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BitTorrent  is  the  most  worldly  adopted  peer  to  peer  (P2P) file  distribution 

application protocol that constitutes a huge part of today‟s Internet traffic. P2P  model  

benefits  BitTorrent‟s  peers  in  file  exchanging  process,  by eliminating  a  single  point  

of  congestion.  Beside  the  main  P2P implementation  of  BitTorrent  for  file  

exchanging,  it  also  has  client-server communication between the peers and tracker. 

The tracker is used in BitTorrent network for peers‟ discovery.  However, the tracker 

does not benefit from P2P characteristics.  Mainly,  the tracker is considered to be a  

single  point  of  failure, also,  scalability  and  load-balancing  are  other traker‟s issues. 

Another problem is that BitTorrent uses eleven overhead messages which help in 

distributing the file pieces among the peers.  In this research work, we aim to have a pure 

P2P BitTorrent application, and minimize the messages overhead.  For Discovery, we  

propose  a  novel  architecture to decentralize  the  tracker  and  make  it distributed  

among  the  peers.  The  proposed  method  reduce  both communication  overhead  and  

node  searching  complexities to O(1).  For Dissemination, we re-implement the existing 

BitTorrent using Data Distribution Service (DDS), which is a Real Time Publish 

Subscribe (RTPS) middleware. We study the performance in terms of file downloading 

time and goodput for both the original and the proposed dissemination protocols.  The 

results show that the proposed solution can minimize the BitTorrent overhead achieving 

high goodput, and speed up the file downloading process in most cases. The proposed 

approaches are tested and validated only over Intranet. 
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 ملخص الرسالة

 
 

 أنس أحمد محمد أبو دقة  :    الاسم الكامل
 

  تقنٌة  فً أدوات تحسٌن الجودة الموجودةفً البت تورنت باستخدام  لأداءتحسٌن الاستكشاف وا  : عنوان الرسالة
 .الوسٌطةالبٌانات )دي دي اس( توزٌع                         

 
 شبكات الحاسب الآلً :      التخصص

 
 4102دٌسمبر  :تاريخ الدرجة العلمية

 
 العالم حول انتشارا الأكثر وهو ، للنظٌر النظٌر بطرٌقة الملفات مشاركة بروتوكول  هو تورنت بتال

 طرٌقة من تورنت البت استفاد. الإنترنت عبر البٌانات تبادل مساحة من الأكبر الجزء ٌستهلك حٌث

 مركزي خادم هناك ٌكون أن غٌر من  الكبٌرة الملفات تبادل عملٌة فً للنظٌر النظٌر  المسماة الاتصال

 ٌستخدم أٌضا تورنت البت أن إلا.  نقلها وتأخر البٌانات وتزاحم الاختناق ٌسبب النظراء هؤلاء بٌن

 نظام فً المتابع. المتابع ٌسمى مركزي خادم وبٌن النظراء بٌن والعمٌل الخادم المسمى تصالالا نموذج

 قد العمل عن بتعطله أنه المتابع لهذا الرئٌسً العٌب.  النظراء استكشاف عملٌة فً خدمست  ٌ   تورنت البت

المشكلة الأخرى فً البت . أخرى مشكلة للتوسع قابلٌته عدم أٌضا العمل، عن النظام جمٌع ٌتعطل

 البحث هذا فًتورنت أنه ٌستخدم إحدى عشر رسالةً زائدة لتسهٌل عملٌة نقل الملفات بٌن النظراء .

والتقلٌل من عدد  للنظٌر النظٌر المسمى الاتصال نموذج على بالكامل ٌعمل تورنت البت لجعل نهدف

 من للتخلصبعمل مخطط  قمنا, النظراء لاستكشاف. الرسائل الزائدة المستخدمة فً عملٌة نقل الملفات

 وتقلل  الشبكة على الزائدة الأحمال تقلل المقترحة البحث طرٌقة.  النظراء بٌن مهمته وتوزٌع المتابع

 النظراء بٌن البٌانات لإرسالي الواحد الصحٌح .رقم ثابت ٌساو  ىإل المطلوب للنظٌر  الوصول عملٌة

 ،(اس دي دي) البٌانات توزٌع خدمة استخدام أساس على تورنت البت وبرمجة تصمٌم بإعادة قمنا ،



xvii 
 

  تورنت البت من كلا  كفاءة باختبار وقمنا. الحقٌقً الوقت فً والاشتراك للنشر وسٌط تعتبر الخدمة هذه

 ٌرسلها التً الزائدة الأحمال تقلٌل ٌستطٌع الجدٌد المقترح أن أظهرت النتائج. الجدٌد والمقترح الأصلً

 تسرٌع فً ٌساهم الجدٌد المقترحالنتائج أظهرت أن  أٌضا. المرسلة الملفات مع الأصلى تورنت البت

 .الحالات معظم فً الملفات تحمٌل  عملٌة
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1 CHAPTER 1 

INTRODUCTION: PEER-To-PEER NETWORKS 

The distributed computing architecture known as peer-to-peer (P2P) networks are 

designed to allow users to share resources without any intermediary control or authority 

centralized coordination services. Conceived and developed in the specific context of the 

Internet, these systems are inspired by a simple and fundamental principle: ability to 

adapt to a highly dynamic environment while maintaining substantially unchanged 

reliability and connectivity. In a peer-to-peer environment, resources can be considered 

as missing since their availability is generally considered independent of the availability 

of the node that initially shared the resources. Specific techniques are implemented for 

this purpose and they are varied according to the particular architecture. They are based 

on the redundancy of resources, and the decentralization of routing and discovery 

algorithms.  

The P2P overlay networks are distributed systems that have no hierarchical organization 

and no centralized control. Peers are self-organized over the IP networks, offering a set of 

characteristics such as robust routing architectures and efficient data search. 

The P2P model is the antithesis of the classic client-server architecture in which each 

node is a server or a client that depends on a central authority; the data are stored on a 

server which sends them to those clients who request it. The P2P model, on the other 

hand, means that each node behaves as both a server and client depending on who is the 

supplier or the requester of a particular resource. Client-server and P2P networks are 

depicted in Figure 1.1and Figure 1.2 respectively. 
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1.1 Comparison: P2P vs. Client-Server 

As mentioned above the P2P model is quite different from the client-server model. Table 

1-1 shows the main differences between the two models. 

Table1-1: P2P Model vs. Client-Server Model 

Client-Server P2P 

 Asymmetry: client and server are 

distinct and play different tasks. 

 Global Knowledge: servers have a 

global view of the network. 

 Centralized Approach:  the 

communication and management are 

centralized. 

 Single Point of Failure:  the failure of 

the server involves the malfunction of 

the entire system 

 Limited Scalability:  servers are 

subject to an overhead which limits 

the network scalability. 

 High Cost:  

 Symmetric:  each node has the same 

functions and can be both client and server. 

 Local Knowledge:  peers know only a 

subset of the network nodes. 

 Decentralized Approach:  there is no global 

knowledge but only local interactions. 

 

 Robustness: the consequences of  one node 

failure is malfunctioning of minimal or null 

nodes. 

 High Scalability: due to the distribution of 

the load and the high aggregate capacity, the 

network is highly scalable. 

 



3 
 

 

Figure 1.1 Client-Server Model 
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Figure 1.2: P2P Model 

1.2 P2P Architectures 

It should be noted that a full decentralized P2P cannot be realized on a large scale due to 

the need of one or more nodes which have the task of providing the parameters of the 

initial communication to the new nodes that want to join the system. Beyond this, the P2P 

networks are commonly classified according to the relationship between the location of 

resources in the network and the topology of the network. 

The main architectures referred to when talking about P2P systems are: centralized or 

decentralized, and structured or unstructured [63]. In order to compare the different 

solutions available, the following two main aspects must be taken into account: 

1. Scalability of the system:  For each node you have to check the overhead of 

communication (number of steps to reach the node that stores information), and 
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the used memory (size of the routing table) as a function of number of nodes in 

the system (N). 

2. Robustness and adaptability to frequent changes and malfunctions. 

   

1.2.1 Centralized and decentralized: 

The distinction between P2P architectures is related to the centralized and decentralized 

presence or absence of a coordination node [18]. Some architectures, in fact, are based on 

a central infrastructure that performs services resources indexing, freeing the burden of 

peers to distribute the resources themselves. Figure 1.3 represents the organization of 

centralized P2P architecture. Clients connect to a central unit which has the task of 

maintaining the following: 

 A table of connected users (IP address, port number, if any connection 

information such as the bandwidth, etc.). 

 A table of shared resources by each user, possible accompanied by metadata 

(information that describes a set of data). 

Upon the joining, clients contact the central unit by publishing a list of resources that are 

willing to share. Queries (requests) are forwarded to the central server that locates in its 

tables the peer (or possibly peers) sharing a resource that meets the query conditions. The 

subsequent communication occurs between the peers. The next communication between 

clients takes place directly with one or more direct connections between the peer that 

requested the resources and its peers that distribute the resources. If the advantage of the 

centralized model lies in the simplicity and reliability of the protocol, the main problem is 

the presence of a single point of failure and the vulnerability to censorship. In fact, the 

development of Napster [19], one of the first examples of this architecture, has been 

discontinued due to the in slew of lawsuits filed against Napster rather than because of 

technological limitations. 
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Figure 1.3 : Centralized P2P architecture. 

In a network of this type, the node that owns the resource is found after O(1) steps 

because you just forward a request to the centralized server. The server will store amount 

of data equal to O(N) where N equal to the number of available resources (files)  in the 

system. 

Peer-to-peer decentralized architecture is characterized by the lack of a single point of 

“break”; characteristic due to the fact that in the system there is no privileged node 

required by the operation. There is no centralized control of the network, and each user 

application acts simultaneously as both a client and a server. Such a user application is 

referred to as a servent. An example is the Gnutella network [20] in which the 

communication between the servents are regulated by a protocol that defines four types 

of messages: 

 ping: represents an announcement to a servent presence on the network. 

 Pong: is a reply message to a ping. Contains the IP address and port of the sender 

of the message, plus the number and size of the file shared. 

 Query: a resource request that includes also information on bandwidth 

requirements. 

 Query hits: a response to a query that contains IP address and port number to 

which to connect to download information relative to the bandwidth and the 

number of files that match the requirements of the request. 
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An example of communication in a peer-to-peer that is purely decentralized is shown in 

Figure 1.4 . 

After a node joins to the network, it sends a ping message to each of its neighbors, all 

those nodes which it directly knows the IP addresses and their port numbers. These, in 

turn, respond with a message of pong identifying amount of data that nodes shared, and 

propagate the ping message to their neighbors. The location of a resource on the network 

is found by sending a query message that is propagated in the network until the 

exhaustion of a time-to-live(TTL); any replies are forwarded to the node that originated 

the query following the reverse path. When a node receives a query hit, indicating that 

the resource has been localized to a certain peer it establishes a direct connection with 

that peer for downloading. The scalability of the system is guaranteed by the TTL of the 

messages, which determines a limit beyond which the messages cannot propagate, 

avoiding the collapse of the network. 

 

Figure 1.4: P2P decentralized architecture. 

The complexity of P2P decentralized architecture is O(N
2
) in terms of  looking for and 

getting a resource, and the looking up results are not guaranteed, since the lifetime of the 

query message is limited by TTL.  On the other hand, the information of routing  is 

shared and does not depend on the number of nodes in the system, so each node will store 

a quantity equal to O(1). 

A middle way is represented by hybrid systems that employ the concept of super-peers, 

which forward the received query to other super-peers with which they are connected in a 
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totally decentralized topology. These nodes are elected based on the computing power 

and bandwidth. These super-peers enhance the overall network performance by 

benefiting from both centralized and decentralized architectures, in the other words, 

resource allocation can be done by both decentralized and centralized search techniques. 

Maintaining the scalability of decentralized P2P systems, and the speed of resource 

locating of centralized P2P systems. The structure of a peer-to-peer hybrid is shown in 

Figure 1.6. 

