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ABSTRACT 
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Thesis Title : Decision Support System for Risk and Water Quality Management in 

Water Distribution Network 
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Date of Degree : April 2014 

 

Delivering water in sufficient quantity and acceptable quality is the main objective of 

water distribution networks (WDN) and at the same time is the main challenge. WDN 

risk assessment is gaining importance worldwide due to the wide range of factors that 

could alter the operation of WDN and the scarcity of data of some of these parameters. 

Some of these factors are relevant to water quality, quantity and the condition of the 

infrastructure itself. The deterioration of water quality in the WDN leads to failure at the 

water quality level, which can be critical because it is closest to the point of delivery and 

there are virtually no safety barriers before consumption. This research developed a 

decision support system (DSS) to identify the risk, vulnerable and sensitive locations in 

WDN that may lead to overall system failure caused by deterioration, insufficient and/or 

critical conditions of water quality, quantity and infrastructure, respectively. In addition, 

using water demand and the identified risk, vulnerable and sensitive locations, water 

quality monitoring system was developed.  

To achieve the objectives of this research, an aggregate vulnerability index, representing 

likelihood of system failure, was developed using multi-criteria decision models. 

Similarly, the potential impacts (consequences) in terms of sensitivity index were 

evaluated. Advanced soft computing methods including fuzzy synthetic evaluation (FSE) 

and fuzzy rule-based (FRB) were used to develop these indices. In addition, a risk index 



xvii 

 

based on both vulnerability and sensitivity indices was developed, and Geographic 

Information System (GIS) was used for data display. Other tools, such as WaterGEMs 

(for hydraulic simulations of distribution network) and (fuzzy-based) techniques were 

implemented for the prioritization of regions based on risk, vulnerability and sensitivity 

in distribution network. Optimization techniques including mixed integer programming 

(MIP) and multi-criteria decision making (MCDM) were used to develop water quality 

monitoring system. 

The developed DSS was applied to a local water distribution network (Al-Khobar WDN) 

to study the vulnerability and sensitivity of the network and recommend a suitable risk 

management strategy, which was used to manage, control and/or reduce the overall risk 

of failure of the network. 
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 ملخص الرسالة
 
 

 أمين علي أبو منصر :الاسم الكامل
 

 القرارات للمخاطر و إدرة جودة المياه في شبكة توزيع المياهنظام دعم  :عنوان الرسالة
 

 الهندسة المدنية و البيئية التخصص:
 

 4102إبريل  :تاريخ الدرجة العلمية
 

إٌ انٓذف الأساسٙ ٔ انتحذ٘ انشئٛس عُذ ظخ انًٛاِ فٙ شثكاخ انتٕصٚع ْٕ أٌ تكٌٕ ْزِ انًٛاِ كافٛح يٍ َاحٛح انكًٛح ٔ يمثٕنح 

ٕدج كزنك. ٚكتسة عهى تمٛٛى انًخاغش نشثكاخ تٕصٚع انًٛاِ يضٚذا يٍ الأًْٛح عهٗ يستٕٖ انعانى ٔ رنك نتعذد يٍ َاحٛح انز

الأسثاب انتٙ لذ تؤحش فٙ تشغٛم شثكاخ انتٕصٚع إظافح إنٗ شح انثٛاَاخ نثعط انعٕايم انًؤحش فٙ شثكاخ انتٕصٚع. تعط ْزِ 

ك حانح انثُٛح انتحتٛح نشثكح انتٕصٚع. إٌ تذْٕس رٕدج انًٛاِ فٙ شثكاخ انتٕصٚع انعٕايم نٓا علالح تزٕدج انًٛاِ ٔ كًٛتّ ٔ كزن

انز٘ سٛكٌٕ خطشا ٔ حشرا خاصح أَّ لا تٕرذ حًاٚح نًستخذيٙ ، ٔحسة انزٕدج انًشرٕج فٙ تٕصٚع انًٛاِ فشمسٛؤد٘ إنٗ 

 - Decision Support System) انمشاساخانشثكح فٙ حال تهٕث انًٛاِ أحُاء انتٕصٚع.  فٙ ْزا انثحج تى تطٕٚش َظاو دعى 

DSS)  نتمٛٛى انًخاغش ٔ لاتهٛح الإصاتح ٔ انحساسٛح نًختهف انًُاغك فٙ شثكح تٕصٚع انًٛاِ ٔ انتٙ لذ تؤد٘ نفشم عاو نُظاو

ى استخذاو عايم انتٕصٚع َاتذ عٍ تذْٕس رٕدج انًٛاِ ٔ عذو كفاٚح انًٛاِ ٔ حانح انثُٛح انتحتٛح نهشثكح. إظافح إنٗ يا سثك، فمذ ت

 انطهة عهٗ انًٛاِ إظافح إنٗ انًخاغش ٔ لاتهٛح الإصاتح ٔ انحساسٛح نتطٕٚش َظاو نًشالثح رٕدج انًٛاِ.

ٔ نتحمٛك ْزِ أْذاف ْزا انثحج، فئَّ تى تطٕٚش يؤشش نماتهٛح الإصاتح، ٔ انز٘ ًٚخم إحتًانٛح فشم َظاو انتٕصٚع ٔ رنك تاستخذاو 

انًعاٚٛش. كًا تى تطٕٚش يؤشش انحساسٛح ٔانز٘ ٚثٍٛ انتأحٛش انًتٕلع. كًا تى استخذاو أسانٛة انحٕسثح ًَارد اتخار انمشاس يتعذدج 

 ٔ كزنك  (Fuzzy Synthetic Evaluation-FSE)يخم   (Soft computing methods)انُاعًح 

(Fuzzy Rule-Based-FRB)  .نتطٕٚش ْزِ انًؤششاخ 

هًخاغش يثُٙ عهٗ يؤششا انماتهٛح نلإصاتح ٔ انحساسٛح، ٔ تى استخذاو َظى انًعهٕياخ تالإظافح نًا سثك، فمذ تى تطٕٚش يؤشش ن

نتًخٛم انًحاكاج انٓٛذسٔنٛكح   (WaterGEM)نعشض ْزِ انًؤششاخ. كًا تى استخذاو أدٔاخ أخشٖ يخم  (GIS)انزغشافٛح 

ٚح فٙ انخطٕسج ٔ لاتهٛح الإصاتح ٔ نفشص انًُاغك حسة الأٔنٕ (fuzzy-based)نشثكح تٕصٚع انًٛاِ ٔ انطشق انعثاتٛح 

 انحساسٛح فٙ شثكح انتٕصٚع.
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يخم تشيزح الأعذاد انصحٛحح انًختهطح ٔ غشٚمح اتخار  (Optimization techniques)كًا تى استخذاو انطشق انًخهٗ 

ِ فٙ يذُٚح انخثش تانًًهكح عهٗ شثكح انًٛا (DSS)نتطٕٚش انُظاو الأيخم نًشالثح رٕدج انًٛاِ. تى تطثٛك  انمشاس يتعذدج انًعاٚٛش

انعشتٛح انسعٕدٚح نذساسح لاتهٛح الإصاتح ٔ انحساسٛح نشثكح انًٛاِ إظافح إنٗ الإداسج انلإستشاتٛزٛح  نهًخاغش عهٗ انشثكح نهتحكى 

 ٔ/أٔ تمهٛم انًخاغش انكهٛح انُاتزح عُذ فشم انشثكح.
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1 CHAPTER 1 

INTRODUCTION 

Studying the history of all great civilizations shows that these civilizations established 

their kingdoms, empires and communities in places where there were plenty of water. 

