

iii

iv

© Anas Ahmed Abu Dagga

2014

v

To my lovely family; parents, brothers, and sisters

vi

ACKNOWLEDGMENTS

All the praises and thanks are to Allah; Oh Allah how can I praise you, how can I thank

you. Oh Allah help me for remembering you much, thanking you much. There is no

power but with Allah.

Who does not thank the people, do not thank Allah. I take this opportunity to express my

gratitude to the people who have been instrumental in the successful completion of this

thesis. I would like to thank few people in particular. To My esteemed advisor, Dr.Basem

Al-madani, for his kind treatment, attention to detail and correctness, motivation and

encouragement. Besides my advisor, I would like to thank the rest of my thesis

committee: Dr.Tarek Sheltami and Dr. Marwan Abu Amara, for their encouragement and

insightful comments. Thanks to Dr.Ashraf Mahmoud, he gives me good solutions for

networking issue. I would also like to thank King Fahd University of Petroleum and

Minerals for the support extended towards my research and for granting me the

opportunity to pursue graduate studies, special thanks are given to the Department of

Computer Engineering. Thanks to the Real-Time Innovation Inc. (RTI) for its support

with all tools that I have used in this thesis work. Heartfelt thanks to my family for their

support and encouragement throughout my study.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. VI

TABLE OF CONTENTS .. VII

LIST OF TABLES ... X

LIST OF FIGURES ... XI

LIST OF ABBREVIATIONS .. XIII

ABSTRACT ... XV

الرسالة ملخص .. XVI

CHAPTER 1 INTRODUCTION: PEER-TO-PEER NETWORKS ... 1

1.1 Comparison: P2P vs. Client-Server .. 2

1.2 P2P Architectures .. 4

1.2.1 Centralized and decentralized: ... 5

1.2.2 Structured and unstructured .. 8

1.3 Applications of P2P Systems ... 10

1.3.1 File sharing and Content Distribution ... 10

1.3.2 Communication and Collaboration ... 11

1.3.3 Distributed Computing ... 11

1.4 Problem Description ... 11

CHAPTER 2 BACKGROUND .. 13

2.1 BitTorrent Systems.. 13

2.1.1 How BitTorrent Works: ... 14

2.1.2 BitTorrent Techniques and Algorithms ... 17

viii

2.1.3 BitTorrent Tracker: ... 22

2.2 Real Time Publish Subscribe (RTPS) Middleware ... 22

2.2.1 OMG Data-Distribution-Service (DDS): ... 24

2.2.2 DDS Quality of Service Policies (QoS) .. 25

2.2.3 DDS Discovery .. 27

CHAPTER 3 LITERATURE REVIEW ... 28

3.1 Multiple Central Trackers .. 28

3.2 Distributed Hash Table (DHT): ... 29

3.3 Peer Exchange (PEX): .. 31

3.4 Other Related Methods: ... 32

3.5 Research Objective ... 34

CHAPTER 4 DYNAMIC POINTERS: NOVEL DISCOVERY PROTOCOL FOR BITTORRENT

BASED ON RTPS MIDDLEWARE ... 36

4.1 Discovery Scenario: “One-way Communication with High Fan out” .. 36

4.2 Dynamic Pointer Quality of Service ... 39

4.2.1 Ownership and Ownership-Strength QoS’s... 39

4.2.2 Domain QoS ... 39

4.3 Dynamic Pointer ... 40

4.3.1 Guarantee Discovery using IP Multicast ... 44

4.3.2 Recovery Speed up Using Ownership QoS .. 45

4.4 Implementation and Experimental Work .. 46

4.5 Evaluation and Results .. 47

4.6 Summary... 55

CHAPTER 5 DDS BITTORRENT: IMPLEMENTATION OF BITTORRENT DISSEMINATION

PROTOCOL USING RTPS MIDDLEWARE.. 56

ix

5.1 DDS-BitTorrent Quality of Service: .. 56

5.1.1 DDS Reliable Delivery Model and Reliability QoS ... 56

5.1.2 History QoS .. 58

5.1.3 Partition ... 58

5.1.4 Durability ... 58

5.2 DDS-BitTorrent: Traffic Measurement Theoretical Analysis .. 58

5.3 DDS-BitTorrent: Design and Implementation Issues .. 61

5.3.1 Issue 1: Redundant Pieces Delivery .. 61

5.3.2 Issue 2: Subscriber buffer Overflowing ... 65

5.4 Experimental Work ... 68

5.5 Evaluation and Results .. 70

5.6 Summary... 77

CHAPTER 6 CONCLUSION AND FUTURE WORK ... 78

REFERENCES ... 80

VITAE .. 85

x

LIST OF TABLES

Table1-1: P2P Model vs. Client-Server Model... 2

Table 4-1: Complexity of dynamic-pointers Vs. others approaches 47

Table 4-2: Latency (µs) variations for small number of leechers 48

Table 4-3: Latency (ms) variations for large number of leechers 48

Table 4-4: AVERAGE RECOVERY TIME (SEC) PER EACH TRIAL FOR

 DIFFERENT HOPS .. 50

Table 4-5: Average recovery time (sec) per each trial for different hops

 (applying ownership QoS) .. 52

Table 4-6: CHARACTERISTICS COMPARISON BETWEEN CENTRALIZED-

 TRACKER, DHT, AND DYNAMIC-POINTERS. .. 55

Table 5-1: Mapping BitTorrent main components to DDS components. 61

Table 5-2: Avg.File downoalding time (sec) for Both standard and DDS BitTorrent

 (piece:256KB,block: 16KB). .. 71

Table 5-3: Standard vs. DDS BitTorrent goodput (Mb/s) for different files (Piece size:

 256 KB, block size: 16 KB). ... 72

Table 5-4: Avg.File downoalding time (sec) for Both standard and DDS BitTorrent

 (piece:512KB,block: 32KB). ... 73

Table 5-5: Standard vs. DDS BitTorrent goodput (Mb/s) for different files (Piece size:

 512 KB, block size: 32 KB) .. 74

Table 5-6: Avg.File downoalding time (sec) for Both standard and DDS BitTorrent

 (piece:1024KB,block: 64KB). ... 75

Table 5-7: Standard vs. DDS BitTorrent goodput (Mb/s) for different files (Piece size:

 1024 KB, block size: 64 KB). ... 76

xi

LIST OF FIGURES

Figure 1.1 Client-Server Model .. 3

Figure 1.2: P2P Model .. 4

Figure 1.3 : Centralized P2P architecture. .. 6

Figure 1.4: P2P decentralized architecture. .. 7

Figure 1.5: P2P hybrid architecture .. 8

Figure 2.1: Standard BitTorrent components and how it works 14

Figure 2.2: Strict priority piece selection strategy. ... 19

Figure 2.3: Rarest first piece selection strategy. ... 19

Figure 2.4: Publish/Subscribe (PS) model .. 23

Figure 2.5: Global Data Space (GDS). ... 25

Figure 3.1: A new peer connects to a swarm using multiple central trackers

 approach [54]. ... 29

Figure 3.2: BitTorrent‟s DHT environment (A new peer joining process) [54]. 30

Figure 3.3: (a) Peers A and B change their lists information (b) Peers A and B can

 contact the discovered peers directly [54]. ... 31

Figure 4.1: RTI-DDS discovery scenario :”one way communication”. 37

Figure 4.2: Publisher discovery QoS xml configuration .. 38

Figure 4.3: Subscriber discovery xml configuration ... 38

Figure 4.4: Discovery mechanism in Dynamic pointers approach 41

Figure 4.5: (a) Failure of initial seeder, (b) Peers contact directly to the new self-

 tracker .. 42

Figure 4.6: new joiners can easily contact any seeder (self-tracker). 42

Figure 4.7: timeout period adjusting pseudo code. ... 43

Figure 4.8 : Guarantee discovery process flowchart. .. 45

Figure 4.9: Latency(µs) Vs. Packet size for different numbers of leechers 48

Figure 4.10: Latency (ms) Vs. Packet size for different numbers of leechers 49

Figure 4.11: Average recovery time (sec) in each trial for different distance scenarios (a)

 0-hops (b) 2-hops (c) 5-hops ... 51

xii

Figure 4.12 : Average recovery time (sec) in each trial for different distance scenarios (a)

 0-hops (b) 2-hops (c) 5-hops (applying ownership QoS). 53

Figure 4.13: Average recovery time (sec) in each trial for different distance scenarios (a)

 0-hops (b) 2-hops (c) 5-hops (A comparative study). 54

Figure 5.1: (a) standard BitTorrent behavior (b) DDS-BitTorrent behavior 59

Figure 5.2: multi publisher send the same pieces to one subscriber 62

Figure 5.3: Collaborative piece sharing algorithm pseudocode (share pieces). 64

Figure 5.4: Collaborative piece sharing algorithm pseudocode (receive pieces) 65

Figure 5.5 multi-publishers overwhelm single subscriber with the pieces 66

Figure 5.6: Multithreading (multi-subscribers)... 67

Figure 5.7: Multithreading (multi-subscribers) using Partition QoS. 68

Figure 5.8: DDS-BitTorrent network topology .. 69

Figure 5.9: Standard BitTorrent network topology... 69

Figure 5.10: Average file downloading time (sec) for different file sizes (piece: 256KB,

 block: 16KB) .. 71

Figure 5.11: Standard vs. DDS BitTorrent goodput (Mb/s) for different files (Piece size:

 256 KB, block size: 16 KB). .. 72

Figure 5.12: Average file downloading time (sec) for different file sizes (piece: 512KB,

 block: 32KB) ... 73

Figure 5.13: Standard vs. DDS BitTorrent goodput (Mb/s) for different files (Piece size:

 512 KB, block size: 32 KB) ... 74

Figure 5.14: Average file downloading time (sec) for different file sizes (piece: 1024KB,

 block: 64KB) .. 75

Figure 5.15: Standard vs. DDS BitTorrent goodput (Mb/s) for different files (Piece size:

 1024 KB, block size: 64 KB). ... 76

Figure 5.16: DDS-BitTorrent goodput (Mbit/s) for different file sizes and pieces. 77

xiii

LIST OF ABBREVIATIONS

P2P: Peer to Peer

RTT: Round Trip Time

BDP: Bandwidth Delay Product.

RF: Rarest First.

PS: Publish/Subscribe.

RTPS: Real Time Publish Subscribe.

JMS: Java Message Service.

DDS: Data Distribution Service.

COM+: Component Object Model.

OMG: Object Management Group.

QoS: Quality of Service.

DCPS: Data Centric Publish Subscribe.

GDS: Global Data Space.

RTI: Real Time Innovation.

PEX: Peer Exchange.

DHT: Distributed Hash Table.

UDP: User Datagram Protocol.

TCP: Transmission Control Protocol.

ISP: Internet Service Provider.

IOP: ISP-Owned Peers.

xiv

BGP: Border Gateway Protocol.

JDK: Java Development Kit.

API: Application Programming Interface.

LAN: Local Area Network.

WAN: Wide Area Network.

CPU: Central Processing Unit.

PC: Personal Computer.

RAM: Random Access Memory.

DCPS: Data Centric Publish Subscribe.

GNS3: Graphical Network Simulator.

HB: Heart Beats.

GPL : General Public License.

xv

ABSTRACT

Full Name : Anas Ahmed Abu Dagga

Thesis Title : BitTorrent Discovery and Performance Enhancement using DDS

Middleware

Major Field : Computer Networks

Date of Degree : Dec 2014

BitTorrent is the most worldly adopted peer to peer (P2P) file distribution

application protocol that constitutes a huge part of today‟s Internet traffic. P2P model

benefits BitTorrent‟s peers in file exchanging process, by eliminating a single point

of congestion. Beside the main P2P implementation of BitTorrent for file

exchanging, it also has client-server communication between the peers and tracker.

The tracker is used in BitTorrent network for peers‟ discovery. However, the tracker

does not benefit from P2P characteristics. Mainly, the tracker is considered to be a

single point of failure, also, scalability and load-balancing are other traker‟s issues.

Another problem is that BitTorrent uses eleven overhead messages which help in

distributing the file pieces among the peers. In this research work, we aim to have a pure

P2P BitTorrent application, and minimize the messages overhead. For Discovery, we

propose a novel architecture to decentralize the tracker and make it distributed

among the peers. The proposed method reduce both communication overhead and

node searching complexities to O(1). For Dissemination, we re-implement the existing

BitTorrent using Data Distribution Service (DDS), which is a Real Time Publish

Subscribe (RTPS) middleware. We study the performance in terms of file downloading

time and goodput for both the original and the proposed dissemination protocols. The

results show that the proposed solution can minimize the BitTorrent overhead achieving

high goodput, and speed up the file downloading process in most cases. The proposed

approaches are tested and validated only over Intranet.

xvi

 ملخص الرسالة

 أنس أحمد محمد أبو دقة : الاسم الكامل

 تقنٌة فً أدوات تحسٌن الجودة الموجودةفً البت تورنت باستخدام لأداءتحسٌن الاستكشاف وا : عنوان الرسالة
 .الوسٌطةالبٌانات)دي دي اس(توزٌع

 شبكات الحاسب الآلً : التخصص

 4102دٌسمبر :تاريخ الدرجة العلمية

 العالم حول انتشارا الأكثر وهو ، للنظٌر النظٌر بطرٌقة الملفات مشاركة بروتوكول هو تورنت بتال

 طرٌقة من تورنت البت استفاد. الإنترنت عبر البٌانات تبادل مساحة من الأكبر الجزء ٌستهلك حٌث

 مركزي خادم هناك ٌكون أن غٌر من الكبٌرة الملفات تبادل عملٌة فً للنظٌر النظٌر المسماة الاتصال

 ٌستخدم أٌضا تورنت البت أن إلا. نقلها وتأخر البٌانات وتزاحم الاختناق ٌسبب النظراء هؤلاء بٌن

 نظام فً المتابع. المتابع ٌسمى مركزي خادم وبٌن النظراء بٌن والعمٌل الخادم المسمى تصالالا نموذج

 قد العمل عن بتعطله أنه المتابع لهذا الرئٌسً العٌب. النظراء استكشاف عملٌة فً خدمست ٌ تورنت البت

المشكلة الأخرى فً البت . أخرى مشكلة للتوسع قابلٌته عدم أٌضا العمل، عن النظام جمٌع ٌتعطل

 البحث هذا فًتورنت أنه ٌستخدم إحدى عشر رسالةً زائدة لتسهٌل عملٌة نقل الملفات بٌن النظراء .

