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1. Read! In the Name of Your Lord, who has created (all that exists),  

2. has created man from a clot (a piece of thick coagulated blood).  

3. Read! and Your Lord is the Most Generous,  

4. who has taught (the writing) by the pen [the first person to write was 

Prophet Idrees (Enoch)],  

5. has taught man that which He knew not.  

(Quran 96: 1-5) 
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Glass manufacturing process is a complex and non-linear process. The

quality of the final glass product depends on temperature profile of the molten

glass in glass melting furnace. Improper variations in the molten glass tempera-

ture affects the physical properties (for example: viscosity) of the glass. In order

to maintain the quality of the product, the temperature of the molten glass in the

furnace needs to be monitored and controlled by a control system. The designing

and testing of a controller requires an appropriate process model that describes

the process dynamics with enough accuracy. In industry, a common and general

approach to obtain a process model is “identification”. In this thesis, a couple of

identification techniques are used to obtain state space models of the glass fur-

nace process. A comparative analysis of these models is carried out on the basis

of model fitness, to suggest the best model for use of designing linear controllers.

Multiple control techniques such as optimal control, robust control, model pre-

dictive control, and adaptive control methods are applied to the identified glass

furnace model and their performances are analyzed and compared.
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 ملخص الأطروحة )عربي(

 

 

 عبد الحيمحمد    الاسم:

 فرن الزجاجالتحكم في تحديد و  عنوان الأطروحة:

 ماجستير في العلوم الهندسية   الدرجة:

 هندسة النظم  التخصص:

 ۱۰۲٣  سنة التخرج:

 

من العمليات الصناعيه المعقدة. وتعتمد جودة منتج الزجاج النهائى بصفه تعتبر عمليه تصنيع الزجاج 

أساسيه على المخطط الحرارى للزجاج المنصهر فى أفران صهر الزجاج. وتنعكس التغييرات فى 

المخطط الحرارى سلبا على الخواص الطبيعيه للزجاج مثل اللزوجه وعليه فمن الواجب التحكم بدقه 

لحرارى للزجاج المنصهر. ويتطلب تصميم نظام التحكم توافر نموذج رياضى متناهيه فى المخطط ا

 يوصف ديناميكيه تصنيع الزجاج تحت ظروف التشغيل المختلفه.

 وتعتمد التطبيقات الصناعيه على "طرائق النمذجه العمليه" لبناء النماذج الرياضيه. 

 

وقد أفردت هذه الاطروحه طريقتين لايجاد نماذج متغيرات الحاله فى عمليه تصنيع الزجاج و قدمت 

تحليل مقارن لتقييم النماذج و تحديد مدى دقتها ومواءمتها لبيانات التصنيع المنشوره و مناسبتها 

م الامثل و لتصميم نظام التحكم. وقد تم اجراء خطوات التصميم طبقا لاساليب متنوعه تشمل التحك

التحكم الصلد و التحكم التنبؤى و التحكم المطوع. وقد تم تطبيق هذه الاساليب على نماذج متغيرات 

 الحاله المستخرجه و أجريت مقارنه النتائج وأستنباط الاسلوب الاكثر دقه. 

 



Chapter 1

INTRODUCTION

1.1 Overview of Glass Furnace

Glass furnace is a key subsystem of glass industry as it is used for melting of glass

(the main task in glass manufacturing). A glass furnace along with annealing

ovens and forming machines represents the “hot end” (a place where the molten

glass is produced and processed to produce glass products) of glass industry.

A glass furnace can be considered as a chemical reactor (a rectangular tank)

where the raw materials are burnt in a confined space surrounded by refractory,

at high temperatures of 1400 - 1600 ◦C to produce molten glass. The melting

area of a glass furnace consists of a molten glass bath and a combustion cham-

ber. The walls, floor and the roof of the melting area are made up of refractory

1
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(which is capable of handling high temperatures). The furnace operation in-

volves combustion, heat transfer, batch melting, glass flow patterns, etc. [1], [2].

Figure 1.1 shows the schematic of a glass furnace.

Figure 1.1: Schematic of a Glass Furnace

Glass is produced from various raw materials such as silica sand, soda ash,

limestone, recycled cullet and other additives. A mixture of these raw materials

is called as batch and it is stored and handled by a batch processing system.

The batch is fed into the furnace (from one of its ends) through a continuous or

intermittent feeding system and is heated to form a homogeneous melt of glass.

This molten glass is then discharged through the feeders (from the opposite end

of the furnace) for its further processing such as forming and polishing [3], [4],

[5].

The energy (heat/temperature) required to melt the raw materials is obtained
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either through combustion of fossil fuels (natural gas or oil) or through electrical

resistance heating or sometimes through a combination of both fossil fuel and

electrical resistance [6]. The cost of melting and operation criticality determines

the type of heat source. Fossil fuel flames, directly heat the melt, mainly by

heat transfer through radiations. The mass inlet streams are composed of fuel,

combustion air and glass raw material. The outlet streams are flue gas and

molten glass (at high temperature). Normally, a regenerator is used to recover

heat from the flue gases and preheat the combustion air [1].

The glass melting process is a nonlinear, complex and slow process. The phys-

ical and chemical phenomena in this process occur at different time rates. For

example, for a step change in the fuel rate, the crown temperature responds

and reaches the steady state in 10 to 20 minutes while the bottom temperature

takes several hours to reach the steady state. In glass furnaces, the glass melt

temperatures, velocities and chemical species exhibit a slow dynamical behavior

and thereby constitute to the slow dynamics of the glass melting process [7], [8].

In glass industry, the quality of the final product depends on the quality of the

molten glass in the glass melting furnace. The quality of molten glass in turn

depends upon the temperature of the molten glass. For example, the viscosity of

the molten glass gets affected even with a temperature change of 50 to 100 ◦C.

The change in physical properties of glass with respect to temperature creates

difficulties in precise control of glass temperature. Thus, in order to maintain

the product quality the temperature of the molten glass in the furnace needs to

be monitored and controlled. The temperature of the molten glass is controlled
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by adjusting the amount of fuel input to the furnace. A better control of the

glass temperature can be achieved through monitoring and integrated control of

multiple variables [2], [5].

The following variables are taken into account while modeling and control of

glass furnaces [8]:

Controlled Variables or Process Variables

• Glass temperature / Bottom temperature

• Crown temperature

• Level of glass melt

• Furnace pressure

• Exhaust gas composition (e.g. NOx)) etc.

Manipulated Variables

• Air-to-fuel ratio

• Gas flow to the burners

• Batch charging speed

• Cooling air flow etc.

Measured Disturbances

• Batch composition

• Cullet ratio

• Ambient temperature etc.
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Unmeasured disturbances

• Leaks

• Pollution of batch

• False air etc.

1.2 Thesis Objectives

The objectives of the thesis are:

• To perform identification of the glass furnace (Philips Glass Furnace) us-

ing linear and nonlinear identification techniques, on the basis of its ex-

perimental input-output data, and to obtain a state-space model through

identification process.

• To apply the following control techniques to the identified state space

model of the glass furnace.

1. Linear Quadratic Regulator (LQR) Control

2. Linear Quadratic Gaussian Regulator (LQGR) Control

3. H2 Optimal Control

4. H∞ Optimal Control

5. Model Predictive Control (MPC)

6. Adaptive Control
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• To evaluate the performance of each of the aforementioned control tech-

niques for the given glass furnace model and to carry out a comparative

analysis of the closed-loop responses of the glass furnace system when it

is controlled by these techniques.

1.3 Thesis Organization

This thesis is organized as follows:

Chapter-1 gives an overview of glass furnace and glass manufacturing process.

In Chapter-2, the past work related to modeling, identification, and control of

glass furnace is presented. In Chapter-3, identification of glass furnace based

upon the input-output data of a real-time glass furnace system is presented.

Chapter-4 gives an overview of optimal control and robust control techniques and

their application to the identified glass furnace model. Chapter-5 presents two

control techniques - model predictive control (MPC) and a new adaptive control

technique, for control of glass furnace. The thesis is concluded by Chapter-6 in

which conclusions and recommendations for future work are provided.



Chapter 2

LITERATURE SURVEY

2.1 Modeling and Identification

Broadly, there are two types of modeling techniques that have been applied so

far for modeling of glass manufacturing processes [8]. They are:

1. Empirical modeling

2. First principles based modeling

7
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2.1.1 Empirical Modeling OR Black-Box Modeling

In empirical modeling, a model of the process is developed based upon the

observed behavior of the process in response to the test signals applied to the

process i.e., a mathematical model of the system is developed from the input-

output data of the system. This kind of modeling is also termed as black-box

modeling or identification of the system. Based on the estimation methods,

the identification techniques can be categorized into two: parametric estimation

methods
[

prediction error method (PEM) & subspace identification methods

(CVA, N4SID, MOESP algorithms)
]

and non-parametric estimation methods.

In [9] Dablemont and Gevers identify the dynamics of an industrial float glass

furnace melter using a joint input output identification method.

Haber et al. [10] developed a black-box model of a continuously operating tank

furnace by performing system identification on the furnace. For identification

purpose, experiments were designed based on the analysis of normal operating

records of the furnace. The identification was carried out without interrupting

the normal production. Parameter estimation (second extended matrix method)

was utilized for identification of the model and a proper model structure was

obtained through repeated estimation of the parameters for different structures.

A glass furnace of end-port type was modeled through ARMAX modeling tech-

nique by Wertz and Demeuse in [11]. Several ARMAX models were identified

from a record of 830 samples, representing 70 days of operation of the furnace,
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with an off-line maximum likelihood algorithm. One of these models was se-

lected based on the minimization of (Final Prediction Error) FPE criterion of

Akaike and whiteness of residuals test.

Kang-Mo and Kang-Suk in [12] proposed a decision support system using Arti-

ficial Neural Networks (ANN) for a glass furnace, in which an ANN was used to

identify the model. This system does not require a priori knowledge of a glass

furnace process and it can be used to identify the model directly from input-

output data of the process. The principle of Back-Error Propagation (BEP)

was utilized in model identification and the output value was predicted from the

time-lag property of a glass furnace process.

In [13] Moon and Lee developed a mathematical model of a Television (TV)

glass furnace through an identification technique whose principle was based on

minimizing the error between the real plant output and the model output. The

structure of the model was assumed as a First-Order-Plus-Dead-Time (FOPDT)

system and the parameters of the model were estimated using the root mean

squares method.

Zhang et al. in [14] identified the dynamic model of a continuous large kinescope

glass furnace by means of grey-box modeling technique without interrupting

the normal production process. The model parameters were identified through

recursive least squares method and the model was developed after repeated

experiments and loss function check.
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2.1.2 First Principles based Modeling

In this type of modeling, a mathematical model is derived by applying basic mass

and conservation laws to the system being modeled. These models are derived

from the physical knowledge of a system. First principles based modeling of

glass furnace can be found in the following works: [15] - [22].

Andrea R. Holladay in her thesis work [15] developed a mathematical model for

a small glass furnace. For simplification of the modeling it was assumed that

the glass is well stirred and the temperature of the glass melt and refractory

is homogeneous. The modeling was carried out by applying energy balance us-

ing thermodynamic and energy conservation laws and a state-space model was

derived from the energy balance equations. Based on this model two types of

observer designs were proposed to estimate the glass temperature from the mea-

sured combustion gas temperature. One observer was designed using only the

combustion gas temperature. The other observer was designed using the refrac-

tory temperatures (floor and wall temperatures) in addition to the combustion

gas temperature. The observer model was validated with a Simulink model

created using the parameters developed during the formation of a state-space

model from energy balance equations.

Morris in his thesis [16] extended the work of Holladay [15] by eliminating the

assumptions (homogeneous temperature of glass and refractory) made by Holla-

day, to obtain a more accurate model. A state-space model of an end-fired small

glass furnace was developed based on finite element analysis (advanced mod-
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eling technique) in which subsystems are created within a system (the furnace

was divided longitudinally into two zones). Overall, the furnace is divided into

24 volumes and the temperature of each volume is considered as a state vari-

able while developing the state-space model. A set of assumptions was made

while developing the model; one of the assumptions being “uniform temperature

within each volume of glass, refractory and gas” to obtain simple heat transfer

equations. The developed model was simulated and validated using the real

furnace data of a similar small tank furnace at Fenton Art Glass Company.

Liu and Larry in their work [17] developed a state-space model of a small fiber-

glass furnace through energy balance approach by dividing the furnace into six

zones and by considering few assumptions.