Ancient Egypt, Roman Empire, Ottoman Empire and others proved the vital role of water 

for any community to develop. At those times, water was carried from rivers and lakes to 

the cities using animals. The dream was to have access to water for each civilian in his 

own house instead of going regularly back and forth to the source of water. In the royal 

city of Knossos in Greece during the period between 1700 and 1400 B.C., simple water 

distribution systems were used to supply palaces with water. Terracotta aqueduct 

transported water from springs to the city (Mays, 2010). During the period between 300 

B.C and 100 A.D., the Romans constructed aqueduct systems (Walski et al., 2003; 

Bavusi et al., 2004) which were used to deliver water from sources to cities, towns, baths 

and private houses. The aqueducts were either elevated open channels or pipes buried 

underground. This system could be considered as one of the oldest water distribution 

networks (WDN). Table 1.1 shows the historical key events which developed WDN to 

the industry available today. 

Nowadays, the main function of WDN compared to ancient distribution systems is still 

the same but with much more complex components, objectives and technologies. Modern  
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Table ‎1.1 Historical development of water distribution networks‘ infrastructure and 

modeling (Walski et al., 2003) 

Date Event 

1500 B.C. First water distribution pipes were used in Crete 

250 B.C. Archimedes principle was developed 

100  Roman aqueducts 

1455  Cast iron was used for the first time as pipes in 

Germany 

1732  Pitot invented velocity-measuring device 

1738  Bernoulli published the energy principle 

1770  Chezy developed head loss relationship 

1843  St. Venant developed equations of motion 

1845  Darcy-Weisbach head loss equation was developed 

1883  Laminar/Turbulent flow distinction was explained 

1906  Hazen-Williams equation was developed 

1936  Hardy Cross method was developed 

1960s and 70s  Earliest pipe network digital models were created 

1970s  Early attempts to optimize water distribution design 

1980s  Water Quality Modeling was first developed 

2001  Water security awareness increased 

2002  Integration with GIS 
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WDNs consist of thousands of pipes, links, junctions, pumps, tanks, reservoirs, valves, 

etc. Each component has a specific role in controlling the distribution of water through 

the network. Unlike the ancient distribution networks, the recent increase in living 

standards has introduced new challenges to water authorities. Nowadays, quantity of 

water is not the only issue considered when pumping water through the network, but also 

transporting and delivering water to end consumers with an acceptable quality is another 

issue that the water authority should consider. Modern WDNs are required to deliver 

―drinking water‖ to cities, houses, hospitals, daycare centers, schools, industries and all 

running activities. 

Before pumping water through the WDN, it goes through a complex process of treatment 

(in water treatment plants) to ensure that pumped water is meeting the acceptable quality 

standards assigned by the governmental agencies. Treatment of drinking water depends 

on different factors such as quality of raw water (surface water and/or ground water), 

application of appropriate treatment technology/disinfection and monitoring of 

treated/finished water within the WDN (Hall and Szabo, 2009). 

Once the water leaves the treatment plant, there are usually no defensive lines that could 

protect consumers from any deterioration of water quality due to any unexpected 

consequence. These consequences might be gradual such as the variation of chlorine 

levels or rapid such as contamination caused by intentional criminal or terrorist attacks. 

There are many factors that could directly or indirectly affect water quality within the 

WDN. Some of these factors are relevant to the infrastructure of the system such as pipe 

materials, age and breaks. Some are related to the operational practices of the network 

such as water age in the network. In the state of Wisconsin in the US, tens of deaths were 
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reported, 4000 hospitalized and more than 400,000 people suffered from health 

consequences due to waterborne outbreak in Milwaukee city in 1993. It took two weeks 

to know that these casualties were caused by degradation of water quality in the WDN 

due to deficiencies during the treatment process prior to pumping of water to the WDN 

(Murray et al., 2005). To prevent, control and/or reduce any potential deterioration of 

water quality and to ensure that the WDN is functioning the way it should be, constant 

and comprehensive assessment and monitoring of the WDN should be established. 

Risk assessment is considered as a tool to identify threats, analyze vulnerability and risks, 

and determine measures for WDNs to enhance and improve the system‘s safety and 

reliability (Li, 2007). Recently, risk assessment has been gaining vital importance from 

governments and environmental protection agencies such as the American and UK 

governments and the U.S. Environmental Protection Agency (USEPA). In 1996, the 

American administration established the President‘s Commission on Critical 

Infrastructure Protection (PCCIP) for protecting the infrastructure and guaranteeing its 

operation if exposed to any threats (Clinton, 1996). Water supply systems (or WDN) are 

considered as one of these infrastructures. In 2002, The Federal Public Health Security 

and Bio-terrorism Preparedness and Response Act (Bio-terrorism Act) was passed to 

evaluate the vulnerability of water supply systems. Accordingly, water authorities serving 

3,300 or more individuals were required to establish a vulnerability assessment for their 

systems. In addition, the U.S. Environmental Protection Agency (USEPA) requires these 

water authorities to conduct and submit a security assessment (Li, 2007).  

Routine monitoring in a WDN aims to ensure a safe and reliable supply of drinking water 

with ‗acceptable‘ quality. Many guidelines and best practices have been developed in the 
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past for effective water quality monitoring in WDN (Kwietniewski and Sudol, 2002; 

Sudol and Kwietniewski, 2005). Water quality in the WDN can be described by specific 

microbiological, physico-chemical and aesthetic attributes of the water. These attributes 

are generally maintained within a desirable range by predefined upper and/or lower limits 

(Maier, 1999). Generally, water quality regulations and guidelines (WHO, 1993; Health 

Canada, 2004; USEPA, 2004) require a specific number of samples to be taken, e.g. at 

the point of entry, the ‗center‘ and at the ‗extremity‘ of the network, but the choice of 

selecting a specific location remains an arbitrary process. In addition, these guidelines 

indicate that the sampling locations should guarantee a maximum representativeness of 

the actual condition of water quality, while on the other hand, there were no clear 

guidelines or procedures to achieve this goal. Practicality, accessibility, important 

buildings, presence of schools, hospitals and areas with high population densities are the 

factors considered when selecting the monitoring locations in the WDN and in the 

judgment of a decision maker, without following any formal specific criteria (Francisque 

et al., 2009). 
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2 CHAPTER 2 

LITERATURE REVIEW 

Delivering water to each point in a city through WDN is a complex process starting from 

collecting water from its sources then treating it from possible contaminants and/or odour 

and finally pumping it through the WDN to the point of use. Many factors impact the 

quality and quantity of water delivered through the WDN. Some of these factors lack 

sufficient data to be used for precise risk and statistical analysis either because of the 

difficulty in obtaining adequate data due to the expensive tests and measuring techniques 

and/or due to the limited data provided by the water authorities. In a situation where data 

about the system are scarce as described above, determining specific failure indices for 

the system becomes a difficult task. Instead, risk prioritizations (ranking) is another 

alternative which provides a comparative scheme for failure indices between different 

regions in the city. 