والتقلٌل من عدد للنظٌر النظٌر المسمى الاتصال نموذج على بالكامل ٌعمل تورنت البت لجعل نهدف

 من للتخلصبعمل مخطط قمنا, النظراء لاستكشاف. الرسائل الزائدة المستخدمة فً عملٌة نقل الملفات

 وتقلل الشبكة على الزائدة الأحمال تقلل المقترحة البحث طرٌقة. النظراء بٌن مهمته وتوزٌع المتابع

 النظراء بٌن البٌانات لإرسالي الواحد الصحٌح .رقم ثابت ٌساو ىإل المطلوب للنظٌر الوصول عملٌة

 ،(اس دي دي) البٌانات توزٌع خدمة استخدام أساس على تورنت البت وبرمجة تصمٌم بإعادة قمنا ،

xvii

 تورنت البت من كلا كفاءة باختبار وقمنا. الحقٌقً الوقت فً والاشتراك للنشر وسٌط تعتبر الخدمة هذه

 ٌرسلها التً الزائدة الأحمال تقلٌل ٌستطٌع الجدٌد المقترح أن أظهرت النتائج. الجدٌد والمقترح الأصلً

 تسرٌع فً ٌساهم الجدٌد المقترحالنتائج أظهرت أن أٌضا. المرسلة الملفات مع الأصلى تورنت البت

 .الحالات معظم فً الملفات تحمٌل عملٌة

1

1 CHAPTER 1

INTRODUCTION: PEER-To-PEER NETWORKS

The distributed computing architecture known as peer-to-peer (P2P) networks are

designed to allow users to share resources without any intermediary control or authority

centralized coordination services. Conceived and developed in the specific context of the

Internet, these systems are inspired by a simple and fundamental principle: ability to

adapt to a highly dynamic environment while maintaining substantially unchanged

reliability and connectivity. In a peer-to-peer environment, resources can be considered

as missing since their availability is generally considered independent of the availability

of the node that initially shared the resources. Specific techniques are implemented for

this purpose and they are varied according to the particular architecture. They are based

on the redundancy of resources, and the decentralization of routing and discovery

algorithms.

The P2P overlay networks are distributed systems that have no hierarchical organization

and no centralized control. Peers are self-organized over the IP networks, offering a set of

characteristics such as robust routing architectures and efficient data search.

The P2P model is the antithesis of the classic client-server architecture in which each

node is a server or a client that depends on a central authority; the data are stored on a

server which sends them to those clients who request it. The P2P model, on the other

hand, means that each node behaves as both a server and client depending on who is the

supplier or the requester of a particular resource. Client-server and P2P networks are

depicted in Figure 1.1and Figure 1.2 respectively.

2

1.1 Comparison: P2P vs. Client-Server

As mentioned above the P2P model is quite different from the client-server model. Table

1-1 shows the main differences between the two models.

Table1-1: P2P Model vs. Client-Server Model

Client-Server P2P

 Asymmetry: client and server are

distinct and play different tasks.

 Global Knowledge: servers have a

global view of the network.

 Centralized Approach: the

communication and management are

centralized.

 Single Point of Failure: the failure of

the server involves the malfunction of

the entire system

 Limited Scalability: servers are

subject to an overhead which limits

the network scalability.

 High Cost:

 Symmetric: each node has the same

functions and can be both client and server.

 Local Knowledge: peers know only a

subset of the network nodes.

 Decentralized Approach: there is no global

knowledge but only local interactions.

 Robustness: the consequences of one node

failure is malfunctioning of minimal or null

nodes.

 High Scalability: due to the distribution of

the load and the high aggregate capacity, the

network is highly scalable.

3

Figure 1.1 Client-Server Model

4

Figure 1.2: P2P Model

1.2 P2P Architectures

It should be noted that a full decentralized P2P cannot be realized on a large scale due to

the need of one or more nodes which have the task of providing the parameters of the

initial communication to the new nodes that want to join the system. Beyond this, the P2P

networks are commonly classified according to the relationship between the location of

resources in the network and the topology of the network.

The main architectures referred to when talking about P2P systems are: centralized or

decentralized, and structured or unstructured [63]. In order to compare the different

solutions available, the following two main aspects must be taken into account:

1. Scalability of the system: For each node you have to check the overhead of

communication (number of steps to reach the node that stores information), and

5

the used memory (size of the routing table) as a function of number of nodes in

the system (N).

2. Robustness and adaptability to frequent changes and malfunctions.

1.2.1 Centralized and decentralized:

The distinction between P2P architectures is related to the centralized and decentralized

presence or absence of a coordination node [18]. Some architectures, in fact, are based on

a central infrastructure that performs services resources indexing, freeing the burden of

peers to distribute the resources themselves. Figure 1.3 represents the organization of

centralized P2P architecture. Clients connect to a central unit which has the task of

maintaining the following:

 A table of connected users (IP address, port number, if any connection

information such as the bandwidth, etc.).

 A table of shared resources by each user, possible accompanied by metadata

(information that describes a set of data).

Upon the joining, clients contact the central unit by publishing a list of resources that are

willing to share. Queries (requests) are forwarded to the central server that locates in its

tables the peer (or possibly peers) sharing a resource that meets the query conditions. The

subsequent communication occurs between the peers. The next communication between

clients takes place directly with one or more direct connections between the peer that

requested the resources and its peers that distribute the resources. If the advantage of the

centralized model lies in the simplicity and reliability of the protocol, the main problem is

the presence of a single point of failure and the vulnerability to censorship. In fact, the

development of Napster [19], one of the first examples of this architecture, has been

discontinued due to the in slew of lawsuits filed against Napster rather than because of

technological limitations.

6

Figure 1.3 : Centralized P2P architecture.

In a network of this type, the node that owns the resource is found after O(1) steps

because you just forward a request to the centralized server. The server will store amount

of data equal to O(N) where N equal to the number of available resources (files) in the

system.

Peer-to-peer decentralized architecture is characterized by the lack of a single point of

“break”; characteristic due to the fact that in the system there is no privileged node

required by the operation. There is no centralized control of the network, and each user

application acts simultaneously as both a client and a server. Such a user application is

referred to as a servent. An example is the Gnutella network [20] in which the

communication between the servents are regulated by a protocol that defines four types

of messages:

 ping: represents an announcement to a servent presence on the network.

 Pong: is a reply message to a ping. Contains the IP address and port of the sender

of the message, plus the number and size of the file shared.

 Query: a resource request that includes also information on bandwidth

requirements.

 Query hits: a response to a query that contains IP address and port number to

which to connect to download information relative to the bandwidth and the

number of files that match the requirements of the request.

7

An example of communication in a peer-to-peer that is purely decentralized is shown in

Figure 1.4 .

After a node joins to the network, it sends a ping message to each of its neighbors, all

those nodes which it directly knows the IP addresses and their port numbers. These, in

turn, respond with a message of pong identifying amount of data that nodes shared, and

propagate the ping message to their neighbors. The location of a resource on the network

is found by sending a query message that is propagated in the network until the

exhaustion of a time-to-live(TTL); any replies are forwarded to the node that originated

the query following the reverse path. When a node receives a query hit, indicating that

the resource has been localized to a certain peer it establishes a direct connection with

that peer for downloading. The scalability of the system is guaranteed by the TTL of the

messages, which determines a limit beyond which the messages cannot propagate,

avoiding the collapse of the network.

Figure 1.4: P2P decentralized architecture.

The complexity of P2P decentralized architecture is O(N
2
) in terms of looking for and

getting a resource, and the looking up results are not guaranteed, since the lifetime of the

query message is limited by TTL. On the other hand, the information of routing is

shared and does not depend on the number of nodes in the system, so each node will store

a quantity equal to O(1).

A middle way is represented by hybrid systems that employ the concept of super-peers,

which forward the received query to other super-peers with which they are connected in a

8

totally decentralized topology. These nodes are elected based on the computing power

and bandwidth. These super-peers enhance the overall network performance by

benefiting from both centralized and decentralized architectures, in the other words,

resource allocation can be done by both decentralized and centralized search techniques.

Maintaining the scalability of decentralized P2P systems, and the speed of resource

locating of centralized P2P systems. The structure of a peer-to-peer hybrid is shown in

Figure 1.6.

Figure 1.5: P2P hybrid architecture

1.2.2 Structured and unstructured

The networks can be classified, also, in structured and unstructured. This classification is

based on the relationship between the network topology and the location of a resource in

the network.

In unstructured networks, there is no relationship between the location of a resource and

the network topology. The overlay network uses techniques such as non-deterministic

flooding (requests are forwarded to all participants) or the random walks (requests are

forwarded to a subset of the participants chosen randomly) for the location of a resource

9

on the network. Each peer evaluates the query received locally and sends it to the peer

sending list of all content that matches the request. It should be noted that while the

flooding-based techniques are well suited to those systems where peers come and go at

high frequency and in which the data are high redundant, they are not very suitable for

locating data not very common because, as they are in possession few peers, queries

should be sent to almost all of them. The basic problem of unstructured P2P networks

are: peers become easily overloaded, the network is not scalable in the case it should

manage the aggregated queries with high frequency and further sudden increase in the

size of the system which causes a proportional increase of requests within the network.

Examples of unstructured P2P overlay networks are: Gnutella [20], KaZaA [22],

eDonkey2000 [21], and BitTorrent which will be discussed in detail in later chapters.

In structured networks, however, resources are stored on the nodes chosen in a

deterministic way according to a specific algorithm which provides a mapping between

the content and nodes, or, more precisely, between the respective identifiers in the form

of routing tables that are used to route the queries efficiently to those peers who own the

particular resource. The structured P2P networks are able to locate data in an efficient

rare, since the routing based on deterministic algorithms is scalable. Examples of

structured P2P overlay networks are Distributed Hash Table (DHT) algorithms such as:

Tapestry [23], Chord [24], and Kademlia [25]. A Distributed Hash Table is a data

structure distributed that allows you to store the pairs<key,value>, obtained by a hash

function, in a way that is efficient, reliable, and robust. This approach is to assign the

unique identifier (key), selected in the space of identifiers, data, and simultaneously

assigning identifier (value), selected from the same space, to a set of nodes that possess

the information to which the key refers. Operations such as “put (key, value)” and

“value=get(key)” can be invoked to store and retrieve the data corresponding to the key.

This involves the exchange of routing messages to the peer which is associated with the

same key. Each node maintains small routing tables in which stores the identifiers of

neighboring peers and their IP addresses. Requests for localization or routing messages

are forwarded to the peers in the overlay in a progressive manner considering the

identifiers of the nodes which are next to the space key identifiers. In theory, systems

based on DHT can ensure that any data can be located, on average, in a number of steps

10

equal to O(log N), and that each node possesses the routing tables with O(log N) entries.

It should be noted that the path between two nodes, the underlying physical network, can

be very different from the DHT overlay network based on the approach, this may causing

a delay in the localization phase which lead to a deterioration of the performance of the

network. The DHT has a limit due to the transient nature of the P2P clients. The graceful

exit (announced) of a node usually results in O(log N) operations to maintain consistent

data structures, on the other hand, a kind of graceless (no ad budget and transfer of state

information) have worse outcomes.

1.3 Applications of P2P Systems

The P2P systems are used in a wide range of applications, characterized by substantial

independence from authority coordination. These applications can basically fall into

three main categories:

 File sharing and content distribution.

 Communication and collaboration.

 Distributed computing.

1.3.1 File sharing and Content Distribution

Most P2P systems available today fall into this category, to the point that in some

settings, the P2P technology has been implemented as a synonym for piracy and

copyright infringement. In fact, this type of application ranging from simple tools to

complex file-sharing platforms for publishing, cataloging, retrieval and distribution of

digital content. Examples of file-sharing applications are already mentioned, Napster

(1999), Gnutella and eDonkey (2000), KaZaA (2001), eMule and BitTorrent (2002).

Applications for Content Distribution, however, are the distribution of real-time audio

and video data over the network (P2P live media streaming). Examples of this type are

the open-source software PPLive [28] [27], SopCast [29], and CoolStreaming [26].

11

1.3.2 Communication and Collaboration

In this category, the framework of the infrastructure is built to facilitate the direct

communication between applications or users on the Internet. Typical examples are chat,

instant-messaging and P2P VOIP. Skype [30] is a famous example of P2P usage in VoIP;

it was built on top of the infrastructure of P2P file-sharing network, Kazaa [22]. The

bandwidth is shared and the sound or video in real-time are shared as resources. The

central server is available only for the existence information and calculating invoices for

the system users whenever they make a call that has charges.

Document collaboration is important for a team or a company. Collaboration with P2P

makes it much effective and simple rather than using a centralized server. Groove [31] is

a Microsoft application with P2P capabilities for document collaboration. Groove offers

Microsoft Office based solutions, instant messaging, and video conferencing solutions. It,

also, provides role and user based security, which is one of the most important aspects of

P2P for an organization.

1.3.3 Distributed Computing

The distributed computing requires a moderate commitment arbitrage to divide a job into

fragments that are then sent to other computers for processing. The results are

subsequently conveyed to a centralized repository.

Distributing computing is important for scientific research. P2P plays a role in enabling

high performance computing by sharing of resource like computation power, network

bandwidth, and disk space. SETI@HOME [32] is a popular project enables users to

search for extraterrestrial intelligence. It is a voluntary project with more than 3.3 million

users in 226 countries. It has used 796,000 years of CPU time and analyzed 45 terabytes

of data in just two and a half years of operation.

1.4 Problem Description

In the recent years, BiTorrent protocol got a lot of adoption as peer to peer file sharing

system, and still being the dominant P2P traffic on the Internet. However, this

12

protocol suffers from the dependency on a single server that is called a tracker for the

coordination and the content routing between its peers; this is a single point of

failure (SPOF) problem. Also, this tracker is vulnerable to Denial-of-Service (DoS)

attack. Furthermore, the tracker is limited in terms of scalability and availability.

The other problem with BitTorrent is that during the dissemination of the files between

the peers, the BitTorrent uses many overhead messages. These messages can increase the

load on the network.

13

2 CHAPTER 2

BACKGROUND

2.1 BitTorrent Systems

BitTorrent is a protocol for peer-to-peer file sharing, designed in Python by Brahm Cohen

in 2002 with the aim to facilitate the dissemination of large files over unreliable

networks [5]. BitTorrent protocol takes the utility of uploading bandwidth of all peers in

the swarm for downloading files for some other peers. The responsibility of tracking

the updated information regarding file pieces and the peers that currently joining and

participation in the swarm falls on centralized server called “Tracker”. The tracker

sends to a new joiner peer a list of peers and chunks available with each one of those

peers. The new peer is going to select a single or multiple peers from the list and start

downloading the file chunks. The centralized tracker forms a critical part in the system

where its failure will stop file exchanging between the peers which makes it as single

point of failure (SPOF) [2].