CFD Modeling

In this type of modeling, a mathematical model is developed from the first-

principles (i.e. basic physical laws) by utilizing Computational Fluid Dynamics

(CFD) techniques. This type of model is known as CFD model.

The advantages of the basic first principles based modeling (CFD modeling)

are: a system can be modeled over its wide operating ranges without the need

of any experimental tests on the system being modeled; these models are accu-

rate and they provide a direct physical insight of the system. But, they have

certain drawbacks: they are complicated and they consume a lot of CPU time
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to simulate the dynamics of the system with sufficient accuracy. Due to this,

such models cannot be used in applications which require short computation

time (for example model-based control). An accurate CFD model is obtained at

the expense of complexity of the model (i.e., complexity of the model directly

depends on the accuracy of modeling).

These drawbacks are eliminated by simplifying the first principles based model-

ing.

A simplified first principles modeling of glass furnace for control and real time

simulation was developed by Olivier Auchet et al. in [18]. This method is

based on zonal approach and it overcomes the drawbacks of black-box modeling

and classical CFD modeling. In zonal approach, the whole system is spatially

decomposed into macroscopic zones where coarse uniformity assumptions are

made and then these zones are modeled using the simple mass and energy bal-

ance equations.

An alternative of obtaining simplified first principles based models is to reduce

the complicated CFD models by using proper orthogonal decomposition (POD)

[18]. This type of modeling technique has been proposed by Backx et al. in [19].

In this modeling technique, initially, the CFD model of the glass furnace process

was obtained and then this initial model was reduced to a relatively low order

state space model by using POD-based techniques. With this technique the

glass melting process can be modeled over wide operating ranges with limited

testing.
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A similar kind of modeling was also proposed by Leendert Huisman [7], Schobben

[20] and Wattamwar [21] to obtain a fast and reduced simulation model for

estimation and control of glass melt temperatures in glass melting tanks and

glass melt feeders. In these works, fast reduced simulation model of a glass

furnace was derived from detailed first principles model (CFD model) by using

POD technique in combination with system identification.

The simplified first principles modeling reduces the computation time and devel-

ops rapid models which predict the dynamic behavior of the system faster than

real time prediction. These reduced models are computationally faster than the

basic CFD models and are capable of providing sufficiently accurate estimates

of glass melt temperature profiles for model based control applications where a

rapid model is desired for the implementation of control. An application of sim-

plified first principles model of combustion chamber of a glass furnace in model

predictive control (MPC) of glass furnace has been reported by Auchet et al. in

[22].

Fuzzy logic approach of modeling glass furnaces has been discussed in the fol-

lowing works:

Moon and Lee in [2] proposed a modeling technique for a glass furnace, in

which the linear part of the furnace dynamics was modeled by a First-Order-

Plus-Dead-Time (FOPDT) system and the nonlinear part of the furnace was

modeled by fuzzy logic system. Hadjili et al. in [23] presented nonlinear iden-

tification through fuzzy logic system (Takagi-Sugeno fuzzy system approach) to



14

model a glass furnace process between the gas input and the throat temperature

output. An architecture for the operation of a recuperative-type glass furnace

is presented in [24]. This architecture involves process optimization along with

process modeling where the modeling is carried out by fuzzy learning system.

2.2 Control Techniques

In previous works, various control techniques have been proposed for various

glass furnace models and some of these control techniques have been successfully

implemented on industrial glass furnaces. Let us take an overlook of these works.

A conventional multi-loop control method based on an identified model of First

Order Plus Dead Time (FOPDT) structure was proposed by Moon and Lee in

[13] to control the temperature of a television (T.V.) glass furnace. This control

method was practically applied to a 150 ton/day hour glass melting furnace in

Samsung-Coming Company in Suwon, Korea.

In [15], Holladay presented an observer based controller to control the glass tem-

perature of a small glass furnace. In this work the observer was designed using

the state space model developed from basic conservation laws. The purpose

of designing an observer was to estimate the glass temperature and use it as

a feedback to the controller. Such a controller provides excellent temperature

control and set point tracking.
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Normally, predicted glass temperature is used as a feedback to the furnace con-

troller. Parameters other than predicted glass temperature such as combustion

gas temperature, crown temperature and refractory floor temperature can also

be used as a feedback for the controller. Morris [16] presented a simple feed-

back control scheme for a state space model of an end-fired small glass furnace,

and carried out the simulations of feedback control separately for each of the

four feedback parameters (temperatures) discussed above and compared their

responses. It was found that the feedback controller with floor temperature as

a feedback showed a better performance than the feedback controllers based on

other temperatures as feedback parameters.

An estimator-based LQR control was proposed by Liu and Larry in [17] to

control the bottom glass temperature of a continuous small fiber-glass furnace.

A reduced order observer/estimator was designed based on state space model

of the furnace and measurement of the combustion gas temperature and the

bushing plate temperature, to estimate the temperature of the molten glass at

different depths in the furnace. The estimated temperature is then used as

feedback to the LQR controller which controls the bottom glass temperature to

desired set-points by regulating the input fuel flow rate (firing rate of burner).

Huisman in [7] designed a LQG controller based on the reduced model to track

a reference temperature, and to examine the relation between POD basis order

and closed loop performance.

Model Predictive Control (MPC) of glass furnaces have been reported in [7],

[19], [20], [22] to control the crown temperature and bottom temperature of the
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glass furnace. All these applications of MPC are based on reduced CFD models.

In [20] MPC was designed to control the glass temperature around a nominal

operating point of furnace even if the furnace is under the influence of measured

and unmeasured disturbances.

Haber et al. in [10] proposed an adaptive control technique to control the glass

level in a continuously operating tank furnace. This control law was implemented

using the identified model. Wertz and Demeuse [11] developed a control law

(weighted minimum variance control with feed-forward compensation) based

on a linear ARMAX model to control the bottom temperature of the glass

furnace. This control algorithm was combined with an online identification

method to form an adaptive controller. In [17] a compound adaptive control was

proposed and applied on an identified model of a continuous large kinescope glass

furnace. This compound adaptive control scheme included self-tuning control

and modified PID control with compensator. Hill et al. [25] reported adaptive

control of an industrial float glass process in which Extended Horizon Adaptive

Controller (EHAC) in combination with PID controller is used to stabilize the

crown temperature and minimize the gas variations. In [26] a new adaptive

control scheme known as model-free adaptive (MFA) control is proposed for

the control of temperature of a glass furnace. This method does not require

any process model and it utilizes the artificial neural network (ANN) for the

control strategy. Based on the error between the set-point and the measured

process variable the neural network algorithm updates the weighting factors and

provides it to the controller so that the controller takes a new action to minimize
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the error.

A neural network (NN) control scheme based on hierarchically unified neural

network (HUNN) architecture (integration of recurrent NN and feed-forward

NN) was applied to a T.V. glass-bulb melting furnace to control its operation

in [4].

Moon and Lee [2] developed a hybrid control algorithm comprising conventional

PID control and fuzzy logic control to control the glass temperature (i.e. bot-

tom temperature) of a glass melting furnace. In this work, the linear part of

the furnace dynamics is modeled by a First-Order-Plus-Dead-Time (FOPDT)

System and a PI controller is applied to control this linear model. The nonlinear

part of the furnace is modeled and controlled by the fuzzy logic system. This

hybrid control technique was successfully implemented on an actual furnace in

Samsung-Corning Company in Suwon Korea.

In [24] an expert controller is applied to a fuzzy model of recuperative-type glass

furnace for process optimization in which genetic algorithm is used to solve a

multi objective optimization problem.



Chapter 3

SYSTEM IDENTIFICATION

3.1 Introduction

System Identification is the science that deals with developing mathematical

models of physical systems from observations and measurements (experimental

data) of parameters of the system. Hence, system identification can be regarded

as an experimental approach to determine the dynamic model of a system. Ba-

sically, there are two types of identification techniques to identify/estimate the

dynamical model of a system. They are: (i) parametric methods & (ii) non-

parametric methods. Based on the method used for identification, the identified

models are classified as parametric models and non-parametric models.

18
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1. Parametric Identification Methods are techniques that estimate pa-

rameters in given model structures. Basically it is a matter of finding (by

numerical search) those numerical values of the parameters that give the

best agreement between the model’s (simulated or predicted) output and

the measured output. The parametric methods are further classified as

prediction error method & subspace methods. The different types of para-

metric model structures are autoregressive with exogeneous input (ARX),

autoregressive moving average with exogeneous input (ARMAX), output

error (OE), Box-Jenkins (BJ), and state-space model structures.

2. Non-parametric Identification Methods are techniques that esti-

mate model behavior without necessarily using a given parameterized

model set. Typical non-parametric methods include Correlation Analy-

sis, which estimates a system’s impulse response, and Spectral Analysis,

which estimates a system’s frequency response.

System Identification procedure involves the following four steps for parametric

identification [27]:

1. Acquisition of Input/Output Data

The input-output data of a process/system is obtained by carrying out

an experiment on the system under certain conditions and selection of

parameters to be measured. The experiment is designed in such a way

that the measured data provides maximum and useful information of the

properties of the system.



20

2. Selection of a Model Structure (a set of models)

A set of candidate models is selected based on the properties of the mod-

els. This is the most important task of system identification because it

requires engineering intuition, a priori knowledge and insight along with

the mathematical properties of the models.

3. Determining the Best Model, and Estimation of Parameters

After obtaining the model set, a simplest model that best describes the

dynamics of the system is selected from this set of models. Then, the

parameters of the model are estimated based on the error criterion (loss

function); The criterion that is used most often is the sum of the squares

of some error signals (residuals). The values of the parameters are deter-

mined by minimizing the loss function.

4. Validation of the Identified Model

In this step, the identified model is validated by considering the following

factors:

• the error percentage between the response of the identified model

(to the validation data) and the measured output (this factor is also

known as model fitness)

• the relation of the identified model to the a priori knowledge of the

system

• whether the model is good enough for its intended use
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3.2 State-Space Identification

State-space models are common representations of dynamical models and most

of the industrial processes can be described accurately by discrete-time linear

time-invariant (LTI) state-space models. These models are very useful for de-

signing controllers because many control system design tools based on such type

of models are available. So, in this thesis, we obtain a state-space model of

the glass furnace from the experimental data by using parametric estimation

methods, so as to design various controllers for the glass furnace process.

State-space model describes the linear difference relationship between the inputs

and the outputs of the system. The basic discrete-time state-space model in

innovations form is expressed by the following equations:

x(k + 1) = Ax(k) + Bu(k) + Ke(k) (3.1a)

y(k) = Cx(k) + Du(k) + e(k) (3.1b)

where x(k) ∈ ℜn is the state vector of the process at discrete time instant k

and it contains the numerical values of n states, u(k) ∈ ℜm is the input vector

representing the values of m inputs at time instant k, y(k) ∈ ℜn is the output

vector representing the values of l outputs at time instant k, e(k) ∈ ℜl is the

noise vector.

A ∈ ℜn×n is the system matrix, describing the dynamics of the system; B ∈
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ℜn×m is the input matrix, describing how the next state is influenced by the de-

terministic inputs; C ∈ ℜl×n is the output matrix, which represents the transfor-

mation of internal state to the outside world; D ∈ ℜl×l is the direct feedthrough

matrix, representing the direct coupling between the input and the output (this

matrix will be zero for strictly proper models); and K ∈ ℜn×l is the matrix

representing the noise/disturbance characteristics.

There are two basic methods for the estimation of state-space models:

1. Subspace Identification Method

2. Prediction Error Method (PEM)

3.2.1 Subspace Identification Method

The state-space matrices A, B, C, D, and K in (3.1a) & (3.1b) can be estimated

directly, without first specifying any particular parameterization by efficient

subspace methods. The idea behind this can be explained as follows: if the

sequence of state vectors x(k) were known, together with y(k) and u(k), (3.1b)

would be a linear regression, and C and D could be estimated by the least

squares method. Then e(k) could be determined, and treated as a known signal

in (3.1b), which then would be another linear regression model for A, B and K.

Thus, once the states are known, the estimation of the state-space matrices is

easy.
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All states in representations like (3.1a) & (3.1b) can be formed as linear com-

binations of the k-step ahead predicted outputs (k = 1, 2, ..., n). It is thus a

matter of finding these predictors, and then selecting a basis among them. The

subspace methods form an efficient and numerically reliable way of determining

the predictors by projections directly on the observed data sequences.

Numerical algorithms for Subspace State-Space System Identification

(N4SID):

It is a subspace-based identification method that does not use iterative search.

