.4

After building the tree, I need to compute the center of mass in each node. This should be

done from bottom to up (i.e. from leaves to the root). Since I have a tree, I should start

from the root and traverse the tree in the depth-first order. While traversing, the algorithm

Figure 5-9 computes the center of mass on each node. It also assigns a serial number for

each node that reflects the traversing order. In addition to that, the algorithm assigns a

pointer on each node to the next sub-tree. This index is used when applying BH in the

force computation algorithm.

88

Figure 5-9 Tree traversal algorithm.

 Sorting Node and Body Arrays 5.7.5

After the tree traversal step, I sort the node array according to the traversing order

obtained from this step. I also sort the body array according to this traversal. This step is

very essential in my implementation, although it adds some overhead to the overall

algorithm. It decrement some overhead of the force computation step. There is no need to

89

traverse the tree for computing forces. Rather, the force computation visits arrays in a

very smooth manner.

 Converting Oct-Tree Into Data Structure 5.7.6

Considering the tree in Figure 5-10 which contains 19 nodes, the leaves represent at the

edges of the tree. While the remaining are internal nodes (i.e. 0, 2, 7, 9, 13). The resulted

nodes array after sorting has the following structure:

[(0, 19), (1, 2), (2, 6), (3, 4), (4, 5) , (5, 6), (6, 7), (7, 17), (8, 9), (9, 10), 10, 11), (11, 12),

(12, 13), (13, 14), (14, 15), (15, 16), (16, 17), (17, 18), (18, 19)]

But the bodies array has the following leaves

[1, 3, 4, 5, 6, 8, 10, 11, 12, 14, 15, 16, 17, 18]

Figure 5-10 An example shows the depth-first traversal order. The nodes are sorted in the array according to

this traversal. The leaves which represent the bodies also sorted in the array according to this order. Each node

also store an index of the next node in the tree

90

Each element in the Nodes array has the index of the next node within the array which is

always greater than the current index. This allows the force computation function to

prone any sub-tree by moving to this index.

 Iterative Force Computation 5.7.7

The force computation function receives two arrays, one for bodies and the other for the

nodes. The bodies are sorted according to their locations as leaves of the tree. The node

array is sorted in such a way to reflect the depth-first traversal. When the force

computation function applies BH to a node, the node gives the index of the next element

in the array and prone its children from the computation.

To fasten traversing the tree, arrays are used to allow smooth linear movement with no

branching. The only branch is taken when BH applies which prone a sub-tree. The force

computation iterative algorithm is explained in the following steps:

 For each body in the body array.

o For each node in the node array

 If (the distance between body and current node is >= d * 2 apply

BH Set the next index to the next sub-tree to prone the current sub-

tree.) or (the current node is a leaf node).

 Compute the force of interacting with the current node and

increment w (counter for the work).

o Increment the index and loop to the next node.

 Loop to the next body.

91

 Iterative Cost Zone Load Balancing (ICZB) 5.7.8

Parallelization of BH presents challenging load balancing problem that must be addressed

dynamically as the system evolves to distribute the work among the threads. Construction

of the tree iteratively makes applying Cost Zone efficiently. However, traversing the tree

and cumulative the work over the nodes done without extra overhead that affect the

overall performance. To compute the work I put a counter inside the inner loop of the

force computation algorithm. This counter reflects the number of elements visited for

each body and the force applied from it. I used this number to reflect the Work of that

body.

After building the tree in each iteration, I traverse the tree from bottom to top and

accumulate the work of each sub-tree. Since the bodies are sorted before entering the

force computation, the work per thread could be computed easily by traversing these

bodies in order. I can explain my method in the following steps:

Let W = Overall Work, and T = number of threads

Work_per_thread = W/T

Thread [t]. start = body [i]

while sum < Work_per_thread

 {

sum = sum + body [i].Work

increment i

}

Thread [t]. end = body [i]

Let sum = 0, T= T – 1, W = W – sum

92

If T > 1 loop to 2

Thread [t]. End = body [last]

The algorithm simply divides the overall work over the number of threads and assigns the

first thread the first M bodies whose works sums to thread quota or less. Then it reduces

that sum from the overall work and divides the rest work among the rest of the threads.

 Practical Challenges 5.7.9

In addition to the challenges that are faced in applying BH also I face practical problem

in implementing BH. I address several problems that could limit the efficiency of my

implementation. It includes the limitation of stack space and the limitation of oct-tree

depth.

5.7.9.1 Stack Overflow

To handle very deep recursive calls while building the Oct-Tree. An iterative version of

the Oct-Tree has been tested. I use it to observe how much the increase in number of

bodies the algorithm can handle. Experiments show that deep recursive calls add extra

overhead in the execution time.

5.7.9.2 Limitation Space dimension

Maximum depth of the Oct-Tree is another problem. When the algorithm starts, I put the

dimension for the root node equal to space dimension. Then when I go deeper in the tree I

decrement d by a factor of two and put d = d/2 for each level. Hence, for a given level I

have d = d/2
Level

. It is obvious that d value drops very fast. Since the maximum number of

bits of the machine for any data type is 64 bits, it is not possible to have a tree that have a

93

depth of more than 64 levels. If d approaches zero, no need to divide the space any more

to have new eight children. I just distribute the bodies among these children without

concerning about the Morton order at this point.

 Implementation Correctness Checking 5.8

I run several experiments to check the implementation correctness for both sequential and

parallel implementations. To make it possible to trace the execution results for sequential,

I create different number of bodies that is spread across a sphere inside the space. To

insure that the force on each body will be the same, I test the result from 4 particles and

increase it to 16 particles. After that I check manually the computation of the force and

the motion of the particles during different iteration. After that I simulate thousands of

bodies and plot their motion using MATLAB. All the operations (OCT-Tree creation ,

compute enter of Mass an total mass , compute forces , update velocity and positions,

delete OCT tree and far Tree)I s tested during the hand check process for the sequential.

Parallel implementation also has been checked. However, both the results from sequential

and parallel implementation are reported into different text files. After that a script has

been written to compare the results from both to insure that the parallel implantation

working right. An individual test was also carried out to check ICZB implementation by

reporting the total work for different problem size and was compared to actual result that

must be obtained. In addition to that the number of times of BH applied and don’t applied

is used.

94

 Body Generation and Dataset 5.9

The main galaxy is generated using the McLuster tool[51]. It is a tool that used to

generate different types of galaxies for astronomy simulation. The bodies data is

produced using the king model option. The generated galaxy is shown in Figure 5-11.

The tool generates 100 thousands of bodies. Then I used the code shown in Figure 5-12

to generate my dataset by duplicating them many times. The distance between each

galaxy is 60 point in a space of size 400x400. Hence, I saved the resulted bodies into a

file. Figure 5-13 represents the distribution of the galaxies and particles for 1M size

problem.

Figure 5-11 King Model galaxy, which contains 10^6 bodies. Plotted using TeraPlot Visualizer

95

void Generate_GalaxyKing()

{

 int ii = 0;

 MaxNBodies = 100000;

 loadBodies(filename_GalaxyKingModel_100);

 for (int b = 0; b < 100000; b++)

 for(int x = 0; x < 5; x++)

 for(int y = 0; y < 5; y++)

 for(int z = 0; z < 5; z++)

 {

 ii = 100000 + z + y*5 + x*5*5 + b*5*5*5;

 Bodies[ii] = new Body();

 Bodies[ii]->posx = Bodies[b]->posx + x * 60;

 Bodies[ii]->posy = Bodies[b]->posy + y * 60;

 Bodies[ii]->posz = Bodies[b]->posz + z * 60;

 Bodies[ii]->mass = Bodies[b]->mass;

 Bodies[ii]->vx = Bodies[b]->vx;

 Bodies[ii]->vy = Bodies[b]->vy;

 Bodies[ii]->vz = Bodies[b]->vz;

 }

 MaxNBodies = ii + 1;

 saveBodies(filename_GalaxyKingModel_1M_nonsorted);

 std::sort(Bodies,&Bodies[MaxNBodies],Body_comparer_function);

 saveBodies(filename_GalaxyKingModel_1M);

}

Figure 5-12 Galaxies generation procedure

Figure 5-13 Bodies distribution for a data set of 1M

96

 ICZB Evaluation 5.10

A specific metrics is used to evaluate my implementation with comparison to the static

approach (divide the bodies evenly across the threads). Effectiveness comparison is

carried out depending on the Speedup that obtained over the same sequential program. I

present speedup obtained on MIC using different number of threads and particles. In

addition to speedups, I also present results that separately compare the load balancing,

locality and overhead.

 To estimate the overhead of my implementation I compare the number of data read and

write that is generated in both experiments. For the locality checking, I used the VTune to

check the number of L2 cache misses. On the other hand, for the load balancing I plot the

Average Thread time (ATt), Thread Time minimum (Ttmin) and Thread Time max

(Ttmax). This can show us how the time can change and linearity of the load balancing.

 Algorithm Time Distribution 5.10.1

Experiments show that Force Computation is the hotspot step in N-body problem on

MIC. Figure 5-14 shows that force computation of N-body simulation takes about 80% in

the average of the total execution time. Which indicate that reducing the execution time

of it; will affect the overall performance of the implementation. Table 5-2 illustrates

percentage time of each step from total time of N-Body BH which is sequentially run

using 1 thread.

97

Table 5-2 Hotspot analysis of the Algorithm Steps

Size of Problem
Percentage time from total time of Executing BH sequentially on MIC

Oct-tree Creation Sorting Compute Force Update Delete Oct-Tree

10^3
4.3 9.2 83.85 0.7 1.95

10^4
2.46 12.11 83.34 0.82 1.27

10^5
1.9 9.52 86.83 0.69 1.06

10^6
1.57 22.73 74.3 0.55 0.85

Figure 5-14 Percentage Execution Time For N-body for Each Step

4.3 2.46 1.9 1.57
9.2 12.11 9.52

22.73

83.85 83.34 86.83
74.3

0.7 0.82 0.69 0.55
1.95 1.27 1.06 0.85

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10^3 10^4 10^5 10^6

P
e

rc
e

n
ta

ge

Problem Size

Percentage time from total time executing of BH sequentially on MIC

Tree Creation Sorting Force Computation Update Delete Oct-tree

98

To assess the efficiency ICZB on many core machines. Several Experiments are carried

out. I run Experiments for different thread number 32 threads up to 240 threads with

different problem size.

 Speedup of STATIC and ICZB 5.10.2

Figure 5-15 shows the speedup of ICZB and static approach vs. different problem size.

The speedup is plotted using 240 threads (60core). In addition to that I plotted average

speedup (age), minimum speedup (min) and maximum speed up (max) for both of the

approaches during 20 iteration of simulation.

Figure 5-15 Speedup of STATIC and ICZB vs. Problem Size (1M,2M,3M,4M)

I found that speedup of ICZB and Static approaches decreases when the size of the

problem increases, due to the data locality problem. However, the problem size increased

and the data array increased. So, the percentage of fitting the sub-tree into the cache will

0

20

40

60

80

100

120

140

160

180

1M 2M 3M 4M

Sp
e

e
d

 U
p

Problem Size

SpeedUp Static and ICZB vs Problem Size, 240 thread

static-avg static-min static-max ICZB-avg ICZB-min ICZB-max

99

be decreased. In addition, to that the sharing of the data between the cores decreased.

These two problems will increase the number of cache misses.

Also, I found that speedup of ICZB is better than STATIC with the change of the

problem size. Particularly, Speed up of ICZB is always better if I compare the minimum,

maximum and average speedup. I found that ICZB speed up is 42%, 36% better than

STATIC respectively on problem size 1M, 4M.

 Overhead of ICZB 5.10.3

I show that my method has better speedup with respect to the static. But this is not

enough to judge my work. I need to understand the overhead that my method adds to the

static approach. For that, I use the VTune profiler to record the number of reads and

writes that each approach did. Figure 5-16 presents the number of reads and writes with

different number of threads and different problem size. In conclusion form the graphs; the

overhead is small in both problem size and even when I increase the number of the

problem size with factor of 10 it is still small. This is a promising result for my

implementation than can shows how the effectiveness of my implementation.

100

Figure 5-16 Data Read and Write for Static vs. ICZB for 4M bodies

Figure 5-17 Data Read and Write for Static vs. ICZB for 5M bodies

 Locality 5.10.4

Data locality is applied using Morton order. I use L2 cache misses that generated from

Vtune in both approaches to test locality. Figure 5-18 illustrate the difference. ICZB has

lower number of L2 cache misses.

0

5E+13

1E+14

1.5E+14

2E+14

32 128 240

To
ta

l D
at

a
R

e
ad

 W
ri

te

Thread

Static vs ICZB Total Data Read Write

4M-Static 4M-ICZB

0

1E+14

2E+14

3E+14

4E+14

5E+14

6E+14

32 128 240

To
ta

l D
at

a
R

e
ad

 W
ri

te

Thread

Static vs ICZB Total Data Read Write

5M-Static 5M-ICZB

101

Figure 5-18 L2 cache misses for static and ICZB for 4M bodies

Figure 5-19 L2 cache misses for Static and ICZB for 5M bodies

 Linearity and Effectiveness of Dynamic Load Balancing 5.10.5

Incorporating physical locality with dynamic load balancing does indeed lead to

dramatically better performance. However, in static load balancing, since thread particles

are physically clumped together, giving every thread an equal number of particles

introduces structural load imbalances: A thread with particles in a dense region of the

distribution has much more work to do than a thread with particles in a sparse region. So,

0.00E+00

1.00E+10

2.00E+10

3.00E+10

4.00E+10

5.00E+10

6.00E+10

32 128 240

L2
 M

is
se

s

Thread

Static vs ICZB L2 Cache Misses

4M-Static 4M-ICZB

0.00E+00

2.00E+11

4.00E+11

6.00E+11

8.00E+11

1.00E+12

1.20E+12

1.40E+12

1.60E+12

32 128 240

L2
 M

is
se

s

Thread

Static vs ICZB L2 Cache Misses

5M-Static 5M-ICZB

102

I can conclude that the bottleneck in the performance of static approach is from how to

divide the work across the threads. In this section I will discuss the results of linearity on

N-body simulation, max percentage of the average relative work deviation and max

percentage of average time relative deviation for the ICZB approach on 5 million of

bodies running using 240 threads.

Figure 5-20 includes linearity plot at the y-axis the average time of the threads and on the

y-axis the average work of the threads for a given problem size.

I observe that the average time for threads increases with work for thread in two steps.

The average time increases slowly until problem size 2M at the beginning. Then the

average time increases rapidly. I conclude that memory resources of the machine

exploited. In addition, the average work is linearly increased with respect to the average

work.

Figure 5-20 Linearity of ICZB (1M,2M,3M,4M,5M) 240 thread

0.E+00

1.E+00

2.E+00

3.E+00

4.E+00

5.E+00

6.E+00

7.E+00

1.68E+06 3.49E+06 5.27E+06 7.15E+06 8.78E+06

A
v
er

a
g
e

T
im

e
T

h
re

a
d

Average Work Thread

Linearity of ICZB (1M,2M,3M,4M,5M), 240 thread

ATt , 240 thread Tmin , 240 thread Tmax . 240 thread

103

To dig more for understanding the effectiveness of my method, a set of plots has been

constructed for a given problem size. The percentage deviation of the thread time for the

iteration is plotted to understand how much the time fluctuating from the average time.

Also, the percentage deviation of the work for the iteration space is plotted to show how

much the load balancing change from one iteration to another. In addition, the speedup

for the same problem size is reported a cross the iteration space. This allows us to

understand the effect of the deviation of the work and time on the speedup of my method.

Figure 5-21 Percentage of average relative work deviation of ICZB, 5M, 240

1.80000E-03

1.85000E-03

1.90000E-03

1.95000E-03

2.00000E-03

2.05000E-03

2.10000E-03

2.15000E-03

2.20000E-03

2.25000E-03

2.30000E-03

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

 P
Er

ce
n

ta
ge

 o
f

 R
e

la
ti

ve
 D

e
vi

at
io

n

Iteration

Percentage of Average Relative work Deviation , ICZB, 5M,

240

dev-avg

104

Figure 5-22 Percentage of Average Relative Time Deviation, ICZB, 5M

Figure 5-23 Speedup of ICZB, problem size 5M, 240

Figure 5-22 shows the percentage relative deviation of the work of the threads which is

about 0.0002% from average work of the threads. This is a low value compared to the

average work for the thread. Figure 5-22 shows the average relative time deviation which

is decreased during the simulation process. I can conclude that the algorithm is adaptively

0.E+00

5.E+00

1.E+01

2.E+01

2.E+01

3.E+01

3.E+01

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

 P
e

rc
e

n
ta

ge
 o

f
 R

e
la

ti
ve

 D
e

vi
at

io
n

Iteration

Percentage of Average Relative Time Deviation , ICZB,5M

dev-avg-time

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S
p

ee
d

U
p

Iteration

SpeedUp of ICZB, 5M, 240

5M

105

correct the amount of work distributed across the threads. However, Figure 5-23 explains

this conclusion. From the figure, the speedup increased during the simulation, comparing

it to the percentage relative deviation of the time it is decreased during the simulation,

which means that my method is adaptively load balance the work in the simulation.

 Conclusion 5.11

The dynamic load balancing using ICZB was implemented combined with data locality

for the N-body Simulation. The results show that the dynamic load balancing is an

essential factor in increasing the force computation parallelism and therefore significantly

reduces the computation time. I concentrate my work on two main challenges. The data

locality and the dynamic load balancing. The implementation of the ICZB method along

with the data structure suggested outperforms the static approach. I obtain a speedup

always better than static approach vs the problem size. Also, the overhead of my method

is low and cache misses decreased. In a conclusion, the ICZB is working better than static

approach, but it needs to be improved more for the larger problem size. My

implementation on MIC shows that the execution time and aggregate load scales linearly

with the problem size when using 60 cores for problem sizes within the range of 1

million to 4 million. In addition, my DLB-BH provides an increased speedup of 42%

and 36% on problem size 1 million and 4 million respectively, as compared to traditional

Static Barns Hut (S-BH). DLB is recommended as a compiler strategy as one

optimization strategy for semi-static applications.

106

Appendix A: STRASSEN MATRIX-MATRIX

MULTIPLICATION CODE

 Nature of the application

The basic Strassen-MM (S-MM) algorithm time complexity is of O (N
2.807

) instead of O

(N
3
) of standard MM algorithm. It computes C=AxB where A, B and C matrices of Size

NxN. It is a recursive algorithm where matrices are partitioned in each level. This

matrices partition process can be done recursively until the sub matrices degenerate

into numbers. In this code I implement the reorder approach of STRASSEN to reduce

memory usage. I only used T1 and T2 as intermediate subMatrices (See chapter 4 for

more details).