Current BitTorrent consists of the five main elements [5] [7] to work properly:

Tracker server: it was elaborated. Metafile(.torrent file):contains a metadata or

information about the shared file/content . Details about the structure and the content

of this file can be found in [5]. BitTorrent Client: it is an application that

implements the BitTorrent protocol. There are a lot available versions of them such as

BitTorrent, BitComet [39], uTorrent [40], etc. Initial peer (seeder): it is the original user

who has the published file, the existence of this component is essential since it is the

source of the data, and any other peer that had the completed file and start uploading is

also becoming a seeder. The fifth and last element is Downloader (leecher): it is the

consumer of the published data, it changes its state to “seeder” when it completes file

downloading.

14

2.1.1 How BitTorrent Works:

Figure 2.1 illustrates the principle of operation of the BitTorrent protocol that we analyze

in detail by distinguishing four main phases:

-Initial Phase:

The first step that you must do if you are interested in downloading a file through the

BitTorrent application, is to obtain a .torrent file called metainfo file from a webserver or

an email. This is followed by the execution of this file by running the BitTorrent client.

Figure 2.1: Standard BitTorrent components and how it works

- Communication with the tracker:

15

Secondly, you will contact the tracker that specified in the torrent file. The tracker

provides HTTP/HTTPS that respond to an HTTP GET request. Tracker is used to manage

the participation of users involved in the torrent (known as peers). A peer has no

information about the other participants until it receive a response from the tracker. When

a peer connects to the tracker it tells which pieces of the file the others peers have. In this

way, when the peer queries the tracker, it returns a list ordered randomly with peers that

are participating in the torrent, and who possess the required piece. By default, the list of

peers returned by the tracker consists of 50 elements chosen by the tracker randomly. The

tracker can choose to implement a mechanism for the selection of peers more intelligent.

The clients can send requests to the tracker more frequently than the specified interval if

a specified event occurs (completed or stopped) or if they need to increase the list of

peers that they connected to.

- Establishing Connections

After obtain the list of peers participating in the swarm, the client establishes a

bidirectional TCP connection with each of them; beginning the phase of data exchange.

The BitTorrent client uses, in general, TCP ports 6881-6999. To find an available port,

the client will choose, initially, the one with lowest number progressing until find one

that can be used. This means that BitTorrent client will use only one port, and running

another client will choose another port. When a peer receives a request for a particular

piece from another peer, it may refuse to offer it. If this happens, we say that the peer is

chocked. This is mainly due to the fact that by default, the client maintains a fixed

number of simultaneous uploads (max_uploads), therefore, future requests will be

suffocated (choked).

By virtue of this behavior, the client must maintain state information for each connection

created with the others remote peers. Such information is specified by the value of the

following variables:

 Choked: indicates whether the peer is, or not, “choked” by the remote peer. When

a peer chokes, it notifies the client that does not respond to any request by the

latter until it is unchoked (unlocked). The client, in this case, should not try to

16

send requests for blocks and should consider all pending request will be ignored

by the peer;

 Interested: indicates whether the peer is, or not, interested in one or more piece

held by the client. If the peer is in this state it will starts as soon as possible to

request blocks if it unchoked by the client;

At the establishment of the connection, the client will be choked and not interested.

- Messaging and Data Exchanging:

The first message that is send by the client is called handshake. It has a length of 49

bytes. The initiator of the connection should transmit handshake immediately, while, the

peer on the other side of the connection waits for the initiator‟s handshake. After the

handshake sequence has been completed and before any other message is exchanged, a

bitfield message is sent. It is optional and, in case the client does not have any piece, it is

not necessary to send it. The payload of this message is the pieces possessed by the peer

that sent the message. The most significant bit of the first byte corresponds to piece index

0 and every single bit specifies whether the particular piece is owned (1) or not (0).

Complete the exchange of bitfield among peers in the swarm, beginning the demands of

the missing pieces by sending a request message. This message has a fixed length and its

payload is the information about the piece required. If a peer is able to fulfill a request

passes through the request message, the peer replies with a piece message. This message

has a variable size that depends on the block of the piece x that has been selected. In the

payload are the indices for the chosen piece and the actual data block. Just a piece has

been downloaded, it is verified by the hash function and its receipt should notify the

majority of the peers that he gets this piece by sending a have message. Now, peers,

which have received have message, may request this piece from its new owner. If a client

is no longer interested in a block which had requested, it sends a cancel message.

To keep a connection between two peers open, a keep-alive message is sent periodically.

This message has a length of 0 bytes and is specified with the prefix length set to zero.

The peers who do not receive any message within a certain period of time can break

down the connection; the keep-alive must then sent to keep the connection open if no

17

other message has been sent for a given time, usually two minutes.

Choke, unchoke, intereseted, and not intersted, these messages are used to update the

status information of the connection. They are all characterized by of a fixed message

length, and the absence of the payload.

2.1.2 BitTorrent Techniques and Algorithms

We illustrate in the following subsections the techniques introduced to improve the

performance of BitTorrent protocol [41]:

2.1.2.1 Pipeling

This is a technique that allows you to increase your download speed when transferring

data via TCP, as in the case of the application BitTorrent. The peers remain in the queue

a number of unfulfilled requests for each connection. It works in this way because

otherwise it would have to wait an entire round trip time (RTT) between the download of

two successive blocks (round trip time between piece message and the subsequent

request). In link with a high bandwidth-delay-product (BDP) this would result in a

substantial loss of performance. The BitTorrent achieves this by segmenting the pieces in

subparts (blocks), typically 16KB, and keeping a certain number of requests, generally 5,

queued. Each time a block has been received a new request is sent.

2.1.2.2 Piece Selection

The selection algorithm of pieces downloading is highly important to get good system

performance. In fact, by wrong choices there is a risk to reach at a situation in which the

pieces of the file owned by the client are not required by any other peer. Consequently,

we need to find a strict policy for downloading of pieces that compose the file. The

original specification of the protocol requires that clients can download pieces in a pure

random way, but subsequently new techniques were introduced to improve

performance [56]. The use of these techniques depends on the amount of data possessed

by peers at the time of selection. In the following, the techniques are introduced in detail

18

- Strict priority:

Is the first policy used by BitTorrent; if a single block of a given piece has been received,

the remaining parts of this particular piece will take precedence with respect to requests

relating to a new piece. This technique allows completing as quickly as possible whole

parts of the file. Consider the example illustrated in Figure 2.2. The file that shared has

been divided into 8 pieces, each consists of 6 blocks. For simplicity, we consider a swarm

composed of only two peers; A, and B. Peer A, is a seeder and therefore possesses the

whole file and peer B which is a leecher that possesses only the pieces 2, 3 completely

and the first block of the piece 1. Before peer B can request for blocks belonging to any

other piece, if the strict priority strategy is applied, it has to complete the incomplete

piece.

- Rarest First (RF):

When a peer decides to select a new piece to download, it always chooses the one with

the lowest occurrence within the swarm. The behavior of this rule allows the peer to be

competitive, because, the ownership of pieces that have a high demand, allows the peer

more easily to swap in return for others. Operating in this manner very lightens the load

on the original seeder, especially, when it introduces a new torrent. The client can

determine the rarest piece by keeping the information received during the exchange of

bitfield with other peers and updating the receipt of each message have. Thus the client

may request the piece which has the fewest number of occurrences.

It should be noted that the Rarest First strategy should also include a mechanism for

random choice among the less common pieces to avoid that all peers end up with

requiring the same rare piece, making this technique less productive. Figure 2.3 is an

example of a selection of the rarest pieces. Consider a swarm composed of 5 peers, one

seeder, and 4 leechers. After, peer B completing the download of one piece, it have to

choose which piece to request later. Since, B has received the bitfield relating to peers A,

C, D, and E, and it knows which pieces are owned with each one of them (represented in

the figure by the green color and 1). B will calculate the number of occurrences within

19

the swarm for each of the pieces that do not have. It will notice that: the pieces 4 and 6

are held by three peers (A, C, E), and pieces 5 and 7 are owned by two peers (A, D),

while the piece 8 is only possessed by peer A. Consequently, the choice will fall on the

latter piece, which is the rarest within the swarm.

Figure 2.2: Strict priority piece selection strategy.

Figure 2.3: Rarest first piece selection strategy.

20

- Random first:

The only exception to the RF rule is happened when a peer starts downloading a file and

the peer is not the owner of any piece. In this situation, it is likely that the rarest pieces of

a file are in possession of a few peers, and, if the RF policy applied, the download would

be slowed down. Consequently, the first piece to be downloaded is chosen randomly and

after the completion of the download of this piece, applies RF. It should be noted that it is

important that a leecher beginning as soon as possible to send the blocks that owns since

download speed depends on its upload. So when a peer has not any block to distribute is

preferable to adopt an algorithm that allows him to quickly get a full piece to be

exchanged.

- Endgame mode:

In some situations, a piece may be requested by a peer with a transfer capability is very

low. This situation does not cause particular problems in the intermediate stage of the file

downloading, but it can be potentially harmful when it is coming in the end. At the phase

of completion of file download it can make it faster if the client broadcasts the request of

the last few blocks to all peers to which it is connected. To avoid this situation becomes

inefficient, the client will send a broadcast message to cancel each block has been

received.

When to enter this mode is still under discussion. Some clients will enter when it have all

the required pieces except one, others wait until the number of remaining blocks of the

last piece is smaller than those already received, or in any case the number of remaining

blocks do not exceeds 20.

2.1.2.3 Choking Algorithm:

In BitTorrent protocol, there is no centralized resource allocation and each peer tries to

maximize its download rate. A peer is faced with the problem of cooperation

(download/upload) similar to the iterated prisoner‟s dilemma [38].The choking algorithm

21

ensures collaboration among peers eliminating this dilemma and allowing you to achieve

pareto optimality by applying a tit-for-tat strategy.

The act of choking algorithm is a temporary refusal to provide the data, but not to receive

them, and then the download can continue and the connection must be renegotiated when

this condition is ended.

Every good choking algorithm should follow a number of criteria:

1. Must avoid the occurrence of the phenomenon called “fibrillation” in which there

is a fast switch between chocked state to unchocked state that resulting a

considerable overhead within the network.

2. Should allow the client to reciprocate the upload bandwidth provided by those

peers from which it is downloading (principle of reciprocity).

3. Must be able to check the connections not active to see if there is someone who

can be more advantageous (optimistic unchoking).

The phenomenon of fibrillation is avoided by only repeating the selection of choked

peers once every 10 seconds (choking_interval).

Each client participates in the file sharing unchokes a fixed number of peers (default 4)

among all those which has established with them a TCP connection. The problem is thus

reduced to the choice of which of them do not “choke”. The client makes unchoking to

four peers that provide the highest download rates and that are interested in it. These four

peers are called downloaders.

Peers who have a bettor upload speed than the current downloaders, but aren‟t interested

get unchoked. If they become interested, the downloader with the lowest upload speed

gets choked. It should be noted that if a client becomes a seeder (owns the complete file),

it will use its upload rate rather than its download rate to choose which peers to unchoke.

For optimistic unchoking, a single peer is unchoked regardless of its upload speed. Every

30 seconds rotation (optimistic_unchoke_interval), a peer is optimistically unchoked.

Newly peers are three times as likely to start as the current optimistic unchoke as

22

anywhere else in the rotation. This gives them a good opportunity to get a complete piece

to upload.

2.1.2.4 BitTorrent Tracker:

Tracker is a server that allows peers and seeds to communicate using the BitTorrent

protocol. It plays a vital role on BitTorrent application since it can trace out a list of

clients that participating in the network. In addition, peers know nothing of each other

until a response is received from the tracker. Therefore, the peers connect to the tracker

server to obtain the related information about the file that they want to download. The

role of the tracker ends once peers have known each other. A BitTorrent client must

communicate with the tracker before starting downloading the file as well as during

downloading in progress to report their own downloading information and also can gain

the new seed information. Trackers use a simple protocol layered on top of HTTP.

Moreover, the role of the tracker ends once peers have known each other. From then on,

communication is done directly between peers, and the tracker is not involved. Therefore,

the bandwidth of the tracker is very low since peers only connect to the tracker for a very

short time in long time intervals (usually 30 minutes). The total amount of bandwidth

used by the tracker is currently around a thousandth the total amount of bandwidth

used [42].

Tracker drawbacks are: it is a single point of failure (SPOF), vulnerable to Denial-of-

Service (DoS) attack, and, is limited in terms of scalability and availability.

2.2 Real Time Publish Subscribe (RTPS) Middleware

The publish-Subscribe architecture, Figure 2.4, is a data centric design permitting direct

control of information exchange among different nodes in the architecture [44]. It is a

sibling of the message queue pattern, and is one part of a large message-oriented

middleware system. It generally relies on asynchronous message passing, as opposed to

request-response architecture. It connects anonymous messages publishers with

anonymous messages subscribers. The property of decoupling publish and subscriber in

time (data when you want it), in location (publisher and subscriber can be located

23

anywhere) and in platform (connect any set of systems) make the publish-subscribe

communication model more appropriate for formidable scale and loosely coupled

distributed Real-Time systems than traditional models such as client-server models[].

Client-server communication drawbacks, e.g., server bottleneck, single points of failure

and high bandwidth load in many-to-many communication are resolved by publish-

subscribe communication model [43]. Unlike client-server interaction model, data in

publish-subscribe interaction model is pushed by the producers to “topics” or

“destinations” where consumers will receive all data distributed to the topics to which

they subscribe immediately after the data is produced without the need of a request, and

thus subscribers and can get the data in Real-Time. In addition, publish-subscribe

architecture releases the producer (publisher) from waiting for an acknowledgement by

the consumer (subscriber). As a result, the publisher can quickly move on to the next

receiver within deterministic time without any synchronous operations which is desirable

for a large scale distributed Real-Time systems [3]. Recently, the publish-subscribe

communication model has become popular in different middleware such as Java Message

Service (JMS), Microsoft Component Object (COM+) and Data Distribution Service

(DDS). DDS is a high performance middleware standardized by the Object Management

Group (OMG) for QoS-enabled publish-subscribe communication aimed at distributed

Real-Time and embedded systems [10].

Figure 2.4: Publish/Subscribe (PS) model

24

2.2.1 OMG Data-Distribution-Service (DDS):

The Object Management Group, Inc. (OMG) is an international organization founded in

1989. The OMG promotes the theory and practice of object-oriented technology in

software development [8]. The OMG's goals are the portability, reusability, and

interoperability of object-based software in distributed, heterogeneous environments.