 

Figure 1.5: P2P hybrid architecture 

1.2.2 Structured and unstructured 

The networks can be classified, also, in structured and unstructured. This classification is 

based on the relationship between the network topology and the location of a resource in 

the network. 

In unstructured networks, there is no relationship between the location of a resource and 

the network topology. The overlay network uses techniques such as non-deterministic 

flooding (requests are forwarded to all participants) or the random walks (requests are 

forwarded to a subset of the participants chosen randomly) for the location of a resource 
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on the network. Each peer evaluates the query received locally and sends it to the peer 

sending list of all content that matches the request. It should be noted that while the 

flooding-based techniques are well suited to those systems where peers come and go at 

high frequency and in which the data are high redundant, they are not very suitable for 

locating data not very common because, as they are in possession few peers, queries 

should be sent to almost all of them. The basic problem of unstructured P2P networks 

are: peers become easily overloaded, the network is not scalable in the case it should 

manage the aggregated queries with high frequency and further sudden increase in the 

size of the system which causes a proportional increase of requests within the network. 

Examples of unstructured P2P overlay networks are: Gnutella [20], KaZaA [22], 

eDonkey2000 [21], and BitTorrent which will be discussed in detail in later chapters.  

In structured networks, however, resources are stored on the nodes chosen in a 

deterministic way according to a specific algorithm which provides a mapping between 

the content and nodes, or, more precisely, between the respective identifiers in the form 

of routing tables that are used to route the queries efficiently to those peers who own the 

particular resource. The structured P2P networks are able to locate data in an efficient 

rare, since the routing based on deterministic algorithms is scalable. Examples of 

structured P2P overlay networks are Distributed Hash Table (DHT) algorithms such as: 

Tapestry [23], Chord [24], and Kademlia [25].  A Distributed Hash Table is a data 

structure distributed that allows you to store the pairs<key,value>, obtained by a hash 

function, in a way that is efficient, reliable, and robust.  This approach is to assign the 

unique identifier (key), selected in the space of identifiers, data, and simultaneously 

assigning identifier (value), selected from the same space, to a set of nodes that possess 

the information to which the key refers. Operations such as “put (key, value)” and 

“value=get(key)” can be invoked to store and retrieve the data corresponding to the key. 

This involves the exchange of routing messages to the peer which is associated with the 

same key. Each node maintains small routing tables in which stores the identifiers of 

neighboring peers and their IP addresses. Requests for localization or routing messages 

are forwarded to the peers in the overlay in a progressive manner considering the 

identifiers of the nodes which are next to the space key identifiers. In theory, systems 

based on DHT can ensure that any data can be located, on average, in a number of steps 
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equal to O(log N), and that each node possesses the routing tables with O(log N) entries. 

It should be noted that the path between two nodes, the underlying physical network, can 

be very different from the DHT overlay network based on the approach, this may causing 

a delay in the localization phase which lead to a deterioration of the performance of the 

network. The DHT has a limit due to the transient nature  of the P2P clients. The graceful 

exit (announced) of a node usually results in O(log N) operations to maintain consistent 

data structures, on the other hand, a kind of graceless (no ad budget and transfer of state 

information) have worse outcomes. 

 

1.3  Applications of P2P Systems 

The P2P systems are used in a wide range of applications, characterized by substantial 

independence from authority coordination.  These applications can basically fall into 

three main categories: 

 File sharing and content distribution. 

 Communication and collaboration. 

 Distributed computing. 

1.3.1 File sharing and Content Distribution 

Most P2P systems available today fall into this category, to the point that in some 

settings, the P2P technology has been implemented as a synonym for piracy and 

copyright infringement. In fact, this type of application ranging from simple tools to 

complex file-sharing platforms for publishing, cataloging, retrieval and distribution of 

digital content. Examples of file-sharing applications are already mentioned, Napster 

(1999), Gnutella and eDonkey (2000), KaZaA (2001), eMule and BitTorrent (2002). 

Applications for Content Distribution, however, are the distribution of real-time audio 

and video data over the network (P2P live media streaming). Examples of this type are 

the open-source software PPLive [28] [27], SopCast [29], and CoolStreaming [26]. 
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1.3.2 Communication and Collaboration 

In this category, the framework of the infrastructure is built to facilitate the direct 

communication between applications or users on the Internet. Typical examples are chat, 

instant-messaging and P2P VOIP. Skype [30] is a famous example of P2P usage in VoIP; 

it was built on top of the infrastructure of P2P file-sharing network, Kazaa [22]. The 

bandwidth is shared and the sound or video in real-time are shared as resources.  The 

central server is available only for the existence information and calculating invoices for 

the system users whenever they make a call that has charges. 

Document collaboration is important for a team or a company. Collaboration with P2P  

makes it much effective and simple rather than using a centralized server. Groove [31] is 

a Microsoft application with P2P capabilities for document collaboration. Groove offers 

Microsoft Office based solutions, instant messaging, and video conferencing solutions. It, 

also, provides role and user based security, which is one of the most important aspects of 

P2P for an organization. 

1.3.3 Distributed Computing 

The distributed computing requires a moderate commitment arbitrage to divide a job into 

fragments that are then sent to other computers for processing. The results are 

subsequently conveyed to a centralized repository.  

Distributing computing is important for scientific research. P2P plays a role in enabling 

high performance computing by sharing of resource like computation power, network 

bandwidth, and disk space.  SETI@HOME [32] is a popular project enables users to 

search for extraterrestrial intelligence. It is a voluntary project with more than 3.3 million 

users in 226 countries. It has used 796,000 years of CPU time and analyzed 45 terabytes 

of data in just two and a half years of operation. 

1.4 Problem Description 

In the recent years, BiTorrent protocol got a lot  of  adoption as peer to peer  file  sharing  

system,  and  still  being  the  dominant P2P traffic  on  the Internet. However, this 
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protocol suffers from the dependency on a single server that is called a tracker for the 

coordination and the content  routing between its  peers;  this  is  a  single  point  of  

failure  (SPOF)  problem.  Also, this tracker is vulnerable to Denial-of-Service (DoS) 

attack. Furthermore, the tracker is limited in terms of scalability and availability. 

The other problem with BitTorrent is that during the dissemination of the files between 

the peers, the BitTorrent uses many overhead messages. These messages can increase the 

load on the network.   
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2 CHAPTER 2 

BACKGROUND 

2.1 BitTorrent Systems 

BitTorrent is a protocol for peer-to-peer file sharing, designed in Python by Brahm Cohen 

in 2002 with the aim to facilitate the dissemination of large files over unreliable 

networks [5]. BitTorrent protocol takes the utility of uploading bandwidth of all peers in 

the swarm for downloading files for some other peers. The responsibility  of  tracking  

the  updated  information  regarding  file  pieces and the peers that currently joining and 

participation in the swarm falls on centralized  server  called  “Tracker”.  The tracker 

sends to a new joiner peer a list of peers and chunks available with each one of those 

peers. The new peer is going to select a single or multiple peers from the list and start 

downloading the file chunks. The centralized tracker forms a critical part in the system 

where its failure will stop file exchanging between the peers which makes it as single 

point of failure (SPOF) [2]. 

Current  BitTorrent  consists  of  the  five  main  elements [5] [7] to  work properly:  

Tracker  server:  it  was  elaborated.  Metafile(.torrent  file):contains a metadata or 

information about the shared file/content .  Details about  the  structure  and  the  content  

of  this  file  can  be  found  in  [5]. BitTorrent  Client:  it  is  an  application  that  

implements  the  BitTorrent protocol. There are a lot available versions of them such as 

BitTorrent, BitComet [39], uTorrent [40], etc.  Initial peer (seeder): it is the original user 

who has the published file, the existence of this component is essential since it is the 

source of the data, and any other peer that had the completed file and start uploading is 

also becoming a seeder. The fifth and last element is  Downloader  (leecher):  it  is  the  

consumer  of  the  published  data,  it changes its state to “seeder” when it completes file 

downloading. 
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2.1.1 How BitTorrent Works: 

Figure 2.1 illustrates the principle of operation of the BitTorrent protocol that we analyze 

in detail by distinguishing four main phases: 

-Initial Phase: 

The first step that you must do if you are interested in downloading a file through the 

BitTorrent application, is to obtain a .torrent file called metainfo file from a webserver or 

an email. This is followed by the execution of this file by running the BitTorrent client. 

 

Figure 2.1: Standard BitTorrent components and how it works 

- Communication with the tracker: 
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Secondly, you will contact the tracker that specified in the torrent file. The tracker 

provides HTTP/HTTPS that respond to an HTTP GET request. Tracker is used to manage 

the participation of users involved in the torrent (known as peers). A peer has no 

information about the other participants until it receive a response from the tracker. When 

a peer connects to the tracker it tells which pieces of the file the others peers have. In this 

way, when the peer queries the tracker, it returns a list ordered randomly with peers that 

are participating in the torrent, and who possess the required piece. By default, the list of 

peers returned by the tracker consists of 50 elements chosen by the tracker randomly. The 

tracker can choose to implement a mechanism for the selection of peers more intelligent. 

The clients can send requests to the tracker more frequently than the specified interval if 

a specified event occurs (completed or stopped) or if they need to increase the list of 

peers that they connected to. 

- Establishing Connections 

After obtain the list of peers participating in the swarm, the client establishes a 

bidirectional TCP connection with each of them; beginning the phase of data exchange. 

The BitTorrent client uses, in general, TCP ports 6881-6999. To find an available port, 

the client will choose, initially, the one with lowest number progressing until find one 

that can be used. This means that BitTorrent client will use only one port, and running 

another client will choose another port.  When a peer receives a request for a particular 

piece from another peer, it may refuse to offer it. If this happens, we say that the peer is 

chocked. This is mainly due to the fact that by default, the client maintains a fixed 

number of simultaneous uploads (max_uploads), therefore, future requests will be 

suffocated (choked). 

By virtue of this behavior, the client must maintain state information for each connection 

created with the others remote peers. Such information is specified by the value of the 

following variables: 

 Choked: indicates whether the peer is, or not, “choked” by the remote peer. When 

a peer chokes, it notifies the client that does not respond to any request by the 

latter until it is unchoked (unlocked). The client, in this case, should not try to 
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send requests for blocks and should consider all pending request will be ignored 

by the peer; 

 Interested: indicates whether the peer is, or not, interested in one or more piece 

held by the client. If the peer is in this  state it will starts as soon as possible to  

request blocks if  it unchoked by the client; 

At the establishment of the connection, the client will be choked and not interested. 

- Messaging and Data Exchanging: 

The first message that is send by the client is called handshake. It has a length of 49 

bytes. The initiator of the connection should transmit handshake immediately, while, the 

peer on the other side of the connection waits for the initiator‟s handshake. After the 

handshake sequence has been completed and before any other message is exchanged, a 

bitfield message is sent. It is optional and, in case the client does not have any piece, it is 

not necessary to send it. The payload of this message is the pieces possessed by the peer 

that sent the message. The most significant bit of the first byte corresponds to piece index 

0 and every single bit specifies whether the particular piece is owned (1) or not (0). 

Complete the exchange of bitfield among peers in the swarm, beginning the demands of 

the missing pieces by sending a request message. This message has a fixed length and its 

payload is the information about the piece required. If a peer is able to fulfill a request 

passes through the request message, the peer replies with a piece message. This message 

has a variable size that depends on the block of the piece x that has been selected. In the 

payload are the indices for the chosen piece and the actual data block. Just a piece has 

been downloaded, it is verified by the hash function and its receipt should notify the 

majority of the peers that he gets this piece by sending a have message. Now, peers, 

which have received have message, may request this piece from its new owner. If a client 

is no longer interested in a block which had requested, it sends a cancel message.  

To keep a connection between two peers open, a keep-alive message is sent periodically. 

This message has a length of 0 bytes and is specified with the prefix length set to zero. 

The peers who do not receive any message within a certain period of time can break 

down the connection; the keep-alive must then sent to keep the connection open if no 
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other message has been sent for a given time, usually two minutes. 