 Data Structure

I used one dimensional array data structure in my implementation. I have matrix A and B

as input and matrix C as output.

107

 Procedures

I have 3 main arithmetic operations procedures Addition, Subtraction and Multiplication

in the implementation. Each Procedure takes 12 parameters described below as follows:

1. Matrix A,B as input and C as output.

2. Column index and Row index for Matrix A.

3. Column index and Row index for Matrix B.

4. Column index and Row index for Matrix C.

5. Size of Matrix A.

6. Size of Matrix B.

7. Size of Matrix C.

In addition to the a above explanation, each procedure has a comments inside the code to

understand its structure and input and output of it.

 Input and Output

I have a procedure that initialize matrix A and B called “accuracyTestinit”. Therefore, I

initialized the matrices randomly with double numbers.

 Correctness

To check correctness of my implementation. Each time I run the program the sequential

MM is computed and compared to the results of the parallel implementation.

108

#include <omp.h> 1
#include <stdio.h> 2
#include <stdlib.h> 3
#include <math.h> 4
#include <time.h> 5
#include <string.h> 6
#include <sys/time.h> 7
#include <sys/types.h> 8
#include <unistd.h> 9
#include "mkl.h" 10
 11
/* This code implements the REORDER APPROACH OF STRASSEN MATRIX-MATRIX 12
MULTIPLICATION 13
 USING OpenMP programming Model 14
 It takes A and B as an input and produce C ----> C=A*B where A, B and C 15
matrices of Size NxN 16
 * I implemented Strassen matrix matrix multiplication using reorder approach, 17
where we need only 2 intermediate matrices (T1, T2). 18
 This reduce the memory usage for Strassen. 19
 * We have 3 main arithmatic operation Addition, Subtraction and 20
Multiplication 21
 *Each Procedure takes 12 parameters described below 22
 * Matrix A,B as input and C as output. 23
 * Column index and Row index for Matrix A. 24
 * Column index and Row index for Matrix B. 25
 * Column index and Row index for Matrix C. 26
 * Size of Matrix A. 27
 * Size of Matrix B. 28
 * Size of MAtrix C. 29
 *The matrix implemented as one Dimensional Array to increase performance. 30
 * The commented parts in the code can be used to debug it. 31
*/ 32
int DIM_N =1024; // Matrix Size 33
int threads= 32; // Number of threads 34
int threshold= 1024; // Threshold value for Strassen Algorithm 35
//int mkl_threads= 16; 36
 37
//other stuff 38
double sum, snorm; 39
 40
//matrices 41
double *A, *B, *C,*CC; 42
//###43
##################### 44
//#################################### Procedure Prototypes 45
46
//###47
##################### 48
 49
//Prototypes for the 3 basic operations used in the implementation Addition, 50
subtraction and multiplication. 51
// Multiplication Procedure Prototypes 52
void 53
strassenMultMatrix(double*,double*,double*,int,int,int,int,int,int,int,int,int,54
int); 55
void normalMultMatrix(double*, double*, double*, 56
int,int,int,int,int,int,int,int,int,int); 57
//Subtraction Procedure Prototypes 58
void subMatrices(double*, double*, double*, int,int,int,int,int,int,int,int); 59
void subMatrices1(double*, double*, double*, int,int,int,int,int,int,int,int); 60
void subMatricesc(double*, double*, double*, 61
int,int,int,int,int,int,int,int,int,int); 62
//Adition Procedures Prototypes 63

109

void addMatrices(double*, double*, double*, int,int,int,int,int,int,int,int); 64
void addMatrices1(double*, double*, double*, int,int,int,int,int,int,int,int); 65
void addMatricesc(double*, double*, double*, 66
int,int,int,int,int,int,int,int,int,int); 67
//This Procedure used for Debugging Purpose 68
void myprint(double *,char *,int,int ,int,int); 69
 70
//###71
######################### 72
//Error calculation 73
//###74
######################### 75
// Procedure For Error Calculation 76
 77
//###78
######################## 79
 80
void checkPracticalErrors (double *c, double *seq, int n) 81
{ 82
int ii; 83
int n2 = n*n; 84
double sum =0; 85
double low = c[0] - seq[0]; 86
double up = low; 87
for (ii=0; ii<n2; ii++) 88
{ 89
double temp = c[ii] - seq[ii]; 90
sum += (temp<0 ? -temp: temp); 91
if (temp > up) 92
up = temp; 93
else if (temp< low) 94
low = temp; 95
} 96
printf ("average error: %.20f\n", sum/n2); 97
printf ("lower-bound: %.20f\n", low); 98
printf ("upper-bound: %.20f\n", up); 99
printf ("\n"); 100
} 101
 102
void accuracyTestInit (double* a, double *b, int n) 103
{ 104
int i,j; 105
double *uvT = malloc (n*n*sizeof(double*)); 106
//initiate a and b 107
for (i =0 ; i< n; i++) 108
{ 109
for (j =0; j< n; j++) 110
{ 111
//int index = i*n+j; 112
a[i*n+j] = b[i*n+j] = (i==j?1.0f:0.0f); 113
} 114
} 115
double *u = malloc (n*sizeof(double*)); 116
double *v = malloc (n*sizeof(double*)); 117
//initiate u and v 118
for (i= 1; i< n+1; i++) 119
{ 120
u[i-1] = 1.0f/(n+1.0f-i); 121
v[i-1] = sqrt(i); 122
} 123
//vTu 124
double vTu = 0.0f; 125
for (i= 0; i< n; i++) 126

110

{ 127
vTu += u[i]*v[i]; 128
} 129
double scalar = 1.0f/(1.0f+vTu); 130
//uvT 131
for (i= 0; i< n; i++) 132
{ 133
for (j= 0; j< n; j++) 134
{ 135
uvT[i*n+j] = u[i]*v[j]; 136
} 137
} 138
//construct a and b 139
for (i=0; i< n; i++) 140
{ 141
for (j= 0; j< n; j++) 142
{ 143
int index = i*n+j; 144
a[i*n+j] += uvT[index]; 145
b[i*n+j] -= scalar*uvT[index]; 146
} 147
} 148
free (uvT); 149
free (u); 150
free (v); 151
} 152
//## 153
 154
//MAIN 155
int main (int argc, char *argv[]){ 156
 if(argc > 1) 157
 DIM_N = atoi(argv[1]); // here to enter the size of the matrix 158
 if(argc > 2) 159
 threads = atoi(argv[2]); // here to enter the number of threads 160
 if(argc > 3) 161
 threshold = atoi(argv[3]); // here to enter the level of recursion 162
 //if(argc > 4) 163
 //mkl_threads= atoi(argv[4]); 164
 165
 166
 double etime=0.0,stime=0.0; // for 167
 double dtime=0.0; 168
 int i,j,k; 169
 // double *A=malloc(N*N*sizeof(double)); 170
 171
 A = malloc(sizeof(double*)*DIM_N*DIM_N); 172
 173
 B = malloc(sizeof(double*)*DIM_N*DIM_N); 174
 175
 C = malloc(sizeof(double*)*DIM_N*DIM_N); 176
 177
 // CC = malloc(sizeof(double*)*DIM_N*DIM_N); 178
 179
accuracyTestInit(A,B, DIM_N); // To intiliza the matrices 180
//## 181
//### Print the A , B matrices ####################### 182
//## 183
 //print out the result 184
//myprint(A,"A Matrix",DIM_N,0,0,DIM_N); 185
//myprint(B,"B Matrix",DIM_N,0,0,DIM_N); 186
// This is the sequantail computation of Matrix multiplication we used it to 187
chech the correctness of Strassen implementation 188
/*printf("computing sequential\n"); 189

111

 stime=omp_get_wtime(); 190
 for(i=0; i<DIM_N; i++) 191
 for(j=0; j<DIM_N; j++){ 192
 CC[i*DIM_N+j] = 0; 193
 for(k=0; k < DIM_N; k++) 194
 CC[i*DIM_N+j] += A[i*DIM_N+k] * B[j*DIM_N+k]; 195
 } 196
 197
etime=omp_get_wtime(); 198
printf("computed sequential\n"); 199
dtime=etime-stime; 200
printf("Sequantial Time taken = %0.5f \n", dtime);*/ 201
 202
 //printf("Num Threads = %d\n",threads); 203
 //start timer 204
 stime=omp_get_wtime(); 205
 206
 //Strassen Multiplication 207
 omp_set_num_threads(threads); 208
 strassenMultMatrix(A,B,C,DIM_N,0,0,0,0,0,0,DIM_N,DIM_N,DIM_N); // Calling of 209
Strassen MM 210
 211
 //stop timer 212
 etime=omp_get_wtime(); 213
 214
 //calculate time taken 215
 dtime=etime-stime; 216
 printf("Strassen Time taken= %0.5f \n",dtime); 217
 218
//stime=omp_get_wtime(); 219
//mkl_set_num_threads(threads); 220
//cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, DIM_N, DIM_N, DIM_N, 221
1, A, DIM_N, B, DIM_N, 0, CC, DIM_N); 222
//etime=omp_get_wtime(); 223
//dtime=etime-stime; 224
 // printf("MKL Time taken = %0.5f \n",dtime); 225
 226
 227
 /********Triple Loop Multiplication, with OpenMP, for Comparison**********/ 228
 //start timer 229
/*stime=omp_get_wtime(); 230
 231
 #pragma omp parallel shared(A,B,CC,chunk) private(i,j,k) num_threads(threads) 232
 { 233
 //multiplication process 234
 #pragma omp for schedule(dynamic) nowait 235
 for (j = 0; j < DIM_N; j++){ 236
 for (i = 0; i < DIM_N; i++){ 237
 CC[i][j] = 0.0; 238
 for (k = 0; k < DIM_N; k++) 239
 CC[i][j] += A[i][k] * B[k][j]; 240
 } 241
 } 242
 } 243
 //normalMultMatrix(A,B,C,DIM_N);*/ 244
 245
 //stop timer 246
//etime=omp_get_wtime(); 247
 248
 249
 // dtime=etime-stime; 250
 //printf("Non-Strassen Time taken = %0.3f \n", dtime); 251
//## 252

112

//A 253
//## 254
//stime=omp_get_wtime(); 255
 256
/*int result = 0; 257
int xx=0; 258
 for(i=0; i < DIM_N; i++){ 259
 for(j=0; j < DIM_N; j++) 260
 if(fabs(C[i*DIM_N+j]-CC[i*DIM_N+j])>0.0001){ 261
 //printf("(%d, %d) : (%.20f, %.20f)\n", i, j, C[i][j], CC[i][j]); 262
 result = 1; 263
 xx++; 264
 //break; 265
 } 266
 //printf("\n"); 267
 //if(result == 1) break; 268
 } 269
 270
 printf("\n\nPercentage Error =%.3f\n Error 271
cell=%d\n",(double)xx/(DIM_N*DIM_N),xx); 272
 printf("Test %s\n", (result == 0) ? "Passed" : "Failed"); 273
 checkPracticalErrors(C, CC, DIM_N);*/ 274
//myprint(A,"A Matrix",DIM_N,0,0); 275
//myprint(B,"B Matrix",DIM_N,0,0); 276
//myprint(C,"Strassen Algorithem",DIM_N,0,0,DIM_N); 277
//myprint(CC,"Sequantial Algorithem",DIM_N,0,0,DIM_N); 278
free(A); 279
free(B); 280
free(C); 281
} 282
 283
void addMatrices(double *x, double *y, double *z, int size,int srow1 , int 284
scol1,int srow2,int scol2 , int DIM0,int DIM1,int DIM2){ 285
//performs a matrix addition operation, z=x+y 286
 int i,j; 287
 int index1,index2,index3; 288
 #pragma omp parallel shared(x,y,z,srow1,scol1,srow2,scol2,size) 289
private(i,j) num_threads(threads) 290
 { 291
 #pragma omp for schedule(static) nowait 292
 for (i = 0; i < size; i++) 293
 { 294
 index1=i*DIM2; 295
 index2=((i+srow1)*DIM0)+scol1; 296
 index3=((i+srow2)*DIM1)+scol2; 297
 for (j = 0; j < size; j++) 298
 z[index1+j] = x[index2+j] + y[index3+j]; 299
 } 300
 } 301
} 302
void addMatricesc(double *x, double *y, double *z, int size,int srow1 , int 303
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int DIM1,int DIM2){ 304
//performs a matrix addition operation, z=x+y 305
 int i,j; 306
 int index1,index2,index3; 307
 #pragma omp parallel 308
shared(x,y,z,srow1,scol1,srow2,scol2,srow3,scol3,size) private(i,j) 309
num_threads(threads) 310
 { 311
 #pragma omp for schedule(static) nowait 312
 for (i = srow3; i < size+srow3; i++) 313
 { 314
 index1=i*DIM2; 315

113

 index2=((i-srow3+srow1)*DIM0)-scol3+scol1; 316
 index3=((i-srow3+srow2)*DIM1)-scol3+scol2; 317
 for (j = scol3; j < size+scol3; j++){ 318
 //printf("\n%.0f %.0f %.0f ",z[i][j],x[i-319
srow3+srow1][j-scol3+scol1],y[i-srow3+srow2][j-scol3+scol2]); 320
 z[index1+j] = x[index2+j] + y[index3+j]; 321
 } 322
 323
 //printf("\n printing from inside the funtion %.0f 324
%.0f %.0f ",z[i][j],x[i-srow3+srow1][j-scol3+scol1],y[i-srow3+srow2][j-325
scol3+scol2]); 326
 } 327
} 328
} 329
void addMatrices1(double *x, double *y, double *z, int size,int srow1 , int 330
scol1,int srow2,int scol2,int DIM0,int DIM1,int DIM2){ 331
//performs a matrix addition operation, z=x+y 332
 int i,j; 333
 int index1,index2,index3; 334
 #pragma omp parallel shared(x,y,z,srow1,scol1,srow2,scol2,size) 335
private(i,j) num_threads(threads) 336
 { 337
 #pragma omp for schedule(static) nowait 338
 for (i = srow2; i < size+srow2; i++) 339
 { 340
 index1=i*DIM2; 341
 index2=((i-srow2+srow1)*DIM0)-scol2+scol1; 342
 index3=((i-srow2)*DIM1)-scol2; 343
 for (j = scol2; j < size+scol2; j++) 344
 z[index1+j] = x[index2+j] + y[index3+j]; 345
 } 346
 } 347
} 348
 349
void subMatrices(double *x, double *y, double *z, int size , int srow1 , int 350
scol1,int srow2,int scol2,int DIM0,int DIM1,int DIM2){ 351
//performs a matrix subtraction operation, z=x-y 352
 int i,j; 353
 int index1,index2,index3; 354
 #pragma omp parallel shared(x,y,z,srow1,scol1,srow2,scol2,size) 355
private(i,j) num_threads(threads) 356
 { 357
 #pragma omp for schedule(static) nowait 358
 for (i = 0; i < size; i++) 359
 { 360
 index1=i*DIM2; 361
 index2=(i+srow1)*DIM0+scol1; 362
 index3=((i+srow2)*DIM1)+scol2; 363
 for (j = 0; j < size; j++) 364
 z[index1+j] = x[index2+j] - y[index3+j]; 365
 } 366
 } 367
} 368
void subMatricesc(double *x, double *y, double *z, int size , int srow1 , int 369
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int DIM1,int DIM2){ 370
//performs a matrix subtraction operation, z=x-y 371
 int i,j; 372
 int index1,index2,index3; 373
 #pragma omp parallel 374
shared(x,y,z,srow1,scol1,srow2,scol2,srow3,scol3,size) private(i,j) 375
num_threads(threads) 376
 { 377
 #pragma omp for schedule(static) nowait 378

114

 for (i = srow3; i < size+srow3; i++) 379
 { 380
 index1=i*DIM2; 381
 index2=(i-srow3+srow1)*DIM0-scol3+scol1; 382
 index3=(i-srow3+srow2)*DIM1-scol3+scol2; 383
 for (j = scol3; j < size+scol3; j++) 384
 z[index1+j] = x[index2+j] - y[index3+j]; 385
 } 386
 } 387
} 388
void subMatrices1(double *x, double *y, double *z, int size , int srow1 , int 389
scol1,int srow2,int scol2,int DIM0,int DIM1,int DIM2){ 390
//performs a matrix subtraction operation, z=x-y 391
 int i,j; 392
 int index1,index2,index3; 393
 #pragma omp parallel shared(x,y,z,srow1,scol1,srow2,scol2,size) 394
private(i,j) num_threads(threads) 395
 { 396
 #pragma omp for schedule(static) nowait 397
 for (i = srow2; i < size+srow2; i++) 398
 { 399
 index1=i*DIM2; 400
 index2=(i-srow2+srow1)*DIM0-scol2+scol1; 401
 index3=(i-srow2)*DIM1-scol2; 402
 for (j = scol2; j < size+scol2; j++) 403
 z[index1+j] = x[index2+j] - y[index3+j]; 404
 } 405
 } 406
} 407
 408
 409
 410
void normalMultMatrix(double *x, double *y, double *z, int size,int srow1 , int 411
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int DIM1,int DIM2) 412
{ 413
//multiplys two matrices: z=x*y 414
 //int i,j,k; 415
 416
 //#pragma omp parallel 417
shared(x,y,z,size,srow1,scol1,srow2,scol2,srow3,scol3,DIM0,DIM1,DIM2) 418
private(i,j,k) num_threads(threads) 419
 //{ 420
 //multiplication process 421
 //#pragma omp for schedule(static) 422
 //for (i = srow3; i < size+srow3; i++){ 423
 //for (j = scol3; j < size+scol3; j++){ 424
 //z[i*DIM2+j] = 0.0; 425
 //for (k = 0; k < size; k++) 426
 //{ 427
 //z[i*DIM2+j] += x[(i-428
srow3+srow1)*DIM0+(k+scol1)] * y[(k+srow2)*DIM1+(j-scol3+scol2)]; 429
//cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, m, n, p, alpha, A, p, 430
B, n, beta, C, n); 431
 432
mkl_set_num_threads(threads); 433
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, size,size ,size,1, 434
&x[srow1*DIM0+scol1], DIM0, &y[srow2*DIM1+scol2], DIM1, 0, 435
&z[srow3*DIM2+scol3], DIM2); 436
} 437
 438
void myprint(double *xx,char *name,int size,int x,int y,int DIM) 439
{ 440
int i,j; 441