2.1 Risk Prioritization and Decision Making 

 

The concept of risk helped humanity to see the future as a mirror reflection of past 

events. The modern concept of risk started in the Hindu-Arabic numbering system, but 

the extensive study started in the Renaissance era. In the period between 1654 and 1760, 

most of the tools used today in decisions, choice and risk management were developed 

(Bernstein, 1996). The modern development of risk analysis started when scientists were 

interested to study the health impacts due to the exposure of humans to chemicals 
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(Thompson et al., 2005). ―Risk‖ has many definitions which depend on the way of 

understanding the concept itself. There is no agreement about the definition of risk 

(Aven, 2012). The word ‗risk‘ comes from the Italian word ‗risicare‘, which means ‗to 

dare‘ (Bernstein, 1996), but originally the word has Arabic roots. It is believed that the 

word ricisum in Latin was derived from the Arabic word ‗rizq‘, in which one of its senses 

means fortune, luck, destiny and chance (Aven, 2012). It is not possible to list all the 

definitions of risk but a general expression for risk is the exposure to the possibility of 

loss, damage, injury or other adverse or unwelcome circumstance, or a chance or 

situation involving such a possibility (Oxford, 2011). International Organization for 

Standardization (ISO) defined risk as ‗the effect of uncertainty on objectives, whether 

positive or negative‘ (ISO 31000, 2009). Table 2.1 shows several potential definitions of 

―Risk‖. 

Quantifying the risk for possible threats and hazards is defined as risk assessment. 

According to the United States Environmental Protection Agency (USEPA), risk 

management is the process which evaluates how to protect public health. Simply, 

qualitative and quantitative ranking of risks is determined by risk assessment and the 

action to be taken to control and/or reduce risk is ―risk management‖ (USEPA, 2012). 

Risk assessment, prioritization and management have been used extensively in different 

engineering and environmental applications (Wallnerström, 2008; Francisque et al., 2009; 

EFSA, 2012).  Risk prioritization or simply priority is defined as the relative intensity of 

what is important to people (Saaty, 1987) or in other words, the rank, consequence, 

importance or urgency (EFSA, 2012). 
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Table ‎2.1 Summary of potential definitions of Risk (Aven, 2012) 

No. 

 

Definitions 

 

1 Expected value (loss) 

2 Probability of an (undesirable) event 

3 Risk is measurable uncertainty 

4 Risk is uncertainty 

5 Risk is potential/possibility of a loss 

6 
Risk is the potential for realization of unwanted, negative consequences of an 

event 

7 Risk is probability and scenarios/consequences/severity of consequences 

8 Risk is event or consequence 

9 Risk is consequences/damage/severity + uncertainty 

10 Risk is the effect of uncertainty on objectives 
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Risk prioritization gains its importance from its ability to compare relative risks of 

different potential threats from different factors and parameters affecting the system. In 

addition, risk prioritization builds the ranking based on predefined risk factors, safety 

acceptable thresholds, professionals‘ judgments and qualitative measures (EFSA, 2012). 

This approach can guide and help decision makers to concentrate in the solution of the 

most urgent and critical conditions and enlighten them about the factors which will have 

greater impact and consequences on the overall system. On the other hand, it determines 

what is and what is not important when it comes to taking a decision from potential 

alternatives rather than studying the probability of likelihood which is provided by 

traditional probabilistic analysis.  Some of the factors which have an effect on the system 

cannot be defined probabilistically due to lack of complete representation and data, but 

they can be described in terms of priorities and importance (Saaty, 1987). The ability of 

this approach to classify and rank risks based on its importance and consequences set risk 

prioritization as an important component of risk management (EFSA, 2012), especially 

when it comes to decision making for complex systems such as WDN. 

WDN may be affected by many factors, some of which are relevant to the structure of the 

system, operational practices or conditions surrounding its environment. Haimes and 

Horowitz (2004) defined vulnerability as ‗the manifestation of the inherent states of the 

system (e.g., physical, technical, organizational, cultural) that can be exploited by an 

adversary to harm or damage the system. In the last decade, especially after 9/11, several 

studies concentrated on the vulnerability of infrastructure systems such as electrical, gas 

and water systems (Apostolakis and Lemon, 2005). For WDN, the efforts were focused 

on determining risks involved in delivering water due to the possible threats and 
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consequences that people might suffer if anything went wrong during the transmission of 

water. The sensitivity of the WDN to different factors increases the dimension of the 

problem and encouraged the researchers to investigate the suitable techniques that will 

aid decision makers in taking proper actions.  

Risk prioritization for infrastructure systems is relatively new. This scientific area started 

developing in the last ten years, influenced by the idea of protecting the systems from 

terrorist attacks. Several techniques were used for quantifying and prioritizing risk such 

as fuzzy-based methods, Analytical Hierarchical Process (AHP) and optimization as 

discussed below.  

2.2 Fuzzy-based Techniques 

 

Fuzzy-based methods have been used extensively in engineering applications such as 

assessing air pollution, environmental impacts, and risk prioritization for public services 

such as water, sewer and electricity (Khan and Sadiq, 2005; Kleiner et al., 2006; Halfawy 

et al., 2008; Guney and Sarikaya, 2009).  

Examining different scenarios and alternatives in order to evaluate, control and/or reduce 

risks is a major application of fuzzy set theory. Some of these applications are focusing 

on the optimal operational practices due to rapid increase in growth in transportation and 

basic services like water and electricity in developing countries such as China and India. 

In Yantze city in China, there was a need for determining the suitable transportation route 

for containers (Zhang and Xiao, 2003). Along the Changjiang river, containers 

transportation faces a conflict of interests due to the need to deliver containers in different 

amounts, low costs and shorter durations through three possible alternatives: road, river 
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sail and rail. Using fuzzy analysis, researchers discovered that using road is preferred if 

the distance was not long and the number of containers was small, otherwise, delivering 

containers through river is generally preferred. Similarly, China is having a rapid 

electrical demand growth which puts the authorities in a challenge of allowing private 

sectors in the country to invest in the power industry. Liang et al. (2006) developed a 

decision support system using fuzzy techniques and AHP to enable decision makers to 

define the suitable attractive investors who will not violate the environmental and energy 

policy regulations, damage the national community, minimize monopoly power and 

support competitive markets. In southern Haryana in India, groundwater in 15 villages 

was classified as desirable, acceptable or non-acceptable after testing the physico-

chemical water quality parameters using fuzzy synthetic evaluation (Dahiya et al., 2007).  

In 2006, a fuzzy model was developed by Ghosh and Mujumdar to minimize the risk of 

water quality deterioration in a river system. After evaluating risks using fuzzy set theory, 

policies required to minimize risks were derived using optimization techniques. 

Additional applications for fuzzy set theory and AHP in ranking risk and evaluating 

likelihood of failure in different fields are presented in Table 2.2. 

2.3 Fuzzy Applications in WDN 

 

In relevance to WDN, fuzzy techniques were applied for determining the optimal design 

and evaluating the infrastructure of the system and quality of the water transported. 