Ten years ago, the Data Distribution Service (DDS) has been risen as OMG standard for

topic-based publish/subscribe Middleware. The OMG Data Distribution Service for

Real-Time Systems (DDS) is considered to be the first open international

middleware standard directly addressing publish-subscribe communications for real-

time systems. The main goal of the DDS specification is to make the dissemination

of data in heterogeneous distributed environments efficient and easy [8]. At the core of

DDS is the Data Centric Publish-Subscribe (DCPS) layer that is targeted towards the

efficient delivery of the proper information to the proper recipients for applications

running on heterogeneous platforms [11].DCPS builds on a Global Data Space (GDS),

Figure 2.5, by which applications or participants running on heterogeneous platforms can

share information by publishing data under one or more topics of interest to other

participants. On the other hand, applications or participants can use the GDS to declare

their intent to become subscribers and access data of interested topics. Each topic

represents a logical channel for connecting publishers to all interested subscribers. DDS

has several implementations; these implementations can be categorized as free (open

source) such as OpenSplice [45] and OpenDDS [46], and commercial such as

CoreDX [47] and RTI-DDS [35]. For our work, we have chosen RTI-DDS middleware

due to its efficient implementation [14]. Moreover, DDS is a publish-subscribe standard

with a diverse set of Quality of service (QoS that ensures high performance and low

delay of transmission).

25

Figure 2.5: Global Data Space (GDS).

2.2.2 DDS Quality of Service Policies (QoS)

Perhaps, the most important advantage of DDS it the fine control over real-time Quality

of Service (QoS). DDS relies on the use of QoS to tailor the service to the application

requirements. QoS policies are implemented as a list of qualities of service that must

meet the component to which it is associated. All components of a communication

system may have an associated set of quality of service. The QoS, which is requested by

a subscriber, must be met by a publisher. Each publisher-subscriber pair can establish

particular quality of service agreements. QoS parameters control every aspect of the DDS

model and the underlying communications mechanisms. Many parameters of QoS are

implemented as a contract between publisher and subscribers; publisher offers, and

subscriber requests, levels of service (like a negotiation mechanism). The responsibility

of the middleware is to determine if the offering can match the request, thereby initialing

the connection or showing an incompatibility exception.

26

It has been decided to organize QoS policies in groups, considering the functionality

offered or scope of communication in which they operate. Here are the name of each

group and its QoS policies:

 Volatility group: contains five QoS policies; Durability (store or not previous

published data), History (how much data to store), ReaderDataLifecycle (manages

the lifecycle of the data that it has received), WriterDataLifecycle (how

Datawriter controls the lifecycle of the instances that manages), and Lifespan

(determines how long should consider data sent to be valid).

 Infrastructure group: contains two QoS policies; Entity Factory (controls the

behavior of an entity as a factory of other entities), Resource Limits (determines

amount of memory is allocated for middleware entities).

 Delivery group: contains four QoS policies; Reliability (controls the protocol

reliability e.g. best effort, or reliable), Time Based Filter (specifies a minimum

time period before new data is provided to a DataReader), Deadline (related to

samples elapsed time), and Content Filters.

 User group: contains three QoS policies; User Data, Topic Data, and Group Data,

they attach discoverable meta-data at the writer/reader level, the

producer/consumer, the topic level, respectively.

 Redundancy group: contains three QoS policies; Ownership ,Ownership Strength,

they specify if a subscriber can get new samples from multiple publishers at the

same time, and Liveliness (allows subscriber to detect when publisher becomes

dead, or disconnected).

 Transport group: contains two QoS policies; Latency Budget (suggests how much

time is allowed to deliver data), and Transport Priority (gives some data different

priority than other data).

More details about Quality of Service policies can be found at the DDS

specification [10], and RTI QoS reference guide [48]. In4, and chapter 5, we mention

wider details about QoS policies that we have been used to accomplish our proposed

work.

27

2.2.3 DDS Discovery

The DCPS model provides anonymous, transparent, many-to-many communications.

Applications that use DDS discover one another in an automatic, dynamic P2P fashion;

they do not need any brokers or centralized node in order to send messages. Applications

in the discovery mode automatically send announcements to one another when the

following events take place: a new connection is created, or a new DataWriter or

DataReader is created.

An application goes through an operation titled matching, in which the new publisher or

subscriber is compared against the local publishers or subscribers to decide whether or

not they can communicate. A publisher and subscriber are considered to be matched if:

 They registered the same Topic.

 And, they have compatible QoS.

After a publisher and subscriber have been matched, data published by the publisher will

begin to be received by the subscriber.

The consumed time for connections to discover one another and for publisher-to-

subscriber matching to accomplish is on the order of one or two seconds when all peers

are in the same subnet considering modestly system's size. Based on the number of hops,

the loads on the network, the system size, and, the load on the target CPUs, this time can

differ greatly [12] [49].

28

3 CHAPTER 3

LITERATURE REVIEW

In general, research studies in BitTorrent peers Discovery are limited in number. The

most three important solutions for tackling tracker availability problem are: multiple

central trackers, Distributed Hash Table (DHT), and Peer Exchange (PEX)

3.1 Multiple Central Trackers

Since, the first version of BitTorrent, the idea of multiple trackers [52] has been used. A

single torrent file contains multiple trackers addresses. This enables redundancy, if one

tracker goes down, then the remaining trackers can go ahead to reply new coming peers

with the peers list. Multi-tracker has introduced two disadvantages: 1) it becomes

possible to have multiple swarms for one torrent where some peers can join to a special

tracker whereas being unable to bind to another [51]. 2) Extra resources (multiple

servers) are needed, and much time is needed to replicate the torrents file. The main

advantage of this approach is that the network (search) complexity is O(1) or in the worst

case is O(S), where S is the number of tracker servers, whereas, the complexity terms of

memory consumption is O(N), where N is the number of torrent files available in the

tracker. An example of multi-tracker environment is depicted in Figure 3.1.

29

Figure 3.1: A new peer connects to a swarm using multiple central trackers approach [55].

3.2 Distributed Hash Table (DHT):

Andrew et.al [50] proposed a DHT BitTorrent for storing peers information for, what so

called, "Trackerless" torrents. The standard and implementation of DHT protocol is

described on the official website of BitTorrent [50]. Terms peer, node, DHT, distance

metric, and routing table all refer to members at the P2P network. In brief, terminology

and mechanism are illustrated as follows:

A. Terminology:-

 Peer: is a client or a server listens on TCP port implementing BitTorrent protocol.

 Node: is a client or a server listens on a UDP port that implements the DHT

protocol.

 DHT: is consists of nodes and stores the site of peers.

 Node ID: is a unique identifier assigned to every node. This identifier is chosen

randomly from the same 160-bit space.

 Distance metric: is used to compare two node IDs or node ID and infohash for

closeness.

 Finger Table (Routing Table): contains the peers IDs for a small number of other

nodes in the system.

30

B. Mechanism:

 Firstly, a node, which tries to locate peers for a specified torrent, compares the infohash

of the torrent file with the IDs of the nodes in its finger table. This comparison is done by

using the distance metric. Secondly, the node checks out the nodes it knows about with

IDs closest to the infohash and inquires for the communication information of peers in

the swarm. Thirdly, if a connected node has knowledge about peers for this torrent, a

response with the peer communication information is returned. Otherwise, the connected

node has to answer with the communication information of the nodes which are closest to

the torrent's infohash. Finally, the original node iteratively inquires nodes which are close

to the target infohash till it cannot find any closer node.

DHT still need a bootstrap node which is a node provides initial configuration

information to newly joining nodes so that they may successfully join the overlay

network . The storage and search complexity of DHT should not increase than O(logN).

An example of new peer joining a DHT overlay network is depicted in Figure 3.2.

Figure 3.2: BitTorrent’s DHT environment (A new peer joining process) [55].

31

3.3 Peer Exchange (PEX):

Another method to design a distributed tracker is by using a gossip protocol like PEX.

PEX [53][54] is an extension to BitTorrent standard protocol aimed to accelerate nodes

discovery. Instead peers connect the central tracker to update their peers list; a peer can

share his own neighborhood group with his neighbors. After a peer has interchanged his

own peer lists with another peer, it might connect to the newly discovered peers.

The steps of PEXing process are as follows. For each PEX-capable link, a peer maintains

a group of peer addresses it has already sent to the other entity. When a peer decides to

send a new PEX message, it sends the difference between its current neighborhood set

and its set of peers already sent, or a subset hereof if the resulting set it too big.

Computed using these same two sets, the same PEX message also contains a group of

previously sent peers which the peer is no longer bounded to since the last PEX message.

In PEX, the need of tracker is not eliminated completely. Actually, PEX just lessens the

load in the tracker. Each new joining peer must connect the tracker in order to get its first

peers list. Figure 3.3 illustrates the PEX process graphically.

Figure 3.3: (a) Peers A and B change their lists information (b) Peers A and B can contact the discovered peers
directly [55].

32

3.4 Other Related Methods:

Fabio V et.al [6] proposed balanced Tracker (B-Tracker), a pull-based, and fully

decentralized tracker. It refers to a seeder as a provider. In initial stage, B-Tracker

depends on a DHT overlay structure for tracker detection. In this stage, the primary

trackers, which are peers have peerID nearest to the resourceID, are responsible for

storing the set of providers (seeders) of the resource. The complexity of essential

trackers discovery is O(log n) , where n refers to the number of nodes (peers) in the

network. It is not always true that the primary trackers of resources are providers for

these resources. In next stages and after a peer has got a provider list from the primary

tracker, subsequent queries can be sent to any provider. A provider is considered a

secondary tracker for the resources it provides. The idea of secondary trackers makes B-

Tracker scalable, because resources with many providers are capable of spreading the

load among primary trackers, as well as, secondary trackers. Also, fairness can be

improved by sharing the load among peers who interested in providing the resource.

Simulation of B-tracker showed that it achieves better higher efficiency and load

balancing than the other distributed trackers (DHT and PEX).

Lareida et.al [4] proposed RB-Tracker. RB-Tracker is essentially based on B-Tracker [6].

However, RB-Tracker manages the overlay network automatically and does replication

of content. The motivation of RB-Tracker is to minimize traffic peaks and inter-domain

traffic. The main idea of RB-Tracker is that in non-peak hours duplicating the content

like a CDN and utilizing locality. In a fully distributed network, RB-Tracker combines

three methods. First, replication of popular and of interest to the user content to the local

cache in order to make files closer to their users. The goal of this is to reduce peak loads,

consequently, favorite files are duplicated, since they causes the dominant traffic.

Second, identify the status of the network to choose the replication time. This is done by

sending messages; contain a time stamp flag, between peers. A peer measures delay and

builds statistics based on its measurements, as a result, a peer can identify when delay is

rising. If the delay is raised between two neighbor peers, the neighbor is not an

appropriate source for duplication and another neighbor needs to be detected. Third,

33

determines the group of close peers to duplicate from, as a result, additional intra domain

traffic is avoided. For two IP addresses, a locality function is used to identify how two

peers are close. A peer decides, if it should duplicate from a neighbor peer using the

number of AS hops between them. A trace route tool with an IP to AS map is used to find

the AS hop distance vector. An example which illustrates this mechanism can be found in

the original paper.

Charles P et.al [2] shown BitTorrent swarm at any point in time as a simple graph

G=(V,E) V={1,....,n) is the set of peers and E (V x V) is the set of neighbor relations.

Random walk mechanism, which it used to randomly select nodes from graphs. Using

biased random walks to select initial neighbors for joining nodes and to replace failed

nodes. As consequence, it removes any dependence on the tracker. This accomplish by

Entry Points which help new joining nodes to get a random set of neighbors. So, Entry

Points play the same function of the tracker. Communications between entry points is not

mandatory, they can operate concurrently. The authors compared graphs generated by

their approach to those created by the centralized tracker, two logs are used, RedHat

tracker log, and Debian tracker log.

Ioanna et.al [1] proposed ISP-Owned Peers (IoPs) to enhance BitTorrent Performance.

IoP is a node which targets to increase the level of traffic locality within an ISP and to

improve the performance of P2P applications. IoP could be a regular entity but highly

active peer (HAP) that is given extra resources by the ISP, or could be as a part of an ISP

infrastructure, so, it's controlled by the ISP. IoP runs the typical overlay protocol like

others peers in the swarm with some parameters changes that benefit other peers, e.g. IoP

can unchoke more peers than the classical ones, in order to take the advantage of its extra

uplink capacity. Also, it can store the content downloaded and of course uploading it

back to the network. There are two methods to deploy an IoP in BitTorrent network:

A. Plain insertion: BiTtorrent original protocol is run by all peers; there is no

mechanism like awareness of locality is employed, and no consideration of any

agreement with the overlay provider. Therefore, the tracker is not conscious about

the existence of IoP as a specific peer but deals it as a regular entity. In this

approach, the other peers prefer the IoP because of the tit-for-tat mechanism run

34

by unchocking algorithm and due to its high uplink capacity. The IoP follows the

tit-for-tat principle taking the advantage of the immediate incentives of the latter

that are directly related to the underlay.

B. Integration with locality awareness methods: the run of locality awareness

methods that impact the overlay network's structure is considered as being

imposed by the ISP. The implementation of these methods could be either: 1)

clear (transparent) to the peers (run the same original protocol) or 2) non-

transparent (an adjusted version of the protocol is introduced). Metrics that can be

considered are RTT and hops' number to remote peers, the identity of peers'

autonomous system, and BGP information. According to these metrics, the IoP is

mostly preferred by peers that are 'closer' to it.

Simulation has shown that the deployment of the IoP achieves good decrease in the inter-

domain traffic that get in the AS where it is deployed. Further enhancement is achieved

when the IoP deployment is integrated with locality-awareness mechanisms. Moreover,

the deployment of IoP in a pure BitTorrent overlay network within the use locality-aware

leads to higher reduction in the inter-domain traffic.

3.5 Research Objective

The aims of this research are as follows:

 Removing BitTorrent Tracker completely, and distributing the tracker role

among swarm peers. Making BitTorrent protocol a pure P2P protocol.

 Propose a novel architecture for BitTorrent discovery protocol.

 Reduce both communication overhead (network overhead) and node searching

complexities to O(1) for most cases.

 Implement BitTorrent dissemination protocol using RTPS middleware (DDS).

For our best of knowledge this is the first implementation for BitTorrent over

DDS.

35

 Benefiting from publish/subscribe paradigm in minimizing BitTorrent overhead

messages.

 Compare the DDS-BitTorrent performance with the original BitTorrent protocol.

36

4 CHAPTER 4

DYNAMIC POINTERS: NOVEL DISCOVERY

PROTOCOL FOR BITTORRENT BASED ON RTPS

MIDDLEWARE

Based on the problem of the BitTorrent tracker stated in section 1.4, we formalized the

problem in this chapter and present our implementation architecture. For our discovery

architecture, we benefit from tuned RTI-DDS discovery scenario which is called “One-

way Communication with high Fan-Out”[27], and we use it as a skeleton to implement

our discovery architecture. The following section will summarize this scenario and how it

is related to our architecture.

