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As the time of Moore’s Law and expanding CPU clock rates nears its halting point the condense of 

chip and hardware design has moved to expanding the number of cores present on the chip. These 

increase can be most clearly seen in the rise of the Many Integrated Core processors (MIC). 

Programming for these chips delivers another set of difficulties and concerns In this context, I present 

an experimental evaluation of parallel program scalability on the MIC Shared Memory Multiprocessor 

(SMP) using OpenMP programing paradigm. I address two classes of applications 1) Static and 2) 

Semi static. For first class I select a set of applications from the class of Basic Linear Algebra and 

numerical algorithms (Matrix-Matrix Multiplication (MM) and JACOBI SOLVER). Particularly, I 

analysis, optimize and implement these applications. For MM I used the STRASSEN matrix 

multiplication algorithm. The basic Strassen-MM (S-MM) algorithm time complexity of is O (N
2.807

) 

instead of O (N
3
) of standard MM algorithm. my optimizations are based on a reordering approach to 

reduce the storage, use of a depth first walk (DFW), and invocation of the MKL optimized library for 

matrix-matrix multiplications. The results of MM using STRASSEN outperform Math Kernel Library 

(MKL) within large matrix size with percentage from 8% to 24%. For JS, I noticed that it does not 

scale well because of the excessive synchronization overhead, which must be implemented across all 

the working threads. To improve JS scalability, I explored (1) Synchronous Jacobi (SJ), (2) 

Asynchronous Jacobi (AJ), and Relaxed Jacobi (RJ). In SJ I used explicate barrier synchronization. In 

AJ a non-exact solution is computed because completing threads start the next iterations using current 

data, which is a mixing of new and old. AJ slows down the convergence rate. In RJ, completing 

threads at iteration K start the next iteration (k+1) using newly computed data.  RJ provides overlap 

between two iterations at the cost of managing the availability of currently available intermediate 

results. Experiments show that SJ synchronization time takes 50% from the execution time on matrix 

size 4096. For exact solutions, my evaluation shows a performance gain of 24.4%, 32.6%, 38.9%, and 

57.16% for RJ over SJ for matrices of size 3840, 7680, 15360 and 30720, respectively using 60 cores. 

For the second class, I select a semi static classical problem (N-Body simulation). In this application, 

an approximated solution using BARNES-HUT algorithm (BH) is implemented. BH uses an oct-tree, 

in which each node stores the aggregate mass of all of its children nodes (sub-tree) at their center of 

mass. Another problem is that the thread load moderately changes from one iteration to another due to 

body motion in space. A Dynamic Load Balancing (DLB) combined with data locality approach is 

used to improve Scalability, I call it Iterative Cost Zone Load Balancing (ICZB). My implementation 

on MIC shows that the execution time and aggregate load scales linearly with the problem size when 

using 60 cores for problem sizes within the range of 1 million to 4 million. In addition, my DLB-BH 

provides an increased speedup of 42% and 36% on problem size 1 million and 4 million respectively, 

as compared to traditional static BH. DLB is recommended as a compiler strategy as one optimization 

strategy for semi-static applications.  
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 ملخص الرسالة

 
 

  علام عبد الغنً "محمد عادل" فطاٌر :الاسم الكامل
 

 تقييم تجريبي لتدرجيت البرامج الموازيت في المعالجاث عديدة النواة التماثليت عنوان الرسالة:

 هندسة الحاسب الآلي التخصص:
 

 :تاريخ الدرجة العلمية
 

قانون مور اصبح ٌتجه الى نهاٌته، وٌظهر ذلك جلٌا فً ظهور المعالجات متعددة الأنوٌه. البرمجة لهذه الرقائق 

تقٌٌم تجرٌبً لتدرجٌة البرامج تظهر تحدٌات ومشاكل جدٌدة فً وجه المبرمجٌن. فً هذا السٌاق، نقوم على 

. قمنا باختٌار فئتٌن من OpenMPنموذج برمجة الموازٌة فً المعالجات عدٌدة النواة ذات التماثلٌة باستخدام 

التطبٌقات. الفئة الأولى التطبٌقات ذات الحمل الثابت والفئة الثانٌة التطبٌقات ذات الحمل المتغٌر. فً الفئة الأولى 

قمنا باختٌار ضرب المصفوفات والتً تصنف من مكتبة علم الجبر الأساسً، واٌضا تم اختٌار  تطبٌق من التحلٌل 

. فً حقٌقة الأمر قمنا بتحلٌل وتنفٌذ وتحسٌن هذه JACOBIددي فً حل المعادلات الخطٌة ٌطلق علٌه اسم الع

والتً لها حساب تعقٌد اقل من حساب   STRASSENالبرامج. فً ضرب المصفوفات قمنا باستخدام خوارزمٌة 

رتٌب المصفوفات البٌنٌة لتقلٌل الحجم التعقٌد لعملٌة ضرب المصفوفات الأساسٌة. التحسٌن لدٌنا ٌعتمد على اعادة ت

للمصفوفات ذات الحجم  MKLالمطلوب،  واستخدام المشً الأولً للمصادر، بالإضافة الى استدعاء المكتبة 

لوحدها فً احجام المصفوفات   MKLالصغٌر. النتائج اثبتت ان طرٌقتنا استطاعة ان تتغلب على استخدام المكتبة 

لوحظ عدم تدرجٌة اداءه بسبب الاحتٌاج الكبٌر   JACOBI%. فً تطبٌق 42% الى 8الكبٌرة بنسبه تتراوح من 

العاملة. لتحسٌن العمل تم استكشاف   Threadللمزامنة فً اثناء التنفٌذ و خصوصا فً التكرٌر ما بٌن جمٌع ال 

م استخدام مزامنه (المتزامن المسترخً. فً المتزامن ت3( الغٌر متزامن 4( المتزامن 1ثلاث انواع من التطبٌق 

واضحه للعٌان. فً الغٌر متزامن تم حذف المزامنة وفً الحالة الأخٌرة تم اعادة كتابة المزامنة وذلك من خلال 

. ٌجدر الإشارة ان الغٌر متزامن Threadالسماح بالتداخل ما بٌن عملٌات التكرار باستخدام النتائج الجزئٌة من كل 

كن ان تكون خلٌط من النتائج السابقة والحدٌثة والتً تقلل من سرعة التقاء ٌستخدم النتائج الحالٌة والتً ٌم

. الغٌر 2504% من وقت النفٌذ فً حالة المصفوفة بحجم 05الخوارزمٌة بالحل. النتائج اظهرت ان المزامنة تأخذ 

الحل الدقٌق فإن متزامن ٌعطً افضل النتائج بسبب حذف المزامنة ولكن فً حالة قبول الحل  التقرٌبً. فً حالة 

فً  %32.6 ,%32.6 %24.4  %57.16 ,التزامن المسترخً اظهر تحسن بالإداء على التزامن بمقدار

تحاكً  نواة. فً الفئة الثانٌة تم اختٌار مشكلة كلاسٌكٌة  45باستخدام  35045 10345 0485 3825الأحجام 

. تعتمد Barn-Hutلمشكلة باستخدام خوارزمٌة (. تم تنفٌذ حل تقرٌبً لN-bodyحركة الأجسام فً الفراغ تدعً )

هذه الخوارزمٌة على بنٌة الشجرة الثمانٌة لتمثٌل توزٌع الأجسام بالفراغ. حٌث ٌتم تخزٌن البٌانات التراكمٌة للكتلة 

المركزٌة فً كل عقدة، للشجرات الجزئٌة التً اسفلها. واٌضا من تحدٌات الخوارزمٌة هو تغٌر توزٌع الحمل على 

عند الانتقال من خطوة الى الثانٌة وذلك بسبب حركة الأجسام فً الفراغ. للتحسٌن تم تطوٌر توزٌع  Threadال 

للحمل بشكل دٌنامٌكً بالإضافة الى زٌادة محلٌة البٌانات. النتائج اظهرت ان الحمل التراكمً ٌتناسب بشكل خطً 

ملٌون. بالإضافة الى ذلك فان هناك تحسٌن  2ى ملٌون ال 1مع وقت التنفٌذ باستخدام احجام مختلفة تتراوح من 

ملٌون مقارنه بالطرٌقة الثابتة لتوزٌع  2ملٌون و  1% فً المشاكل بحجم 34% و 24بالتسرٌع للعملٌة بمقدار 

ترجمة للمشاكل ذات الأحمال. إن هذه الطرٌقة نوصً باستخدامها كاستراتٌجٌة فً تحسٌن المترجمات عند القٌام ب

 الحمل المتغٌر
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1 CHAPTER 1 

INTRODUCTION 

 High Performance Computing 1.1

Traditionally, scientists employ both experimental and theoretical approaches to solve 

problems in the fields of science and engineering. With the advent of computer 

machinery, scientists have been able to transform a given problem into an algorithm, 

analyze and understand the problem through computing and simulations. Hence, the use 

of High Performance Computing (HPC)  in simulation has now become popular and an 

important part of the exploratory process that many people believe that the scientific 

model has been extended to include simulation as an additional proportion [1]. In 

addition, computing systems have been playing a critical role in scientific computing, and 

hardware advances have allowed scientists to investigate problems in more details and 

with higher complexity than what the past eras of hardware could achieve. 

Currently, the HPC industry is at a real changing point in its processor architecture 

because of a decades-long trend of exponentially expanding clock frequencies. The 

conventional single-core processor architectures are no more ready to exploit of the 

integrated circuit (IC) technology advances due to some basic issues, such as, power 

consumption, heat dispersal, and memory wall. Computer architects are searching for 
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different approaches to use the transistor plan. By incorporating a number of simple 

processors/cores on a single die, it is considered that this many-core chip technology has 

higher power-efficiency, improved heat dissipation, better memory latency tolerance, and 

numerouse different profits[2]. Projections and early models indicate that tens, hundreds, 

if not thousands of general-purpose and/or special-purpose cores will be included on a 

single chip withen a brief period of time. Many researchers suppose that the many-core 

architectures are going to become the mainstream for parallel computing later on. 

However, unlike previous hardware evolutions, this shift in the hardware roadmap will 

have an effiect on the scientific computing by posing uncommon difficulties in the 

management of parallelism, locality, scalability, synchronization, load balancing, energy 

and fault-tolerance. It is an open question whether the current parallel programming 

approaches will keep on to scale to future computing systems built with many-core 

processors. 

 Methodology 1.2

Scientific phenomena governed by partial differential equations (PDEs) can range from 

solid mechanics to fluid mechanics and electrodynamics, including any of the possible 

couplings. The solution of these equations can be approximated with the aid of computers 

by a discretization (and possibly linearization) and the subsequent numerical solution of 

the resulting sparse set of linear equations. This work is concerned with the fast solution 

of a set of scientific applications that chosen from Basic Linear Algebra, Numerical 

algorithm and N-body classical problem. Although these applications are the simplest 

model problem for, e.g., fluid flow simulation, they are still very useful as a building 
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block for the “physics-based” preconditioning of very complex scientific applications 

governed by coupled systems of PDEs. The regularly expanding interest of reality in the 

simulation of the complex scientific and engineering three-dimensional (3D) problems 

faced these days ends up with the solution of very large linear systems with several 

hundreds and even thousands of millions of equations/unknowns.  

The solution to these systems in a moderate time needs a large amount of computational 

resources provided by current MIC machines. It is therefore vital to design parallel 

algorithms able to take advantage of their underlying architecture. So, a set of scientific 

applications were chosen to study the scalability and performance of MIC coprocessor 

using OpenMP programming paradigm. In addition, optimization techniques are 

proposed and implemented to reduce the execution time.  The main objective of my work 

is to increase performance for a set of applications by decreasing the execution, Flow 

chart in Figure 1-1 outlines my methodology. 

First, the sequential code was implemented and tested. In addition, the  performance 

metrics are recorded. After that, the parallel code is implemented by inserting the proper 

OpenMP construct.. In this step the parallel program errors are solved and elevated from 

the applications.   

Secondly, application profiling for parallel programs are done to understand constrains 

and scalability problems of the applications. Then depending on that an experimental 

programming, debugging and profiling are repeated to propose an optimization. So, 

optimizations are a handy way. 
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Figure 1-1 Methodology 
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  Contributions Summary 1.3

As the time of Moore’s Law and expanding CPU clock rates nears its halting point the 

condense of chip and hardware design has moved to expanding the number of cores 

present on the chip. These increase can be most clearly seen in the rise of the Many 

Integrated Core processors (MIC). Programming for these chips delivers another set of 

difficulties and concerns In this context, I present an experimental evaluation of parallel 

program scalability on the MIC Shared Memory Multiprocessor (SMP) using OpenMP 

programing paradigm 

I address two classes of applications, static problems (basic linear Algebra and numerical 

algorithms) where the load is fixed after partitioning, and semi static problem (N-body 

Simulation) where the load change moderately after partitioning. For first class I used the 

STRASSEN Matrix Multiplication (SMM) and  Jacobi Solver  (JS) of a system of linear 

equations for which the load is static across the iterations. The basic STRASSEN-MM 

(S-MM) algorithm having time complexity of O (n
2.807

) instead of O (n
3
) of standard MM 

algorithm. My optimizations are based on a reordering approach to reduce the storage, 

use of a depth first walk (DFW), and invocation of the MKL optimized library for matrix-

matrix multiplications. In DFW, all available machine parallelism is used in each depth 

expansion. Using a few recursions, my approach is useful to reduce execution time over 

that of the MKL library using the traditional MM algorithm. The profitability of my 

approach over MKL increases with the matrix sizes 
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In iterative JS, the threads need to read a vector that was computed by all the working 

threads before starting the next iteration. It is noticed that due to the above data layout JS 

does not scale well because of the excessive synchronization overhead, which must be 

implemented across all the working threads. To improve JS scalability, I explored (1) 

Synchronous Jacobi (SJ), (2) Asynchronous Jacobi (AJ), and Relaxed Jacobi (RJ). In SJ I 

used explicate barrier synchronization. In AJ a non-exact solution is computed because 

completing threads start the next iterations using current data, which is a mixing of new 

and old. AJ slows down the convergence rate. In RJ, completing threads at iteration K 

start the next iteration (k+1) using newly computed data.  RJ provides overlap between 

two iterations at the cost of managing the availability of currently available intermediate 

results. 

For the second class the N-body simulation is considered as a model of semi static 

computations. A brute force approach for computing the gravitational forces for N bodies 

is on the O (N
2
). The BH approximation enables treating a group of bodies as one if these 

are far enough from a given body. This drops the computational complexity to O (NlogN) 

when using BH.  BH uses an oct-tree, in which each node stores the aggregate mass of all 

of its children nodes (sub-tree) at their center of mass. Another problem is that the thread 

load moderately changes from one iteration to another due to body motion in space. 

Therefore, a Static problem partitioning strategy for BH (S-BH) is likely to suffer from 

accumulated load unbalance. It is well known that dynamic load balancing (DLB) 

improves BH scalability. However, DLB is complex because of the need to measure the 

Dynamic Load (DL) and adopt an adequate data structure to minimize runtime 

overheads. In the beginning of iteration K, the body slowly motion enables estimating the 
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DL for K+1 as being the aggregate load measured by all the treads in iteration K. Thus 

DLB is implemented by evenly partitioning the DL over the threads so that to preserve 

the data locality to the best possible. I implemented DLB-BH using an efficient data 

structure to ease load redistribution together with oct-tree implementation.  

 Thesis Skelton 1.4

The rest of the thesis is organized as follows. Chapter 2 presents state of the art for many-

core processors, challenges in programming many-core, programming paradigm and 

related work. Chapter 3 shows a brief description and analysis of MIC architecture. 

Particularly, I will focus on the hardware point of view and combine it with programming 

paradigms that support. Chapter 4 describes my optimization method in static problems 

(S-MM, JACOBI). For the S-MM I will present my execution time optimization 

technique over the standard MM. On the other hand, for JS I will explain my relaxed 

synchronization technique. Chapter 5 reports the N-body simulation problem. First, I will 

explain my dynamic load balancing schema for optimization and scalability on MIC.  

Second, locality technique applied in N-body Simulation to increase speedup. 
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2 CHAPTER 2 

LITERATURE REVIEW 

 Many-core Processors 2.1

An evolution happened in Central Processing Units (CPUs) when shifted from single-

core to multi-core/many-core, “Gordon Moore predicted that the transistor density of 

semiconductor chips would double approximately every 18 to 24 months”[3], which is 

known as Moore’s law. The computers would not only have more transistors but also 

faster transistors according to Moore’s law prediction. The traditional single-core 

processor frequency has followed it for 40 years. This made it relatively easy to optimize 

the performance of the conventional programs, including the scientific computer 

applications. Most users relied on the expanding capabilities and speed of uniprocessors 

to get performance improvement. However, this frequency increase could no longer be 

sustained because of the following problems.  

• The absolute important problem is the increasing power density, which is an 

unsolvable problem for classical uniprocessor designs. The quantity of transistors 

per chip has extraordinarily expanded lately, each of these transistors devours 

power and produces heat 

• Memory speeds don’t scale well as processor speeds. These diverging rates 

intimate that a memory wall problem will happen, in which memory accesses take 



9 

 

over code performance. These wasted clock cycles can cancel the benefits of 

frequency increases in the uniprocessor [4, 5].  

• Innovations in IC technology allow the hardware feature size to keep dropping. 

As feature size drops, interconnect delay often overrides gate delay and becomes 

absolute serious performance problem to be solved in future IC design and can 

eventually cancel the speed of transistors [6]. 

• Uniprocessor is designed to exploit the instruction level parallelism (ILP) in 

program. While exploiting ILP was the primary goal of processor designs for a 

long time, the higher level parallelisms, i.e., thread-level parallelism (TLP) and 

data-level parallelism (DLP), occurring naturally in a large number of 

applications cannot be exploited with the ILP model.  

Due of the limits described above, the era of taking advantage of Moore’s law on the 

conventional uniprocessor designs appeared to be arriving to an end. Since 2005, the 

computing industry changed path when all major manufacturers, such as INTEL, IBM, 

SUN, and AMD, turned to multi-core designs, where a number of simple cores are 

integrated on a single die. The many-core architectures are believed to be able to take 

advantage of Moore’s law by doubling the number of cores per die with every 

semiconductor process generation starting with a uniprocessor. There are numerous 

advantages to building many-core processors through smaller and simpler cores[2, 7, 8]:  

• Decreasing the frequency drops down the power consumption significantly. So,  

designers can provide an efficient way to achieve performance by running 

multiple cores with lower clock rate. 
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• Configure and shutdown small core is easy, which allows a finer-grained ability 

to control the overall power efficiency. Many-core architectures partition 

resources, including memory, into individual small parts, and thus attenuate the 

effect of the interconnect delay and reduce grappling on the shared main memory. 

Each core uses a cache to reduce contention on the shared main memory  and 

increase overall performance. 

• Many-core chip designers support TLP, which is expected to be exploited in 

future programs and multiprocessor-aware operating systems and environments. 

• Design and functionally verify is easy for a core. In particular, it is more an 

acceptable to being tested with formal verification techniques than complex 

architectures. 

• Performance and power characteristics of smaller core are easier to predict within 

existing electronic design systems. 

 

Since the multi-core has been released in commercial servers. A new trend in industry 

and academia is rise by  incorporating larger number of cores (tens or hundreds) into a 

single chip. Two main types of many-core processors are released from industry 

community. It is characterized on how main memory consistency applied combined with 

the local cache of the core. 

 Full Memory System Hierarchy (FMSH): Cache coherency protocols are 

responsible to keep the main memory coherence with the local caches of each 
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core. Inconsistent data problem arises, when a core in the system 

maintains caches of a common memory resource, . Moreover, if the main memory 

has a copy of a memory block from a previous read and the local cache of the 

cores changes that memory block, the main memory could be left with an invalid 

cache of memory without any notification of the change. Cache coherence is 

responsible to manage such conflicts and keep consistency between cache and 

memory.  An examples like Many integrated Core (MIC) from INTEL, Tile64 

from TILERA and  POWER7 from IBM [9]. 

 Flat Memory System (FMS): The consistency problem of the main memory does 

not exist. Because the caches in these systems are a read only caches and they are 

used by write through. The programmer handles movement operation of the data 

from the cache to the main memory and vice versa. An example of this type is the 

General Processing Unit (GPU) like KEPLER 20 from NVIDA and 

FIRESTREEM from ATI. 

 

 Challenges For Programming Many-core 2.2

A high theoretic performance provides by many-core, this increases of performance 

cannot be controlled as simply as what I did with single-core processors. Most of 

software developers were very used to the idea of getting increased performance by 

upgrading machines with a faster processor [10]. Unfortunately, automatic improvement 

will not be possible when one upgrades to a many-core processors. Although, a many-

core processor can run multiple programs at the same time, it does not complete a given 

http://en.wikipedia.org/wiki/CPU_cache
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program in less time, or finish a larger program in a given amount of time, without 

changes. The problem is that majority of the programs are written in sequential 

programming languages, and these programs must be maintained and optimized to 

exploit possible performance gains enabled by underlying hardware. For the first time, 

many-core architectures requires that the software developers engage in parallel 

computing, which was reserved for the field of supercomputing. On the other hand, this 

shift in the hardware roadmap poses never known challenges to the software developers. 

For example, the programmer will be faced with the scalability problem of expressing, 

coordinating and exploiting multi-level parallelism provided by the many-core machines. 

The programmer will also be faced with the locality challenge of optimizing data 

movement in a highly non-uniform  memory hierarchy. Where there are gaps between 

data accesses to core-local memory, card global memory, and intra-node off-chip 

memory, and communications with remote nodes. While to exploit architectural features 

and eventually obtain the desired performance is the ultimate goal for programmers of 

this many-core machines, no majority of opinion has been reached on how to do so. On 

the other hand, people have been doing parallel programming development for aperiod of 

time on vector machines, clusters, SMP.  Many approaches have been proposed and 

utilized [11]. 

 Many-core Programming Model 2.3

The trends go into many-core coprocessors in the community of HPC. The needs for 

variant programming models are appear. There are three main programming models for 

many-core machines. These models vary in their complexity and scalability. So, 
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evaluations and experiments are done to compare their performance on different 

architectures. 

 Explicit Threading 2.3.1

Explicit threading model includes POSIX threads (Pthreads), Sun Solaris threads, 

Windows threads, and other native threading Application Programming Interfaces 

(APIs). It is designed to express the natural concurrency that is present in most programs, 

and to improve the performance. This model usually offers an extensive set of routines to 

provide control over threading operations, such as create, manage, synchronize threads, 

etc. Software developers control the application by explicitly calls these routines. On the 

other hand, threads have to be individually managed, this model would be the more 

popular choice. By committing sufficient time and exertion,   program developers may be 

able to parallelize the problem and achieve good performance. However, because explicit 

threading is an inherently low-level API that mostly requires multiple steps to perform 

simple threading tasks, it demands massive effort from the programmer’s side. Also, this 

model does not offer fundamentals of Object Oriented Programming (OOP) such as 

encapsulation or modularity. Therefore, manually managing hundreds or thousands 

threads definitely would be an unpleasant experience for the majority of programmers. 

Due to this reason, researchers have been increasingly looking for other simpler 

alternatives. 

 Message Passing Interface ( MPI ) 2.3.2

Message Passing Interface (MPI) is the standard and portable system designed to function 

on a wide type of parallel machines. The syntax and semantics are defined in the core 



14 

 

library routines. It is useful for a wide range of programmers writing portable message-

passing programs in FORTRAN or the C programming language. There are several 

varies and efficient implementations of MPI, including some that are free or from many 

hardware manufactures. These allow the development of a parallel software industry and 

encouraged development of portable and scalable large parallel applications[12]. 

 OpenMP 2.3.3

OpenMP, a portable programming interface for shared memory Symmetric 

Multiprocessors (SMP). The code starts executing by a master thread. Then it forks a 

specified number of threads and a task is divided among them as illustrated in Figure 2-1. 

The threads then run simultaneously. The runtime environment manages allocating 

threads to different core[13]. OpenMP becomes a de facto standard for writing programs 

for SMP  machines. 

 

Figure 2-1 Master thread forks a team of threads as needed. Parallelism is added until a desired performance is 

achieved [23] 

The code may contain many segments. The segment that is intended to run in parallel is 

marked through an OpenMP construct. This causes the compiler to parallelize it across 

the threads. After the execution of the parallelized code, the threads join back into the 

http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/Runtime_environment
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master thread, which proceeds forward to the end of the program. By default, each thread 

executes the parallelized section of code independently.  Parallel and work sharing 

constructs illustrated in Figure 2-2 can be used to divide the work among the threads. So 

that each thread executes its allocated part of the code. Task parallelism and data 

parallelism can be implemented using OpenMP.. The number of threads can be controlled 

by the runtime environment based on environment variables or in code using API 

routines.   

 

 

Figure 2-2 OpenMP language extension. (From www.openmp.com) 

Programming Many-core architectures faces significant hurdles using those models. It is 

Hurdles vary from one to another. One of the most difficult is addressing the 

programmability problems associated with code. For example, it is notoriously difficult 

to debug a parallel application, given the potential interleaving of the various threads of 

control in that application. Explicate threading allows the programmer explicitly to 

manage and control each thread. But, it will be tough to manage hundreds or even 

thousands of threads.  

http://en.wikipedia.org/wiki/Task_parallelism
http://en.wikipedia.org/wiki/Data_parallelism
http://en.wikipedia.org/wiki/Data_parallelism
http://en.wikipedia.org/wiki/Environment_variables
http://www.openmp.com/
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In OpenMP model the compiler takes the job to handle task assignment to the threads or 

team of threads. It is more productive environment. However, there is no guarantee to get 

high optimized code and difficult to address parallel programming problems like false 

sharing and data racing. Experiments show that application needs to be optimized using 

OpenMP. 

 

 Related work 2.4

The demand of developing parallel applications increased. Since the hardware 

manufacture increases number of cores in the same die. This gives new challenges in 

scientific application to gain a speed up from the new machine. MIC launched at the end 

of 2012. 

In [14] an early performance evaluation of the coprocessor. A focus on OpenMP 

programming paradigm and compared the coprocessor with another machine called BCS, 

which containes (16 socket, 128 core, Intel Xeon (NAHLAM), 64 GB). They did two 

main experiments. The first one to be evaluated memory bandwidth and openMP basic 

constructs overheads (parallel for, barrier, reduction) using STREAM benchmark and 

EPCC micro benchmark. The second one was for real compute scientific problem called 

Conjugate Gradient (CG) which was dependent basically on Sparse Matrix Vector 

Multiplication (SMXV). For the memory bandwidth they ran the experiments on the two 

machines with different affinity types. They found that the coprocessor has better 

performance of the BCS compared to 1 board with 8 processors.  Also they computed the 
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overhead of the OpenMP constructs for native and offload on the coprocessor and the 

BCS. They found that the overhead for all the OpenMP constructs for the coprocessor 

was lower than the BCS which was a key performance issue for the coprocessor. Which 

means applications scale on large machines will scale on the coprocessor. Also, no 

significant difference between native and offload overhead on the coprocessor found. 

For the real application kernel they apply roofline model to estimate the maximum 

performance in GFLOPS/s for each system. The roofline model is a visual graph that 

shows realistic expectations of performance and productivity of the multi-core and many 

core systems depending on its operational intensity for the algorithm. After that they run 

the experiments and compare their result to the approximation of the Roofline model.  

They achieve results closely near expectation of the model and better than the MKL 

library from Intel. 

An optimized Geometric Multigrid (GM) problem for important multicore and many-core 

architecture have been done[15]. Conventional methods for solving linear system 

iteratively such as JACOBI, successive relaxation and Gause Seidle Red Black (GSRB) 

were applied. A compact multigrid solver benchmark that creates a global 3D domain 

partitioned into sub domains sized to proxy found in real MG application was 

constructed. Also, developing many optimization techniques on the KNC. GSRB is 

explicitly prefetched, because the compiler fails for prefetching this complex memory 

access pattern. To maximize performance of in-cache computations, SIMD intrinsic were 

applied to the GSRB kernel. They compute as if doing JACOBI and use masked stores to 

selectively update red or black values in memory. Moreover, large (2MB) TLB pages 

were used, and the starting address of each array was padded to avoid a deluge of conflict 
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misses when multithreaded cores perform variable coefficient stencils within near power-

of-two grids. Similarly, a certain dimension was padded to a multiple of 64 bytes. To 

minimize the number of communicating neighbors, the KNC implementation leverages 

the shift algorithm in which communication proceeds in three phases corresponding to 

communication in i, j, and k, where in each phase, sub domains only communicate with 

their two neighbors. These techniques were applied on the MIC using native mode and 

OpenMP programming paradigm. 