The N4SID algorithms are always convergent (non-iterative) and numerically

stable since they only make use of QR and Singular Value Decompositions. The

quality of the resulting estimates may significantly depend on an auxiliary order

(like a prediction horizon). It is easier to estimate state-space models directly

without specifying a particular structure. This is done using N4SID.

3.2.2 Prediction Error Method (PEM)

A common and general method of estimating the parameters is the prediction

error approach, where simply the parameters of the model are chosen so that

the difference between the model’s (predicted) output and the measured output

is minimized. This method is available for all model structures. Except for the

ARX case, the estimation involves an iterative, numerical search for the best

fit.
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PEM is a standard prediction error/maximum likelihood method, based on it-

erative minimization of a criterion. The iterations are started up at parameter

values that are computed from N4SID. The parametrization of the matrices A,

B, C, D, and K follows a default canonical form.

3.3 System Identification of the Glass Furnace

In this thesis, a Philips glass furnace system is considered. This glass furnace

system is a multi-input multi-output (MIMO) system with three inputs and 6

outputs. The input/output experimental data of this glass furnace system is

taken from SISTA’s Identification Database [28]. This data consists of 1247

samples (of the respective inputs and outputs) with a sampling interval of 1

unit. The inputs and outputs of the system are listed below.

Inputs

• u1 : heating input

• u2 : cooling input

• u3 : heating input

Outputs

• y1 - y6 : temperature measures (readings of temperature sensors positioned

in a cross section of the furnace).

The source from which this data is taken, provides neither the description of
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the inputs and outputs nor their measuring units, and the data is a normalized

data.

3.3.1 Data Analysis

The experimental data has been divided into two sets (one set for estimation of

the model and the other set for validation of the model). The samples 1-1100 are

used for estimation purpose, and the samples 601-1200 are used for validation

purpose. First, the input data and the output data is plotted with respect to

time as shown in figures 3.1, 3.2, & 3.3. From these plots it is observed that the

input signals and output signals are not affected by an offset and hence there is

no need of de-trending the data.
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Figure 3.1: Plot of Output Data: y1 - y3

The data has been analyzed further using the function “advice()” from System
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Figure 3.2: Plot of Output Data: y4 - y6
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Figure 3.3: Plot of Input Data: u1 - u3
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Identification Toolbox of MATLAB. On executing the command “advice(data)”

the analysis of the data is displayed in the MATLAB Command Window as

follows:

1. The system has a direct response from inputs u1 and u3 at time instant k

to y(k). There may be two reasons for this:

• There is direct feedback from y(k) to u(k) (like a P-regulator).

Solution: use nk > 0 for these inputs in state-space and input-output

models.

• The system has a direct term (relative degree zero)

Solution: use nk = 0 for these inputs

2. There is a very strong indication of feedback in the data.

Solution: With feedback in data, it is recommended to use estimate a model

with large enough disturbance model.

Based on the analysis of the data represented above, it can be inferred that

there is direct feedthrough from inputs to outputs and hence the following is

considered while identifying the glass furnace model from this data:

• Estimating the feedthrough from inputs u1 and u3 to the outputs

i.e., estimate the matrix D with nk = [0 1 0]. This implies that D 6= 0.

Thus, identification procedure has been carried out for no direct feedthrough case

as well as for direct feedthrough case, and the models obtained in each of these
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cases are analyzed and compared.

3.3.2 Linear and Nonlinear Identification

The following identification techniques are applied to the estimation data using

the System Identification Toolbox of MATLAB.

Linear Identification techniques

• Subspace Identification Method: N4SID

• Prediction Error Method (PEM)

• MIMO ARX method

Non-Linear Identification techniques

• Non-Linear MIMO ARX method

• Non-Linear MIMO Hammerstein-Wiener method

Identification has been carried out with the identification techniques discussed

above for seven different sets of estimation data (i.e., 1-600, 1-700, 1-800, 1-900,

1-1000, 1-1100, 1-1200). Validation of these identified models (obtained in each

of the seven cases) has been done using the validation data set (601-1200). In

validation process, the simulated (estimated) model output is compared against

the validation data set and the comparison is represented in terms of the fitness

% which is calculated as shown by (3.2) [54].
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Fitness(%) =
(

1 −
‖ŷ − y‖

‖y − ȳ‖

)

× 100 (3.2)

where y is the actual or measured output, ŷ is the simulated output of the

estimated model, ȳ = mean(y).

Upon validation and comparison of the validation data fitness of the identified

models, it is observed that the fitness of the models obtained through linear

identification is relatively better than the fitness of the models obtained through

nonlinear identification as shown in figure 3.4.

Figure 3.4: Fitness Comparison of Linear & Non-Linear Models

From figure 3.4, it is observed that among linear identified models, the validation

data fitness of ARX model is less than the fitness of the N4SID and PEM models.
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Besides, the ARX technique provides a polynomial model, whereas the N4SID

and PEM techniques provide a state space model of the system (which is useful

in designing controllers). So, we proceed with the N4SID model and PEM model

for further analysis.

3.3.3 Identification using PEM and N4SID Methods

The state-space model estimated through PEM and N4SID identification tech-

niques is in innovations form as follows:

x(k + 1) = Ax(k) + Bu(k) + Ke(k) (3.3a)

y(k) = Cx(k) + Du(k) + e(k) (3.3b)

where x(k), u(k), y(k), e(k) are state, input, output and disturbance vectors

respectively. A is the state matrix, B is the input matrix, C is the output

matrix, D is the feedthrough matrix and K is the matrix representing Kalman

gain. The state space identification techniques estimate the following parameters

of the state space model: matrices A, B, C, K, and the initial state vector X0.

(Note: By default, the matrix D is not estimated)
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Case: Without Direct Feedthrough Term (D = 0)

The validation data fitness of the N4SID and PEM models (with D = 0) for

seven different sets of estimation data is presented in figure 3.5.

Figure 3.5: Fitness Comparison of N4SID Models and PEM Models (with D = 0)

It can be observed from figure 3.5 that the fitness of PEM model is better

than the the fitness of N4SID model. Hence, from here onwards, the results

of PEM identification method will be discussed. Among the PEM models, the

model with best fitness is achieved through the estimation data set 1-1200, as

illustrated in table 3.1. Figure 3.6 represents the fitness of the outputs of PEM

model for this case.
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Figure 3.6: Fitness of PEM Model (with D = 0)

3.3.4 Simulation Results of Identification through PEM

From figure 3.6, it can be observed that the fitness level of the PEM model for

the fourth output y4 is very low. To improve this fitness, various trial and error

cases based on the order of the system and estimation data were carried out but

there was no improvement in the fitness. At last, considering the outcome of

the foregoing data analysis, the identification is performed again, this time, by

taking into account the presence of direct feedthrough from inputs.
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Case: With Direct Feedthrough Term (D 6= 0)

Carrying out the identification process with the above considerations (with di-

rect feedthrough from inputs u1 and u3, i.e., D 6= 0), produced a model in

which the fitness of the fourth output increased to a great extent, as well as the

overall fitness of the model also increased. Figure 3.7 illustrates the comparison

of fitness of PEM model without feedthrough (D = 0) and PEM model with

feedthrough (D 6= 0). It is observed that the model with D 6= 0 has better

fitness than the model with D = 0.

Figure 3.7: Fitness Comparison of PEM Models (D = 0 case, and D 6= 0 case)

The details (validation data fitness, loss function, final prediction error (FPE),

stability of the identified model, and order of the model) of the PEM models

obtained through the seven estimation data sets are illustrated in table 3.1.
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Table 3.1: Comparison of PEM Models

Case Estimation Data
PEM model

Fitness Loss Function FPE Stability Order
1. 1-600 51 1.87 × 10−14 2.09 × 10−14 Stable 5
2. 1-700 50 1.70 × 10−15 1.87 × 10−15 Stable 6
3. 1-800 68 3.19 × 10−16 3.53 × 10−16 Stable 7
4. 1-900 72 2.61 × 10−16 2.85 × 10−16 Stable 7
5. 1-1000 71 6.29 × 10−16 6.74 × 10−16 Unstable 6
6. 1-1100 74 9.58 × 10−16 1.04 × 10−15 Stable 7
7. 1-1200 78 3.52 × 10−16 3.77 × 10−16 Stable 7

From table 3.1, it is observed that the PEM model estimated using the data set

1-1200 is best. In this case, a 7th order, stable, state-space model with lowest

loss function value (3.52 × 10−16) and FPE value (3.77 × 10−16) is obtained.

The open-loop responses of the PEM model without direct feedthrough D = 0

and with direct feedthrough D 6= 0 are illustrated in figures 3.8 and 3.9 which

clearly indicate that the response with direct feedthrough is better than the

response without feedthrough.

3.4 Summary

The data analysis of glass furnace’s input-output data indicated the presence of

direct feedthrough from inputs to outputs. From the simulation results of system

identification of the glass furnace through various identification techniques, it is

observed that linear identification provides models with good fitness. Also, the
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Figure 3.8: OL Response: Without Feedthrough (D = 0) Vs. With Feedthrough
(D 6= 0): States
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(D 6= 0): Outputs
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PEM technique outperforms the N4SID technique in terms of model fitness. The

state-space model of the glass furnace, obtained through PEM method is used

for the design of various controllers such as optimal regulators (LQR, LQGR),

robust controllers (H2 and H∞ controllers), model predictive controller, and

adaptive controller, that are presented in chapter-4 and chapter-5.



Chapter 4

OPTIMAL CONTROL &

ROBUST CONTROL

4.1 Introduction to Optimal Control

The theory of optimal control deals with the problem of finding a control law

(for a given system) that helps in achieving a particular optimality criterion (in

other words, the optimal control operates the system at minimum cost). This

problem includes a cost functional (performance index) which is a function of

state and control variables. An optimal control is a set of differential equations

describing the paths of the control variables that minimize the cost functional.

An optimal control problem in which the dynamics of the system are represented

by a set of linear differential equations and the cost functional is represented by

37
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a quadratic functional, is called as Linear Quadratic (LQ) optimal control prob-

lem.

4.2 Linear Quadratic Regulator (LQR)

Given a linear time-invariant (LTI) discrete-time system in state space form by

the following equations:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)

z(k) = Gx(k) + Hu(k)

(4.1)

where,

• x(k) ∈ ℜn is the state vector

• u(k) ∈ ℜm is the input vector

• y(k) ∈ ℜp is the measured output vector

• z(k) ∈ ℜq is the controlled output vector

Optimal LQR Control Problem can be defined as: “finding a control law

u(k) that minimizes the cost function (performance index) given by (4.2)” [29].

JLQR =
∞

∑

k=0

[

zT (k)Qz(k) + ρuT (k)Ru(k)
]

(4.2)
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where,

• Q ∈ ℜq×q, R ∈ ℜm×m are symmetric positive-definite matrices

• ρ is a positive constant

• the term
∞

∑

k=0

[

zT (k)Qz(k)
]

corresponds to the energy of the controlled output

• the term
∞

∑

k=0

[

uT (k)Ru(k)
]

corresponds to the energy of the control signal

The most general form for the quadratic criteria is given by

J =
∞

∑

k=0

[

xT (k)Qx(k) + uT (k)Ru(k) + 2xT (k)Nu(k)
]

(4.3)

substituting “z(k) = Gx(k) + Hu(k)” in (4.2) it can be seen that (4.2) is a

special case of (4.3) with

Q = GT QG, R = HT QH + ρR, N = GT QH (4.4)

LQR control utilizing state-feedback, is based on the assumption that all the

states are measurable and thereby available for control. In state-feedback LQR

problem, the control law is given as:
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u(k) = −Kx(k) (4.5)

where, K ∈ ℜm×n is the feedback gain matrix given by

K = R−1
[

BTP + N T
]

(4.6)

P is the unique, symmetric, positive-definite solution to the following algebraic

Riccati equation (ARE)

PA + ATP −
[

PB + N
]

R−1
[

BTP + N T
]

+ Q = 0 (4.7)

In a special case of (4.3) where N ≡ 0, the optimal gain and the associated

ARE are given as

K = R−1BTP (4.8)

PA + ATP − PBR−1BTP + Q = 0 (4.9)
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4.2.1 Simulation Results

The dynamics of the glass furnace system without disturbances is represented

by the state-space model as

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)

(4.10)

where x(k) ∈ ℜ7, u(k) ∈ ℜ3, and y(k) ∈ ℜ6, are state, control input and

measured output vectors respectively. The matrices A ∈ ℜ7×7, B ∈ ℜ7×3,

C ∈ ℜ6×7, D ∈ ℜ6×3 describe the dynamics of the glass furnace system. The

simulation results are provided for the case without direct feedthrough.