Choke, unchoke, intereseted, and not intersted, these messages are used to update the 

status information of the connection. They are all characterized by of a fixed message 

length, and the absence of the payload. 

2.1.2 BitTorrent Techniques and Algorithms 

We illustrate in the following subsections the techniques introduced to improve the 

performance of BitTorrent protocol [41]: 

2.1.2.1 Pipeling 

This is a technique that allows you to increase your download speed when transferring 

data via TCP, as in the case of the application BitTorrent. The peers remain in the queue 

a number of unfulfilled requests for each connection. It works in this way because 

otherwise it would have to wait an entire round trip time (RTT) between the download of 

two successive blocks (round trip time between piece message and the subsequent 

request). In link with a high bandwidth-delay-product (BDP) this would result in a 

substantial loss of performance. The BitTorrent achieves this by segmenting the pieces in 

subparts (blocks), typically 16KB, and keeping a certain number of requests, generally 5, 

queued. Each time a block has been received a new request is sent. 

2.1.2.2 Piece Selection 

The selection algorithm of pieces downloading is highly important to get good system 

performance. In fact, by wrong choices there is a risk to reach at a situation in which the 

pieces of the file owned by the client are not required by any other peer. Consequently, 

we need to find a strict policy for downloading of pieces that compose the file. The 

original specification of the protocol requires that clients can download pieces in a pure 

random way, but subsequently new techniques were introduced to improve 

performance [56]. The use of these techniques depends on the amount of data possessed 

by peers at the time of selection. In the following, the techniques are introduced in detail 
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- Strict priority:  

Is the first policy used by BitTorrent; if a single block of a given piece has been received, 

the remaining parts of this particular piece will take precedence with respect to requests 

relating to a new piece. This technique allows completing as quickly as possible whole 

parts of the file. Consider the example illustrated in Figure 2.2. The file that shared has 

been divided into 8 pieces, each consists of 6 blocks. For simplicity, we consider a swarm 

composed of only two peers; A, and B. Peer A, is a seeder and therefore possesses the 

whole file and peer B which is a leecher that possesses only the pieces 2, 3 completely 

and the first block of the piece 1. Before peer B can request for blocks belonging to any 

other piece, if the strict priority strategy is applied, it has to complete the incomplete 

piece. 

 

- Rarest First (RF):  

When a peer decides to select a new piece to download, it always chooses the one with 

the lowest occurrence within the swarm. The behavior of this rule allows the peer to be 

competitive, because, the ownership of pieces that have a high demand, allows the peer 

more easily to swap in return for others. Operating in this manner very lightens the load 

on the original seeder, especially, when it introduces a new torrent. The client can 

determine the rarest piece by keeping the information received during the exchange of 

bitfield with other peers and updating the receipt of each message have. Thus the client 

may request the piece which has the fewest number of occurrences. 

It should be noted that the Rarest First strategy should also include a mechanism for 

random choice among the less common pieces to avoid that all peers end up with 

requiring the same rare piece, making this technique less productive.  Figure 2.3 is an 

example of a selection of the rarest pieces. Consider a swarm composed of 5 peers, one 

seeder, and 4 leechers. After, peer B completing the download of one piece, it have to 

choose which piece to request later. Since, B has received the bitfield relating to peers A, 

C, D, and E, and it knows which pieces are owned with each one of them (represented in 

the figure by the green color and 1). B will calculate the number of occurrences within 
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the swarm for each of the pieces that do not have. It will notice that: the pieces 4 and 6 

are held by three peers (A, C, E), and pieces 5 and 7 are owned by two peers (A, D), 

while the piece 8 is only possessed by peer A. Consequently, the choice will fall on the 

latter piece, which is the rarest within the swarm. 

 

Figure 2.2: Strict priority piece selection strategy. 

 

 

Figure 2.3: Rarest first piece selection strategy. 
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- Random first: 

The only exception to the RF rule is happened when a peer starts downloading a file and 

the peer is not the owner of any piece. In this situation, it is likely that the rarest pieces of 

a file are in possession of a few peers, and, if the RF policy applied, the download would 

be slowed down. Consequently, the first piece to be downloaded is chosen randomly and 

after the completion of the download of this piece, applies RF. It should be noted that it is 

important that a leecher beginning as soon as possible to send the blocks that owns since 

download speed depends on its upload. So when a peer has not any block to distribute is 

preferable to adopt an algorithm that allows him to quickly get a full piece to be 

exchanged. 

- Endgame mode: 

In some situations, a piece may be requested by a peer with a transfer capability is very 

low. This situation does not cause particular problems in the intermediate stage of the file 

downloading, but it can be potentially harmful when it is coming in the end. At the phase 

of completion of file download it can make it faster if the client broadcasts the request of 

the last few blocks to all peers to which it is connected. To avoid this situation becomes 

inefficient, the client will send a broadcast message to cancel each block has been 

received. 

When to enter this mode is still under discussion. Some clients will enter when it have all 

the required pieces except one, others wait until the number of remaining blocks of the 

last piece is smaller than those already received, or in any case the number of remaining 

blocks do not exceeds 20. 

 

2.1.2.3 Choking Algorithm: 

In BitTorrent protocol, there is no centralized resource allocation and each peer tries to 

maximize its download rate. A peer is faced with the problem of cooperation 

(download/upload) similar to the iterated prisoner‟s dilemma [38].The choking algorithm 
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ensures collaboration among peers eliminating this dilemma and allowing you to achieve 

pareto optimality by applying a tit-for-tat strategy. 

The act of choking algorithm is a temporary refusal to provide the data, but not to receive 

them, and then the download can continue and the connection must be renegotiated when 

this condition is ended. 

Every good choking algorithm should follow a number of criteria: 

1. Must avoid the occurrence of the phenomenon called “fibrillation” in which there 

is a fast switch between chocked state to unchocked state that resulting a 

considerable overhead within the network. 

2. Should allow the client to reciprocate the upload bandwidth provided by those 

peers from which it is downloading (principle of reciprocity). 

3. Must be able to check the connections not active to see if there is someone who 

can be more advantageous (optimistic unchoking). 

The phenomenon of fibrillation is avoided by only repeating the selection of choked 

peers once every 10 seconds (choking_interval). 

Each client participates in the file sharing unchokes a fixed number of peers (default 4) 

among all those which has established with them a TCP connection. The problem is thus 

reduced to the choice of which of them do not “choke”. The client makes unchoking to 

four peers that provide the highest download rates and that are interested in it. These four 

peers are called downloaders. 

Peers who have a bettor upload speed than the current downloaders, but aren‟t interested 

get unchoked. If they become interested, the downloader with the lowest upload speed 

gets choked. It should be noted that if a client becomes a seeder (owns the complete file), 

it will use its upload rate rather than its download rate to choose which peers to unchoke. 

For optimistic unchoking, a single peer is unchoked regardless of its upload speed. Every 

30 seconds rotation (optimistic_unchoke_interval), a peer is optimistically unchoked. 

Newly peers are three times as likely to start as the current optimistic unchoke as 
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anywhere else in the rotation. This gives them a good opportunity to get a complete piece 

to upload. 

2.1.2.4 BitTorrent Tracker: 

Tracker is a server that allows peers and seeds to communicate using the BitTorrent 

protocol. It plays a vital role on BitTorrent application since it can trace out a list of 

clients that participating in the network. In addition, peers know nothing of each other 

until a response is received from the tracker. Therefore, the peers connect to the tracker 

server to obtain the related information about the file that they want to download. The 

role of the tracker ends once peers have known each other. A BitTorrent client must 

communicate with the tracker before starting downloading the file as well as during 

downloading in progress to report their own downloading information and also can gain 

the new seed information. Trackers use a simple protocol layered on top of HTTP. 

Moreover, the role of the tracker ends once peers have known each other. From then on, 

communication is done directly between peers, and the tracker is not involved. Therefore, 

the bandwidth of the tracker is very low since peers only connect to the tracker for a very 

short time in long time intervals (usually 30 minutes). The total amount of bandwidth 

used by the tracker is currently around a thousandth the total amount of bandwidth 

used [42]. 

Tracker drawbacks are: it is a single point of failure (SPOF), vulnerable to Denial-of-

Service (DoS) attack, and, is limited in terms of scalability and availability. 

2.2 Real Time Publish Subscribe (RTPS) Middleware 

The publish-Subscribe architecture, Figure 2.4, is a data centric design permitting direct 

control of information exchange among different nodes in the architecture  [44]. It is a 

sibling of the message queue pattern, and is one part of a large message-oriented 

middleware system. It generally relies on asynchronous message passing, as opposed to 

request-response architecture. It connects anonymous messages publishers with 

anonymous messages subscribers. The property of decoupling publish and subscriber in 

time (data when you want it), in location (publisher and subscriber can be located 
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anywhere) and in platform (connect any set of systems) make the publish-subscribe 

communication model more appropriate for formidable scale and loosely coupled 

distributed Real-Time systems than traditional models such as client-server models[]. 

Client-server communication drawbacks, e.g., server bottleneck, single points of failure 

and high bandwidth load in many-to-many communication are resolved by publish-

subscribe communication model [43]. Unlike client-server interaction model, data in 

publish-subscribe interaction model is pushed by the producers to “topics” or 

“destinations” where consumers will receive all data distributed to the topics to which 

they subscribe immediately after the data is produced without the need of a request, and 

thus subscribers and can get the data in Real-Time. In addition, publish-subscribe 

architecture releases the producer (publisher) from waiting for an acknowledgement by 

the consumer (subscriber). As a result, the publisher can quickly move on to the next 

receiver within deterministic time without any synchronous operations which is desirable 

for a large scale distributed Real-Time systems [3]. Recently, the publish-subscribe 

communication model has become popular in different middleware such as Java Message 

Service (JMS), Microsoft Component Object (COM+) and Data Distribution Service 

(DDS). DDS is a high performance middleware standardized by the Object Management 

Group (OMG) for QoS-enabled publish-subscribe communication aimed at distributed 

Real-Time and embedded systems [10]. 

 

Figure 2.4: Publish/Subscribe (PS) model 
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2.2.1 OMG Data-Distribution-Service (DDS): 

The Object Management Group, Inc.  (OMG)  is an international organization founded in 

1989.  The OMG promotes the theory and practice of object-oriented technology in 

software development [8]. The OMG's  goals  are  the  portability,  reusability,  and  

interoperability  of object-based  software  in  distributed,  heterogeneous  environments.  

Ten years ago, the Data Distribution Service (DDS) has been risen as OMG standard for 

topic-based publish/subscribe Middleware. The OMG Data Distribution  Service  for  

Real-Time  Systems  (DDS)  is  considered  to  be the  first  open  international  

middleware  standard  directly  addressing  publish-subscribe communications for real-

time systems.  The main goal of  the  DDS  specification  is  to  make  the  dissemination  

of  data  in heterogeneous distributed environments efficient and easy [8]. At the core of 

DDS is the Data Centric Publish-Subscribe (DCPS) layer that is targeted towards the 

efficient delivery of the proper information to the proper recipients for applications 

running on heterogeneous platforms [11].DCPS builds on a Global Data Space (GDS), 

Figure 2.5, by which applications or participants running on heterogeneous platforms can 

share information by publishing data under one or more topics of interest to other 

participants. On the other hand, applications or participants can use the GDS to declare 

their intent to become subscribers and access data of interested topics. Each topic 

represents a logical channel for connecting publishers to all interested subscribers. DDS 

has several implementations; these implementations can be categorized as free (open 

source) such as OpenSplice [45] and OpenDDS [46], and commercial such as 

CoreDX [47] and RTI-DDS [35]. For our work, we have chosen RTI-DDS middleware 

due to its efficient implementation [14]. Moreover, DDS is a publish-subscribe standard 

with a diverse set of Quality of service (QoS that ensures high performance and low 

delay of transmission). 
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Figure 2.5: Global Data Space (GDS). 