Mamlook and Al-Jayyousi (2003) proposed a decision support system for detecting 

leakage in the WDN using fuzzy set analysis. They characterized the zones in the WDN 

into three fuzzy sets: leakage, possible leakage and no leakage using pipe characteristics
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Table ‎2.2 Applications of Fuzzy set theory and AHP (other than WDN) 

Researcher(s) Objective(s) Technique(s) 

(Lu et al., 1999) Identifying water quality in Fei-Tsui Reservoir in 

China 

Fuzzy Synthetic Evaluation and AHP 

(Chang et al., 2001) Assessing water quality and developing water 

quality index for Tseng-Wen River in Taiwan 

Fuzzy Synthetic Evaluation 

(Haiyan, 2002) Assessing environmental quality including air, soil 

and water 

Fuzzy Comprehensive Assessment 

(Sadiq et al., 2004c) Evaluation of soil corrosivity levels surrounding 

main pipes in the WDN 

Fuzzy-Based Methods 

(Strobl et al., 2006) Methodology development for identifying the 

critical sampling locations within a watershed 

Fuzzy Logic 

(Dahiya et al., 2007) Analyzing and classifying groundwater quality Fuzzy Synthetic Evaluation 

(Nobre et al., 2007) Developing vulnerability and risk indices for 

groundwater quality 

Fuzzy Hierarchical Model 

(Wang et al., 2008) Evaluation of water quality in Naoli River Fuzzy Synthetic Evaluation 

(Bin and Xingpeng, 2010) Assessing the ecological and environmental impacts Fuzzy Synthetic Evaluation 

(Islam et al., 2011) Leak detection in WDN  Fuzzy Algorithms 

 

1
2
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in the network and operational demand patterns. In 2004(c), Sadiq et al. studied, 

evaluated and ranked soil corrosivity surrounding WDN based on the soil and WDN 

mains characteristics to predict deterioration of WDN mains. Using fuzzy-based method, 

they were able to classify the soil into: virtually not corrosive, slightly corrosive, 

corrosive and highly corrosive. One year later, a combined approach for optimal design 

for WDN was presented by Vamvakeridou-Lyroudia et al. (2005) who combined fuzzy 

set functions and genetic algorithm to obtain the optimal design with a reduced cost for 

the WDN. Vamvakeridou-Lyroudia et al. (2006) extended the approach more by adding 

AHP to include the relative importance of the components of the WDN in the multi-

objective design process to minimize the cost and maximize the benefits. 

2.4  Optimization of Monitoring Stations Locations 

 

In 1990 and 1992, Lee and Deininger stepped up the first serious move in trying to 

develop a scientific criteria to determine representative water quality monitoring 

locations by developing coverage method concept and using integer programming. The 

set of monitoring stations that maximize water coverage is defined as the optimal 

monitoring stations for that WDN. If 50% of water in node X is originally coming from 

node Y, then it is said that setting monitoring station at X will cover demands at Y and X 

(Lee, 1990; Lee and Deininger, 1992). 

New approach was introduced by Kumar et al. (1997) to locate water quality monitoring 

stations in WDN. It was stated that integer programming approach which was developed 

by Lee and Deininger (1990, 1992) is highly cumbersome and complex to deal with the 

size and dimensionality as the network increases. The new approach was based on the 
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hydraulics of the network assuming a steady state condition and satisfying mass balance 

equation all around the network. Similar to original coverage method, the concepts of 

fractional demands, demand coverage and the assumption that water quality deteriorates 

as water flows downstream the network were adopted. In addition, the proposed 

procedure started by analyzing the network hydraulically and determining the ratio of 

each demand in every node from the total demand (water fraction matrix). Based on the 

coverage criteria of 60%, coverage matrix was constructed. In the coverage matrix, the 

nodes with maximum coverage demand were chosen as potential monitoring stations. For 

the network presented in the study, four stations were selected with demand coverage of 

66.2% of the total demand. To validate their results, the analysis was repeated for the 

same network using the original coverage method developed by Lee and Deininger 

(1990, 1992), and showed that the same four stations were selected as the optimum with 

the same amount of demand coverage. 

The coverage method developed by Lee and Deininger (1990, 1992) was suitable for 

monitoring gradual and internal contamination events. A methodology for monitoring 

accidental contamination was developed by Kessler et al. (1998). Unlike the original 

coverage method which does not consider the accidental contaminant intrusion in the 

system, the new approach tries to determine the optimal monitoring locations to detect 

the contaminant faster (in time) before a specific quantity of water is consumed within 

the distribution network, or what is called ―level of service‖. Hydraulic characteristics of 

the network were simulated by EPANET to calculate average flows and velocities. The 

shortest paths of flows from each node were determined and used to construct the 

pollution matrix which determines the detection domain of pollution and coverage 
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domain of water demand at each node. Pollution matrix was used to select the least 

number of monitoring locations which will cover all the demand at the nodes and at the 

same time has the ability to detect any potential pollution at any node within the specific 

level of service. The study showed that the volume of water consumed before detecting 

the pollution (level of service) can be reduced by increasing the number of monitoring 

stations. However, increasing the number of monitoring stations will increase the cost 

and, therefore, the decision maker has to make a tradeoff between the number of optimal 

monitoring stations and the level of service required on one side and total cost on the 

other side.  

In 1999, Harmant et al. improved the objective function developed by Lee and Deininger 

(1990, 1992). Harmant et al. (1999) suggested that to increase the representativeness of 

the monitoring stations in the WDN, demand coverage is not sufficient and additional 

factors have to be considered. The researchers argued that using water demand fractions 

(coverage) alone will result in selecting the ―stagnant area‖ far away from the water 

sources in order to maximize demand coverage during optimization. On the other hand, 

these stagnant areas will have high residence and retention times (water age), which 

makes them the worst locations for monitoring water quality and does not represent the 

quality of the network. Harmant et al. (1999) suggested to consider water age and pipe 

diameters as variables during the process of finding the most representative and optimal 

monitoring locations in the network since most of the reactions such as bacterial growth 

and disappearance of chlorine are functions of these variables.  Water demand, water age 

and pipe diameters were the three variables which controlled the selection of optimal 
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monitoring locations, and each variable was given different weight (priorities) which 

reflects its importance in the optimization procedure. 

In the 1990s, studies tend to increase the representativeness of water monitoring stations 

using demands and physical characteristics of the networks. It was until 2001, when Woo 

et al. incorporated quality parameters in the selection process in conjunction with 

Extended Period Simulation (EPS). In this approach, a contaminant was assumed to exist 

in water, in which monitoring stations should monitor the levels of this contaminant. 

Woo et al. (2001) improved the coverage method presented by Lee and Deininger (1990, 

1992) and assumed deterioration of water quality in the network with time and distance 

from the source. By using the coverage matrix and adding a potential contaminant to the 

objective function, ―representative‖ water quality monitoring stations were located. The 

additional quality variable added by Woo et al. (2001) can represent a potential 

contaminant or even residual chlorine available in the WDN. 

Traditionally, integer and mixed integer programming optimization techniques were used 

for locating optimal monitoring stations. Al-Zahrani and Moied (2001 and 2003) used 

genetic algorithm to locate optimal locations for monitoring stations using coverage 

method developed by Lee and Deininger (1990, 1992) assuming steady demands. Water 

fraction matrix and demand coverage matrix were constructed assuming the deterioration 

of water quality downstream the network. Genetic algorithm was used to maximize water 

demand coverage for different scenarios. To validate the approach, Al-Zahrani and 

Moied (2003) applied Genetic Algorithm to distribution networks presented by Lee and 

Deininger (1992) and Kumar et al. (1997). For both cases, Genetic Algorithm approach 

was able to locate the same optimal locations for monitoring stations in those networks. 
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In 2004, Tryby and Uber developed a new approach for selecting optimal water quality 

monitoring stations. Unlike previous researchers who considered water demand in the 

network as the key parameter, Tryby and Uber assumed water age to be the only factor 

which affects the selection of monitoring stations. Water ages were generated using 

simulation software and presented in a histogram showing the frequency of occurrences 

of water ages simulated. A mixed integer programming optimization technique was used 

to minimize the number of ―potential‖ monitoring stations for each bin (range of water 

age in the histogram). The monitoring stations are considered optimal if the cumulative 

sample histogram constructed using the water age data from the selected monitoring 

stations was able to simulate the ―actual‖ cumulative total histogram. In addition, Tryby 

and Uber (2004) admitted that the complexity of the approach increases as the number of 

binary variable used in the mixed integer programming increases. 