Case: Without Direct Feedthrough Term (i.e., D = 0)

LQR controller based on state feedback approach is designed for the glass furnace

system, in MATLAB environment using the discrete-time function “dlqr(A, B,

Q, R)”. The following two sets of simulations are carried out through various

combinations of Q and R to investigate the performance of the controller in

response to the weighting factors on states and inputs.

• R is kept constant and Q is varied: R = I3×3, Q = ρ ∗ I7×7

• Q is kept constant and R is varied: Q = I7×7, R = ρ ∗ I3×3
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R = I×, Q = ρ ∗ I×

In this set of simulations, five different cases of weighting matrix Q are consid-

ered. The LQR gain Klqr and its norm obtained in each of these cases is shown

in table 4.1.

Table 4.1: Norm of LQR gain for different values of Q
Case ρ Q = ρ ∗ I7×7

∥

∥Klqr

∥

∥

1. 1 I7×7 4.2616
2. 10 10 ∗ I7×7 15.9638
3. 100 100 ∗ I7×7 53.0740
4. 1000 1000 ∗ I7×7 170.3677
5. 10000 10000 ∗ I7×7 502.5511

The closed-loop system controlled by LQR is simulated for the cases illustrated

in table 4.1, and its responses are plotted. The state trajectories of the regulated

closed-loop system are shown in figures 4.1 and 4.2. From the figures it is

observed that more weight on the states leads to a response with less oscillations

and less settling time. The case with Q = 1000 ∗ I7×7 & R = I3×3 gives the best

result but at the expense of high LQR gain Klqr as it can be seen in the table

above.

Q = I×, R = ρ ∗ I×

In this set of simulations, five different cases of weighting matrix R are consid-

ered. The LQR gain Klqr and its norm obtained in each of these cases is shown

in the table below.
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Figure 4.1: LQR (varying Q): State Trajectories x1 − x4
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Figure 4.2: LQR (varying Q): State Trajectories x5 − x7

The closed-loop system controlled by LQR is simulated for the cases illustrated

in table 4.1, and its responses are plotted. The state trajectories of the regulated
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Table 4.2: Norm of LQR gain for different values of R
Case ρ R = ρ ∗ I3×3

∥

∥Klqr

∥

∥

1. 0.0001 0.0001 ∗ I3×3 502.5511
2. 0.001 0.001 ∗ I3×3 170.3677
3. 0.01 0.01 ∗ I3×3 53.0740
4. 0.1 0.1 ∗ I3×3 15.9638
5. 1 I3×3 4.2616

closed-loop system are shown in the figures 4.3 and 4.4. From the figures it is

observed that low weight on inputs leads to a response with less oscillations and

less settling time. The case with Q = I7×7 & R = 0.001 ∗ I3×3 gives the best

result with low LQR gain Klqr as it can be seen in the table above.
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Figure 4.3: LQR (varying R): State Trajectories x1 − x4

From the above two simulation sets, it can be noticed that: with unity weight

on control inputs, the weights on states needs to be increased in order to sta-
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Figure 4.4: LQR (varying R): State Trajectories x5 − x7

bilize the system. An increase in weighting on states results in high LQR gain.

Whereas, with unity weight on states, the weight on control inputs needs to be

decreased to stabilize the system. A decrease in weighting on inputs results in

high LQR gain. Thus it can be said that the LQR gain is directly proportional to

the magnitude of states and inversely proportional to the magnitude of control

inputs.

The output trajectories of the open-loop system and the closed-loop system are

shown in figure 4.5.
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Figure 4.5: LQR: Output Trajectories of OL & CL Systems
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4.3 Linear Quadratic Gaussian Regulator (LQGR)

The LQG control problem is an optimal control problem which deals with linear

systems affected by white Gaussian noises and having incomplete information

of its states (i.e., all the states of the system are not measurable and thus not

available for feedback).

Given a linear time-invariant (LTI) discrete-time system affected by white Gaus-

sian noises, in state-space form by the following equations:

x(k + 1) = Ax(k) + Bu(k) + Γw(k)

z(k) = Gx(k) + Hu(k)

y(k) = Cx(k) + Du(k) + v(k)

(4.11)

where,

• x(k) ∈ ℜn is the state vector

• u(k) ∈ ℜm is the input vector

• y(k) ∈ ℜp is the measured output vector

• z(k) ∈ ℜq is the controlled output vector

• w(k) is the plant noise vector

• v(k) is the measurement noise vector

w(k) and v(k) are zero-mean Gaussian white noise processes with power spec-

trum W and V respectively. Also, W = Wt ≥ 0, V = Vt ≥ 0 and
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E[w(k)wt(k)] = Wδ(k − s)

E[v(k)vt(k)] = Vδ(k − s)

E[w(k)vt(k)] = 0























∀ k, s ∈ ℜ (4.12)

Optimal LQG Control Problem can be defined as: “finding an observer gain

matrix L that minimizes the steady-state mean square estimation error (4.13)

under output feedback, and finding a control law u(k) that minimizes the linear

quadratic cost given by (4.2)”.

lim
k→∞

E{e(k)te(k)} (4.13)

In most of the applications, some states are not measurable and hence not

available for state feedback control. These unmeasurable states are optimally

estimated from the outputs using the Kalman filter. The estimated states are

then used in the optimal state feedback control law that solves the LQR problem.

This accounts to the solution of a stochastic linear regulator problem with output

feedback. Thus, the optimal LQG controller is a combination of linear quadratic

Gaussian state estimator (Kalman Filter) and linear quadratic regulator (LQR).

The optimal LQG controller is represented by the following equations

˙̂x(k) = Ax̂(k) + Bu(k) + L
{

(y(k) − Cx̂(k)
}

(4.14a)

u(k) = −Kx̂(k) (4.14b)
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Since the state x(k) in the state feedback control law u(k) = −Kx(k) is replaced

with x̂, the LQG controller becomes an output feedback controller.

Kalman Filter

Let the dynamics of the plant with estimated state x̂(k) be represented by

˙̂x(k) = Ax̂(k) + Bu(k) (4.15)

then the state estimation error e and its dynamics ė are given as

e(k) = x(k) − x̂(k) (4.16a)

ė(k) = Ax(k) − Ax̂(k) = Ae(k) (4.16b)

From (4.16b) it can be noticed that when the system matrix A is asymptotically

stable the error e(k) converges to zero for any given input u(k) which implies

that x̂(k) eventually converges to x(k) as k → ∞. When A is unstable e is

unbounded and x̂(k) grows further and further apart from x(k) as k → ∞. To

avoid this, a correction term is added to (4.15) as shown in (4.17a).

˙̂x(k) = Ax̂(k) + Bu(k) + L
{

(y(k) − ŷ(k)
}

(4.17a)

ŷ(k) = Cx̂(k) (4.17b)
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where ŷ(k) is an estimate of y(k) and L ∈ ℜn×k is the gain matrix through

which the magnitude of the correction term may be increased or decreased. The

correction term does not have any effect on the error dynamics when x̂(k) is

equal to or very close to x(k). When x̂(k) grows away from x(k) the correction

term reduces this error. Re-writing the error dynamics using (4.17a) we have

ė(k) = Ax(k) − Ax̂(k) − L
{

Cx(k) − Cx̂(k)
}

= (A − LC)e(k) (4.18)

The error e converges to zero as long as (A−LC) is stable. If A is unstable, the

observer gain matrix L can be selected so that (A−LC) becomes asymptotically

stable. The estimator (4.17a) is known as full-order observer and its dynamics

can be re-written as follows

˙̂x(k) = (A − LC)x̂(k) + Bu(k) + Ly(k) (4.19)

In general, a process is affected by disturbances and measurement noise; the pro-

cess dynamics are then represented by (4.11). In this case if a full-order observer

is used to estimate the states of the system, the estimation error dynamics is

given as

ė(k) = Ax(k) + Γw(k) − Ax̂(k) − L{Cx(k) + v(k) − Cx̂(k)}

= (A − LC)e(k) + Γw(k) − Lv(k) (4.20)



51

Due to the addition of the noise terms the estimation error does not converge

to zero even if the error system (A−LC) is stable. The error covariance matrix

E[et(k)e(k)] can be brought to a steady-state minimal value S by selecting the

observer gain matrix L as

L = SCtV −1 (4.21)

where S satisfies the following Lyapunov equation

(A − LC)S + S(A − LC)t + ΓWΓ t + LSLt = 0 (4.22)

substituting the optimal observer gain matrix (4.21) in (4.22), the following

algebraic Riccati equation ARE is obtained

AS + SAt + ΓWΓ t − SCtV −1CS = 0 (4.23)

If the optimal gain L described by (4.21) is utilized in the full-order observer

(4.17a), then this type of estimator/observer is known as Kalman-Bucy Filter.

4.3.1 Simulation Results

The identified glass furnace system with plant noise and measurement noise is

represented by the following state-space model as
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x(k + 1) = Ax(k) + Bu(k) + Γw(k)

y(k) = Cx(k) + v(k)

(4.24)

Here, the LQG regulator is designed in MATLAB using the commands ”kalman()”

& ”lqr()” and then the Simulink environment is used to implement the LQG

regulator to control the glass furnace system.

LQR design:

The following weights on states and inputs are selected to design the LQR:

Q = 1000 ∗ I7×7, R = I3×3

Using the above values of Q and R in ”dlqr(A,B,Q,R)” the following optimal

state feedback gain is obtained:

Klqr =













44.9700 46.5133 −57.5760 47.1600 −4.9267 −83.8545 92.0909

0.5948 13.5638 17.1872 6.1742 5.7887 −21.2406 11.8634

−21.0232 −26.8838 36.2121 −14.2839 −1.6134 28.3619 −21.1476













Kalman Filter design:

The plant noise and measurement noise with a magnitude of 10−5 are generated

in SIMULINK using the ”random number” block whose output is a normally



53

(Gaussian) distributed random signal. The noise covariance data is selected as

Qn = E[w(k)wt(k)] = I6×6

Rn = E[v(k)vt(k)] = I6×6

Nn = E[w(k)vt(k)] = I6×6

The Kalman Filter is designed using the MATLAB command: “[kest, L, P ] =

kalman(sys,Qn,Rn,Nn)”. The Kalman gain L obtained through this design

is as follows

L =







































0.0010 −0.1660 0.1604 −0.0010 0.0043 −0.0008

−0.0017 0.0831 −0.0807 0.0029 −0.0117 −0.0029

−0.0171 −0.1901 0.1896 0.0052 0.0044 −0.0014

−0.0320 −0.7579 0.7705 0.0113 0.0155 −0.0374

−0.0134 1.7211 −1.6732 0.0019 −0.0322 0.0105

0.0385 3.1815 −3.2113 −0.0080 0.0081 0.0118

0.0337 4.5023 −4.5166 −0.0112 0.0235 0.0138







































Using the above values of LQR gain K and Kalman gain L, the LQG controller

is formed and connected to the glass furnace system through a positive feedback

loop. The optimal state and output trajectories of this closed-loop system are

shown in figures 4.6 and 4.7.
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Figure 4.6: LQGR - State Trajectories
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Figure 4.7: LQGR - Output Trajectories
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4.4 Introduction to H2 and H∞ Robust Control

H2 and H∞ synthesis are carried out in a modern control paradigm in which both

performance and robustness specifications can be incorporated in a common

framework along with the controller synthesis [30]. In this paradigm, all the

information of a system is cast into the generalized block diagram illustrated in

figure 4.8.

G

K

zw

u y

Figure 4.8: Generalized Block Diagram of the Modern Paradigm

where G is the generalized linear time-invariant plant containing all the infor-

mation (for example, dynamics of the system, uncertainty models, sensor and

actuator dynamics, frequency weights, etc.) required for the synthesis of the

controller K; u is the control input; y is the measured output used by the feed-

back controller; w comprises all the exogenous inputs to the system, such as

disturbances, sensor noise, fictitious signals, etc.; z is the controlled output.

The general control problem or disturbance rejection problem in this framework

is to synthesize a controller that keeps the size of the controlled outputs z small
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in the presence of the disturbance inputs w. Thus, the disturbance rejection

performance depends on the size of the closed-loop transfer function from w

to z, Tzw(s) [30]. As the effect of disturbances w on the cotntrolled outputs z

depends on the size of the transfer function Tzw(s), the controllers should be

designed so as to minimize the size of the closed-loop transfer function Tzw(s).