 

2.2.2 DDS Quality of Service Policies (QoS) 

Perhaps, the most important advantage of DDS it the fine control over real-time Quality 

of Service (QoS). DDS relies on the use of QoS to tailor the service to the application 

requirements. QoS policies are implemented as a list of qualities of service that must 

meet the component to which it is associated. All components of a communication 

system may have an associated set of quality of service. The QoS, which is requested by 

a subscriber, must be met by a publisher. Each publisher-subscriber pair can establish 

particular quality of service agreements. QoS parameters control every aspect of the DDS 

model and the underlying communications mechanisms. Many parameters of QoS are 

implemented as a contract between publisher and subscribers; publisher offers, and 

subscriber requests, levels of service (like a negotiation mechanism). The responsibility 

of the middleware is to determine if the offering can match the request, thereby initialing 

the connection or showing an incompatibility exception.  
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It has been decided to organize QoS policies in groups, considering the functionality 

offered or scope of communication in which they operate. Here are the name of each 

group and its QoS policies: 

 Volatility group:  contains five QoS policies; Durability (store or not previous 

published data), History (how much data to store), ReaderDataLifecycle (manages 

the lifecycle of the data that it has received), WriterDataLifecycle (how 

Datawriter controls the lifecycle of the instances that manages), and Lifespan 

(determines how long should consider data sent to be valid). 

 Infrastructure group: contains two QoS policies; Entity Factory (controls the 

behavior of an entity as a factory of other entities), Resource Limits (determines 

amount of memory is allocated for middleware entities). 

 Delivery group: contains four QoS policies; Reliability (controls the protocol 

reliability e.g. best effort, or reliable), Time Based Filter (specifies a minimum 

time period before new data is provided to a DataReader), Deadline (related to 

samples elapsed time), and Content Filters. 

 User group: contains three QoS policies; User Data, Topic Data, and Group Data, 

they attach discoverable meta-data at the writer/reader level, the 

producer/consumer, the topic level, respectively. 

 Redundancy group: contains three QoS policies; Ownership ,Ownership Strength, 

they specify if a subscriber can get new samples  from multiple publishers at the 

same time, and Liveliness (allows subscriber to detect when publisher becomes 

dead, or disconnected). 

 Transport group: contains two QoS policies; Latency Budget (suggests how much 

time is allowed to deliver data), and Transport Priority (gives some data different 

priority than other data). 

More details about Quality of Service policies can be found at the DDS 

specification [10], and RTI QoS reference guide [48]. In4, and chapter 5, we mention 

wider details about QoS policies that we have been used to accomplish our proposed 

work. 
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2.2.3 DDS Discovery 

The DCPS model provides anonymous, transparent, many-to-many communications. 

Applications that use DDS discover one another in an automatic, dynamic P2P fashion; 

they do not need any brokers or centralized node in order to send messages. Applications 

in the discovery mode automatically send announcements to one another when the 

following events take place: a new connection is created, or a new DataWriter or 

DataReader is created.  

An application goes through an operation titled matching, in which the new publisher or 

subscriber is compared against the local publishers or subscribers to decide whether or 

not they can communicate. A publisher and subscriber are considered to be matched if: 

 They registered the same Topic. 

 And, they have compatible QoS.  

After a publisher and subscriber have been matched, data published by the publisher will 

begin to be received by the subscriber.  

The consumed time for connections to discover one another and for publisher-to-

subscriber matching to accomplish is on the order of one or two seconds when all peers 

are in the same subnet considering modestly system's size. Based on the number of hops, 

the loads on the network, the system size, and, the load on the target CPUs, this time can 

differ greatly [12] [49]. 
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3 CHAPTER 3 

LITERATURE REVIEW 

In general, research studies in BitTorrent peers Discovery are limited in number. The 

most three important solutions for tackling tracker availability problem are: multiple 

central trackers, Distributed Hash Table (DHT), and Peer Exchange (PEX) 

3.1 Multiple Central Trackers 

Since, the first version of BitTorrent, the idea of multiple trackers [52] has been used. A 

single torrent file contains multiple trackers addresses. This enables redundancy, if one 

tracker goes down, then the remaining trackers can go ahead to reply new coming peers 

with the peers list. Multi-tracker has introduced two disadvantages: 1) it becomes 

possible to have multiple swarms for one torrent where some peers can join to a special 

tracker whereas being unable to bind to another [51]. 2) Extra resources (multiple 

servers) are needed, and much time is needed to replicate the torrents file.  The main 

advantage of this approach is that the network (search) complexity is O(1) or in the worst 

case is O(S), where S is the number of tracker servers, whereas, the complexity terms of 

memory consumption is O(N), where N is the number of torrent files available in the 

tracker. An example of multi-tracker environment is depicted in Figure 3.1. 
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Figure 3.1: A new peer connects to a swarm using multiple central trackers approach [55]. 

3.2 Distributed Hash Table (DHT): 

Andrew et.al [50] proposed a DHT BitTorrent for storing peers information for, what so 

called, "Trackerless" torrents. The standard and implementation of DHT protocol is 

described on the official website of BitTorrent [50]. Terms peer, node, DHT, distance 

metric, and routing table all refer to members at the P2P network. In brief, terminology 

and mechanism are illustrated as follows:  

A. Terminology:- 

 Peer: is a client or a server listens on TCP port implementing BitTorrent protocol. 

 Node: is a client or a server listens on a UDP port that implements the DHT 

protocol. 

 DHT: is consists of nodes and stores the site of peers. 

 Node ID: is a unique identifier assigned to every node. This identifier is chosen 

randomly from the same 160-bit space. 

 Distance metric:  is used to compare two node IDs or node ID and infohash for 

closeness. 

 Finger Table (Routing Table): contains the peers IDs for a small number of other 

nodes in the system.  
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B. Mechanism: 

 Firstly, a node, which tries to locate peers for a specified torrent, compares the infohash 

of the torrent file with the IDs of the nodes in its finger table. This comparison is done by 

using the distance metric. Secondly, the node checks out the nodes it knows about with 

IDs closest to the infohash and inquires for the communication information of peers in 

the swarm. Thirdly, if a connected node has knowledge about peers for this torrent, a 

response with the peer communication information is returned. Otherwise, the connected 

node has to answer with the communication information of the nodes which are closest to 

the torrent's infohash. Finally, the original node iteratively inquires nodes which are close 

to the target infohash till it cannot find any closer node.  

DHT still need a bootstrap node which is a node provides initial configuration 

information to newly joining nodes so that they may successfully join the overlay 

network . The storage and search complexity of DHT  should not increase than O(logN). 

An example of new peer joining a DHT overlay network is depicted in Figure 3.2. 

 

Figure 3.2: BitTorrent’s DHT environment ( A new peer joining process) [55]. 
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3.3 Peer Exchange (PEX): 

Another method to design a distributed tracker is by using a gossip protocol like PEX. 

PEX [53][54] is an extension to BitTorrent standard protocol aimed to accelerate nodes 

discovery. Instead peers connect the central tracker to update their peers list; a peer can 

share his own neighborhood group with his neighbors. After a peer has interchanged his 

own peer lists with another peer, it might connect to the newly discovered peers. 

The steps of PEXing process are as follows. For each PEX-capable link, a peer maintains 

a group of peer addresses it has already sent to the other entity. When a peer decides to 

send a new PEX message, it sends the difference between its current neighborhood set 

and its set of peers already sent, or a subset hereof if the resulting set it too big. 

Computed using these same two sets, the same PEX message also contains a group of 

previously sent peers which the peer is no longer bounded to since the last PEX message. 

In PEX, the need of tracker is not eliminated completely. Actually, PEX just lessens the 

load in the tracker. Each new joining peer must connect the tracker in order to get its first 

peers list. Figure 3.3 illustrates the PEX process graphically. 

 

Figure 3.3:  (a) Peers A and B change their lists information (b) Peers A and B can contact the discovered peers 
directly [55]. 
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3.4 Other Related Methods: 

Fabio V et.al [6] proposed balanced Tracker (B-Tracker), a pull-based, and fully 

decentralized tracker. It refers to a seeder as a provider. In initial stage, B-Tracker 

depends on a DHT overlay structure for tracker detection. In this stage, the primary 

trackers, which are peers have peerID nearest to the resourceID, are responsible for 

storing the set of providers (seeders) of the resource.  The complexity of essential 

trackers discovery is O(log n) , where n refers to the number of nodes (peers)  in the 

network. It is not always true that the primary trackers of resources are providers for 

these resources. In next stages and after a peer has got a provider list from the primary 

tracker, subsequent queries can be sent to any provider. A provider is considered a 

secondary tracker for the resources it provides. The idea of secondary trackers makes B-

Tracker scalable, because resources with many providers are capable of spreading the 

load among primary trackers, as well as, secondary trackers. Also, fairness can be 

improved by sharing the load among peers who interested in providing the resource. 

Simulation of B-tracker showed that it achieves better higher efficiency and load 

balancing than the other distributed trackers (DHT and PEX). 

Lareida et.al [4] proposed RB-Tracker. RB-Tracker is essentially based on B-Tracker [6]. 

However, RB-Tracker manages the overlay network automatically and does replication 

of content. The motivation of RB-Tracker is to minimize traffic peaks and inter-domain 

traffic. The main idea of RB-Tracker is that in non-peak hours duplicating the content 

like a CDN and   utilizing locality.  In a fully distributed network, RB-Tracker combines 

three methods. First, replication of popular and of interest to the user content to the local 

cache in order to make files closer to their users. The goal of this is to reduce peak loads, 

consequently, favorite files are duplicated, since they causes the dominant traffic. 

Second, identify the status of the network to choose the replication time. This is done by 

sending messages; contain a time stamp flag, between peers. A peer measures delay and 

builds statistics based on its measurements, as a result, a peer can identify when delay is 

rising. If the delay is raised between two neighbor peers, the neighbor is not an 

appropriate source for duplication and another neighbor needs to be detected. Third, 
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determines the group of close peers to duplicate from, as a result, additional intra domain 

traffic is avoided. For two IP addresses, a locality function is used to identify how two 

peers are close. A peer decides, if it should duplicate from a neighbor peer using the 

number of AS hops between them. A trace route tool with an IP to AS map is used to find 

the AS hop distance vector. An example which illustrates this mechanism can be found in 

the original paper. 

Charles P et.al [2] shown BitTorrent swarm at any point in time as a simple graph 

G=(V,E) V={1,....,n) is the set of peers and E (V x V) is the set of neighbor relations. 

Random walk mechanism, which it used to randomly select nodes from graphs. Using 

biased random walks to select initial neighbors for joining nodes and to replace failed 

nodes. As consequence, it removes any dependence on the tracker. This accomplish by 

Entry Points which help new joining nodes to get a random set of neighbors. So, Entry 

Points play the same function of the tracker. Communications between entry points is not 

mandatory, they can operate concurrently. The authors compared graphs generated by 

their approach to those created by the centralized tracker, two logs are used, RedHat 

tracker log, and Debian tracker log. 

Ioanna et.al [1] proposed ISP-Owned Peers (IoPs) to enhance BitTorrent Performance. 

IoP is a node which targets to increase the level of traffic locality within an ISP and to 

improve the performance of P2P applications. IoP could be a regular entity but highly 

active peer (HAP) that is given extra resources by the ISP, or could be as a part of an ISP 

infrastructure, so, it's controlled by the ISP. IoP runs the typical overlay protocol like 

others peers in the swarm with some parameters changes that benefit other peers, e.g. IoP 

can unchoke more peers than the classical ones, in order to take the advantage of its extra 

uplink capacity. Also, it can store the content downloaded and of course uploading it 

back to the network. There are two methods to deploy an IoP in BitTorrent network:  

A. Plain insertion: BiTtorrent original protocol is run by all peers; there is no 

mechanism like awareness of locality is employed, and no consideration of any 

agreement with the overlay provider. Therefore, the tracker is not conscious about 

the existence of IoP as a specific peer but deals it as a regular entity. In this 

approach, the other peers prefer the IoP because of the tit-for-tat mechanism run 
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by unchocking algorithm and due to its high uplink capacity. The IoP follows the 

tit-for-tat principle taking the advantage of the immediate incentives of the latter 

that are directly related to the underlay. 