A study on molecular dynamic and its performance on the CPU-MIC system is carried 

out [16, 17]. A development of three thread level parallelism schema is done. Task-level 

parallelism between CPU and MIC using offloads techniques, thread-level parallelism 

across multiple MIC cores, and data-level parallelism within each MIC core to exploit the 

SIMD unit effectively. Also, an applied memory latency hiding and prefetching 

techniques is done. To evaluate the proposed approach a comparison between CPU-MIC 

and CPU-GPU system is constructed. A gain of speedup 2.25 on the CPU-MIC system 

compared to CPU-GPU system. In addition, an evaluation of different machines with 

different SIMD width (128 bit, 256 bit, 512 bit) is carried out. Several optimization 

techniques applied on the SIMD using hand on analysis to exploit the unit. However, the 

experiments show that the compiler can’t handle prefetching schema to gain full 

vectorization of the code automatically. For evaluation, the  Sandia’s miniMD benchmark 

is chosen, which is an MPI ranked implementation. Also three optimization techniques 

especially for the KNC include problem decomposition, PCIe bandwidth latency and 

code reuse.  
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MIC can also be used for image processing applications that need hundreds of TFLOPS 

like in [18]. A Synthetic Aperture Radar (SAR) via back projection has been studied. It is 

an image reconstruction mechanism used in the real applications of radar system and can 

be extended to other applications like medical imaging. The importance of this work by 

using an algorithmic optimization for mathematical operation such as squre root, sine and 

cousine by converting them into a few multiplications and additions. The optimization 

resembles strength reduction, a well-known compiler optimization. While significant 

reduction relies on, and is thus constrained to, mathematical equivalence, their 

optimization exploits the method of approximation. Therefore, call of this model 

approximate strength reduction (ASR). Also, exploit hardware gather support of MIC for 

incessant eccentric memory accesses, thus improving the vectorization efficiency. The 

efficiency of gather access is further improved by exploiting geometric properties of back 

projection used in SAR imaging. data transfer is pipelined to hide latency. The Parallel 

resources in recent computation platforms must exploited. The computation is carefully 

partitioned between Intel Xeon and MIC so that the benefits of MIC’s high compute 

intensity can be maximized.  Data movement is optimized for locality and vectorization, 

which is provided by architecture support for irregular memory access. The dimension 

space is divided into three level MPI, OpenMP and cache Blocking. The experiment 

results show that the application of ASR to the back projection stage achieves 2–4x 

speedups, while maintaining a similar level of accuracy.  But, in the gather hardware 

optimizations they gain 1.4x speedup.  

A hyprid evaluation is done in  [19] using MPI-OpenMP programming paradigm. A 

demonstration of conservative spectral method for the Boltzmann equation originally 
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developed by Gamba and Tharkabhushaman, to parallelize the application. The iteration 

space is divided into the number of threads equally size to neglect the load balancing 

issue and it is applied directly using the OpenMP directive without any optimization 

techniques. For evaluation, MIC is used (Stepmede TACCs) and AMD OPTERON 

architecture. The experiments done using both OpenMP and MPI-OpenMP approaches . 

The results present a linear speedup when increasing number of cores. 

Sparse Matrix with dense Vector (SpMV) has been studies in [20]. Before evaluating the 

kernel, an investigation to the new hardware capabilities using micro benchmark. 

Compute the read-bandwidth by sum kernel of large matrices. After that write bandwidth 

is evaluated. This helps in determining how to deal with the hardware and what is the 

limitation of this hardware for real application. after exploration of the machine compiled 

the kernel with different optimization options from the compiler options such as no 

compiler optimization -0O , compiler optimization level -2O, -3O, vectorization and 

without vectorization. One of the interesting experiments is study the useful cache line 

density, which is a metric derived for the analysis. For each row, compute the ratio of the 

number of nonzero on that row to the number of elements in the cache lines of the input 

vector due to that row. The results outline that this is a performance metric comparing 

running application without vectorization and with vectorization options. 

Colfax tests the MIC coprocessor with a basic N-body simulation, which is basic for a set 

of applications in computational astrophysics and biophysics. An implementation for 

non-optimized version of the problem is done, and it is run on the coprocessor natively. 

Experiments show that they get benefits from it directly. After that, digging into 

optimized code and try to understand what the bottleneck in the code is. A profiling using 
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VTune was done. The result shows that the most time is consumed from the Short Vector 

Math Library (SVML) provided by Intel. The analysis shows that the library by default 

supports denormal numbers accuracy. Turn this option off leads to better performance. 

Also, looking at the assembly language produced from the C code using the VTune 

profiler. They analyze if the compiler do its job correctly and optimize the code 

efficiently. Additionally, they found that the programmer must take care with the types 

and precision of variables, constants and functions. 

C++ Parallel library construct is created in[21], which makes it easy to insert a function 

to every member of an array in parallel and dynamically distributing the work between 

the host CPUs and one or more coprocessor cards. A description of the associated 

runtime support and use a physical simulation called smoothed particle hydrodynamic 

example to demonstrate the library construct can be used to quickly create a C++ 

application that will significantly benefit from hybrid execution, simultaneously 

exploiting CPU cores and coprocessor cores. Experimental results show that one 

optimized source code is sufficient to make the host and the coprocessors run efficiently. 

The work shows a new way of application development that has been made possible by 

the MIC coprocessors. The OFFLOAD_FOR_EACH function template allows the 

developers to quickly build new applications that target the architecture. Also, this gives 

the developer the ability to create one source code and efficiently using MIC architecture. 

From software engineer point of view this makes it easy for the programmer to debug, 

troubleshoot and optimize the application on this new machine. 
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Even most already parallel algorithms need some adaptation to run effectively on parallel 

architectures. Some research optimizes common parallel programming primitives on the 

different architecture and programming languages. The needs to identify the new parallel 

architecture become crucial. 
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3 CHAPTER 3 

THE XEON PHI MANY INTEGRATED CORE 

  Introduction 3.1

New architectures have evolved to satisfy the needs of compute power. Accelerators, 

such as Graphical Processing Units (GPUs) and Many Integrated Core (MIC) are two 

ways to fulfill the requirements [22]. MIC coprocessors offers all standard programming 

models that are available for Intel Architecture:  OpenMP, POSIX threads or MPI [23]. 

The MIC coprocessor plugs into a standard PCIe slot and provides a standard shared 

memory architecture. For programmers of higher level programming languages like 

C/C++ or FORTRAN using well established parallelization paradigms like OpenMP, 

Threading Building Blocks (TBB) or Message Passing Interface (MPI), the coprocessor 

appears like a symmetric multiprocessor (SMP) on a single chip. Compared to 

accelerators this reduces the programming effort a lot, since no additional parallelization 

paradigm like CUDA or OpenCL needs to be applied [24]. However, supporting shared 

memory applications with only minimal changes does not necessarily mean that these 

applications perform as expected on MIC. In this chapter I will describe the most 

important features relevant to better understand the optimization techniques that will be 

applied in the next chapters. Most of  the information based on information found in the 

Intel 64 and IA-32 Architectures Optimization Reference Manual,  the Intel Xeon Phi 

Coprocessor Instruction Set Architecture Reference Manual [25], Intel C++ compiler XE 
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13.1 user and reference guide [26] and Intel Xeon Phi Coprocessor System Software 

Developer's Guide [27]. 

 Many Integrated Core Architecture 3.2

MIC   coprocessor platform is based on the concepts of the Intel Architecture and that 

provides standard shared-memory architecture. Figure 3-1 shows the high level 

architecture of the MIC coprocessor die. It has more than 50 cores (this may varies 

depending on the version of the coprocessor and manufacture), offers full cache 

coherency across all cores. The cores connected by a high performance two ways 

directional ring interconnect ring. In addition, there are 8 memory controllers supporting 

up to 16 GDDR5 expected to deliver up to 5.5 GT/s.  Each memory controller supports 

two channels per memory controller. This provides a theoretical bandwidth up to 352 

GB/s delivered to the coprocessor.  

 

Figure 3-1 General layout of the MIC coprocessor. For simplicity, only 8 of the total cores and 4 of the total 8 

GDDR5 memory controller shown  [27] 
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The two ways directional  ring has three types of rings in each direction. A data block 

ring (64 bytes wide), an address ring (send/write commands and memory addresses) and 

an acknowledgment ring (flow control and coherency messages). There are a set of tag 

directories connected to the ring and mapping address to the tag directories is based on 

hash functions over memory addresses, leading to an equal distribution around the ring. 

The memory controllers also connected to the ring, providing access to the GDDR5 

memory. 

Figure 3-2 illustrates basic building block of the coprocessor. At the right it shows the 

GBoxes memory controller that access external memory for read and writes. Every 

controller has 2 channels with 32 bit wide bus.  

The GBoxes contains three types; interfaces to the ring interconnect (FBOX), request 

scheduler(MBOX) and the physical layer that interfaces with the GDDR devices 

(PBOX). The MBOX contains two CMCs (or Channel Memory Controllers) that are 

completely independent from each other. The MBOX provides the connection between 

agents in the system and the DRAM I/O block. It is connected to the PBOX and to the 

FBOX. Each CMC operates independently from the other CMCs in the system.  At the 

left, it shows the SBOX controller, it is generation 2 PCI express client logic. This is the 

system interface to the host machine support x8, x16 PCI configuration. Also, at the left 

there is the DBox controller which is a debug display engine. At the middle of the Figure 

it shows how the basic block of each core and how it is connected to each other. In each 

core there is a Core Ring Interface (CRI) which includes interface to the core and ring 

interconnect, the L2 cache, the tag directory (TD),  and asynchronous processor interrupt 

controller (APIC) which receives interrupts to redirect the core for response.  
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Figure 3-2 Basic building block of the MIC   

Figure 3-3 shows the high level architecture of the MIC core. Every core offers four-way 

simultaneous multi-threading (SMT) and 512-bit wide Single Instruction Multiple Data 

(SIMD ) Vector Processing Unit (VPU), which corresponds to eight double-precision 

(DP) or sixteen single precision (SP) floating point numbers. Each core in the architecture 

has a 32kB L1 data cache, a 32kB L1 instruction cache, and a 512kB L2 cache that 

cumulatively produce shared cache among the cores. The architecture of a core is based 

on the pentium architecture, but the design has been updated to 64 bit architecture. Each 
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core includes two basic units scalar units (SU) at the left and the Vector Processing Unit 

at the right (VPU). Both of them share the same instruction decode unit in each core but 

every unit has its own register type. Also the local private L1 cache data and instruction 

cache is shared between the two units. In addition, L2 cache with the other cores in the 

same coprocessor through the CRI is shared. 

MIC has the ability to execute Intel Instruction set Architecture (ISA) in addition to the 

MIC ISA. It is a 5 stages dual pipeline; the main pipeline U-pipe and the V-pipe. The 

core can execute 2 instructions per clock cycle like Pentium one on the U-pipe and the 

other on the V-pipe. The U-pipe executes any instruction include the vector instructions. 

But the V-pipe can’t execute all instructions types [28]. 
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Figure 3-3 Core architecture for MIC 
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One of the differences over the Pentium is the 64 instruction extensions. Integer register 

files, data paths, and major busses were widened from 32 bits to 64 bits. Integer registers 

were increased from 8 to 16. Changes were made to the instruction decoder to decode 

new opcodes. A four-level page table and RIP-relative addressing have been added. 

Extending in new directions from the 64-bit enhanced base line. The cores have hardware 

multithreading support that can reduce the impact of latencies to keep the execution units 

busy. Each 64-bit in-order short pipeline core supports four hardware threads.  

Figure 3-4 shows pipeline data path of the core [25]. At any given clock cycle, the two 

instructions each core can issue from any single context can be: 1 vector operation using 

the pipe0  and  1 scalar operation using pipe 1 (or prefetch operation to load data to the 

cache before processing it ), 1 vector operation  and 1 (special) vector operation, or 2 

scalar operations. Another component is the VPU associated with each core. This is 

primarily a sixteen-element wide SIMD engine, operating on 512-bit vector registers with 

Fused Multiply Add (FMA). 
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Figure 3-4 MIC pipeline data path 

Due to these vectorization capabilities and the large number of cores, the coprocessor can 

deliver 1 TFLOPS of DP theoretical performance. VPU supporting a new instruction set 

called Intel Initial Many-Core Instructions (Intel IMCI) [23]. The Intel IMCI includes, 

among other instructions, the fused multiply-add, reciprocal, square root, power and 

exponent operations, commonly used in physical modeling and statistical analysis.  

 Cache Structure and Coherency Protocols 3.3

MIC has two levels of caches in each core. The Level One (L1) cache has 32 KB L1 

instruction cache and 32 KB L1 data cache. Associativity is 8-way, with a 64 byte cache 

line. Bank width is 8 bytes. Data return can be out-of order. The access time has 3-cycle 
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latency. The level two (L2) unified cache has 64 bytes per way with 8-way associativity, 

1024 sets, 2 banks, 32GB (35 bits) of cacheable address range and a raw latency of 11 

clocks. The expected access time is approximately 80 cycles [25]. The L2 cache has a 

streaming hardware pre fetcher that can selectively pre fetch code, read, and Read-For-

Ownership (RFO) cache lines into the L2 cache. There are 16 streams that can bring in up 

to a 4-KB page of data. Once a stream direction is detected, the pre fetcher can issue up 

to 4 multiple pre fetch requests. The replacement policy for both the L1 and L2 caches is 

based on a pseudo Least Recently Used (LRU) algorithm. 

The L2 cache is attached to the core-ring interface block. This block also includes the 

Tag Directory (TD), and the Ring Stop (RS) which connects to the inter-processor core 

network. Within these sub-blocks are the transaction protocol engine which is an 

interface to the RS and is equivalent to a front side bus unit. The RS handles all traffic 

coming on and off the ring. The TDs, which are physically distributed, filter and forward 

requests to appropriate agents on the ring. It is also, responsible for starting 

communications with the GDDR5 memory through the on-die memory controllers. 

To keep caches coherent through the cores, the coprocessor implements variations of 

cache coherency protocols include MESI, Extended MESI and Globally Owned Locally 

Shared (GOLS) [29]. 

MIC cache coherency protocol is a directory protocol based on MESI that uses GOLS to 

simulate an owned state, thus allowing the share of a modified line.  Table 3-1 and 

Table 3-2  illustrate MESI extended protocol state and definition of each state. The aim is 

to avoid write backs to memory when another core wants to read a modified cache line. 
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So, the shared state of this protocol does not mean that the line has not been modified. 

Each core’s cache uses the MESI state of the lines that it contains and the Distributed Tag 

Directories (DTDs) will contain the global GOLS coherency state of each line. Lines are 

assigned to each DTD regarding the line address instead of the core that is containing or 

requesting the line. 

Table 3-1 Extended MESI cache coherency protocol states [29] 

Cache State State definition State definition related to memory 

M Modified Only this core owns the line(dirty) It has been modified regarding memory 

E Exclusive Only this core owns the line(clean) It has not been modified regarding memory 

S Shared Several cores can have the line 

It may or may not have been modified 

regarding memory 

I Invalid The core does not own the line It has  not been used 

When a cache miss occur the core  will request the line to the correspondent DTD. This 

DTD will answer depending on the GOLS state of the line and will request memory or 

the core which owns the line to answer with the data. If another core has the line, it will 

notify the DTD and send the data to the requester core, which will also notify to the DTD 

that it has received the data. Then, the DTD will update the line state. Any eviction will 

also have to request the DTD for allowance before effectively evicting the line. 
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Table 3-2  Global owned locally shared cache coherency protocol state [29] 

Cache State State definition State definition related to memory 

GOLS 
Globally Owned 

 Locally Shared 

Several cores can have the 

line 

It have been modified regarding memory 

GE/GM Globally 

Exclusive/Modified 

Only this core owns the line It may or may not have been modified regarding 

memory (the core will have the line in M or E) 

GS Globally Shared Several cores can have the 

line 

It has not been modified regarding memory 

GI Globally Invalid No core holds the line It has not been used 

 Software Stack Architecture View 3.4

The MIC coprocessor software architecture is outlined in Figure 3-5. There are 

essentially four layers in the software stack appear at the right of the figure: tool 

runtimes, user-level offload libraries, a low-level communication layer that’s split 

between user-level libraries and kernel drivers (Comms), and the operating system. There 

is a host-side and co-processor-side component for each. Everything below the offload 

runtimes is part of the Intel Many Core Platform Software Stack (MPSS). 

The software stack of MIC which is shown on the left-hand side is based on a modified 

Linux kernel. The operating system on the MIC coprocessor is in fact an embedded 

Linux environment which called micro OS (µOS). It provides basic functionality such as 
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process creation, scheduling, or memory management. Multiple options are available for 

communication between the host and the card. The card driver provides virtual network 

interfaces, so it is possible to use the TCP/IP network stack. This is for management and 

compatibility with existing applications. On the other hand, it cannot provide maximum 

performance, since the network stack was designed for a different purpose than 

communication over PCI Express.  

Offloaded

Application code

MPI Application

Intel ® MPI

COI Runtime Daemon

User mod library

Kernal Mode Driver

Linux Card OS

Host Application Code
MPI Application

Intel ® MPI

COI Runtime

User Mode Library

Kernal Mode Driver

Linux Host OS

Offload Compiler Total Runtimes

User- level

Offload

libraries

Comms

Operating 

systems

Intel ® 
MPSS

Many Integrate Core Host

KNC-PCIe Card

Linux
Kernal 
mode

Linux
Kernal 
mode

User 
mode

User 
mode

 

Figure 3-5 MIC Software stack Architecture 

 Programming Model 3.5

MIC supports the majority of compute paradigm for what is available right now. [24]. 

There are two main approaches; the “Offload” in this case the program is viewed as 

running on host and offloading select work to the coprocessor. In “Native” approach the 
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program runs natively on coprocessors which may communicate with other MIC card or 

programs by various methods. 

Several execution models can be derived from these two approaches. It depends on the 

programming paradigm. Figure 3-6 shows it in case of MPI. Figure 3-6 (a) shows offload 

model where the communication of the processes take place between the hosts’ 

processors. But, the coprocessor capabilities used through the offload library between the 

host and coprocessor in each subsystem. On the other hand, Figure 3-6 (b) shows the 

coprocessor only model (Native) where the communication between the processes is 

done between the coprocessors that is in different subsystem. Also, Figure 3-6 (c) shows 

the third model where the execution of the MPI process and the related MPI 

communications and Message passing is supported inside the coprocessor, inside the host 

node and between the coprocessor. In this case I can assume MPI nodes inside the 

coprocessor itself and apply communications between them. 
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Figure 3-6  MIC Programming Model 
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Other case is using OpenMP programming paradigm. It is a fork-join model supported 

through two execution models. However, the “Native” model where the program runs in 

the coprocessor only and all the work done on the coprocessor. The other one is the 

offload model, where the program runs in host and offloads (send) compute intensive 

code by associated data to the device as specified by the programmer via pragmas in the 

source code. Also, it supports hybrid model of execution using MPI and OpenMP inside 

the coprocessor or between different coprocessors. This is useful in cluster environment. 

 Thread Execution Model  3.6

MIC utilizes hyper-threading (HT) or simultaneous multithreading (SMT) on each core 

as a key to masking the latencies inherent in an in-order micro architecture. This should 

not be conflicted with hyper threading on Xeon processors that exists primarily to more 

fully feed a dynamic execution engine [30]. In HPC workloads, very often hyper-

threading may be ignored or even turned off without degrading effects on performance.  

MIC offers four hardware threads per core with sufficient hardware components, 

floating-point hardware components and memory capabilities. Figure 3-7 at the left 

shows 4 in order threads numbered (T0, T1, T2, T3) that is scheduled at a multiplexer.  

The four threads used for hiding the latencies and keep the two main units (Scalar, VPU) 

in each core busy. From the figure there are 3 stages for handling a thread. It starts from 

the Previous Picker Function (PPF) that selects the thread from the L1 instruction cache. 

It includes for each thread context branch target prediction, branch recovery address, and 

the next segmentation of Instruction Pointer (IP) and old latched address for the specific 

thread context. After that, there is a prefetching buffer in the next stage of the picker 
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function. It includes the instructions that is ready to be picked from the thread picker 

buffer and to send to the third stage which is the decode stage. The thread picker issues 2 

instructions in every cycle from the same thread context. However, as I described before 

every core can executes in each cycle 2 instructions (U-pipe, V-pipe).  

 

Figure 3-7  Multi-threading Architectural Support in MIC Core  [27] 

The PF works  in a round-robin style, issuing instructions during any one clock cycle 

from the same thread context only. For example, in cycle N, if the PF issues instruction(s) 

from Context 3, then in cycle N + 1 the PF will try to issue instructions from Context 0, 

Context 1, or Context 2 – in that order. Hence, it is not possible to issue instructions from 

the same context (Context 3 in this example) in back-to-back cycles. 

In one hand, this makes it generally impossible for a single thread per core to approach 

either limit. In general, applications need a minimum of three or four active threads per 
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core to access all of the resources offer. For this reason, the number of threads per core 

utilized should be a tunable variable in an application and be set based on experimental 

experience of the application. On the other hand, the theoretical flop rate presupposes that 

the workload can be decomposed into fused multiply accumulates. This will be true only 

in some very unusual situations, or in the innermost loop of some applications. But it's 

always good to remember that the total wall time of a real application depends always on 

many other lines of code that may not be able to being re factored in this way.  

All four hardware threads per core share their local L2 cache but have high speed access 

to the caches associated with other cores. Any data used by a specific core will reserve 

space in that local L2 cache, and also it can be in multiple L2 caches around the chip. 

While MIC has a penalty for “cross-socket” sharing, which occurs after about 16 threads , 

It has a lower penalty across more than 200 threads. There is a benefit to having locality 

first organized around the threads being used on a core (up to 4) first, and then around all 

the threads across the coprocessor. So I can conclude that the way the threads spread 

across the cores will affect the performance. However, the thread consumes the data from 

L1 cache in case of miss if the data available in the cache L2 for another thread it will be 

delivered to it without needs to deliver from the memory. This is can be done by setting 

the KMP_AFFINITY variable for the compilation time when using OpenMP or 

I_MPI_PIN_DOMAIN with MPI.  

MIC appears as conventional Shared Memory Multiprocessing (SMP). To keep memory 

consistence among all of the cores the system implements directory cache coherency 

protocol across the cores. This maintains the shared variable consistence in all of the 

cores.  
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The core will only be stalled when a load miss occured. When a load miss occured, the 

hardware context with the instruction triggering the miss will be suspended until the data 

are brought into the cache for processing. This allows the other hardware contexts in the 

core to continue execution. Both the L1 and L2 caches can also support up to about 38 

outstanding requests per core (combined read and write). The system agent (containing 

the PCI Express agent and the DMA controller) may also generate 128 outstanding 

requests (read and write) for a total of (38*# of cores + 128). This allows software to 

prefetching data aggressively and avoids triggering a dependent stall condition in the 

cache. When all possible access routes to the cache are in use, new requests may cause a 

core stall until a slot becomes available. 

MIC doesn’t support paging to an external device. It has only one DMA engine, so any 

communications (network file-system, MPI, sockets, ssh, and so forth) between the 

coprocessor and host can interfere with offload data transfers and affecting on the 

application performance.  

 Thread Affinity 3.6.1

The Intel runtime library and Coprocessor OS; has the ability to bind OpenMP thread 

contexts to physical processing unit [26]. The interface is controlled using the 

KMP_AFFINITY environment variable. It restricts execution of certain thread context to 

a subset of the physical processing units in a multiprocessor computer. Depending upon 

the topology of the machine, thread affinity can have a dramatic effect on the execution 

speed of a program. 
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There are three levels for interfaces the affinity to the processing unit (high level, mid- 

level, low level). The first level assigned implicitly by the operating system according to 

specific affinity type (scatter, balanced, compact) by setting an operating system variable. 

The second one is explicitly done by the programmer for a specific core id by setting a 

variable in the OS environment. The third one, the programmer can use API to assign 

thread explicitly to the core. 

Figure 3-8 shows how the threads are spread across the cores. The logical processor 

number used by the coprocessor OS on MIC architecture is different from that on the 

host. There is one logical processor for each hardware thread context. Logical processor 0 

is placed on the first hardware context of the highest numbered core. Logical processors 

from 1 up to the highest, minus three, are placed consecutively on core 0 context 0, core 0 

context 1, core 0 context 2, core 0 context 3, core 1, context 0 and so on, with the last 

three logical processors being on the highest numbered core, with hardware thread 

contexts 1, 2, and 3. 
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Figure 3-8 MIC Card Thread Context across 60 cores 
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 Thread Affinity Type 3.6.2

MIC has three types of thread affinity. These types describe how the thread context is 

bind to the hardware thread along the cores; and in which order. Figure 3-9 shows how 

scatter affinity distribute 6 threads across 3 cores; The thread context are placed across 

the cores; until all cores have at least one thread, after that add the others in round robin 

fashion.  Figure 3-10 shows how to assign 6 threads context to the hardware threads cores 

using the  compact Affinity. It assigns the thread contexts to the hardware contexts by 

filling the core with 4 threads one at a time. The last one is balanced affinity. Figure 3-11 

shows assigning 9 threads in using balanced type. It is only available on the MIC 

coprocessor; in this type threads placed on separate cores until all cores have at least one 

thread, similar to the scatter type. However, when the runtime must use multiple 

hardware thread contexts on the same core, the balanced type ensures that the thread 

numbers are close to each other, which scatter does not do.  

Coprocessor

Core 0 Core 1 Core 2

HT0 HT1 HT2 HT3 HT0 HT1 HT2 HT3

Scatter Affinity

0 3 2 51 4

HT0 HT1 HT2 HT3

 

Figure 3-9 Scatter Affinity for 6 thread 
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Figure 3-10 Compact Affinity for 6 threads 
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Figure 3-11 Balanced Affinity for 9 threads 

From analytical point of view, it is normally beneficial to use cores before threads, so 

the compact affinity type is unlikely to yield the best results, because it leaves cores 

unused. The thread allocation under scatter is likely to be better than compact, because it 

uses cores before threads. However, scatter allocates threads such that threads with IDs in 

close numerical proximity are on different cores, and therefore do not share caches. 

Because threads with neighboring IDs often operate on closely related data, placing them 

on different cores is unlikely to be the best way to allocate them. The thread allocation 

under balanced is balanced over the cores and the threads allocated to a core are 

neighbors of each other. Therefore, cache utilization should be efficient if the threads 

access data that is near in store. 
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4 CHAPTER 4 

STATIC PROBLEMS 

 Introduction 4.1

In this chapter, I present my work for static problems. I choose from two categories Basic 

Linear Algebra and numerical algorithms. For first category, I used the Strassen Matrix 

Multiplication (SMM). Matrix-Matrix multiplication (MM) is massively parallel 

application with fixed data layout.  The basic Strassen-MM (S-MM) algorithm having 

time complexity of O (N
2.807

) instead of O (N
3
) of standard MM algorithm. My 

optimization is based on a reordering approach to reduce the storage, use of a depth first 

walk (DFW), and invocation of the Math Kernel Library (MKL) optimized library from 

Intel for smaller matrix-matrix multiplications. In DFW, all available machine parallelism 

is used in each depth expansion.  

For the second category I used Jacobi Solver (JS) of a system of linear equations for 

which the load is static across the iterations. In iterative JS, the threads need to read a 

vector that was computed by all the working threads before starting the next iteration. It 

is noticed that due to the above data layout JS does not scale well because of the 

excessive synchronization overhead, which must be implemented across all the working 

threads. To improve JS scalability, I explored (1) Synchronous Jacobi (SJ), (2) 

Asynchronous Jacobi (AJ), and Relaxed Jacobi (RJ). In SJ I used explicate barrier 

synchronization. In AJ a non-exact solution is computed because completing threads start 



43 

 

the next iterations using current data, which is a mixing of new and old. AJ slows down 

the convergence rate. In RJ, completing threads at iteration K start the next iteration 

(k+1) using newly computed data.  RJ provides overlap between two iterations at the cost 

of managing the availability of currently available intermediate results.  

 Matrix Multiplication 4.2

Matrix-matrix multiplication (MM) is a cornerstone of linear algebra algorithms; when 

multiplying matrices, the elements of the rows in the first matrix are multiplied with 

corresponding columns in the second matrix. I will use MM (C=AxB) where the size of 

the problem is NxN. Figure 4-1 Naive Matrix multiplication outlined naïve matrix 

multiplication. 

 

 

 

 

 

 

MM nested loop is a loop independent dependency (LID) since there is no data access 

between different iteration space and dependency occur only in the same iteration space 

for S2. 

for(i=0;i<N;i++) 

{ 

            for(j=0;j<N;j++) 

                { 

                sum=0; // S1 

 for(k=0;k<N;k++) 

      { 

                 sum+=A[i][k]*B[k][j]; // S2 

 } 

           C[i][j]=sum; // S3 

        } 

} 

 

Figure 4-1 Naive Matrix multiplication code 
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In MM, assumes both A and B are stored in row major order. traditional methods of 

matrix multiplication are not cache-friendly. In MM C= AxB , elements in matrix A are 

accessed in row major, but elements in Matrix B are accessed in column major order. 

Each access to B results in a cache miss since the consecutively accessed elements are not 

contiguously stored in memory. Elements of B are repeatedly accessed when computing 

different elements of C, but they do not remain in the cache for reuse as the cache 

capacity is small. Besides, only small portions of the fetched cache blocks are accessed 

before they get replaced due to conflicts. The net result is a large number of cache misses.  

The entire computation of MM involves 2N
3
 arithmetic operations (counting additions 

and multiplications separately), but produces and consumes only 3N
2
 data elements. As a 

whole, the computation shows honorable reuse of data. In general, an entire matrix will 

not fit in the cache. The work must therefore be broken into small chunks of computation, 

each of which uses a small enough piece of the data. In standard MM I can compute the 

number of references to the memory as the following equation. 

Memeory reference= N
3
(read each column of B,  N  times ) + N

2
 (read each row of A 

once) + 2N 
2 

 (read and write each element of C once)  = 3N
2
 + N

3
 

If  I compare it to access of elements required from the memory (3N
2
). So I can notice 

that a lot of overhead and miss reuse. As a conclusion, in this implementation, the 

algorithm needs to be optimized to get better performance and scalability. 

 Execution Model for MM 4.2.1

Naïve matrix multiplication has no dependency as I describe later, the loop iterations can 

be executed independently of each other. So parallelizing the naïve code is 
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straightforward. Insert the #pragma omp for before the outermost loop (i loop). It is 

beneficial to insert the pragma at the outermost loop, since this gives the most 

performance gain. In the parallelized loop, variables A, B, C and N are shared among the 

threads, while variables i, j, and k are private to each thread. 