115

printf("\nStart of Print %s\n",name); 442
for(i=0;i<size;i++) 443
{ 444
 445
 for(j=0;j<size;j++) 446
 { 447
 printf("%.5f\t",xx[(i+x)*DIM+(j+y)]); 448
 } 449
 printf("\n"); 450
} 451
printf("\nEnd of Print\n"); 452
} 453
 454
void strassenMultMatrix(double *a,double *b,double *c,int size,int srow1, int 455
scol1, int srow2 , int scol2 , int srow3 ,int scol3,int DIM0,int DIM1,int 456
DIM2){ 457
//Performs a Strassen matrix multiply operation 458
 459
 double *t1, *t2; 460
 461
 int newsize = size/2; 462
 int i; 463
//printf("\nindeces=%d\t\t %d %d %d %d %d 464
%d\n",size,srow1,scol1,srow2,scol2,srow3,scol3); 465
 466
 if (size >= threshold) { 467
 468
 t1 = malloc(sizeof(double*)*newsize*newsize); 469
 t2 = malloc(sizeof(double*)*newsize*newsize); 470
 471
 //addMatrices(a11,a22,t1,newsize); 472
 //addMatrices(b11,b22,t2,newsize); 473
 // strassenMultMatrix(t1,t2,c21,newsize); 474
addMatrices(a,a,t1,newsize,srow1,scol1,newsize+srow1,newsize+scol1,DIM0,DIM0,ne475
wsize); 476
//myprint(a,"print a11",newsize,srow1,scol1,size); 477
//myprint(a,"print a22",newsize,newsize+srow1,newsize+scol1,size); 478
//myprint(t1,"addition result of a11,a22",newsize,0,0,newsize); 479
addMatrices(b,b,t2,newsize,srow2,scol2,newsize+srow2,newsize+scol2,DIM1,DIM1,ne480
wsize); 481
//myprint(t2,"addition result of b11,b22",newsize,0,0,newsize); 482
strassenMultMatrix(t1,t2,c,newsize,0,0,0,0,newsize+srow3,scol3,newsize,newsize,483
DIM2); 484
//myprint(c,"Result Matrix of t1*t2 calculate 485
M1",newsize,newsize+srow3,scol3,DIM2); 486
//myprint(c,"All C matrix",DIM2,0,0,DIM2); 487
 488
 489
 // subMatrices(a21,a11,t1,newsize); 490
subMatrices(a,a,t1,newsize,newsize+srow1,scol1,srow1,scol1,DIM0,DIM0,newsize); 491
//myprint(t1,"subtraction of a21,a11 ",newsize,0,0,newsize); 492
 493
 //addMatrices(b11,b12,t2,newsize); 494
addMatrices(b,b,t2,newsize,srow2,scol2,srow2,newsize+scol2,DIM1,DIM1,newsize); 495
//myprint(t2,"addition of b11,b12",newsize,0,0,newsize); 496
 497
 //strassenMultMatrix(t1,t2,c22,newsize); 498
 strassenMultMatrix(t1,t2,c,newsize,0,0,0,0,newsize+srow3,newsize+scol3,ne499
wsize,newsize,DIM2);//Calculate M6 500
//myprint(c,"Calculate M6 t1*t2",newsize,newsize+srow3,newsize+scol3,DIM2); 501
//myprint(c,"All C matrix",DIM2,0,0,DIM2); 502
 503

116

subMatrices(a,a,t1,newsize,srow1,newsize+srow1,newsize+srow1,newsize+scol1,DIM0504
,DIM0,newsize); 505
//myprint(t1,"subtration a12,a22",newsize,0,0,newsize); 506
 //addMatrices(b21,b22,t2,newsize); 507
addMatrices(b,b,t2,newsize,newsize+srow2,scol2,newsize+srow2,newsize+scol2,DIM1508
,DIM1,newsize); 509
//myprint(t2,"addition b21,b22",newsize,0,0,newsize); 510
 //strassenMultMatrix(t1,t2,c11,newsize); 511
strassenMultMatrix(t1,t2,c,newsize,0,0,0,0,srow3,scol3,newsize,newsize,DIM2);//512
calculate M7 513
//myprint(c,"calculate M7 t1*t2",newsize,srow3,scol3,DIM2); 514
//myprint(c,"All C matrix",DIM2,0,0,DIM2); 515
 //addMatrices(c11,c21,c11,newsize); 516
addMatricesc(c,c,c,newsize,srow3,scol3,newsize+srow3,scol3,srow3,scol3,DIM2,DIM517
2,DIM2); 518
//myprint(c,"Problem Submatrix c11",newsize,srow3,scol3,DIM2); 519
//myprint(c,"Problem Submatrix c21",newsize,newsize+srow3,scol3,DIM2); 520
//myprint(c,"Addition the problem Start here C's sub matrix c11 , 521
c21",newsize,srow3,scol3,DIM2); 522
 523
 524
 //addMatrices(c21,c22,c22,newsize); 525
addMatricesc(c,c,c,newsize,newsize+srow3,scol3,newsize+srow3,newsize+scol3,news526
ize+srow3,newsize+scol3,DIM2,DIM2,DIM2); 527
//myprint(c,"Addition C's sub matrix of 528
c21,c22",newsize,newsize+srow3,newsize+scol3,DIM2); 529
//myprint(c,"All C matrix",DIM2,0,0,DIM2); 530
 531
//###532
####### 533
 //addMatrices(a21,a22,t1,newsize); 534
addMatrices(a,a,t1,newsize,newsize+srow1,scol1,newsize+srow1,newsize+scol1,DIM0535
,DIM0,newsize); 536
//myprint(t1,"Additon a21 , a22",newsize,0,0,newsize); 537
//strassenMultMatrix(t1,b11,c21,newsize); 538
strassenMultMatrix(t1,b,c,newsize,0,0,srow2,scol2,newsize+srow3,scol3,newsize,D539
IM1,DIM2); // Compute M2 540
//myprint(c,"Calculate M2 t1*b11",newsize,newsize+srow3,scol3,DIM2); 541
//myprint(c,"All C matrix",DIM2,0,0,DIM2); 542
 543
 544
//subMatrices(b12,b22,t2,newsize); 545
subMatrices(b,b,t2,newsize,srow2,newsize+scol2,newsize+srow2,newsize+scol2,DIM1546
,DIM1,newsize); 547
//myprint(t2,"Subtration b12,b22",newsize,0,0,newsize); 548
//strassenMultMatrix(a11,t2,c12,newsize) 549
strassenMultMatrix(a,t2,c,newsize,srow1,scol1,0,0,srow3,newsize+scol3,DIM0,news550
ize,DIM2);//Compute M3 551
//myprint(c,"Calculate M3 a11*t2",newsize,srow3,newsize+scol3,DIM2); 552
//myprint(c,"All C matrix",DIM2,0,0,DIM2); 553
//subMatrices(c22,c21,c22,newsize); 554
subMatricesc(c,c,c,newsize,newsize+srow3,newsize+scol3,newsize+srow3,scol3,news555
ize+srow3,newsize+scol3,DIM2,DIM2,DIM2); 556
//myprint(c,"Subtraction C of 557
c22*c21",newsize,newsize+srow3,newsize+scol3,DIM2); 558
//myprint(c,"All C matrix",DIM2,0,0,DIM2); 559
 // addMatrices(c22,c12,c22,newsize); 560
addMatricesc(c,c,c,newsize,newsize+srow3,newsize+scol3,srow3,newsize+scol3,news561
ize+srow3,newsize+scol3,DIM2,DIM2,DIM2); 562
//myprint(c,"Addition C of c22*c12",newsize,newsize+srow3,newsize+scol3,DIM2); 563
//myprint(c,"All C matrix",DIM2,0,0,DIM2); 564
 565
//## 566

117

 //subMatrices(b21,b11,t2,newsize); 567
subMatrices(b,b,t2,newsize,newsize+srow2,scol2,srow2,scol2,DIM1,DIM1,newsize); 568
//myprint(t2,"Subtraction t2 of b21 ,b11",newsize,0,0,newsize); 569
 //strassenMultMatrix(a22,t2,t1,newsize); 570
strassenMultMatrix(a,t2,t1,newsize,newsize+srow1,newsize+scol1,0,0,0,0,DIM0,new571
size,newsize);//compute M4 572
//myprint(t1,"Calculate M4 a22*t2",newsize,0,0,newsize); 573
 574
 //addMatrices(c11,t1,c11,newsize); 575
 addMatrices1(c,t1,c,newsize,srow3,scol3,srow3,scol3,DIM2,newsize,DIM2); 576
//myprint(c,"Addition 1 C of c11,t1 ",newsize,srow3,scol3,DIM2); 577
//myprint(c,"All C matrix",DIM2,0,0,DIM2); 578
 // addMatrices(c21,t1,c21,newsize); 579
addMatrices1(c,t1,c,newsize,newsize+srow3,scol3,newsize+srow3,scol3,DIM2,newsiz580
e,DIM2); 581
//myprint(c,"Addition C of c21, t1",newsize,newsize+srow3,scol3,DIM2); 582
//myprint(c,"All C matrix",DIM2,0,0,DIM2); 583
 584
 //addMatrices(a11,a12,t1,newsize); 585
addMatrices(a,a,t1,newsize,srow1,scol1,srow1,newsize+scol1,DIM0,DIM0,newsize); 586
//myprint(t1,"Additon t1 , a11,a12",newsize,0,0,newsize); 587
 //strassenMultMatrix(t1,b22,t2,newsize); 588
strassenMultMatrix(t1,b,t2,newsize,0,0,newsize+srow2,newsize+scol2,0,0,newsize,589
DIM1,newsize); 590
//myprint(t2,"Strassen Matrix Multiplication t1*b11",newsize,0,0,newsize); 591
 592
 //subMatrices(c11,t2,c11,newsize); 593
subMatrices1(c,t2,c,newsize,srow3,scol3,srow3,scol3,DIM2,newsize,DIM2); 594
//myprint(c,"Subtraction 1 C c11-t2",newsize,srow3,scol3,size); 595
 //addMatrices(c12,t2,c12,newsize); 596
//myprint(c,"All C matrix",8,0,0,8); 597
addMatrices1(c,t2,c,newsize,srow3,newsize+scol3,srow3,newsize+scol3,DIM2,newsiz598
e,DIM2); 599
//myprint(c,"Addition C c12,t2",newsize,srow3,newsize+scol3,DIM2); 600
//myprint(c,"All C matrix",DIM2,0,0,DIM2); 601
 602
 603
 free(t1);free(t2); 604
 } 605
 else { 606
 607
normalMultMatrix(a,b,c,size,srow1,scol1,srow2,scol2,srow3,scol3,DIM0,DIM1,DIM2)608
; 609
 } 610

118

Appendix B: JACOBI SOLVER

 Nature of the application

JACOBI is an iterative method used to solve a Linear System Equation AX=B with

number of equations equal N. It start with an initial solution X
0
 and computes the X

k+1

for k times of iteration. Any iteration k

needs all the values of

X from iteration k-1 except

the values of xi. I implemented 3 versions of JACOBI. Synchronous Jacobi,

Asynchronous Jacobi and Relaxed Jacobi (refer to chapter 4, section 4.3 for more

details).

 Data Structure

I used one dimensional array data structure in my implementation. Where A is a matrix of

size NxN and X and B a vector of size N.

 Procedures

I have 3 files separated from each other. Each code is commented to simplify explaining.

 Input and Output

119

I have a procedure that initialize matrix A, B and X called “randomInit”. It is used to

guarantee that the solution X will converge.

 Correctness

To check correctness of my implementation. Each time I run the program the sequential

JACOBI SOLVER is computed and compared to the results of the parallel

implementation.

120

// SYNCHRONOUSE JACOBI SOLVER 1
#include <stdio.h> 2
#include <math.h> 3
#include <unistd.h> 4
#include <time.h> 5
#include <sys/time.h> 6
#include <math.h> 7
#include <stdlib.h> 8
#include <omp.h> 9
 10
 11
#define MAX_ITER 100 12
#define ERR_THRESHOLD 0.00001 13
 14
 15
 16
int N = 8; 17
int T = 2; 18
int rows_size=2; 19
int cols_size=2; 20
//###21
################# 22
//############## Intialization Funtions and checking of the 23
errors############################## 24
//###25
################# 26
// Procedure used tointialixe the matrices A,B and X 27
void randomInit(double *A,double *X,double *B,int wA) 28
{ 29
 int i,j; 30
 for(i = 0; i < wA; i++) 31
 { 32
 for(j = 0; j < wA; j++) 33
 { 34
 if (i==j) 35
 { 36
 A[i*wA+j] = wA; 37
 } 38
 else 39
 { 40
 A[i*wA+j] = -1 ; 41
 } 42
 } 43
 44
 X[i] = 0; 45
 B[i] = 1; 46
 } 47
} 48
 49
 50
void print1d(double *a,int N) 51
{ 52
printf("\nStart printing\n"); 53
 int i,j; 54
 for(i=0;i<N;i++) 55
 { 56
 printf("%.5f\n",a[i]); 57
 } 58
printf("\nEnd printing\n"); 59
} 60
void print2d(double *a,int N) 61
{ 62
int i,j; 63

121

printf("\nStart printing\n"); 64
 for(i=0;i<N;i++) 65
 { 66
 for(j=0;j<N;j++) 67
 { 68
 printf("%.5f\t",a[i*N+j]); 69
 } 70
 printf("\n"); 71
 } 72
printf("\nEnd printing\n"); 73
} 74
 75
 76
 77
int main(int argc, char *argv[]){ 78
 79
int iter=1; 80
 if(argc > 1) 81
 82
 N = atoi(argv[1]); 83
 84
 if(argc > 2) 85
 86
 T = atoi(argv[2]); 87
 if(argc > 3) 88
 rows_size=atoi(argv[3]); 89
 if(argc > 4) 90
 cols_size=atoi(argv[4]); 91
 92
 93
 94
 95
 double sum; 96
 97
 int i,i1, j, k , ii , jj; 98
 int kk=N/T; // to compute the size of the rows for each thread. 99
 double *A=malloc(sizeof(double)*N*N); 100
 double *B=(double*)malloc(N*sizeof(double)); 101
 double *X=(double*)malloc(3*N*sizeof(double)); // this is to store X at 102
the intialization , at K , K+1 103
 //double *XX=(double*)malloc(N*sizeof(double)); // this is to store 104
result X that produced from K iteration which will be referenced by the mod2=0 105
 //double *XXX=(double*)malloc(N*sizeof(double)); // this is to store 106
result X that produced from K+1 iteration which will be referenced by mod2==1 107
 //double *Xp; // to store the value of X for each thread 108
 double *Xnew_sub; // to store the new value that is computed by each 109
thread 110
 double *new_x=(double*)malloc(N*sizeof(double)); 111
 double *X_seq=(double*)malloc(N*sizeof(double)); 112
 113
 114
//accuracyTestInit2D(A,N); 115
//accuracyTestInit1D(B,N); 116
//accuracyTestInit1D(X,N); 117
//accuracyTestInit1D(X_seq,N); 118
/*for(i=0;i<N;i++) 119
{ 120
 for(j=0;j<N;j++) 121
 { 122
 A[i*N+j]=sqrt(i+j)*0.2546; 123
 } 124
} 125
for(i=0;i<N;i++) 126

122

{ 127
B[i]=sqrt(i*j); 128
}*/ 129
randomInit(A,B,X,N); 130
for(i=0;i<N;i++) 131
{ 132
X_seq[i]=X[i]; 133
} 134
 135
 136
 137
 138
 double dtime=0.0; 139
 140
 double etime=0.0, stime=0.0; 141
 142
 143
 144
// here to compute the Sequantial version 145
//printf("\nstart computing Sequantial jacobi....\n"); 146
 147
stime = omp_get_wtime(); 148
for(k = 0; k < MAX_ITER; k++){ 149
 150
 for(i=0; i<N; i++){ 151
 sum = 0.0; 152
 sum=sum-(A[i*N+i] * X_seq[i]); 153
 154
 for(j=0; j<N; j++){ 155
 156
 sum =sum + (A[i*N+j] * X_seq[j]); 157
 } 158
 159
 new_x[i] = (B[i] - sum)/A[i*N+i]; 160
 161
 } 162
 163
 for(i=0; i < N; i++) 164
 X_seq[i] = new_x[i]; 165
 } 166
etime = omp_get_wtime(); 167
 168
 dtime = etime - stime; 169
 170
printf("\ncomputing sequantial for 1 dimention= %.5f\t", dtime); 171
 172
 173
 174
// Optimized Parallel version of jacobi using blocking 175
// ** 176
// ** 177
omp_set_num_threads(T); 178
dtime=0.0; 179
int kkk; 180
 181
for(kkk=0;kkk<iter;kkk++) 182
{ 183
//accuracyTestInit1D(X,N); 184
stime = omp_get_wtime(); 185
 186
#pragma omp parallel shared (A,B,X,N,T,kk,rows_size,cols_size) 187
private(k,i,ii,j,sum,Xnew_sub) 188
{ 189

123

 //Xp=(double*)malloc(N*sizeof(double)); 190
 Xnew_sub=(double*)malloc((kk)*sizeof(double)*2);//we multiply it by 2 to 191
store for K and for K+1 192
 int tid=omp_get_thread_num(); 193
 ii=tid*kk;// index of te rows that related to the the thread 194
 int i_n=kk/rows_size;//number of rows chunk 195
 int j_n=N/cols_size;//number of column chunk 196
 int iii,jjj; 197
 198
for(k=0;k<MAX_ITER;k++) 199
{ 200
 201
 for(i=0;i<kk;i++) 202
 Xnew_sub[i]=0; 203
 //#pragma omp barrier // here is the most appropriate palce to put 204
the pragma to insure the consistency of the result 205
 /*for(i=0;i<N;i++) 206
 { 207
 Xp[i]=X[i]; 208
 } */ 209
 210
for(iii=0;iii<i_n;iii++) 211
{ for(jjj=0;jjj<j_n;jjj++) 212
 { 213
 for(i=0; i<rows_size; i++){ 214
 sum=0.0; 215
 //sum = sum-(A[(i+ii+iii)*N+i+ii+iii]*Xp[i+ii+iii]); 216
 217
 for(j=0; j<cols_size; j++){ 218
 sum+= A[(i+ii+(iii*rows_size))*N+j+(jjj*cols_size)] * 219
X[j+(jjj*cols_size)]; 220
 } 221
 222
 //Xnew_sub[i+iii]+= (B[i+ii+iii] - 223
sum)/A[(i+ii+iii)*N+i+ii+iii]; 224
 Xnew_sub[i+(iii*rows_size)]+=sum; 225
 } 226
 }//end of jjj 227
 for(i=0;i<rows_size;i++) 228
 { 229
Xnew_sub[i+(iii*rows_size)]=Xnew_sub[i+(iii*rows_size)]-230
(A[(i+ii+(iii*rows_size))*N+i+ii+(iii*rows_size)]*X[i+ii+(iii*rows_size)]); 231
Xnew_sub[i+(iii*rows_size)]=(B[i+ii+(iii*rows_size)]-232
Xnew_sub[i+(iii*rows_size)])/A[(i+ii+(iii*rows_size))*N+i+ii+(iii*rows_size)]; 233
 234
 } 235
 236
}//end of iii 237
 #pragma omp barrier //here is incorret add of the barrier , the barrier 238
must be added before reading the data to update Xp 239
 for(i=0;i<kk;i++){ 240
 X[i+ii]=Xnew_sub[i]; 241
 } 242
 243
}//end of the iteration MAX_ITER 244
 245
 246
free(Xnew_sub); 247
}//parallel pragma 248
 249
etime=omp_get_wtime(); 250
dtime+=(etime-stime); 251
} 252