 

B. Integration with locality awareness methods: the run of locality awareness 

methods that impact the overlay network's structure is considered as being 

imposed by the ISP. The implementation of these methods could be either: 1) 

clear (transparent) to the peers (run the same original protocol) or 2) non-

transparent (an adjusted version of the protocol is introduced). Metrics that can be 

considered are RTT and hops' number to remote peers, the identity of peers' 

autonomous system, and BGP information. According to these metrics, the IoP is 

mostly preferred by peers that are 'closer' to it. 

Simulation has shown that the deployment of the IoP achieves good decrease in the inter-

domain traffic that get in the AS where it is deployed. Further enhancement is achieved 

when the IoP deployment is integrated with locality-awareness mechanisms. Moreover, 

the deployment of IoP in a pure BitTorrent overlay network within the use locality-aware 

leads to higher reduction in the inter-domain traffic.  

 

3.5 Research Objective 

The aims of this research are as follows: 

 Removing  BitTorrent  Tracker  completely,  and  distributing  the tracker  role  

among  swarm  peers.  Making BitTorrent protocol a pure P2P protocol. 

 Propose a novel architecture for BitTorrent discovery protocol. 

 Reduce both communication overhead (network overhead) and node searching 

complexities to O(1) for most cases. 

 Implement BitTorrent dissemination protocol using RTPS middleware (DDS).  

For our best of knowledge this is the first implementation for BitTorrent over 

DDS. 
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 Benefiting from publish/subscribe paradigm in minimizing BitTorrent overhead 

messages. 

 Compare the DDS-BitTorrent performance with the original BitTorrent protocol. 
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4 CHAPTER 4 

DYNAMIC POINTERS: NOVEL DISCOVERY 

PROTOCOL FOR BITTORRENT BASED ON RTPS 

MIDDLEWARE 

Based on the problem of the BitTorrent tracker stated in section 1.4, we formalized the 

problem in this chapter and present our implementation architecture. For our discovery 

architecture, we benefit from tuned RTI-DDS discovery scenario which is called “One-

way Communication with high Fan-Out”[27], and we use it as  a skeleton  to implement 

our discovery architecture. The following section will summarize this scenario and how it 

is related to our architecture. 

4.1 Discovery Scenario: “One-way Communication with High Fan 

out” 

In this scenario that is shown in Figure 4.1, a standalone publisher distributes messages to 

a large number of subscribers. These subscribers do not interchange any messages with 

each other. As a result, the performance of these subscribers will be improved and the 

memory footprint of them will be decreased, since, they do not need to discover each 

other. Therefore, IP unicast is used to send messages from the subscribers to the 

publisher. It should be noted that the default DDS discovery uses IP multicast, in which, 

all peers in the network discover each other. By using IP unicast, we ensure that the 

network interfaces and CPUs of the other subscribers computers will not be burdened 

with the additional multicast traffic. Messages sent from the publisher to the subscribers 
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are distributed using IP multicast for general messages, and IP unicast for subscriber‟s 

specified messages.  

 

Figure 4.1 RTI-DDS discovery scenario :”one way communication”. 

 

The QoS related to the discovery configuration to achieve this scenario for both publisher 

and subscribers are shown in Figure 4.2 and Figure 4.3, respectively. 

 



38 
 

                 

Figure 4.2 Publisher discovery QoS xml configuration 

 

              

Figure 4.3: Subscriber discovery xml configuration 

 

BitTorrent discovery protocol typically works in the same manner as the above scenario, 

in which, peers only interact with the tracker, and they know no information about each 

other.  

<discovery> 

         <initial_peers> 
<!-- Multicast address to talk to subscribers:--> 

      <element>239.255.0.1</element> 
</initial_peers> 
<multicast_receive_addresses> 
<!-- Empty: only listen over unicast --> 
</multicast_receive_addresses> 

</discovery> 

            <discovery> 

<!-- just talk to the IP which was included in < initial peers> list --> 

<accept_unknown_peers>false</accept_unknown_peers> 
<initial_peers> 
<!-- Publisher's unicast address --> 

<element>192.168.1.100</element> 
</initial_peers> 
<multicast_receive_addresses> 

<!-- Multicast address to talk to publisher: --> 
<element>239.255.0.1</element> 

</multicast_receive_addresses> 
</discovery> 
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4.2  Dynamic Pointer Quality of Service  

For more information about DDS QoS policies see section 2.2.2, and RTI QoS reference 

guide [48]. In this section, we describe in details about two DDS QoS policies; 

Ownership and Domain. 

4.2.1  Ownership and Ownership-Strength QoS’s 

Ownership QoS provides fast, robust, transport replacement for failover. By default, 

subscribers can get data from any matching publisher for the same topic; this is known as 

the "shared" setting for the Ownership QoS policy. If the "exclusive" setting is used, 

subscribers only receive data from one publisher at a time. The setting of Ownership in 

the subscriber side must be the same on the publisher side to be connected. Either both 

sides must be shared or both sides must be exclusive. When the setting of the Ownership 

is "exclusive", we use the Ownership-Strength QoS policy to specify which publisher is 

the owner of the data (allowed to send data). The publisher who has the highest value for 

the Ownership-Strength is considered as the owner of the data. When there are many 

publishers, and the publisher with the highest value of ownership strength leaves, the 

middleware will change the ownership of the data to a publisher with the highest 

ownership-Strength from the remaining publishers.  

An important point to be known about the Ownership QoS policy is that it is a network 

overhead. Actually, data is sent by all the publishers, and the middleware at the 

subscriber side drops all data except these that are sent by the owner publisher (the 

strongest publisher). In fact, the filtering process is done at the subscriber side after 

consuming and wasting the network bandwidth. 

4.2.2 Domain QoS 

A domain is a logical network that overlays the physical network. Every connection in 

DDS application belongs to exactly one domain; therefore, domains form a technique for 

isolating subsystems or entire distributed applications from one another. A unique integer 

value, domain ID, is used to distinguish one domain from another. An application 

participates in a domain by creating a DomainParticipant for that domain ID. A domain 
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creates a “virtual network” linking all applications that share the same domain ID. 

Applications run on the same set of physical computers and share the same physical 

network but using different domains are isolated from each other. 

4.3     Dynamic Pointer 

From the BitTorrent specification, we know that the availability of the initial seeder that 

has all the pieces that make up the content is mandatory for the success of the file sharing 

process. This principle is maintained in our proposed solution with a minor modification 

to the overall operation. Instead of adding the IP of the tracker in .torrent file, the seeder 

puts its IP address so that the new joiners contact the original seeder directly. The seeder 

plays the role of the tracker in terms of coordination and updating the swarm list. “Self-

tracker” is the name of the initial seeder and other seeders.  

The Dynamic Pointers architecture benefits from the “One-way communication with 

High Fan-out” discovery scenario, discussed in section 4.1. We use the publisher as the 

initial seeder (self-tracker) and the other new joiners as subscribers. Each new joiner 

needs to contact only the initial seeder to get its swarm list using IP unicast. The details 

of how the Dynamic Pointers architecture works are as follows: 

1. Initial seeder shares the .torrent file which contains its IP address and domain-ID on a 

web server or via email and waits new joiner peers to contact it. 

2. A peer that is interested in that file downloads the corresponding .torrent and contacts 

the initial seeder (self-tracker). Then, the peer subscribes to a DDS topic has the same 

name of the .torrent file, the connection established by using IP unicast. The self-

tracker publishes to the new joining peer the swarm list (see Figure 4.4). 

3. Now, if a peer completes the file download (say peer B in Figure 4.4), it starts its 

publisher (seeder) application, and publishes a unicast message to the self-tracker 

(peer A) telling it that “I‟m a seeder”. 

4. The initial seeder (peer A) would publish multicast message to all other peers telling 

them that peer B became a seeder. Consequently, all peers save the IP address of peer 

B in a special list (trackers list). 
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5. After that, peer B changes its discovery mode from unicast to multicast and, adds and 

publishes its IP address with .torrent file. 

6. Subsequently, if the self-tracker (Peer A) leaves the swarm or crashes for some reason 

(see Figure 4.5 (a)), then the other peers will know that their self-tracker is not 

available by missing its heartbeats (timeout period). So, they invoke their tracker-list 

and get the IP address of peer B and contact it, Figure 4.5 (b), by adding B‟s IP to 

“initial_peers” element in discovery QoS. 

The previous steps repeat themselves and the process continues in this manner. Also, note 

that the configuration and failover in step six are done completely automatically without 

any intervention.  

 

Figure 4.4: Discovery mechanism in Dynamic pointers approach 
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Figure 4.5: (a) Failure of initial seeder,      (b) Peers contact directly to the new self-tracker 

 

When there are more than one seeder, new joiners have the option to contact any of the 

available seeders. For example (see Figure 4.6), if peer F is a new joiner, it may contact 

seeder B while new peer G may contact seeder A. Additionally to the swarm list, the 

particular seeder sends the IPs of other seeders in the swarm (A sends IP address of B to 

G) to make the new peer ready for any changes in the swarm (e.g. leaving or crashing of 

designated seeder). The peer will be ready to apply step six. 

 

Figure 4.6: new joiners can easily contact any seeder (self-tracker). 
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The formula of the timeout period, that is used to determine that a designated seeder is 

disconnected, is depicted in Equation 4.1 and Equation 4.2, and the pseudo code for 

calculating and adjusting this period is depicted Figure 4.7. 

                                                                                                        

                                                                                                      

ti is the arrival period of the heartbeat messages, i=0, 1, 2, …, e.g. the first heartbeat 

message arrival time is t0 and so on, and X is an extra period constant used as an 

assurance period before deciding the collapse of the self-tracker (a seeder); the value of X 

is determined according to the system size. If the timeout period is expired and no 

heartbeat message arrived then the current self-tracker is considered not available. 

 

Figure 4.7: timeout period adjusting pseudo code. 

// initially set the timeout period to a large period (y) 

sufficient to the particular network (consider multi-hops). 

1. BEGIN 

2.  SET timeouty;  x 3 sec;  i0; 
3.  START a timer T 

 

4.   REPEAT 

5.     ti  read(timer T value)  
6.     IF HBi  received THEN   //a heartbeat message is rec 
7.      IF i equl 0 THEN 

8.         timeout  ti +x 
9.      ELSEIF  ti > ti-1 and  ti < ti-1+x THEN 

10.         timeout  ti +x 
11.         ElSE 
12.                     ti = ti-1 

13.   timeout  ti+x   // not change 
14.    ENDIF 
15.    RESTART T 
16.    INCREMENT i 
17.     ENDIF 
18.  UNTIL ti  >  timeout   // same as ti> ti-1+x 
19.  CONNECT new Seeder. 
20. END 
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The main feature of our proposed solution is fully decentralized for file dissemination, 

auto configuration, and, instantaneous failover, which achieves high scalability and high 

availability. The complexity of the proposed solution also has an improvement over 

multiple trackers, DHT, and PEX methods. The communication overhead (network 

overhead) is O(1) because the requester just has to know one seeder. The complexity in 

terms of memory consumption is O(1) since, the seeder usually  has one .torrent file, and 

if the seeder has more than one file, the seeder can isolate them from each other by using 

the Domain QoS (designate a unique domain ID for each file).  

The key limitation in our solution is the dependence on the availability of seeders. The 

system may fail if no seeder is found. The following two subsections describe 

enhancements to the dynamic pointers architecture 

4.3.1 Guarantee Discovery using IP Multicast 

It may happen that a new peer gets a .torrent file with an IP address of a seeder that 

crashed or left the swarm. In this case, this new joiner can't join the swarm and download 

the file. 