The size of a transfer function is quantified by suitable norms. H2 norm and

H∞ norm are the most popular norms to measure the size of Tzw(s).

Let us consider the transfer function G(s) = C(sI − A)−1B as a system.

Definition 4.4.1 H2 Norm

The H2 norm of a system G(s) is defined as follows

∥

∥G(s)
∥

∥

2
=

√

1

2πj

∫ j∞

−j∞

∣

∣G(jω)
∣

∣

2
dω (4.25)

∥

∥G(s)
∥

∥

2
=

√

1

2π

∫ ∞

−∞

trace
[

G(jω)G∗(jω)
]

dω (4.26)

where G∗(jω) is the complex conjugate of G(jω).

If the system G(s) is driven by an independent, zero mean, unit intensity white

noise, then the sum of the variances of the outputs (or mean square output)

equals the square of the H2 norm of the system G(s) as shown in (4.27). Hence
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the H2 norm of a system gives a precise measure of the signal strength or power

of the output of the system driven by unit intensity white noise.

E

[

yt(k)y(k)
]

=
∥

∥G(s)
∥

∥

2

2
(4.27)

Definition 4.4.2 H∞ Norm

The H∞ norm of a system G(s) is defined as follows

∥

∥G(s)
∥

∥

∞
= sup

ω

σmax

[

G(jω)
]

(4.28)

Here, ’sup’ represents the supremum or upper bound of the function G(jω) and

therefore the H∞ norm is the maximum value of G(jω) over all frequencies ω.

When the system is driven by a unit sinusoidal input at a particular frequency,

then the corresponding sinusoidal output has a maximum value of σmax

[

G(jω)
]

.

This shows that H∞ norm is the maximum amplification of a unit sinusoidal

input over all frequencies. In other words, it represents the maximum increase in

energy between the input and output of a system. Since H∞ norm is an induced

norm it satisfies the sub-multiplicative property of the induced norms, i.e.,

∥

∥G1G2

∥

∥

∞
=

∥

∥G1

∥

∥

∞

∥

∥G2

∥

∥

∞
(4.29)

Due to this property of H∞ norm, controllers that minimize
∥

∥Tzw(s)
∥

∥

∞
are
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favourable when it is desired to have loop shaping that satisfy the norm bounded

robustness tests. Whereas the H2 norm is not an induced norm and due to the

properties of the H2 norm, controllers that minimize
∥

∥Tzw(s)
∥

∥

2
are favourable

when the disturbances are stochastic in nature.

The generalized plant G has a state-space realization as follows

x(k + 1) = Ax(k) + B1w(k) + B2u(k)

z(k) = C1x(k) + D11w(k) + D12u(k)

y(k) = C2x(k) + D21w(k) + D22u(k)

(4.30)

The system (4.30) is represented in compact notation as

G(s) :=













A B1 B2

C1 D11 D12

C2 D21 D22













(4.31)







z

y






=







G11 G12

G21 G22













w

u






(4.32)



59

4.5 H2 Optimal Control

H2 Optimal Control Problem is defined as: “finding a causal controller K

that stabilizes the system G internally and minimizes the cost function (4.33)
(

minimizing this cost function is equivalent to minimizing the H2 norm of the

closed-loop system (with w as input and z as output) represented by (4.34) and

(4.35)
)

” [29].

J2(k) =
∥

∥F (G,K)
∥

∥

2

2
(4.33)

Considering the partition of G(s) according to (4.32), the closed-loop system

z = F (G,K)w (4.34)

has the transfer function F (G,K) given by

F (G,K) = G11 + G12(I − KG22)
−1KG21 (4.35)

known as lower fractional transformation.

For H2 control, the following assumptions are taken into consideration [31]:

1. D11 = 0
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2. The pair (A,B2) is stabilizable, and the pair (A,C2) is detectable.

3. D21 has full row rank, and D12 has full column rank.

4. The matrix
[

A−sI B1

C2 D21

]

has full row rank for every s = jω.

5. The matrix
[

A−sI B2

C1 D12

]

has full column rank for every s = jω.

6. The pair (A,B1) has no uncontrollable modes on the imaginary axis.

7. The pair (A,C1) has no unobservable modes on the imaginary axis.

Assumption-1 (i.e., there is no direct feedthrough from w to z) is required to

obtain a finite H2 norm of the closed-loop system; assumption-2 is necessary to

ensure the existence of a stabilizing controller u = Ky; assumption-3 guarantees

the non-singularity of the H2 optimal control problem (D21 has full row rank

implies that there is “direct feedthrough” from the input u to the error signal

z & D12 has full column rank implies that there is “direct feedthrough” from

the noise input w to the measured output y); assumptions 4 & 5 along with

assumption-2 guarantee that the two Hamiltonian matrices associated with the

H2 problem belong to dom(Ric); assumptions 6 & 7 are required to guarantee

the existence of the solutions to the Riccati equations which characterize the

optimal controllers.

In addition, the direct feedthrough from u to y is assumed to be zero (i.e.,

D22 = 0) so that G22 is proper.

Considering the above assumptions, the transfer function of the system for H2

control problem is given as
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G(s) :=













A B1 B2

C1 0 D12

C2 D21 0













(4.36)

and, the optimal output feedback controller is given as

˙̂x(k) = Ax̂(k) + B2u(k) + L{(y(k) − C2x̂(k) − D22u(k)} (4.37a)

u(k) = −Kx̂(k) (4.37b)

where K is the state feedback gain matrix, and L is the observer gain matrix

given as follows [29]

K = (D12D
t
12)

−1(Bt
2P + Dt

12C1) (4.38)

L = (SCt
2 + B1D

t
21)(D21D

t
21)

−1 (4.39)

where P and S are the unique, symmetric positive definite solutions of the

following algebraic Riccati equations

AtP + PA + Ct
1C1 − (PB2 + Ct

1D12)(D12D
t
12)

−1(Bt
2P + Dt

12C1) = 0 (4.40)

AS + SAt + B1B
t
1 − (SCt

2 + B1D
t
21)(D21D

t
21)

−1(C2S + D21B
t
1) = 0 (4.41)
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4.5.1 Simulation Results

The H2 controller is designed in MATLAB using the function “h2syn()”. This

function computes a stabilizing H2 optimal controller, K; the closed-loop sys-

tem, CL; the 2-norm of the closed-loop system, Gam =
∥

∥Tzw

∥

∥

2
.

[K,CL,Gam, Info] = h2syn(G,Ny,Nu)

Here, B1 = K, B2 = B, C1 = C2 = C, D21 = I, D22 = D (where, B, C, D, K

are the matrices of the state-space equations (3.1a) and (3.1b)).

Simulations have been carried out by fixing the value of D21 at I6×6 and varying

the value of D12. The system response has been analyzed for five different

values of D12. The H2 norm of the closed-loop system obtained for these five

different cases is shown in table 4.3. The state trajectories of the closed-loop

system for case 1, 3 and 4 is illustrated in figure 4.9. From the response of

the system and the H2 norm of the closed-loop system, it can be concluded

that the H2 controller performs best at D12 = 0.001 ∗ I6×3 and D21 = I6×6.

The state trajectories and output trajectories of the open-loop and closed-loop

system (with D12 = 0.001 ∗ I6×3 and D21 = I6×6) are shown in figures 4.9 and

4.10.
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Table 4.3: H2 Norm
Case D12

∥

∥Tzw

∥

∥

2

1. 0.001 ∗ I6×3 388.7230
2. 0.01 ∗ I6×3 391.3776
3. 0.1 ∗ I6×3 417.9299
4. I6×3 864.7766
5. 10 ∗ I6×3 2377.0000
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Figure 4.9: H2 Control: State Trajectories of OL & CL Systems
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Figure 4.10: H2 Control: Output Trajectories of OL & CL Systems
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4.6 H∞ Optimal Control

H∞ optimization deals with the minimization of the ∞-norm of a frequency

response function [32]. Since ∞-norm is the worst-case gain of the system, it

provides a good representation of bounds on errors and controls [33]. Mathe-

matically, the H∞ control problem is set in the H∞ space which consists of all

bounded functions that are analytic in the right-half complex plane. Though

H∞ and H2 resemble each other, their results are quite different due to the

dissimilarities between the properties of 2-norm and ∞-norm.

Let the system be represented by the block diagram shown in figure 4.8. where

the plant G and the controller K are assumed to be proper & real-rational and

their state-space realizations are assumed to be stabilizable and detectable.

Optimal H∞ Control Problem is defined as a problem of “finding all ad-

missible controllers K which minimize the H∞ norm of the closed-loop system,

i.e.,
∥

∥Tzw

∥

∥

∞
”.

If a controller stabilizes the system internally then it is said to be an admissible

controller. Generally, the optimal H∞ controllers are not unique for MIMO sys-

tems. Furthermore, finding an optimal H∞ controller is often both numerically

and theoretically complicated. Whereas in standard H2 theory, the optimal

controller is unique and can be obtained by solving two Riccati equations with-

out iterations. Knowing the achievable optimal (minimum) H∞ norm may be

theoretically useful since it sets a limit on what we can achieve.
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In practice, it is often not necessary and sometimes even undesirable to design

an optimal controller. It is usually much cheaper to obtain controllers that are

very close to the optimal ones in the norm sense, which are called as “subopti-

mal controllers”. A suboptimal controller possesses some properties which are

better than the properties of optimal controllers, for example, lower bandwidth.

Optimal H∞ controllers are more difficult to characterize than the suboptimal

H∞ controllers.

Suboptimal H∞ Control Problem is defined as a problem of “finding all the

admissible controllers K such that
∥

∥Tzw

∥

∥

∞
< γ, given γ > 0”.

The H∞ solution consists of the following two Hamiltonian matrices

H∞ :=







A γ−2B1B
∗
1 − B2B

∗
2

−C∗
1C1 −A∗






, J∞ :=







A∗ γ−2C∗
1C1 − C∗

2C2

−B1B
∗
1 −A







The transfer function of the generalized plant G is considered to have a realiza-

tion of the form

G(s) :=













A B1 B2

C1 0 D12

C2 D21 0













(4.42)

and, the following assumptions are taken into consideration
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1. The pair (A,B2) is stabilizable, and the pair (A,C2) is detectable.

2. D21 has full row rank, and D12 has full column rank.

3. The matrix
[

A−sI B1

C2 D21

]

has full row rank for every s = jω.

4. The matrix
[

A−sI B2

C1 D12

]

has full column rank for every s = jω.

5. The pair (A,B1) has no uncontrollable modes on the imaginary axis.

6. The pair (A,C1) has no unobservable modes on the imaginary axis.

Theorem 4.6.1 There exists an admissible controller such that
∥

∥Tzw

∥

∥

∞
< γ iff

the following conditions hold: [31]

1. H∞ ∈ dom(Ric) and X∞ := Ric(H∞) ≥ 0;

2. J∞ ∈ dom(Ric) and Y∞ := Ric(J∞) ≥ 0;

3. ρ(X∞Y∞) < γ2

When the above conditions hold, one such controller is

Ksub(s) :=







Â∞ −Z∞L∞

F∞ 0






(4.43)

where

Â∞ := A + γ−2B1B
∗
1X∞ + B2F∞ + Z∞L∞C2

F∞ = −B∗
2X∞, L∞ = −Y∞C∗

2 , Z∞ = (I − γ−2Y∞X∞)−1



68

4.6.1 Simulation Results

The H∞ controller is designed in MATLAB using the function “hinfsyn()”. This

function computes a stabilizing output feedback H∞ optimal controller and re-

turns it as K. It also computes the closed-loop system Tzw, the ∞-norm or H∞

cost of the closed-loop system (i.e., γ =
∥

∥Tzw

∥

∥

∞
), additional output information

and returns these values in CL, Gam, and Info respectively as shown below.