124

printf("parallel for 1D optimized blocked jacobi= \t%5f",(dtime/iter)); 253
 254
//print1d(X_seq,N); 255
//print1d(X,N); 256
 257
// Here we use test the correctness of our implementation by comparing it to 258
the result of sequential code 259
int result = 0; 260
 for(i=0; i < N; i++){ 261
 if(fabs(X[i]-X_seq[i]) > ERR_THRESHOLD) 262
 { 263
 printf("(%d) : (%.5f,%.5f)\n", i, X[i], X_seq[i]); 264
 result = 1; 265
 } 266
 //if(result == 1) break; 267
 } 268
 269
 270
 printf("\tTest %s", (result == 0) ? "Passed\n" : "Failed\n"); 271
 272
free(A); 273
free(B); 274
free(X); 275
free(X_seq); 276
free(new_x); 277
 278
 return 0; 279
 280
} 281

1

125

//ASYNCHRONOUSE JACOBI SOLVER 1
#include <stdio.h> 2
#include <math.h> 3
#include <unistd.h> 4
#include <time.h> 5
#include <sys/time.h> 6
#include <math.h> 7
#include <stdlib.h> 8
#include <omp.h> 9
 10
#define MAX_ITER 100 11
#define ERR_THRESHOLD 0.00001 12
 13
int N = 8; 14
int T = 2; 15
int rows_size=2; 16
int cols_size=2; 17
//###18
################# 19
//############## Intialization Funtions and checking of the 20
errors############################## 21
//###22
################# 23
 24
void checkPracticalErrors (double *c, double *seq, int n) 25
{ 26
int ii; 27
int n2 = n*n; 28
double sum =0; 29
double low = c[0] - seq[0]; 30
double up = low; 31
 for (ii=0; ii<n2; ii++) 32
 { 33
 double temp = c[ii] - seq[ii]; 34
 sum += (temp<0 ? -temp: temp); 35
 if (temp > up) 36
 up = temp; 37
 else if (temp< low) 38
 low = temp; 39
 } 40
printf ("average error: %.20f\n", sum/n2); 41
printf ("lower-bound: %.20f\n", low); 42
printf ("upper-bound: %.20f\n", up); 43
printf ("\n"); 44
} 45
 46
void accuracyTestInit2D(double* a, int n) 47
{ 48
int i,j; 49
double *uvT = (double *) malloc (n*n*sizeof(double)); 50
//initiate a and b 51
 for (i =0 ; i< n; i++) 52
 { 53
 for (j =0; j< n; j++) 54
 { 55
 //int index = i*n+j; 56
 a[i*n+j] = (i==j?1.0f:0.0f); 57
 } 58
 } 59
double *u = (double *) malloc (n*sizeof(double)); 60
double *v = (double *) malloc (n*sizeof(double)); 61
//initiate u and v 62
 for (i= 1; i< n+1; i++) 63

126

 { 64
 u[i-1] = 1.0f/(n+1.0f-i); 65
 v[i-1] = sqrt(i); 66
 } 67
//vTu 68
double vTu = 0.0f; 69
 for (i= 0; i< n; i++) 70
 { 71
 vTu += u[i]*v[i]; 72
 } 73
 double scalar = 1.0f/(1.0f+vTu); 74
//uvT 75
 for (i= 0; i< n; i++) 76
 { 77
 for (j= 0; j< n; j++) 78
 { 79
 uvT[i*n+j] = u[i]*v[j]; 80
 } 81
 } 82
//construct a and b 83
 for (i=0; i< n; i++) 84
 { 85
 for (j= 0; j< n; j++) 86
 { 87
 int index = i*n+j; 88
 a[index] += uvT[index]; 89
 } 90
} 91
free (uvT); 92
free (u); 93
free (v); 94
} 95
 96
void accuracyTestInit1D(double* a, int n) 97
{ 98
int i,j; 99
double *uvT = (double *) malloc (n*n*sizeof(double)); 100
//initiate a and b 101
 for (i =0 ; i< n; i++) 102
 { 103
 for (j =0; j< n; j++) 104
 { 105
 //int index = i*n+j; 106
 a[i] = (i==j?1.0f:0.0f); 107
 } 108
 } 109
double *u = (double *) malloc (n*sizeof(double)); 110
double *v = (double *) malloc (n*sizeof(double)); 111
//initiate u and v 112
 for (i= 1; i< n+1; i++) 113
 { 114
 u[i-1] = 1.0f/(n+1.0f-i); 115
 v[i-1] = sqrt(i); 116
 } 117
//vTu 118
double vTu = 0.0f; 119
 for (i= 0; i< n; i++) 120
 { 121
 vTu += u[i]*v[i]; 122
 } 123
 double scalar = 1.0f/(1.0f+vTu); 124
//uvT 125
 for (i= 0; i< n; i++) 126

127

 { 127
 for (j= 0; j< n; j++) 128
 { 129
 uvT[i] = u[i]*v[j]; 130
 } 131
 } 132
//construct a and b 133
 for (i=0; i< n; i++) 134
 { 135
 for (j= 0; j< n; j++) 136
 { 137
 int index = i*n+j; 138
 a[i] += uvT[index]; 139
 } 140
} 141
free (uvT); 142
free (u); 143
free (v); 144
} 145
void randomInit(double *A,double *X,double *B,int wA) 146
{ 147
 int i,j; 148
 for(i = 0; i < wA; i++) 149
 { 150
 for(j = 0; j < wA; j++) 151
 { 152
 if (i==j) 153
 { 154
 A[i*wA+j] = wA; 155
 } 156
 else 157
 { 158
 A[i*wA+j] = -1 ; 159
 } 160
 } 161
 162
 X[i] = 0; 163
 B[i] = 1; 164
 } 165
} 166
 167
 168
void print1d(double *a,int N) 169
{ 170
printf("\nStart printing\n"); 171
 int i,j; 172
 for(i=0;i<N;i++) 173
 { 174
 printf("%.5f\n",a[i]); 175
 } 176
printf("\nEnd printing\n"); 177
} 178
void print2d(double *a,int N) 179
{ 180
int i,j; 181
printf("\nStart printing\n"); 182
 for(i=0;i<N;i++) 183
 { 184
 for(j=0;j<N;j++) 185
 { 186
 printf("%.5f\t",a[i*N+j]); 187
 } 188
 printf("\n"); 189

128

 } 190
printf("\nEnd printing\n"); 191
} 192
 193
 194
 195
int main(int argc, char *argv[]){ 196
 197
int iter=1; 198
 if(argc > 1) 199
 200
 N = atoi(argv[1]); 201
 202
 if(argc > 2) 203
 204
 T = atoi(argv[2]); 205
 if(argc > 3) 206
 rows_size=atoi(argv[3]); 207
 if(argc > 4) 208
 cols_size=atoi(argv[4]); 209
 210
 211
 212
 213
 double sum; 214
 215
 int i,i1, j, k , ii , jj; 216
 int kk=N/T; // to compute the size of the rows for each thread. 217
 double *A=malloc(sizeof(double)*N*N); 218
 double *B=(double*)malloc(N*sizeof(double)); 219
 double *X=(double*)malloc(3*N*sizeof(double)); // this is to store X at 220
the intialization , at K , K+1 221
 //double *XX=(double*)malloc(N*sizeof(double)); // this is to store 222
result X that produced from K iteration which will be referenced by the mod2=0 223
 //double *XXX=(double*)malloc(N*sizeof(double)); // this is to store 224
result X that produced from K+1 iteration which will be referenced by mod2==1 225
 //double *Xp; // to store the value of X for each thread 226
 double *Xnew_sub; // to store the new value that is computed by each 227
thread 228
 double *new_x=(double*)malloc(N*sizeof(double)); 229
 double *X_seq=(double*)malloc(N*sizeof(double)); 230
 231
 232
//accuracyTestInit2D(A,N); 233
//accuracyTestInit1D(B,N); 234
//accuracyTestInit1D(X,N); 235
//accuracyTestInit1D(X_seq,N); 236
/*for(i=0;i<N;i++) 237
{ 238
 for(j=0;j<N;j++) 239
 { 240
 A[i*N+j]=sqrt(i+j)*0.2546; 241
 } 242
} 243
for(i=0;i<N;i++) 244
{ 245
B[i]=sqrt(i*j); 246
}*/ 247
randomInit(A,B,X,N); 248
for(i=0;i<N;i++) 249
{ 250
X_seq[i]=X[i]; 251
} 252

129

 253
 254
 255
 256
 double dtime=0.0; 257
 258
 double etime=0.0, stime=0.0; 259
 260
 261
 262
// here to compute the Sequantial version 263
//printf("\nstart computing Sequantial jacobi....\n"); 264
 265
stime = omp_get_wtime(); 266
for(k = 0; k < MAX_ITER; k++){ 267
 268
 for(i=0; i<N; i++){ 269
 sum = 0.0; 270
 sum=sum-(A[i*N+i] * X_seq[i]); 271
 272
 for(j=0; j<N; j++){ 273
 274
 sum =sum + (A[i*N+j] * X_seq[j]); 275
 } 276
 277
 new_x[i] = (B[i] - sum)/A[i*N+i]; 278
 279
 } 280
 281
 for(i=0; i < N; i++) 282
 X_seq[i] = new_x[i]; 283
 } 284
etime = omp_get_wtime(); 285
 286
 dtime = etime - stime; 287
 288
printf("\ncomputing sequantial for 1 dimention= %.5f\t", dtime); 289
 290
 291
 292
// Optimized Parallel version of jacobi using blocking 293
// ** 294
// ** 295
omp_set_num_threads(T); 296
dtime=0.0; 297
int kkk; 298
 299
for(kkk=0;kkk<iter;kkk++) 300
{ 301
//accuracyTestInit1D(X,N); 302
stime = omp_get_wtime(); 303
 304
#pragma omp parallel shared (A,B,X,N,T,kk,rows_size,cols_size) 305
private(k,i,ii,j,sum,Xnew_sub) 306
{ 307
 //Xp=(double*)malloc(N*sizeof(double)); 308
 Xnew_sub=(double*)malloc((kk)*sizeof(double)*2);//we multiply it by 2 to 309
store for K and for K+1 310
 int tid=omp_get_thread_num(); 311
 ii=tid*kk;// index of te rows that related to the the thread 312
 int i_n=kk/rows_size;//number of rows chunk 313
 int j_n=N/cols_size;//number of column chunk 314
 int iii,jjj; 315

130

 316
for(k=0;k<MAX_ITER;k++) 317
{ 318
 319
 for(i=0;i<kk;i++) 320
 Xnew_sub[i]=0; 321
 //#pragma omp barrier // here is the most appropriate palce to put 322
the pragma to insure the consistency of the result 323
 /*for(i=0;i<N;i++) 324
 { 325
 Xp[i]=X[i]; 326
 } */ 327
 328
for(iii=0;iii<i_n;iii++) 329
{ for(jjj=0;jjj<j_n;jjj++) 330
 { 331
 for(i=0; i<rows_size; i++){ 332
 sum=0.0; 333
 //sum = sum-(A[(i+ii+iii)*N+i+ii+iii]*Xp[i+ii+iii]); 334
 335
 for(j=0; j<cols_size; j++){ 336
 sum+= A[(i+ii+(iii*rows_size))*N+j+(jjj*cols_size)] * 337
X[j+(jjj*cols_size)]; 338
 } 339
 340
 //Xnew_sub[i+iii]+= (B[i+ii+iii] - 341
sum)/A[(i+ii+iii)*N+i+ii+iii]; 342
 Xnew_sub[i+(iii*rows_size)]+=sum; 343
 } 344
 }//end of jjj 345
 for(i=0;i<rows_size;i++) 346
 { 347
Xnew_sub[i+(iii*rows_size)]=Xnew_sub[i+(iii*rows_size)]-348
(A[(i+ii+(iii*rows_size))*N+i+ii+(iii*rows_size)]*X[i+ii+(iii*rows_size)]); 349
Xnew_sub[i+(iii*rows_size)]=(B[i+ii+(iii*rows_size)]-350
Xnew_sub[i+(iii*rows_size)])/A[(i+ii+(iii*rows_size))*N+i+ii+(iii*rows_size)]; 351
 352
 } 353
 354
}//end of iii 355
 //#pragma omp barrier 356
 for(i=0;i<kk;i++){ 357
 X[i+ii]=Xnew_sub[i]; 358
 } 359
 360
}//end of the iteration MAX_ITER 361
 362
 363
free(Xnew_sub); 364
}//parallel pragma 365
 366
etime=omp_get_wtime(); 367
dtime+=(etime-stime); 368
} 369
printf("parallel for 1D optimized blocked jacobi= \t%5f",(dtime/iter)); 370
 371
//print1d(X_seq,N); 372
//print1d(X,N); 373
 374
 375
// to test that the code working well 376
int result = 0; 377
 for(i=0; i < N; i++){ 378

131

 if(fabs(X[i]-X_seq[i]) > ERR_THRESHOLD) 379
 { 380
 // printf("(%d) : (%.5f,%.5f)\n", i, X[i], X_seq[i]); 381
 result = 1; 382
 } 383
 //if(result == 1) break; 384
 } 385
 386
 387
 printf("\tTest %s", (result == 0) ? "Passed\n" : "Failed\n"); 388
 389
free(A); 390
free(B); 391
free(X); 392
free(X_seq); 393
free(new_x); 394
 395
 return 0; 396
 397
} 398

132

//RELAXED JACOBI SOLVER 1
#include <stdio.h> 2
#include <math.h> 3
#include <unistd.h> 4
#include <time.h> 5
#include <sys/time.h> 6
#include <math.h> 7
#include <stdlib.h> 8
#include <omp.h> 9
#define MAX_ITER 100 10
#define ERR_THRESHOLD 0.00001 11
#define RUN_CRITICAL 12
#define RUN_ATOMIC 13
#define MAX 4 14
 15
int N = 8; 16
int T = 2; 17
int tr=0; 18
 19
int rows_size=2; 20
int cols_size=2; 21
//This is the prototype for the queue function that will be used in the 22
implementation 23
 24
//###25
################# 26
//############## Intialization Funtions that used in JACOBI TO INSURE 27
CORRECTNESS OF OUR WORK### 28
//###29
################# 30
 31
 32
void randomInit(double *A,double *X,double *B,int wA) 33
{ 34
 int i,j; 35
 for(i = 0; i < wA; i++) 36
 { 37
 for(j = 0; j < wA; j++) 38
 { 39
 if (i==j) 40
 { 41
 A[i*wA+j] = wA; 42
 } 43
 else 44
 { 45
 A[i*wA+j] = -1 ; 46
 } 47
 } 48
 49
 X[i] = 0; 50
 B[i] = 1; 51
 } 52
} 53
 54
 55
void print1d(double *a,int N) 56
{ 57
printf("\nStart printing\n"); 58
 int i,j; 59
 for(i=0;i<N;i++) 60
 { 61
 printf("%.5f\n",a[i]); 62
 } 63

133

printf("\nEnd printing\n"); 64
} 65
void print2d(double *a,int N) 66
{ 67
int i,j; 68
printf("\nStart printing\n"); 69
 for(i=0;i<N;i++) 70
 { 71
 for(j=0;j<N;j++) 72
 { 73
 printf("%.5f\t",a[i*N+j]); 74
 } 75
 printf("\n"); 76
 } 77
printf("\nEnd printing\n"); 78
} 79
 80
 81
 82
int main(int argc, char *argv[]) 83
{ 84
 85
int iter=1; 86
 if(argc > 1) 87
 N = atoi(argv[1]); 88
 if(argc > 2) 89
 T = atoi(argv[2]); 90
 if(argc > 3) 91
 rows_size=atoi(argv[3]); 92
 if(argc > 4) 93
 cols_size=atoi(argv[4]); 94
 if(argc > 5) 95
 tr=atoi(argv[5]); 96
 97
 98
if (argc < 1) 99
printf("\n You muste Enter the following parameter : Mtrix size , number of 100
threads , rows size , column size. For Relaxed jacobi number of rows and blocks 101
will be the number of threads for simplicity we will extend them later to 102
improve the performance\n"); 103
 104
 105
 double sum; 106
 107
 int i,i1,j,k,ii,jj; 108
 int kk=N/T; // to compute the size of the rows for each thread. 109
 double *A=malloc(sizeof(double)*N*N); 110
 double *B=(double*)malloc(N*sizeof(double)); 111
 double *X=(double*)malloc(2*N*sizeof(double)); // this is to store X at 112
the intialization ,at K and also K+1 113
 //double *XX=(double*)malloc(N*sizeof(double)); // this is to store 114
result X that produced from K iteration which will be referenced by the mod2=0 115
 //double *XXX=(double*)malloc(N*sizeof(double)); // this is to store 116
result X that produced from K+1 iteration which will be referenced by mod2==1 117
 //double *Xp; // to store the value of X for each thread 118
 double *Xnew_sub; // to store the new value that is computed by each 119
thread 120
 double *new_x=(double*)malloc(N*sizeof(double)); 121
 double *X_seq=(double*)malloc(N*sizeof(double)); 122
 int work[T]; // this is a shared array that containes 0 , 1 for the 123
blocks that is processed 124
 125
 126