To solve this problem we have made an addition to the .torrent file. We add a multicast 

IP address beside the unicast IP address of the seeder. This multicast group is essentially 

joined by the seeders of the swarm, and the discovery scenario becomes as follow: 

 Initially, the new joiner tries to connect to the self-tracker (initial seeder) directly 

using the unicast IP address.  

 If the new joiner fails for any reason, it uses the multicast IP address and 

searches for any other seeder. 

 As a new seeder is found, the new joiner gets the IP address of the new seeder 

and contacts it using  IP unicast approach. 

The flowchart of this process is shown in Figure 4.8. Using this approach, the discovery is 

guaranteed as long as, there is a single seeder. 
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Figure 4.8 : Guarantee discovery process flowchart. 

 

4.3.2 Recovery Speed up Using Ownership QoS 

The recovery process that is used in the Dynamic Pointers architecture can be accelerated 

by doing two things: 

A. Set the setting of Ownership QoS to “exclusive” for all the publishers (seeders) 

and all subscribers (leechers), and vary the values of the OwnershipStrength QoS 

for all seeders. 

B. Instead of storing the IP of a new seeder in the trackers list, the subscribers should 

connect to the new seeder immediately as they receive its IP. 

Applying Ownership QoS policy in this situation is reasonable, and the Ownership QoS‟s 

drawback (network overhead) could be ignored, because the messages between peers and 

the self-tracker in the discovery phase are very small in the size. But if the system is huge 

and the bandwidth is limited, Ownership QoS should be carefully used. 
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4.4    Implementation and Experimental Work 

Java JDK version 7 [33] as a programming language, NetBeans version 7.4 [34] as an 

environment, and RTI-DDS API [35] as a middleware are used to complete our proposed 

solution implementation. We benefit from tuned RTI-DDS discovery scenario which 

called "One-way communication with High Fan-out" [27] and we use it as a reference to 

implement our discovery architecture. The testbed of our experiment consists of four PCs 

connected to each other via LAN. The specifications for these PCs are Intel® Core i3 

2.93 GHz CPU, 4 GB RAM, and Windows 7 32-bits OS. Each of these PCs has its own 

IP and they are connected to Internet as well. Scalability and Availability are the two 

metrics that we focus in them. 

For scalability test, we first run a single publisher (seeder) then, we run new subscribers 

(leechers) sequentially to test how latency delay increases as the new leechers increase. 

Two groups of leechers are selected. The first group, which is small, contains subgroups 

which are one-leecher, two-leechers, four-leechers, and eight-leechers. The second group, 

which is large, contains subgroups which are twenty-leechers, thirty-leechers, forty-

leechers, and fifty-leechers; these numbers of leechers are selected to cover wide range of 

possibilities of leechers per a swarm. Packets of sizes 2,4,8,16,32 KB are used; these 

packet sizes are suitable for BitTorrent discovery phase where the exchange messages are 

only small text messages. 100 samples of each packet size are sent to every leecher in the 

subgroups then the average delay is calculated. The total trials that are done in the test are 

40 trials (number of subgroups x number of packet sizes). 

For availability test, we ran two seeders and some leechers. Then, we intended to crash 

one of the seeders to know how much time required for the leechers to transfer 

automatically to the other seeder. Three scenarios of this test have been done: 

 When the seeder and the leechers are in the same network segment,  

 When the seeder is two hops away from the leechers,  

 When the seeder is five hops away from the leechers. 
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In each scenario, we have done five trials. Each trial has been repeated ten times and the 

average was taken. The last two scenarios are accomplished by using Graphical Network 

Simulator (GNS3) simulation tool [36], which, provides capabilities to design and 

simulate a complex network while being as close as possible to the way real networks 

perform.  

Also, availability test is re-experienced when the Ownership QoS is applied. 

4.5 Evaluation and Results  

First, we have compared the complexity of our proposed approach with Centralized 

Tracker BitTorrent, DHT BitTorrent and PEX. Table 4-1 summarizes the complexity of 

our solution versus the others three approaches. 

Table 4-1 Complexity of dynamic-pointers Vs. others approaches 

 

 

For the scalability test, the results come as expected. As the number of leechers increases, 

the latency of messages from the seeder to these leechers increases. However, the latency 

increase is due to the increase of the leechers is smooth and it has no harmful effect on 

the scalability of the network. Table 4-2 and Figure 4.9 show the latency (µs) results in 

case of 1, 2, 4 and, 8 leechers, respectively. We can see from the table that the average 

latency proportional to the number of leechers and that makes sense because when the 

number of leechers increases, the network traffic increases and then the packet latency 

will increase as well. We can also see that the latency increase is not sharp (the difference 

between sending 32-Kbytes to one leecher and eight leechers is less than 0.5 

millisecond).  

Approaches Memory 
consumption 

Network overhead 

MCT O(N) O(1) 

PEX O(N) O(1) 

DHT O(logN) O(logN) 

Dynamic-

Pointers 
O(1) O(1) 
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Table 4-3 and Figure 4.10 show latency (ms) results in case of 20, 30, 40, and 50 

leechers, respectively. We can see that the difference between sending 16-Kbytes packet 

to twenty leechers and fifty leechers is about 1.5 ms. 

Table 4-2 Latency (µs) variations for small number of leechers 

Packet 
size(KB) 

# of Leechers 
1-Leecher 2-Leechers 4-Leechers 8-Leechers 

2K 228.9 341.75 386.1 561.65 

4K 275.7 331.45 398.6 532 

8K 289.4 322.0  385.0 592.55 

16K 325.35 332.15 488.35 669.9 

32K 346.65 356.0 495.85 763.25 

 

 

Figure 4.9 Latency(µs) Vs. Packet size for different numbers of leechers 

 

Table 4-3: Latency (ms) variations for large number of leechers 

Packet 
size(KB) 

# of Leechers 
20-Leecher 30-Leechers 40-Leechers 80-Leechers 

2K 
1.121 1.66855 1.8284 2.34275 

4K 
1.0801 1.5788 1.8288 2.2403 
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Packet 
size(KB) 

# of Leechers 
20-Leecher 30-Leechers 40-Leechers 80-Leechers 

8K 
1.2074 1.61725 1.8778 2.5099 

16K 
1.1988 1.9245 1.9638 2.63445 

32K 
1.36155 1.93405 2.1324 2.99125 

 

 

Figure 4.10 Latency (ms) Vs. Packet size for different numbers of leechers 

 

For the availability test, the results show that our network could automatically failover 

when a crash or a failure occurs. Table 4-4 and Figure 4.11 show all the results. 

Figure 4.11 (a), where the seeder and the leechers are in the same subnet, shows that the 

recovery period ranging from 30 to 60 seconds.  Figure 4.11 (b) where the seeders are 

two hops away from the leechers, shows that the recovery period is in between 50 and 70 

seconds. Figure 4.11 (c) where the seeders are five hops away from the leechers, shows 

that the recovery period starts from a minute and half, whereas, the network is congested, 

the recovery period falls in between two minutes and half to three minutes. These results 

are very suitable for BitTorrent where a peer contact the tracker one time every 30 

minutes for coordination. 
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For the availability test when the Ownership QoS is applied, the results show a 

significant enhancement over the previous availability test. Table 4-5and Figure 4.12 

show all the results. Figure 4.12 (a), where the seeder and the leechers are in the same 

subnet, shows that the recovery period ranging from 8 to 10 seconds.  Figure 4.12 (b) 

where the seeders are two hops away from the leechers, shows that the recovery period is 

in between 10 and 14 seconds. Figure 4.12 (c) where the seeders are five hops away from 

the leechers, shows that the recovery period mostly falls in 15, or 16 seconds, whereas, 

the network is congested, the recovery period falls in 30 seconds. Figure 4.13 shows a 

comparative study between applying Ownership QoS and without applying it. 

Table 4-4 AVERAGE RECOVERY TIME (SEC) PER EACH TRIAL FOR DIFFERENT HOPS 

Trials 
Distance between Seeders and Leechers 

0-hops 2-hops 5-hops 

Trial#1 44.5 68.9 94.6 

Trial#2 25 61.1 102 

Trial#3 33 62.2 112.3 

Trial#4 62.25 53.5 134.5 

Trial#5 40 63.5 164.5 
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Figure 4.11  Average recovery time (sec) in each trial for different distance scenarios (a) 0-hops (b) 2-hops (c) 5-hops 
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Table 4-5: Average recovery time (sec) per each trial for different hops (applying ownership QoS) 

Trials 
Distance between Seeders and Leechers 

0-hops 2-hops 5-hops 

Trial#1 
9.1651 10.0126 30.6984 

Trial#2 
8.6454 12.8452 15.9066 

Trial#3 
8.9528 10.2288 15.0708 

Trial#4 
8.8468 14.3095 16.1462 

Trial#5 
8.9468 13.3884 15.5934 
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Figure 4.12 : Average recovery time (sec) in each trial for different distance scenarios (a) 0-hops (b) 2-hops (c) 5-
hops (applying ownership QoS). 
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Figure 4.13: Average recovery time (sec) in each trial for different distance scenarios (a) 0-hops (b) 2-hops (c) 5-
hops (A comparative study). 
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4.6 Summary 

In this chapter, we presented Dynamic Pointers, a novel tracker-less discovery protocol 

for BitTorrent, we have introduced an evaluation for our proposed architecture. Dynamic-

pointers framework is fully decentralized such that the tracker is completely eliminated 

and its role shared among some peers. Results show that our framework can achieve high 

scalability and reliability under churn. Also, it can achieve high availability and auto 

recovery under crashing or leaving of nodes. Table 4-6 holds a comparison among the 

three methods, centralized tracker, DHT, and Dynamic pointers, in terms of dependency, 

scalability, fault tolerance, security, and complexity. 

Table 4-6: CHARACTERISTICS COMPARISON BETWEEN CENTRALIZED-TRACKER, DHT, AND DYNAMIC-POINTERS. 

characteristic 
Approach 

Centralized Tracker Decentralized DHT Dynamic-Pointers 

Dependency 

Highly dependent on the 

tracker 

Initially, depends on a bootstrap 

node. 

Partial dependent on self-

tracker which dynamic and 

recoverable. 

Scalability 
A tracker is bottleneck High scalablity High scalability in LAN 

(need to be tested in WAN). 

Fault 

Tolerance 

Single Point Of Failure 

(SPOF) 

High Reliability (No SPOF) High Reliability (No SPOF 

Security 

Tracker could have a built-in 

security measures, but, it 

vulnerable to Denial of 

Service (DoS) attack. 

No built-in security measures Benefits from DDS security 

(there is a basic security). 

Complexity 
Network Overhead: O(1) 

Memory Consumption: O(N) 

Network Overhead: O(logN) 

Memory Consumption: O(logN) 

Network Overhead: O(1) 

Memory Consumption: O(1) 
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5 CHAPTER 5 

DDS BitTorrent: Implementation of BitTorrent 

Dissemination Protocol using RTPS middleware   

In this chapter, we implement a BitTorrent dissemination protocol using RTPS 

middleware (DDS). To the best of our knowledge this is the first implementation for 

BitTorrent over DDS. We aim to enhance BitTorrent performance by benefiting from the 

publish/subscribe paradigm and by applying DDS QoS policies. The motivation behind 

this work is that DDS QoS are designed originally to improve P2P applications 

performance. 

The following sections present DDS-BitTorrent QoS, theoretical analysis, design and 

implementation issues, experimental works, and evaluation and results. 

5.1 DDS-BitTorrent Quality of Service: 

5.1.1 DDS Reliable Delivery Model and Reliability QoS 

The DDS-middleware uses the UDP transport to make communications between the 

peers. As a result, it uses by default, the best effort delivery model which means, no 

guarantee that all the instances published are received. 