 An early experiments are done, to increase locality and reusing of the cache. They are 

tiling and blocking. A comparison of the results have been done with highly optimized 

library MKL. It shows that MKL outperforms them on MIC.  

To optimize execution time of MM on MIC STRASSEN algorithm is applied. I have 

developed a number of implementations. The optimized version is presented in the next 

section. 

 Strassen MM ( S-MM) 4.2.2

Volker Strassen published the Strassen algorithm in 1969 [31] based on a divide and 

conquer strategy. Let A, B be two square matrices over a ring R. The objective is to 

calculate the matrix product C as follows: 

nn xRCBABAC 22,,       

If the matrices A, B are not of type 2
n
 x 2

n
, the missing rows and columns will be filled 

with zeros. A, B, and C will be partitioned into equally sized block matrices such that 
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In the above construction still 8 multiplications are needed to calculate Ci,j matrices. In 

order to reduce the number of multiplications, the following new matrices have to be 

defined. 
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Now, using only the above 7 multiplications, Ci,j can be express in terms Mk as follows: 

63212,2

421,2

532,1

75411,1

MMMMC
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This matrices partition process can be done recursively until the sub matrices degenerate 

into numbers. Figure 4-2 represents level 1 and level 2 of STRASSEN algorithm that 

goes into Level N. 
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Figure 4-2 STRASSEN MM recursion into N level 

The complexity of S-MM algorithm in terms of arithmetic operations  (additions and 

multiplications ) can be expressed as follows: 

f(n)= 7f(n-1)+ l4
n 

where  f(n) denotes the number of additions performed at each level l of the algorithm.   

g(n)= (7+O(1))
n
 

where g(n) denotes the number of multiplications performed at each level . 

Thus, the asymptotic complexity for multiplying matrices of size N = 2
n
 using the 

STRASSEN algorithm is )8074.2()
)1(7

2
log

())]1(7([ NO
o

NOnoO 


 . The 

reduction in the number of operations however comes at the price of a somewhat reduced 

numerical stability, and the algorithm also requires significantly more memory compared 

to the standard algorithm. Both initial matrices must have their dimensions expanded to 

the next power of 2, which results in storing up to four times as many elements, and the 

seven auxiliary matrices each contain a quarter of the elements in the expanded ones. The 

arithmetic complexity of the algorithm is: 
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Where tm(n) and ta(n) respectively denote the number of multiplications and the number 

of additions. The execution model of STRASSEN can be summarized for recursive 

implementation as follows: 

 Divide matrix  C into C1,1 , C1,2 , C2,1 , C2,2 

 Compute matrix M1 , M2 …….M7. 

 Compute matrices C1,1 , C1,2 , C2,1 , C2,2 

 Any multiplication I check if the size of matrices greater than a threshold value , 

call the previous steps again recursively. 

 If matrix size less than the threshold call normal MM. 

 

4.2.2.1 Implementation on MIC  

Optimization of parallel applications under new many-core architectures is challenging 

even for regular applications. However, in modern architectures the arithmetic operations 

take aproximatly the same number of cycles. Therefore, the performance of strassen 

comes from the lower complexity of addition operation compared to MM multiplication. 

Therefore, successful strategies inherited from previous generations of parallel or serial 

architectures just return incremental gains in performance and further optimization and 

tuning are required [32]. 

 The Original implementation of S-MM suffers from memory usage [33], and it is not 

practical due to the size of memory that it needs for huge matrices. I  have implemented a 

reorder algorithm of S-MM to reserve memory allocation[34] [35]. 
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In this implementation two intermediate matrices  (T1,T2) have been reserved in each 

level of recursion, of size (N/2L). Where L is the level of recursion and N is dimension of 

the matrix NxN. 

 My first experiment shows that the original implementation is unpractical on Intel Xeon 

Phi with 5.6 Gbyte of memory. I can achieve matrix size up to 3072 with 5 level of 

recursion. But in reorder implementations I achieve matrix size up to 10240. So, I will 

focus in the next sections on the reorder Implementation.  

Figure 4-3 shows pseudo code of the implementation. It has three main operations 

addition, subtraction and multiplication. The algorithm called recursively into L level of 

recursion depending on the threshold value. For each of the operations mentioned you 

need to pass the new size of the matrix and the indices of sub matrices. Because in each 

level the size of matrix t is changed. Figure 4-4 shows how to pass the indices to each sub 

matrix. I have 4 sub matrices as shown. Each operation of the algorithm called with three 

matrices as operand applies the operation using the first two matrices and store the result 

in the third matrix operand. The small x denotes to which matrix I use. 

 CBLAS_DGEMM from MKL  has been used as the engine of the multiplication 

operation. It is a highly optimized library from Intel. However, experiments done on 

optimization of matrix multiplication using tiling and blocking have shown shows that 

CBLAS_DGEMM outperforms them. 
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void strassenMultMatrix(double *x, double *y, double *z, 
int size,int srow1 , int scol1,int srow2,int scol2,int srow3,int 

scol3,int DIM0,int DIM1,int DIM2 

){ 

  double **t1, **t2; 

  int newsize = size/2; 

  if (size >= threshold) { 

  t1 = (double*) 

malloc(sizeof(double*)*newsize*newsize); 

  t2 = (double*) 

malloc(sizeof(double*)*newsize*newsize); 

  addMatrices(a11,a22,t1, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2); 

  addMatrices(b11,b22,t2, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2); 

  strassenMultMatrix(t1,t2,c21, int size,int srow1 , 
int scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2); // Compute M1 

subMatrices(a21,a11,t1, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2);  

 addMatrices(b11,b12,t2, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2); 

 strassenMultMatrix(t1,t2,c22, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2); // Compute M6 

 subMatrices(a12,a22,t1, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2); 

 addMatrices(b21,b22,t2, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2); 

 strassenMultMatrix(t1,t2,c11, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2); // Compute M7 

 addMatrices(c11,c21,c11, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2); 

 addMatrices(c21,c22,c22, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2); 

addMatrices(a21,a22,t1, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2); 

strassenMultMatrix(t1,b11,c21, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2);//Compute M2 

subMatrices(b12,b22,t2, int size,int srow1 , int 
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scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2); 

strassenMultMatrix(a11,t2,c12, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2) // Compute M3 

subMatrices(c22,c21,c22, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2); 

 addMatrices(c22,c12,c22, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2); 

subMatrices(b21,b11,t2, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2); 

strassenMultMatrix(a22,t2,t1, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2); // Compute M4 

addMatrices(c11,t1,c11, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2); 

addMatrices(c21,t1,c21, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2); 

addMatrices(a11,a12,t1, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2); 

strassenMultMatrix(t1,b22,t2, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2);subMatrices(c11,t2,c11,newsize); 

addMatrices(c12,t2,c12, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2); 

  } 

  else { 

    normalMultMatrix(a,b,c, int size,int srow1 , int 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int 

DIM1,int DIM2); 

  } 

} 
 

Figure 4-3  Pseudo code of Reorder Implementation 

Sub matrix Row index Column Index 

Sub1,1 Newsize Newsize 

Sub1,2 Newsize newsize+scolx 

Sub2,1 newsize+srowx Newsize 
Sub2,2 newsize+srowx newsize+scolx 

Figure 4-4  Strassen, Submatrix indices 
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4.2.2.2 Experiment Results 

I implemented several versions of S-MM.  Including Single and double precision to 

evaluate error lower bound, upper bound and average error. Also the matrix has been 

implemented using two dimensional Arrays and one dimensional array. My result shows 

that on MIC the best implementation is using one dimensional array. Because MALLOC 

with two dimensional arrays didn’t allocate the memory consecutively and this affects the 

performance on MIC. I also compute the execution time with 5 levels of recursion and 

compare it to a highly optimized library CBLAS_DGEMM from MKL.    

4.2.2.2.1 Scalability  

To evaluate S-MM scalability on MIC; the execution time is reported. I compared the 

results with highly optimized matrix-matrix multiplication library developed by Intel 

which is named MKL. In addition, the speed up is computed using different matrix size 

and different number of cores; where each core  was assigned 4 threads using compact 

affinity. 

To Test the scalability, I ran the experiments with different matrix sizes and different 

number of threads. All the experiments were done by disabling the factorization unit and 

using the O2 level of optimization of the Intel compiler 2013. Also the Affinity is set to 

compact to increase the locality and sharing between the threads. In my experiments each 

core has 4 OpenMP threads. They are bind to the hardware threads depending on the OS 

scheduling criteria. Figure 4-5, Figure 4-6, Figure 4-7 Figure 4-8 show the experiments 

using different number of cores.  
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Figure 4-5 Strassen with MKL, 4 core, MIC 

 

Figure 4-6 STRASSEN with MKL, 16 core, MIC 
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Figure 4-7 STRASSEN with MKL, 32 core, MIC 

 

 

 

 

Figure 4-8 Strassen with MKL, 60 core, MIC 
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From the figures (Str-mkl) is the execution time of my strassen using CBLAS_DGEMM 

as MM for smaller matrix size along different recursion level. Also, the results of MKL 

have been shown. Experiments show that increasing the level of recursion up to level two 

decreases the execution time using large matrix size.  I obtain an execution time better 

than CBLAS_DGEMM (MKL) 8% to 24% on matrix size 8192, 16384 respectively, 

when the number of cores greater than 32 core. I can conclude from the results that the 

number of cores used is an important factor combined with the size of the matrix and 

level of recursion.   

Further interesting results can be obtained from the speed up. Figures below depict the 

same data, but as a speedup relative to one core. 

 

Figure 4-9 Speed Up of Strassen relative to 1 core, 8 core 
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Figure 4-10 Speed Up of Strassen relative to 1 core, 16 core 

 

Figure 4-11 Speed Up of Strassen relative to 1 core, 32 core 
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Figure 4-12 Speed Up of Strassen relative to 1 core, 60 core 
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well when the number of core increased. But, for larger matrix size the speedup increased 
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of cores for matrix size 8192 and 16384.  

In summary, experiments show that increasing the level of recursion cause increased of 
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 STRASSEN algorithm uses divide and conquer algorithm and the size of the sub 

matrices decreases when I increase the level of recursion.  So utilization of caches 

in the cores decreasing due to that the smaller number of matrices when goes into 

deeper recursion level. This depends on the size of the matrix and number of 

cores used. These two factors can be used as a collaboration factors for 

optimization. 

 CBLAS_DGEMM library time increases when the size of the matrix smaller than 

2048 and increasing the number of core. Figure 4-13 shows the 

CBLAS_DGEMM function from MKL performs with smaller size of matrix and 

larger number of Cores 

 

Figure 4-13 Execution time of MKL on smaller matrix size and different number Cores 
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 Conclusion  4.2.3

I have implemented the basic S-MM algorithm having time complexity of O(N
2.807) 

instead of O(N3) of standard matrix multiplication algorithm following the same 

execution steps as proposed by Strassen. In addition, I have also implemented a reordered 

approach for Strassen to reduce memory allocations. 

But increasing the recursion level in my implementations will increase the execution time 

due to the overhead of intermediate additions operations. I have also shown that this 

increase in execution time with the level of recursion will be reduced with the large space 

size. So, my implementations will be more profitable as the size of the matrices is 

increased. On MIC, the results show that the use of up to 2 recursion levels for S-MM 

with MKL as the basic MM library outperforms MKL alone by 8 to 24%. This shows the 

profitability of S-MM procedure with a few recursion levels to tune performance of 

optimized MM libraries. 

  Jacobi Solving Linear Equations 4.3

JACOBI is an iterative method used to solve a Linear System Equation AX=B with 

number of equations equal N. It start with an initial solution X
0
 and computes the X

k+1    

for k times of iteration. Any iteration k 
 
needs all the values of

 
X from iteration k-1 except 

the values of xi . Also it needs the value of B and A which is constant. The equation of xi 

can be written as the following: 

                                                                              for i=1,2,3,….N 
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The process is initialized with a solution equal X
0
 and iterate until the value of X

k+1 
is 

converged or until specific value of K depends on the accuracy and ability of the matrices 

to converge. Figure 4-14 below shows sequential code of Jacobi iterative method. 

for(k = 0; k < MAX_ITER; k++) 

{ 

 for(i=0; i<N; i++){ 

   sum = 0.0; 

   sum=sum-A[i*N+i] * X_seq[i]; // S1 

   for(j=0; j<N; j++){ 

          sum += A[i*N+j] * X_seq[j]; // S2 

   } 

        new_x[i] = (B[i] - sum)/A[i*N+i];//S3 

                   }   

       for(i=0; i < N; i++) 

   X_seq[i] = new_x[i]; // S4 

} 

Figure 4-14 JACOBI sequential code implementation 

I conclude from the sequential code that there is a dependency distant 0 between (S2, S3) 

and (S3, S4). Also, there is a forward loop carried dependency (F-LCD) with dependency 

distance =1 between S2, S4. 

For Jacobi I have matrix A with size NxN elements, matrix B with six Nx1 and Matrix X 

with size Nx1 elements. Figure 4-15  below shows these matrices. Matrix A, B is constant 

in the algorithm and stored in the memory in row major but matrix X is changed during 

the iteration K as described above. To compute xi for k+1 each element in the aij row is 

multiplied by each element in xj column except the elements i=j , after that subtract it 

from bi and divide it by aii. If xij not exist in the memory it generates read miss every time 

of computation of xij. The most expensive part is the matrix vector multiplication, the 

complexity is of O(N
2
).  
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Figure 4-15 Jacobi Data Layout Representation 

. 

 Jacobi Execution Model 4.3.1

To efficiently parallelize the Jacobi algorithm, the devised schemes should achieve data 

locality, minimize the number of synchronization, and maximize the core computations 

adjacent thread.  By assuming, for simplicity, that the number threads divides exactly the 

dimension N of the NxN matrix A and the vectors X and B. From dependency analysis the 

outer loop index k could not be carried out due to the F-LCD. So, the parallelization will 

occurred for the two loops inside the iteration loop.  

Simplest parallelizing of Jacobi is done by inserting the directive on the outer most loop 

of the sequential implementation. Figure 4-16, explains the direct execution model of 

parallelizing of JACOBI. 
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for(k = 0; k < MAX_ITER; k++) 

{ 

#pragma omp parallel for private(i,j,sum) 

 for(i=0; i<N; i++){ 

   sum = 0.0; 

   sum=sum-A[i*N+i] * X[i]; // S1 

   for(j=0; j<N; j++){ 

          sum += A[i*N+j] * X[j]; // S2 

   } 

     new_x[i] = (B[i] - sum)/A[i*N+i];//S3 

                   }  

#pragma omp parallel for private(i)  

  for(i=0; i < N; i++) 

   X[i] = new_x[i]; // S4 

} 

Figure 4-16 Direct Jacobi parallelization Code 

The most computation will be in the first loop (L1), where the dimension of matrix N is 

divided by the number of threads for the matrices A, B, X. So, each of thread will be 

responsible to compute sub solution for the matrix X depending on the thread number. 

The spreading of the work is done implicitly by the FOR constructs. In addition, to that 

no thread will go into the next iteration until all of the threads finish their work. Which is 

controled by the implicit barrier inserted at the end of the construct. After all the threads 

have finished their work and have stored the results into new_x the value was copied into 

the shared variable X and a new iteration started. The outermost loop keep executing until 

finishing the number of iteration.  

4.3.1.1 Synchronous Jacobi (SJ) 

The simple optimization code clarified above has a drawbacks on parallel programming 

style. However, entering and exiting from the parallel for constructs inside the iteration 
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space because an overhead combined with two for constructs. Hence, the code contains 

two implicit barriers that synchronize the work of the threads. To solve the previous 

problem a work sharing construct is used. Figure 4-17, illustrates an implementation that 

handles many issues in the first code. I called this implementation Synchronous Jacobi 

(SJ) 

#pragma omp parallel shared (A,B,X,N,Xp,T,kk,temp) private(k,i,ii,j,sum) 

{ 

     int tid=omp_get_thread_num(); 

     ii=tid*kk; 

for(k=0;k<MAX_ITER;k++) 

      { 

           for(i=0; i<kk ; i++){ 

              sum=0.0; 

              sum=sum-(A[(i+ii)*N+i+ii]*X[i+ii]); 

              for(j=0; j<N; j++){ 

              sum+=A[(i+ii)*N+j] * X[j];                     

                       } 

             Xp[i+ii]=(B[i+ii]]]-sum)/A[(i+ii)*N+i+ii];            

           } 

 #pragma omp single 

 { 

 temp=X; 

 X=Xp; 

 Xp=temp; 

      } 

    } 

} 

Figure 4-17 Synchronous Jacobi implementation, using work sharing constructs and single construct to optimize 

overhead 

Using the work sharing construct gives the programmer the facility to control the flow of 

the program and the work for each thread. I first omit the two parallel for construct and 

insert the iteration space into the parallel construct to reduce the overhead for entering 

and exiting from a parallel region. In addition, to that the number of the thread is 

retrieved depending on the thread ID the indices of the matrices A, B, X, is determined. 

After that each thread is responsible to compute a sub solution from matrix X in an 

iteration K. To remove the second for construct and copying the data into the shared 

variable, another variable is used. Hence, each thread in the iteration will read from a 
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variable X and store the result into the variable Xp in each iteration. To let the threads 

read from the last results from the next iteration K+1  I swap the pointers using the single 

construct. It is used to make only the master thread swap the pointers and synchronize all 

the thread to this point. So, no thread will goes into next iteration until the master thread 

finish swapping. In this case I only have one implicit barrier at the end of the single 

construct. Also using pointer swapping increases the possibility to find the sub solution X 

inside the cache when goes into the next iteration. 

4.3.1.2 Relaxed Jacobi (RJ) 

To reduce the overhead of synchronization and increase L2 cache reuse a Relaxed Jacobi 

(RJ) with blocking is implemented.  I will assume there are N threads from (0,N-1). Each 

thread will compute partial solution of X denote as Xthi . Also each thread will need partial 

matrix of A and all vector  of B. Where A and B are constants during the iterative 

process. Only vector X is changing during computation process. Relax the 

synchronization causing an overlap between the iteration. By analyzing the dependency 

between the iteration only overlaps between iteration K and K+1 can be done. This 

means that at any given time the thread can compute X(K) and  partial solution from  

X(K+1). This depends on the proceeding of the other threads computation. To Relax 

Synchronization I apply blocking technique using number of threads assigned to the 

processor. However, the number of partial solution will be number of threads (T).  Also 

the number of blocks for matrix A and B will equal number of threads.  I simplify the 

algorithm in the following flow chart Figure 4-18.  
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Figure 4-18 Relaxed Synchronization (RS) execution flow chart 
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The execution starts by initializing the matrix A and the vectors B, 2X. Where 2X refers to 

the vector X which increased into double size to include the results from two iterations at 

the same time which are X(0) and X(1). After that I check if K=0, which means that the 

computation of the blocks will proceed normally, because initially the solution X is exist 

at X(0) and no need for checking if the sub solution exist. When the execution start after 

K=0 I need to differ from odd iteration and even iteration to determine the location and 

indices of the values that are needed in the computation process. 

In both cases the process of execution starts by setting the shared variable work and the 

private variable WORK_PRIVATE. In addition, to that the indices is initialized to point to 

the correct indices for matrix A, B, X and counter variable is settled. 

Each thread starts computing sub solution by its ID. Because that block of solution will 

be ready as the thread will not proceed into next iteration until finishes its sub solution. 

Each thread computes the sub solution and increases the counter to insure that all the 

blocks have been proceeded. In case there is no blocks ready the thread spinning at this 

point and waiting for a work to be ready. 

After the thread finishing its work at iteration K it copies the values from private variable 

WORK_PRIVATE into shared variable X (K). This allows the result to be shared between 

the threads. The threads continue computing until finishing all the iteration space. 

 

 

 



67 

 

 Experiment Results 4.3.2

An experiment is done to evaluate the over head of the synchronization on JACOBI 

SOLVER. I compute the time that is spent in synchronization for one barrier over 100 

iterations. Figure 4-19 shows time spent in synchronization one barrier over 100 

iterations. To get accurate results the experiment is done 10 thousand times and the 

average time is taken. 

 

Figure 4-19 Percentage time spend in synchronization for 100 iteration 

From the figure above I can conclude that the synchronization time take more than 95% 

of the execution time when matrix size is 1024. But its percentage decreases by 50% 

when the matrix size 4096. Also I can notice that when I have a large matrix size (16384) 

the percentage time is less than 9% of the total execution time. I can conclude that the 

synchronization has an overhead added to the execution time of JACOBI SOLVER 

which can affect the overall performance computation of the machine. 
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To evaluate my work in reducing the synchronization overhead and increase cache reuse. 

A set of experiments have been done on different implementations of JACABI. I 

implement Synchronous Jacobi (SJ) which includes one synchronization barrier. Also I 

implement Asynchronous Jacobi (AJ) where the synchronization is removed. In addition, 

a Relaxed Synchronization (RS) is implemented. All the experiments run over 100 

iterations for different matrix size and different number of threads. Figures below show 

the results  

 

Figure 4-20 Jacobi experiment result for SJ, AJ, RJ for matrix size 1920 

Figure 4-20 shows the execution time for running SJ, AJ and RJ for matrix size 1920 

with different number of threads. It appears that the RJ is better than the other two 

implementations until number of threads equal to 32 threads. After that the execution 

time of the RJ becomes greater than the other. This happened due to that the overhead for 

blocking and relax synchronization for more than 32 threads for smaller matrix size will 

be greater than the execution time of the SJ, AJ. Therefore, the benefits of this method 

can be seen with larger problem size.  
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Figure 4-21 Jacobi experiment result for SJ,AJ,RJ,  matrix size 3840 

 

 

Figure 4-22 Jacobi experiment result for SJ,AJ,RJ, matrix size 7680 
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Figure 4-23 Jacobi experiment result for SJ,AJ,RJ, matrix size 15360 

 

 

Figure 4-24 Jacobi experiment result for SJ,AJ,RJ, matrix size 30720 

Figure 4-21 until Figure 4-24 show the execution time of SJ, AJ and RJ for matrix size 

3840, 7680, 15360 and 30340 respectively with different number of threads. I gain a 

percentage of improvement in execution time from RJ   24.4%, 32.6%, 38.9%, 57.16% 

respectively over the SJ. The decreasing in execution time of RJ caused by the blocking 

matrixes A, B and D which increase the reuse of L2 cache and decreasing the cache 
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misses. However, every time the thread starts computing its new sub solution it will start 

from the previous block that is computed by it. So, in this case it is obviously will find it 

in the cache before it is evicted. Also, the other threads in this schema can find the block 

in other cores all around the MIC. Therefore, the time needed to get the data from cache 

of other core will be less than the time needed to read the data from the global memory.  

 Conclusion 4.3.3

In summary, I have presented a synchronization optimization technique for JACOBI 

SOLVER. My technique includes relaxed synchronization across the iteration space. To 

achieve that I apply blocking for the matrixes A, B, X along with the number of threads. 

To evaluate my work three implementations of JACOBI SOLVER have been 

implemented SJ, AJ, and RJ. SJ contains one synchronization barrier, AJ the 

synchronization barrier removed and the RJ which contains a Relaxed Synchronization 

with blocking. Results show that my technique outperforms the SJ with a percentage of 

improvement up to 57% on large matrix size. 
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5 CHAPTER 5 

SEMI-STATIC PROBLEM (N-BODY SIMULATION) 

  Introduction 5.1

The nature of real world large and complex problems makes it inefficient to implement in 

single normal processing units. The computation of these problems requires more 

processing resources and larger storage and memory elements [36]. The N-body 

Simulation one of such classical problems that was concord in predicting the individual 

motions and forces a group of objects interacting with each other gravitationally. It is a 

semi static problem where the load balancing affects computation performance. 

Hierarchical methods such as the Barnes-Hut (BH) and Fast Multipole method (FMM) 

are recently being used to solve the N-body problem since these methods can be run 

faster by utilizing parallelism and applications that use them are likely to be among the 

domain of HPC. The challenges of such methods are the problem of partitioning and 

scheduling for effectively utilizing the parallelism. In addition, the distribution of the 

workload among the processing elements complicate more the computation since the 

structure is changing as the computation proceeds. As a result, the issues of load 

balancing and data locality were of the main concern. 

The simplest approach to tackle N-Body problem is to iterate over a sequence of small 

time steps. Within each time step, the acceleration on a body is computed by summing 

the contribution from each of the other 1N  bodies which is known as brute force 
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algorithm. While this method is conceptually simple, easy to parallelize on HPC, and a 

choice for many applications, its  2NO  time complexity make it impractical algorithm 

for large-scale simulations involving millions of bodies. 

To reduce the brute force algorithm time complexity, many algorithms have been 

proposed to get approximated solution for the problem within a reasonable time 

complexity and acceptable error bounds. These algorithms include Appel [37] and 

Barnes-Hut  [38]. It was claimed that Appel’s algorithm run in  NO  and Barnes-Hut 

(BH) run in  NNO log  for uniformly distributed bodies around the space. Greengard 

and Rokhlin [39] developed the Fast Multipole Method (FMM) which runs in  NO  time 

complexity and can be adjusted to give any fixed precision accuracy.  

For the semi static problem, the N-body simulation is considered as a model of semi 

static computations. A brute force approach for computing the gravitational forces for N 

bodies is on the O(N
2
). The Barnes Hut (BH) approximation enables treating a group of 

bodies as one if these are far enough from a given body. This drops the computational 

complexity to O(NlogN) when using BH.  BH uses an oct-tree, in which each node stores 

the aggregate mass of all of its children nodes (sub-tree) at their center of mass. Another 

problem is that the thread load moderately changes from one iteration to another due to 

body motion in space. Therefore, a static problem partitioning strategy (S-BH) for BH is 

likely to suffer from accumulated load unbalance. It well known that dynamic load 

balancing (DLB) improves BH scalability. However, DLB is complex because of the 

need to measure the Dynamic Load (DL) and adopt an adequate data structure to 

minimize runtime overheads. In the beginning of iteration k, the body slowly motion 
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enables estimating the DL for  K+1 as being the aggregate load measured by all the treads 

in iteration k. Thus DLB is implemented by evenly partitioning the DL over the threads 

so that to preserve the data locality to the best possible. I implemented DLB-BH using an 

efficient data structure to ease load redistribution together with oct-tree implementation.  

 BARNES-Hut (BH) Algorithm   5.2

BH algorithm is based on dividing the body space that contributes on a given body into 

near and far bodies[38]. For near bodies, the brute force algorithm can be used to 

compute force applied on that body from other bodies while far bodies can be 

accumulated into a cluster of bodies with a mass that equal to the total mass of the bodies 

in that cluster and the position of the accumulated cluster is the center of mass of all 

bodies in that cluster.  

BH suggested the use of tree data structure to achieve this clustering while working 

within a reasonable time complexity. Figure 5-1 illustrates an adaptive BH quad tree here 

each leave contains only one particle. Tree data structures exploit the idea that an internal 

node in the tree will contains the center of mass and total mass of all of its descendants. 

In this case, computing the force applied on a far body from a given sub-tree will require 

accessing to the parent of the sub-tree and use its center of mass and total mass without 

the need to go farther in the sub-tree. This will decrease the time required for computing 

force on a given body noticeably. Sequential BH algorithm is sketched in the Table 5-1 

which can be applied and implemented for both 2-D and 3-D space. This algorithm is 

repeated iteratively as many as required number of iterations. 
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Figure 5-1 Adaptive Quad Tree of BH for 2D Simulation 

The nodes of the Quad tree in 2D or Octree in 3D are traversed starting from the root to 

calculate the net force on a particular body that illustrates the BH approximation for force 

computation. If the center of mass of an internal node is sufficiently far from the body 

(p), bodies contained in this sub tree approximated as a single node. Otherwise the 

process continues for the other children. 

 

 

Figure 5-2 Barnes-Hut approximation in computing force for far bodies 
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Similarly the operation is done on 3D space. The difference is an Oct Tree is used. 

Figure 5-3 demonstrate that each node will have 8 children. 

 

Figure 5-3 Oct-Tree for 3D Barns-Hut Simulation 

 

 

Table 5-1 Sequential Barns-Hut Algorithm 

For each time step: 

 Construct the BH tree (quad-tree for 2-D and Oct-tree for 3-D) 

 Compute center of mass and total mass bottom-up for each of the internal nodes. 

 For each body: 

  Start depth-first traversal for the tree, if center of mass in a given internal 

node is far from the body of interest then compute force from that node and 

ignore the rest of the sub-tree 

 Finished traversing the tree then update the position of the body and its 

velocity. 

  delete the tree 

  Related Work 5.3

The Barnes-Hut algorithm recently has been successfully parallelized using several 

techniques on both heterogeneous and shared memory HPC [40-48] . The key challenges 
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in parallelizing the Barnes-Hut algorithm include break down the domain of the BH tree 

across the allocated memory resources and load balancing the workloads across the 

threads. Load Balancing and Data Locality in hierarchical N-body algorithms, including 

the Barnes-Hut algorithm, was studied. The papers concluded that straightforward 

separation techniques which an automatic scheduler might implement do not scale well, 

because they are unable to simultaneously provide load balancing and data locality. 