134

 127
 //we an assumption that the number of blocks will be the number of 128
threads in column dimention to insure simplicity for the programming 129
 130
//accuracyTestInit2D(A,N); 131
//accuracyTestInit1D(B,N); 132
//accuracyTestInit1D(X,N); 133
//accuracyTestInit1D(X_seq,N); 134
/*for(i=0;i<N;i++) 135
{ 136
 for(j=0;j<N;j++) 137
 { 138
 A[i*N+j]=sqrt(i+j)*0.2546; 139
 } 140
} 141
for(i=0;i<N;i++) 142
{ 143
B[i]=sqrt(i*j); 144
}*/ 145
randomInit(A,B,X,N); 146
for(i=0;i<N;i++) 147
{ 148
X_seq[i]=X[i]; 149
} 150
 double dtime=0.0; 151
 double etime=0.0, stime=0.0; 152
 153
// here to compute the Sequantial version 154
//printf("\nstart computing Sequantial jacobi....\n"); 155
/*printf("\nStart Computing Sequantial\n"); 156
stime = omp_get_wtime(); 157
for(k = 0; k < MAX_ITER; k++){ 158
 159
 for(i=0; i<N; i++){ 160
 sum = 0.0; 161
 sum=sum-(A[i*N+i] * X_seq[i]); 162
 163
 for(j=0; j<N; j++){ 164
 165
 sum =sum + (A[i*N+j] * X_seq[j]); 166
 } 167
 168
 new_x[i] = (B[i] - sum)/A[i*N+i]; 169
 170
 } 171
 172
 for(i=0; i < N; i++) 173
 X_seq[i] = new_x[i]; 174
 } 175
etime = omp_get_wtime(); 176
 177
 dtime = etime - stime;*/ 178
 179
//printf("\ncomputed sequantial for 1 dimention=%.5f\n", dtime); 180
 181
 182
 183
// Optimized Parallel version of jacobi using RELAXED SYNCHRONIZATION 184
// ** 185
// ** 186
omp_set_num_threads(T); 187
dtime=0.0; 188
int kkk; 189

135

 190
for(kkk=0;kkk<iter;kkk++) 191
{ 192
//accuracyTestInit1D(X,N); 193
stime = omp_get_wtime(); 194
 195
#pragma omp parallel shared (A,B,X,N,T,kk,rows_size,cols_size,work) 196
private(k,i,ii,j,sum,Xnew_sub) 197
{ 198
 //Xp=(double*)malloc(N*sizeof(double)); 199
 Xnew_sub=(double*)malloc((kk)*sizeof(double));//we multiply it by 2 to 200
store for K and for K+1 201
 int p_work[T];// this is a private variable that all the time its value 202
copied from the shared variable "work" 203
 int tid=omp_get_thread_num(); 204
 ii=tid*kk;// index of te rows that related to the the thread 205
 int i_n=kk/rows_size;//number of rows chunk 206
 int j_n=N/cols_size;//number of column chunk 207
 int w[T];// the blocks that is processed for each iteration by the thread 208
 int iii,jjj; 209
 int index_r,index_w; 210
 int temp; 211
 int counter; 212
 int spin=1; 213
 iii=0; 214
 int loop=1; 215
 int av=0; 216
 217
 218
 219
 220
 221
for(i=0;i<kk;i++) 222
Xnew_sub[i]=0; 223
 224
for(k=0;k<MAX_ITER;k++) 225
{ 226
// we must reset the shared work matrix by the thread0 227
if(tid==0) 228
{ 229
 //printf("\nThe work setted by thread 0\n"); 230
 for(i=0;i<T;i++) 231
 { 232
 work[i]==0; 233
 } 234
} 235
 236
//if(omp_get_thread_num()==tr) 237
//printf("\nIteration#=%d",k); 238
// To decrease overhead of index computation. We must reorganize the location 239
of index computation. 240
if(k%2==0) 241
{ 242
index_r=0; 243
index_w=1; 244
} 245
else 246
{ 247
index_r=1; 248
index_w=0; 249
} 250
 251
for(i=0;i<T;i++) 252

136

{ 253
 w[i]=0; 254
} 255
 256
counter=0; 257
 258
 259
if(k==0) 260
{ 261
iii=0; 262
jjj=0; 263
} 264
else 265
{ 266
//iii=tid;//becuase the first block they will compute the block that computed 267
by it 268
jjj=tid;//becuase the first block they will compute the block that computed by 269
it 270
w[tid]=1; 271
} 272
 273
//for(iii=0;iii<i_n;iii++) // here to count the rows 274
//{ 275
 //for(jjj=0;jjj<j_n;jjj++) // here to count the blocks 276
 //{ 277
while(counter < (T-1)) // this is means that we process all the blocks for a 278
specific iteration 279
{ 280
spin=1; // we must reset it 281
loop=1; // reset of the loop 282
//if(omp_get_thread_num()==tr) 283
//printf("\nCounter=%d\n",counter); 284
 for(i=0; i<rows_size; i++){ 285
 sum=0.0; 286
 //sum = sum-(A[(i+ii+iii)*N+i+ii+iii]*Xp[i+ii+iii]); 287
 for(j=0; j<cols_size; j++){ 288
 sum+= A[(i+ii+(iii*rows_size))*N+j+(jjj*cols_size)] * 289
X[j+(jjj*cols_size)+index_r*N]; 290
 } 291
 //Xnew_sub[i+iii]+= (B[i+ii+iii] - 292
sum)/A[(i+ii+iii)*N+i+ii+iii]; 293
 Xnew_sub[i+(iii*rows_size)]+=sum; 294
 } 295
 if(k!=0) // it is not the first iteration 296
 { 297
 while(spin==1) 298
 { 299
 while(loop==1) 300
 { 301
 #pragma omp flush(work) 302
 for(i=0;i<T;i++) 303
 { 304
 p_work[i]=work[i]; 305
 if(p_work[i]==1 && w[i] == 0) 306
 { 307
 loop=0; // to stop looping 308
 jjj=i; 309
 w[i]=1; 310
 spin=0; 311
 break; 312
 } 313
 } 314
 //printf("\nSpinning Searching for a block\n"); 315

137

 } // this is to keep spinning untill a work a 316
vailable 317
 //printf("\nSpinning Searching for a work\n"); 318
 } // this is to spin searching for a work 319
 } 320
 else 321
 { 322
 //iii++; 323
 jjj++; 324
 } 325
counter++; 326
} 327
 //}//end of jjj 328
 for(i=0;i<rows_size;i++) 329
 { 330
Xnew_sub[i+(iii*rows_size)]=Xnew_sub[i+(iii*rows_size)]-331
(A[(i+ii+(iii*rows_size))*N+i+ii+(iii*rows_size)]*X[i+ii+(iii*rows_size)+index_332
r*N]); 333
Xnew_sub[i+(iii*rows_size)]=(B[i+ii+(iii*rows_size)]-334
Xnew_sub[i+(iii*rows_size)])/A[(i+ii+(iii*rows_size))*N+i+ii+(iii*rows_size)]; 335
 336
 } 337
//}//end of iii 338
 //here is incorret add of the barrier , the barrier must be added before 339
reading the data to update Xp 340
 for(i=0;i<kk;i++){ 341
 X[i+ii+(N*index_w)]=Xnew_sub[i]; // here to define where to store 342
the data for iter k , or k+1 343
 } 344
 work[tid]=1; // to indicate that a block is a vailable 345
 /*if(tid==tr) 346
 { 347
 for(i=0;i<T;i++) 348
 { 349
 printf("\t%d",work[i]); 350
 } 351
 }*/ 352
 353
 354
}//end of the iteration MAX_ITER 355
 356
 357
free(Xnew_sub); 358
}//parallel pragma 359
 360
etime=omp_get_wtime(); 361
dtime+=(etime-stime); 362
} 363
printf("\nparallel for 1D optimized Relaxed Jacobi= \t%5f\n",(dtime/iter)); 364
 365
//print1d(X_seq,N); 366
//print1d(X,N); 367
 368
 369
// to test that the code working well 370
/*int result = 0; 371
 for(i=0; i < N; i++){ 372
 if(fabs(X[i]-X_seq[i]) > ERR_THRESHOLD) 373
 { 374
 // printf("(%d) : (%.5f,%.5f)\n", i, X[i], X_seq[i]); 375
 result = 1; 376
 } 377
 //if(result == 1) break; 378

138

 } 379
 380
 381
 printf("\tTest %s", (result == 0) ? "Passed\n" : "Failed\n");*/ 382
 383
free(A); 384
free(B); 385
free(X); 386
free(X_seq); 387
free(new_x); 388
 389
 return 0; 390
 391
} 392

139

Appendix C: BARNES-HUT N-BODY SIMULATION

 Nature of the application

The N-body simulation is considered as a model of semi static computations. A brute force

approach for computing the gravitational forces for N bodies is on the O(N
2
). The Barnes Hut

(BH) approximation enables treating a group of bodies as one if these are far enough from a given

body. This drops the computational complexity to O(NlogN) when using BH. BH uses an oct-

tree, in which each node stores the aggregate mass of all of its children nodes (sub-tree) at their

center of mass. Another problem is that the thread load moderately changes from one iteration to

another due to body motion in space. Therefore, a static problem partitioning strategy (S-BH) for

BH is likely to suffer from accumulated load unbalance. It well known that dynamic load

balancing (DLB) improves BH scalability. However, DLB is complex because of the need to

measure the Dynamic Load (DL) and adopt an adequate data structure to minimize runtime

overheads. In the beginning of iteration k, the body slowly motion enables estimating the DL for

K+1 as being the aggregate load measured by all the treads in iteration k. Thus DLB is

implemented by evenly partitioning the DL over the threads so that to preserve the data locality to

the best possible. I implemented DLB-BH using an efficient data structure to ease load

redistribution together with oct-tree implementation.

 Data Structure

I have two main arrays in the implementation. The bodies array which containes the

velocity, postions and the mass. Also, it containes an index for the DFT which is used to

140

order the array (refere to chapter 5 for more details). In addition, the nodes array is

implemented which containes center of mass, pointer to the next subtree , index of DFT

and variable to differe between node and body object.

 Procedures

There are many procedures in the code. To simplify understanding each procedure is

commented to expalain its purpose and how it is work.

 Input and Output

Inside the code there is a procedure called “Generate_GalaxyKing” . It takes a galaxy

of Size 10^6 and generates a 125 galaxies. They are spreaded in the space of size

(400x400). (refere to chapter 5, section 5.9 for more detailes).

141

//BARNES-HUT N-BODY SIMULATION 1
#include <stdio.h> 2
#include <stdlib.h> 3
#include <string.h> 4
#include <algorithm> 5
#include <math.h> 6
#include <time.h> 7
#include <omp.h> 8
// number of steps for the program 9
 10
unsigned long report1[10][10]; 11
double allam_report[5*4800][10]; // this is added to report the 12
data that is produced from the program 13
#define steps 20 14
unsigned long normal=0,seq=0,zone=0,dynamic=0; 15
unsigned long threads= 1; 16
#define MAX_THREADS 240 17
unsigned long ThreadStart[MAX_THREADS]; 18
unsigned long ThreadEnd[MAX_THREADS]; 19
unsigned long long ThreadCDF[MAX_THREADS]; 20
double ThreadStartTime[MAX_THREADS]; 21
double ThreadEndTime[MAX_THREADS]; 22
double ThreadAvgTime[MAX_THREADS]; 23
unsigned long generate=0; 24
#define PI (atan((float)1)*4) 25
#define maxB 13000000 26
#define maxNodes (maxB * 10) 27
unsigned long MaxNBodies = 0; 28
#define minimum_space 0.01 29
struct Body { 30
 unsigned long id; 31
 float posx, posy, posz; 32
 float vx, vy, vz; 33
 float fx, fy, fz; 34
 void* my_node; 35
 float mass; 36
 unsigned long long zoneCost; 37
 void operator= (const Body &); 38
 inline bool operator< (const Body &); 39
}; 40
 41
struct node { 42
 struct Body *B; 43
 float cx, cy, cz; //Center of the square 44
 float d; //Half side of the square 45
 unsigned long is_internal_node; //1 = internal node, 46
0 = leaf node 47
 struct node* child[8]; //Pointers to the node children 48
 //struct node* next; 49
 struct node* parent; 50
 unsigned long BH; 51
 unsigned long index_in_brothers; 52

142

 unsigned long index_of_next_neighbour; 53
 unsigned long BreadthFirstIndex; 54
}; 55
 56
static Body * Bodies[maxB] = {NULL};// here it is an array of 57
bodies 58
static node * AllNodes2[maxNodes] = {NULL}; // here it is an 59
array of nodes 60
 61
// softening parameter 62
#define EPS 30000 63
#define EPS2 (EPS * EPS) 64
 65
int id_b=0; 66
 67
//time for each step 68
const float dt = (float) 0.01; 69
 70
// gravational constant 71
const float G = (float)6.67* (float)pow(10.0,-11.0); 72
 73
const char * filename_simple = "data/Bodies001_simple.txt"; 74
const char * filename_simple_sorted = 75
"data/Bodies001_simple_sorted.txt"; 76
 77
const char * filename_poisson = "data/Bodies001_poisson.txt"; 78
const char * filename_poisson_sorted = 79
"data/Bodies001_poisson_sorted.txt"; 80
 81
const char * filename_poisson2 = "data/Bodies001_poisson2.txt"; 82
const char * filename_poisson_sorted2 = 83
"data/Bodies001_poisson_sorted2.txt"; 84
const char * filename_test ="data/Bodies001_poisson2.txt"; 85
//"data/100t.txt"; 86
const char * filename_GalaxyKingModel_100 = 87
"data/KingModel_0.1MBodies.txt"; 88
const char * filename_GalaxyKingModel_1M= 89
"data/KingModel_1MBodies.txt"; 90
const char * filename_GalaxyKingModel_1M_nonsorted= 91
"data/KingModel_1MBodies_nonsorted.txt"; 92
 93
char * filepath;// = "D:/NBdata/"; 94
 95
unsigned long No_of_Nodes = 0; 96
 97
#define maxVelBound 10 //The maximum initial 98
velocity of a body 99
#define maxMassBound 9 //The maximum mass for a 100
given body 101
#define maxPosBound 400 //The maximum value for x 102
and y coordinates of a body 103

143

#define minPosBound 0 //The maximum value for x and y 104
coordinates of a body 105
#define spaceCenterX (maxPosBound / 2) //The position 106
of the x coordinate of Center of space 107
#define spaceCenterY (maxPosBound / 2) //The position 108
of the y coordinate of Center of space 109
#define spaceCenterZ (maxPosBound / 2) // <anas added for 3d : 110
The position of z coordinate of Center of space /> 111
#define spaceCenterHfside (maxPosBound / 2) //Half side of Space 112
 113
void Body::operator= (const Body &B2) 114
{ 115
 id = B2.id; 116
 posx = B2.posx; 117
 posy = B2.posy; 118
 posz = B2.posz; 119
 mass = B2.mass; 120
 vx = B2.vx; 121
 vy = B2.vy; 122
 vz = B2.vz; 123
} 124
 125
bool Body::operator< (const Body &B2) { 126
 float my_dist = sqrt((posx-spaceCenterX) * (posx-127
spaceCenterX) + 128
 (posy-spaceCenterY) * (posy-spaceCenterY) + 129
 (posz-spaceCenterZ) * (posz-spaceCenterZ)); 130
 float his_dist = sqrt((B2.posx-spaceCenterX) * (B2.posx-131
spaceCenterX) + 132
 (B2.posy-spaceCenterY) * (B2.posy-spaceCenterY) + 133
 (B2.posz-spaceCenterZ) * (B2.posz-spaceCenterZ)); 134
 return my_dist < his_dist; 135
 136
} 137
 138
inline bool Body_comparer_function(const Body* B1, const Body* 139
B2) { 140
 return sqrt((B1->posx-spaceCenterX) * (B1->posx-141
spaceCenterX) + 142
 (B1->posy-spaceCenterY) * (B1->posy-spaceCenterY) + 143
 (B1->posz-spaceCenterZ) * (B1->posz-spaceCenterZ)) 144
 < 145
 sqrt((B2->posx-spaceCenterX) * (B2->posx-146
spaceCenterX) + 147
 (B2->posy-spaceCenterY) * (B2->posy-spaceCenterY) + 148
 (B2->posz-spaceCenterZ) * (B2->posz-spaceCenterZ)); 149
 150
} 151
 152
struct node* newNode(float cx, float cy,float cz, float d, Body 153
*B1) {// 154
 node* nd = new node(); 155

144

 //nd = new(struct node); 156
 if (No_of_Nodes >= maxNodes) 157
 { 158
 printf("Error: increase the no of nodes\nPress any key 159
to exit"); 160
 getchar(); 161
 exit(-1); 162
 } 163
 if (AllNodes2[No_of_Nodes] != NULL) 164
 delete(AllNodes2[No_of_Nodes]); 165
 AllNodes2[No_of_Nodes++] = nd; 166
 nd->B = B1; 167
 if(B1 != NULL) 168
 B1->my_node = nd; 169
 nd->cx = cx; 170
 nd->cy = cy; 171
 nd->cz = cz; 172
 nd->d = d; 173
 nd ->is_internal_node = 0; 174
 nd ->BH = 0; 175
 //nd ->next = NULL; 176
 nd ->parent= NULL; 177
 nd ->index_in_brothers = 8; //8 means no index // a correct 178
index should be between 0 and 7 179
 // nd ->H_index= -1; 180
 nd->BreadthFirstIndex = No_of_Nodes - 1; 181
 for(unsigned long i = 0; i < 8; i++) 182
 nd->child[i] = NULL; 183
 return(nd); 184
} 185
 186
bool saveBodiesLocations(const char * filename1) 187
{ 188
 char filename [255] = ""; 189
 strcpy(filename,filepath); 190
 strcat(filename,filename1); 191
 192
 char bodydata[60]; 193
 FILE *f; 194
 if ((f=fopen(filename , "w")) == NULL) 195
 { 196
 printf("The file '%s' was not opened\n", filename); 197
 return true; 198
 } 199
 else 200
 { 201
 for (unsigned long ii = 0; ii < MaxNBodies; ii++) 202
 { 203
 sprintf(bodydata,"%12f %12f %12f\n", Bodies[ii]-204
>posx, Bodies[ii]->posy, Bodies[ii]->posz); 205
 fputs (bodydata , f); 206
 } 207