4.1 Discovery Scenario: “One-way Communication with High Fan

out”

In this scenario that is shown in Figure 4.1, a standalone publisher distributes messages to

a large number of subscribers. These subscribers do not interchange any messages with

each other. As a result, the performance of these subscribers will be improved and the

memory footprint of them will be decreased, since, they do not need to discover each

other. Therefore, IP unicast is used to send messages from the subscribers to the

publisher. It should be noted that the default DDS discovery uses IP multicast, in which,

all peers in the network discover each other. By using IP unicast, we ensure that the

network interfaces and CPUs of the other subscribers computers will not be burdened

with the additional multicast traffic. Messages sent from the publisher to the subscribers

37

are distributed using IP multicast for general messages, and IP unicast for subscriber‟s

specified messages.

Figure 4.1 RTI-DDS discovery scenario :”one way communication”.

The QoS related to the discovery configuration to achieve this scenario for both publisher

and subscribers are shown in Figure 4.2 and Figure 4.3, respectively.

38

Figure 4.2 Publisher discovery QoS xml configuration

Figure 4.3: Subscriber discovery xml configuration

BitTorrent discovery protocol typically works in the same manner as the above scenario,

in which, peers only interact with the tracker, and they know no information about each

other.

<discovery>

 <initial_peers>
<!-- Multicast address to talk to subscribers:-->

 <element>239.255.0.1</element>
</initial_peers>
<multicast_receive_addresses>
<!-- Empty: only listen over unicast -->
</multicast_receive_addresses>

</discovery>

 <discovery>

<!-- just talk to the IP which was included in < initial peers> list -->

<accept_unknown_peers>false</accept_unknown_peers>
<initial_peers>
<!-- Publisher's unicast address -->

<element>192.168.1.100</element>
</initial_peers>
<multicast_receive_addresses>

<!-- Multicast address to talk to publisher: -->
<element>239.255.0.1</element>

</multicast_receive_addresses>
</discovery>

39

4.2 Dynamic Pointer Quality of Service

For more information about DDS QoS policies see section 2.2.2, and RTI QoS reference

guide [48]. In this section, we describe in details about two DDS QoS policies;

Ownership and Domain.

4.2.1 Ownership and Ownership-Strength QoS’s

Ownership QoS provides fast, robust, transport replacement for failover. By default,

subscribers can get data from any matching publisher for the same topic; this is known as

the "shared" setting for the Ownership QoS policy. If the "exclusive" setting is used,

subscribers only receive data from one publisher at a time. The setting of Ownership in

the subscriber side must be the same on the publisher side to be connected. Either both

sides must be shared or both sides must be exclusive. When the setting of the Ownership

is "exclusive", we use the Ownership-Strength QoS policy to specify which publisher is

the owner of the data (allowed to send data). The publisher who has the highest value for

the Ownership-Strength is considered as the owner of the data. When there are many

publishers, and the publisher with the highest value of ownership strength leaves, the

middleware will change the ownership of the data to a publisher with the highest

ownership-Strength from the remaining publishers.

An important point to be known about the Ownership QoS policy is that it is a network

overhead. Actually, data is sent by all the publishers, and the middleware at the

subscriber side drops all data except these that are sent by the owner publisher (the

strongest publisher). In fact, the filtering process is done at the subscriber side after

consuming and wasting the network bandwidth.

4.2.2 Domain QoS

A domain is a logical network that overlays the physical network. Every connection in

DDS application belongs to exactly one domain; therefore, domains form a technique for

isolating subsystems or entire distributed applications from one another. A unique integer

value, domain ID, is used to distinguish one domain from another. An application

participates in a domain by creating a DomainParticipant for that domain ID. A domain

40

creates a “virtual network” linking all applications that share the same domain ID.

Applications run on the same set of physical computers and share the same physical

network but using different domains are isolated from each other.

4.3 Dynamic Pointer

From the BitTorrent specification, we know that the availability of the initial seeder that

has all the pieces that make up the content is mandatory for the success of the file sharing

process. This principle is maintained in our proposed solution with a minor modification

to the overall operation. Instead of adding the IP of the tracker in .torrent file, the seeder

puts its IP address so that the new joiners contact the original seeder directly. The seeder

plays the role of the tracker in terms of coordination and updating the swarm list. “Self-

tracker” is the name of the initial seeder and other seeders.

The Dynamic Pointers architecture benefits from the “One-way communication with

High Fan-out” discovery scenario, discussed in section 4.1. We use the publisher as the

initial seeder (self-tracker) and the other new joiners as subscribers. Each new joiner

needs to contact only the initial seeder to get its swarm list using IP unicast. The details

of how the Dynamic Pointers architecture works are as follows:

1. Initial seeder shares the .torrent file which contains its IP address and domain-ID on a

web server or via email and waits new joiner peers to contact it.

2. A peer that is interested in that file downloads the corresponding .torrent and contacts

the initial seeder (self-tracker). Then, the peer subscribes to a DDS topic has the same

name of the .torrent file, the connection established by using IP unicast. The self-

tracker publishes to the new joining peer the swarm list (see Figure 4.4).

3. Now, if a peer completes the file download (say peer B in Figure 4.4), it starts its

publisher (seeder) application, and publishes a unicast message to the self-tracker

(peer A) telling it that “I‟m a seeder”.

4. The initial seeder (peer A) would publish multicast message to all other peers telling

them that peer B became a seeder. Consequently, all peers save the IP address of peer

B in a special list (trackers list).

41

5. After that, peer B changes its discovery mode from unicast to multicast and, adds and

publishes its IP address with .torrent file.

6. Subsequently, if the self-tracker (Peer A) leaves the swarm or crashes for some reason

(see Figure 4.5 (a)), then the other peers will know that their self-tracker is not

available by missing its heartbeats (timeout period). So, they invoke their tracker-list

and get the IP address of peer B and contact it, Figure 4.5 (b), by adding B‟s IP to

“initial_peers” element in discovery QoS.

The previous steps repeat themselves and the process continues in this manner. Also, note

that the configuration and failover in step six are done completely automatically without

any intervention.

Figure 4.4: Discovery mechanism in Dynamic pointers approach

42

Figure 4.5: (a) Failure of initial seeder, (b) Peers contact directly to the new self-tracker

When there are more than one seeder, new joiners have the option to contact any of the

available seeders. For example (see Figure 4.6), if peer F is a new joiner, it may contact

seeder B while new peer G may contact seeder A. Additionally to the swarm list, the

particular seeder sends the IPs of other seeders in the swarm (A sends IP address of B to

G) to make the new peer ready for any changes in the swarm (e.g. leaving or crashing of

designated seeder). The peer will be ready to apply step six.

Figure 4.6: new joiners can easily contact any seeder (self-tracker).

43

The formula of the timeout period, that is used to determine that a designated seeder is

disconnected, is depicted in Equation 4.1 and Equation 4.2, and the pseudo code for

calculating and adjusting this period is depicted Figure 4.7.

ti is the arrival period of the heartbeat messages, i=0, 1, 2, …, e.g. the first heartbeat

message arrival time is t0 and so on, and X is an extra period constant used as an

assurance period before deciding the collapse of the self-tracker (a seeder); the value of X

is determined according to the system size. If the timeout period is expired and no

heartbeat message arrived then the current self-tracker is considered not available.

Figure 4.7: timeout period adjusting pseudo code.

// initially set the timeout period to a large period (y)

sufficient to the particular network (consider multi-hops).

1. BEGIN

2. SET timeouty; x 3 sec; i0;
3. START a timer T

4. REPEAT

5. ti read(timer T value)
6. IF HBi received THEN //a heartbeat message is rec
7. IF i equl 0 THEN

8. timeout ti +x
9. ELSEIF ti > ti-1 and ti < ti-1+x THEN

10. timeout ti +x
11. ElSE
12. ti = ti-1

13. timeout ti+x // not change
14. ENDIF
15. RESTART T
16. INCREMENT i
17. ENDIF
18. UNTIL ti > timeout // same as ti> ti-1+x
19. CONNECT new Seeder.
20. END

44

The main feature of our proposed solution is fully decentralized for file dissemination,

auto configuration, and, instantaneous failover, which achieves high scalability and high

availability. The complexity of the proposed solution also has an improvement over

multiple trackers, DHT, and PEX methods. The communication overhead (network

overhead) is O(1) because the requester just has to know one seeder. The complexity in

terms of memory consumption is O(1) since, the seeder usually has one .torrent file, and

if the seeder has more than one file, the seeder can isolate them from each other by using

the Domain QoS (designate a unique domain ID for each file).

The key limitation in our solution is the dependence on the availability of seeders. The

system may fail if no seeder is found. The following two subsections describe

enhancements to the dynamic pointers architecture

4.3.1 Guarantee Discovery using IP Multicast

It may happen that a new peer gets a .torrent file with an IP address of a seeder that

crashed or left the swarm. In this case, this new joiner can't join the swarm and download

the file.

To solve this problem we have made an addition to the .torrent file. We add a multicast

IP address beside the unicast IP address of the seeder. This multicast group is essentially

joined by the seeders of the swarm, and the discovery scenario becomes as follow:

 Initially, the new joiner tries to connect to the self-tracker (initial seeder) directly

using the unicast IP address.

 If the new joiner fails for any reason, it uses the multicast IP address and

searches for any other seeder.

 As a new seeder is found, the new joiner gets the IP address of the new seeder

and contacts it using IP unicast approach.

The flowchart of this process is shown in Figure 4.8. Using this approach, the discovery is

guaranteed as long as, there is a single seeder.

45

Start

Contact the self-tracker

(seeder) using IP unicast.

 Is the seeder

available ?

Search for

another seeder

using IP multicast

and get its IP

End

YesNO

Establish the

connection and

get the swarm list

Figure 4.8 : Guarantee discovery process flowchart.

4.3.2 Recovery Speed up Using Ownership QoS

The recovery process that is used in the Dynamic Pointers architecture can be accelerated

by doing two things:

A. Set the setting of Ownership QoS to “exclusive” for all the publishers (seeders)

and all subscribers (leechers), and vary the values of the OwnershipStrength QoS

for all seeders.

B. Instead of storing the IP of a new seeder in the trackers list, the subscribers should

connect to the new seeder immediately as they receive its IP.

Applying Ownership QoS policy in this situation is reasonable, and the Ownership QoS‟s

drawback (network overhead) could be ignored, because the messages between peers and

the self-tracker in the discovery phase are very small in the size. But if the system is huge

and the bandwidth is limited, Ownership QoS should be carefully used.

46

4.4 Implementation and Experimental Work

Java JDK version 7 [33] as a programming language, NetBeans version 7.4 [34] as an

environment, and RTI-DDS API [35] as a middleware are used to complete our proposed

solution implementation. We benefit from tuned RTI-DDS discovery scenario which

called "One-way communication with High Fan-out" [27] and we use it as a reference to

implement our discovery architecture. The testbed of our experiment consists of four PCs

connected to each other via LAN. The specifications for these PCs are Intel® Core i3

2.93 GHz CPU, 4 GB RAM, and Windows 7 32-bits OS. Each of these PCs has its own

IP and they are connected to Internet as well. Scalability and Availability are the two

metrics that we focus in them.

For scalability test, we first run a single publisher (seeder) then, we run new subscribers

(leechers) sequentially to test how latency delay increases as the new leechers increase.

Two groups of leechers are selected. The first group, which is small, contains subgroups

which are one-leecher, two-leechers, four-leechers, and eight-leechers. The second group,

which is large, contains subgroups which are twenty-leechers, thirty-leechers, forty-

leechers, and fifty-leechers; these numbers of leechers are selected to cover wide range of

possibilities of leechers per a swarm. Packets of sizes 2,4,8,16,32 KB are used; these

packet sizes are suitable for BitTorrent discovery phase where the exchange messages are

only small text messages. 100 samples of each packet size are sent to every leecher in the

subgroups then the average delay is calculated. The total trials that are done in the test are

40 trials (number of subgroups x number of packet sizes).

For availability test, we ran two seeders and some leechers. Then, we intended to crash

one of the seeders to know how much time required for the leechers to transfer

automatically to the other seeder. Three scenarios of this test have been done:

 When the seeder and the leechers are in the same network segment,

 When the seeder is two hops away from the leechers,

 When the seeder is five hops away from the leechers.

47

In each scenario, we have done five trials. Each trial has been repeated ten times and the

average was taken. The last two scenarios are accomplished by using Graphical Network

Simulator (GNS3) simulation tool [36], which, provides capabilities to design and

simulate a complex network while being as close as possible to the way real networks

perform.

Also, availability test is re-experienced when the Ownership QoS is applied.

4.5 Evaluation and Results

First, we have compared the complexity of our proposed approach with Centralized

Tracker BitTorrent, DHT BitTorrent and PEX. Table 4-1 summarizes the complexity of

our solution versus the others three approaches.

Table 4-1 Complexity of dynamic-pointers Vs. others approaches

For the scalability test, the results come as expected. As the number of leechers increases,

the latency of messages from the seeder to these leechers increases. However, the latency

increase is due to the increase of the leechers is smooth and it has no harmful effect on

the scalability of the network. Table 4-2 and Figure 4.9 show the latency (µs) results in

case of 1, 2, 4 and, 8 leechers, respectively. We can see from the table that the average

latency proportional to the number of leechers and that makes sense because when the

number of leechers increases, the network traffic increases and then the packet latency

will increase as well. We can also see that the latency increase is not sharp (the difference

between sending 32-Kbytes to one leecher and eight leechers is less than 0.5

millisecond).

Approaches Memory
consumption

Network overhead

MCT O(N) O(1)

PEX O(N) O(1)

DHT O(logN) O(logN)

Dynamic-

Pointers
O(1) O(1)

48

Table 4-3 and Figure 4.10 show latency (ms) results in case of 20, 30, 40, and 50

leechers, respectively. We can see that the difference between sending 16-Kbytes packet

to twenty leechers and fifty leechers is about 1.5 ms.