A source dividing strategy for MPI systems is implemented in [40]. A contra intuitive 

method is proposed in which the source points are divided among the processors. Each 

processor forms its own tree out of the source points assigned to it, and computes 

contributions from these source points on all the target points. Once this evaluation is 

complete, the processor communicates the results to the head processor. The head 

processor adds up the contributions on each target from all sources, and broadcasts the 

results to other processors. Also, a dynamic load balancing scheme for time dependent 

applications  on heterogeneous systems composed of multiple CPUs and GPUs across 

multiple time steps[41] have been used. The load balancing strategy performs fine grain 

local modifications to the adaptive decomposition tree to minimize runtime informed by a 

time costing model. In addition, incremental global modifications track the evolving 

distribution of bodies. The load balancing machinery operates in one of three states: 

search, incremental, and observation. During the entire course of the simulation the load 

balancer is always in one of these states. Each lasts over multiple time steps. The current 

state of the load balancer defines how load balancing functionality is carried out and/or 

which actions shall be taken if undesirable run times are seen. 
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Optimizations for parallel BH algorithm based on NoC platform from both aspects of 

software and hardware is done in [43]. In terms of software, consider distribution tree 

data across physically distributed cache. Their platform is a shared L2 cache system the 

shared L2 cache is divided and distributed into different nodes in terms of cache slices. It 

is therefore reasonable to distribute the tree data, including body, cell and leaf 

information, to the local caches of cores. 

A Partitioning global address Space (PGAS)  using Unified parallel C (UPC) is 

implemented with cost zone [44]. UPC BH inherited from the shared memory SPLASH-2 

BH code the cost-zone load-balancing algorithm. However, this algorithm is 

computation-centric. On distributed memory the need to access remote cells can disturb 

the balance. Because of SFC ordering, boundary processes on a node usually require 

more remote cells than do interior processes. Considering computation/ communication 

overlapping, the effect is hard to estimate upfront and thus is better attacked by dynamic 

scheduling enabled by multithreading.  On the other hand,  Orthogonal Recursive 

Bisection (ORB) is applied in [46]. The domain decomposition is used to divide the space 

into as many non-overlapping subspaces as processors, each of which contains an 

approximately equal number of bodies, and assign each subspace to a processor. 

An introduction to the  geometric characterization of a class of communication graphs 

that can be used to support hierarchical N-body methods, [23]. The issues that are related 

to the practical aspects and implementation of hierarchical N-body methods such as the 

depth of the hierarchical structure were also discussed. These confirm the need for 

another representation in practice rather than relying on the Oct-Tree. Data structure for 

the Barnes-Hut was also implemented by Dekat.al. The Oct-Tree was represented by two 
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arrays; one is the input array that represents nodes in the Oct-Tree and the second is the 

nodes organization for the next iteration. This approach was introduced to overcome 

limitation in the scalability for parallel implementations of Barnes-Hut and to effectively 

utilize and manage the space and memory resources. The scalability of the BH was 

deeply analyzed by Speck, [49] using UPC language. They suggested that using shared 

memory in which shared variables can be cached locally without changing the reference 

used to access them leads to achieving good performance while global references are 

being used. 

The fundamental complexities to improving performance and scalability of parallel N-

body simulations using the BH algorithm are as follows: 

 Dynamic load balancing: A new unique tree is produced in each iteration during 

the simulation. Moreover, static load balancing technique is ineffective. It has a 

poor load balancing performance. 

 Variable workload: In addition to the variation of the work load. These systems 

have a variable workload per particles. Therefor predicting work load per particle 

is difficult. 

 Data-driven computation: BH is a data driven algorithm. Thus it has an irregular 

communication data access pattern. This makes conventional parallel 

optimization inefficient. 

 Data locality: The irregular and unstructured computations in dynamic graphs can 

result in poor data locality resulting in degraded performance on conventional 

systems which rely on exploitation of data locality for their performance. 
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 Effective parallelization using Cost Zone 5.4

In this section I define the scope of my objective to effectively parallelize force 

computation of BH, and the goals of my parallel implementations. As I described later 

there are two main issues that affect scalability of BH force computation:  

Load Balancing: The goal in load balancing is intuitive: workload should be assigned to 

threads evenly. Therefore, the maximum difference between the execution time of the 

threads are the minimum. 

Data Locality: many cores are built with hierarchical memory systems, in which threads 

in each core have faster access to data the same core cache or in other cores. To improve 

performance of the applications, I need to increase data locality. Thus, I increase sharing 

of data between threads in the cores to decrease cache misses. For this reason, I focus my 

discussion of locality primarily on reducing cache misses by ordering the structure of the 

array in such way that accesses the same data on the same core. However, I do make all 

reasonable efforts to exploit locality within a core effectively. 

 Distribute Work Using Cost Zone 5.5

Cost zones partitioning technique takes advantage of another key insight into the BH 

hierarchical methods for conventional N-body problems, which is that they already have 

a representation of the spatial distribution implicitly found in the tree data structure they 

use. I can therefore partition the tree rather than partition space directly. In the cost zones 

approach, the tree is conceptually laid out in a two-dimensional plane, with a node’s 
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children laid out from left to right in increasing order of child number. Figure 5-4 

demonstrates an example using a quad tree for simplicity. 

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7
 

Figure 5-4 Cost Zone Demonstration of work distribution for 8 threads 

 The cost of every particle, as counted in the previous step, is stored with the particle. 

Every internal node contains the cumulative count of the costs of all particles that are 

contained within it, these node costs have been computed during computation of center of 

mass and total mass. 

The total cost in the domain is divided among threads so that every thread has a evenly 

amount of work. For example, a total cost of 128 would be dividing across 32 threads so 

that the zone containing costs 1-4 is assigned to the first thread, zone 5-8 to the second, 

and so on. Which cost zone a particle belongs to is determined by the total cost up to that 

particle in an in order traversal of the tree. In the cost zones algorithm, threads descend 

the tree in parallel, selecting the particles that belong in their cost zone. A thread 

therefore performs only a partial traversal of the tree. To preserve locality of access to 

internal cells of the tree in later phases, internal cells are assigned to the thread that own 



82 

 

most of their children. In my work I concentrate on the effect of applying cost zone in the 

force computation, parallelization of tree traversal can be studied later in future work. 

 Reserve Locality Using Morton Order 5.6

Preserve locality when applying cost zone should produce partitions that is closer in the 

space as in the plane. How well this closeness in the tree corresponds to consecutively in 

physical space depends on how the locations of cells in the tree map to their locations in 

space. This depends on the order in which the children of cells are numbered. The 

simplest ordering scheme to use is the Morton Order (Z-order). Figure 5-5 demonstrates 

how it is applied for both 2D and 3D. It is a function that  maps multidimensional data to 

one dimension while ensure locality of the data points [50]. 

 

Figure 5-5 Morton Order representation, left for 2D, Right for 3D [50] 
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 Iterative Cost Zone Load Balancing (ICZB) Implementation 5.7

In this section I will describe main steps of my implementation of the Dynamic Load 

Balancing for Barns Hut (DLB-BH). I implemented a dynamic load balancing using cost 

zone combined with reserved data locality. I will call it Iterative Cost Zone load 

Balancing (ICZB). I construct the tree as a plane data structure (array). Thus, the 

overhead of recursive call for traversing the tree is omitted. Moreover, arrays are more 

cache friendly with many core machines. 

 N-body Implementation Steps  5.7.1

 

The implementation of the BH N-body algorithm follows a certain Steps. Figure 5-6 

below illustrates the main algorithm steps. I will describe them later in the next sections. 

 Load bodies 

For i=0 to N where N number of iterations 

     Oct-tree creation 

     Depth-First Tree Traversal 

     Sort the nodes array according to the traversal order 

     Sort the bodies array according to the traversal order 

For each Body 

         Compute its force by traversing the arrays 

       Update the velocity and the position of each body 

 Delete Nodes and free the memory 

 Delete Bodies and free the memory 
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Figure 5-6 N-Body with Barns Hut Execution Steps 
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 Load Bodies 5.7.2

The algorithm starts by loading the bodies’ data from a text file. The file consists of 10 

columns which represents the mass, position, and velocity (i.e. mass, x, y, z, vx, vy, and 

vz respectively). Each row in the file represents a body. The data in each row are space-

separated. 

 Oct-Tree Iterative Creation Algorithm 5.7.3

The Oct-tree creation is the first step in the iteration. The iterative algorithm as 

implemented illustrated in Figure 5-7. It takes all bodies in turn and inserts them in the 

Oct-Tree starting from the root. For each body it calculates the appropriate cube among 

the possible eight cubes. If it meets a free node, it puts the body there and loops for the 

next body. Otherwise, if it is not a free node, then it goes deeper following the 

appropriate path until it reaches the leaf. At this point, it may find an empty cube so it 

puts the body. If it meets a body that belongs to the same cube, then both bodies need to 

go deeper until getting a separate cube for each. 

In Oct-Tree algorithm, the last step could loop forever. Consider an example where there 

are two points that are very close together or even exactly in the same location. These 

bodies could not be separated easily into two different cubes. It is important to check 

whether the cube dimension approached zero. For this case, I added an additional  

condition to test the dimension of the current node (e.g. d > 1.0E-6). 
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Figure 5-7  Oct-tree iterative creation algorithm 
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To reserve the locality for my implementation, I implement the Morton order for ordering 

the cubes of the Oct-tree as shown in Figure 5-8. Since each node in the tree has eight 

children a given body and a node, the following code line says exactly the cube order 

within the children of the node. 

i = (Body.z > Node.z) * 1 + (Body.y > Node.y) * 2 + (Body.x > Node.x) * 4; 

 

For example, if Body.z is greater than Node.y and Body.y is greater than Node.y while 

Body.x is less than Node.x then i = 3. 

 

Figure 5-8  illustration of the chosen Morton order in my implementation. The numbers represents the order of 

selecting cubes.  

 Iterative Depth First Tree Traversal 5.7.4

After building the tree, I need to compute the center of mass in each node. This should be 

done from bottom to up (i.e. from leaves to the root). Since I have a tree, I should start 

from the root and traverse the tree in the depth-first order. While traversing, the algorithm 

Figure 5-9 computes the center of mass on each node. It also assigns a serial number for 

each node that reflects the traversing order. In addition to that, the algorithm assigns a 

pointer on each node to the next sub-tree. This index is used when applying BH in the 

force computation algorithm. 
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Figure 5-9 Tree traversal algorithm.  

 

 Sorting Node and Body Arrays 5.7.5

After the tree traversal step, I sort the node array according to the traversing order 

obtained from this step. I also sort the body array according to this traversal. This step is 

very essential in my implementation, although it adds some overhead to the overall 

algorithm. It decrement some overhead of the force computation step. There is no need to 
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traverse the tree for computing forces. Rather, the force computation visits arrays in a 

very smooth manner. 

 Converting Oct-Tree Into Data Structure  5.7.6

 

Considering the tree in Figure 5-10 which contains 19 nodes, the leaves represent at the 

edges of the tree. While the remaining are internal nodes (i.e. 0, 2, 7, 9, 13). The resulted 

nodes array after sorting has the following structure: 

[(0, 19), (1, 2), (2, 6), (3, 4), (4, 5) , (5, 6), (6, 7), (7, 17), (8, 9), (9, 10), 10, 11), (11, 12), 

(12, 13), (13, 14), (14, 15), (15, 16), (16, 17), (17, 18), (18, 19)] 

But the bodies array has the following leaves  

[1, 3, 4, 5, 6, 8, 10, 11, 12, 14, 15, 16, 17, 18] 

 

Figure 5-10 An example shows the depth-first traversal order. The nodes are sorted in the array according to 

this traversal. The leaves which represent the bodies also sorted in the array according to this order. Each node 

also store an index of the next node in the tree 
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Each element in the Nodes array has the index of the next node within the array which is 

always greater than the current index. This allows the force computation function to 

prone any sub-tree by moving to this index. 

 

 Iterative Force Computation 5.7.7

The force computation function receives two arrays, one for bodies and the other for the 

nodes. The bodies are sorted according to their locations as leaves of the tree. The node 

array is sorted in such a way to reflect the depth-first traversal. When the force 

computation function applies BH to a node, the node gives the index of the next element 

in the array and prone its children from the computation. 

To fasten traversing the tree, arrays are used to allow smooth linear movement with no 

branching. The only branch is taken when BH applies which prone a sub-tree. The force 

computation iterative algorithm is explained in the following steps: 

 

 For each body in the body array. 

o For each node in the node array 

 If (the distance between body and current node is >= d * 2 apply 

BH Set the next index to the next sub-tree to prone the current sub-

tree.) or (the current node is a  leaf node ). 

 Compute the force of interacting with the current node and 

increment w ( counter  for the work ). 

o Increment the index and loop to the next node. 

 Loop to the next body. 
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 Iterative Cost Zone Load Balancing (ICZB) 5.7.8

Parallelization of BH presents challenging load balancing problem that must be addressed 

dynamically as the system evolves to distribute the work among the threads. Construction 

of the tree iteratively makes applying Cost Zone efficiently. However, traversing the tree 

and cumulative the work over the nodes done without extra overhead that affect the 

overall performance. To compute the work I put a counter inside the inner loop of the 

force computation algorithm. This counter reflects the number of elements visited for 

each body and the force applied from it. I used this number to reflect the Work of that 

body. 

After building the tree in each iteration, I traverse the tree from bottom to top and 

accumulate the work of each sub-tree. Since the bodies are sorted before entering the 

force computation, the work per thread could be computed easily by traversing these 

bodies in order. I can explain my method in the following steps: 

 

 

Let W = Overall Work, and T = number of threads 

Work_per_thread = W/T 

Thread [t]. start = body [i] 

while sum <  Work_per_thread 

 { 

sum = sum + body [i].Work 

increment i 

} 

Thread [t]. end = body [i] 

Let sum = 0, T= T – 1, W = W – sum 
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If T > 1 loop to 2 

Thread [t]. End = body [last] 

 

The algorithm simply divides the overall work over the number of threads and assigns the 

first thread the first M bodies whose works sums to thread quota or less. Then it reduces 

that sum from the overall work and divides the rest work among the rest of the threads. 

 Practical Challenges  5.7.9

In addition to the challenges that are faced in applying BH also I face practical problem 

in implementing BH. I address several problems that could limit the efficiency of my 

implementation. It includes the limitation of stack space and the limitation of oct-tree 

depth. 

5.7.9.1  Stack Overflow 

To handle very deep recursive calls while building the Oct-Tree. An iterative version of 

the Oct-Tree has been tested. I use it to observe how much the increase in number of 

bodies the algorithm can handle. Experiments show that deep recursive calls add extra 

overhead in the execution time. 

5.7.9.2  Limitation Space dimension 

Maximum depth of the Oct-Tree is another problem. When the algorithm starts, I put the 

dimension for the root node equal to space dimension. Then when I go deeper in the tree I 

decrement d by a factor of two and put d = d/2 for each level. Hence, for a given level I 

have d = d/2
Level

. It is obvious that d value drops very fast. Since the maximum number of 

bits of the machine for any data type is 64 bits, it is not possible to have a tree that have a 
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depth of more than 64 levels. If d approaches zero, no need to divide the space any more 

to have new eight children. I just distribute the bodies among these children without 

concerning about the Morton order at this point. 

 Implementation Correctness Checking 5.8

I run several experiments to check the implementation correctness for both sequential and 

parallel implementations. To make it possible to trace the execution results for sequential, 

I create different number of bodies that is spread across a sphere inside the space. To 

insure that the force on each body will be the same, I test the result from 4 particles and 

increase it to 16 particles. After that I check manually the computation of the force and 

the motion of the particles during different iteration. After that I simulate thousands of 

bodies and plot their motion using MATLAB. All the operations  ( OCT-Tree creation , 

compute enter of Mass an total mass , compute forces , update velocity and positions, 

delete OCT tree and far Tree)I s tested during the hand check process for the sequential.  

Parallel implementation also has been checked. However, both the results from sequential 

and parallel implementation are reported into different text files. After that a script has 

been written to compare the results from both to insure that the parallel implantation 

working right. An individual test was also carried out to check ICZB implementation by 

reporting the total work for different problem size and was compared to actual result that 

must be obtained. In addition to that the number of times of BH applied and don’t applied 

is used. 
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 Body Generation and Dataset 5.9

The main galaxy is generated using  the McLuster tool[51]. It is a tool that used to 

generate different types of galaxies for astronomy simulation. The bodies data is 

produced using the king model option. The generated galaxy is shown in Figure 5-11. 

The tool generates 100 thousands of bodies. Then I used the code shown in Figure 5-12 

to generate my dataset by duplicating them many times. The distance between each 

galaxy is 60 point in a space of size 400x400. Hence, I saved the resulted bodies into a 

file. Figure 5-13 represents the distribution of the galaxies and particles for 1M size 

problem. 

 

Figure 5-11 King Model  galaxy, which contains 10^6 bodies. Plotted using TeraPlot Visualizer 
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void Generate_GalaxyKing() 

{ 

 int ii = 0; 

 MaxNBodies = 100000; 

 loadBodies(filename_GalaxyKingModel_100); 

 for (int b = 0; b < 100000; b++) 

  for(int x = 0; x < 5; x++) 

   for(int y = 0; y < 5; y++) 

    for(int z = 0; z < 5; z++) 

    { 

     ii = 100000 + z + y*5 + x*5*5 + b*5*5*5; 

     Bodies[ii] = new Body(); 

     Bodies[ii]->posx = Bodies[b]->posx + x * 60; 

     Bodies[ii]->posy = Bodies[b]->posy + y * 60; 

     Bodies[ii]->posz = Bodies[b]->posz + z * 60; 

 

     Bodies[ii]->mass = Bodies[b]->mass; 

     Bodies[ii]->vx = Bodies[b]->vx; 

     Bodies[ii]->vy = Bodies[b]->vy; 

     Bodies[ii]->vz = Bodies[b]->vz; 

    } 

    MaxNBodies = ii + 1; 

    saveBodies(filename_GalaxyKingModel_1M_nonsorted); 

   

 std::sort(Bodies,&Bodies[MaxNBodies],Body_comparer_function); 

    saveBodies(filename_GalaxyKingModel_1M); 

} 

Figure 5-12 Galaxies generation procedure 

 

Figure 5-13 Bodies distribution for a data set of 1M 
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 ICZB Evaluation 5.10

A specific metrics is used to evaluate my implementation with comparison to the static 

approach (divide the bodies evenly across the threads). Effectiveness comparison is 

carried out depending on the Speedup that obtained over the same sequential program. I 

present speedup obtained on MIC using different number of threads and particles. In 

addition to speedups, I also present results that separately compare the load balancing, 

locality and overhead. 

 To estimate the overhead of my implementation I compare the number of data read and 

write that is generated in both experiments. For the locality checking, I used the VTune to 

check the number of L2 cache misses. On the other hand, for the load balancing I plot the 

Average Thread time (ATt), Thread Time minimum (Ttmin) and Thread Time max 

(Ttmax). This can show us how the time can change and linearity of the load balancing.  

 Algorithm Time Distribution 5.10.1

Experiments show that Force Computation is the hotspot step in N-body problem on 

MIC. Figure 5-14 shows that force computation of N-body simulation takes about 80% in 

the average of the total execution time. Which indicate that reducing the execution time 

of it; will affect the overall performance of the implementation. Table 5-2 illustrates 

percentage time of each step from total time of N-Body BH which is sequentially run 

using 1 thread. 
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Table 5-2  Hotspot analysis of the Algorithm Steps 

Size of Problem 
Percentage time from total time of Executing BH sequentially on MIC 

Oct-tree Creation Sorting Compute Force Update Delete Oct-Tree 

10^3 
4.3 9.2 83.85 0.7 1.95 

10^4 
2.46 12.11 83.34 0.82 1.27 

10^5 
1.9 9.52 86.83 0.69 1.06 

10^6 
1.57 22.73 74.3 0.55 0.85 

 

  

Figure 5-14 Percentage Execution Time For N-body for Each Step 
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To assess the efficiency ICZB on many core machines. Several Experiments are carried 

out. I run Experiments for different thread number 32 threads up to 240 threads with 

different problem size. 

 Speedup of STATIC and ICZB 5.10.2

Figure 5-15 shows the speedup of ICZB and static approach vs. different problem size. 

The speedup is plotted using 240 threads (60core). In addition to that I plotted average 

speedup (age), minimum speedup (min) and maximum speed up (max) for both of the 

approaches during 20 iteration of simulation. 

 

Figure 5-15 Speedup of STATIC and ICZB vs. Problem Size ( 1M,2M,3M,4M) 
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be decreased. In addition, to that the sharing of the data between the cores decreased. 

These two problems will increase the number of cache misses. 

Also, I found that speedup of ICZB is better than STATIC with the change of the 

problem size. Particularly, Speed up of ICZB is always better if I compare the minimum, 

maximum and average speedup. I found that ICZB speed up is 42%, 36% better than 

STATIC respectively on problem size 1M, 4M. 

 

 Overhead of ICZB 5.10.3

I show that my method has better speedup with respect to the static. But this is not 

enough to judge my work. I need to understand the overhead that my method adds to the 

static approach. For that, I use the VTune profiler to record the number of reads and 

writes that each approach did. Figure 5-16 presents the number of reads and writes with 

different number of threads and different problem size. In conclusion form the graphs; the 

overhead is small in both problem size and even when I increase the number of the 

problem size with factor of 10 it is still small. This is a promising result for my 

implementation than can shows how the effectiveness of my implementation. 
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Figure 5-16 Data Read and Write for Static vs. ICZB  for 4M bodies 

  

 

 

Figure 5-17 Data Read and Write for Static vs. ICZB  for 5M bodies 

 Locality  5.10.4

Data locality is applied using Morton order. I use L2 cache misses that generated from 

Vtune in both approaches to test locality. Figure 5-18 illustrate the difference. ICZB has 

lower number of L2 cache misses.  
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Figure 5-18  L2 cache misses for static and ICZB for 4M bodies 

 

Figure 5-19 L2 cache misses for Static and ICZB for 5M bodies 
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I can conclude that the bottleneck in the performance of static approach is from how to 

divide the work across the threads. In this section I will discuss the results of linearity on 

N-body simulation, max percentage of the average relative work deviation and max 

percentage of average time relative deviation for the ICZB approach on 5 million of 

bodies running using 240 threads.  

Figure 5-20 includes linearity plot at the y-axis the average time of the threads and on the 

y-axis the average work of the threads for a given problem size. 

I observe that the average time for threads increases with work for thread in two steps. 

The average time increases slowly until problem size 2M at the beginning.  Then the 

average time increases rapidly. I conclude that memory resources of the machine 

exploited. In addition, the average work is linearly increased with respect to the average 

work.  

 

Figure 5-20 Linearity of ICZB (1M,2M,3M,4M,5M) 240 thread 
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To dig more for understanding the effectiveness of my method, a set of plots has been 

constructed for a given problem size. The percentage deviation of the thread time for the 

iteration is plotted to understand how much the time fluctuating from the average time. 

Also, the percentage deviation of the work for the iteration space is plotted to show how 

much the load balancing change from one iteration to another. In addition, the speedup 

for the same problem size is reported a cross the iteration space. This allows us to 

understand the effect of the deviation of the work and time on the speedup of my method.  

 

Figure 5-21 Percentage of average relative work deviation of ICZB, 5M, 240 

 

1.80000E-03

1.85000E-03

1.90000E-03

1.95000E-03

2.00000E-03

2.05000E-03

2.10000E-03

2.15000E-03

2.20000E-03

2.25000E-03

2.30000E-03

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

 P
Er

ce
n

ta
ge

 o
f 

 R
e

la
ti

ve
 D

e
vi

at
io

n
 

Iteration 

Percentage of Average Relative work Deviation , ICZB, 5M, 

240  

dev-avg



104 

 

 

Figure 5-22 Percentage of Average Relative Time Deviation, ICZB, 5M 

 

 

Figure 5-23 Speedup of ICZB, problem size 5M, 240 
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correct the amount of work distributed across the threads. However,  Figure 5-23 explains 

this conclusion. From the figure, the speedup increased during the simulation, comparing 

it to the percentage relative deviation of the time it is decreased during the simulation, 

which means that my method is adaptively load balance the work in the simulation. 

 Conclusion 5.11

The dynamic load balancing using ICZB was implemented combined with data locality 

for the N-body Simulation. The results show that the dynamic load balancing is an 

essential factor in increasing the force computation parallelism and therefore significantly 

reduces the computation time. I concentrate my work on two main challenges. The data 

locality and the dynamic load balancing. The implementation of the ICZB method along 

with the data structure suggested outperforms the static approach. I obtain a speedup 

always better than static approach vs the problem size. Also, the overhead of my method 

is low and cache misses decreased. In a conclusion, the ICZB is working better than static 

approach, but it needs to be improved more for the larger problem size. My 

implementation on MIC shows that the execution time and aggregate load scales linearly 

with the problem size when using 60 cores for problem sizes within the range of  1 

million to 4 million. In addition, my DLB-BH provides an increased speedup of  42%  

and  36% on problem size 1 million and 4 million respectively, as compared to traditional 

Static Barns Hut (S-BH). DLB is recommended as a compiler strategy as one 

optimization strategy for semi-static applications.  
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Appendix A: STRASSEN MATRIX-MATRIX 

MULTIPLICATION CODE 

 

 Nature of the application 

The basic Strassen-MM (S-MM) algorithm time complexity is of  O (N
2.807

) instead of O 

(N
3
) of standard MM algorithm. It computes C=AxB where A, B and C matrices of Size 

NxN. It is a recursive algorithm where  matrices are partitioned in each level. This 

matrices partition process can be done recursively until the sub matrices degenerate 

into numbers. In this code I implement the reorder approach of STRASSEN to reduce 

memory usage. I only used T1 and T2 as intermediate subMatrices ( See chapter 4 for 

more details). 

 

 Data Structure 

I used one dimensional array data structure in my implementation. I have matrix A and B 

as input and matrix C as output. 
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 Procedures 

I  have 3 main arithmetic operations procedures Addition, Subtraction and Multiplication 

in the implementation. Each Procedure takes 12 parameters described below as follows: 

1. Matrix A,B as input and C as output. 

2. Column index and Row index for Matrix A. 

3. Column index and Row index for Matrix B. 

4. Column index and Row index for Matrix C. 

5. Size of Matrix A. 

6. Size of Matrix B. 

7. Size of Matrix C. 

In addition to the a above explanation, each procedure has a comments inside the code to 

understand its structure and input and output of it. 

 Input and Output 

I have a procedure that initialize matrix A and B called “accuracyTestinit”.  Therefore, I 

initialized the matrices randomly with double numbers.  

 Correctness 

To check correctness of my implementation. Each time  I run the program the sequential 

MM is computed and compared to the results of the parallel implementation.