Sandia National Laboratories, the Environmental Protection Agency (EPA) and other 

researchers (Hart et al., 2007) developed a sensor placement optimization tool (SPOT) 

which is an optimization tool used to minimize the public health hazards by assuming the 

occurrence of contamination threat at different locations in the WDN and locating 

optimal locations for contamination sensors‘ placement considering demand coverage 

and water age. Studies used this approach and the tool showed that it was possible to 

select monitoring locations inside the water distribution system and at the edges, which 

makes it suitable for tracer tests and for real-time monitoring sensors‘ placement 

(Boccelli and Hart, 2007; Liu et al., 2011).  

In 2012, Liu et al. presented a modification for a flaw in demand coverage method. The 

key concept behind the conventional demand coverage method is to use accumulative 
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demand in nodes to determine coverage of demand. According to this procedure, it will 

give acceptable solutions for specific steady demand patterns while not taking into 

consideration the temporal distribution of demands in unsteady hydraulic situations. In 

real life systems, extended period simulations and temporal effect of demand are 

important factors controlling the WDN. To make the conventional demand coverage 

method simulate real situations, a Demand Coverage Index (DCI) was developed. After 

performing several hydraulic simulations for different demand patterns, nodes are ranked 

based on the demand it covers. Simply, DCI represents the ratio of the Total Demand 

Coverage (TDC) to the Accumulative Demand Coverage Ranking (ADCR) for the nodes. 

In addition to considering maximum demand coverage and temporal effect in selecting 

optimal nodes, this modification provides a tool for selecting optimal nodes – even if 

nodes have equal demand coverage – based on the number of times the nodes were 

considered as representative for different demand patterns. By maximizing the DCI, 

optimal locations for monitoring stations can be determined. Liu et al. (2012) 

demonstrated their approach using genetic algorithm. This study showed that the 

conventional demand coverage method was not able to prioritize between nodes having 

the same amount of demand coverage if only one of them has to be chosen. While for the 

modified technique, the selection was based on the demand coverage in addition to the 

accumulative ranking of coverage demand which reflects the temporal effect in an 

extended period simulation and ratio of coverage in different demand scenarios and 

patterns. 

Gradual or internal water quality degradation is not exclusively the only source 

threatening the water supply systems. Accidental and/or on-purpose actions such as 
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terrorist or criminal attacks are possible factors that have been taken seriously by many 

researchers, especially after 9/11. How would a contaminant act in the network? How 

effectively can a monitoring system detect this sudden and rapid action? What are the 

effects of detection delay time on the population? All these questions and others were 

raised. 

Monitoring strategies based on extracting data from monitoring stations in regular time 

bases may not be sufficient to detect rapid and sudden contamination events. This kind of 

events generally has a higher risk due to its higher concentration, which consequently 

threatens a higher portion of population. Construction of Early Warning System (EWS), 

also known as Contaminant Warning System (CWS), and installing real-time monitoring 

sensors could be a suitable option to decrease the portion of population affected, decrease 

the exposure time and decrease operational costs compared to conventional monitoring 

practices. Studying the transport and fate of contaminants in the WDN is essential to 

increase the reliability of the system and produce extremely important information, which 

will help in the creation of efficient EWS.  

Bahadur et al. (2003) predicted the contaminant transport of accidental event in the 

distribution network in order to determine the optimal monitoring locations. This 

approach tends to minimize the contamination threat, mainly in locations with higher 

population density. Accordingly, the importance of ranking and prioritizing of monitoring 

stations based on availability of schools, hospitals and high population densities was 

emphasized.  
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In 2004, Berry et al. developed a general integer programming-based framework for 

sensor placement. The target was to minimize the number of population affected by 

contaminant caused by an attack at a specific location in the network by minimizing the 

amount of contaminated water consumed prior to detection. The developed approach 

assumed that the contaminant will flow in a discrete pattern and is flowing at the same 

velocity of the flow. The study showed that minimum consumed volume of contaminated 

water prior to detection can be achieved if all nodes were considered as potential attack 

locations and with no time limitations for the attackers (can strike day or night). Although 

this approach was complex, it raised the attention to important unsolved concerns such as 

how to determine the appropriate number of population consuming water from a specific 

node taking into consideration the mobility of people during day and night times. Berry et 

al. (2005a) conducted another study with a different approach, where they studied the 

application of real-time monitoring sensors in water distribution systems. Unlike the 

studies where judgments were based on minimizing contaminated water consumption or 

determining the minimum path of contaminant, this study proposed a different objective 

which depends on minimizing the percentage of population at risk due to sudden 

contamination attack. The attack scenario was given a specific probability distribution at 

different locations on the network based on several factors such as experts‘ opinions and 

terrorists‘ prior knowledge of the network. Using Mixed Integer Programming (MIP), the 

number of population consuming water from a specific node was considered as a 

weighting factor for that node. Also, the study assumed that the number of population is 

not always proportional to water demands.  Obviously, as the number of monitoring 

sensors increased, population‘s percentage at risk decreased. It was discovered that the 
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optimal locations for monitoring stations have little sensitivity to the variation of 

population even by a factor of 25%. 

Watson et al. (2004) proposed a multi-objective optimization approach based on the 

optimization formulation developed by Berry et al. (2005a). The study compared locating 

monitoring stations using multi-objective and single objective optimization. Five 

objectives were used for the multi-objective optimization: minimizing exposed 

population, minimizing detection time of contaminant, minimizing contaminated water 

consumed, minimizing the number of times the system fails to detect a contaminant, and 

minimizing the length extent that contaminant would reach in pipelines. In addition to the 

multi-objective optimization, a single objective optimization was performed using each 

one of the previously listed objectives independently. The study assumed the ability of 

locating monitoring stations at nodes as well as any pipe. The results showed that there is 

no correlation between the different objectives, in other words, reaching an optimal 

solution for one objective does not lead to optimal solution for the other objectives. 

Furthermore, the study showed that locating monitoring stations at nodes rather than 

pipes led to optimal solutions in all examined cases, while failed to reach optimal 

solution when pipes were considered as potential locations for monitoring 

stations/sensors. The study emphasized that running a tradeoff analysis between several 

objectives would lead to a better optimization rather than trying to find the ‗best‘ solution 

for each objective which may cause dramatic failure to other objectives. In addition, 

complexity of this approach was obvious; the researchers were able to obtain optimal 

solution using multi-objective approach for a small network but failed for a medium sized 

network. In 2006, Huang et al. proposed to determine the optimal monitoring locations 
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based on multi-objective setting using genetic algorithm. Four objectives were set for this 

study: minimize detection time, population affected prior to detection, expected water 

demand prior to detection, in addition to maximizing the detection likelihood. 

Minimizing population at risk and contaminated water consumed were considered as one 

objective since the population was assumed to be strongly correlated to water demand. 

This approach seems to be promising but involves complex ranking procedures and 

intensive database construction prior to using genetic algorithm for locating optimal 

monitoring sensors in the distribution system. 

By the year 2005, many approaches and optimization techniques with different 

formulations were presented and proposed to find optimal locations for sensors‘ 

placement, decreasing population at risk, decreasing contaminated water consumed…etc. 

Integer programming was widely used in this field. Berry et al. (2005b) raised a concern 

about the effect of integer programming formulation on the final optimization outcome. 