Table 4-2 Latency (µs) variations for small number of leechers

Packet
size(KB)

of Leechers
1-Leecher 2-Leechers 4-Leechers 8-Leechers

2K 228.9 341.75 386.1 561.65

4K 275.7 331.45 398.6 532

8K 289.4 322.0 385.0 592.55

16K 325.35 332.15 488.35 669.9

32K 346.65 356.0 495.85 763.25

Figure 4.9 Latency(µs) Vs. Packet size for different numbers of leechers

Table 4-3: Latency (ms) variations for large number of leechers

Packet
size(KB)

of Leechers
20-Leecher 30-Leechers 40-Leechers 80-Leechers

2K
1.121 1.66855 1.8284 2.34275

4K
1.0801 1.5788 1.8288 2.2403

49

Packet
size(KB)

of Leechers
20-Leecher 30-Leechers 40-Leechers 80-Leechers

8K
1.2074 1.61725 1.8778 2.5099

16K
1.1988 1.9245 1.9638 2.63445

32K
1.36155 1.93405 2.1324 2.99125

Figure 4.10 Latency (ms) Vs. Packet size for different numbers of leechers

For the availability test, the results show that our network could automatically failover

when a crash or a failure occurs. Table 4-4 and Figure 4.11 show all the results.

Figure 4.11 (a), where the seeder and the leechers are in the same subnet, shows that the

recovery period ranging from 30 to 60 seconds. Figure 4.11 (b) where the seeders are

two hops away from the leechers, shows that the recovery period is in between 50 and 70

seconds. Figure 4.11 (c) where the seeders are five hops away from the leechers, shows

that the recovery period starts from a minute and half, whereas, the network is congested,

the recovery period falls in between two minutes and half to three minutes. These results

are very suitable for BitTorrent where a peer contact the tracker one time every 30

minutes for coordination.

50

For the availability test when the Ownership QoS is applied, the results show a

significant enhancement over the previous availability test. Table 4-5and Figure 4.12

show all the results. Figure 4.12 (a), where the seeder and the leechers are in the same

subnet, shows that the recovery period ranging from 8 to 10 seconds. Figure 4.12 (b)

where the seeders are two hops away from the leechers, shows that the recovery period is

in between 10 and 14 seconds. Figure 4.12 (c) where the seeders are five hops away from

the leechers, shows that the recovery period mostly falls in 15, or 16 seconds, whereas,

the network is congested, the recovery period falls in 30 seconds. Figure 4.13 shows a

comparative study between applying Ownership QoS and without applying it.

Table 4-4 AVERAGE RECOVERY TIME (SEC) PER EACH TRIAL FOR DIFFERENT HOPS

Trials
Distance between Seeders and Leechers

0-hops 2-hops 5-hops

Trial#1 44.5 68.9 94.6

Trial#2 25 61.1 102

Trial#3 33 62.2 112.3

Trial#4 62.25 53.5 134.5

Trial#5 40 63.5 164.5

51

Figure 4.11 Average recovery time (sec) in each trial for different distance scenarios (a) 0-hops (b) 2-hops (c) 5-hops

52

Table 4-5: Average recovery time (sec) per each trial for different hops (applying ownership QoS)

Trials
Distance between Seeders and Leechers

0-hops 2-hops 5-hops

Trial#1
9.1651 10.0126 30.6984

Trial#2
8.6454 12.8452 15.9066

Trial#3
8.9528 10.2288 15.0708

Trial#4
8.8468 14.3095 16.1462

Trial#5
8.9468 13.3884 15.5934

53

Figure 4.12 : Average recovery time (sec) in each trial for different distance scenarios (a) 0-hops (b) 2-hops (c) 5-
hops (applying ownership QoS).

0

2

4

6

8

10

12

14

16

trial#1 trial#2 trial#3 trial#4 trial#5

A
ve

ra
ge

 R
e

co
ve

ry
 T

im
e

 (
se

c)

Trial No. (a)

A
ve

ra
ge

 R
e

co
ve

ry
 T

im
e

 (
se

c)

Trial No.

0

2

4

6

8

10

12

14

16

trial#1 trial#2 trial#3 trial#4 trial#5

A
ve

ra
ge

 R
e

co
ve

ry
 T

im
e

 (
se

c)

Trial No. (b)

0

5

10

15

20

25

30

35

trial#1 trial#2 trial#3 trial#4 trial#5

A
ve

ra
ge

 R
e

co
ve

ry
 T

im
e

 (
se

c)

Trial No. (c)

54

Figure 4.13: Average recovery time (sec) in each trial for different distance scenarios (a) 0-hops (b) 2-hops (c) 5-
hops (A comparative study).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

trial#1 trial#2 trial#3 trial#4 trial#5

Without Ownership QoS Ownership QoS Applied

0

10

20

30

40

50

60

70

80

trial#1 trial#2 trial#3 trial#4 trial#5

A
ve

ra
ge

 R
e

co
ve

ry
 T

im
e

 (
se

c)

Trial No. (b)

0

10

20

30

40

50

60

70

trial#1 trial#2 trial#3 trial#4 trial#5

A
ve

ra
ge

 R
e

co
ve

ry
 T

im
e

 (
se

c)

Trial No. (a)

0

20

40

60

80

100

120

140

160

180

trial#1 trial#2 trial#3 trial#4 trial#5

A
ve

ra
ge

 R
e

co
ve

ry
 T

im
e

 (
se

c)

Trial No. (c)

55

4.6 Summary

In this chapter, we presented Dynamic Pointers, a novel tracker-less discovery protocol

for BitTorrent, we have introduced an evaluation for our proposed architecture. Dynamic-

pointers framework is fully decentralized such that the tracker is completely eliminated

and its role shared among some peers. Results show that our framework can achieve high

scalability and reliability under churn. Also, it can achieve high availability and auto

recovery under crashing or leaving of nodes. Table 4-6 holds a comparison among the

three methods, centralized tracker, DHT, and Dynamic pointers, in terms of dependency,

scalability, fault tolerance, security, and complexity.

Table 4-6: CHARACTERISTICS COMPARISON BETWEEN CENTRALIZED-TRACKER, DHT, AND DYNAMIC-POINTERS.

characteristic
Approach

Centralized Tracker Decentralized DHT Dynamic-Pointers

Dependency

Highly dependent on the

tracker

Initially, depends on a bootstrap

node.

Partial dependent on self-

tracker which dynamic and

recoverable.

Scalability
A tracker is bottleneck High scalablity High scalability in LAN

(need to be tested in WAN).

Fault

Tolerance

Single Point Of Failure

(SPOF)

High Reliability (No SPOF) High Reliability (No SPOF

Security

Tracker could have a built-in

security measures, but, it

vulnerable to Denial of

Service (DoS) attack.

No built-in security measures Benefits from DDS security

(there is a basic security).

Complexity
Network Overhead: O(1)

Memory Consumption: O(N)

Network Overhead: O(logN)

Memory Consumption: O(logN)

Network Overhead: O(1)

Memory Consumption: O(1)

56

5 CHAPTER 5

DDS BitTorrent: Implementation of BitTorrent

Dissemination Protocol using RTPS middleware

In this chapter, we implement a BitTorrent dissemination protocol using RTPS

middleware (DDS). To the best of our knowledge this is the first implementation for

BitTorrent over DDS. We aim to enhance BitTorrent performance by benefiting from the

publish/subscribe paradigm and by applying DDS QoS policies. The motivation behind

this work is that DDS QoS are designed originally to improve P2P applications

performance.

The following sections present DDS-BitTorrent QoS, theoretical analysis, design and

implementation issues, experimental works, and evaluation and results.

5.1 DDS-BitTorrent Quality of Service:

5.1.1 DDS Reliable Delivery Model and Reliability QoS

The DDS-middleware uses the UDP transport to make communications between the

peers. As a result, it uses by default, the best effort delivery model which means, no

guarantee that all the instances published are received.

An important feature of DDS-middleware is that it can offer the reliability on top of a

very wide diversity of transports like the unreliable UDP transport layer, packet based

transports, multicast capable transports, or high latency transports. The middleware

achieves this by implementing an application layer reliable protocol that sequences and

acknowledges messages and observes the liveliness of the link [57]. The publisher

maintains a send queue with space to hold the last X number of samples sent. Also, a

57

subscriber maintains a receive queue with space for consecutive X expected samples. The

send and receive queues are used to temporarily cache samples until the middleware is

sure the samples have been delivered and are not needed anymore. There are three types

of messages for the DDS reliable protocol:

 DATA Message: contains the value of data-objects and associated with a

sequence number that middleware uses to identify them within the publisher

history.

 Heart Beats Message (HB): announces to the subscriber that it should have got all

data instances up to the one tagged with a range of sequence numbers. Also, it

required by the subscriber to send acknowledgement back. For example, HB (0-2)

informs the subscriber that it should have received messages tagged with

sequence numbers 0,1, and 2 and asks the subscriber to confirm this.

 ACK/NACK Message: communicates to the publisher that particular instances

have been successfully received and stored in the subscriber history. ACK/NACK

also tells the publisher which instances are missing on the subscriber side. The

sequence number of ACK/NACK message indicates which one the subscriber is

missing. For example, ACKNACK(3) indicates that instances with sequence

numbers 0,1, and 2 have been successfully received and stored in the subscriber

history, and that 3 has not been received. The ACK/NACK messages are only

sent as a direct response to HB messages

An important note to be mentioned is that the middleware can bundle multiple of the

above messages in a single packet. This provides a higher performance communications.

more details about this protocol can be found in [57].

For BitTorrent, which is a file sharing protocol, we need to use reliable protocol to

transfer the designated file from publishers to a subscriber. For this purpose the

Reliability QoS must be set to REALIABLE.

58

5.1.2 History QoS

Controls how the middleware manages the samples payload sent by the publisher‟s

DataWriter or received by the subscriber‟s DataReader. It helps tune the reliability

between publishers and subscribers.

For BitTorrent, we need restrict reliability which can be achieved by setting the History

QoS to KEEP_ALL value. This means that the samples sent must be kept in the memory

until they are acknowledged.

5.1.3 Partition

This QoS can be used to add additional conditions for the publish-subscribe matching. In

a normal manner, DataWriters are matched to DataReaders of the same topic. By using

the Partition QoS, additional condition is used to decide whether a DataWriter samples

are allowed to be sent to a DataReader. This QoS helps in making the communication

model one-to-one per a thread. More details about how to use this QoS within BitTorrent

will be discussed in section5.2.2.

5.1.4 Durability

Specifies whether the middleware should store and deliver previously published samples

to late subscribers.

Since, the file sharing process usually works in one-to-one communication model, and to

prevent publisher memory from overflowing, this QoS should be set to VOLATILE

value. That means, the samples will be removed from the memory as soon as they are

acknowledged.

5.1.5 DDS-BitTorrent: Traffic Measurement Theoretical Analysis

The main principle that DDS-BitTorrent follows is that “just join us, or just subscribe to

us, and everything will come to you”, you do not need to create connections with the

other peers, or to request each piece of the whole file to complete downloading. Simply,

as just subscribe to a topic (file name) the pieces of the file will come to you from all a

topic publishers without the needing to establish a unique connection to each publisher

59

and send extra overhead messages (e.g. request, interested, bitfield, …). Figure 5.1 shows

the difference behavior between the DDS-BitTorrent and the standard BitTorrent,

assuming that the computer in the middle is a new joiner peer.

Using the publish/subscribe approach Within BitTorrent will help in eliminating the

application layer overhead (BitTorrent messages). Also, since the DDS middleware is

implemented by standard over UDP, this will minimize the transport layer overhead [15].

The overhead caused by the DDS reliable application protocol is very small, and is

limited in two messages; ACK/NACK, and HB which can be piggybacked within the

data message.

Figure 5.1 (a) standard BitTorrent behavior (b) DDS-BitTorrent behavior

The theoretical analysis for the total traffic transferred in the network for both standard

BitTorrent and DDS-BitTorrent can be demonstrated after presenting the following

characteristics:

 BitTorrent messages are twelve messages, excluding the Piece message which is

the actual data; the remaining eleven messages are overhead. While all the

overhead messages needed in DDS-BitTorrent are two messages.

60

 The number of the „Have‟ messages that should be sent is equal to the number of

the file pieces times the number of the swarm peers.

 The number of the „Request‟ messages that should be sent is equal to the number

of the file pieces.

 The number of the „Handshake‟ messages that should be sent is equal to the

number of the swarm peers.

 In DDS-BitTorrent, the number of the HB messages that should be sent is usually

equal to TCP sequence messages. And, the number of the ACK messages sent is

usually equal to the number of TCP ACK messages.

Having a file with size M bytes and this file is chunked into K pieces. Also, assuming a

swarm with R peers, S is the number of the other BitTorrent messages are sent, such that

S<K. Assuming that all these messages have the same size (usually 60 bytes), the

formulas for the total traffic transferred through the network for both standard BitTorrent

and DDS-BitTorrent are depicted in Equation 5.1 and Equation 5.2, respectively.

TotalTrafficst.BitTorrent= M + (K * R) Have message+ K * Request message +

R * Handshake message + (S *8) anonymous message + TCPseq messages

+TCPackmessages (5.1)

TotalTrafficDDS.BitTorrent= M + HB messages + ACK messages (5.2)

Remove TCPseq messages and TCPack messages from Equation 5.1, and remove HB

messages and ACK messages from Equation 5.2 we can conclude that

totalTrafficDDS.BitTorrent < totalTrafficst.BitTorrent.

It‟s clear that the total traffic transferred by DDS-BitTorrent is much less than the total

traffic transferred by standard BitTorrent.

From the transport layer respective, each BitTorrent block is encapsulated in a TCP

segement must accompany 20-bytes of overhead, while a UDP packet uses only 8-bytes

overhead [16].

61

5.2 DDS-BitTorrent: Design and Implementation Issues

This section covers the design and implementation of the proposed DDS-BitTorrent. To

propose a good architecture for implementing BitTorrent to work over DDS, we are

trying to make a simple mapping between BitTorrent‟s main components and RTPS-

DDS‟s main components as in the following table:

Table 5-1: Mapping BitTorrent main components to DDS components.

BitTorrent DDS

Tracker Server DDS-BitTorrent is tracker-less, so, either using

dynamic pointers discovery protocol, or using

default DDS simple discovery protocol (SDP).

depends on the system size

Seeder DDS publisher

Leecher DDS subscriber

Torrent file Topic name

Piece Instance (Each piece represents an instance of

the topic).

Block Sample (each block is a sample of the instance)

Since, the communication paradigm in DDS is a data oriented and not a node oriented,

two issues during the implementation are appeared; these issues and their solutions are

illustrated in the following subsections

5.2.1 Issue 1: Redundant Pieces Delivery

As a new subscriber subscribes to a particular file, all the publishers start publishing

pieces of that file. Multiple publishers may have the same pieces. Figure 5.2 shows the

process of publishing the same pieces from multiple publishers, this will cause in wasting

network bandwidth and result in redundancy delivery at the subscribing side.