 

108 

 

#include <omp.h> 1 
#include <stdio.h> 2 
#include <stdlib.h> 3 
#include <math.h> 4 
#include <time.h> 5 
#include <string.h> 6 
#include <sys/time.h> 7 
#include <sys/types.h> 8 
#include <unistd.h> 9 
#include "mkl.h" 10 
 11 
/* This code implements the REORDER APPROACH OF STRASSEN MATRIX-MATRIX 12 
MULTIPLICATION 13 
 USING OpenMP programming Model 14 
 It takes A and B as an input and produce C ----> C=A*B where A, B and C 15 
matrices of Size NxN 16 
  * I implemented Strassen matrix matrix multiplication using reorder approach, 17 
where we need only 2 intermediate matrices ( T1, T2).  18 
 This reduce the memory usage for Strassen. 19 
  * We have 3 main arithmatic operation Addition, Subtraction and 20 
Multiplication 21 
 *Each Procedure takes 12 parameters described below 22 
     * Matrix A,B as input and C as output. 23 
     * Column index and Row index for Matrix A. 24 
     * Column index and Row index for Matrix B. 25 
     * Column index and Row index for Matrix C. 26 
     * Size of Matrix A. 27 
     * Size of Matrix B. 28 
     * Size of MAtrix C. 29 
 *The matrix implemented as one Dimensional Array to increase performance. 30 
 * The commented parts in the code can be used to debug it. 31 
*/ 32 
int DIM_N =1024; // Matrix Size 33 
int threads= 32; // Number of threads 34 
int threshold= 1024; // Threshold value for Strassen Algorithm 35 
//int mkl_threads= 16; 36 
 37 
//other stuff 38 
double sum, snorm; 39 
 40 
//matrices 41 
double *A, *B, *C,*CC; 42 
//#############################################################################43 
##################### 44 
//#################################### Procedure Prototypes 45 
######################################## 46 
//#############################################################################47 
##################### 48 
 49 
//Prototypes for the 3 basic operations used in the implementation Addition, 50 
subtraction and multiplication. 51 
// Multiplication Procedure Prototypes 52 
void 53 
strassenMultMatrix(double*,double*,double*,int,int,int,int,int,int,int,int,int,54 
int); 55 
void normalMultMatrix(double*, double*, double*, 56 
int,int,int,int,int,int,int,int,int,int); 57 
//Subtraction Procedure Prototypes 58 
void subMatrices(double*, double*, double*, int,int,int,int,int,int,int,int); 59 
void subMatrices1(double*, double*, double*, int,int,int,int,int,int,int,int); 60 
void subMatricesc(double*, double*, double*, 61 
int,int,int,int,int,int,int,int,int,int); 62 
//Adition Procedures Prototypes 63 
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void addMatrices(double*, double*, double*, int,int,int,int,int,int,int,int); 64 
void addMatrices1(double*, double*, double*, int,int,int,int,int,int,int,int); 65 
void addMatricesc(double*, double*, double*, 66 
int,int,int,int,int,int,int,int,int,int); 67 
//This Procedure used for Debugging Purpose 68 
void myprint(double *,char *,int,int ,int,int); 69 
 70 
//#############################################################################71 
######################### 72 
//Error calculation 73 
//#############################################################################74 
######################### 75 
// Procedure For Error Calculation 76 
 77 
//#############################################################################78 
######################## 79 
  80 
void checkPracticalErrors (double *c, double *seq, int n) 81 
{ 82 
int ii; 83 
int n2 = n*n; 84 
double sum =0; 85 
double low = c[0] - seq[0]; 86 
double up = low; 87 
for (ii=0; ii<n2; ii++) 88 
{ 89 
double temp = c[ii] - seq[ii]; 90 
sum += (temp<0 ? -temp: temp); 91 
if (temp > up) 92 
up = temp; 93 
else if (temp< low) 94 
low = temp; 95 
} 96 
printf ("average error: %.20f\n", sum/n2); 97 
printf ("lower-bound: %.20f\n", low); 98 
printf ("upper-bound: %.20f\n", up); 99 
printf ("\n"); 100 
} 101 
 102 
void accuracyTestInit (double* a, double *b, int n) 103 
{ 104 
int i,j; 105 
double *uvT = malloc ( n*n*sizeof(double*) ); 106 
//initiate a and b 107 
for (i =0 ; i< n; i++) 108 
{ 109 
for (j =0; j< n; j++) 110 
{ 111 
//int index = i*n+j; 112 
a[i*n+j] = b[i*n+j] = (i==j?1.0f:0.0f); 113 
} 114 
} 115 
double *u = malloc ( n*sizeof(double*) ); 116 
double *v = malloc ( n*sizeof(double*) ); 117 
//initiate u and v 118 
for (i= 1; i< n+1; i++) 119 
{ 120 
u[i-1] = 1.0f/(n+1.0f-i); 121 
v[i-1] = sqrt(i); 122 
} 123 
//vTu 124 
double vTu = 0.0f; 125 
for (i= 0; i< n; i++) 126 



 

110 

 

{ 127 
vTu += u[i]*v[i]; 128 
} 129 
double scalar = 1.0f/(1.0f+vTu); 130 
//uvT 131 
for (i= 0; i< n; i++) 132 
{ 133 
for (j= 0; j< n; j++) 134 
{ 135 
uvT[i*n+j] = u[i]*v[j]; 136 
} 137 
} 138 
//construct a and b 139 
for (i=0; i< n; i++) 140 
{ 141 
for (j= 0; j< n; j++) 142 
{ 143 
int index = i*n+j; 144 
a[i*n+j] += uvT[index]; 145 
b[i*n+j] -= scalar*uvT[index]; 146 
} 147 
} 148 
free (uvT); 149 
free (u); 150 
free (v); 151 
} 152 
//############################################################ 153 
 154 
//MAIN 155 
int main (int argc, char *argv[]){ 156 
 if(argc > 1) 157 
  DIM_N = atoi(argv[1]); // here to enter the size of the matrix 158 
 if(argc > 2) 159 
  threads = atoi(argv[2]); // here to enter the number of threads 160 
 if(argc > 3) 161 
  threshold = atoi(argv[3]); // here to enter the level of recursion 162 
 //if(argc > 4 ) 163 
  //mkl_threads= atoi(argv[4]); 164 
  165 
 166 
  double etime=0.0,stime=0.0; // for 167 
  double dtime=0.0; 168 
  int i,j,k; 169 
  // double *A=malloc(N*N*sizeof(double)); 170 
   171 
  A = malloc(sizeof(double*)*DIM_N*DIM_N); 172 
   173 
  B = malloc(sizeof(double*)*DIM_N*DIM_N); 174 
   175 
  C = malloc(sizeof(double*)*DIM_N*DIM_N); 176 
   177 
 // CC = malloc(sizeof(double*)*DIM_N*DIM_N); 178 
  179 
accuracyTestInit(A,B, DIM_N); // To intiliza the matrices 180 
//#################################################### 181 
//### Print the A , B matrices ####################### 182 
//#################################################### 183 
  //print out the result 184 
//myprint(A,"A Matrix",DIM_N,0,0,DIM_N); 185 
//myprint(B,"B Matrix",DIM_N,0,0,DIM_N); 186 
// This is the sequantail computation of Matrix multiplication we used it to 187 
chech the correctness of Strassen implementation 188 
/*printf("computing sequential\n"); 189 
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 stime=omp_get_wtime(); 190 
        for(i=0; i<DIM_N; i++) 191 
                for(j=0; j<DIM_N; j++){ 192 
                        CC[i*DIM_N+j] = 0; 193 
                        for(k=0; k < DIM_N; k++) 194 
                               CC[i*DIM_N+j] += A[i*DIM_N+k] * B[j*DIM_N+k]; 195 
                } 196 
 197 
etime=omp_get_wtime(); 198 
printf("computed sequential\n"); 199 
dtime=etime-stime; 200 
printf("Sequantial Time taken = %0.5f \n", dtime);*/ 201 
 202 
  //printf("Num Threads = %d\n",threads); 203 
  //start timer 204 
 stime=omp_get_wtime(); 205 
   206 
  //Strassen Multiplication 207 
  omp_set_num_threads(threads); 208 
  strassenMultMatrix(A,B,C,DIM_N,0,0,0,0,0,0,DIM_N,DIM_N,DIM_N); // Calling of 209 
Strassen MM 210 
 211 
  //stop timer 212 
 etime=omp_get_wtime(); 213 
 214 
  //calculate time taken 215 
    dtime=etime-stime; 216 
  printf("Strassen Time taken=       %0.5f \n",dtime); 217 
 218 
//stime=omp_get_wtime(); 219 
//mkl_set_num_threads(threads); 220 
//cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, DIM_N, DIM_N, DIM_N, 221 
1, A, DIM_N, B, DIM_N, 0, CC, DIM_N); 222 
//etime=omp_get_wtime(); 223 
//dtime=etime-stime; 224 
 // printf("MKL Time taken = %0.5f \n",dtime); 225 
   226 
   227 
  /********Triple Loop Multiplication, with OpenMP, for Comparison**********/ 228 
  //start timer 229 
/*stime=omp_get_wtime(); 230 
   231 
  #pragma omp parallel shared(A,B,CC,chunk) private(i,j,k) num_threads(threads) 232 
 { 233 
   //multiplication process 234 
    #pragma omp for schedule(dynamic) nowait 235 
     for (j = 0; j < DIM_N; j++){ 236 
      for (i = 0; i < DIM_N; i++){ 237 
        CC[i][j] = 0.0; 238 
       for (k = 0; k < DIM_N; k++) 239 
        CC[i][j] += A[i][k] * B[k][j]; 240 
    } 241 
    } 242 
 } 243 
  //normalMultMatrix(A,B,C,DIM_N);*/ 244 
 245 
  //stop timer 246 
//etime=omp_get_wtime(); 247 
   248 
 249 
 // dtime=etime-stime; 250 
  //printf("Non-Strassen Time taken = %0.3f \n", dtime); 251 
//#################################################################### 252 
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//A 253 
//#################################################################### 254 
//stime=omp_get_wtime(); 255 
 256 
/*int result = 0; 257 
int xx=0; 258 
        for(i=0; i < DIM_N; i++){ 259 
                for(j=0; j < DIM_N; j++) 260 
                        if(fabs(C[i*DIM_N+j]-CC[i*DIM_N+j])>0.0001){ 261 
 //printf("(%d, %d) : (%.20f, %.20f)\n", i, j, C[i][j], CC[i][j]); 262 
                                result = 1; 263 
  xx++; 264 
  //break; 265 
                        } 266 
 //printf("\n"); 267 
 //if(result == 1) break; 268 
 } 269 
 270 
 printf("\n\nPercentage Error =%.3f\n Error 271 
cell=%d\n",(double)xx/(DIM_N*DIM_N),xx); 272 
        printf("Test %s\n", (result == 0) ? "Passed" : "Failed"); 273 
 checkPracticalErrors(C, CC, DIM_N);*/ 274 
//myprint(A,"A Matrix",DIM_N,0,0); 275 
//myprint(B,"B Matrix",DIM_N,0,0); 276 
//myprint(C,"Strassen Algorithem",DIM_N,0,0,DIM_N); 277 
//myprint(CC,"Sequantial Algorithem",DIM_N,0,0,DIM_N); 278 
free(A); 279 
free(B); 280 
free(C); 281 
} 282 
 283 
void addMatrices(double *x, double *y, double *z, int size,int srow1 , int 284 
scol1,int srow2,int scol2 , int DIM0,int DIM1,int DIM2){ 285 
//performs a matrix addition operation, z=x+y 286 
 int i,j; 287 
 int index1,index2,index3; 288 
 #pragma omp parallel shared(x,y,z,srow1,scol1,srow2,scol2,size) 289 
private(i,j) num_threads(threads)  290 
 { 291 
      #pragma omp for schedule(static) nowait 292 
       for (i = 0; i < size; i++) 293 
  { 294 
   index1=i*DIM2; 295 
   index2=((i+srow1)*DIM0)+scol1; 296 
   index3=((i+srow2)*DIM1)+scol2; 297 
        for (j = 0; j < size; j++) 298 
         z[index1+j] = x[index2+j] + y[index3+j];   299 
  } 300 
 } 301 
} 302 
void addMatricesc(double *x, double *y, double *z, int size,int srow1 , int 303 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int DIM1,int DIM2){ 304 
//performs a matrix addition operation, z=x+y 305 
 int i,j; 306 
 int index1,index2,index3; 307 
 #pragma omp parallel 308 
shared(x,y,z,srow1,scol1,srow2,scol2,srow3,scol3,size) private(i,j) 309 
num_threads(threads)  310 
 { 311 
      #pragma omp for schedule(static) nowait 312 
       for (i = srow3; i < size+srow3; i++) 313 
  { 314 
   index1=i*DIM2; 315 
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   index2=((i-srow3+srow1)*DIM0)-scol3+scol1; 316 
   index3=((i-srow3+srow2)*DIM1)-scol3+scol2; 317 
        for (j = scol3; j < size+scol3; j++){ 318 
    //printf("\n%.0f  %.0f  %.0f ",z[i][j],x[i-319 
srow3+srow1][j-scol3+scol1],y[i-srow3+srow2][j-scol3+scol2]); 320 
         z[index1+j] = x[index2+j] + y[index3+j];   321 
  } 322 
     323 
    //printf("\n printing from inside the funtion %.0f  324 
%.0f  %.0f ",z[i][j],x[i-srow3+srow1][j-scol3+scol1],y[i-srow3+srow2][j-325 
scol3+scol2]);  326 
 } 327 
} 328 
} 329 
void addMatrices1(double *x, double *y, double *z, int size,int srow1 , int 330 
scol1,int srow2,int scol2,int DIM0,int DIM1,int DIM2){ 331 
//performs a matrix addition operation, z=x+y 332 
 int i,j; 333 
 int index1,index2,index3; 334 
 #pragma omp parallel shared(x,y,z,srow1,scol1,srow2,scol2,size) 335 
private(i,j) num_threads(threads)  336 
 { 337 
      #pragma omp for schedule(static) nowait 338 
       for (i = srow2; i < size+srow2; i++) 339 
  { 340 
  index1=i*DIM2; 341 
  index2=((i-srow2+srow1)*DIM0)-scol2+scol1; 342 
  index3=((i-srow2)*DIM1)-scol2; 343 
        for (j = scol2; j < size+scol2; j++) 344 
         z[index1+j] = x[index2+j] + y[index3+j];   345 
  } 346 
 } 347 
} 348 
 349 
void subMatrices(double *x, double *y, double *z, int size , int srow1 , int 350 
scol1,int srow2,int scol2,int DIM0,int DIM1,int DIM2){ 351 
//performs a matrix subtraction operation, z=x-y 352 
 int i,j; 353 
 int index1,index2,index3; 354 
 #pragma omp parallel shared(x,y,z,srow1,scol1,srow2,scol2,size) 355 
private(i,j) num_threads(threads) 356 
 { 357 
      #pragma omp for schedule(static) nowait 358 
       for (i = 0; i < size; i++) 359 
  { 360 
   index1=i*DIM2; 361 
   index2=(i+srow1)*DIM0+scol1; 362 
   index3=((i+srow2)*DIM1)+scol2; 363 
        for (j = 0; j < size; j++) 364 
         z[index1+j] = x[index2+j] - y[index3+j]; 365 
  } 366 
 } 367 
} 368 
void subMatricesc(double *x, double *y, double *z, int size , int srow1 , int 369 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int DIM1,int DIM2){ 370 
//performs a matrix subtraction operation, z=x-y 371 
 int i,j; 372 
 int index1,index2,index3; 373 
 #pragma omp parallel 374 
shared(x,y,z,srow1,scol1,srow2,scol2,srow3,scol3,size) private(i,j) 375 
num_threads(threads) 376 
 { 377 
      #pragma omp for schedule(static) nowait 378 
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       for (i = srow3; i < size+srow3; i++) 379 
  { 380 
   index1=i*DIM2; 381 
   index2=(i-srow3+srow1)*DIM0-scol3+scol1; 382 
   index3=(i-srow3+srow2)*DIM1-scol3+scol2; 383 
        for (j = scol3; j < size+scol3; j++) 384 
         z[index1+j] = x[index2+j] - y[index3+j]; 385 
  } 386 
 } 387 
} 388 
void subMatrices1(double *x, double *y, double *z, int size , int srow1 , int 389 
scol1,int srow2,int scol2,int DIM0,int DIM1,int DIM2){ 390 
//performs a matrix subtraction operation, z=x-y 391 
 int i,j; 392 
 int index1,index2,index3; 393 
 #pragma omp parallel shared(x,y,z,srow1,scol1,srow2,scol2,size) 394 
private(i,j) num_threads(threads) 395 
 { 396 
      #pragma omp for schedule(static) nowait 397 
       for (i = srow2; i < size+srow2; i++) 398 
  { 399 
   index1=i*DIM2; 400 
   index2=(i-srow2+srow1)*DIM0-scol2+scol1; 401 
   index3=(i-srow2)*DIM1-scol2; 402 
        for (j = scol2; j < size+scol2; j++) 403 
         z[index1+j] = x[index2+j] - y[index3+j]; 404 
  } 405 
 } 406 
} 407 
 408 
 409 
 410 
void normalMultMatrix(double *x, double *y, double *z, int size,int srow1 , int 411 
scol1,int srow2,int scol2,int srow3,int scol3,int DIM0,int DIM1,int DIM2) 412 
{ 413 
//multiplys two matrices: z=x*y 414 
 //int i,j,k; 415 
  416 
 //#pragma omp parallel 417 
shared(x,y,z,size,srow1,scol1,srow2,scol2,srow3,scol3,DIM0,DIM1,DIM2) 418 
private(i,j,k) num_threads(threads) 419 
 //{ 420 
   //multiplication process 421 
     //#pragma omp for schedule(static)  422 
     //for (i = srow3; i < size+srow3; i++){ 423 
      //for (j = scol3; j < size+scol3; j++){ 424 
                     //z[i*DIM2+j] = 0.0; 425 
       //for (k = 0; k < size; k++) 426 
     //{ 427 
        //z[i*DIM2+j] += x[(i-428 
srow3+srow1)*DIM0+(k+scol1)] * y[(k+srow2)*DIM1+(j-scol3+scol2)]; 429 
//cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, m, n, p, alpha, A, p, 430 
B, n, beta, C, n); 431 
 432 
mkl_set_num_threads(threads); 433 
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, size,size ,size,1, 434 
&x[srow1*DIM0+scol1], DIM0, &y[srow2*DIM1+scol2], DIM1, 0, 435 
&z[srow3*DIM2+scol3], DIM2); 436 
} 437 
 438 
void myprint(double *xx,char *name,int size,int x,int y,int DIM) 439 
{ 440 
int i,j; 441 
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printf("\nStart of Print %s\n",name); 442 
for(i=0;i<size;i++) 443 
{ 444 
 445 
   for(j=0;j<size;j++) 446 
 { 447 
  printf("%.5f\t",xx[(i+x)*DIM+(j+y)]); 448 
 } 449 
 printf("\n"); 450 
} 451 
printf("\nEnd of Print\n"); 452 
} 453 
 454 
void strassenMultMatrix(double *a,double *b,double *c,int size,int srow1, int 455 
scol1, int srow2 , int scol2 , int srow3 ,int scol3,int DIM0,int DIM1,int 456 
DIM2){ 457 
//Performs a Strassen matrix multiply operation 458 
 459 
  double *t1, *t2; 460 
 461 
  int newsize = size/2; 462 
  int i; 463 
//printf("\nindeces=%d\t\t %d %d %d %d %d 464 
%d\n",size,srow1,scol1,srow2,scol2,srow3,scol3); 465 
   466 
  if (size >= threshold) { 467 
    468 
    t1 = malloc(sizeof(double*)*newsize*newsize); 469 
    t2 = malloc(sizeof(double*)*newsize*newsize); 470 
  471 
    //addMatrices(a11,a22,t1,newsize); 472 
    //addMatrices(b11,b22,t2,newsize); 473 
   // strassenMultMatrix(t1,t2,c21,newsize); 474 
addMatrices(a,a,t1,newsize,srow1,scol1,newsize+srow1,newsize+scol1,DIM0,DIM0,ne475 
wsize); 476 
//myprint(a,"print a11",newsize,srow1,scol1,size); 477 
//myprint(a,"print a22",newsize,newsize+srow1,newsize+scol1,size); 478 
//myprint(t1,"addition result of a11,a22",newsize,0,0,newsize); 479 
addMatrices(b,b,t2,newsize,srow2,scol2,newsize+srow2,newsize+scol2,DIM1,DIM1,ne480 
wsize); 481 
//myprint(t2,"addition result of b11,b22",newsize,0,0,newsize); 482 
strassenMultMatrix(t1,t2,c,newsize,0,0,0,0,newsize+srow3,scol3,newsize,newsize,483 
DIM2); 484 
//myprint(c,"Result Matrix of t1*t2 calculate 485 
M1",newsize,newsize+srow3,scol3,DIM2); 486 
//myprint(c,"All C matrix",DIM2,0,0,DIM2); 487 
 488 
 489 
   // subMatrices(a21,a11,t1,newsize); 490 
subMatrices(a,a,t1,newsize,newsize+srow1,scol1,srow1,scol1,DIM0,DIM0,newsize); 491 
//myprint(t1,"subtraction of a21,a11 ",newsize,0,0,newsize); 492 
 493 
    //addMatrices(b11,b12,t2,newsize); 494 
addMatrices(b,b,t2,newsize,srow2,scol2,srow2,newsize+scol2,DIM1,DIM1,newsize); 495 
//myprint(t2,"addition of b11,b12",newsize,0,0,newsize); 496 
 497 
    //strassenMultMatrix(t1,t2,c22,newsize); 498 
 strassenMultMatrix(t1,t2,c,newsize,0,0,0,0,newsize+srow3,newsize+scol3,ne499 
wsize,newsize,DIM2);//Calculate M6 500 
//myprint(c,"Calculate M6 t1*t2",newsize,newsize+srow3,newsize+scol3,DIM2); 501 
//myprint(c,"All C matrix",DIM2,0,0,DIM2); 502 
 503 
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subMatrices(a,a,t1,newsize,srow1,newsize+srow1,newsize+srow1,newsize+scol1,DIM0504 
,DIM0,newsize); 505 
//myprint(t1,"subtration a12,a22",newsize,0,0,newsize); 506 
    //addMatrices(b21,b22,t2,newsize); 507 
addMatrices(b,b,t2,newsize,newsize+srow2,scol2,newsize+srow2,newsize+scol2,DIM1508 
,DIM1,newsize); 509 
//myprint(t2,"addition b21,b22",newsize,0,0,newsize); 510 
    //strassenMultMatrix(t1,t2,c11,newsize); 511 
strassenMultMatrix(t1,t2,c,newsize,0,0,0,0,srow3,scol3,newsize,newsize,DIM2);//512 
calculate M7 513 
//myprint(c,"calculate M7 t1*t2",newsize,srow3,scol3,DIM2); 514 
//myprint(c,"All C matrix",DIM2,0,0,DIM2); 515 
 //addMatrices(c11,c21,c11,newsize); 516 
addMatricesc(c,c,c,newsize,srow3,scol3,newsize+srow3,scol3,srow3,scol3,DIM2,DIM517 
2,DIM2); 518 
//myprint(c,"Problem Submatrix c11",newsize,srow3,scol3,DIM2); 519 
//myprint(c,"Problem Submatrix c21",newsize,newsize+srow3,scol3,DIM2); 520 
//myprint(c,"Addition the problem Start here C's sub matrix c11 , 521 
c21",newsize,srow3,scol3,DIM2); 522 
 523 
 524 
    //addMatrices(c21,c22,c22,newsize); 525 
addMatricesc(c,c,c,newsize,newsize+srow3,scol3,newsize+srow3,newsize+scol3,news526 
ize+srow3,newsize+scol3,DIM2,DIM2,DIM2); 527 
//myprint(c,"Addition C's sub matrix of 528 
c21,c22",newsize,newsize+srow3,newsize+scol3,DIM2); 529 
//myprint(c,"All C matrix",DIM2,0,0,DIM2); 530 
 531 
//#############################################################################532 
####### 533 
 //addMatrices(a21,a22,t1,newsize); 534 
addMatrices(a,a,t1,newsize,newsize+srow1,scol1,newsize+srow1,newsize+scol1,DIM0535 
,DIM0,newsize); 536 
//myprint(t1,"Additon a21 , a22",newsize,0,0,newsize); 537 
//strassenMultMatrix(t1,b11,c21,newsize); 538 
strassenMultMatrix(t1,b,c,newsize,0,0,srow2,scol2,newsize+srow3,scol3,newsize,D539 
IM1,DIM2); // Compute M2 540 
//myprint(c,"Calculate M2 t1*b11",newsize,newsize+srow3,scol3,DIM2); 541 
//myprint(c,"All C matrix",DIM2,0,0,DIM2); 542 
 543 
 544 
//subMatrices(b12,b22,t2,newsize); 545 
subMatrices(b,b,t2,newsize,srow2,newsize+scol2,newsize+srow2,newsize+scol2,DIM1546 
,DIM1,newsize); 547 
//myprint(t2,"Subtration b12,b22",newsize,0,0,newsize); 548 
//strassenMultMatrix(a11,t2,c12,newsize) 549 
strassenMultMatrix(a,t2,c,newsize,srow1,scol1,0,0,srow3,newsize+scol3,DIM0,news550 
ize,DIM2);//Compute M3 551 
//myprint(c,"Calculate M3 a11*t2",newsize,srow3,newsize+scol3,DIM2); 552 
//myprint(c,"All C matrix",DIM2,0,0,DIM2); 553 
//subMatrices(c22,c21,c22,newsize); 554 
subMatricesc(c,c,c,newsize,newsize+srow3,newsize+scol3,newsize+srow3,scol3,news555 
ize+srow3,newsize+scol3,DIM2,DIM2,DIM2); 556 
//myprint(c,"Subtraction C of 557 
c22*c21",newsize,newsize+srow3,newsize+scol3,DIM2); 558 
//myprint(c,"All C matrix",DIM2,0,0,DIM2); 559 
       // addMatrices(c22,c12,c22,newsize); 560 
addMatricesc(c,c,c,newsize,newsize+srow3,newsize+scol3,srow3,newsize+scol3,news561 
ize+srow3,newsize+scol3,DIM2,DIM2,DIM2); 562 
//myprint(c,"Addition C of c22*c12",newsize,newsize+srow3,newsize+scol3,DIM2); 563 
//myprint(c,"All C matrix",DIM2,0,0,DIM2); 564 
 565 
//################################################################ 566 
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 //subMatrices(b21,b11,t2,newsize); 567 
subMatrices(b,b,t2,newsize,newsize+srow2,scol2,srow2,scol2,DIM1,DIM1,newsize); 568 
//myprint(t2,"Subtraction t2 of b21 ,b11",newsize,0,0,newsize); 569 
 //strassenMultMatrix(a22,t2,t1,newsize); 570 
strassenMultMatrix(a,t2,t1,newsize,newsize+srow1,newsize+scol1,0,0,0,0,DIM0,new571 
size,newsize);//compute M4 572 
//myprint(t1,"Calculate M4 a22*t2",newsize,0,0,newsize); 573 
 574 
        //addMatrices(c11,t1,c11,newsize); 575 
 addMatrices1(c,t1,c,newsize,srow3,scol3,srow3,scol3,DIM2,newsize,DIM2); 576 
//myprint(c,"Addition 1 C of c11,t1 ",newsize,srow3,scol3,DIM2); 577 
//myprint(c,"All C matrix",DIM2,0,0,DIM2); 578 
       // addMatrices(c21,t1,c21,newsize); 579 
addMatrices1(c,t1,c,newsize,newsize+srow3,scol3,newsize+srow3,scol3,DIM2,newsiz580 
e,DIM2); 581 
//myprint(c,"Addition C of c21, t1",newsize,newsize+srow3,scol3,DIM2); 582 
//myprint(c,"All C matrix",DIM2,0,0,DIM2); 583 
 584 
 //addMatrices(a11,a12,t1,newsize); 585 
addMatrices(a,a,t1,newsize,srow1,scol1,srow1,newsize+scol1,DIM0,DIM0,newsize); 586 
//myprint(t1,"Additon t1 , a11,a12",newsize,0,0,newsize); 587 
 //strassenMultMatrix(t1,b22,t2,newsize); 588 
strassenMultMatrix(t1,b,t2,newsize,0,0,newsize+srow2,newsize+scol2,0,0,newsize,589 
DIM1,newsize); 590 
//myprint(t2,"Strassen Matrix Multiplication t1*b11",newsize,0,0,newsize); 591 
 592 
 //subMatrices(c11,t2,c11,newsize); 593 
subMatrices1(c,t2,c,newsize,srow3,scol3,srow3,scol3,DIM2,newsize,DIM2); 594 
//myprint(c,"Subtraction 1 C c11-t2",newsize,srow3,scol3,size); 595 
        //addMatrices(c12,t2,c12,newsize); 596 
//myprint(c,"All C matrix",8,0,0,8); 597 
addMatrices1(c,t2,c,newsize,srow3,newsize+scol3,srow3,newsize+scol3,DIM2,newsiz598 
e,DIM2); 599 
//myprint(c,"Addition C c12,t2",newsize,srow3,newsize+scol3,DIM2); 600 
//myprint(c,"All C matrix",DIM2,0,0,DIM2); 601 
 602 
   603 
    free(t1);free(t2); 604 
  } 605 
  else { 606 
    607 
normalMultMatrix(a,b,c,size,srow1,scol1,srow2,scol2,srow3,scol3,DIM0,DIM1,DIM2)608 
; 609 
  } 610 
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Appendix B: JACOBI SOLVER 

 

 Nature of the application 

JACOBI is an iterative method used to solve a Linear System Equation AX=B with 

number of equations equal N. It start with an initial solution X
0
 and computes the X

k+1    

for k times of iteration. Any iteration k 
 
needs all the values of

 
X from iteration k-1 except 

the values of xi. I implemented 3 versions of JACOBI. Synchronous Jacobi, 

Asynchronous Jacobi and Relaxed Jacobi ( refer to chapter 4, section 4.3 for more 

details). 

 

 Data Structure 

I used one dimensional array data structure in my implementation. Where A is a matrix of 

size NxN and X and B a vector of size N. 

 Procedures 

I have 3 files separated from each other. Each code is commented to simplify explaining. 

 Input and Output 

 



 

119 

 

I have a procedure that initialize matrix A, B  and X called  “randomInit”. It is used to 

guarantee that the solution X will converge. 