The researchers examined static and dynamic programming, in which dynamic 

programming takes into consideration the contaminant dilution and spread with time, 

while static programming assumes the constant behavior of contaminant in different time 

steps (extended period simulation). It was shown that dynamic programming could reach 

optimal solutions while static programming reached near optimal solutions and the results 

of the two were close in most cases. Care must be taken when choosing which model to 

use, although dynamic performance is better but it significantly increases the complexity 

of the problem, especially for real networks, and requires high-end workstations, which 

raises a question whether the additional improved accuracy is worth going through this 

complex procedure. 
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Based on Red-Blue teams concept developed in the 19th century, Grayman et al. (2005 

and 2006) presented an exercise simulating the expected consequences of a ―red‖ team 

trying to contaminate the water distribution network without significant knowledge of the 

network, and a ―blue‖ team of water experts trying to locate monitoring sensors to 

minimize the effect of red team‘s attack. Red team members tend to select injection 

points which will cause severe contamination, such as nodes following water sources and 

pumps, while blue team members tried to select locations which will cover most of the 

network‘s demand. An optimization model was then developed using genetic algorithm 

to maximize the detection likelihood of pollution, given the allowable water volume 

consumed prior to detection, fixed number of proposed contaminant injection locations 

and fixed number of monitoring locations. Five scenarios were tested in the study, where 

delay time before detection was considered, adding more monitoring sensors, limiting 

injection locations and increasing the allowable water volume consumed prior to 

detection. The results indicated that detection likelihood decreased as detection delay 

time increased and when contaminant‘s injection was considered to vary with time 

(uniform variation). On the other hand, the detection likelihood increased as more 

monitoring sensors were added to the network, reducing the potential injection locations, 

and when the allowable water volume consumed was increased prior to detection. 

Several techniques were also developed to locate the optimal monitoring station/sensors 

locations such as Robust Optimization (Carr et al., 2006; Watson et al., 2009) and 

Bayesian Belief Network (Murray et al., 2010). For Robust Optimization, intensive 

research and development is required before adopting it due to its high complexity, which 

limits it to small distribution networks rather than for real networks. Similarly, 
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application of Bayesian Belief Network has to be studied more since some assumptions 

may not reflect the real world problem such as assuming normality. 

Some studies also used different key parameters other than water demand (traditional 

demand coverage approach) such as water age (Tryby and Uber, 2004). Although this 

approach was able to simulate the trend of the cumulative total histogram, but excluding 

important variables like water demand and assuming that water age is the only factor 

controlling the selection of monitoring stations, it needs to be tested with caution using 

complex systems with frequent change in demand patterns. 

In literature, frameworks for DSS considering vulnerability and sensitivity in the WDN 

are relatively new. However, the most comprehensive framework (Francisque et al., 

2009) did not include important factors such as pressure and velocity of the water at 

different zones in the WDN for developing vulnerability index. Similarly, sensitivity 

factors such as population distribution, standard of living and activities in the city were 

not investigated as well. In this study, these factors were studied and the framework 

developed by Francisque et al. (2009) was improved by considering these factors. The 

developed DSS for risk, vulnerability and sensitivity index considers a wide range of 

factors affecting water quality in WDN including hydraulics, water quality, structure 

integrity and sensitivity. 

On the other hand, typical water demand and water quality characteristics (such as water 

age) were used to determine the optimal locations of monitoring stations. Factors such as 

infrastructure of the WDN, hydraulic characteristics and sensitivity factors including 

population distribution, standard of living, activities in the city and distribution of 
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hospitals and schools have not been used for developing monitoring systems at WDN 

despite of their importance. In this study, a monitoring approach was developed which 

takes into consideration water demand, water quality and hydraulic characteristics at the 

WDN as well as infrastructure of the system and sensitivity of different zones in the city. 

2.5 Research Objectives 

 

The aim of this research was to develop a decision support system (DSS) that can help 

identify zones within WDN that may be affected by gradual or rapid deterioration of 

water quality. Factors relevant to water quality, quantity and network‘s infrastructure 

were considered in the study. Specifically, the study aimed to: 

i) Develop a diagnostic tool for the assessment of WDN by aggregating diverse 

data including pipe material, age, diameter, history of breakage, average 

pressure, history of velocity and flow regimes, and surrounding soil 

conditions. 

ii) Evaluate the current condition of the WDN by estimating the likelihood of 

system risk and identifying vulnerable and sensitive locations in the WDN by 

considering the hydraulics, water quality, structure integrity and sensitivity in 

the WDN. 

iii) Perform a risk-based prioritization (ranking) of locations (water mains) in the 

WDN and present the results spatially using GIS. 

iv) Determine the optimal monitoring locations (sampling) in the network that 

will be the most representative of the actual water quality in the WDN, which 

will be used for controlling and/or reducing risk. 
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v) Select the most prudent and effective alternative for risk control using the 

Decision Support System (DSS). 
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3 CHAPTER 3 

METHODOLOGY 

Level of uncertainty associated with a system is related to its complexity. Uncertainty 

arises as a result from incomplete understanding of known relationships among various 

entities, and randomness in the mechanisms governing the process. Typical complex 

systems such as WDN consist of numerous interacting components. Modeling of highly 

complex non-linear dynamic systems requires methods that combine human knowledge 

and experience. When significant historical data exist, model-free methods such as 

artificial neural networks can provide insights into cause-effect relationships and 

uncertainties through data learning (Ross, 2009). In cases where historical data are scarce 

and/or available information are ambiguous and imprecise, soft computing techniques 

can provide a framework to handle such as relationships and uncertainties. Such 

techniques include probabilistic and evidential reasoning (Dempster-Shafer theory), 

fuzzy logic and evolutionary algorithms (Makropoulos and Butler, 2004). Methods based 

on fuzzy sets provide simple but logical solutions to complex problems where data 

uncertainties are major impediment. In this research, fuzzy synthetic evaluation (FSE) 

and fuzzy-based methods (FRB) were used to develop the DSS for WDN. On the other 

hand, prioritizing and zonal ranking for risks associated with water delivery through 

WDN, raises the concerns for increasing the protection and security of the WDN. 

Securing WDN from water quality deterioration caused by expected events such as sewer 

intrusions or high chlorine doses due to human error is essential. In addition, the WDN 
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should be secured also against intentional and unexpected criminal and terrorist threats 

such as injecting hazardous contaminants into the WDN to cause fast and severe 

casualties. This national security objective can be achieved by increasing the 

representativeness and efficiency of the monitoring system of the WDN, which will be 

built on prior knowledge of the different risk levels in the WDN developed by the 

Decision Support System (DSS).  

This research developed a DSS tool that can assist decision makers to quantify the 

regional risks based on vulnerability of the WDN and sensitivity (or potential 

consequences) in case of failure of the system to deliver water in acceptable quality. A 

wide number of factors were considered in the analysis, which include water quality, 

quantity and infrastructure of the system. Based on the evaluation of the current risks in 

the WDN using the DSS, optimization techniques such as integer/mixed programming 

were used to determine the optimal monitoring locations for the WDN. The optimal 

monitoring stations will be more representative of the actual water quality condition of 

the WDN, which will aid the decision makers to execute effective actions to control risks 

accompanying water delivery to customers. The developed model will be applied on Al-

Khobar WDN to investigate the reliability and security of the network. 