[K,CL,Gam, Info] = hinfsyn(G,Ny,Nu)

First, through trial and error of the value of D12, stabilizing results were obtained

at D12 = 23.6 ∗ I6×3. Then, further simulations were carried out by fixing the

value of D12 at 23.6 ∗ I6×3 and varying the value of D21. The system response

has been analyzed for five different values of D21. The H∞ norm of the closed-

loop system obtained for these five different cases is shown in table 4.4. The

state trajectories of the closed-loop system for case 1, 2 and 3 is illustrated in

figure 4.11. From the response of the system and the H∞ norm of the closed-loop

system, it can be concluded that the H∞ controller performs best at D12 = 23.6∗

I6×3 and D21 = 10−5 ∗ I6×6. The state trajectories and output trajectories of the

open-loop and closed-loop system (with D12 = 23.6∗I6×3 and D21 = 10−5 ∗I6×6)

are shown in figures 4.11 and 4.12.
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Table 4.4: H∞ Norm
Case D21

∥

∥Tzw

∥

∥

∞

1. 10−5 ∗ I6×6 0.0096
2. 10−4 ∗ I6×6 0.0096
3. 10−3 ∗ I6×6 0.0096
4. 10−2 ∗ I6×6 0.0191
5. 10−1 ∗ I6×6 0.1052
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Figure 4.11: H∞ Control: State Trajectories of OL & CL Systems
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Figure 4.12: H∞ Control: Output Trajectories of OL & CL Systems
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4.7 Comparison of LQR, LQGR, H2, and H∞

Optimal and robust controllers (LQR, LQGR, H2 and H∞ controllers) are de-

signed for the identified glass furnace model and simulations have been carried

using the MATLAB and SIMULINK environment. The closed-loop responses

(output trajectories) of the glass furnace system controlled via these techniques

are illustrated in figures 4.13 and 4.14.
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Figure 4.13: Comparison of LQR, LQGR, H2, & H∞: Outputs y1 - y4

The following observations are deduced from the comparison plots shown in

figures 4.13 and 4.14

• With H2 controller there is very less amount of overshoot in the output

and the settling time is also relatively less.

• The output experiences a large overshoot with H∞ controller.
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Figure 4.14: Comparison of LQR, LQGR, H2, & H∞: Outputs y5 - y6

• The response of LQR and LQGR is exactly same and is better than the

H∞ controller response.

Among the four controllers discussed in this chapter, the H2 controller provides

best closed-loop performance for the identified glass furnace model.



Chapter 5

MODEL PREDICTIVE

CONTROL & ADAPTIVE

CONTROL

5.1 Model Predictive Control

5.1.1 Introduction

Model predictive control (MPC) is an advanced control method based on pre-

diction and optimization. This control technique makes use of a model of the

process (to be controlled) for computing the future optimal control actions.

73
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MPC systems are used for advanced control of multi-variable processes and for

simultaneously maintaining the process variables (controlled variables) and the

manipulated variables in certain predefined ranges (i.e., MPC has the ability to

handle constraints in a multi-variable control framework). For processes with

strong interaction between different signals MPC can offer substantial perfor-

mance improvement compared with traditional single-input single-output con-

trol strategies [34]. Thus, MPC is used widely in many process industry appli-

cations.

The following characteristics of MPC make it attractive to both industries and

academics [35].

1. MPC uses a completely multi-variable system framework where the per-

formance parameters of the multivariable control system are related to the

engineering aspects of the system.

2. It can handle soft constraints as well as hard constraints in a multivariable

control framework. This makes it useful in industries where tight profit

margins and limits on the process operation are required.

3. It supports on-line process optimization.

4. It has a simple design framework for handling all these complex issues.

5. It is relatively easy to tune a model predictive controller.

6. It can be used in either supervisory or primary control modes.

Initially, MPC was developed to serve the control needs of power plants and

petroleum industry. Due to the aforementioned characteristics of MPC, its use
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became widespread over the decades and now it is being used in a wide variety

of industries such as food processing, chemical, automotive, aerospace, glass

manufacturing industries, etc. After PID control, MPC is the most widely

implemented advanced process control methodology in process industries.

In glass manufacturing industry, MPC is used to control glass temperature,

crown temperature and bottom temperature in melting furnace, refiner and

forehearth. The glass melting process which is carried out in melting furnace

exhibits very slow process dynamics; usually it has a response time of several

hours. Model predictive control performs well for such processes, because it

consistently updates and keeps track of all applied changes in heating/cooling

adjustments, and they work out on all individual glass temperatures taking into

consideration the full history of process manipulations over several shifts.

The block diagram of model predictive controller is illustrated in figure 5.1.

5.1.2 MPC Algorithm

Model predictive control refers to a class of computer control algorithms that

computes sequence of control signals based on the predicted outputs, in order

to optimize the response of the plant. The model predictive control algorithm

involves a certain number of steps which are as follows:

Initially, a dynamic model of the process is obtained. As the model is used for

the prediction of future outputs, it should be noticed that the dynamic model
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Figure 5.1: Block Diagram of Model Predictive Controller

of the process describes the process well enough so as to obtain consistent and

accurate prediction of the future outputs.

1. Prediction of future outputs: At time instant n, utilizing the model

of the process, and process measurements (past inputs and past outputs),

the future behavior of the process outputs (that are to be controlled) is

predicted over a certain time horizon known as prediction horizon (Np).

Predicted Output Trajectory

=
[

ŷ(n + 1), ŷ(n + 2), ..., ŷ(n + Np)
]

(5.1)
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Figure 5.2: Strategy of MPC

2. Computing optimum control signals: Then based upon these pre-

dicted outputs, a sequence of control signals (manipulated variables) that

would optimize the future behavior of the process, is generated.

The optimization involves the minimization of the error between the pre-

dicted output and the desired output. The constraints on the manipulated

variables and the controlled variables are also taken into account in this

optimization process. This optimization criteria is expressed as a linear

quadratic function of square of the error and square of the control effort

required to minimize this error. This function is known as cost function

or objective function and it is given by (5.2).
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J =

Np
∑

i=1

e(n + i)T Qe(n + i) +
Nc
∑

i=1

∆u(n + i)T R∆u(n + i) (5.2)

where e(n) =
(

r(n) − ŷ(n)
)

is the error at time instant n, r is the desired

output, ŷ is the predicted output, Q and R are the weighting matrices and

they are positive definite.

The control signal that minimizes this cost function is determined by car-

rying out the optimization process within the optimization window Np.

Optimum Control Trajectory

=
[

u(n), u(n + 1), ..., u(n + (Nc − 1))
]

(5.3)

where Nc is known as control horizon and it represents the number of

parameters used to capture the future control trajectory. The prediction

horizon Np should always be greater than or equal to the control horizon

Nc, i.e., Nc ≤ Np.

3. Applying the control signal : From this sequence of optimum control

signals (5.3), only first control signal (at current time) i.e., u(n) is given

as input to the process. The remaining control signals of the sequence are

discarded, because, if the control sequence computed at time instant n is

applied over the future horizon Np, then the possibility of disturbances

and modeling errors affecting the process may lead to a decrease in the

effectiveness of the computed control signals.
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Table 5.1: Np and Nc

Case Prediction Horizon Np Control Horizon Nc

1. 5 2
2. 10 5
3. 50 5
4. 70 5
5. 100 5
6. 100 10
7. 100 20

4. Next, at time instant n + 1, the measurements are taken, the horizon is

shifted forward by one step, and the above three steps are repeated. As the

computed control signals are implemented in a receding horizon fashion,

this control strategy is known as receding horizon control or moving horizon

control.

5.1.3 Simulation Results

Un-constrained MPC

A model predictive controller is designed for the identified glass furnace model,

using the MATLAB function “scmpc”. The parameters that are used in design-

ing the model predictive controller are Np, Nc, Q and R. Simulations have been

carried out with various combinations of these design parameters as shown in

table 5.1.

From these simulations the following observations are deducted. With the
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first combination of Np & Nc, the response is unstable. The response be-

comes stable with increase in the prediction horizon and the best response

is achieved at Np = 100, Nc = 10, Q = [0.25, 0.25, 0.25, 0.25, 0.25, 0.25] and

R = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1]. The output and input trajectories of the closed

loop system with these values of controller parameters are presented in figures

5.3 and 5.4.
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Constrained MPC

Simulations have been carried out for constrained MPC with constraints on

inputs and outputs as given by (5.4). The results of constrained MPC are

shown in figures 5.5 and 5.6. From the figures, it can be observed that the

outputs track the set point while the values of inputs and outputs lie within the

constrained limits.

−0.3 ≤ ui ≤ 0.3; i = 1, 2, 3

0 ≤ yi ≤ 1.2; i = 1, .., 6

(5.4)
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5.2 Adaptive Control

5.2.1 Introduction

Adaptive control is a control method in which the controller adapts to the

changes in process dynamics (usually the changes that arise due to uncertainty

in the process parameters or due to time-varying parameters) and disturbance

characteristics. The adjustable parameters and the automatic parameter adjust-

ment mechanism of adaptive controllers help in maintaining a desired level of

controller performance in the presence of unknown or time-varying parameters

of the dynamic model of the plant. Such controllers are nonlinear in behav-

ior due to the parameter adjustment mechanism. An adaptive control system

consists of two loops: an inner loop and an outer loop. The inner loop is a nor-

mal feedback loop comprising the plant and the controller. Whereas, the outer

loop consists of mechanism for adjusting the parameters of the controller based

upon the changes in the process parameters. This loop is known as parameter

adjustment loop or the adaptation loop and it is often slower than the normal

feedback loop [36].

Adaptive controller is a combination of control law (which is based on the known

parameters) and online parameter estimation (through which unknown param-

eters are estimated at each instant) [37]. This online parameter estimator is

known as adaptive law or update law, or adjustment mechanism. Based on the

way of combining the control law and the adaptation law, the adaptive con-
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trol can be categorized into two types as direct adaptive control and indirect

adaptive control.

In direct adaptive control, the plant model is parameterized in terms of the

controller parameters that are estimated directly without intermediate calcula-

tions involving plant parameter estimates [37] i.e., the controller parameters are

changed directly without determining the characteristics of the process and its

disturbances.

In indirect adaptive control, first the plant parameters are estimated on-line and

then these estimates are used to design the controller parameters.

The adaptive law can be designed by using either of the following methods

• Sensitivity methods (MIT-rule)

• Positivity and Lyapunov design

• Gradient method and least-squares methods based on estimation error cost

criteria

The following sections present the L1 adaptive control theory, its architecture

and its implementation on the identified glass furnace model. The “direct model-

reference adaptive control (MRAC) with state predictor” shown in figure 5.7 is

used as a basic architecture for the development of L1 adaptive controller. The

advantage of using the L1 adaptive controller is illustrated by comparing the

simulation results of L1 adaptive control and MRAC.
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Figure 5.7: Direct MRAC with State Predictor

5.2.2 L1 Adaptive Control

A new adaptive control theory that guarantees robustness with fast adaptation

was developed by C. Cao and Naira Hovakimyan in 2006 [38]. This type of

adaptive control is termed as L1 adaptive control and it is basically a modi-

fied version of MRAC. In MRAC, the use of high adaptation gain results in

high gain feedback control which further results in high-frequency oscillations

in the control signal and reduced tolerance to time delays [39]. Also, proper

tuning (selection of appropriate adaptive gain) of MRAC is a difficult task. The

L1 adaptive control method considers uniform performance bounds on the L∞-

norms of the errors in model states and control signals. As these error norms

are (uniformly) inversely proportional to the square root of the adaptation gain,

this method enables the use of high adaptation gains. The L1 adaptive control

architecture consists of direct MRAC and a bandwidth-limited filter as shown

in figure 5.8. The filter is used for the filtering of control signal in order to
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avoid high frequencies in the control signal and also for shaping the nominal

response. In adaptive control, though the increase in adaptation rate improves

the tracking performance, it degrades the robustness of the controller. Hence

the adaptation rate is the key to trade-off between performance and robustness.

L1 adaptive control theory deals with this problem by setting up an architecture

that separates the adaptation and robustness and thereby guarantees the tran-

sient performance and robustness in the presence of fast adaptation, without

introducing or enforcing persistence of excitation, without any gain scheduling

in the controller parameters, and without resorting to high-gain feedback [39].
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Figure 5.8: Closed Loop L1 Adaptive System

The preliminaries of L1 adaptive control are given in Appendix.
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5.2.3 Problem Formulation

Let the dynamics of a multi-input multi-output (MIMO) system be represented

as [39]

ẋ(t) = Ax(t) + B
[

u(t) + θT x(t)
]

, x(0) = x0

y(t) = Cx(t)

(5.5)

where x(t) ∈ ℜn is the state vector, u(t) ∈ ℜ is the input vector, y(t) ∈ ℜ is the

output vector; A ∈ ℜn×n is the known state matrix, B ∈ ℜn×m is the known

input matrix, C ∈ ℜq×n is the known output matrix, with (A,B) controllable;

θ is the unknown parameter, belonging to a given compact convex set θ ∈ Θ ⊂

ℜn×m.