 Correctness 

To check correctness of my implementation. Each time  I run the program the sequential 

JACOBI SOLVER is computed and compared to the results of the parallel 

implementation.
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// SYNCHRONOUSE JACOBI SOLVER 1 
#include <stdio.h> 2 
#include <math.h> 3 
#include <unistd.h> 4 
#include <time.h> 5 
#include <sys/time.h> 6 
#include <math.h> 7 
#include <stdlib.h> 8 
#include <omp.h> 9 
 10 
 11 
#define MAX_ITER 100   12 
#define ERR_THRESHOLD 0.00001 13 
 14 
 15 
 16 
int N = 8; 17 
int T = 2; 18 
int rows_size=2; 19 
int cols_size=2; 20 
//#############################################################################21 
################# 22 
//############## Intialization Funtions and checking of the 23 
errors############################## 24 
//#############################################################################25 
################# 26 
// Procedure used tointialixe the matrices A,B and X 27 
void randomInit(double *A,double *X,double *B,int wA) 28 
{ 29 
        int i,j; 30 
        for(i = 0; i < wA; i++) 31 
        { 32 
                for(j = 0; j < wA; j++) 33 
                { 34 
                        if (i==j) 35 
                        { 36 
                                A[i*wA+j] = wA; 37 
                        } 38 
                        else 39 
                        { 40 
                                A[i*wA+j] = -1 ; 41 
                        } 42 
                } 43 
  44 
                X[i] = 0; 45 
                B[i] = 1; 46 
        } 47 
} 48 
 49 
 50 
void print1d(double *a,int N) 51 
{ 52 
printf("\nStart printing\n"); 53 
 int i,j; 54 
 for(i=0;i<N;i++) 55 
 { 56 
 printf("%.5f\n",a[i]); 57 
 } 58 
printf("\nEnd printing\n"); 59 
} 60 
void print2d(double *a,int N) 61 
{ 62 
int i,j; 63 
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printf("\nStart printing\n"); 64 
 for(i=0;i<N;i++) 65 
  { 66 
   for(j=0;j<N;j++) 67 
   { 68 
   printf("%.5f\t",a[i*N+j]); 69 
   } 70 
 printf("\n"); 71 
  } 72 
printf("\nEnd printing\n"); 73 
} 74 
 75 
 76 
 77 
int main(int argc, char *argv[]){ 78 
 79 
int iter=1; 80 
 if(argc > 1) 81 
 82 
  N = atoi(argv[1]); 83 
 84 
 if(argc > 2) 85 
 86 
  T = atoi(argv[2]); 87 
 if(argc > 3) 88 
  rows_size=atoi(argv[3]); 89 
 if(argc > 4) 90 
  cols_size=atoi(argv[4]); 91 
  92 
 93 
 94 
 95 
 double sum; 96 
 97 
 int i,i1, j, k , ii , jj; 98 
 int kk=N/T; // to compute the size of the rows for each thread. 99 
 double *A=malloc(sizeof(double)*N*N); 100 
 double *B=(double*)malloc(N*sizeof(double)); 101 
 double *X=(double*)malloc(3*N*sizeof(double)); // this is to store X at 102 
the intialization , at K , K+1 103 
 //double *XX=(double*)malloc(N*sizeof(double)); // this is to store 104 
result X that produced from K iteration which will be referenced by the mod2=0 105 
 //double *XXX=(double*)malloc(N*sizeof(double)); // this is to store 106 
result X that produced from K+1 iteration which will be referenced by mod2==1 107 
 //double *Xp; // to store the value of X for each thread 108 
 double *Xnew_sub; // to store the new value that is computed by each 109 
thread 110 
 double *new_x=(double*)malloc(N*sizeof(double)); 111 
 double *X_seq=(double*)malloc(N*sizeof(double)); 112 
  113 
  114 
//accuracyTestInit2D(A,N); 115 
//accuracyTestInit1D(B,N); 116 
//accuracyTestInit1D(X,N); 117 
//accuracyTestInit1D(X_seq,N); 118 
/*for(i=0;i<N;i++) 119 
{ 120 
 for(j=0;j<N;j++) 121 
 { 122 
 A[i*N+j]=sqrt(i+j)*0.2546; 123 
 } 124 
} 125 
for(i=0;i<N;i++) 126 
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{ 127 
B[i]=sqrt(i*j); 128 
}*/ 129 
randomInit(A,B,X,N); 130 
for(i=0;i<N;i++) 131 
{ 132 
X_seq[i]=X[i]; 133 
} 134 
 135 
 136 
 137 
 138 
 double dtime=0.0; 139 
 140 
 double etime=0.0, stime=0.0; 141 
 142 
 143 
  144 
// here to compute the Sequantial version 145 
//printf("\nstart computing Sequantial jacobi....\n");  146 
 147 
stime = omp_get_wtime(); 148 
for(k = 0; k < MAX_ITER; k++){ 149 
 150 
  for(i=0; i<N; i++){ 151 
   sum = 0.0; 152 
   sum=sum-(A[i*N+i] * X_seq[i]); 153 
 154 
   for(j=0; j<N; j++){ 155 
 156 
          sum =sum + (A[i*N+j] * X_seq[j]); 157 
   } 158 
 159 
     new_x[i] = (B[i] - sum)/A[i*N+i]; 160 
 161 
   }   162 
 163 
  for(i=0; i < N; i++) 164 
   X_seq[i] = new_x[i]; 165 
 } 166 
etime = omp_get_wtime();   167 
 168 
 dtime = etime - stime; 169 
 170 
printf("\ncomputing sequantial for 1 dimention= %.5f\t", dtime); 171 
 172 
 173 
 174 
// Optimized Parallel version of jacobi using blocking 175 
// **************************************************************************** 176 
// **************************************************************************** 177 
omp_set_num_threads(T); 178 
dtime=0.0; 179 
int kkk; 180 
 181 
for(kkk=0;kkk<iter;kkk++) 182 
{ 183 
//accuracyTestInit1D(X,N); 184 
stime = omp_get_wtime();   185 
 186 
#pragma omp parallel shared (A,B,X,N,T,kk,rows_size,cols_size) 187 
private(k,i,ii,j,sum,Xnew_sub) 188 
{ 189 



 

123 

 

 //Xp=(double*)malloc(N*sizeof(double)); 190 
 Xnew_sub=(double*)malloc((kk)*sizeof(double)*2);//we multiply it by 2 to 191 
store for K and for K+1 192 
 int tid=omp_get_thread_num(); 193 
 ii=tid*kk;// index of te rows that related to the the thread 194 
 int i_n=kk/rows_size;//number  of rows chunk 195 
 int j_n=N/cols_size;//number of column chunk  196 
 int iii,jjj; 197 
 198 
for(k=0;k<MAX_ITER;k++) 199 
{ 200 
   201 
  for(i=0;i<kk;i++) 202 
   Xnew_sub[i]=0; 203 
  //#pragma omp barrier // here is the most appropriate palce to put 204 
the pragma to insure the consistency of the result 205 
  /*for(i=0;i<N;i++) 206 
     { 207 
  Xp[i]=X[i]; 208 
     } */ 209 
 210 
for(iii=0;iii<i_n;iii++) 211 
{ for(jjj=0;jjj<j_n;jjj++) 212 
  {         213 
  for(i=0; i<rows_size; i++){ 214 
   sum=0.0; 215 
   //sum = sum-(A[(i+ii+iii)*N+i+ii+iii]*Xp[i+ii+iii]); 216 
 217 
   for(j=0; j<cols_size; j++){ 218 
    sum+= A[(i+ii+(iii*rows_size))*N+j+(jjj*cols_size)] * 219 
X[j+(jjj*cols_size)]; 220 
    } 221 
 222 
   //Xnew_sub[i+iii]+= (B[i+ii+iii] - 223 
sum)/A[(i+ii+iii)*N+i+ii+iii]; 224 
   Xnew_sub[i+(iii*rows_size)]+=sum; 225 
   } 226 
  }//end of jjj 227 
  for(i=0;i<rows_size;i++) 228 
  { 229 
Xnew_sub[i+(iii*rows_size)]=Xnew_sub[i+(iii*rows_size)]-230 
(A[(i+ii+(iii*rows_size))*N+i+ii+(iii*rows_size)]*X[i+ii+(iii*rows_size)]);  231 
Xnew_sub[i+(iii*rows_size)]=(B[i+ii+(iii*rows_size)]-232 
Xnew_sub[i+(iii*rows_size)])/A[(i+ii+(iii*rows_size))*N+i+ii+(iii*rows_size)]; 233 
 234 
  }   235 
 236 
}//end of iii 237 
 #pragma omp barrier //here is incorret add of the barrier , the barrier 238 
must be added before reading the data to update Xp 239 
 for(i=0;i<kk;i++){ 240 
  X[i+ii]=Xnew_sub[i]; 241 
 } 242 
   243 
}//end of the iteration MAX_ITER  244 
 245 
 246 
free(Xnew_sub); 247 
}//parallel pragma 248 
    249 
etime=omp_get_wtime(); 250 
dtime+=(etime-stime); 251 
} 252 
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printf("parallel for 1D optimized blocked jacobi= \t%5f",(dtime/iter)); 253 
 254 
//print1d(X_seq,N); 255 
//print1d(X,N); 256 
 257 
// Here we use test the correctness of our implementation by comparing it to 258 
the result of sequential code 259 
int result = 0; 260 
        for(i=0; i < N; i++){ 261 
                 if(fabs(X[i]-X_seq[i]) > ERR_THRESHOLD) 262 
        { 263 
                   printf("(%d) : (%.5f,%.5f)\n", i, X[i], X_seq[i]); 264 
                   result = 1; 265 
                        } 266 
 //if(result == 1) break; 267 
 } 268 
 269 
 270 
        printf("\tTest %s", (result == 0) ? "Passed\n" : "Failed\n"); 271 
 272 
free(A); 273 
free(B); 274 
free(X); 275 
free(X_seq); 276 
free(new_x); 277 
 278 
 return 0; 279 
 280 
} 281 

1 
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//ASYNCHRONOUSE JACOBI SOLVER 1 
#include <stdio.h> 2 
#include <math.h> 3 
#include <unistd.h> 4 
#include <time.h> 5 
#include <sys/time.h> 6 
#include <math.h> 7 
#include <stdlib.h> 8 
#include <omp.h> 9 
  10 
#define MAX_ITER 100   11 
#define ERR_THRESHOLD 0.00001 12 
 13 
int N = 8; 14 
int T = 2; 15 
int rows_size=2; 16 
int cols_size=2; 17 
//#############################################################################18 
################# 19 
//############## Intialization Funtions and checking of the 20 
errors############################## 21 
//#############################################################################22 
################# 23 
 24 
void checkPracticalErrors (double *c, double *seq, int n) 25 
{ 26 
int ii; 27 
int n2 = n*n; 28 
double sum =0; 29 
double low = c[0] - seq[0]; 30 
double up = low; 31 
 for (ii=0; ii<n2; ii++) 32 
  { 33 
   double temp = c[ii] - seq[ii]; 34 
   sum += (temp<0 ? -temp: temp); 35 
  if (temp > up) 36 
  up = temp; 37 
  else if (temp< low) 38 
  low = temp; 39 
  } 40 
printf ("average error: %.20f\n", sum/n2); 41 
printf ("lower-bound: %.20f\n", low); 42 
printf ("upper-bound: %.20f\n", up); 43 
printf ("\n"); 44 
} 45 
 46 
void accuracyTestInit2D(double* a, int n) 47 
{ 48 
int i,j; 49 
double *uvT = (double *) malloc ( n*n*sizeof(double) ); 50 
//initiate a and b 51 
 for (i =0 ; i< n; i++) 52 
 { 53 
  for (j =0; j< n; j++) 54 
 { 55 
  //int index = i*n+j; 56 
  a[i*n+j]  = (i==j?1.0f:0.0f); 57 
 } 58 
 } 59 
double *u = (double *) malloc ( n*sizeof(double) ); 60 
double *v = (double *) malloc ( n*sizeof(double) ); 61 
//initiate u and v 62 
  for (i= 1; i< n+1; i++) 63 
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  { 64 
  u[i-1] = 1.0f/(n+1.0f-i); 65 
  v[i-1] = sqrt(i); 66 
  } 67 
//vTu 68 
double vTu = 0.0f; 69 
  for (i= 0; i< n; i++) 70 
  { 71 
  vTu += u[i]*v[i]; 72 
  } 73 
  double scalar = 1.0f/(1.0f+vTu); 74 
//uvT 75 
  for (i= 0; i< n; i++) 76 
  { 77 
   for (j= 0; j< n; j++) 78 
  { 79 
  uvT[i*n+j] = u[i]*v[j]; 80 
   } 81 
  } 82 
//construct a and b 83 
  for (i=0; i< n; i++) 84 
  { 85 
  for (j= 0; j< n; j++) 86 
  { 87 
  int index = i*n+j; 88 
   a[index] += uvT[index]; 89 
  } 90 
}   91 
free (uvT); 92 
free (u); 93 
free (v); 94 
} 95 
 96 
void accuracyTestInit1D(double* a, int n) 97 
{ 98 
int i,j; 99 
double *uvT = (double *) malloc ( n*n*sizeof(double) ); 100 
//initiate a and b 101 
 for (i =0 ; i< n; i++) 102 
 { 103 
  for (j =0; j< n; j++) 104 
 { 105 
  //int index = i*n+j; 106 
  a[i]  = (i==j?1.0f:0.0f); 107 
 } 108 
 } 109 
double *u = (double *) malloc ( n*sizeof(double) ); 110 
double *v = (double *) malloc ( n*sizeof(double) ); 111 
//initiate u and v 112 
  for (i= 1; i< n+1; i++) 113 
  { 114 
  u[i-1] = 1.0f/(n+1.0f-i); 115 
  v[i-1] = sqrt(i); 116 
  } 117 
//vTu 118 
double vTu = 0.0f; 119 
  for (i= 0; i< n; i++) 120 
  { 121 
  vTu += u[i]*v[i]; 122 
  } 123 
  double scalar = 1.0f/(1.0f+vTu); 124 
//uvT 125 
  for (i= 0; i< n; i++) 126 
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  { 127 
   for (j= 0; j< n; j++) 128 
  { 129 
  uvT[i] = u[i]*v[j]; 130 
   } 131 
  } 132 
//construct a and b 133 
  for (i=0; i< n; i++) 134 
  { 135 
  for (j= 0; j< n; j++) 136 
  { 137 
  int index = i*n+j; 138 
   a[i] += uvT[index]; 139 
  } 140 
}   141 
free (uvT); 142 
free (u); 143 
free (v); 144 
} 145 
void randomInit(double *A,double *X,double *B,int wA) 146 
{ 147 
        int i,j; 148 
        for(i = 0; i < wA; i++) 149 
        { 150 
                for(j = 0; j < wA; j++) 151 
                { 152 
                        if (i==j) 153 
                        { 154 
                                A[i*wA+j] = wA; 155 
                        } 156 
                        else 157 
                        { 158 
                                A[i*wA+j] = -1 ; 159 
                        } 160 
                } 161 
  162 
                X[i] = 0; 163 
                B[i] = 1; 164 
        } 165 
} 166 
 167 
 168 
void print1d(double *a,int N) 169 
{ 170 
printf("\nStart printing\n"); 171 
 int i,j; 172 
 for(i=0;i<N;i++) 173 
 { 174 
 printf("%.5f\n",a[i]); 175 
 } 176 
printf("\nEnd printing\n"); 177 
} 178 
void print2d(double *a,int N) 179 
{ 180 
int i,j; 181 
printf("\nStart printing\n"); 182 
 for(i=0;i<N;i++) 183 
  { 184 
   for(j=0;j<N;j++) 185 
   { 186 
   printf("%.5f\t",a[i*N+j]); 187 
   } 188 
 printf("\n"); 189 
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  } 190 
printf("\nEnd printing\n"); 191 
} 192 
 193 
 194 
 195 
int main(int argc, char *argv[]){ 196 
 197 
int iter=1; 198 
 if(argc > 1) 199 
 200 
  N = atoi(argv[1]); 201 
 202 
 if(argc > 2) 203 
 204 
  T = atoi(argv[2]); 205 
 if(argc > 3) 206 
  rows_size=atoi(argv[3]); 207 
 if(argc > 4) 208 
  cols_size=atoi(argv[4]); 209 
  210 
 211 
 212 
 213 
 double sum; 214 
 215 
 int i,i1, j, k , ii , jj; 216 
 int kk=N/T; // to compute the size of the rows for each thread. 217 
 double *A=malloc(sizeof(double)*N*N); 218 
 double *B=(double*)malloc(N*sizeof(double)); 219 
 double *X=(double*)malloc(3*N*sizeof(double)); // this is to store X at 220 
the intialization , at K , K+1 221 
 //double *XX=(double*)malloc(N*sizeof(double)); // this is to store 222 
result X that produced from K iteration which will be referenced by the mod2=0 223 
 //double *XXX=(double*)malloc(N*sizeof(double)); // this is to store 224 
result X that produced from K+1 iteration which will be referenced by mod2==1 225 
 //double *Xp; // to store the value of X for each thread 226 
 double *Xnew_sub; // to store the new value that is computed by each 227 
thread 228 
 double *new_x=(double*)malloc(N*sizeof(double)); 229 
 double *X_seq=(double*)malloc(N*sizeof(double)); 230 
  231 
  232 
//accuracyTestInit2D(A,N); 233 
//accuracyTestInit1D(B,N); 234 
//accuracyTestInit1D(X,N); 235 
//accuracyTestInit1D(X_seq,N); 236 
/*for(i=0;i<N;i++) 237 
{ 238 
 for(j=0;j<N;j++) 239 
 { 240 
 A[i*N+j]=sqrt(i+j)*0.2546; 241 
 } 242 
} 243 
for(i=0;i<N;i++) 244 
{ 245 
B[i]=sqrt(i*j); 246 
}*/ 247 
randomInit(A,B,X,N); 248 
for(i=0;i<N;i++) 249 
{ 250 
X_seq[i]=X[i]; 251 
} 252 
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 253 
 254 
 255 
 256 
 double dtime=0.0; 257 
 258 
 double etime=0.0, stime=0.0; 259 
 260 
 261 
  262 
// here to compute the Sequantial version 263 
//printf("\nstart computing Sequantial jacobi....\n");  264 
 265 
stime = omp_get_wtime(); 266 
for(k = 0; k < MAX_ITER; k++){ 267 
 268 
  for(i=0; i<N; i++){ 269 
   sum = 0.0; 270 
   sum=sum-(A[i*N+i] * X_seq[i]); 271 
 272 
   for(j=0; j<N; j++){ 273 
 274 
          sum =sum + (A[i*N+j] * X_seq[j]); 275 
   } 276 
 277 
     new_x[i] = (B[i] - sum)/A[i*N+i]; 278 
 279 
   }   280 
 281 
  for(i=0; i < N; i++) 282 
   X_seq[i] = new_x[i]; 283 
 } 284 
etime = omp_get_wtime();   285 
 286 
 dtime = etime - stime; 287 
 288 
printf("\ncomputing sequantial for 1 dimention= %.5f\t", dtime); 289 
 290 
 291 
 292 
// Optimized Parallel version of jacobi using blocking 293 
// **************************************************************************** 294 
// **************************************************************************** 295 
omp_set_num_threads(T); 296 
dtime=0.0; 297 
int kkk; 298 
 299 
for(kkk=0;kkk<iter;kkk++) 300 
{ 301 
//accuracyTestInit1D(X,N); 302 
stime = omp_get_wtime();   303 
 304 
#pragma omp parallel shared (A,B,X,N,T,kk,rows_size,cols_size) 305 
private(k,i,ii,j,sum,Xnew_sub) 306 
{ 307 
 //Xp=(double*)malloc(N*sizeof(double)); 308 
 Xnew_sub=(double*)malloc((kk)*sizeof(double)*2);//we multiply it by 2 to 309 
store for K and for K+1 310 
 int tid=omp_get_thread_num(); 311 
 ii=tid*kk;// index of te rows that related to the the thread 312 
 int i_n=kk/rows_size;//number  of rows chunk 313 
 int j_n=N/cols_size;//number of column chunk  314 
 int iii,jjj; 315 
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 316 
for(k=0;k<MAX_ITER;k++) 317 
{ 318 
   319 
  for(i=0;i<kk;i++) 320 
   Xnew_sub[i]=0; 321 
  //#pragma omp barrier // here is the most appropriate palce to put 322 
the pragma to insure the consistency of the result 323 
  /*for(i=0;i<N;i++) 324 
     { 325 
  Xp[i]=X[i]; 326 
     } */ 327 
 328 
for(iii=0;iii<i_n;iii++) 329 
{ for(jjj=0;jjj<j_n;jjj++) 330 
  {         331 
  for(i=0; i<rows_size; i++){ 332 
   sum=0.0; 333 
   //sum = sum-(A[(i+ii+iii)*N+i+ii+iii]*Xp[i+ii+iii]); 334 
 335 
   for(j=0; j<cols_size; j++){ 336 
    sum+= A[(i+ii+(iii*rows_size))*N+j+(jjj*cols_size)] * 337 
X[j+(jjj*cols_size)]; 338 
    } 339 
 340 
   //Xnew_sub[i+iii]+= (B[i+ii+iii] - 341 
sum)/A[(i+ii+iii)*N+i+ii+iii]; 342 
   Xnew_sub[i+(iii*rows_size)]+=sum; 343 
   } 344 
  }//end of jjj 345 
  for(i=0;i<rows_size;i++) 346 
  { 347 
Xnew_sub[i+(iii*rows_size)]=Xnew_sub[i+(iii*rows_size)]-348 
(A[(i+ii+(iii*rows_size))*N+i+ii+(iii*rows_size)]*X[i+ii+(iii*rows_size)]);  349 
Xnew_sub[i+(iii*rows_size)]=(B[i+ii+(iii*rows_size)]-350 
Xnew_sub[i+(iii*rows_size)])/A[(i+ii+(iii*rows_size))*N+i+ii+(iii*rows_size)]; 351 
 352 
  }   353 
 354 
}//end of iii 355 
 //#pragma omp barrier  356 
 for(i=0;i<kk;i++){ 357 
  X[i+ii]=Xnew_sub[i]; 358 
 } 359 
   360 
}//end of the iteration MAX_ITER  361 
 362 
 363 
free(Xnew_sub); 364 
}//parallel pragma 365 
    366 
etime=omp_get_wtime(); 367 
dtime+=(etime-stime); 368 
} 369 
printf("parallel for 1D optimized blocked jacobi= \t%5f",(dtime/iter)); 370 
 371 
//print1d(X_seq,N); 372 
//print1d(X,N); 373 
 374 
 375 
// to test that the code working well 376 
int result = 0; 377 
        for(i=0; i < N; i++){ 378 
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                 if(fabs(X[i]-X_seq[i]) > ERR_THRESHOLD) 379 
        { 380 
                  // printf("(%d) : (%.5f,%.5f)\n", i, X[i], X_seq[i]); 381 
                   result = 1; 382 
                        } 383 
 //if(result == 1) break; 384 
 } 385 
 386 
 387 
        printf("\tTest %s", (result == 0) ? "Passed\n" : "Failed\n"); 388 
 389 
free(A); 390 
free(B); 391 
free(X); 392 
free(X_seq); 393 
free(new_x); 394 
 395 
 return 0; 396 
 397 
} 398 
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//RELAXED JACOBI SOLVER 1 
#include <stdio.h> 2 
#include <math.h> 3 
#include <unistd.h> 4 
#include <time.h> 5 
#include <sys/time.h> 6 
#include <math.h> 7 
#include <stdlib.h> 8 
#include <omp.h> 9 
#define MAX_ITER 100 10 
#define ERR_THRESHOLD 0.00001 11 
#define RUN_CRITICAL 12 
#define RUN_ATOMIC 13 
#define MAX 4 14 
 15 
int N = 8; 16 
int T = 2; 17 
int tr=0; 18 
 19 
int rows_size=2; 20 
int cols_size=2; 21 
//This is the prototype for the queue function that will be used in the 22 
implementation 23 
 24 
//#############################################################################25 
################# 26 
//############## Intialization Funtions that used in JACOBI TO INSURE 27 
CORRECTNESS OF OUR WORK### 28 
//#############################################################################29 
################# 30 
 31 
 32 
void randomInit(double *A,double *X,double *B,int wA) 33 
{ 34 
        int i,j; 35 
        for(i = 0; i < wA; i++) 36 
        { 37 
                for(j = 0; j < wA; j++) 38 
                { 39 
                        if (i==j) 40 
                        { 41 
                                A[i*wA+j] = wA; 42 
                        } 43 
                        else 44 
                        { 45 
                                A[i*wA+j] = -1 ; 46 
                        } 47 
                } 48 
  49 
                X[i] = 0; 50 
                B[i] = 1; 51 
        } 52 
} 53 
 54 
 55 
void print1d(double *a,int N) 56 
{ 57 
printf("\nStart printing\n"); 58 
 int i,j; 59 
 for(i=0;i<N;i++) 60 
 { 61 
 printf("%.5f\n",a[i]); 62 
 } 63 
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printf("\nEnd printing\n"); 64 
} 65 
void print2d(double *a,int N) 66 
{ 67 
int i,j; 68 
printf("\nStart printing\n"); 69 
 for(i=0;i<N;i++) 70 
  { 71 
   for(j=0;j<N;j++) 72 
   { 73 
   printf("%.5f\t",a[i*N+j]); 74 
   } 75 
 printf("\n"); 76 
  } 77 
printf("\nEnd printing\n"); 78 
} 79 
 80 
 81 
 82 
int main(int argc, char *argv[]) 83 
{ 84 
 85 
int iter=1; 86 
 if(argc > 1) 87 
  N = atoi(argv[1]); 88 
 if(argc > 2) 89 
  T = atoi(argv[2]); 90 
 if(argc > 3) 91 
  rows_size=atoi(argv[3]); 92 
 if(argc > 4) 93 
  cols_size=atoi(argv[4]); 94 
 if(argc > 5 ) 95 
  tr=atoi(argv[5]); 96 
 97 
  98 
if ( argc < 1 ) 99 
printf("\n You muste Enter the following parameter : Mtrix size , number of 100 
threads , rows size , column size. For Relaxed jacobi number of rows and blocks 101 
will be the number of threads for simplicity we will extend them later to 102 
improve the performance\n"); 103 
 104 
 105 
 double sum; 106 
 107 
 int i,i1,j,k,ii,jj; 108 
 int kk=N/T; // to compute the size of the rows for each thread. 109 
 double *A=malloc(sizeof(double)*N*N); 110 
 double *B=(double*)malloc(N*sizeof(double)); 111 
 double *X=(double*)malloc(2*N*sizeof(double)); // this is to store X at 112 
the intialization ,at K and also K+1 113 
 //double *XX=(double*)malloc(N*sizeof(double)); // this is to store 114 
result X that produced from K iteration which will be referenced by the mod2=0 115 
 //double *XXX=(double*)malloc(N*sizeof(double)); // this is to store 116 
result X that produced from K+1 iteration which will be referenced by mod2==1 117 
 //double *Xp; // to store the value of X for each thread 118 
 double *Xnew_sub; // to store the new value that is computed by each 119 
thread 120 
 double *new_x=(double*)malloc(N*sizeof(double)); 121 
 double *X_seq=(double*)malloc(N*sizeof(double)); 122 
 int work[T]; // this is a shared array that containes 0 , 1 for the 123 
blocks that is processed 124 
  125 
 126 
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  127 
 //we an assumption that the number of blocks will be the number of 128 
threads in column dimention to insure simplicity for the programming 129 
  130 
//accuracyTestInit2D(A,N); 131 
//accuracyTestInit1D(B,N); 132 
//accuracyTestInit1D(X,N); 133 
//accuracyTestInit1D(X_seq,N); 134 
/*for(i=0;i<N;i++) 135 
{ 136 
 for(j=0;j<N;j++) 137 
 { 138 
 A[i*N+j]=sqrt(i+j)*0.2546; 139 
 } 140 
} 141 
for(i=0;i<N;i++) 142 
{ 143 
B[i]=sqrt(i*j); 144 
}*/ 145 
randomInit(A,B,X,N); 146 
for(i=0;i<N;i++) 147 
{ 148 
X_seq[i]=X[i]; 149 
} 150 
 double dtime=0.0; 151 
 double etime=0.0, stime=0.0; 152 
  153 
// here to compute the Sequantial version 154 
//printf("\nstart computing Sequantial jacobi....\n");  155 
/*printf("\nStart Computing Sequantial\n"); 156 
stime = omp_get_wtime(); 157 
for(k = 0; k < MAX_ITER; k++){ 158 
 159 
  for(i=0; i<N; i++){ 160 
   sum = 0.0; 161 
   sum=sum-(A[i*N+i] * X_seq[i]); 162 
 163 
   for(j=0; j<N; j++){ 164 
 165 
          sum =sum + (A[i*N+j] * X_seq[j]); 166 
   } 167 
 168 
     new_x[i] = (B[i] - sum)/A[i*N+i]; 169 
 170 
   }   171 
 172 
  for(i=0; i < N; i++) 173 
   X_seq[i] = new_x[i]; 174 
 } 175 
etime = omp_get_wtime();   176 
 177 
 dtime = etime - stime;*/ 178 
 179 
//printf("\ncomputed sequantial for 1 dimention=%.5f\n", dtime); 180 
 181 
 182 
 183 
// Optimized Parallel version of jacobi using RELAXED SYNCHRONIZATION 184 
// **************************************************************************** 185 
// **************************************************************************** 186 
omp_set_num_threads(T); 187 
dtime=0.0; 188 
int kkk; 189 
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 190 
for(kkk=0;kkk<iter;kkk++) 191 
{ 192 
//accuracyTestInit1D(X,N); 193 
stime = omp_get_wtime();   194 
 195 
#pragma omp parallel shared (A,B,X,N,T,kk,rows_size,cols_size,work) 196 
private(k,i,ii,j,sum,Xnew_sub) 197 
{ 198 
 //Xp=(double*)malloc(N*sizeof(double)); 199 
 Xnew_sub=(double*)malloc((kk)*sizeof(double));//we multiply it by 2 to 200 
store for K and for K+1 201 
 int p_work[T];// this is a private variable that all the time its value 202 
copied from the shared variable "work" 203 
 int tid=omp_get_thread_num(); 204 
 ii=tid*kk;// index of te rows that related to the the thread 205 
 int i_n=kk/rows_size;//number  of rows chunk 206 
 int j_n=N/cols_size;//number of column chunk 207 
 int w[T];// the blocks that is processed for each iteration by the thread 208 
 int iii,jjj; 209 
 int index_r,index_w; 210 
 int temp; 211 
 int counter; 212 
 int spin=1; 213 
 iii=0; 214 
 int loop=1; 215 
 int av=0; 216 
  217 
  218 
  219 
 220 
 221 
for(i=0;i<kk;i++) 222 
Xnew_sub[i]=0; 223 
 224 
for(k=0;k<MAX_ITER;k++) 225 
{ 226 
// we must reset the shared work matrix by the thread0 227 
if(tid==0) 228 
{ 229 
 //printf("\nThe work setted by thread 0\n"); 230 
 for(i=0;i<T;i++) 231 
 { 232 
 work[i]==0; 233 
 } 234 
} 235 
 236 
//if(omp_get_thread_num()==tr) 237 
//printf("\nIteration#=%d",k); 238 
// To decrease overhead of index computation. We must reorganize the location 239 
of index computation. 240 
if(k%2==0) 241 
{ 242 
index_r=0; 243 
index_w=1;  244 
} 245 
else  246 
{ 247 
index_r=1; 248 
index_w=0; 249 
} 250 
 251 
for(i=0;i<T;i++) 252 