An important feature of DDS-middleware is that it can offer the reliability on top of a 

very wide diversity of transports like the unreliable UDP transport layer, packet based 

transports, multicast capable transports, or high latency transports.  The middleware 

achieves this by implementing an application layer reliable protocol that sequences and 

acknowledges messages and observes the liveliness of the link [57]. The publisher 

maintains a send queue with space to hold the last X number of samples sent. Also, a 
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subscriber maintains a receive queue with space for consecutive X expected samples. The 

send and receive queues are used to temporarily cache samples until the middleware is 

sure the samples have been delivered and are not needed anymore. There are three types 

of messages for the DDS reliable protocol: 

 DATA Message: contains the value of data-objects and associated with a 

sequence number that middleware uses to identify them within the publisher 

history. 

 Heart Beats Message (HB): announces to the subscriber that it should have got all 

data instances up to the one tagged with a range of sequence numbers. Also, it 

required by the subscriber to send acknowledgement back. For example, HB (0-2) 

informs the subscriber that it should have received messages tagged with 

sequence numbers 0,1, and 2 and asks the subscriber to confirm this. 

 ACK/NACK Message: communicates to the publisher that particular instances 

have been successfully received and stored in the subscriber history. ACK/NACK 

also tells the publisher which instances are missing on the subscriber side. The 

sequence number of ACK/NACK message indicates which one the subscriber is 

missing. For example, ACKNACK(3) indicates that instances with sequence 

numbers 0,1, and 2 have been successfully received and stored in the subscriber 

history, and that 3 has not been received. The ACK/NACK messages are only 

sent as a direct response to HB messages 

An important note to be mentioned is that the middleware can bundle multiple of the 

above messages in a single packet. This provides a higher performance communications. 

more details about this protocol can be found in [57].  

For BitTorrent, which is a file sharing protocol, we need to use reliable protocol to 

transfer the designated file from publishers to a subscriber. For this purpose the 

Reliability QoS must be set to REALIABLE.    
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5.1.2 History QoS 

Controls how the middleware manages the samples payload sent by the publisher‟s 

DataWriter or received by the subscriber‟s DataReader. It helps tune the reliability 

between publishers and subscribers. 

For BitTorrent, we need restrict reliability which can be achieved by setting the History 

QoS to KEEP_ALL value. This means that the samples sent must be kept in the memory 

until they are acknowledged.  

5.1.3 Partition 

This QoS can be used to add additional conditions for the publish-subscribe matching. In 

a normal manner, DataWriters are matched to DataReaders of the same topic. By using 

the Partition QoS, additional condition is used to decide whether a DataWriter samples 

are allowed to be sent to a DataReader. This QoS helps in making the communication 

model one-to-one per a thread. More details about how to use this QoS within BitTorrent 

will be discussed in section5.2.2. 

5.1.4 Durability 

Specifies whether the middleware should store and deliver previously published samples 

to late subscribers.  

Since, the file sharing process usually works in one-to-one communication model, and to 

prevent publisher memory from overflowing, this QoS should be set to VOLATILE 

value. That means, the samples will be removed from the memory as soon as they are 

acknowledged.  

5.1.5 DDS-BitTorrent: Traffic Measurement Theoretical Analysis 

The main principle that DDS-BitTorrent follows is that “just join us, or just subscribe to 

us, and everything will come to you”, you do not need to create connections with the 

other peers, or to request each piece of the whole file to complete downloading. Simply, 

as just subscribe to a topic (file name) the pieces of the file will come to you from all a 

topic publishers without the needing to establish a unique connection to each publisher 
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and send extra overhead messages (e.g. request, interested, bitfield, …). Figure 5.1 shows 

the difference behavior between the DDS-BitTorrent and the standard BitTorrent, 

assuming that the computer in the middle is a new joiner peer.  

Using the publish/subscribe approach Within BitTorrent will help in eliminating the 

application layer overhead (BitTorrent messages). Also, since the DDS middleware is 

implemented by standard over UDP, this will minimize the transport layer overhead [15]. 

The overhead caused by the DDS reliable application protocol is very small, and is 

limited in two messages; ACK/NACK, and HB which can be piggybacked within the 

data message. 

 

Figure 5.1 (a) standard BitTorrent behavior  (b) DDS-BitTorrent behavior 

The theoretical analysis for the total traffic transferred in the network for both standard 

BitTorrent and DDS-BitTorrent can be demonstrated after presenting the following 

characteristics: 

 BitTorrent messages are twelve messages, excluding the Piece message which is 

the actual data; the remaining eleven messages are overhead. While all the 

overhead messages needed in DDS-BitTorrent are two messages. 
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 The number of the „Have‟ messages that should be sent is equal to the number of 

the file pieces times the number of the swarm peers. 

 The number of the „Request‟ messages that should be sent is equal to the number 

of the file pieces. 

 The number of the „Handshake‟ messages that should be sent is equal to the 

number of the swarm peers. 

 In DDS-BitTorrent, the number of the HB messages that should be sent is usually 

equal to TCP sequence messages. And, the number of the ACK messages sent is 

usually equal to the number of TCP ACK messages. 

Having a file with size M bytes and this file is chunked into K pieces. Also, assuming a 

swarm with R peers, S is the number of the other BitTorrent messages are sent, such that 

S<K. Assuming that all these messages have the same size (usually 60 bytes), the 

formulas for the total traffic transferred through the network for both standard BitTorrent 

and DDS-BitTorrent are depicted in Equation 5.1 and Equation 5.2, respectively.  

TotalTrafficst.BitTorrent= M + (K * R) Have message+ K * Request message +  

R * Handshake message + (S *8) anonymous message + TCPseq messages 

+TCPackmessages                                                                                                 (5.1) 

TotalTrafficDDS.BitTorrent= M + HB messages + ACK messages                         (5.2) 

Remove TCPseq messages and TCPack messages from Equation 5.1, and remove HB 

messages and ACK messages from Equation 5.2 we can conclude that 

totalTrafficDDS.BitTorrent < totalTrafficst.BitTorrent. 

It‟s clear that the total traffic transferred by DDS-BitTorrent is much less than the total 

traffic transferred by standard BitTorrent. 

From the transport layer respective, each BitTorrent block is encapsulated in a TCP 

segement must accompany 20-bytes of overhead, while a UDP packet uses only 8-bytes 

overhead [16]. 
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5.2 DDS-BitTorrent: Design and Implementation Issues 

This section covers the design and implementation of the proposed DDS-BitTorrent. To 

propose a good architecture for implementing BitTorrent to work over DDS, we are 

trying to make a simple mapping between BitTorrent‟s main components and RTPS-

DDS‟s main components as in the following table: 

Table 5-1: Mapping BitTorrent main components to DDS components. 

BitTorrent DDS 

Tracker Server DDS-BitTorrent is tracker-less, so, either using 

dynamic pointers discovery protocol, or using 

default DDS  simple discovery protocol (SDP). 

depends on the system size 

Seeder DDS publisher 

Leecher DDS subscriber 

Torrent file Topic name 

Piece Instance (Each piece represents an instance of 

the topic). 

Block Sample (each block is a sample of the instance) 

 

Since, the communication paradigm in DDS is a data oriented and not a node oriented, 

two issues during the implementation are appeared; these issues and their solutions are 

illustrated in the following subsections 

5.2.1 Issue 1: Redundant Pieces Delivery  

As a new subscriber subscribes to a particular file, all the publishers start publishing 

pieces of that file. Multiple publishers may have the same pieces. Figure 5.2 shows the 

process of publishing the same pieces from multiple publishers, this will cause in wasting 

network bandwidth and result in redundancy delivery at the subscribing side. 
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Figure 5.2: multi publisher send the same pieces to one subscriber 

Using the Ownership QoS does not solve the problem since the Ownership is network 

overhead, it just solve the delivery redundancy problem.  By using the Ownership QoS 

the overhead ratio may reach 100% or even x*100 % of the file size, where x is the 

number of the seeders.  

A good solution to this issue should achieve load balancing, and fairness among the 

publishers. Collaborative piece sharing algorithm is our proposed solution for this 

problem. In this algorithm, the publisher only shares the pieces that are in a particular list, 

called “Owning Piece List”. Two terms should be distinguished between them; having a 

piece and owning a piece. Having a piece means that the peer has downloaded the piece 

successfully, owning the piece means that this peer is the responsible for sharing this 

piece to new joiners peers (subscribers). The procedure of how this algorithm works and 

how the Owning Piece List is managed are as follows: 

 Initially: the initial seeder owned all the file pieces (all the file pieces are in the 

“Owning Piece List”), so as new subscriber joins, it will receive all the pieces of 

the file from the initial seeder.  

 The initial seeder gives to the first subscriber 50% of its owning pieces, which are 

in this case 50% of the file pieces. 

 As the second subscriber joins, it will get its complete file pieces as follows; 50% 

from the initial seeder, and 50% from the first subscriber. The second subscriber 
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owning piece list will be filled by 25% of the file pieces from the initial seeder, 

and 25% form the first subscriber.  

 After the second subscriber having all the pieces, the scene can be shown as 

follows: 

 The initial seeder owns 25% of the file pieces. 

 The first subscriber owns 25% of the file pieces. 

 The second subscriber owns 50% of the file pieces. 

 The process continues as the third, fourth, ..., etc. peers join the swarm 

 When the peer‟s owning pieces becomes 5% of the file pieces, it publishes pieces 

without transferring the ownership of these pieces to others three times, then the 

peer can owns the 5% pieces to another peer and becomes free. 

 Finally, if a subscriber does not get all the file pieces for any reason, the 

subscriber sends a message to initial seeder requesting the remaining pieces. 

To conclude, each time a new peer joins the swarm, each previous peer available in the 

swarm gives to the new peer 50% of its owning pieces. The ratio of total owning pieces 

from all peers must be 100%. Also, the last joiner peer always shares the biggest ratio of 

the file pieces; the share process starts as soon as a new peer joins and the owning piece 

list is not empty. This achieves load balancing, fairness, and, mitigation of free riding. 

The pseudo code of this algorithm from the publisher perspective is depicted in 

Figure 5.3, and from the subscriber perspective is depicted in Figure 5.4.  
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Figure 5.3: Collaborative piece sharing algorithm pseudocode (share pieces). 

 

Algorithm: Collaborative Pieces Sharing (share pieces) 

Input:  list ownPiecelist (OPL),  

Output: new ownPiecelist 

Steps: 

1. BEGIN 

2. SET int lastPiecesCounter  0 

3. IF OPL is empty THEN     // make sure that my ownPieceList is not empty 

3.1 exit        // you havn’t pieces to send so exit      

    // compare the elements in my ownPieceList with the number of the whole file pieces 

4. int fifthPercent  0.05 *filePieces.size 

5. IF OPL.size > fifthPercent THEN 

5.1 int OwntoAnother  OPL.size()/2   // own 50% of my own pieces to another peer 

6. ELSE 

6.1 Increment lastPiecesCounter  //share the pieces three time  

7. ENDIF 

    

//loop through the OwnPieceList and pusblish the pieces 

8. FOR i  0 to i  OPL.size()    

8.1 IF i < OwntoAnother  OR lastPiecesCounter > 3 THEN 

8.1.1 SET Piecei.ownedFlag to true                   //give this piece to another peer 

8.1.2 PUBLISH Piecei 

8.1.3 REMOVE Piecei from  OPL 

8.2 ELSE   //share but keep this piece owned 

8.2.1 SET Piecei.OwnedFlag to false 

8.2.2 SHARE Piecei 

9. ENDFOR 

10. END 
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Figure 5.4: Collaborative piece sharing algorithm pseudocode (receive pieces) 

 

5.2.2 Issue 2: Subscriber buffer Overflowing 

Since there are many publishers that publish pieces to a single subscriber at the same 

time, it‟s very likely that the subscriber buffer overflows as shown in Figure 5.5. As a 

result, many pieces will be discarded and needs republishing, which will result in a huge 

network overhead. 