L1 Adaptive Control Architecture

Let us consider the control architecture (control signal) of the L1 adaptive con-

trol as a combination of two control signals as shown in (5.6), one control signal

um to achieve the desired closed loop performance and the other control siganl

uad to make the system adaptive to the unknown parameters.

u(t) = um(t) + uad(t), um(t) = −Kmx(t) (5.6)
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where Km ∈ ℜm×n is the static state feedback gain that leads to a partially

closed loop system given by (5.7), with the matrix Am = A − BKm being

Hurwitz ; uad is the adaptive control signal. Substituting the control signal u(t)

given by (5.6) in (5.5), we have

ẋ(t) = Amx(t) + B
[

θT x(t) + uad(t)
]

, x(0) = x0

y(t) = Cx(t)

(5.7)

Let the state predictor for the linearly parameterized system (5.7) be represented

as

˙̂x(t) = Amx̂(t) + B
[

θ̂T x(t) + uad(t)
]

, x̂(0) = x0

ŷ(t) = Cx̂(t)

(5.8)

where x̂(t) ∈ ℜn is the state of the predictor and θ̂(t) ∈ ℜn×m is the estimate of

the parameter θ, governed by the following projection-type adaptive law given

by (5.9) [39]

˙̂
θ(t) = ΓProj

(

θ̂(t),−x(t)x̃T (t)PB
)

, θ̂(0) = θ̂0 ∈ Θ (5.9)

where x̃(t) = x̂(t)−x(t) is the prediction error, Γ ∈ ℜ+ is the adaptation gain,

P is the solution of the algebraic Lyapunov eqauation AT
mP +PAm+Q = 0 with

Q being an arbitrary positive definite symmetric matrix, i.e., Q = QT > 0. The
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projection is confined to the set Θ. The Laplace transform of the adaptive

control signal is given as [39]

uad(s) = −C(s)
[

η̂(s) − Kgr(s)
]

(5.10)

where r(s) is the Laplace transform of the reference signal r(t); η̂(s) is the

Laplace transform of η̂(t) = θ̂T (t)x(t); Kg = −1/(CA−1
m B); and C(s) is a

BIBO-stable and strictly proper transfer function with DC gain C(0) = 1, and

its state-space realization assumes zero initialization.

Here, Lyapunov stability theory is used to derive these update laws and show

convergence criterion (typically persistent excitation), and the projection is used

to improve the robustness of estimation algorithms. Figure 5.8 illustrates the

L1 adaptive controller architecture.

The L1 adaptive controller is defined by the relationships in (5.6), (5.8), (5.9),

and (5.10), with Km and C(s) verifying the L1 norm condition given by the

equation (5.11) [39]

λ =
∥

∥G(s)
∥

∥

L1

L < 1 (5.11)

where

G(s) = H(s)
(

1 − C(s)
)

, H(s) = (sI − Am)−1B, L = max
θ∈Θ

∥

∥θ
∥

∥

1
(5.12)
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5.2.4 Analysis of L1 Adaptive Controller

Transient and Steady-State Performance

The prediction error dynamics is obtained from (5.7) and (5.8) as follows [39]

˙̃x(t) = Amx̃(t) + B
[

θ̃T x(t)
]

, x̃(0) = x0 (5.13)

where x̃(t) = x̂(t) − x(t) and θ̃(t) = θ̂(t) − θ(t).

Lemma 5.2.1 The prediction error represented in (5.13) is uniformly bounded

as
∥

∥x̃
∥

∥

L∞

≤

√

θmax

λmin(P )Γ
, θmax = 4 max

θ∈Θ

∥

∥θ
∥

∥

2
(5.14)

where λmin(P ) is the minimum eigen value of P .

Proof: Let us consider the following Lyapunov function candidate

V
(

x̃(t), θ̃(t)
)

= x̃T (t)Px̃(t) +
1

Γ
θ̃T (t)θ̃(t) (5.15)

The derivative of this Lyapunov function can be upper bounded along the tra-

jectories of the system, by using the property of the projection operator, as

follows [39]
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V̇ (t) = ˙̃xT (t)Px̃(t) + x̃T (t)P ˙̃x(t) +
1

Γ

(

˙̃θT (t)θ̃(t) + θ̃T (t) ˙̃θ(t)
)

= x̃T (t)(AT
mP + PAm)x̃(t) + 2x̃T (t)PBθ̃T (t)x(t) +

2

Γ
θ̃T (t)

˙̂
θ(t)

= −x̃T (t)Qx̃(t) + 2x̃T (t)PBθ̃T (t)x(t) + 2θ̃T (t)x(t)Proj
(

θ̂(t),−x(t)x̃T (t)PB
)

= −x̃T (t)Qx̃(t) + 2θ̃T (t)

(

x(t)x̃T (t)PB + Proj
(

θ̂(t),−x(t)x̃T (t)PB
)

)

≤ −x̃T (t)Qx̃(t)

This implies that x̃(t) and θ̃(t) are uniformly bounded. As x̃(0) = 0 we have

λmin(P )
∥

∥x̃(t)
∥

∥

2
≤ V (t) ≤ V (0) =

θ̃T (0)θ̃(0)

Γ
(5.16)

The projection operator ensures that θ̂(t) ∈ Θ, and hence

θ̃T (0)θ̃(0)

Γ
≤

4 maxθ∈Θ

∥

∥θ
∥

∥

2

Γ
(5.17)

This leads to the following upper bound

∥

∥x̃(t)
∥

∥

2
≤

θmax

λmin(P )Γ
(5.18)

Since
∥

∥.
∥

∥

∞
≤

∥

∥.
∥

∥, and as this bound is uniform, the bound given above yields

∥

∥x̃τ

∥

∥

L∞

≤

√

θmax

λmin(P )Γ
∀ τ ≥ 0 (5.19)
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5.2.5 Design of the L1 Adaptive Controller: Robustness

and Performance

Let us consider the following LTI system with its output free of uncertainties.

Let this system be referred as design system [39].

xdes(s) = C(s)KgH(s)r(s) + xin(s) (5.20a)

udes(s) = KgC(s)r(s) − C(s)θT xdes(s) − KT
mxdes(s) (5.20b)

ydes(s) = Cxdes(s) (5.20c)

where xin(s) = (sI − Am)−1x0

Lemma 5.2.2 Subject to (5.11), the following upper bounds hold

∥

∥ydes − yref

∥

∥

L∞

≤
λ

1 − λ

∥

∥C
∥

∥

1

(

∥

∥KgH(s)C(s)
∥

∥

L1

∥

∥r
∥

∥

L∞

+
∥

∥xin

∥

∥

L∞

)

∥

∥xdes − xref

∥

∥

L∞

≤
λ

1 − λ

(

∥

∥KgH(s)C(s)
∥

∥

L1

∥

∥r
∥

∥

L∞

+
∥

∥xin

∥

∥

L∞

)

∥

∥udes − uref

∥

∥

L∞

≤
λ

1 − λ

∥

∥C(s)θT + KT
m

∥

∥

L1

(

∥

∥KgH(s)C(s)
∥

∥

L1

∥

∥r
∥

∥

L∞

+
∥

∥xin

∥

∥

L∞

)

If xin(t) is considered to be decaying exponentially, then the control objective

can be achieved through appropriate selection of the static feedback gain Km

and the low-pass filter C(s). The design of Km and C(s) needs to ensure that

C(s)CH(s) has the desired transient and steady state performance character-

istics, while simultaneously guaranteeing a small value of L1 norm of the closed
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loop system G(s) as given by (5.11). Generally, Km is selected so that the state

matrix Am specifies desired closed loop dynamics, while the bandwidth-limited

filter C(s) is designed to track reference signals and compensate for the unde-

sirable effects of the uncertainties within a prespecified range of frequencies.

If C(s) is a low-pass filter, the system G(s) = H(s)
(

1 − C(s)
)

can be seen

as the cascade of a low-pass system H(s) and a high-pass system
(

1 − C(s)
)

.

Then, if the bandwidth of C(s), which approximately corresponds to the cut-off

frequency of
(

1 − C(s)
)

, is designed to be larger than the bandwidth of H(s),

the resulting G(s) is a “no-pass filter” with small L1-norm. Thus, small value

of
∥

∥G(s)
∥

∥

L1

can be obtained by

• increasing the bandwidth of the low-pass filter C(s) for a given set of

closed-loop performance specifications, Am. This solution leads to small

design bounds and, therefore, yields a closed-loop adaptive system with

desired behavior. However, low-pass filters with high bandwidths may

result in high gain feedback and thus lead to closed-loop systems with

overly small robustness margins and susceptible to measurement noise.

• reducing the bandwidth of H(s) by slowing down the eigenvalues of the

matrix Am for a given filter design. With this solution, a certain amount

of performance is sacrificed to maintain a desired level of robustness.
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5.2.6 Simulation Results

The state space model of the identified glass furnace system without disturbances

is

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

(5.22)

An uncertainty (unknown parameter) θ ∈ ℜ7×3 is introduced in the above system

(5.22) as follows

ẋ(t) = Ax(t) + B
[

u(t) + θT x(t)
]

y(t) = Cx(t)

(5.23)

The design parameters for the L1 adaptive controller are the feedback gain Km,

filter C(s) and Γ . Of these parameters Km and C(s) play a key role.

Table 5.2 and figure 5.9 illustrate the poles of the open loop system and the

desired closed loop system.

From the pole-zero plot shown in figure 5.9, it can be observed that most of the

poles of the open-loop system are very close to the origin and hence the system

is marginally stable. In order to make the system more stable the poles of the

system should be shifted more towards the left hand side of the plane. Let the

desired poles of the system be as shown in table 5.2. The feedback gain matrix
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Table 5.2: Desired Poles of Closed-Loop System
Poles of Open-Loop System Desired Poles of Closed-Loop System

-0.3312 + 0.0313i -0.15
-0.3312 - 0.0313i -0.3

-0.1148 -0.45
-0.0007 + 0.0354i -0.6
-0.0007 - 0.0354i -0.75
-0.0119 + 0.0145i -0.9
-0.0119 - 0.0145i -1.05

−1 −0.8 −0.6 −0.4 −0.2 0
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Poles of Open Loop System (A,B)

Real Axis

Im
ag

in
ar

y 
A

xi
s

−1 −0.8 −0.6 −0.4 −0.2 0
−1

−0.5

0

0.5

1

Poles of Desired Closed Loop System (A
m

,B)

Real Axis

Im
ag

in
ar

y 
A

xi
s

Figure 5.9: Pole-Zero Map of Open-Loop and Desired Closed-Loop System
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Km that leads to a closed-loop system (A−BKm) with the desired poles shown

in table 5.2 is as follows

Km = 103 ∗













2.6379 1.2861 5.0086 −2.4338 0.8842 −2.0053 1.1664

0.5932 0.0156 6.9388 −3.8256 1.1390 −0.0230 −0.7552

−1.7621 −2.0460 3.6611 −2.5971 0.1253 1.2761 −2.0574













The feedforward gain Kg = −
[

C(A − BKm)−1B
]−1

is

Kg =













7.7437 −44.4479 −38.3583 39.3917 4.0909 73.8839

58.1752 −90.9804 −73.4638 5.2270 −22.1675 130.4167

71.9771 −49.2146 −34.5194 −33.8663 −21.0807 84.1127













A first order low-pass filter represented by (5.24) is used to filter the control

signal u = Kgr(t) − θ̂T (t)x(t)

C(s) =
ωc

s + ωc

(5.24)

where ωc is the bandwidth of the filter.

The simulation results of L1 adaptive control with the aforementioned design

specifications (Km, Kg, C(s), Γ = 100) are as follows:

Figure 5.10 represents the controlled output y2 for various bandwidths of the

low-pass filter C(s) of the L1 adpative controller. The best response is obtained
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with a bandwidth ωc = 0.02 rad/sec. From the plots shown in this figure, it is

observed that for bandwidths higher than ωc = 0.02 rad/sec, as the bandwidth

increases, the overshoot in the response of the system also increases and for

bandwidths below this value the response is sluggish.
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Figure 5.10: Output y2 with L1 Adaptive Control at various filter bandwidths

Figure 5.11 shows the plots of control inputs (unfiltered and filtered) of the L1

adaptive controller with the parameters ωc = 0.02 rad/sec, and Γ = 100. A step

input having a magnitude of 1 unit is given as a reference signal. The output

trajectories of this closed-loop system are represented in figure 5.12.
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5.2.7 Comparison of L1 Adaptive Control and MRAC

Direct (MRAC) with state predictor has also been applied to this glass furnace

model. The closed-loop responses of MRAC system and L1 adaptive system are

illustrated by control input u1 and output y2 in figures 5.13 and 5.14 respectively.