 

136 

 

{ 253 
 w[i]=0; 254 
} 255 
 256 
counter=0; 257 
 258 
 259 
if(k==0) 260 
{ 261 
iii=0; 262 
jjj=0; 263 
} 264 
else 265 
{ 266 
//iii=tid;//becuase the first block they will compute the block that computed 267 
by it 268 
jjj=tid;//becuase the first block they will compute the block that computed by 269 
it 270 
w[tid]=1; 271 
} 272 
 273 
//for(iii=0;iii<i_n;iii++) // here to count the rows 274 
//{  275 
 //for(jjj=0;jjj<j_n;jjj++) // here to count the blocks 276 
  //{  277 
while( counter < (T-1)) // this is means that we process all the blocks for a 278 
specific iteration 279 
{ 280 
spin=1; // we must reset it  281 
loop=1; // reset of the loop 282 
//if(omp_get_thread_num()==tr) 283 
//printf("\nCounter=%d\n",counter); 284 
  for(i=0; i<rows_size; i++){ 285 
   sum=0.0; 286 
   //sum = sum-(A[(i+ii+iii)*N+i+ii+iii]*Xp[i+ii+iii]); 287 
   for(j=0; j<cols_size; j++){ 288 
    sum+= A[(i+ii+(iii*rows_size))*N+j+(jjj*cols_size)] * 289 
X[j+(jjj*cols_size)+index_r*N]; 290 
    } 291 
   //Xnew_sub[i+iii]+= (B[i+ii+iii] - 292 
sum)/A[(i+ii+iii)*N+i+ii+iii]; 293 
   Xnew_sub[i+(iii*rows_size)]+=sum; 294 
   } 295 
  if(k!=0) // it is not the first iteration 296 
  { 297 
   while(spin==1 ) 298 
   { 299 
    while(loop==1) 300 
    { 301 
    #pragma omp flush(work) 302 
     for(i=0;i<T;i++) 303 
     { 304 
     p_work[i]=work[i]; 305 
     if(p_work[i]==1 && w[i] == 0) 306 
      { 307 
      loop=0; // to stop looping 308 
      jjj=i; 309 
      w[i]=1; 310 
      spin=0; 311 
      break; 312 
      }     313 
     } 314 
    //printf("\nSpinning Searching for a block\n"); 315 
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    } // this is to keep spinning untill a work a 316 
vailable 317 
  //printf("\nSpinning Searching for a work\n"); 318 
   } // this is to spin searching for a work 319 
  } 320 
  else 321 
  { 322 
  //iii++; 323 
  jjj++; 324 
  } 325 
counter++; 326 
} 327 
  //}//end of jjj 328 
  for(i=0;i<rows_size;i++) 329 
  { 330 
Xnew_sub[i+(iii*rows_size)]=Xnew_sub[i+(iii*rows_size)]-331 
(A[(i+ii+(iii*rows_size))*N+i+ii+(iii*rows_size)]*X[i+ii+(iii*rows_size)+index_332 
r*N]);  333 
Xnew_sub[i+(iii*rows_size)]=(B[i+ii+(iii*rows_size)]-334 
Xnew_sub[i+(iii*rows_size)])/A[(i+ii+(iii*rows_size))*N+i+ii+(iii*rows_size)]; 335 
 336 
  }   337 
//}//end of iii 338 
 //here is incorret add of the barrier , the barrier must be added before 339 
reading the data to update Xp 340 
 for(i=0;i<kk;i++){ 341 
  X[i+ii+(N*index_w)]=Xnew_sub[i]; // here to define where to store 342 
the data for iter k , or k+1  343 
 } 344 
 work[tid]=1; // to indicate that a block is a vailable 345 
 /*if(tid==tr) 346 
 { 347 
 for(i=0;i<T;i++) 348 
 { 349 
 printf("\t%d",work[i]); 350 
 } 351 
 }*/ 352 
  353 
  354 
}//end of the iteration MAX_ITER  355 
 356 
 357 
free(Xnew_sub); 358 
}//parallel pragma 359 
    360 
etime=omp_get_wtime(); 361 
dtime+=(etime-stime); 362 
} 363 
printf("\nparallel for 1D optimized Relaxed Jacobi= \t%5f\n",(dtime/iter)); 364 
 365 
//print1d(X_seq,N); 366 
//print1d(X,N); 367 
 368 
 369 
// to test that the code working well 370 
/*int result = 0; 371 
        for(i=0; i < N; i++){ 372 
                 if(fabs(X[i]-X_seq[i]) > ERR_THRESHOLD) 373 
        { 374 
                  // printf("(%d) : (%.5f,%.5f)\n", i, X[i], X_seq[i]); 375 
                   result = 1; 376 
                        } 377 
 //if(result == 1) break; 378 
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 } 379 
 380 
 381 
        printf("\tTest %s", (result == 0) ? "Passed\n" : "Failed\n");*/ 382 
 383 
free(A); 384 
free(B); 385 
free(X); 386 
free(X_seq); 387 
free(new_x); 388 
 389 
 return 0; 390 
 391 
} 392 
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Appendix C: BARNES-HUT N-BODY SIMULATION 

 

 Nature of the application 

The N-body simulation is considered as a model of semi static computations. A brute force 

approach for computing the gravitational forces for N bodies is on the O(N
2
). The Barnes Hut 

(BH) approximation enables treating a group of bodies as one if these are far enough from a given 

body. This drops the computational complexity to O(NlogN) when using BH.  BH uses an oct-

tree, in which each node stores the aggregate mass of all of its children nodes (sub-tree) at their 

center of mass. Another problem is that the thread load moderately changes from one iteration to 

another due to body motion in space. Therefore, a static problem partitioning strategy (S-BH) for 

BH is likely to suffer from accumulated load unbalance. It well known that dynamic load 

balancing (DLB) improves BH scalability. However, DLB is complex because of the need to 

measure the Dynamic Load (DL) and adopt an adequate data structure to minimize runtime 

overheads. In the beginning of iteration k, the body slowly motion enables estimating the DL for  

K+1 as being the aggregate load measured by all the treads in iteration k. Thus DLB is 

implemented by evenly partitioning the DL over the threads so that to preserve the data locality to 

the best possible. I implemented DLB-BH using an efficient data structure to ease load 

redistribution together with oct-tree implementation.  

 Data Structure 

I have two main arrays in the implementation. The bodies array which containes the 

velocity, postions and the mass. Also, it containes an index for the DFT which is used to 
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order the array (refere to chapter 5 for more details). In addition,  the nodes array is 

implemented which containes center of mass, pointer to the next subtree , index of DFT 

and variable to differe between node and body object. 

 

 Procedures 

There are many procedures in the code. To simplify understanding each procedure is 

commented to expalain its purpose and how it is work. 

 

 Input and Output 

Inside the code there is a procedure called “Generate_GalaxyKing” . It takes a galaxy 

of Size 10^6 and generates a 125 galaxies. They are spreaded in the space of size 

(400x400). (refere to chapter 5, section 5.9 for more detailes).
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//BARNES-HUT N-BODY SIMULATION 1 
#include <stdio.h> 2 
#include <stdlib.h> 3 
#include <string.h> 4 
#include <algorithm> 5 
#include <math.h> 6 
#include <time.h> 7 
#include <omp.h> 8 
// number of steps for the program 9 
 10 
unsigned long report1[10][10]; 11 
double allam_report[5*4800][10]; // this is added to report the 12 
data that is produced from the program 13 
#define steps 20 14 
unsigned long normal=0,seq=0,zone=0,dynamic=0; 15 
unsigned long threads= 1; 16 
#define MAX_THREADS 240 17 
unsigned long ThreadStart[MAX_THREADS]; 18 
unsigned long ThreadEnd[MAX_THREADS]; 19 
unsigned long long  ThreadCDF[MAX_THREADS]; 20 
double ThreadStartTime[MAX_THREADS]; 21 
double ThreadEndTime[MAX_THREADS]; 22 
double ThreadAvgTime[MAX_THREADS]; 23 
unsigned long generate=0; 24 
#define PI (atan((float)1)*4) 25 
#define maxB 13000000 26 
#define maxNodes (maxB * 10) 27 
unsigned long MaxNBodies = 0; 28 
#define minimum_space 0.01 29 
struct Body { 30 
 unsigned long id; 31 
 float posx, posy, posz; 32 
 float vx, vy, vz; 33 
 float fx, fy, fz; 34 
 void* my_node; 35 
 float mass; 36 
 unsigned long long zoneCost; 37 
 void operator= (const Body &); 38 
 inline bool operator< (const Body &); 39 
}; 40 
 41 
struct node {  42 
 struct Body *B; 43 
 float cx, cy, cz; //Center of the square  44 
 float d;      //Half side of the square 45 
 unsigned long is_internal_node;  //1 = internal node, 46 
0 = leaf node 47 
 struct node* child[8];    //Pointers to the node children   48 
 //struct node* next; 49 
 struct node* parent; 50 
 unsigned long BH; 51 
 unsigned long index_in_brothers; 52 



 

142 

 unsigned long index_of_next_neighbour; 53 
 unsigned long BreadthFirstIndex; 54 
};  55 
 56 
static Body * Bodies[maxB] = {NULL};// here it is an array of 57 
bodies 58 
static node * AllNodes2[maxNodes] = {NULL}; // here it is an 59 
array of nodes 60 
 61 
// softening parameter 62 
#define EPS 30000 63 
#define EPS2 (EPS * EPS) 64 
 65 
int id_b=0; 66 
 67 
//time for each step 68 
const float dt = (float) 0.01; 69 
 70 
// gravational constant 71 
const float G = (float)6.67* (float)pow(10.0,-11.0); 72 
 73 
const char * filename_simple = "data/Bodies001_simple.txt"; 74 
const char * filename_simple_sorted = 75 
"data/Bodies001_simple_sorted.txt"; 76 
 77 
const char * filename_poisson = "data/Bodies001_poisson.txt"; 78 
const char * filename_poisson_sorted = 79 
"data/Bodies001_poisson_sorted.txt"; 80 
 81 
const char * filename_poisson2 = "data/Bodies001_poisson2.txt"; 82 
const char * filename_poisson_sorted2 = 83 
"data/Bodies001_poisson_sorted2.txt"; 84 
const char * filename_test ="data/Bodies001_poisson2.txt"; 85 
//"data/100t.txt"; 86 
const char * filename_GalaxyKingModel_100 = 87 
"data/KingModel_0.1MBodies.txt"; 88 
const char * filename_GalaxyKingModel_1M= 89 
"data/KingModel_1MBodies.txt"; 90 
const char * filename_GalaxyKingModel_1M_nonsorted= 91 
"data/KingModel_1MBodies_nonsorted.txt"; 92 
 93 
char * filepath;// = "D:/NBdata/"; 94 
 95 
unsigned long No_of_Nodes = 0; 96 
 97 
#define maxVelBound 10   //The maximum initial 98 
velocity of a body 99 
#define maxMassBound 9   //The maximum mass for a 100 
given body 101 
#define maxPosBound 400   //The maximum value for x 102 
and y coordinates of a body 103 
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#define minPosBound 0   //The maximum value for x and y 104 
coordinates of a body 105 
#define spaceCenterX (maxPosBound / 2)   //The position 106 
of the x coordinate of Center of space 107 
#define spaceCenterY (maxPosBound / 2)   //The position 108 
of the y coordinate of Center of space 109 
#define spaceCenterZ (maxPosBound / 2)  // <anas added for 3d : 110 
The position of z coordinate of Center of space /> 111 
#define spaceCenterHfside (maxPosBound / 2) //Half side of Space 112 
 113 
void Body::operator= (const Body &B2) 114 
{ 115 
 id   = B2.id; 116 
 posx = B2.posx; 117 
 posy = B2.posy; 118 
 posz = B2.posz; 119 
 mass = B2.mass; 120 
 vx   = B2.vx; 121 
 vy   = B2.vy; 122 
 vz   = B2.vz; 123 
} 124 
 125 
bool Body::operator< (const Body &B2) { 126 
 float my_dist = sqrt( (posx-spaceCenterX) * (posx-127 
spaceCenterX) + 128 
  (posy-spaceCenterY) * (posy-spaceCenterY) + 129 
  (posz-spaceCenterZ) * (posz-spaceCenterZ)); 130 
 float his_dist = sqrt( (B2.posx-spaceCenterX) * (B2.posx-131 
spaceCenterX) + 132 
  (B2.posy-spaceCenterY) * (B2.posy-spaceCenterY) + 133 
  (B2.posz-spaceCenterZ) * (B2.posz-spaceCenterZ)); 134 
 return my_dist < his_dist; 135 
 136 
} 137 
 138 
inline bool Body_comparer_function(const Body* B1, const Body* 139 
B2) { 140 
 return sqrt( (B1->posx-spaceCenterX) * (B1->posx-141 
spaceCenterX) + 142 
  (B1->posy-spaceCenterY) * (B1->posy-spaceCenterY) + 143 
  (B1->posz-spaceCenterZ) * (B1->posz-spaceCenterZ) ) 144 
  < 145 
  sqrt( (B2->posx-spaceCenterX) * (B2->posx-146 
spaceCenterX) + 147 
  (B2->posy-spaceCenterY) * (B2->posy-spaceCenterY) + 148 
  (B2->posz-spaceCenterZ) * (B2->posz-spaceCenterZ) ); 149 
 150 
} 151 
 152 
struct node* newNode(float cx, float cy,float cz, float d, Body 153 
*B1) {//  154 
 node* nd = new node(); 155 
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 //nd = new(struct node);   156 
 if (No_of_Nodes >= maxNodes) 157 
 { 158 
  printf("Error: increase the no of nodes\nPress any key 159 
to exit"); 160 
  getchar(); 161 
  exit(-1); 162 
 } 163 
 if (AllNodes2[No_of_Nodes] != NULL) 164 
  delete(AllNodes2[No_of_Nodes]); 165 
 AllNodes2[No_of_Nodes++] = nd; 166 
 nd->B = B1; 167 
 if(B1 != NULL) 168 
  B1->my_node = nd; 169 
 nd->cx = cx; 170 
 nd->cy = cy; 171 
 nd->cz = cz; 172 
 nd->d = d; 173 
 nd ->is_internal_node = 0;  174 
 nd ->BH = 0;  175 
 //nd ->next = NULL;  176 
 nd ->parent= NULL;  177 
 nd ->index_in_brothers = 8; //8 means no index // a correct 178 
index should be between 0 and 7 179 
 //    nd ->H_index= -1;  180 
 nd->BreadthFirstIndex = No_of_Nodes - 1; 181 
 for(unsigned long i = 0; i < 8; i++)  182 
  nd->child[i] = NULL;    183 
 return(nd);  184 
}  185 
 186 
bool saveBodiesLocations(const char * filename1) 187 
{ 188 
 char filename [255] = ""; 189 
 strcpy(filename,filepath); 190 
 strcat(filename,filename1); 191 
 192 
 char bodydata[60]; 193 
 FILE *f; 194 
 if ((f=fopen(filename , "w")) == NULL) 195 
 { 196 
  printf("The file '%s' was not opened\n", filename); 197 
  return true; 198 
 } 199 
 else 200 
 {     201 
  for (unsigned long ii = 0; ii < MaxNBodies; ii++)  202 
  { 203 
   sprintf( bodydata,"%12f %12f %12f\n", Bodies[ii]-204 
>posx, Bodies[ii]->posy, Bodies[ii]->posz); 205 
   fputs (bodydata , f); 206 
  } 207 
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 } 208 
 fclose(f); 209 
 return false; 210 
} 211 
 212 
 213 
inline char * Body_toString(Body * b, char * bodydata) 214 
{ 215 
 sprintf(bodydata,"%6.12f, %6.12f, %6.12f, %6.12f, %6.12f, 216 
%6.12f, %6.12f, %6.12f, %6.12f, %6.12f\n\0", 217 
  b->mass, 218 
  b->posx ,b->posy, b->posz, 219 
  b->vx ,b->vy, b->vz, 220 
  b->fx ,b->fy, b->fz); 221 
 222 
 return bodydata; 223 
} 224 
 225 
bool saveBodies(const char * filename1) 226 
{ 227 
 char filename [255]= ""; 228 
 strcpy(filename,filepath); 229 
 strcat(filename,filename1); 230 
 231 
 char bodydata[(10*21+5)]; 232 
 FILE *f; 233 
 if ((f=fopen(filename , "w")) == NULL) 234 
 { 235 
  printf("The file '%s' was not opened\n", filename); 236 
  return true; 237 
 } 238 
 else 239 
 {     240 
  for (unsigned long ii = 0; ii < MaxNBodies; ii++)  241 
  { 242 
   Body_toString(Bodies[ii], bodydata); 243 
   fputs (bodydata , f); 244 
  } 245 
 } 246 
 fclose(f); 247 
 return false; 248 
} 249 
 250 
 251 
inline void parseString(Body *b, char * bodydata) 252 
{ 253 
 char s [30]; 254 
 unsigned long jj=0, ii=0; 255 
 256 
 while( (bodydata[ii]!='\t') && (bodydata[ii]!='\n')&& 257 
(bodydata[ii]!=' ')&& (bodydata[ii]!='\0')) s[jj++] = 258 
bodydata[ii++]; 259 
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 s[jj]='\0'; 260 
 b->mass = (float) atof(s); 261 
 ii++; 262 
 jj = 0; 263 
 264 
 while( (bodydata[ii]!='\t') && (bodydata[ii]!='\n')&& 265 
(bodydata[ii]!=' ')&& (bodydata[ii]!='\0')) s[jj++] = 266 
bodydata[ii++]; 267 
 s[jj]='\0'; 268 
 b->posx = (float) atof(s); 269 
 ii++; 270 
 jj = 0; 271 
 272 
 while( (bodydata[ii]!='\t') && (bodydata[ii]!='\n')&& 273 
(bodydata[ii]!=' ')&& (bodydata[ii]!='\0')) s[jj++] = 274 
bodydata[ii++]; 275 
 s[jj]='\0'; 276 
 b->posy = (float) atof(s); 277 
 ii++; 278 
 jj = 0; 279 
 280 
 while( (bodydata[ii]!='\t') && (bodydata[ii]!='\n')&& 281 
(bodydata[ii]!=' ')&& (bodydata[ii]!='\0')) s[jj++] = 282 
bodydata[ii++]; 283 
 s[jj]='\0'; 284 
 b->posz = (float) atof(s); 285 
 ii++; 286 
 jj = 0; 287 
 288 
 while( (bodydata[ii]!='\t') && (bodydata[ii]!='\n')&& 289 
(bodydata[ii]!=' ')&& (bodydata[ii]!='\0')) s[jj++] = 290 
bodydata[ii++]; 291 
 s[jj]='\0'; 292 
 b->vx = (float) atof(s); 293 
 ii++; 294 
 jj = 0; 295 
 296 
 while( (bodydata[ii]!='\t') && (bodydata[ii]!='\n')&& 297 
(bodydata[ii]!=' ')&& (bodydata[ii]!='\0')) s[jj++] = 298 
bodydata[ii++]; 299 
 s[jj]='\0'; 300 
 b->vy = (float) atof(s); 301 
 ii++; 302 
 jj = 0; 303 
 304 
 while( (bodydata[ii]!='\t') && (bodydata[ii]!='\n')&& 305 
(bodydata[ii]!=' ')&& (bodydata[ii]!='\0')) s[jj++] = 306 
bodydata[ii++]; 307 
 s[jj]='\0'; 308 
 b->vz = (float) atof(s); 309 
 ii++; 310 
 jj = 0; 311 



 