145

 } 208
 fclose(f); 209
 return false; 210
} 211
 212
 213
inline char * Body_toString(Body * b, char * bodydata) 214
{ 215
 sprintf(bodydata,"%6.12f, %6.12f, %6.12f, %6.12f, %6.12f, 216
%6.12f, %6.12f, %6.12f, %6.12f, %6.12f\n\0", 217
 b->mass, 218
 b->posx ,b->posy, b->posz, 219
 b->vx ,b->vy, b->vz, 220
 b->fx ,b->fy, b->fz); 221
 222
 return bodydata; 223
} 224
 225
bool saveBodies(const char * filename1) 226
{ 227
 char filename [255]= ""; 228
 strcpy(filename,filepath); 229
 strcat(filename,filename1); 230
 231
 char bodydata[(10*21+5)]; 232
 FILE *f; 233
 if ((f=fopen(filename , "w")) == NULL) 234
 { 235
 printf("The file '%s' was not opened\n", filename); 236
 return true; 237
 } 238
 else 239
 { 240
 for (unsigned long ii = 0; ii < MaxNBodies; ii++) 241
 { 242
 Body_toString(Bodies[ii], bodydata); 243
 fputs (bodydata , f); 244
 } 245
 } 246
 fclose(f); 247
 return false; 248
} 249
 250
 251
inline void parseString(Body *b, char * bodydata) 252
{ 253
 char s [30]; 254
 unsigned long jj=0, ii=0; 255
 256
 while((bodydata[ii]!='\t') && (bodydata[ii]!='\n')&& 257
(bodydata[ii]!=' ')&& (bodydata[ii]!='\0')) s[jj++] = 258
bodydata[ii++]; 259

146

 s[jj]='\0'; 260
 b->mass = (float) atof(s); 261
 ii++; 262
 jj = 0; 263
 264
 while((bodydata[ii]!='\t') && (bodydata[ii]!='\n')&& 265
(bodydata[ii]!=' ')&& (bodydata[ii]!='\0')) s[jj++] = 266
bodydata[ii++]; 267
 s[jj]='\0'; 268
 b->posx = (float) atof(s); 269
 ii++; 270
 jj = 0; 271
 272
 while((bodydata[ii]!='\t') && (bodydata[ii]!='\n')&& 273
(bodydata[ii]!=' ')&& (bodydata[ii]!='\0')) s[jj++] = 274
bodydata[ii++]; 275
 s[jj]='\0'; 276
 b->posy = (float) atof(s); 277
 ii++; 278
 jj = 0; 279
 280
 while((bodydata[ii]!='\t') && (bodydata[ii]!='\n')&& 281
(bodydata[ii]!=' ')&& (bodydata[ii]!='\0')) s[jj++] = 282
bodydata[ii++]; 283
 s[jj]='\0'; 284
 b->posz = (float) atof(s); 285
 ii++; 286
 jj = 0; 287
 288
 while((bodydata[ii]!='\t') && (bodydata[ii]!='\n')&& 289
(bodydata[ii]!=' ')&& (bodydata[ii]!='\0')) s[jj++] = 290
bodydata[ii++]; 291
 s[jj]='\0'; 292
 b->vx = (float) atof(s); 293
 ii++; 294
 jj = 0; 295
 296
 while((bodydata[ii]!='\t') && (bodydata[ii]!='\n')&& 297
(bodydata[ii]!=' ')&& (bodydata[ii]!='\0')) s[jj++] = 298
bodydata[ii++]; 299
 s[jj]='\0'; 300
 b->vy = (float) atof(s); 301
 ii++; 302
 jj = 0; 303
 304
 while((bodydata[ii]!='\t') && (bodydata[ii]!='\n')&& 305
(bodydata[ii]!=' ')&& (bodydata[ii]!='\0')) s[jj++] = 306
bodydata[ii++]; 307
 s[jj]='\0'; 308
 b->vz = (float) atof(s); 309
 ii++; 310
 jj = 0; 311

147

} 312
 313
void generate_positions_poisson2() { 314
 srand((unsigned long)(time(NULL)*100)); 315
 unsigned long i; 316
 float a,b,r0_y,r_y,r_x,u,r0_x,r_z,r0_z; 317
 r0_y = maxPosBound / 15; 318
 r0_x = maxPosBound / 15; 319
 r0_z = maxPosBound / 15; 320
 for (i = 0; i < MaxNBodies; i++) { 321
 Bodies[i] = new Body; 322
 Bodies[i]->id = i; 323
 do { 324
 u = (float) rand() / RAND_MAX; 325
 r_y = -r0_y*log(1-u); 326
 r_x = -r0_x*log(1-u); 327
 r_z = -r0_z*log(1-u); 328
 a = ((float) (rand()) / RAND_MAX) * 2 * PI; 329
 b = ((float) (rand()) / RAND_MAX) * 2 * PI; 330
 Bodies[i]->posx = (r_x*cos(a)*cos(b)) + 331
maxPosBound / 2; 332
 Bodies[i]->posy = (r_y*cos(a)*sin(b)) + 333
maxPosBound / 2 ; 334
 Bodies[i]->posz = (r_z*sin(a)) + maxPosBound / 2; 335
 } while (Bodies[i]->posx > maxPosBound || Bodies[i]-336
>posy > maxPosBound || Bodies[i]->posz > maxPosBound || 337
 Bodies[i]->posx < minPosBound || Bodies[i]->posy 338
< minPosBound || Bodies[i]->posz < minPosBound 339
); 340
 Bodies[i]-> mass = 10;//(float) rand() / RAND_MAX * 341
maxMassBound + 1; 342
 Bodies[i]->vx = ((float) rand() / RAND_MAX * 343
maxVelBound) - (float)maxVelBound/2; 344
 Bodies[i]->vy = ((float) rand() / RAND_MAX * 345
maxVelBound) - (float)maxVelBound/2; 346
 Bodies[i]->vz = ((float) rand() / RAND_MAX * 347
maxVelBound) - (float)maxVelBound/2; 348
 Bodies[i]->fx = (float) rand() / RAND_MAX * 349
maxVelBound; 350
 Bodies[i]->fy = (float) rand() / RAND_MAX * 351
maxVelBound; 352
 Bodies[i]->fz = (float) rand() / RAND_MAX * 353
maxVelBound; 354
 Bodies[i]->fx = Bodies[i]->fy = Bodies[i]->fz = 0; 355
 } 356
} 357
 358
bool loadBodies(const char * filename1) 359
{ 360
 char filename [255] = ""; 361
 strcpy(filename,filepath); 362
 strcat(filename,filename1); 363

148

 364
 char bodydata[(10*21+5)]; 365
 FILE *f; 366
 if ((f=fopen(filename , "r")) == NULL) 367
 { 368
 printf("The file '%s' was not opened\n", filename); 369
 return true; 370
 } 371
 else 372
 { 373
 for (unsigned long ii = 0; ii < MaxNBodies; ii++) 374
 { 375
 fgets (bodydata, (10*21+5), f); 376
 Bodies[ii] = new Body(); 377
 //Bodies[ii]->zoneCost = 0; 378
 parseString(Bodies[ii], bodydata); 379
 } 380
 } 381
 fclose(f); 382
 return false; 383
} 384
 385
 386
void CountTree(struct node* root, unsigned long* NoOfNodes, 387
unsigned long* NoOfBodies) 388
{ 389
 if (root==NULL) 390
 return; 391
 392
 if (root->is_internal_node) 393
 (*NoOfNodes)++; 394
 else 395
 (*NoOfBodies)++; 396
 397
 for(unsigned long i = 0; i < 8; i++) 398
 if(root->child[i] != NULL) 399
 CountTree(root->child[i], NoOfNodes, NoOfBodies); 400
 else 401
 return; 402
} 403
void CountTree2(unsigned long* NoOfNodes, unsigned long* 404
NoOfBodies) 405
{ 406
 for(unsigned long i = 0; i < No_of_Nodes; i++) 407
 if (AllNodes2[i]->is_internal_node) 408
 (*NoOfNodes)++; 409
 else 410
 (*NoOfBodies)++; 411
} 412
 413
void PrintTree_DFS2() 414
{ 415

149

 printf(" i BF_i chld next zoneCost mass\n"); 416
 for (unsigned long ii=0; ii<No_of_Nodes; ii++) 417
 printf("%3d %3d %3d %3d %3llu %f\n", ii, 418
AllNodes2[ii]->BreadthFirstIndex, AllNodes2[ii]-419
>index_in_brothers, AllNodes2[ii]->index_of_next_neighbour, 420
AllNodes2[ii]->B->zoneCost, AllNodes2[ii]->B->mass); 421
} 422
// this function is added to compute the tree depth 423
/*void printoctTree(struct node * root) 424
{ 425
if (root==NULL); 426
printf("The Tree is empty"); 427
else 428
{ 429
while 430
 431
 432
} 433
 434
}*/ 435
 436
bool compare_nodes(node* n1, node* n2) 437
{ 438
 return ((n1->BreadthFirstIndex) < (n2-439
>BreadthFirstIndex)); 440
} 441
bool compare_bodies(Body* b1, Body* b2) 442
{ 443
 return ((((node *)(b1->my_node))->BreadthFirstIndex) < 444
(((node *)(b2->my_node))->BreadthFirstIndex)); 445
} 446
void compute_Center_of_Mass(node * Node) 447
{ 448
 float CMX = 0.0, CMY = 0.0, CMZ = 0.0; 449
 Node->B = new Body; 450
 Node->B->my_node = Node; 451
 Node->B->zoneCost = 0; 452
 Node->B->mass = 0; 453
 for(unsigned long i = 0; i < 8; i++) 454
 if(Node->child[i] != NULL) 455
 { 456
 Node->B->mass += Node->child[i]->B->mass; 457
 CMX += Node->child[i]->B->mass * Node->child[i]-458
>B->posx; 459
 CMY += Node->child[i]->B->mass * Node->child[i]-460
>B->posy; 461
 CMZ += Node->child[i]->B->mass * Node->child[i]-462
>B->posz; 463
 Node->B->zoneCost += Node->child[i]->B->zoneCost; 464
// here we must check this operation 465
 466
 } 467

150

 Node->B->posx = CMX / Node->B->mass; 468
 Node->B->posy = CMY / Node->B->mass; 469
 Node->B->posz = CMZ / Node->B->mass; 470
} 471
 472
unsigned long get_next_brother_index(node * Node, unsigned long 473
start) 474
{ 475
 unsigned long i =start; 476
 while ((i < 8) && (Node->child[i] == NULL)) i++; 477
 return i; 478
} 479
 480
void compute_indices_BreadthFirst(node * Node) 481
{ 482
 unsigned long k = 0, i, j = 0; 483
 node* nd = Node; 484
 nd->BreadthFirstIndex = k++; 485
 while(nd != NULL) 486
 { 487
 i = get_next_brother_index(nd, j); 488
 if (i > 7) 489
 { 490
 if ((nd->is_internal_node == 1) && 491
(get_next_brother_index(nd, j) > 7)) 492
 compute_Center_of_Mass(nd); 493
 j = nd->index_in_brothers + 1; 494
 nd = nd->parent; 495
 if(nd != NULL) 496
 nd->index_of_next_neighbour = k; 497
 } 498
 else 499
 { 500
 j = 0; 501
 nd = nd->child[i]; 502
 nd->BreadthFirstIndex = k++; 503
 nd->index_of_next_neighbour = k; 504
 } 505
 } 506
 if(Node != NULL) 507
 compute_Center_of_Mass(Node); 508
} 509
 510
void delete_node_tree() 511
{ 512
 for(unsigned long i = 0; i < No_of_Nodes; i++) 513
 { 514
 if (AllNodes2[i] != NULL) 515
 { 516
 if (AllNodes2[i]->is_internal_node == 1) 517
 { 518
 if (AllNodes2[i]->B != NULL) 519

151

 { 520
 delete(AllNodes2[i]->B); 521
 AllNodes2[i]->B = NULL; 522
 } 523
 } 524
 delete(AllNodes2[i]); 525
 AllNodes2[i] = NULL; 526
 } 527
 } 528
 No_of_Nodes = 0; 529
} 530
void delete_AllBodies() 531
{ 532
 for(unsigned long i = 0; i < MaxNBodies; i++) 533
 { 534
 if (Bodies[i] != NULL) 535
 { 536
 delete(Bodies[i]); 537
 Bodies[i] = NULL; 538
 } 539
 } 540
 MaxNBodies = 0; 541
} 542
void delete_far_bodies () 543
{ 544
 for(unsigned long i = 0; i < MaxNBodies; i++) 545
 if (Bodies[MaxNBodies-1] != NULL) 546
 { 547
 if ((Bodies[i]->posx < minPosBound) || 548
(Bodies[i]->posx > maxPosBound) 549
 || (Bodies[i]->posy < minPosBound) || 550
(Bodies[i]->posy > maxPosBound) 551
 || (Bodies[i]->posz < minPosBound) || 552
(Bodies[i]->posz > maxPosBound)) 553
 { 554
 Bodies[i] = Bodies[MaxNBodies-1]; 555
 delete(Bodies[MaxNBodies-1]); 556
 Bodies[MaxNBodies-1] = NULL; 557
 MaxNBodies--; 558
 printf("\nA far body have been delete\n"); 559
 } 560
 } 561
} 562
 563
void update_velocity_and_position(struct Body *B) 564
{ 565
 //update velocity 566
 if ((B->mass) != 0) 567
 { 568
 B->vx += dt * (B->fx) / (B->mass); 569
 B->vy += dt * (B->fy) / (B->mass); 570
 B->vz += dt * (B->fz) / (B->mass); 571

152

 } 572
 //update position 573
 B->posx += dt * B->vx; 574
 B->posy += dt * B->vy; 575
 B->posz += dt * B->vz; 576
} 577
 578
float distance(node* nd, Body* bd) 579
{ 580
 return sqrt((nd->cx - bd->posx)*(nd->cx - bd->posx) 581
 + (nd->cy - bd->posy)*(nd->cy - bd->posy) 582
 + (nd->cz - bd->posz)*(nd->cz - bd->posz)); 583
} 584
 585
bool InItsCube(node* nd, Body* bd) 586
{ 587
 return (((nd->cx - nd->d) <= bd->posx) && (bd->posx <= 588
(nd->cx + nd->d)) 589
 && ((nd->cy - nd->d) <= bd->posy) && (bd->posy <= (nd-590
>cy + nd->d)) 591
 && ((nd->cz - nd->d) <= bd->posz) && (bd->posz <= (nd-592
>cz + nd->d))); 593
} 594
 595
void add_Leaf(struct node* Node, struct Body *B1, unsigned long 596
i) 597
{ 598
 float newd = Node->d / 2; 599
 float new_cx = (B1->posx > Node->cx) ? newd : -newd; 600
 float new_cy = (B1->posy > Node->cy) ? newd : -newd; 601
 float new_cz = (B1->posz > Node->cz) ? newd : -newd; 602
 Node->child[i] = newNode(Node->cx + new_cx, Node->cy + 603
new_cy, Node->cz + new_cz, newd, B1); 604
 Node->child[i]->is_internal_node = 0; 605
 Node->is_internal_node = 1; 606
 Node->B = NULL; 607
 Node->child[i]->parent = Node; 608
 Node->child[i]->index_in_brothers = i; 609
} 610
void add_Internal_Node(struct node* Node, struct Body *B1, 611
unsigned long i) 612
{ 613
 float newd = Node->d / 2; 614
 float new_cx = (B1->posx > Node->cx) ? newd : -newd; 615
 float new_cy = (B1->posy > Node->cy) ? newd : -newd; 616
 float new_cz = (B1->posz > Node->cz) ? newd : -newd; 617
 Node->child[i] = newNode(Node->cx + new_cx, Node->cy + 618
new_cy, Node->cz + new_cz, newd, NULL); 619
 Node->child[i]->is_internal_node = 1; 620
 Node->is_internal_node = 1; 621
 Node->child[i]->parent = Node; 622
 Node->child[i]->index_in_brothers = i; 623

153

} 624
 625
void insert_body_in_octtree(struct node* Node, struct Body *B1) 626
// 627
{ 628
 Body* B2 = NULL; 629
 node* nd = Node; 630
 long j = -1; 631
 unsigned long i = (B1->posz > Node->cz) * 1 + (B1->posy > 632
Node->cy) * 2 + (B1->posx > Node->cx) * 4; 633
 if (nd->child[i] == NULL) 634
 add_Leaf(nd, B1, i); 635
 else 636
 { 637
 while ((nd->child[i] != NULL)) 638
 { 639
 if (nd->child[i]->is_internal_node == 0) 640
 break; 641
 nd = nd->child[i]; 642
 i = (B1->posz > nd->cz) * 1 + (B1->posy > nd->cy) 643
* 2 + (B1->posx > nd->cx) * 4; 644
 } 645
 if (nd->child[i] == NULL) 646
 add_Leaf(nd, B1, i); 647
 else 648
 { 649
 nd = nd->child[i]; 650
 i = (B1->posz > nd->cz) * 1 + (B1->posy > nd->cy) 651
* 2 + (B1->posx > nd->cx) * 4; 652
 B2 = nd->B; 653
 j = (B2->posz > nd->cz) * 1 + (B2->posy > nd->cy) 654
* 2 + (B2->posx > nd->cx) * 4; 655
 while ((i == j) && (nd->d > minimum_space)) 656
 { 657
 add_Internal_Node(nd, B1, i); 658
 nd = nd->child[i]; 659
 i = (B1->posz > nd->cz) * 1 + (B1->posy > 660
nd->cy) * 2 + (B1->posx > nd->cx) * 4; 661
 j = (B2->posz > nd->cz) * 1 + (B2->posy > 662
nd->cy) * 2 + (B2->posx > nd->cx) * 4; 663
 } 664
 add_Leaf(nd, B1, i); 665
 if (i != j) 666
 add_Leaf(nd, B2, j); 667
 } 668
 } 669
} 670
 671
node* createOcttree(struct node * root) 672
{ 673
 if (MaxNBodies<1) 674
 return NULL; 675

154

 root = newNode(spaceCenterX, spaceCenterX, spaceCenterZ, 676
spaceCenterHfside, NULL); 677
 root->is_internal_node = 1; 678
 unsigned long k; 679
 float d; 680
 for (unsigned long i = 0; i < MaxNBodies; i++) 681
 insert_body_in_octtree(AllNodes2[0], Bodies[i]); 682
 return root; 683
} 684
 685
 686
//Compute force on a given body 687
unsigned long long compute_body_force(Body *B) 688
{ 689
 690
 node* r; 691
 int bh_applied=0; 692
 int int_applied=0; 693
 unsigned long ii = 0; 694
 unsigned long count = 0; 695
 while(ii < No_of_Nodes) 696
 { 697
 //here a modification to the code is done my changing the 698
pacle of the counter to be inside the two if statment 699
 //this update done by ALLAM on 16-march-2014 700
 // count++; this counter moved to inside the if statments 701
 r=AllNodes2[ii]; 702
 float dist2 = ((r->B->posx - B->posx) * (r->B->posx - 703
B->posx) 704
 + (r->B->posy - B->posy) * (r->B->posy - B->posy) 705
 + (r->B->posz - B->posz) * (r->B->posz - B-706
>posz)); 707
 float dist = sqrtf(dist2); 708
//here I make a change to the code to compute how many times BH 709
has been applied 710
 if ((dist >= (r->d *2))) 711
 { 712
 float den = dist2 + EPS2; 713
 float F = (r->B->mass)/sqrtf(den*den*den); 714
 B->fx += F * (r->B->posx - B->posx); 715
 B->fy += F * (r->B->posy - B->posy); 716
 B->fz += F * (r->B->posz - B->posz); 717
 ii = r->index_of_next_neighbour; 718
 bh_applied++; // this counter is added by ALLAM 719
to the code to count the times that BH is applied. 720
 count++; 721
 } 722
 else if ((r->is_internal_node==0)) 723
 { 724
 725
 float den = dist2 + EPS2; 726
 float F = (r->B->mass)/sqrtf(den*den*den); 727