It can be seen that the system with L1 adaptive controller has a better transient

response than the system with MRAC.
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Figure 5.13: L1 Adaptive Controller Vs. MRAC: Control Input u1
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Chapter 6

CONCLUSION AND FUTURE

WORK

6.1 Conclusion

Identification of the glass furnace system is performed using the linear identi-

fication techniques (prediction error method, N4SID, linear MIMO ARX) and

non-linear identification techniques (non-linear MIMO ARX and Hammerstein-

Weiner). The models estimated through each of these identification techniques

are validated and their model fitness is compared. On comparison, it is found

that the models estimated through linear identification techniques have better

model fitness, and among the linear models, the PEM model has the best fitness.

Initially, the models are estimated assuming that there is no direct feedthrough

101
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from inputs to outputs. Further, from data analysis it is found that there is

direct feedthrough from first and third inputs. When the models are estimated

again by considering the direct feedthrough from first and third inputs, the fit-

ness of the model improved. Since, the first and third inputs are heating inputs,

and the outputs are temperature measures, and as there is an increase in the

model fitness when direct feedthrough from these inputs is taken into account,

it can be concluded that the real glass furnace system has a direct feedthough

from heating inputs.

The optimal and robust controllers (LQR. LQGR, H2 and H∞) have been de-

signed and applied to the identified glass furnace model. Implementing these

controllers in closed loop with the glass furnace model resulted in satisfying

results; H2 controller provided the best closed-loop performance.

Model predictive control (MPC), an advanced process control technique, when

applied to the glass furnace model produced good results for both the cases:

unconstrained case and constrained case (where constraints on input as well as

outputs are taken into account).

A new adaptive control technique - L1 adaptive control, provided results with

good transient response and good robustness characteristics. The results of L1

adaptive control are compared with the results of MRAC and it is found that

the transient response of L1 adaptive system is far better than the transient

response of closed loop MRAC system.
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6.2 Future Work

The suggestions for possible future work are:

The work in this thesis deals with linear identification and linear control tech-

niques. Since, the glass manufacturing process is a non-linear process, further

work can be carried out on non-linear identification and non-linear control tech-

niques (for example, non-linear MPC).



Appendix A

APPENDIX

A.1 PEM model without direct feedthrough

In MATLAB, the “pem()” function computes the prediction error estimate of a

general linear model. The following syntax produces a linear state-space model

with one delay from the inputs.

≫ model = pem(data, order) OR

≫ model = pem(data, “best′′);

The first command line stated above computes a state space model of the order

specified by the user. Whereas the second command line with “best” as the

104
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arguement computes the state space models for a range of orders 1:10 and then

provides a state space model that has best model fitness.

A state space model of the glass furnace without direct feedthrough from input

to output (i.e., D = 0) is estimated through PEM method using the estimation

data set (zed = 1 − 1200), through the following MATLAB command line

≫ pemD=0 = pem(zed, ‘best’, ‘Focus’, ‘Simulation’, ‘InitialState’, ‘Estimate’)

This produces a 7th order innovation state space model represented as

x(k + 1) = Ax(k) + Bu(k) + Ke(k)

y(k) = Cx(k) + e(k)

where A ∈ ℜ7×7, B ∈ ℜ7×3, C ∈ ℜ6×7, K ∈ ℜ7×6, and initial state vector

x(0) ∈ ℜ7. The numerical values of these parameters are as follows

A =







































0.9439 0.0237 0.0095 −0.0497 −0.0077 −0.0627 0.0461

0.0248 0.8714 0.0544 0.0556 0.0661 0.2062 −0.1855

0.0136 0.0178 0.9521 −0.0756 0.0746 0.0256 −0.0079

0.1046 0.1248 −0.1695 0.8988 0.0162 −0.1169 0.1588

−0.0986 0.0648 0.0452 −0.0787 0.6713 −0.3213 0.2750

0.0525 0.1193 −0.0085 0.0132 0.1297 0.9529 0.0231

−0.0030 0.1103 0.0553 0.0009 0.1209 −0.0496 1.0100






































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B =







































−0.0002 −0.0021 0.0041

−0.0003 0.0022 −0.0073

−0.0037 0.0058 0.0075

−0.0141 0.0195 0.0082

−0.0115 0.0147 −0.0112

0.0122 −0.0188 0.0122

0.0187 −0.0257 0.0133







































C =

































−7.3267 −24.9670 −13.4495 3.9673 −1.5981 3.1060 −1.5144

−8.1764 −25.7989 −12.2057 4.5147 −0.2547 −1.7627 2.3042

−7.1440 −25.8632 −12.3408 4.4477 −0.2661 −1.8331 2.2382

0.9710 −21.7385 6.1950 0.9389 −4.2347 −0.1510 −0.4862

−2.4999 −29.2818 −2.3765 2.1044 0.1200 −0.6738 0.8447

5.7646 −26.2680 10.8022 −4.0506 2.8262 0.2719 −0.8895

































K =







































0.0020 −0.3321 0.3209 −0.0020 0.0086 −0.0016

−0.0035 0.1662 −0.1614 0.0058 −0.0233 −0.0058

−0.0342 −0.3801 0.3792 0.0104 0.0087 −0.0029

−0.0640 −1.5158 1.5410 0.0227 0.0310 −0.0748

−0.0267 3.4423 −3.3464 0.0038 −0.0644 0.0209

0.0771 6.3629 −6.4226 −0.0160 0.0161 0.0236

0.0673 9.0046 −9.0331 −0.0225 0.0470 0.0277






































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x(0) =







































−0.0044

−0.0028

0.0012

−0.0207

−0.0444

−0.0415

−0.0712







































, Eigen Values of A =







































0.7177 + 0.0225i

0.7177 − 0.0225i

0.8915

0.9987 + 0.0353i

0.9987 − 0.0353i

0.9880 + 0.0143i

0.9880 − 0.0143i







































A.2 PEM model with direct feedthrough

A state space model of the glass furnace with direct feedthrough from inputs

u1 and u3 to outputs (i.e., D 6= 0) is estimated through PEM method using the

estimation data set (zed = 1−1200), through the following MATLAB command

line

≫ pemD 6=0 = pem(zed, ‘best’, ‘Focus’, ‘Simulation’, ‘nk’, [0 1 0])

This produces a 7th order innovation state space model represented as
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x(k + 1) = Afx(k) + Bfu(k) + Kfe(k)

y(k) = Cfx(k) + Dfu(k) + e(k)

where Af ∈ ℜ7×7, Bf ∈ ℜ7×3, Cf ∈ ℜ6×7, Df ∈ ℜ6×3, Kf ∈ ℜ7×6, and initial

state vector xf (0) ∈ ℜ7. The numerical values of these parameters are as follows

Af =







































1.0057 0.0351 −0.0186 −0.0184 −0.0375 −0.0884 0.0685

−0.0105 0.9124 0.0620 0.0668 0.0787 0.1870 −0.1739

0.1001 0.0709 0.9071 −0.0410 0.0024 −0.2217 0.1902

0.0951 0.0856 −0.1270 0.8747 −0.0700 −0.2616 0.2705

−0.3436 −0.1847 0.1891 −0.2424 0.7599 0.5735 −0.4200

0.0276 0.1072 0.0518 0.0311 0.0620 0.8199 0.1150

−0.0993 0.0480 0.1636 −0.0021 0.0549 0.0402 0.9268







































Bf =







































−0.0005 −0.0023 0.0024

−0.0002 0.0021 −0.0077

−0.0048 0.0056 0.0088

−0.0154 0.0172 0.0092

−0.0100 0.0120 −0.0160

0.0094 −0.0162 0.0049

0.0147 −0.0215 0.0006









































109

Cf =

































−7.2741 −24.9494 −13.4544 4.0020 −1.6447 3.0439 −1.4699

−8.0796 −25.7388 −12.2649 4.5700 −0.3426 −1.9007 2.4186

−7.2918 −25.9097 −12.2602 4.4137 −0.2442 −1.7143 2.1546

0.9956 −21.7628 6.2225 1.0097 −4.3176 −0.1908 −0.4434

−2.5130 −29.3195 −2.4093 1.9930 0.3177 −0.5358 0.7148

5.7626 −26.2342 10.7996 −4.0369 2.7815 0.2230 −0.8487

































Df =

































−0.0185 0 0.2089

0.0027 0 0.0952

0.0029 0 0.0962

−0.0783 0 0.6622

−0.0120 0 0.1236

−0.0097 0 0.1399

































Kf =







































0.0142 −0.4140 0.3932 −0.0061 −0.0013 −0.0027

−0.0018 −0.2131 0.2118 −0.0103 −0.0138 −0.0049

−0.0082 0.7556 −0.7555 0.0350 −0.0364 0.0174

−0.0082 0.4733 −0.4647 0.0098 −0.0212 −0.0314

−0.0375 1.5266 −1.4802 −0.0422 0.0223 0.0059

0.0911 6.0621 −6.1311 −0.0951 0.0112 0.0167

0.0906 7.8888 −7.9515 −0.0977 0.0265 0.0208






































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x(0)f =







































0.0010

0.0017

−0.0086

−0.0014

0.0081

−0.0358

−0.0386







































, Eigen Values of Af =







































0.6276

0.6881

0.9032

0.9994 + 0.0354i

0.9994 − 0.0354i

0.9944 + 0.0126i

0.9944 − 0.0126i







































A.3 Preliminaries of L1 Adaptive Control

Definition A.3.1 For a signal y(t), t > 0 y ∈ ℜn, its ‘truncated L∞ norm’

and ‘L∞ norm’ are given as [38]

∥

∥yt

∥

∥

L∞

= max
i=1,...,n

(

sup
0≤τ≤t

|yi(τ)|
)

(A.1)

∥

∥y
∥

∥

L∞

= max
i=1,...,n

(

sup
τ≥0

|yi(τ)|
)

(A.2)

Definition A.3.2 The L1 gain of an asymptotically stable and proper single-

input single-output (SISO) system H(s) is defined as

∥

∥H(s)
∥

∥

L1

=

∫ ∞

0

∣

∣h(t)
∣

∣dt (A.3)
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where h(t) is the impulse response of H(s)

Definition A.3.3 The L1 gain of an asymptotically stable and proper minput

and qoutput system H(s) is defined as

∥

∥H(s)
∥

∥

L1

= max
i=1,...,n

( m
∑

j=1

∥

∥Hij(s)
∥

∥

L1

)

(A.4)

Lemma A.3.1 For an asymptotically stable and proper multi-input multi-output

(MIMO) system H(s) with input r(t) ∈ ℜm and output x(t) ∈ ℜn, the following

holds

∥

∥xt

∥

∥

L∞

≤
∥

∥H(s)
∥

∥

L1

∥

∥rt

∥

∥

L∞

∀ t ≥ 0 (A.5)

Corollary A.3.1 For an asymptotically stable and proper (MIMO) system H(s),

if the input r(t) ∈ ℜm is bounded, then the output x(t) ∈ ℜn is also bounded,

and

∥

∥x
∥

∥

L∞

≤
∥

∥H(s)
∥

∥

L1

∥

∥r
∥

∥

L∞

(A.6)

Lemma A.3.2 For a cascaded system H(s) = H2(s)H1(s), where H1(s) and

H2(s) are asymptotically stable proper systems, the following holds

∥

∥H(s)
∥

∥

L1

≤
∥

∥H2(s)
∥

∥

L1

∥

∥H1(s)
∥

∥

L1

(A.7)
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Theorem A.3.1 (L1 Small-Gain Theorem) [38]

The interconnected system

w2(s) = ∆(s)
(

w1(s) − M(s)w2(s)
)

(A.8)

with input w1(t) and output w2(t) is asymptotically stable if

∥

∥M(s)
∥

∥

L1

∥

∥∆(s)
∥

∥

L1

< 1 (A.9)

Consider a linear time-invariant (LTI) system, x(s) = (sI − A)−1Bu(s) with

A ∈ ℜn×n being a Hurwitz matrix, and let (sI − A)−1B = n(s)/d(s), where

d(s) = det(sI − A) and n(s) is an n-dimensional vector with its ith element

being a polynomial function ni(s) =
∑n

j=1 nijs
j−1
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