147 

} 312 
 313 
void generate_positions_poisson2() { 314 
 srand((unsigned long)(time(NULL)*100)); 315 
 unsigned long i; 316 
 float a,b,r0_y,r_y,r_x,u,r0_x,r_z,r0_z; 317 
 r0_y = maxPosBound / 15; 318 
 r0_x = maxPosBound / 15; 319 
 r0_z = maxPosBound / 15; 320 
 for (i = 0; i < MaxNBodies; i++) { 321 
  Bodies[i] = new Body; 322 
  Bodies[i]->id   = i; 323 
  do { 324 
   u = (float) rand() / RAND_MAX; 325 
   r_y = -r0_y*log(1-u); 326 
   r_x = -r0_x*log(1-u); 327 
   r_z = -r0_z*log(1-u); 328 
   a = ((float) (rand()) / RAND_MAX) * 2 * PI; 329 
   b = ((float) (rand()) / RAND_MAX) * 2 * PI; 330 
   Bodies[i]->posx = (r_x*cos(a)*cos(b)) + 331 
maxPosBound / 2; 332 
   Bodies[i]->posy = (r_y*cos(a)*sin(b)) + 333 
maxPosBound / 2 ; 334 
   Bodies[i]->posz = (r_z*sin(a)) + maxPosBound / 2; 335 
  } while (Bodies[i]->posx > maxPosBound || Bodies[i]-336 
>posy > maxPosBound || Bodies[i]->posz > maxPosBound ||  337 
   Bodies[i]->posx < minPosBound || Bodies[i]->posy 338 
< minPosBound || Bodies[i]->posz < minPosBound 339 
   ); 340 
  Bodies[i]-> mass = 10;//(float) rand() / RAND_MAX * 341 
maxMassBound + 1; 342 
  Bodies[i]->vx   = ((float) rand() / RAND_MAX * 343 
maxVelBound) - (float)maxVelBound/2; 344 
  Bodies[i]->vy   = ((float) rand() / RAND_MAX * 345 
maxVelBound) - (float)maxVelBound/2; 346 
  Bodies[i]->vz = ((float) rand() / RAND_MAX * 347 
maxVelBound) - (float)maxVelBound/2; 348 
  Bodies[i]->fx   = (float) rand() / RAND_MAX * 349 
maxVelBound; 350 
  Bodies[i]->fy   = (float) rand() / RAND_MAX * 351 
maxVelBound; 352 
  Bodies[i]->fz = (float) rand() / RAND_MAX * 353 
maxVelBound; 354 
  Bodies[i]->fx   = Bodies[i]->fy = Bodies[i]->fz = 0; 355 
 } 356 
} 357 
 358 
bool loadBodies(const char * filename1) 359 
{ 360 
 char filename [255] = ""; 361 
 strcpy(filename,filepath); 362 
 strcat(filename,filename1); 363 
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 364 
 char bodydata[(10*21+5)]; 365 
 FILE *f; 366 
 if ((f=fopen(filename , "r")) == NULL) 367 
 { 368 
  printf("The file '%s' was not opened\n", filename); 369 
  return true; 370 
 } 371 
 else 372 
 {     373 
  for (unsigned long ii = 0; ii < MaxNBodies; ii++)  374 
  { 375 
   fgets (bodydata, (10*21+5), f); 376 
   Bodies[ii] = new Body(); 377 
   //Bodies[ii]->zoneCost = 0; 378 
   parseString(Bodies[ii], bodydata); 379 
  } 380 
 } 381 
 fclose(f); 382 
 return false; 383 
} 384 
 385 
 386 
void CountTree(struct node* root, unsigned long* NoOfNodes, 387 
unsigned long* NoOfBodies) 388 
{ 389 
 if (root==NULL) 390 
  return; 391 
 392 
 if (root->is_internal_node) 393 
  (*NoOfNodes)++; 394 
 else 395 
  (*NoOfBodies)++; 396 
 397 
 for(unsigned long i = 0; i < 8; i++) 398 
  if(root->child[i] != NULL) 399 
   CountTree(root->child[i], NoOfNodes, NoOfBodies); 400 
  else 401 
   return; 402 
} 403 
void CountTree2(unsigned long* NoOfNodes, unsigned long* 404 
NoOfBodies) 405 
{ 406 
 for(unsigned long i = 0; i < No_of_Nodes; i++) 407 
  if (AllNodes2[i]->is_internal_node) 408 
   (*NoOfNodes)++; 409 
  else 410 
   (*NoOfBodies)++; 411 
} 412 
 413 
void PrintTree_DFS2() 414 
{ 415 
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 printf("  i BF_i chld next zoneCost mass\n"); 416 
 for (unsigned long ii=0; ii<No_of_Nodes; ii++) 417 
  printf("%3d %3d %3d %3d %3llu %f\n", ii, 418 
AllNodes2[ii]->BreadthFirstIndex, AllNodes2[ii]-419 
>index_in_brothers, AllNodes2[ii]->index_of_next_neighbour, 420 
AllNodes2[ii]->B->zoneCost, AllNodes2[ii]->B->mass); 421 
} 422 
// this function is added to compute the tree depth 423 
/*void printoctTree(struct node * root) 424 
{ 425 
if ( root==NULL); 426 
printf("The Tree is empty"); 427 
else 428 
{ 429 
while 430 
 431 
 432 
} 433 
 434 
}*/ 435 
 436 
bool compare_nodes(node* n1, node* n2) 437 
{ 438 
 return ( (n1->BreadthFirstIndex) < (n2-439 
>BreadthFirstIndex)); 440 
} 441 
bool compare_bodies(Body* b1, Body* b2) 442 
{ 443 
 return ( (((node *)(b1->my_node))->BreadthFirstIndex) < 444 
(((node *)(b2->my_node))->BreadthFirstIndex) ); 445 
} 446 
void compute_Center_of_Mass(node * Node) 447 
{ 448 
 float CMX = 0.0, CMY = 0.0, CMZ = 0.0; 449 
 Node->B = new Body; 450 
 Node->B->my_node = Node; 451 
 Node->B->zoneCost = 0; 452 
 Node->B->mass = 0; 453 
 for(unsigned long i = 0; i < 8; i++) 454 
  if(Node->child[i] != NULL) 455 
  { 456 
   Node->B->mass += Node->child[i]->B->mass; 457 
   CMX += Node->child[i]->B->mass * Node->child[i]-458 
>B->posx; 459 
   CMY += Node->child[i]->B->mass * Node->child[i]-460 
>B->posy; 461 
   CMZ += Node->child[i]->B->mass * Node->child[i]-462 
>B->posz; 463 
   Node->B->zoneCost += Node->child[i]->B->zoneCost; 464 
// here we must check this operation 465 
    466 
  } 467 
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  Node->B->posx = CMX / Node->B->mass; 468 
  Node->B->posy = CMY / Node->B->mass; 469 
  Node->B->posz = CMZ / Node->B->mass; 470 
} 471 
 472 
unsigned long get_next_brother_index(node * Node, unsigned long 473 
start) 474 
{ 475 
 unsigned long i =start; 476 
 while ( (i < 8) && (Node->child[i] == NULL) ) i++; 477 
 return i; 478 
} 479 
 480 
void compute_indices_BreadthFirst(node * Node) 481 
{ 482 
 unsigned long k = 0, i, j = 0; 483 
 node* nd = Node; 484 
 nd->BreadthFirstIndex = k++; 485 
 while(nd != NULL) 486 
 { 487 
  i = get_next_brother_index(nd, j); 488 
  if (i > 7 ) 489 
  { 490 
   if ( (nd->is_internal_node == 1) && 491 
(get_next_brother_index(nd, j) > 7) ) 492 
    compute_Center_of_Mass(nd); 493 
   j = nd->index_in_brothers + 1; 494 
   nd = nd->parent; 495 
   if(nd != NULL) 496 
    nd->index_of_next_neighbour = k; 497 
  } 498 
  else 499 
  { 500 
   j = 0; 501 
   nd = nd->child[i]; 502 
   nd->BreadthFirstIndex = k++; 503 
   nd->index_of_next_neighbour = k; 504 
  } 505 
 } 506 
 if(Node != NULL) 507 
  compute_Center_of_Mass(Node); 508 
} 509 
 510 
void delete_node_tree() 511 
{ 512 
 for(unsigned long i = 0; i < No_of_Nodes; i++) 513 
 { 514 
  if (AllNodes2[i] != NULL) 515 
  { 516 
   if (AllNodes2[i]->is_internal_node == 1) 517 
   { 518 
    if (AllNodes2[i]->B != NULL) 519 
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    { 520 
     delete(AllNodes2[i]->B); 521 
     AllNodes2[i]->B = NULL; 522 
    } 523 
   } 524 
   delete(AllNodes2[i]); 525 
   AllNodes2[i] = NULL; 526 
  } 527 
 } 528 
 No_of_Nodes = 0; 529 
} 530 
void delete_AllBodies() 531 
{ 532 
 for(unsigned long i = 0; i < MaxNBodies; i++) 533 
 { 534 
  if (Bodies[i] != NULL) 535 
  { 536 
   delete(Bodies[i]); 537 
   Bodies[i] = NULL; 538 
  } 539 
 } 540 
 MaxNBodies = 0; 541 
} 542 
void delete_far_bodies () 543 
{ 544 
 for(unsigned long i = 0; i < MaxNBodies; i++) 545 
  if (Bodies[MaxNBodies-1] != NULL) 546 
  { 547 
   if ( (Bodies[i]->posx < minPosBound) || 548 
(Bodies[i]->posx > maxPosBound) 549 
    || (Bodies[i]->posy < minPosBound) || 550 
(Bodies[i]->posy > maxPosBound) 551 
    || (Bodies[i]->posz < minPosBound) || 552 
(Bodies[i]->posz > maxPosBound) ) 553 
   { 554 
    Bodies[i] = Bodies[MaxNBodies-1]; 555 
    delete(Bodies[MaxNBodies-1]); 556 
    Bodies[MaxNBodies-1] = NULL; 557 
    MaxNBodies--; 558 
   printf("\nA far body have been delete\n"); 559 
   } 560 
  } 561 
} 562 
 563 
void update_velocity_and_position(struct Body *B)  564 
{ 565 
 //update velocity 566 
 if ((B->mass) != 0) 567 
 { 568 
  B->vx += dt * (B->fx) / (B->mass);  569 
  B->vy += dt * (B->fy) / (B->mass); 570 
  B->vz += dt * (B->fz) / (B->mass); 571 
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 } 572 
 //update position 573 
 B->posx += dt * B->vx; 574 
 B->posy += dt * B->vy; 575 
 B->posz += dt * B->vz; 576 
} 577 
 578 
float distance(node* nd, Body* bd) 579 
{ 580 
 return sqrt((nd->cx - bd->posx)*(nd->cx - bd->posx) 581 
  + (nd->cy - bd->posy)*(nd->cy - bd->posy) 582 
  + (nd->cz - bd->posz)*(nd->cz - bd->posz)); 583 
} 584 
 585 
bool InItsCube(node* nd, Body* bd) 586 
{ 587 
 return ( ((nd->cx - nd->d) <= bd->posx) && (bd->posx <= 588 
(nd->cx + nd->d)) 589 
  && ((nd->cy - nd->d) <= bd->posy) && (bd->posy <= (nd-590 
>cy + nd->d)) 591 
  && ((nd->cz - nd->d) <= bd->posz) && (bd->posz <= (nd-592 
>cz + nd->d)) ); 593 
} 594 
 595 
void add_Leaf(struct node* Node, struct Body *B1, unsigned long 596 
i) 597 
{ 598 
 float newd = Node->d / 2; 599 
 float new_cx = (B1->posx > Node->cx) ? newd : -newd; 600 
 float new_cy = (B1->posy > Node->cy) ? newd : -newd; 601 
 float new_cz = (B1->posz > Node->cz) ? newd : -newd; 602 
 Node->child[i] = newNode(Node->cx + new_cx, Node->cy + 603 
new_cy, Node->cz + new_cz, newd, B1); 604 
 Node->child[i]->is_internal_node = 0; 605 
 Node->is_internal_node = 1; 606 
 Node->B = NULL; 607 
 Node->child[i]->parent = Node; 608 
 Node->child[i]->index_in_brothers = i; 609 
} 610 
void add_Internal_Node(struct node* Node, struct Body *B1, 611 
unsigned long i) 612 
{ 613 
 float newd = Node->d / 2; 614 
 float new_cx = (B1->posx > Node->cx) ? newd : -newd; 615 
 float new_cy = (B1->posy > Node->cy) ? newd : -newd; 616 
 float new_cz = (B1->posz > Node->cz) ? newd : -newd; 617 
 Node->child[i] = newNode(Node->cx + new_cx, Node->cy + 618 
new_cy, Node->cz + new_cz, newd, NULL); 619 
 Node->child[i]->is_internal_node = 1; 620 
 Node->is_internal_node = 1; 621 
 Node->child[i]->parent = Node; 622 
 Node->child[i]->index_in_brothers = i; 623 
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} 624 
 625 
void insert_body_in_octtree(struct node* Node, struct Body *B1) 626 
//   627 
{  628 
 Body* B2 = NULL; 629 
 node* nd = Node; 630 
 long j = -1; 631 
 unsigned long i = (B1->posz > Node->cz) * 1 + (B1->posy > 632 
Node->cy) * 2 + (B1->posx > Node->cx) * 4; 633 
 if (nd->child[i] == NULL) 634 
  add_Leaf(nd, B1, i); 635 
 else 636 
 { 637 
  while ( (nd->child[i] != NULL) ) 638 
  { 639 
   if (nd->child[i]->is_internal_node == 0)  640 
    break; 641 
   nd = nd->child[i]; 642 
   i = (B1->posz > nd->cz) * 1 + (B1->posy > nd->cy) 643 
* 2 + (B1->posx > nd->cx) * 4; 644 
  } 645 
  if (nd->child[i] == NULL) 646 
   add_Leaf(nd, B1, i); 647 
  else 648 
  { 649 
   nd = nd->child[i]; 650 
   i = (B1->posz > nd->cz) * 1 + (B1->posy > nd->cy) 651 
* 2 + (B1->posx > nd->cx) * 4; 652 
   B2 = nd->B; 653 
   j = (B2->posz > nd->cz) * 1 + (B2->posy > nd->cy) 654 
* 2 + (B2->posx > nd->cx) * 4; 655 
   while ( (i == j) && (nd->d > minimum_space) ) 656 
   { 657 
    add_Internal_Node(nd, B1, i); 658 
    nd = nd->child[i]; 659 
    i = (B1->posz > nd->cz) * 1 + (B1->posy > 660 
nd->cy) * 2 + (B1->posx > nd->cx) * 4; 661 
    j = (B2->posz > nd->cz) * 1 + (B2->posy > 662 
nd->cy) * 2 + (B2->posx > nd->cx) * 4; 663 
   } 664 
   add_Leaf(nd, B1, i); 665 
   if (i != j) 666 
    add_Leaf(nd, B2, j); 667 
  } 668 
 } 669 
} 670 
 671 
node* createOcttree(struct node * root) 672 
{ 673 
 if (MaxNBodies<1)  674 
  return NULL; 675 
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 root = newNode(spaceCenterX, spaceCenterX, spaceCenterZ, 676 
spaceCenterHfside, NULL); 677 
 root->is_internal_node = 1; 678 
 unsigned long k; 679 
 float d; 680 
 for (unsigned long i = 0; i < MaxNBodies; i++) 681 
  insert_body_in_octtree(AllNodes2[0], Bodies[i]); 682 
 return root; 683 
} 684 
 685 
 686 
//Compute force on a given body 687 
unsigned long long compute_body_force(Body *B) 688 
{ 689 
  690 
 node* r; 691 
 int bh_applied=0; 692 
 int int_applied=0; 693 
 unsigned long ii = 0; 694 
 unsigned long count = 0; 695 
 while(ii < No_of_Nodes) 696 
 { 697 
 //here a modification to the code is done my changing the 698 
pacle of the counter to be inside the two if statment 699 
 //this update done by ALLAM on 16-march-2014 700 
 // count++; this counter moved to inside the if statments 701 
  r=AllNodes2[ii]; 702 
  float dist2 = ((r->B->posx - B->posx) * (r->B->posx - 703 
B->posx)  704 
   + (r->B->posy - B->posy) * (r->B->posy - B->posy)  705 
   + (r->B->posz - B->posz) * (r->B->posz - B-706 
>posz)); 707 
  float dist = sqrtf(dist2); 708 
//here I make a change to the code to compute how many times BH 709 
has been applied 710 
  if ( (dist >= (r->d *2)) ) 711 
  { 712 
   float den = dist2 + EPS2; 713 
   float F = (r->B->mass)/sqrtf(den*den*den); 714 
   B->fx += F * (r->B->posx - B->posx); 715 
   B->fy += F * (r->B->posy - B->posy); 716 
   B->fz += F * (r->B->posz - B->posz); 717 
   ii =  r->index_of_next_neighbour; 718 
   bh_applied++; // this counter is added by ALLAM 719 
to the code to count the times that BH is applied. 720 
   count++;  721 
  }   722 
  else if ( (r->is_internal_node==0))   723 
  { 724 
 725 
   float den = dist2 + EPS2; 726 
   float F = (r->B->mass)/sqrtf(den*den*den); 727 
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   B->fx += F * (r->B->posx - B->posx); 728 
   B->fy += F * (r->B->posy - B->posy); 729 
   B->fz += F * (r->B->posz - B->posz); 730 
   ii =  r->index_of_next_neighbour; 731 
   int_applied++; 732 
   count++;  733 
  }                      734 
  else 735 
   ii++; 736 
 } 737 
 B->fx *= G * B->mass;   738 
 B->fy *= G * B->mass;   739 
 B->fz *= G * B->mass;   740 
  741 
//printf("\nHow many times BH is applied=%d\n",bh_applied); 742 
//printf("How many times on aleaf applied=%d\n",int_applied); 743 
//printf("W:How many times force computed on a given 744 
body=%d\n",count); 745 
 746 
 return count; 747 
} 748 
 749 
void Directory(char* a) 750 
{ 751 
 unsigned long ii = strlen(a) - 1; 752 
 while (ii>0 && a[ii]!='\\' && a[ii]!='/') 753 
  ii--; 754 
 a[ii+1] = '\0'; 755 
} 756 
//#define MAX_THREADS 128 757 
//unsigned long ThreadStart[MAX_THREADS]; 758 
//unsigned long ThreadEnd[MAX_THREADS]; 759 
void zone_cost_partitioning(unsigned long no_of_threads) 760 
{ 761 
 unsigned long long  sum = 0; 762 
 unsigned long long  W = AllNodes2[0]->B->zoneCost; 763 
 printf("\n The value of W work of the root node=%lu\n",W); 764 
 if (W == 0) 765 
 { 766 
  sum = MaxNBodies / no_of_threads; 767 
  for(unsigned long k = 0; k < no_of_threads; k++)  768 
  { 769 
   ThreadStart[k] = sum * k; 770 
   ThreadEnd[k] = sum * (k + 1) - 1; 771 
   ThreadCDF[k] = 0; // This is added by ALLAM to 772 
insure that the CDF set to zero at the iteration 0 773 
  } 774 
 } 775 
 else 776 
 { 777 
  unsigned long i = 0; 778 
  unsigned long long  sum = 0; 779 
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  unsigned long long  w = W / no_of_threads; 780 
  for(unsigned long k = 0; k < no_of_threads; k++)  781 
  { 782 
   W = (W - sum); 783 
   w = W / (no_of_threads - k); 784 
   ThreadStart[k] = i; 785 
   sum = 0; 786 
   while (sum < w)  787 
   { 788 
    sum += Bodies[i]->zoneCost; 789 
    i++; 790 
   } 791 
   ThreadEnd[k] = i - 1; 792 
   ThreadCDF[k] = sum; 793 
  } 794 
 } 795 
 ThreadEnd[no_of_threads - 1] = MaxNBodies - 1; 796 
 ThreadCDF[no_of_threads - 1] = (W - sum); 797 
} 798 
void Generate_GalaxyKing() 799 
{ 800 
 int ii = 0; 801 
 MaxNBodies = 100000; 802 
 loadBodies(filename_GalaxyKingModel_100); 803 
 for (int b = 0; b < 100000; b++) 804 
  for(int x = 0; x < 5; x++) 805 
   for(int y = 0; y < 5; y++) 806 
    for(int z = 0; z < 5; z++) 807 
    { 808 
     ii = 100000 + z + y*5 + x*5*5 + 809 
b*5*5*5; 810 
     Bodies[ii] = new Body(); 811 
     Bodies[ii]->posx = Bodies[b]->posx + x 812 
* 60; 813 
     Bodies[ii]->posy = Bodies[b]->posy + y 814 
* 60; 815 
     Bodies[ii]->posz = Bodies[b]->posz + z 816 
* 60; 817 
 818 
     Bodies[ii]->mass = Bodies[b]->mass; 819 
     Bodies[ii]->vx = Bodies[b]->vx; 820 
     Bodies[ii]->vy = Bodies[b]->vy; 821 
     Bodies[ii]->vz = Bodies[b]->vz; 822 
    } 823 
    MaxNBodies = ii + 1; 824 
   825 
 saveBodies(filename_GalaxyKingModel_1M_nonsorted); 826 
   827 
 std::sort(Bodies,&Bodies[MaxNBodies],Body_comparer_function828 
); 829 
    saveBodies(filename_GalaxyKingModel_1M); 830 
} 831 
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 832 
//allam add a function to print the bodies arrya to see whats 833 
going on in the system 834 
void printbodies(Body *x[],unsigned long MaxNBodies) 835 
{ 836 
int i; 837 
for(i=0;i<MaxNBodies;i++) 838 
{ 839 
printf("\n%d %.15f %.15f %.15f %.15f %.15f %.15f\n",i,x[i]-840 
>posx,x[i]->posy,x[i]->posz,x[i]->vx,x[i]->vy,x[i]->vz); 841 
} 842 
} 843 
//Barnes Hut Simulation algorithm 844 
void BarnesHutSimulation(const char * fileName) 845 
{  846 
 double end22=0; 847 
 double end33=0; 848 
 double endd=0; 849 
 double end44=0; 850 
 double end55=0; 851 
 double timer_all1=0; 852 
 double timer_all2=0; 853 
 double timer_all=0; 854 
 855 
 unsigned long problemsize[8] = 856 
{100000,2000000,3000000,4000000,5000000,6000000,7000000,1}; 857 
 //unsigned long problemsize[10] = {3000000,4000000,5000000, 858 
8000000, 12000000,3000000,4000000,8000000}; this is modified by 859 
ALLAM 860 
 //unsigned long problemsize[10] = {1000}; 861 
 //fl=1; 862 
 if(generate==0) 863 
 { 864 
  //MaxNBodies = problemsize[4]; 865 
  Generate_GalaxyKing(); 866 
  /*generate_positions_poisson2(); 867 
  saveBodies(filename_poisson2); */ 868 
 869 
 //std::sort(Bodies,&Bodies[MaxNBodies],Body_comparer_functi870 
on); 871 
  //saveBodies(filename_poisson_sorted2); 872 
 873 
  printf("file generated\n"); 874 
 } 875 
 for (unsigned long ps = 0; ps <1; ps++) 876 
 { 877 
  omp_set_num_threads(threads); 878 
  unsigned long numThreads =  omp_get_num_threads(); 879 
  //unsigned long numThreads=1; 880 
  MaxNBodies = problemsize[ps]; 881 
 882 
  if (loadBodies(fileName)) 883 



 

158 

   return; 884 
  struct node * root; 885 
  /*char outfile[255]= ""; 886 
  sprintf(outfile,"data/frames3/frame%6d.txt",0); 887 
  saveBodiesLocations(outfile);*/ 888 
  //  printf("maxB=%lu, maxNodes = %lu, 889 
expected_nodes=%lu\n", maxB, maxNodes, unsigned long(maxB*( 890 
log(maxB)/log(8) ))+1);  891 
  //sprintf(outfile,"<Create 892 
tree>,<Sort>,<Force>,<update>,<delete>\n"); 893 
  for(int n = 0; n < steps; n++) 894 
  { 895 
  printf("\niteration#=%d\n",n); 896 
  timer_all1 =  omp_get_wtime(); 897 
   //    printf("iteration: %lu .. ", n); 898 
   //01-Create Tree 899 
   double start2  = omp_get_wtime(); 900 
   root = createOcttree(NULL);  901 
   //PrintTree_DFS2(); 902 
   //unsigned long* NoOfNode=0; 903 
   //unsigned long* NoOfbodies=0; 904 
   //CountTree(root,NoOfNode,NoOfbodies); 905 
   //printf("\nNumber of Nodes in the OCT 906 
tree=%lu\n",No_of_Nodes); 907 
   //printf("\nNumber of bodies in the oct 908 
Tree=%f\n",NoOfbodies); 909 
    910 
   double end2  = omp_get_wtime(); 911 
   // printf("%f\t", (end2-start2)); 912 
   /*if(ps==3) 913 
   printf("OctTree is created. Node count = %lu\n", 914 
No_of_Nodes);*/  915 
 916 
   //02-Compute Center mass and Total mass 917 
   double start3  = omp_get_wtime(); 918 
   compute_indices_BreadthFirst(root); 919 
   //printf("\nNumber of Nodes in the OCT 920 
tree=%lu\n",No_of_Nodes); 921 
   std::sort(&AllNodes2[0],&AllNodes2[No_of_Nodes], 922 
compare_nodes); 923 
   std::sort(&Bodies[0],&Bodies[MaxNBodies], 924 
compare_bodies); 925 
   //this is added to print for each node the 926 
indices of it 927 
   //printf("\n"); 928 
   int i; 929 
   /*for(i=0;i<No_of_Nodes;i++) 930 
   { 931 
//printf("index_in_brothers=%lu\tindex_of_next_neighbour=%lu\tBre932 
adthFirstIndex=%lu\n",AllNodes2[i]-933 
>index_in_brothers,AllNodes2[i]-934 
>index_of_next_neighbour,AllNodes2[i]->BreadthFirstIndex); 935 
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printf("BreadthFirstIndex=%lu\tindex_in_brothers=%lu\tindex_of_ne936 
xt_neighbour=%lu\n",AllNodes2[i]->BreadthFirstIndex, 937 
AllNodes2[i]->index_in_brothers, AllNodes2[i]-938 
>index_of_next_neighbour); 939 
   }*/ 940 
   double end3  = omp_get_wtime(); 941 
   //printf("Time taken sort : %f\n", (end3-942 
start3)); 943 
 944 
 945 
   //unsigned long no_of_threads = 946 
omp_get_num_threads(); 947 
   //zone_cost_partitioning(threads); 948 
 949 
   Body *B; 950 
   //03-Compute Forces 951 
   double start  =0; 952 
   double end  =0; 953 
   if(zone==1) 954 
   {  955 
  956 
 printf("\n#################################################957 
#####################\n"); 958 
   printf("The Result for the COST ZONE"); 959 
  960 
 printf("\n#################################################961 
#####################\n"); 962 
    zone_cost_partitioning(threads); 963 
    end3  = omp_get_wtime(); 964 
    unsigned long i=0; 965 
    unsigned long threadID=0; 966 
    start  = omp_get_wtime(); 967 
 968 
#pragma omp parallel private(B,i,threadID) 969 
    { 970 
     numThreads =  omp_get_num_threads(); 971 
     972 
     threadID = omp_get_thread_num(); 973 
     ThreadStartTime[threadID] = 974 
omp_get_wtime(); 975 
     //printf("threadstart= %lu 976 
%f\n",threadID,ThreadStartTime[threadID]);      977 
     for(i = ThreadStart[threadID]; i <= 978 
ThreadEnd[threadID]; i++) 979 
     { 980 
      B = Bodies[i]; 981 
      B->fx = B->fy = B->fz = 0.0; 982 
      Bodies[i]->zoneCost = 983 
compute_body_force(B); 984 
     } 985 
     ThreadEndTime[threadID] = 986 
omp_get_wtime(); 987 
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 printf("thread#= %d thread time= %f work=%lu\n" 988 
,threadID,(ThreadEndTime[threadID]-989 
ThreadStartTime[threadID]),ThreadCDF[threadID]);// print EXEC 990 
time per thread    991 
    } 992 
    for (unsigned long i = 0; i < numThreads; 993 
i++) 994 
    { 995 
     ThreadAvgTime[i] += (ThreadEndTime[i]-996 
ThreadStartTime[i]); 997 
     //printf("thread time=    %f, %f, 998 
%f\n",ThreadAvgTime[i],ThreadStartTime[i],ThreadEndTime[i]); 999 
    } 1000 
    end  = omp_get_wtime(); 1001 
 //printbodies(Bodies,MaxNBodies); // here I add it to print 1002 
the location of the bodies after the iterations of the cost zone 1003 
parallel 1004 
   }    1005 
   if(seq==1) 1006 
   { 1007 
  1008 
 printf("\n#################################################1009 
#####################\n"); 1010 
   printf("The Result for the sequantial"); 1011 
  1012 
 printf("\n#################################################1013 
#####################\n"); 1014 
 1015 
    start  = omp_get_wtime(); 1016 
 1017 
    for(unsigned long i = 0; i < MaxNBodies; 1018 
i++)  1019 
    { 1020 
     B = Bodies[i]; 1021 
     B->fx = B->fy = B->fz = 0.0; 1022 
    //printf("\nCompute force on a given 1023 
body=%d\n",i); 1024 
     Bodies[i]->zoneCost = 1025 
compute_body_force(B); 1026 
    }        1027 
 1028 
    end  = omp_get_wtime(); 1029 
  printf("\nsequantial time=%f\n",end-start); 1030 
   1031 
  //printbodies(Bodies,MaxNBodies); // here I add it to 1032 
print the location of the bodies after the sequantial execution 1033 
of the cost zone 1034 
   } 1035 
   if(normal==1) 1036 
   { 1037 
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  1038 
 printf("\n#################################################1039 
#####################\n"); 1040 
   printf("The Result for the normal"); 1041 
  1042 
 printf("\n#################################################1043 
#####################\n"); 1044 
    unsigned long i=0; 1045 
    unsigned long threadID=0; 1046 
    start  = omp_get_wtime(); 1047 
 1048 
#pragma omp parallel private(B,i,threadID)  1049 
    { 1050 
    1051 
     numThreads =  omp_get_num_threads(); 1052 
     1053 
     threadID = omp_get_thread_num(); 1054 
     ThreadStartTime[threadID] = 1055 
omp_get_wtime(); 1056 
     //printf("threadstart= %lu 1057 
%f\n",threadID,ThreadStartTime[threadID]);      1058 
     for(i = threadID* (MaxNBodies / 1059 
numThreads); i < (threadID+1)*( MaxNBodies / numThreads); i++) 1060 
     { 1061 
      B = Bodies[i]; 1062 
      B->fx = B->fy = B->fz = 0.0; 1063 
      Bodies[i]->zoneCost = 1064 
compute_body_force(B); 1065 
     } 1066 
     ThreadEndTime[threadID] = 1067 
omp_get_wtime(); 1068 
     //printf("threadend= %lu  1069 
%f\n",threadID,ThreadEndTime[threadID]); 1070 
 printf("thread#= %d thread time= %f work=%lu\n" 1071 
,threadID,(ThreadEndTime[threadID]-1072 
ThreadStartTime[threadID]),ThreadCDF[threadID]);// print EXEC 1073 
time per thread      1074 
    } 1075 
    for (unsigned long i = 0; i < numThreads; 1076 
i++) 1077 
    { 1078 
     ThreadAvgTime[i] += (ThreadEndTime[i]-1079 
ThreadStartTime[i]); 1080 
     //printf("thread time=    %f, %f, 1081 
%f\n",ThreadAvgTime[i],ThreadStartTime[i],ThreadEndTime[i]); 1082 
    } 1083 
    end  = omp_get_wtime(); 1084 
   } 1085 
   if(dynamic==1) 1086 
   { 1087 
    unsigned long i=0; 1088 
    unsigned long threadID=0; 1089 
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 1090 
 1091 
    /*#pragma omp parallel private(threadID,B, 1092 
i) 1093 
    {*/ 1094 
    omp_set_num_threads(threads);  1095 
    start  = omp_get_wtime(); 1096 
    //numThreads =  omp_get_num_threads();  1097 
    1098 
    /*threadID = omp_get_thread_num(); 1099 
    ThreadStartTime[threadID] = 1100 
omp_get_wtime();*/ 1101 
    //printf("threadstart= %lu 1102 
%f\n",threadID,ThreadStartTime[threadID]);  1103 
#pragma omp parallel for  schedule(dynamic)  private(threadID,B, 1104 
i) 1105 
    for(i = 0; i < MaxNBodies; i++)  1106 
    {       1107 
     B = Bodies[i]; 1108 
     B->fx = B->fy = B->fz = 0.0; 1109 
     Bodies[i]->zoneCost = 1110 
compute_body_force(B);         1111 
    } 1112 
    //ThreadEndTime[threadID] = 1113 
omp_get_wtime(); 1114 
    /* }*/ 1115 
    /*ThreadEndTime[threadID] = 1116 
omp_get_wtime();*/ 1117 
    //printf("threadend= %lu  1118 
%f\n",threadID,ThreadEndTime[threadID]);  1119 
    //for (unsigned long i = 0; i < numThreads; 1120 
i++) 1121 
    //{ 1122 
    // ThreadAvgTime[i] += (ThreadEndTime[i]-1123 
ThreadStartTime[i]); 1124 
    // //printf("thread time=    %f, %f, 1125 
%f\n",ThreadAvgTime[i],ThreadStartTime[i],ThreadEndTime[i]); 1126 
    //} 1127 
    end  = omp_get_wtime();  1128 
   } 1129 
   //04-update velocity position 1130 
   double start5 = omp_get_wtime(); 1131 
   for(unsigned long i = 0; i < MaxNBodies; i++)  1132 
    update_velocity_and_position(Bodies[i]); 1133 
   double end5  = omp_get_wtime(); 1134 
   //05-Delete the oct tree and delete far bodies 1135 
   /*double start4 = omp_get_wtime(); 1136 
   delete_far_bodies(); 1137 
   delete_node_tree(); 1138 
   double end4  = omp_get_wtime();*/ 1139 
   //printf(" %f %f %f %f %f\n",(end2-start2),(end3-1140 
start3), (end-start),(end5-start5),(end4-start4)); 1141 
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 1142 
 1143 
 1144 
   //06-store current iteration 1145 
   /* sprintf(outfile, "data/frames3/frame%6d.txt", 1146 
n+1); 1147 
   saveBodiesLocations(outfile);*/ 1148 
   double start4 = omp_get_wtime(); 1149 
   //  delete_far_bodies(); 1150 
   delete_node_tree(); 1151 
   double end4  = omp_get_wtime(); 1152 
 1153 
   timer_all += (omp_get_wtime()-timer_all1); 1154 
   end22 +=(end2-start2); 1155 
   end33 +=(end3-start3); 1156 
   endd +=(end-start); 1157 
   end55 += (end5-start5); 1158 
   end44 += (end4-start4); 1159 
} 1160 
 1161 
  //printf(" \n"); 1162 
  if((seq==1)||(dynamic==1)) 1163 
  { 1164 
   printf("%lu %lu %f %f %f %f %f %f\n", ps, 1165 
problemsize[ps] ,end22/steps,end33/steps, 1166 
endd/steps,end55/steps,end44/steps, timer_all/steps ); 1167 
   report1[ps][0] = endd/steps; 1168 
  } 1169 
  if((zone==1)||(normal==1)) 1170 
  { 1171 
   printf("%lu %lu %f %f %f %f %f %f\n", ps, 1172 
problemsize[ps],  end22/steps,end33/steps, 1173 
endd/steps,end55/steps,end44/steps , timer_all/steps); 1174 
   report1[ps][1] = endd/steps; 1175 
 1176 
   printf("<Thread no> <assignment> <Work> <time> 1177 
\n"); 1178 
   for (unsigned long i = 0; i < numThreads; i++) 1179 
   { 1180 
    printf("%lu %lu %llu %f \n", i, 1181 
ThreadEnd[i] - ThreadStart[i] + 1, ThreadCDF[i], 1182 
ThreadAvgTime[i]/steps); 1183 
    ThreadEndTime[i]=0; 1184 
    ThreadStartTime[i]=0; 1185 
    ThreadAvgTime[i]=0; 1186 
   } 1187 
  } 1188 
  printf("\n");  1189 
 1190 
  end22=0; 1191 
  end33=0; 1192 
  endd=0; 1193 
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  end44=0; 1194 
  end55=0; 1195 
 } 1196 
 delete_AllBodies(); 1197 
} 1198 
 1199 
 1200 
 1201 
int main(unsigned long argc, char* argv[]) 1202 
{ 1203 
 1204 
 printf("Number Of steps: %lu \n",steps); 1205 
 printf("<step><PrbSize><NoofBodies><NoofNodes><Tree><Sort><1206 
Force><update><delete>\n"); 1207 
 filepath = argv[0]; 1208 
 Directory(filepath); 1209 
 /*seq=0; 1210 
 normal=0; 1211 
 zone=0; 1212 
 threads=1; 1213 
 generate=0; 1214 
 BarnesHutSimulation (filename_GalaxyKingModel_1M); 1215 
 printf("Normal\n");  1216 
 generate=1; 1217 
 seq=1; 1218 
 normal=1; 1219 
 dynamic=1; 1220 
 zone=0; 1221 
 //unsigned long ThreadingCount[10] = {8,32, 64,128, 240}; 1222 
 unsigned long ThreadingCount[10] = {8}; 1223 
 //signed long ThreadingCount[10] = {2,3,4,5,6,7}; //used in 1224 
hpc as a back up 1225 
 for (unsigned long tc = 0; tc <1; tc++) 1226 
 { 1227 
  printf("Thread: %lu \n",ThreadingCount[tc]); 1228 
  threads = ThreadingCount[tc]; 1229 
  BarnesHutSimulation (filename_GalaxyKingModel_1M); 1230 
  generate=1; 1231 
 } 1232 
  1233 
 //getchar(); 1234 
  1235 
 printf("Dynamic\n");  1236 
 seq=1; 1237 
 normal=0; 1238 
 dynamic=1; 1239 
 zone=0;   1240 
 for (unsigned long tc = 0; tc <1; tc++) 1241 
 { 1242 
  printf("Thread: %lu \n",ThreadingCount[tc]); 1243 
  threads = ThreadingCount[tc]; 1244 
  BarnesHutSimulation (filename_GalaxyKingModel_1M); 1245 
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 }*/ 1246 
 int ThreadingCount[1] = {16}; // here to add the number of 1247 
threads that will be used in our case 1248 
 generate=1; 1249 
 seq=0; 1250 
 normal=0; 1251 
 dynamic=0; 1252 
 zone=1;  1253 
 1254 
 //BarnesHutSimulation (filename_GalaxyKingModel_1M);  1255 
 for (int tc = 0; tc < 1; tc++) 1256 
 { 1257 
  printf("Thread: %d \n",ThreadingCount[tc]); 1258 
  threads = ThreadingCount[tc]; 1259 
  BarnesHutSimulation (filename_GalaxyKingModel_1M); 1260 
 } 1261 
 /*printf("N Sequential ZoneCost"); 1262 
 for (unsigned long i = 0; i <2; i++) 1263 
 { 1264 
 for (unsigned long j = 0; j <2; j++) 1265 
 { 1266 
 printf("%lu ", report1[i][j]); 1267 
 } 1268 
 printf("\n"); 1269 
 }*/ 1270 
 return 0;1271 
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