155

 B->fx += F * (r->B->posx - B->posx); 728
 B->fy += F * (r->B->posy - B->posy); 729
 B->fz += F * (r->B->posz - B->posz); 730
 ii = r->index_of_next_neighbour; 731
 int_applied++; 732
 count++; 733
 } 734
 else 735
 ii++; 736
 } 737
 B->fx *= G * B->mass; 738
 B->fy *= G * B->mass; 739
 B->fz *= G * B->mass; 740
 741
//printf("\nHow many times BH is applied=%d\n",bh_applied); 742
//printf("How many times on aleaf applied=%d\n",int_applied); 743
//printf("W:How many times force computed on a given 744
body=%d\n",count); 745
 746
 return count; 747
} 748
 749
void Directory(char* a) 750
{ 751
 unsigned long ii = strlen(a) - 1; 752
 while (ii>0 && a[ii]!='\\' && a[ii]!='/') 753
 ii--; 754
 a[ii+1] = '\0'; 755
} 756
//#define MAX_THREADS 128 757
//unsigned long ThreadStart[MAX_THREADS]; 758
//unsigned long ThreadEnd[MAX_THREADS]; 759
void zone_cost_partitioning(unsigned long no_of_threads) 760
{ 761
 unsigned long long sum = 0; 762
 unsigned long long W = AllNodes2[0]->B->zoneCost; 763
 printf("\n The value of W work of the root node=%lu\n",W); 764
 if (W == 0) 765
 { 766
 sum = MaxNBodies / no_of_threads; 767
 for(unsigned long k = 0; k < no_of_threads; k++) 768
 { 769
 ThreadStart[k] = sum * k; 770
 ThreadEnd[k] = sum * (k + 1) - 1; 771
 ThreadCDF[k] = 0; // This is added by ALLAM to 772
insure that the CDF set to zero at the iteration 0 773
 } 774
 } 775
 else 776
 { 777
 unsigned long i = 0; 778
 unsigned long long sum = 0; 779

156

 unsigned long long w = W / no_of_threads; 780
 for(unsigned long k = 0; k < no_of_threads; k++) 781
 { 782
 W = (W - sum); 783
 w = W / (no_of_threads - k); 784
 ThreadStart[k] = i; 785
 sum = 0; 786
 while (sum < w) 787
 { 788
 sum += Bodies[i]->zoneCost; 789
 i++; 790
 } 791
 ThreadEnd[k] = i - 1; 792
 ThreadCDF[k] = sum; 793
 } 794
 } 795
 ThreadEnd[no_of_threads - 1] = MaxNBodies - 1; 796
 ThreadCDF[no_of_threads - 1] = (W - sum); 797
} 798
void Generate_GalaxyKing() 799
{ 800
 int ii = 0; 801
 MaxNBodies = 100000; 802
 loadBodies(filename_GalaxyKingModel_100); 803
 for (int b = 0; b < 100000; b++) 804
 for(int x = 0; x < 5; x++) 805
 for(int y = 0; y < 5; y++) 806
 for(int z = 0; z < 5; z++) 807
 { 808
 ii = 100000 + z + y*5 + x*5*5 + 809
b*5*5*5; 810
 Bodies[ii] = new Body(); 811
 Bodies[ii]->posx = Bodies[b]->posx + x 812
* 60; 813
 Bodies[ii]->posy = Bodies[b]->posy + y 814
* 60; 815
 Bodies[ii]->posz = Bodies[b]->posz + z 816
* 60; 817
 818
 Bodies[ii]->mass = Bodies[b]->mass; 819
 Bodies[ii]->vx = Bodies[b]->vx; 820
 Bodies[ii]->vy = Bodies[b]->vy; 821
 Bodies[ii]->vz = Bodies[b]->vz; 822
 } 823
 MaxNBodies = ii + 1; 824
 825
 saveBodies(filename_GalaxyKingModel_1M_nonsorted); 826
 827
 std::sort(Bodies,&Bodies[MaxNBodies],Body_comparer_function828
); 829
 saveBodies(filename_GalaxyKingModel_1M); 830
} 831

157

 832
//allam add a function to print the bodies arrya to see whats 833
going on in the system 834
void printbodies(Body *x[],unsigned long MaxNBodies) 835
{ 836
int i; 837
for(i=0;i<MaxNBodies;i++) 838
{ 839
printf("\n%d %.15f %.15f %.15f %.15f %.15f %.15f\n",i,x[i]-840
>posx,x[i]->posy,x[i]->posz,x[i]->vx,x[i]->vy,x[i]->vz); 841
} 842
} 843
//Barnes Hut Simulation algorithm 844
void BarnesHutSimulation(const char * fileName) 845
{ 846
 double end22=0; 847
 double end33=0; 848
 double endd=0; 849
 double end44=0; 850
 double end55=0; 851
 double timer_all1=0; 852
 double timer_all2=0; 853
 double timer_all=0; 854
 855
 unsigned long problemsize[8] = 856
{100000,2000000,3000000,4000000,5000000,6000000,7000000,1}; 857
 //unsigned long problemsize[10] = {3000000,4000000,5000000, 858
8000000, 12000000,3000000,4000000,8000000}; this is modified by 859
ALLAM 860
 //unsigned long problemsize[10] = {1000}; 861
 //fl=1; 862
 if(generate==0) 863
 { 864
 //MaxNBodies = problemsize[4]; 865
 Generate_GalaxyKing(); 866
 /*generate_positions_poisson2(); 867
 saveBodies(filename_poisson2); */ 868
 869
 //std::sort(Bodies,&Bodies[MaxNBodies],Body_comparer_functi870
on); 871
 //saveBodies(filename_poisson_sorted2); 872
 873
 printf("file generated\n"); 874
 } 875
 for (unsigned long ps = 0; ps <1; ps++) 876
 { 877
 omp_set_num_threads(threads); 878
 unsigned long numThreads = omp_get_num_threads(); 879
 //unsigned long numThreads=1; 880
 MaxNBodies = problemsize[ps]; 881
 882
 if (loadBodies(fileName)) 883

158

 return; 884
 struct node * root; 885
 /*char outfile[255]= ""; 886
 sprintf(outfile,"data/frames3/frame%6d.txt",0); 887
 saveBodiesLocations(outfile);*/ 888
 // printf("maxB=%lu, maxNodes = %lu, 889
expected_nodes=%lu\n", maxB, maxNodes, unsigned long(maxB*(890
log(maxB)/log(8)))+1); 891
 //sprintf(outfile,"<Create 892
tree>,<Sort>,<Force>,<update>,<delete>\n"); 893
 for(int n = 0; n < steps; n++) 894
 { 895
 printf("\niteration#=%d\n",n); 896
 timer_all1 = omp_get_wtime(); 897
 // printf("iteration: %lu .. ", n); 898
 //01-Create Tree 899
 double start2 = omp_get_wtime(); 900
 root = createOcttree(NULL); 901
 //PrintTree_DFS2(); 902
 //unsigned long* NoOfNode=0; 903
 //unsigned long* NoOfbodies=0; 904
 //CountTree(root,NoOfNode,NoOfbodies); 905
 //printf("\nNumber of Nodes in the OCT 906
tree=%lu\n",No_of_Nodes); 907
 //printf("\nNumber of bodies in the oct 908
Tree=%f\n",NoOfbodies); 909
 910
 double end2 = omp_get_wtime(); 911
 // printf("%f\t", (end2-start2)); 912
 /*if(ps==3) 913
 printf("OctTree is created. Node count = %lu\n", 914
No_of_Nodes);*/ 915
 916
 //02-Compute Center mass and Total mass 917
 double start3 = omp_get_wtime(); 918
 compute_indices_BreadthFirst(root); 919
 //printf("\nNumber of Nodes in the OCT 920
tree=%lu\n",No_of_Nodes); 921
 std::sort(&AllNodes2[0],&AllNodes2[No_of_Nodes], 922
compare_nodes); 923
 std::sort(&Bodies[0],&Bodies[MaxNBodies], 924
compare_bodies); 925
 //this is added to print for each node the 926
indices of it 927
 //printf("\n"); 928
 int i; 929
 /*for(i=0;i<No_of_Nodes;i++) 930
 { 931
//printf("index_in_brothers=%lu\tindex_of_next_neighbour=%lu\tBre932
adthFirstIndex=%lu\n",AllNodes2[i]-933
>index_in_brothers,AllNodes2[i]-934
>index_of_next_neighbour,AllNodes2[i]->BreadthFirstIndex); 935

159

printf("BreadthFirstIndex=%lu\tindex_in_brothers=%lu\tindex_of_ne936
xt_neighbour=%lu\n",AllNodes2[i]->BreadthFirstIndex, 937
AllNodes2[i]->index_in_brothers, AllNodes2[i]-938
>index_of_next_neighbour); 939
 }*/ 940
 double end3 = omp_get_wtime(); 941
 //printf("Time taken sort : %f\n", (end3-942
start3)); 943
 944
 945
 //unsigned long no_of_threads = 946
omp_get_num_threads(); 947
 //zone_cost_partitioning(threads); 948
 949
 Body *B; 950
 //03-Compute Forces 951
 double start =0; 952
 double end =0; 953
 if(zone==1) 954
 { 955
 956
 printf("\n###957
#####################\n"); 958
 printf("The Result for the COST ZONE"); 959
 960
 printf("\n###961
#####################\n"); 962
 zone_cost_partitioning(threads); 963
 end3 = omp_get_wtime(); 964
 unsigned long i=0; 965
 unsigned long threadID=0; 966
 start = omp_get_wtime(); 967
 968
#pragma omp parallel private(B,i,threadID) 969
 { 970
 numThreads = omp_get_num_threads(); 971
 972
 threadID = omp_get_thread_num(); 973
 ThreadStartTime[threadID] = 974
omp_get_wtime(); 975
 //printf("threadstart= %lu 976
%f\n",threadID,ThreadStartTime[threadID]); 977
 for(i = ThreadStart[threadID]; i <= 978
ThreadEnd[threadID]; i++) 979
 { 980
 B = Bodies[i]; 981
 B->fx = B->fy = B->fz = 0.0; 982
 Bodies[i]->zoneCost = 983
compute_body_force(B); 984
 } 985
 ThreadEndTime[threadID] = 986
omp_get_wtime(); 987

160

 printf("thread#= %d thread time= %f work=%lu\n" 988
,threadID,(ThreadEndTime[threadID]-989
ThreadStartTime[threadID]),ThreadCDF[threadID]);// print EXEC 990
time per thread 991
 } 992
 for (unsigned long i = 0; i < numThreads; 993
i++) 994
 { 995
 ThreadAvgTime[i] += (ThreadEndTime[i]-996
ThreadStartTime[i]); 997
 //printf("thread time= %f, %f, 998
%f\n",ThreadAvgTime[i],ThreadStartTime[i],ThreadEndTime[i]); 999
 } 1000
 end = omp_get_wtime(); 1001
 //printbodies(Bodies,MaxNBodies); // here I add it to print 1002
the location of the bodies after the iterations of the cost zone 1003
parallel 1004
 } 1005
 if(seq==1) 1006
 { 1007
 1008
 printf("\n###1009
#####################\n"); 1010
 printf("The Result for the sequantial"); 1011
 1012
 printf("\n###1013
#####################\n"); 1014
 1015
 start = omp_get_wtime(); 1016
 1017
 for(unsigned long i = 0; i < MaxNBodies; 1018
i++) 1019
 { 1020
 B = Bodies[i]; 1021
 B->fx = B->fy = B->fz = 0.0; 1022
 //printf("\nCompute force on a given 1023
body=%d\n",i); 1024
 Bodies[i]->zoneCost = 1025
compute_body_force(B); 1026
 } 1027
 1028
 end = omp_get_wtime(); 1029
 printf("\nsequantial time=%f\n",end-start); 1030
 1031
 //printbodies(Bodies,MaxNBodies); // here I add it to 1032
print the location of the bodies after the sequantial execution 1033
of the cost zone 1034
 } 1035
 if(normal==1) 1036
 { 1037

161

 1038
 printf("\n###1039
#####################\n"); 1040
 printf("The Result for the normal"); 1041
 1042
 printf("\n###1043
#####################\n"); 1044
 unsigned long i=0; 1045
 unsigned long threadID=0; 1046
 start = omp_get_wtime(); 1047
 1048
#pragma omp parallel private(B,i,threadID) 1049
 { 1050
 1051
 numThreads = omp_get_num_threads(); 1052
 1053
 threadID = omp_get_thread_num(); 1054
 ThreadStartTime[threadID] = 1055
omp_get_wtime(); 1056
 //printf("threadstart= %lu 1057
%f\n",threadID,ThreadStartTime[threadID]); 1058
 for(i = threadID* (MaxNBodies / 1059
numThreads); i < (threadID+1)*(MaxNBodies / numThreads); i++) 1060
 { 1061
 B = Bodies[i]; 1062
 B->fx = B->fy = B->fz = 0.0; 1063
 Bodies[i]->zoneCost = 1064
compute_body_force(B); 1065
 } 1066
 ThreadEndTime[threadID] = 1067
omp_get_wtime(); 1068
 //printf("threadend= %lu 1069
%f\n",threadID,ThreadEndTime[threadID]); 1070
 printf("thread#= %d thread time= %f work=%lu\n" 1071
,threadID,(ThreadEndTime[threadID]-1072
ThreadStartTime[threadID]),ThreadCDF[threadID]);// print EXEC 1073
time per thread 1074
 } 1075
 for (unsigned long i = 0; i < numThreads; 1076
i++) 1077
 { 1078
 ThreadAvgTime[i] += (ThreadEndTime[i]-1079
ThreadStartTime[i]); 1080
 //printf("thread time= %f, %f, 1081
%f\n",ThreadAvgTime[i],ThreadStartTime[i],ThreadEndTime[i]); 1082
 } 1083
 end = omp_get_wtime(); 1084
 } 1085
 if(dynamic==1) 1086
 { 1087
 unsigned long i=0; 1088
 unsigned long threadID=0; 1089

162

 1090
 1091
 /*#pragma omp parallel private(threadID,B, 1092
i) 1093
 {*/ 1094
 omp_set_num_threads(threads); 1095
 start = omp_get_wtime(); 1096
 //numThreads = omp_get_num_threads(); 1097
 1098
 /*threadID = omp_get_thread_num(); 1099
 ThreadStartTime[threadID] = 1100
omp_get_wtime();*/ 1101
 //printf("threadstart= %lu 1102
%f\n",threadID,ThreadStartTime[threadID]); 1103
#pragma omp parallel for schedule(dynamic) private(threadID,B, 1104
i) 1105
 for(i = 0; i < MaxNBodies; i++) 1106
 { 1107
 B = Bodies[i]; 1108
 B->fx = B->fy = B->fz = 0.0; 1109
 Bodies[i]->zoneCost = 1110
compute_body_force(B); 1111
 } 1112
 //ThreadEndTime[threadID] = 1113
omp_get_wtime(); 1114
 /* }*/ 1115
 /*ThreadEndTime[threadID] = 1116
omp_get_wtime();*/ 1117
 //printf("threadend= %lu 1118
%f\n",threadID,ThreadEndTime[threadID]); 1119
 //for (unsigned long i = 0; i < numThreads; 1120
i++) 1121
 //{ 1122
 // ThreadAvgTime[i] += (ThreadEndTime[i]-1123
ThreadStartTime[i]); 1124
 // //printf("thread time= %f, %f, 1125
%f\n",ThreadAvgTime[i],ThreadStartTime[i],ThreadEndTime[i]); 1126
 //} 1127
 end = omp_get_wtime(); 1128
 } 1129
 //04-update velocity position 1130
 double start5 = omp_get_wtime(); 1131
 for(unsigned long i = 0; i < MaxNBodies; i++) 1132
 update_velocity_and_position(Bodies[i]); 1133
 double end5 = omp_get_wtime(); 1134
 //05-Delete the oct tree and delete far bodies 1135
 /*double start4 = omp_get_wtime(); 1136
 delete_far_bodies(); 1137
 delete_node_tree(); 1138
 double end4 = omp_get_wtime();*/ 1139
 //printf(" %f %f %f %f %f\n",(end2-start2),(end3-1140
start3), (end-start),(end5-start5),(end4-start4)); 1141

163

 1142
 1143
 1144
 //06-store current iteration 1145
 /* sprintf(outfile, "data/frames3/frame%6d.txt", 1146
n+1); 1147
 saveBodiesLocations(outfile);*/ 1148
 double start4 = omp_get_wtime(); 1149
 // delete_far_bodies(); 1150
 delete_node_tree(); 1151
 double end4 = omp_get_wtime(); 1152
 1153
 timer_all += (omp_get_wtime()-timer_all1); 1154
 end22 +=(end2-start2); 1155
 end33 +=(end3-start3); 1156
 endd +=(end-start); 1157
 end55 += (end5-start5); 1158
 end44 += (end4-start4); 1159
} 1160
 1161
 //printf(" \n"); 1162
 if((seq==1)||(dynamic==1)) 1163
 { 1164
 printf("%lu %lu %f %f %f %f %f %f\n", ps, 1165
problemsize[ps] ,end22/steps,end33/steps, 1166
endd/steps,end55/steps,end44/steps, timer_all/steps); 1167
 report1[ps][0] = endd/steps; 1168
 } 1169
 if((zone==1)||(normal==1)) 1170
 { 1171
 printf("%lu %lu %f %f %f %f %f %f\n", ps, 1172
problemsize[ps], end22/steps,end33/steps, 1173
endd/steps,end55/steps,end44/steps , timer_all/steps); 1174
 report1[ps][1] = endd/steps; 1175
 1176
 printf("<Thread no> <assignment> <Work> <time> 1177
\n"); 1178
 for (unsigned long i = 0; i < numThreads; i++) 1179
 { 1180
 printf("%lu %lu %llu %f \n", i, 1181
ThreadEnd[i] - ThreadStart[i] + 1, ThreadCDF[i], 1182
ThreadAvgTime[i]/steps); 1183
 ThreadEndTime[i]=0; 1184
 ThreadStartTime[i]=0; 1185
 ThreadAvgTime[i]=0; 1186
 } 1187
 } 1188
 printf("\n"); 1189
 1190
 end22=0; 1191
 end33=0; 1192
 endd=0; 1193