62

Figure 5.2: multi publisher send the same pieces to one subscriber

Using the Ownership QoS does not solve the problem since the Ownership is network

overhead, it just solve the delivery redundancy problem. By using the Ownership QoS

the overhead ratio may reach 100% or even x*100 % of the file size, where x is the

number of the seeders.

A good solution to this issue should achieve load balancing, and fairness among the

publishers. Collaborative piece sharing algorithm is our proposed solution for this

problem. In this algorithm, the publisher only shares the pieces that are in a particular list,

called “Owning Piece List”. Two terms should be distinguished between them; having a

piece and owning a piece. Having a piece means that the peer has downloaded the piece

successfully, owning the piece means that this peer is the responsible for sharing this

piece to new joiners peers (subscribers). The procedure of how this algorithm works and

how the Owning Piece List is managed are as follows:

 Initially: the initial seeder owned all the file pieces (all the file pieces are in the

“Owning Piece List”), so as new subscriber joins, it will receive all the pieces of

the file from the initial seeder.

 The initial seeder gives to the first subscriber 50% of its owning pieces, which are

in this case 50% of the file pieces.

 As the second subscriber joins, it will get its complete file pieces as follows; 50%

from the initial seeder, and 50% from the first subscriber. The second subscriber

63

owning piece list will be filled by 25% of the file pieces from the initial seeder,

and 25% form the first subscriber.

 After the second subscriber having all the pieces, the scene can be shown as

follows:

 The initial seeder owns 25% of the file pieces.

 The first subscriber owns 25% of the file pieces.

 The second subscriber owns 50% of the file pieces.

 The process continues as the third, fourth, ..., etc. peers join the swarm

 When the peer‟s owning pieces becomes 5% of the file pieces, it publishes pieces

without transferring the ownership of these pieces to others three times, then the

peer can owns the 5% pieces to another peer and becomes free.

 Finally, if a subscriber does not get all the file pieces for any reason, the

subscriber sends a message to initial seeder requesting the remaining pieces.

To conclude, each time a new peer joins the swarm, each previous peer available in the

swarm gives to the new peer 50% of its owning pieces. The ratio of total owning pieces

from all peers must be 100%. Also, the last joiner peer always shares the biggest ratio of

the file pieces; the share process starts as soon as a new peer joins and the owning piece

list is not empty. This achieves load balancing, fairness, and, mitigation of free riding.

The pseudo code of this algorithm from the publisher perspective is depicted in

Figure 5.3, and from the subscriber perspective is depicted in Figure 5.4.

64

Figure 5.3: Collaborative piece sharing algorithm pseudocode (share pieces).

Algorithm: Collaborative Pieces Sharing (share pieces)

Input: list ownPiecelist (OPL),

Output: new ownPiecelist

Steps:

1. BEGIN

2. SET int lastPiecesCounter 0

3. IF OPL is empty THEN // make sure that my ownPieceList is not empty

3.1 exit // you havn’t pieces to send so exit

 // compare the elements in my ownPieceList with the number of the whole file pieces

4. int fifthPercent 0.05 *filePieces.size

5. IF OPL.size > fifthPercent THEN

5.1 int OwntoAnother OPL.size()/2 // own 50% of my own pieces to another peer

6. ELSE

6.1 Increment lastPiecesCounter //share the pieces three time

7. ENDIF

//loop through the OwnPieceList and pusblish the pieces

8. FOR i 0 to i OPL.size()

8.1 IF i < OwntoAnother OR lastPiecesCounter > 3 THEN

8.1.1 SET Piecei.ownedFlag to true //give this piece to another peer

8.1.2 PUBLISH Piecei

8.1.3 REMOVE Piecei from OPL

8.2 ELSE //share but keep this piece owned

8.2.1 SET Piecei.OwnedFlag to false

8.2.2 SHARE Piecei

9. ENDFOR

10. END

65

Figure 5.4: Collaborative piece sharing algorithm pseudocode (receive pieces)

5.2.2 Issue 2: Subscriber buffer Overflowing

Since there are many publishers that publish pieces to a single subscriber at the same

time, it‟s very likely that the subscriber buffer overflows as shown in Figure 5.5. As a

result, many pieces will be discarded and needs republishing, which will result in a huge

network overhead.

Algorithm: Collaborative Pieces Sharing (receive pieces)

Input: list ownPiecelist (OPL), piece i

Output: new ownPiecelist

Steps:

1. BEGIN

2. VERIFY piecei

3. IF piecei is verified

3.1 Save piecei

3.2 IF piecei.ownflag is equal true

3.2.1 ADD piecei to OPL

3.3 ENDIF

4. ENDIF

5. FINALLY

5.1 IF Received_Pieces are equal to File_Pieces // test if receive all the pieces

5.1.1 exit

5.2 ELSE

5.2.1 Contact the initial_seeder

5.2.2 Request Remaining_Pieces

6. ENDIF

7. END

66

Figure 5.5 multi-publishers overwhelm single subscriber with the pieces

The trivial solution for this problem is to use multithreading. However, using this

solution standalone does not solve the problem, and results in that each thread is

overwhelmed with pieces from all the publishers as shown in Figure 5.6. The reason

behind this situation is that DDS is data oriented and not node oriented; all the children

threads and the parent thread have the same IP and port.

67

Figure 5.6: Multithreading (multi-subscribers).

Using Partition QoS is a good solution for this issue. By using partition QoS, we can

make each subscriber thread match only one publisher. The parent subscriber creates

children subscribers equal to the number of publishers.

Initially, on the publishing side, the parent publisher will create new publisher as soon as

the parent publisher notified that new subscriber has joined. The child publisher sets the

Partition string to unique string (e.g. Publisher IP+ a unique number) and then sends this

string to the subscriber; the parent subscriber creates a child subscriber with Partition

QoS value equal to the unique string that has been sent from the publisher. This

subscriber only matches with one publisher as shown in Figure 5.7.

68

Figure 5.7: Multithreading (multi-subscribers) using Partition QoS.

5.3 Experimental Work

First of all, we construct our network for both standard BitTorrent and DDS-BitTorrent

by using GNS3 [36] emulator. The network contains 5 virtual PCs created using Oracle

VM VirtualBox [58], and connected to each other via Ethernet switch as shown in

Figure 5.8 ; additional PC is needed to work as tracker for standard BitTorrent as shown

in Figure 5.9 . Each PC has Intel Xeon 3.47 GHz CPU, 2 GB RAM, and windows XP 32-

bit. Four of these PCs run as seeders or publishers, and one runs as a subscriber or a

leecher.

Java JDK version 7 [33] as a programming language, NetBeans version 7.4 [34]as an

environment, and RTI-DDS API [35] as a middleware are used to complete the

implementation of DDS-BitTorrent. For the purpose of Comparison, we download

JBitTorrent library [17], which is an open source implementation of the BitTorrent

protocol in Java under General Public License (GPL) 2.

69

Figure 5.8: DDS-BitTorrent network topology

Figure 5.9: Standard BitTorrent network topology

File downloading time, and goodput are the two metrics used to complete the comparison

test. Goodput which is the application layer throughput is defined as the number of useful

70

data bits delivered by the network to a particular destination per a time unit. Equation 5.3

defines the goodput.

Where, R Mb/s is the Ethernet link data rate. Wireshark [59] which is a network analysis

tool that is used for packets capturing and calculating the total traffic (include incoming

and outgoing) of the subscriber link.

For both file downloading time and goodput tests, four files with different sizes (54Mb,

129Mb, 494Mb, 2 GB) are used. For each test, three important scenarios per each file are

done which are based on the variance of piece and block sizes, as the following:

 Piece size:256 KB and block size:16 KB

 Piece size: 512 KB and block size: 32 KB

 Piece size: 1024 KB and block size: 64 KB

For each scenario, the four files are published from the publishers to the subscriber five

times for each, and the average file downloading time and the average goodput are

calculated. This is done for both standard BitTorrent and DDS-BitTorrent.

5.4 Evaluation and Results

To evaluate our proposed DDS-BittTorrent, we compare it with the standard BitTorrent.

When piece size is 256 KB and block size is 16 KB as shown in Table 5-2and

Figure 5.10, DDS-BitTorrent outperforms standard BitTorrent. The results show that the

ratio of the downloading time of DDS-BitTorrent is less than standard BitTorrent in

about 50%. For goodput as shown in Table 5-3 and Figure 5.11, the results show that

DDS-BitTorrent goodput is always between 90 and 95 Mb/s, this is because of its very

small overhead. On the other hand, standard BitTorrent goodput starts at 87 Mb/s and

71

decreases as the file size increases; this is due to the fact that the bitTorrent overhead is

directly proportional to the file size

When piece size is 512 KB and block size is 32 KB as shown in Table 5-4 Figure 5.12,

DDS-BitTorrent also can download the file faster and its goodput (see Table 5-5 and

Figure 5.13) still between about 90 and 95Mb/s. the standard BitTorrent performance is

get better. In this scenario, pieces number is half pieces number of the first scenario; as a

result, the BitTorrent overhead messages and TCP overhead are decreased to about 50%.

Table 5-2: Avg.File downoalding time (sec) for Both standard and DDS BitTorrent (piece:256KB,block: 16KB).

File size (MB) Standard BitTorrent DDS-BitTorrent

54 16.2 7.8

129 40.11 15.2

494 111 78.47

1998 544.9 283.9

Figure 5.10: Average file downloading time (sec) for different file sizes (piece: 256KB, block: 16KB)

0

100

200

300

400

500

600

54M 129M 494M 1998M

A
vg

.F
ile

 D
o

w
n

lo
ad

in
g

Ti
m

e
 (

s)

File Size (Megabytes)

St.BitTorrent

DDS.BitTorrent

72

Table 5-3: Standard vs. DDS BitTorrent goodput (Mb/s) for different files (Piece size: 256 KB, block size: 16 KB).

File size (MB)

 Standard BitTorrent DDS-BitTorrent

Link traffic (MB) Goodput Link traffic (MB) Goodput

54 61.6 87.6 59 91.5

129 152 84.8 139 92.8

494 609 81.1 521 94.8

1998 3092.4 64.5 2109 94.6

Figure 5.11: Standard vs. DDS BitTorrent goodput (Mb/s) for different files (Piece size: 256 KB, block size: 16 KB).

0

10

20

30

40

50

60

70

80

90

100

54M 129M 494M 1998M

G
o

o
d

p
u

t
(M

b
it

/s
)

File Size (Megabytes)

Piece 256

St.BitTorrent

DDS.BitTorrent

73

Table 5-4: Avg.File downoalding time (sec) for Both standard and DDS BitTorrent (piece:512KB,block: 32KB).

File size (MB) Standard BitTorrent DDS-BitTorrent

54 13.7 10.3

129 28.9 24.2

494 107.4 96.6

1998 486 296.4

Figure 5.12: Average file downloading time (sec) for different file sizes (piece: 512KB, block: 32KB)

0

100

200

300

400

500

600

54M 129M 494M 1998M

A
vg

.F
ile

 D
o

w
n

lo
ad

in
g

Ti
m

e
 (

s)

File Size (Megabytes)

St.BitTorrent

DDS.BitTorrent

74

Table 5-5: Standard vs. DDS BitTorrent goodput (Mb/s) for different files (Piece size: 512 KB, block size: 32 KB)

File size (MB)

 Standard BitTorrent DDS-BitTorrent

Link traffic (MB) Goodput Link traffic (MB) Goodput

54 60.6 89.1 60 90

129 149 86.5 140 92.1

494 585 84.4 521 94.8

1998 2621 76.1 2132 93.7

Figure 5.13: Standard vs. DDS BitTorrent goodput (Mb/s) for different files (Piece size: 512 KB, block size: 32 KB)

When piece size is 1024 KB and block size is 64 KB as shown in Table 5-6 and

Figure 5.14, the standard BitTorrent works better than the DDS-BitTorrent. Actually, In

DDS which is implemented over UDP, a 64 KB block will be segmented into 44 (64

KB/1500 bytes) Ethernet frames and then reassembled on the subscribing side; the loss of

0

10

20

30

40

50

60

70

80

90

100

54M 129M 494M 1998M

G
o

o
d

p
u

t
(M

b
it

/s
)

File Size (Megabytes)

piece 512

St.BitTorrent

DDS.BitTorrent

75

anyone of these frames will make reassembly impossible leading to an effective loss.

This will result in a huge overhead and degrading the goodput as depicted in Table 5-7

Figure 5.15.

Table 5-6: Avg.File downoalding time (sec) for Both standard and DDS BitTorrent (piece:1024KB,block: 64KB).

File size (Mbytes) Standard BitTorrent DDS-BitTorrent

54 10.5 15.9

129 24.7 32.5

494 85.14 119.1

1998 444.4 328.1

Figure 5.14: Average file downloading time (sec) for different file sizes (piece: 1024KB, block: 64KB)

0

50

100

150

200

250

300

350

400

450

500

54M 129M 494M 1998M

A
vg

.F
ile

 D
o

w
n

lo
ad

in
g

Ti
m

e
 (

s)

File Size (Megabytes)

St.BitTorrent

DDS.BitTorrent

76

Table 5-7: Standard vs. DDS BitTorrent goodput (Mb/s) for different files (Piece size: 1024 KB, block size: 64 KB).

File size (Mbytes)

 Standard BitTorrent DDS-BitTorrent

Link traffic (Mbytes) Goodput Link traffic (Mbytes) Goodput

54 59.7 90.4 72 72.7

129 143 90.2 170 75.8

494 563 87.7 585 84.4

1998 2549 78.3 2481 80.5

Figure 5.15: Standard vs. DDS BitTorrent goodput (Mb/s) for different files (Piece size: 1024 KB, block size: 64 KB).

To conclude, DDS goodput is not related to the file size, it use the same small overhead

for all the file sizes (Figure 5.16); degradation of the DDS-BitTorrent happened because

0

10

20

30

40

50

60

70

80

90

100

54M 129M 494M 1998M

G
o

o
d

p
u

t
(M

b
it

/s
)

File Size (Megabytes)

Piece 1024

St.BitTorrent

DDS.BitTorrent

77

of the loss of packets which requires packets retransmission. The block size

recommended to use with DDS is between 16k and 32k.

Figure 5.16: DDS-BitTorrent goodput (Mbit/s) for different file sizes and pieces.

5.5 Summary

In this chapter, we introduced DDS-BitTorrent, a BitTorrent dissemination protocol that

is based on DDS middleware. We aim to enhance BitTorrent performance by benefiting

from the publish/subscribe paradigm and by applying DDS QoS policies. Theoretical

analysis, design, and implementation are presented. DDS-BitTorrent is fast, has low

network overhead, and achieves load balancing, fairness, and mitigation freeriding

among peers. A comparative study between the proposed DDS-BitTorrent and the

standard BitTorrent was conducted. Results show that our solution outperforms the

original BitTorrent when the block size is less than or equal 32 KB; this block size is

suitable for BitTorrent [9] [41][60]. On the other hand, when the block size was set to 64

KB, DDS-BitTorrent resulted in huge overhead because the blocks must be fragmented,

and as a result, they will be subjected to being lost.