The development of the DSS requires an aggregation of measurable and non-measurable 

factors to estimate vulnerability, sensitivity and risk at specific points in the WDN using 

routinely collected data. Due to the complexity of the problem, an index-based approach 

using FSE and FRB was used to describe vulnerability, sensitivity and risk. An estimate 

of risk at a given location in the WDN will provide a representative value for a 

predefined geographical region. A region represents an influence zone in which the 
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values of all contributing factors are assumed to be fixed. Once risk values are 

determined in various sectors of the WDN, they can be ordered, ranked or prioritized 

based on vulnerability, sensitivity and/or risk values. 

Figure 3.1 provides the framework for the DSS to determine indices for vulnerability, 

sensitivity and risk. The framework consists of five levels or generations of factors 

aggregated in hierarchical fashion. The top of the pyramid represents risk (fifth level) that 

depends on two factors, i.e. vulnerability and sensitivity in the second level. These two 

factors are determined through aggregation of various factors in the previous levels. The 

factors or attributes in the first and second levels (Figure 3.1) are referred to as ‗input 

factors‘ if their data are directly available or can be derived. 

The vulnerability index is calculated using factors related to hydraulics, structural 

integrity and water quality pumped through the WDN. For hydraulics, water age, 

pressure and velocity are used, whereas for structural integrity, the required data include 

pipe material, pipe age, water table levels, type of soil surrounding the pipes, pipe breaks 

and potential intrusions from surrounding industrial activities and sanitary system. For 

water quality, two sub-factors including physico-chemical and microbial parameters are 

considered in the second level. Each of these factors is further divided into sub-input 

factors in the first level. Temperature, pH and total dissolved solids (TDS) are used for 

the evaluation of physico-chemical water quality, whereas free residual chlorine and 

turbidity are used for the evaluation of microbial water quality. 
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Figure ‎3.1 Proposed risk index for prioritization of water mains 
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The sensitivity index is linked to the presence of certain groups of consumers served by 

the WDN, who may be harmed seriously if any deterioration of water quality in the WDN 

occurs. Five input factors, including standard of living, population density, activity, 

capacity of hospitals and schools in the specified sector are used to characterize 

sensitivity index. 

The developed DSS tool can be applied to evaluate the condition of any WDN. Based on 

the evaluation of risks accompanying the delivered water through the WDN, optimization 

techniques were used to locate the optimal monitoring stations for the WDN. The optimal 

monitoring stations will be more representative of the actual condition of the WDN, 

which can help decision makers to control and/or reduce the risk associated with water 

delivered to the end consumers. 

To accomplish the objectives of this study, it was divided into five main phases. Table 

3.1 shows the five phases and summarizes the tasks involved to achieve the research 

objectives. 

3.1 Risk Assessment Module (Phase I) 

 

The analysis in Phase I represents a risk assessment at a single point in the WDN. Two 

types of fuzzy-based methods were used in the analysis. Vulnerability and sensitivity 

indices were determined using fuzzy synthetic evaluation (FSE), which is primarily a 

fuzzy-based method that uses linearized weighting scheme for aggregation. Risk index 

was evaluated from vulnerability and sensitivity indices. Fuzzy rule-based (FRB) 

technique (a non-linear method) was used to develop several parameters as will be 
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Table ‎3.1 Mapping of phases and tasks to achieve objectives 

Objectives Phases Tasks 

1,2 Risk Assessment Module 

 (Phase I) 

i) Collection of pipe, surrounding location, 

hydraulics and water quality data. 

ii) Development of fuzzy-based algorithms 

to make inferences. 

iii) Assessment of risk (also vulnerability 

and sensitivity indices) at a given 

location. 

 

2,3 Hydraulic Module 

(Phase II) 

iv) Development of a database for the 

network under investigation. 

v) Integration of database with fuzzy 

algorithm proposed in a ―risk 

assessment module‖. 

vi) Display risk at various locations in a 

WDN. 

 

3,4 Optimization Module 

(Phase III) 

vii) Development of the optimization 

objective function and constraints. 

viii) Determine the optimal monitoring 

locations based on water quality, 

quantity and infrastructure of the 

network. 

 

2,3,4 Display Module 

(Phase IV) 

ix) Development of a GIS model to display 

the risk, vulnerability and sensitivity for 

different zones within the WDN. 

x) Locate the optimal monitoring points 

using the GIS model. 

5 Risk Management 

Module 

(Phase V) 

xi) Selection of the most prudent and 

effective alternative for risk control 

using the Decision Support System 

(DSS).  
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explained in this chapter. These indices were developed for different sub-regions in the 

WDN based on the local data for each sub-region (Francisque et al., 2009). Based on the 

locations of existing water quality monitoring stations, Thiessen method was used to 

divide the WDN into different sub-regions. For each sub-region, a risk assessment 

module was developed. 

3.1.1 Fuzzy systems 

In general, information can be classified into precise and imprecise data. While the 

precise data are required by computers to solve problems, imprecise human reasoning is 

widely used for understanding scientific concepts and theories. The use of reasoning in 

complex problems is the core of fuzzy logic concept. This technique might not be able to 

solve problems which need very high precision but on the other hand, not all problems 

need high precision such as controlling traffic at intersections, preliminary understanding 

of complex systems and prioritization of risks (Ross, 2009). A drawback for using 

systems which depend on precise data increases the cost and efforts needed for 

establishing and developing these systems compared to systems which need less 

precision. Exploiting the tolerance for imprecision is required for professionals working 

with complex systems. Complex system problems which require decision making can be 

managed when formulated imprecisely to make rational decisions in uncertain and 

imprecise environments, which are difficult to solve by traditional approaches since these 

approaches do not exploit the tolerance for imprecision. Fuzzy logic and other soft 

computing methods mimic the human mind abilities of reasoning to formalize complex 

problems (Zadeh, 1994).  
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Traditionally before the nineteenth century, scientists considered uncertainty as a figure 

that should be avoided by any means necessary. After the development of probability 

theory, the effect of uncertainty was taken into consideration to strengthen models in 

terms of solving problems as well as quantifying uncertainty. Zadeh developed in 1965 

fuzzy sets theory which challenged classical probability theory and introduced a thorough 

ground for understanding and looking at uncertainty (Klir and Yuan, 1995; Ross, 2009). 

Although the word ―fuzzy‖ in English language means blurred, imprecise or vague, this 

should not prevent researchers from using it. Fuzzy systems may be characterized as 

fuzzy, but the theory itself is precise. Fuzzy systems theory can be justified as follows 

(Wang, 1999): 

i- Complexity of real world problems makes it impressively difficult for precise 

methodologies. Accordingly, approximations (or fuzziness) must be used to 

obtain reasonable models. Generally speaking, all engineering theories are 

approximations of the real world in one way or another. Most of the real 

systems are non-linear and conventional approaches work hard to linearize 

them in order to get the best approximation. 

ii- Due to the massive use of information, human judgments and knowledge are 

gaining more importance. There is a need for a technique which can smoothly 

and systematically merge human judgments and knowledge into engineering 

systems as well as mathematical models. This justification shows the 

uniqueness of fuzzy systems theory and presents it as an independent branch 

of engineering. 
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Several characteristics of fuzzy systems make it a robust and practical approach for 

problems that involve decision making, such as (Ross, 2009):  

1. Fuzzy systems are universal approximators (Wang, 1992; Buckley, 1993; Kosko, 

1994; Castro, 1995; Castro and Delgado, 1996; Ross, 2009). Universal 

approximators are explained as the ability to uniformly approximate continuous 

functions, such as algebraic functions, to any degree of accuracy on compact sets. 