164

 end44=0; 1194
 end55=0; 1195
 } 1196
 delete_AllBodies(); 1197
} 1198
 1199
 1200
 1201
int main(unsigned long argc, char* argv[]) 1202
{ 1203
 1204
 printf("Number Of steps: %lu \n",steps); 1205
 printf("<step><PrbSize><NoofBodies><NoofNodes><Tree><Sort><1206
Force><update><delete>\n"); 1207
 filepath = argv[0]; 1208
 Directory(filepath); 1209
 /*seq=0; 1210
 normal=0; 1211
 zone=0; 1212
 threads=1; 1213
 generate=0; 1214
 BarnesHutSimulation (filename_GalaxyKingModel_1M); 1215
 printf("Normal\n"); 1216
 generate=1; 1217
 seq=1; 1218
 normal=1; 1219
 dynamic=1; 1220
 zone=0; 1221
 //unsigned long ThreadingCount[10] = {8,32, 64,128, 240}; 1222
 unsigned long ThreadingCount[10] = {8}; 1223
 //signed long ThreadingCount[10] = {2,3,4,5,6,7}; //used in 1224
hpc as a back up 1225
 for (unsigned long tc = 0; tc <1; tc++) 1226
 { 1227
 printf("Thread: %lu \n",ThreadingCount[tc]); 1228
 threads = ThreadingCount[tc]; 1229
 BarnesHutSimulation (filename_GalaxyKingModel_1M); 1230
 generate=1; 1231
 } 1232
 1233
 //getchar(); 1234
 1235
 printf("Dynamic\n"); 1236
 seq=1; 1237
 normal=0; 1238
 dynamic=1; 1239
 zone=0; 1240
 for (unsigned long tc = 0; tc <1; tc++) 1241
 { 1242
 printf("Thread: %lu \n",ThreadingCount[tc]); 1243
 threads = ThreadingCount[tc]; 1244
 BarnesHutSimulation (filename_GalaxyKingModel_1M); 1245

165

 }*/ 1246
 int ThreadingCount[1] = {16}; // here to add the number of 1247
threads that will be used in our case 1248
 generate=1; 1249
 seq=0; 1250
 normal=0; 1251
 dynamic=0; 1252
 zone=1; 1253
 1254
 //BarnesHutSimulation (filename_GalaxyKingModel_1M); 1255
 for (int tc = 0; tc < 1; tc++) 1256
 { 1257
 printf("Thread: %d \n",ThreadingCount[tc]); 1258
 threads = ThreadingCount[tc]; 1259
 BarnesHutSimulation (filename_GalaxyKingModel_1M); 1260
 } 1261
 /*printf("N Sequential ZoneCost"); 1262
 for (unsigned long i = 0; i <2; i++) 1263
 { 1264
 for (unsigned long j = 0; j <2; j++) 1265
 { 1266
 printf("%lu ", report1[i][j]); 1267
 } 1268
 printf("\n"); 1269
 }*/ 1270
 return 0;1271

166

References

[1] Openshaw, S. 1 GeoComputation. in Geocomputation. 2014. CRC Press.

[2] Singh, A.K., et al. Mapping on multi/many-core systems: survey of current and

emerging trends. in Proceedings of the 50th Annual Design Automation

Conference. 2013. ACM.

[3] Chen, L., Exploring novel many-core architectures for scientific computing. 2010,

University of Delaware.

[4] Albers, S., F. Müller, and S. Schmelzer, Speed scaling on parallel processors.

Algorithmica, 2014. 68(2): p. 404-425.

[5] Borkar, S. and A.A. Chien, The future of microprocessors. Communications of

the ACM, 2011. 54(5): p. 67-77.

[6] Ubar, R., J. Raik, and H.T. Vierhaus, Design and Test Technology for Dependable

Systems-on-chip. 2010: IGI Global.

[7] Salihundam, P., et al., A 2 tb/s 6 4 mesh network for a single-chip cloud computer

with dvfs in 45 nm cmos. Solid-State Circuits, IEEE Journal of, 2011. 46(4): p.

757-766.

[8] Diaz, J., C. Munoz-Caro, and A. Nino, A survey of parallel programming models

and tools in the multi and many-core era. Parallel and Distributed Systems, IEEE

Transactions on, 2012. 23(8): p. 1369-1386.

[9] Han, L., et al. A survey on cache coherence for tiled many-core processor. in

Signal Processing, Communication and Computing (ICSPCC), 2012 IEEE

International Conference on. 2012. IEEE.

[10] Vajda, A., M. Brorsson, and D. Corcoran, Programming many-core chips. 2011:

Springer.

[11] Hwu, W.-m., What’s ahead for parallel computing. Journal of Parallel and

Distributed Computing, 2014.

[12] Gropp, W., E. Lusk, and A. Skjellum, Using MPI: portable parallel programming

with the message-passing interface. Vol. 1. 1999: MIT press.

[13] Chapman, B., G. Jost, and R. Van Der Pas, Using OpenMP: portable shared

memory parallel programming. Vol. 10. 2008: MIT press.

[14] Cramer, T., et al., OpenMP Programming on Intel R Xeon Phi TM Coprocessors:

An Early Performance Comparison. 2012.

[15] Williams, S., et al. Optimization of geometric multigrid for emerging multi-and

manycore processors. in Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis. 2012. IEEE

Computer Society Press.

[16] Pennycook, S.J., et al. Exploring SIMD for Molecular Dynamics, Using Intel®

Xeon® Processors and Intel® Xeon Phi Coprocessors. in Parallel & Distributed

Processing (IPDPS), 2013 IEEE 27th International Symposium on. 2013. IEEE.

[17] Wu, Q., et al. MIC acceleration of short-range molecular dynamics simulations.

in Proceedings of the First International Workshop on Code OptimiSation for

MultI and many Cores. 2013. ACM.

167

[18] Park, J., et al. Efficient backprojection-based synthetic aperture radar

computation with many-core processors. in High Performance Computing,

Networking, Storage and Analysis (SC), 2012 International Conference for. 2012.

IEEE.

[19] Haack, J., A hybrid OpenMP and MPI implementation of a conservative spectral

method for the Boltzmann equation. arXiv preprint arXiv:1301.4195, 2013.

[20] Saule, E., K. Kaya, and Ü.V. Çatalyürek, Performance evaluation of sparse

matrix multiplication kernels on intel xeon phi, in Parallel Processing and

Applied Mathematics. 2014, Springer. p. 559-570.

[21] Dokulil, J., et al., Efficient Hybrid Execution of C++ Applications using Intel (R)

Xeon Phi (TM) Coprocessor. arXiv preprint arXiv:1211.5530, 2012.

[22] Hwu, W.-m.W., Using hybrid shared and distributed caching for mixed-

coherency GPU workloads. 2013.

[23] Abhishek Das1, D.M., Shraddha Desai3, Shweta Das4, Nisha Kurkure5, Goldi

Misra6, Prasad Wadlakondawar7, Analysis of Molecular Dynamics

(MD_OPENMP) on Intel® Many Integrated Core Architecture. HPCS Group,

Centre for Development of Advanced Computing, Agriculture College Campus,

District Industries Centre, Shivajinagar, Pune 411005-India, 2012.

[24] Intel Corporation, James Reinders, "An Overview Of programming for Intel Xeon

Prcossor and Intel Xeon Phi coprocessor," 2012.

[25] Intel Corporation, ―Intel Xeon Phi", Coprocessor Instruction Set Architecture

Reference Manual, Vols. reference number 327364-001, Intel Corporation,

September, 2012. Intel. 2012.

[26] Intel® C++ Compiler XE 13.1 User and Reference Guide , Document number:

323273-131US , Intel® C++ Composer XE 2013- Linux* OS.

[27] Intel, Knights Corner, Software Developer Guide, Intel Corporation, 27, April,

2012.

[28] U-pipe , V-pipe. 2013; Available from:

http://www.dauniv.ac.in/downloads/CArch_PPTs/.

[29] Garea, S.R. and T. Hoefler, Modelling Communications in Cache Coherent

Systems. 2013.

[30] Sanchez, L.M., et al. A Comparative Evaluation of Parallel Programming Models

for Shared-Memory Architectures. in Parallel and Distributed Processing with

Applications (ISPA), 2012 IEEE 10th International Symposium on. 2012. IEEE.

[31] Strassen, V., Gaussian elimination is not optimal. Numerische Mathematik, 1969.

13(4): p. 354-356.

[32] Blair-Chappell, S. and A. Stokes, Parallel Programming with Intel Parallel

Studio XE. 2012: John Wiley & Sons.

[33] Li, J., S. Ranka, and S. Sahni. Strassen's matrix multiplication on gpus. in

Parallel and Distributed Systems (ICPADS), 2011 IEEE 17th International

Conference on. 2011. IEEE.

[34] Badin, M., et al. Improving numerical accuracy for non-negative matrix

multiplication on GPUs using recursive algorithms. in Proceedings of the 27th

international ACM conference on International conference on supercomputing.

2013. ACM.

http://www.dauniv.ac.in/downloads/CArch_PPTs/

168

[35] Müller, M.S., et al., SPEC OMP2012—An Application Benchmark Suite for

Parallel Systems Using OpenMP, in OpenMP in a Heterogeneous World. 2012,

Springer. p. 223-236.

[36] Karniadakis, G., Parallel scientific computing in C++ and MPI: a seamless

approach to parallel algorithms and their implementation. 2003: Cambridge

University Press.

[37] Appel, A.W., An efficient program for many-body simulation. SIAM Journal on

Scientific and Statistical Computing, 1985. 6(1): p. 85-103.

[38] Barnes, J. and P. Hut, A hierarchical O (N log N) force-calculation algorithm.

1986.

[39] Greengard, L. and V. Rokhlin, A fast algorithm for particle simulations. Journal

of computational physics, 1987. 73(2): p. 325-348.

[40] Feng, H., et al., A Parallel Adaptive Treecode Algorithm for Evolution of

Elastically Stressed Solids. 2014.

[41] Overman, R.E., et al. Dynamic Load Balancing of the Adaptive Fast Multipole

Method in Heterogeneous Systems. in Parallel and Distributed Processing

Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International.

2013. IEEE.

[42] Totoo, P. and H.W. Loidl, Parallel Haskell implementations of the N‐body

problem. Concurrency and Computation: Practice and Experience, 2013.

[43] Xu, T.C., et al. Evaluate and optimize parallel Barnes-Hut algorithm for

emerging many-core architectures. in High Performance Computing and

Simulation (HPCS), 2013 International Conference on. 2013. IEEE.

[44] Zhang, J., B. Behzad, and M. Snir, Design of a multithreaded Barnes-Hut

algorithm for multicore clusters. 2013, Tech. Rep. ANL/MCS-P4055-0313, MCS,

Argonne National Laboratory.

[45] Dekate, C., et al., Improving the scalability of parallel N-body applications with

an event-driven constraint-based execution model. International Journal of High

Performance Computing Applications, 2012. 26(3): p. 319-332.

[46] Duy, T.V.T., et al., Hybrid MPI-OpenMP Paradigm on SMP clusters: MPEG-2

Encoder and n-body Simulation. arXiv preprint arXiv:1211.2292, 2012.

[47] Lashuk, I., et al., A massively parallel adaptive fast multipole method on

heterogeneous architectures. CommuNiCAtioNs of the ACm, 2012. 55(5): p.

101-109.

[48] Winkel, M., et al., A massively parallel, multi-disciplinary Barnes–Hut tree code

for extreme-scale< i> N</i>-body simulations. Computer Physics

Communications, 2012. 183(4): p. 880-889.

[49] Zhang, J., B. Behzad, and M. Snir. Optimizing the Barnes-Hut algorithm in UPC.

in Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis. 2011. ACM.

[50] Sundar, H., R.S. Sampath, and G. Biros, Bottom-up construction and 2: 1 balance

refinement of linear octrees in parallel. SIAM Journal on Scientific Computing,

2008. 30(5): p. 2675-2708.

[51] Küpper, A.H., et al., Mass segregation and fractal substructure in young massive

clusters–I. The McLuster code and method calibration. Monthly Notices of the

Royal Astronomical Society, 2011. 417(3): p. 2300-2317.

169

VITAE

NABLUS, PALESTINE

MOBIL-PALESTINE: 00970-595324742

MOBILE-KSA: 00966-565409222
E-Mail: allam_fatayer@yahoo.com, allam.fatayer123@gmail.com,

g201003720@kfupm.edu.sa

Nationality: PALESTINIAN

BOD: 17/6/1983

 Allam Abd Elghany Fatayer

Education:

 Tawjihi Certificate in Science Field, GPA 90.1%

 2001–2006 An-Najah National University, Nablus, Palestine

Bachelor of Computer Engineering (CE) , Faculty of Engineering , Nablus , Palestine.

 2011-2015 – King Fahed for Petroleum and Minerals (KFUPM) , Master Science

of Engineering . Computer Engineering Department, Saudi Arabia, Dhahran.

Experience:

 2 year experience working on Intel Xeon Phi cluster (KAUST) and Multicore

Cluster (KFUPM), During Master thesis. The following duties is accomplished

o Install Servers.

o Managing Linux OS (NFS, SSH, Firewall, and LVM).

o Installing Software and complex tool configuration

o Complex Parallel Programming using OpenMP model.

o Shell scripting.

 4 year experience (Dammam and Qatif Technical College)

o Computer Network Trainer (CCNA1, CCNA2, CCNA3, CCNA4,

Network security, Wireless networks, Server 2003, Server 2008 and

Linux).

o Hardware Trainer (Computer maintenance, Computer component and

Computer security).

o Technical computer department timetable leader.

o Technical Computer Scientific committee coordinator.

 3 year experience, Trainer (Jouf Technical college). Accomplished the following

tasks

o Technical Computer Department Timetable Coordinator.

o Technical Computer Scientific committee coordinator.

o Team Leader of the group which participated in the “ 4
th

 technical

conference and exhibition in Saudi Arabia and took the second Rank.

o Lab Technical Support.

mailto:allam_fatayer@yahoo.com
mailto:allam.fatayer123@gmail.com
mailto:g201003720@kfupm.edu.sa

170

o Training Software (JAVA, ORACLE, WEBPAGE DESIN)

o Training Hardware(Computer Components, Computer Maintenance,

Network)

Skills:

 High ability to work under stress conditions.

 Good oral communication.

 Dynamic personality with motivation & initiative.

 Ability to work with team.

 Self-learner and pro-active working.

 Educational and training courses:

 5th of June – 24th of August. 2004

 Amra information technology, Nablus/Palestine. Cisco course (CCNA).

 5th of June – 20th of June. 2005

 Communication and computer system (CCS), Amman/Jordan.

 Oracle certified professional for 9i (SQL).

 21st of June – 10th of July. 2005

 Communication and computer system (CCS), Amman/Jordan.

 Oracle certified professional for 9i (PL\SQL).

 11th of July – 11th August. 2005

 Communication and computer system (CCS), Amman/Jordan.

 Oracle certified professional for 9i (Forms), build internet application.

 1 th of August – 15th of August. 2006

 General Organization for Technical education and Vocational Training

 Aljouf/Saudi Arabia

 Optical Fiber Applications And Installation.

 20 hour training course

 General Organization for Technical education and Vocational Training

 Aljouf/Saudi Arabia

 Advanced java programming .

 20 hour Training Course

 General Organization for Technical education and Vocational Training

 Aljouf/Saudi Arabia

 Different web page design concepts.

 20 hours Training Course

 General Organization for Technical education and Vocational Training

 Aljouf/Saudi Arabia

 Management networks using (Windows Server 2003)

 160 hours Training Course

 General Organization for Technical education and Vocational Training

 Damam Technical College/Saudi Arabia

 Cisco Acadamy cources (CCNA 1 , CCNA 2 , CCNA 3 , CCNA 4)

 20 hours Training course, 2014

 King Fahed University for Petroleum and minerals

 Dahran/Saudi Arabia

171

 Penetration Testing (Ethical Hacking).

 Programming language:

 C solid programming skills , OpenMP parallel programming. (Expert Level)

 GPU Programming (CUDA). (Beginner level)

 C++, Java (J2SE), Servlet.

 SQL, PL/SQL.

 Php, Action Script, Html, Java Script , CSS .

 Assembly language for "Intel Machine" and "MIPS machine” and Microcontroller.

Operating System:

 Linux (RHEL (solid understanding) , Ubuntu , SL)

 Windows Server 2003 , 2008.

 Windows XP , Vista , 7.

 VMware Cloud Computing.

 Certified:

 Cisco company , CCNA , Cisco certified Network Associative , 2009

 Exam no : 640-802 .

 Certified from Oracle University (Introduction to SQL)

EXAM NO: 1Z0-007 (Oracle 9i)

 Certified from Oracle University (Introduction to PL\SQL)

EXAM NO: 1Z0-147 (Oracle 9i)

These tow exams give me OCA (Oracle Certified Association 9i)

Publications

Journals:

 Padding Free Bank Conflict Resolution for CUDA-Based Matrix Transpose

Algorithm, Ayaz Ul Hassan Khan, Mayez Al-Mouhamed, Allam Fatayer, Anas

Almousa, Abdulrahman Baqais and Mohammed Assayony, International Journal

of Networked and Distributed Computing (IJNDC) (2014).

Conferences:

 Padding Free Bank Conflict Resolution for CUDA-Based Matrix Transpose

Algorithm, Ayaz Ul Hassan Khan, Mayez Al-Mouhamed, Allam Fatayer, Anas

Almousa, Abdulrahman Baqais and Mohammed Assayony, 15th IEEE/ACIS

International Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing (SNPD 2014).

172

 AES-128 ECB Encryption on GPUs and Effects of Input Plaintext Patterns on

Performance, Ayaz Ul Hassan Khan, Mayez Al-Mouhamed, Anas Almousa, Allam

Fatayar, Abdul Rahman Ibrahim and Abdul Jabbar Siddiqui, 15th IEEE/ACIS

International Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing (SNPD 2014).

 On the Scalability of Some Parallel Applications on Many-Core, Saudi Arabian

High performance computing users group conference,

http://www.hpcsaudi.com/wp-content/uploads/2013/12/KFUPM_Fourth-Saudi-

HPC.pdf. (2013)