Algorithm: Collaborative Pieces Sharing (receive pieces) 

Input:  list ownPiecelist (OPL), piece i 

Output: new ownPiecelist 

Steps: 

1. BEGIN 

2. VERIFY piecei 

3. IF piecei is verified 

3.1 Save piecei 

3.2 IF piecei.ownflag is equal true 

3.2.1 ADD piecei to OPL 

3.3 ENDIF 

4. ENDIF 

5. FINALLY 

5.1 IF Received_Pieces are equal to File_Pieces    // test if receive all the pieces 

5.1.1 exit    

5.2 ELSE 

5.2.1 Contact the initial_seeder 

5.2.2 Request  Remaining_Pieces 

6. ENDIF 

7. END 
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Figure 5.5 multi-publishers overwhelm single subscriber with the pieces 

 

The trivial solution for this problem is to use multithreading. However, using this 

solution standalone does not solve the problem, and results in that each thread is 

overwhelmed with pieces from all the publishers as shown in Figure 5.6. The reason 

behind this situation is that DDS is data oriented and not node oriented; all the children 

threads and the parent thread have the same IP and port. 
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Figure 5.6: Multithreading (multi-subscribers). 

 

Using Partition QoS is a good solution for this issue. By using partition QoS, we can 

make each subscriber thread match only one publisher. The parent subscriber creates 

children subscribers equal to the number of publishers.  

Initially, on the publishing side, the parent publisher will create new publisher as soon as 

the parent publisher notified that new subscriber has joined. The child publisher sets the 

Partition string to unique string (e.g. Publisher IP+ a unique number) and then sends this 

string to the subscriber; the parent subscriber creates a child subscriber with Partition 

QoS value equal to the unique string that has been sent from the publisher. This 

subscriber only matches with one publisher as shown in Figure 5.7. 
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Figure 5.7: Multithreading (multi-subscribers) using Partition QoS. 

 

5.3 Experimental Work 

First of all, we construct our network for both standard BitTorrent and DDS-BitTorrent 

by using GNS3 [36] emulator. The network contains 5 virtual PCs created using Oracle 

VM VirtualBox [58], and connected to each other via Ethernet switch as shown in 

Figure 5.8 ; additional PC is needed to work as tracker for standard BitTorrent as shown 

in Figure 5.9 . Each PC has Intel Xeon 3.47 GHz CPU, 2 GB RAM, and windows XP 32-

bit. Four of these PCs run as seeders or publishers, and one runs as a subscriber or a 

leecher. 

Java JDK version 7 [33] as a programming language, NetBeans version 7.4 [34]as an 

environment, and RTI-DDS API [35] as a middleware are used to complete the 

implementation of DDS-BitTorrent. For the purpose of Comparison, we download 

JBitTorrent library [17], which is an open source implementation of the BitTorrent 

protocol in Java under General Public License (GPL) 2. 
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Figure 5.8: DDS-BitTorrent network topology 

 

Figure 5.9: Standard BitTorrent network topology 

File downloading time, and goodput are the two metrics used to complete the comparison 

test. Goodput which is the application layer throughput is defined as the number of useful 
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data bits delivered by the network to a particular destination per a time unit. Equation 5.3 

defines the goodput. 

                       
                     

                       
                               

Where, R Mb/s is the Ethernet link data rate. Wireshark [59] which is a network analysis 

tool that is used for packets capturing and calculating the total traffic (include incoming 

and outgoing)  of the subscriber link. 

For both file downloading time and goodput tests, four files with different sizes (54Mb, 

129Mb, 494Mb, 2 GB) are used. For each test, three important scenarios per each file are 

done which are based on the variance of piece and block sizes, as the following: 

 Piece size:256 KB and block size:16 KB 

 Piece size: 512 KB and block size: 32 KB 

 Piece size: 1024 KB and block size: 64 KB 

For each scenario, the four files are published from the publishers to the subscriber five 

times for each, and the average file downloading time and the average goodput are 

calculated. This is done for both standard BitTorrent and DDS-BitTorrent. 

 

5.4 Evaluation and Results 

To evaluate our proposed DDS-BittTorrent, we compare it with the standard BitTorrent. 

When piece size is 256 KB and block size is 16 KB as shown in Table 5-2and 

Figure 5.10, DDS-BitTorrent outperforms standard BitTorrent. The results show that the 

ratio of the downloading time of DDS-BitTorrent is less than standard BitTorrent in 

about 50%. For goodput as shown in Table 5-3 and Figure 5.11, the results show that 

DDS-BitTorrent goodput is always between 90 and 95 Mb/s, this is because of its very 

small overhead. On the other hand, standard BitTorrent goodput starts at 87 Mb/s and 
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decreases as the file size increases; this is due to the fact that the bitTorrent overhead is 

directly proportional to the file size 

When piece size is 512 KB and block size is 32 KB as shown in Table 5-4 Figure 5.12, 

DDS-BitTorrent also can download the file faster and its goodput (see Table 5-5 and 

Figure 5.13) still between about 90 and 95Mb/s. the standard BitTorrent performance is 

get better. In this scenario, pieces number is half pieces number of the first scenario; as a 

result, the BitTorrent overhead messages and TCP overhead are decreased to about 50%. 

 

Table 5-2: Avg.File downoalding time (sec) for Both standard and DDS BitTorrent (piece:256KB,block: 16KB). 

File size (MB) Standard BitTorrent DDS-BitTorrent 

54 16.2 7.8 

129 40.11 15.2 

494 111 78.47 

1998 544.9 283.9 

 

 

Figure 5.10: Average file downloading time (sec) for different file sizes (piece: 256KB, block: 16KB) 
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Table 5-3: Standard vs. DDS BitTorrent goodput (Mb/s) for different files (Piece size: 256 KB, block size: 16 KB).  

 

File size (MB) 

           Standard BitTorrent                  DDS-BitTorrent 

Link traffic (MB) Goodput Link traffic (MB)      Goodput 

54 61.6 87.6 59 91.5 

129 152 84.8 139 92.8 

494 609 81.1 521 94.8 

1998 3092.4 64.5 2109 94.6 

 

 

 

Figure 5.11: Standard vs. DDS BitTorrent goodput (Mb/s) for different files (Piece size: 256 KB, block size: 16 KB). 
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Table 5-4: Avg.File downoalding time (sec) for Both standard and DDS BitTorrent (piece:512KB,block: 32KB). 

File size (MB) Standard BitTorrent DDS-BitTorrent 

54 13.7 10.3 

129 28.9 24.2 

494 107.4 96.6 

1998 486 296.4 

 

 

 

 

Figure 5.12: Average file downloading time (sec) for different file sizes (piece: 512KB, block: 32KB) 
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Table 5-5: Standard vs. DDS BitTorrent goodput (Mb/s) for different files (Piece size: 512 KB, block size: 32 KB) 

 

File size (MB) 

           Standard BitTorrent                  DDS-BitTorrent 

Link traffic (MB) Goodput Link traffic (MB)      Goodput 

54 60.6 89.1 60 90 

129 149 86.5 140 92.1 

494 585 84.4 521 94.8 

1998 2621 76.1 2132 93.7 

 

 

 

 

Figure 5.13: Standard vs. DDS BitTorrent goodput (Mb/s) for different files (Piece size: 512 KB, block size: 32 KB) 
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anyone of these frames will make reassembly impossible leading to an effective loss. 

This will result in a huge overhead and degrading the goodput as depicted in Table 5-7 

Figure 5.15. 

Table 5-6: Avg.File downoalding time (sec) for Both standard and DDS BitTorrent (piece:1024KB,block: 64KB). 

File size (Mbytes) Standard BitTorrent DDS-BitTorrent 

54 10.5 15.9 

129 24.7 32.5 

494 85.14 119.1 

1998 444.4 328.1 

 

 

 

 

Figure 5.14: Average file downloading time (sec) for different file sizes (piece: 1024KB, block: 64KB) 

 

 

0

50

100

150

200

250

300

350

400

450

500

54M 129M 494M 1998M

A
vg

.F
ile

 D
o

w
n

lo
ad

in
g 

Ti
m

e
 (

s)
 

File Size (Megabytes) 

St.BitTorrent

DDS.BitTorrent



76 
 

Table 5-7: Standard vs. DDS BitTorrent goodput (Mb/s) for different files (Piece size: 1024 KB, block size: 64 KB). 

 

File size (Mbytes) 

           Standard BitTorrent                  DDS-BitTorrent 

Link traffic (Mbytes) Goodput Link traffic (Mbytes)      Goodput 

54 59.7 90.4 72 72.7 

129 143 90.2 170 75.8 

494 563 87.7 585 84.4 

1998 2549 78.3 2481 80.5 

 

 

 

 

Figure 5.15: Standard vs. DDS BitTorrent goodput (Mb/s) for different files (Piece size: 1024 KB, block size: 64 KB). 
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of the loss of packets which requires packets retransmission. The block size 

recommended to use with DDS is between 16k and 32k. 

 

Figure 5.16: DDS-BitTorrent goodput (Mbit/s) for different file sizes and pieces. 

5.5 Summary 

In this chapter, we introduced DDS-BitTorrent, a BitTorrent dissemination protocol that 

is based on DDS middleware. We aim to enhance BitTorrent performance by benefiting 

from the publish/subscribe paradigm and by applying DDS QoS policies. Theoretical 

analysis, design, and implementation are presented. DDS-BitTorrent is fast, has low 

network overhead, and achieves load balancing, fairness, and mitigation freeriding 

among peers. A comparative study between the proposed DDS-BitTorrent and the 

standard BitTorrent was conducted. Results show that our solution outperforms the 

original BitTorrent when the block size is less than or equal 32 KB; this block size is 

suitable for BitTorrent [9] [41][60]. On the other hand, when the block size was set to 64 

KB, DDS-BitTorrent resulted in huge overhead because the blocks must be fragmented, 

and as a result, they will be subjected to being lost.  

0

10

20

30

40

50

60

70

80

90

100

54M 129M 494M 1998M

G
o

o
d

p
u

t 
(M

b
it

/s
) 

File Size (Megabytes) 

DDS goodput 

P:256k & B:16k

P:512k & B:32k

P:1024k & B:64k



78 
 

 

 

6 Chapter 6 

Conclusion and Future Work 

In the recent years, BitTorrent protocol got a lot  of  adoption on peer to peer  file  

sharing  systems,  and  still  being  the  dominant  traffic  on  the Internet. However, this 

protocol suffers from the dependency on a single server called a tracker for the 

coordination and the content  routing between its  peers;  this  is  a  single  point  of  

failure  (SPOF)  problem. The other problem with BitTorrent is that during the 

dissemination of the files between the peers, the BitTorrent uses many overhead 

messages. 

In this research, we studied both the discovery and dissemination protocols of BitTorrent. 

For discovery, we presented Dynamic Pointers, a novel tracker-less discovery protocol 

for BitTorrent, we have provided an evaluation for our proposed architecture. Dynamic-

pointers framework is fully decentralized such that the tracker is completely eliminated 

and its role is shared among some peers. Results show that our framework can achieve 

high scalability and reliability under churn. Also, it can achieve high availability and auto 

recovery under crashing or leaving of nodes. Moreover, dynamic pointers minimized 

both the network overhead and memory consumption complexities to O(1). 

For dissemination, we analyzed BitTorrent dissemination protocol theoretically then we 

proposed DDS-BitTorrent by re-implementing the standard BitTorrent using DDS 

middleware benefiting from the publish/subscribe paradigm and DDS QoS policies in 

reducing overhead messages.  To evaluate our proposed DDS-BittTorrent, we compared 

it with the standard BitTorrent; goodput and file downloading time are two metrics used 

to complete the comparative study. The results show that DDS-BitTorrent outperforms 

the standard BitTorrent when the block size is less than or equal 32 KB; this block size is 
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suitable for BitTorrent. On the other hand, when the block size was set to 64 KB, DDS-

BitTorrent results in huge overhead because the messages are subjected to being lost.   

This work is a first and basic step. So for future work, this work can be extended and 

improved. For dynamic-pointers, it needs to be tested in a wider network (e.g. WAN). 

For DDS-BitTorrent, impact of the peers churn should be shown and tested. Also, the 

multi-hops should be considered. The algorithms used need more improvements.  
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