0

10

20

30

40

50

60

70

80

90

100

54M 129M 494M 1998M

G
o

o
d

p
u

t
(M

b
it

/s
)

File Size (Megabytes)

DDS goodput

P:256k & B:16k

P:512k & B:32k

P:1024k & B:64k

78

6 Chapter 6

Conclusion and Future Work

In the recent years, BitTorrent protocol got a lot of adoption on peer to peer file

sharing systems, and still being the dominant traffic on the Internet. However, this

protocol suffers from the dependency on a single server called a tracker for the

coordination and the content routing between its peers; this is a single point of

failure (SPOF) problem. The other problem with BitTorrent is that during the

dissemination of the files between the peers, the BitTorrent uses many overhead

messages.

In this research, we studied both the discovery and dissemination protocols of BitTorrent.

For discovery, we presented Dynamic Pointers, a novel tracker-less discovery protocol

for BitTorrent, we have provided an evaluation for our proposed architecture. Dynamic-

pointers framework is fully decentralized such that the tracker is completely eliminated

and its role is shared among some peers. Results show that our framework can achieve

high scalability and reliability under churn. Also, it can achieve high availability and auto

recovery under crashing or leaving of nodes. Moreover, dynamic pointers minimized

both the network overhead and memory consumption complexities to O(1).

For dissemination, we analyzed BitTorrent dissemination protocol theoretically then we

proposed DDS-BitTorrent by re-implementing the standard BitTorrent using DDS

middleware benefiting from the publish/subscribe paradigm and DDS QoS policies in

reducing overhead messages. To evaluate our proposed DDS-BittTorrent, we compared

it with the standard BitTorrent; goodput and file downloading time are two metrics used

to complete the comparative study. The results show that DDS-BitTorrent outperforms

the standard BitTorrent when the block size is less than or equal 32 KB; this block size is

79

suitable for BitTorrent. On the other hand, when the block size was set to 64 KB, DDS-

BitTorrent results in huge overhead because the messages are subjected to being lost.

This work is a first and basic step. So for future work, this work can be extended and

improved. For dynamic-pointers, it needs to be tested in a wider network (e.g. WAN).

For DDS-BitTorrent, impact of the peers churn should be shown and tested. Also, the

multi-hops should be considered. The algorithms used need more improvements.

80

7 References

[1] Papafili, Ioanna, Sergios Soursos, and George D. Stamoulis. "Improvement of bittorrent

performance and inter-domain traffic by inserting isp-owned peers."Network Economics

for Next Generation Networks. Springer Berlin Heidelberg, 2009. 97-108.

[2] Fry, Charles P., and Michael K. Reiter. "Really truly trackerless bittorrent."School of

Computer Science, Carnegie Mellon University, Tech. Rep (2006): 06-148.

[3] S. Oh, J. hoon Kim, and G. Fox, \Real-Time Performance Analysis for Publish/Subscribe

Systems," 2009.

[4] Lareida, Andri, et al. "RB-tracker: A fully distributed, replicating, network-, and topology-

aware P2P CDN." Integrated Network Management (IM 2013), 2013 IFIP/IEEE International

Symposium on. IEEE, 2013.

[5] Cohen, Bram. "The BitTorrent protocol specification." (2008): 28.

[6] Hecht, Fabio Victora, Thomas Bocek, and Burkhard Stiller. "B-Tracker: improving load

balancing and efficiency in distributed P2P trackers." Peer-to-Peer Computing (P2P), 2011

IEEE International Conference on. IEEE, 2011.

[7] Bindal, Ruchir, et al. "Improving traffic locality in BitTorrent via biased neighbor selection."

Distributed Computing Systems, 2006. ICDCS 2006. 26th IEEE International Conference on.

IEEE, 2006.

[8] Schlesselman, Joseph M., Gerardo Pardo-Castellote, and Bert Firebaugh. "OMG data

distribution service (DDS): architectural update." Military Communications Conference,

2004. MILCOM 2004. 2004 IEEE. Vol. 2. IEEE, 2004.

[9] Sherman, A., Nieh, J., & Stein, C. (2012). FairTorrent: a deficit-based distributed algorithm to

ensure fairness in peer-to-peer systems. IEEE/ACM Transactions on Networking (TON),

20(5), 1361-1374.

[10] OMG. “Data Distribution Service for Real-time systems”. Object Management Group, 1.2

formal/07-01-01 edition, January 2007.

[11] The Real-time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol

Specification, Version 2.2, January 2014, OMG:formal/2014-09-01

http://www.omg.org/spec/DDSI-RTPS/2.2/.

[12] An, K., Gokhale, A., Schmidt, D., Tambe, S., Pazandak, P., & Pardo-Castellote, G. (2014,

May). Content-based filtering discovery protocol (CFDP): scalable and efficient OMG DDS

http://www.omg.org/spec/DDSI-RTPS/2.2/

81

discovery protocol. In Proceedings of the 8th ACM International Conference on Distributed

Event-Based Systems (pp. 130-141). ACM.

[13] Corsaro, A., Querzoni, L., Scipioni, S., Piergiovanni, S. T., & Virgillito, A. (2006). Quality of

service in publish/subscribe middleware. Global Data Management, 19, 20.

[14] Bellavista, P., Corradi, A., Foschini, L., & Pernafini, A. (2013, July). Data Distribution Service

(DDS): A performance comparison of OpenSplice and RTI implementations. In Computers

and Communications (ISCC), 2013 IEEE Symposium on (pp. 000377-000383). IEEE.

[15] Xiong, M., Parsons, J., Edmondson, J., Nguyen, H. and Schmidt, D. “Evaluating Technologies

for Tactical Information Management in NetCentric Systems”, in Proceedings of the

Defense Transformation and NetCentric Systems Conference, 2007.

[16] Sawashima, H., Hori, Y., Sunahara, H., & Oie, Y. (1997, June). Characteristics of UDP packet

loss: Effect of tcp traffic. In Proceedings of INET’97: The Seventh Annual Conference of the

Internet Society

[17] JBitTorrent Project , http://jbittorrent.sourceforge.net/.

[18] De Boever, Jorn. Peer-to-peer networks as a distribution and publishing model. na, 2007

[19] Napster, L. L. C. "Napster." URL: http://www. napster. com (2001).

[20] Adar, Eytan, and Bernardo A. Huberman. "Free riding on Gnutella." First Monday 5.10

(2000).

[21] eDonkey2000, http://www.edonkey2000.com, 2003

[22] Kazaa, “Kazaa Homepage”, http://www.kazaa.com/us/index.htm, 2003

[23] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubia-towicz, “Tapestry: A

Resilient Global-scale Overlay for Service Deployment”, IEEE Journal on Selected Areas in

Communications , 22(1):41–53, 2004

[24] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, “Chord: A Scalable Peer-To-

Peer Lookup Service for Internet Applications”, In Proceedings of the 2001 ACM Sigcomm

Conference, pp. 149–160, ACM Press, 2001.

[25] P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-Peer Information System Based on

the XOR Metric”, In International Workshop on Peer-to-Peer Systems (IPTPS’02), 2002

[26] Xie, S., Li, B., Keung, G. Y., & Zhang, X. (2007). Coolstreaming: Design, theory, and practice.

Multimedia, IEEE Transactions on, 9(8), 1661-1671.

http://jbittorrent.sourceforge.net/

82

[27] RTI Message Service, "Configuration and Operation Manual," Real-Time Innovations, Inc.,

December 2013

[28] Huang, Gale. "PPLive: A practical P2P live system with huge amount of users." Proceedings

of the ACM SIGCOMM Workshop on Peer-to-Peer Streaming and IPTV Workshop. 2007

[29] Lu, Y., Fallica, B., Kuipers, F. A., Kooij, R. E., & Van Mieghem, P. (2009). Assessing the

Quality of Experience of SopCast. IJIPT, 4(1), 11-23

[30] Baset, S. A., & Schulzrinne, H. (2004). An analysis of the skype peer-to-peer internet

telephony protocol. arXiv preprint cs/0412017.

[31] Ozzie, R. (2005). Microsoft, Groove Networks to Combine Forces to Create Anytime,

Anywhere Collaboration. Microsoft News Center.

[32] Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M., & Werthimer, D. (2002). SETI@ home:

an experiment in public-resource computing. Communications of the ACM, 45(11), 56-61

[33] “Java SE | Oracle Technology Network | Oracle.” *Online+. Available:

http://www.oracle.com/technetwork/java/javase/overview/index.html

[34] “NetBeans IDE” *Online+. Available at https://netbeans.org.

[35] RTI-DDS is available at http://www.rti.com.

[36] GNS3. Ltd, http://www.gns3.net/.

[37] Quental, N. C., & da S Goncalves, P. A. (2011, January). Exploiting application-layer

strategies for improving BitTorrent performance over MANETs. In Consumer

Communications and Networking Conference (CCNC), 2011 IEEE (pp. 691-692). IEEE

[38] Nowak, M., & Sigmund, K. (1993). A strategy of win-stay, lose-shift that outperforms tit-for-

tat in the Prisoner's Dilemma game. Nature, 364(6432), 56-58.

[39] DevGroup, B. BitComet. 2006-4-30]. http://www. bitcomet.com.

[40] Hazel, G. (2012). uTorrent Transport Protocol library.

[41] BitTorrent Specification 2014, https://wiki.theory.org/BitTorrentSpecification.

[42] Cohen, B. (2003, June). Incentives build robustness in BitTorrent. In Workshop on

Economics of Peer-to-Peer systems (Vol. 6, pp. 68-72)

[43] M. AnisMastouri and S. Hasnaoui, “Performance of a Publish/Subscribe Middleware for the

Real-Time Distributed Control systems Summary," 2007

http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.rti.com/
http://www.gns3.net/
https://wiki.theory.org/BitTorrentSpecification

83

[44] Schneider, S., & Farabaugh, B. (2009). Is DDS for You?. A Whitepaper by Real-Time

Innovations, 1-5.

[45] OpenSplice is available at http://www.prismtech.com.

[46] OpenDDS is available at http://www.ociweb.com.

[47] CoreDX is available at http://www.twinoakscomputing.com/.

[48] RTI Connext, “Core Library and Utilities, QoS Reference Guide," Real Time Innovations, Inc.,

2013

[49] RTI Message Service, "user’s Manual," Real-Time Innovations, Inc., December 2013.

[50] DHT Protocol - BitTorrent.org, http://www.bittorrent.org/beps/bep_0005.html.

[51] Neglia, G., Reina, G., Zhang, H., Towsley, D. F., Venkataramani, A., & Danaher, J. S. (2007,

May). Availability in BitTorrent Systems. In INFOCOM(pp. 2216-2224).

[52] Hoffman, J. "Multitracker metadata entry specification." (2004).

[53] PeerExchange,"http://wiki.vuze.eom/w/Peer_Exchange”, last visited: April: 2014

[54] Wu, D., Dhungel, P., Hei, X., Zhang, C., & Ross, K. W. (2010, August). Understanding peer

exchange in bittorrent systems. In Peer-to-Peer Computing (P2P), 2010 IEEE Tenth

International Conference on (pp. 1-8). IEEE.

[55] R.Vliegendhart. "Swarm Discovery in Tribler using 2-Hop TorrentSmell". MSc thesis, Delft

University of Technology, May 2010.

[56] Luo, J., Xiao, B., Bu, K., & Zhou, S. (2013). Understanding and Improving Piece-Related

Algorithms in the BitTorrent Protocol. IEEE Transactions on Parallel and Distributed

Systems, 1.

[57] RTI Connext, “Core Library and Utilities, User’s Manual," Real Time Innovations, Inc., 2012

[58] Oracle, V. M. (2012). VirtualBox. Programming Guide and Reference. 2012-06-20].

http://download. virtualbox, org/virtual-box/SDKRef, pdf.

[59] Combs, G. (2007). Wireshark. Web page: http://www.wireshark.org/ last modified, 12-02.

[60] Ben Jones. “How to Make the Best Torrents”. Available at http://torrentfreak.com/how-to-

make-the-best-torrents-081121/.

[61] Bindal, R., Cao, P., Chan, W., Medved, J., Suwala, G., Bates, T., & Zhang, A. (2006).

Improving traffic locality in BitTorrent via biased neighbor selection. In Distributed

http://www.prismtech.com/
http://www.ociweb.com/
http://www.twinoakscomputing.com/
http://www.bittorrent.org/beps/bep_0005.html
http://www.wireshark.org/
http://torrentfreak.com/how-to-make-the-best-torrents-081121/
http://torrentfreak.com/how-to-make-the-best-torrents-081121/

84

Computing Systems, 2006. ICDCS 2006. 26th IEEE International Conference on (pp. 66-66).

IEEE.

[62] Izal, M., Urvoy-Keller, G., Biersack, E. W., Felber, P. A., Al Hamra, A., & Garces-Erice, L.

(2004). Dissecting bittorrent: Five months in a torrent’s lifetime. In Passive and Active

Network Measurement (pp. 1-11). Springer Berlin Heidelberg.

[63] Quang Hieu Vu, Mihai Lupu, & Beng Chin Ooi. (2010). Architecture of Peer-to-Peer

Systems. In: Handbook of Peer-to-Peer Computing. Springer Berlin Heidelberg. pp. 11-37.

85

Vitae

Name: Anas Ahmed Abu Dagga

Nationality: Palestinian

Date of Birth:3/29/1986

 Email: anas-ahmed@msn.com

Address: King Fahd University of Petroleum and Minerals Dhahran, 31261, Saudi

Arabia

Education:

2003 to 2004 General Secondary School Certificate- GPA "90.8%",

Palestine- Gaza Strip- Khanyounis.

2004 to 2009 Bachelor in Computer Engineering, GPA "82.6".

Islamic University of Gaza (IUGAZA). Gaza-Palestine.

2012 to 2014 MSc degree in computer networks, King Fahd University

for Petroleum and Mineral, GPA "3.57 out of 4", Dhahran-

Saudi Arabia.

Publication

Basem Al-madani, Anas Abu-Dagga. Dynamic Pointers: Novel Discovery

Protocol for BitTorrent Based on Real Time Publish Susbcribe (RTPS)

Middleware. (to be published).

86

Basem Al-madani, Anas Abu-Dagga. DDS-BitTorrent: BitTorrent

Implementation and Performance Enhancement using Publish-Subscribe

Paradigm. (to be published).