In the 1990s, fuzzy systems were applied in different fields such as control design 

and decision making, but some were curious about it since it has not been 

approved mathematically (Castro and Delgado, 1996). These claims encouraged 

researchers to prove the effectiveness of fuzzy systems by showing and proving 

its ability of being universal approximators (Wang, 1992; Buckley, 1993; Kosko, 

1994; Castro, 1995; Castro and Delgado, 1996; Ross, 2009). This ability 

originated from the similarities between algebra and the structure of fuzzy 

systems. While algebraic function maps input variable into output variable, fuzzy 

systems do the same but by mapping a group of inputs to a group of outputs, with 

an advantage for fuzzy systems since it deals with numerical and non-numerical 

quantities.  

2. The important ability of fuzzy systems to work with new and complex systems 

even if it did not have an existing formulation or even if the effects of the tested 

systems are observed. This important feature opens the door for using fuzzy 

systems for a wide variety of untested new complex systems that consider human 

conditions, social, political, risk, and economic systems. 
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3. For cases where precise solutions are not required or maintaining higher precision 

costs more in terms of finances and efforts, fuzzy systems could be the suitable 

technique. Similarly, fuzzy systems can be very efficient if used for 

approximating fast solutions in decision making, setting initial solutions for 

numerical methods, reducing computational cost and/or when dealing with scarce, 

vague, ambiguous or unknown input data records. 

4. For conventional modeling and analysis, first, models are created and formulated 

based on prior assumptions and then uncertainties encountered in each input or 

output variable are considered. The strength of fuzzy systems is that system‘s 

structure is actually formulated using inputs and outputs which already take 

uncertainties into consideration.  

Ross (2009) generalized major applications of fuzzy systems in conditions involving high 

complex systems with lack of full understanding of its behavior, and in conditions where 

approximate but fast solutions are needed (which is the case for risk assessment of 

WDN). Fuzzy systems are classified as shallow reasoning method. If the behavior of a 

system can be observed and predictions are possible using observed data without the need 

for investigating and fully understanding the physical processes behind the system, then 

this system can be classified as shallow. On the other hand, if the system is using the 

observed data to study the mechanisms or physical processes of how these data were 

produced, then this is called deep model. For simple problems, it is usually easier to use 

deep models to solve them, especially if the physical processes are already known and 

mathematically formulated, while for new and complex systems, using shallow models 
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such as fuzzy systems is preferred. Before moving deep to fuzzy systems, FSE and FRB 

system, the major components of fuzzy systems are introduced first. 

3.1.2 Fuzzy sets 

In 1965, Zadeh introduced for the first time the concept of fuzzy sets which deal with 

imprecision and/or uncertainty. Fuzzy sets are also defined as mathematical tools used to 

deal with fuzziness of the real world (Cai, 1996; Li, 2007). According to the concept 

developed by Zadeh, fuzzy sets are divided into different subsets which are often called 

fuzzy subsets or fuzzy numbers. These fuzzy subsets are assigned to linguistic variables 

such as ―high‖, ―med‖, ―low‖, ―large‖, ―fast‖…etc., in which each of these subsets 

represents human knowledge that can be ―fuzzy‖, imprecise and vague when it comes to 

setting a specific definition and boundaries to these words. A fuzzy set can be represented 

by   , which shows the relationship between imprecise/uncertain quantity x and a 

membership function     ( ). Membership function    ( ) ranges between 0 and 1, 

where zero means an absolute confidence that x does not belong to fuzzy set   . 

Similarly, if    ( ) equals 1, this implies that x belongs to fuzzy set    with an absolute 

confidence. 

Intermediate values between 0 and 1 show the confidence that x belongs to    (Kleiner et 

al., 2005). Suppose Figure 3.2 shows a fuzzy set for TDS level in water. There are three 

fuzzy subsets (or fuzzy numbers), low, med and high. If TDS in water is 200 ppm, then it 

is said that TDS level has a membership of 1 to ―low‖ fuzzy subset, and if the level is 800 

ppm, then it is said that TDS level has a membership of 1 to ―high‖ fuzzy 
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Figure ‎3.2 TDS fuzzy set 
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subset. If TDS level is 450 ppm, then it is said that TDS level has a membership of 0.25 

to ―low‖ fuzzy subset and 0.75 to ―med‖ fuzzy subset. Accordingly, fuzzy set is an 

extension to set theory where x is or not a member of set    (Kleiner et al., 2005).  

3.1.3 Fuzzy subsets (numbers) 

Fuzzy subsets are special cases of fuzzy sets. Each fuzzy set contains several fuzzy 

subsets. Generally, there are several membership functions used for fuzzy subsets, such 

as triangular, trapezoidal and Gaussian. There is a strong debate in literature discussing 

the criteria on how membership functions‘ shape should be assumed for a specific 

parameter. Actually, the locations or boundaries of the membership function (points a, b, 

c and d in Figure 3.3) have more significant effect on the final outcomes of the function 

compared to the shape of the membership function (Li, 2007; Ross, 2009). Usually, 

positioning of membership functions depends on standards for the parameter under study 

and expert‘s knowledge.    

3.1.4 Fuzzy synthetic evaluation 

There are two main points of interests for a decision maker to focus on (Maes and Faber, 

2004; Ross, 2009): 

a. Operational decisions in which best actions are taken to minimize hazards, 

and/or 

b. Future strategic decisions to maintain maximum protection or benefits. 
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(b) 

Figure ‎3.3 Membership functions: 

(a) Triangular and (b) Trapezoidal 
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FSE method is one of the most widely used Multi-Criteria Decision Making (MCDM) 

techniques in environmental engineering and water quality modeling (Chang et al., 2001; 

Francisque et al., 2009). From its name, two essential characteristics of the approach can 

be defined, which are: it deals with decision making under uncertainty and fuzziness and 

consists of different components that are evaluated and aggregated together or 

synthesized into an aggregation form. Since FSE is a fuzzy-based method, variables used 

as inputs for decision making can be of numeric or non-numeric types. Natural linguistics 

can be used to evaluate inputs such as ―low‖, ―med‖ and ―high‖ (Ross, 2009). 

FSE is used to quantify and estimate indices for vulnerability, sensitivity and risk. 

Hydraulics of the system, structure integrity and water quality indices can also be 

estimated based on FSE. Following are the required steps which need to be considered 

when constructing FSE (Chang et al., 2001; Sadiq and Rodriguez, 2004; Sadiq et al., 

2004(d); Khan and Sadiq, 2005; Francisque et al., 2009): 

- Development of hierarchical framework,  

- Development of membership functions and fuzzification, 

- Defining weights, 

- Aggregation, 

- Defuzzification and prioritization of risk. 

Detailed descriptions of each of the above steps are presented in the following 

paragraphs. 
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3.1.4.1 Development of hierarchical framework  

Saaty (1982) proposed the use of Analytical Hierarchical process (AHP) for setting and 

estimating priorities and ranks for different children attributes. This approach is widely 

accepted and adopted in various engineering applications (Lu et al., 1999; Khan et al., 

2002; Sadiq and Rodriguez, 2004; Sadiq et al., (2004a and 2004d, 2007); Khan and 

Sadiq, 2005; Ishizaka and Labib, 2009; Francisque et al., 2009; Moazami and Muniandy, 

2010). 

AHP simplifies human natural decision making process and applies it effectively in 

complex systems and frameworks without increasing the complexity of the problem. 

Simply, AHP breaks down complex unstructured systems into its basic components and 

arranges and orders these parts into hierarchy order. These components (or attributes) are 

arranged in hierarchical order in which they are given weights – or degree of relative 

importance – based on their degree of belonging and effect on parent attributes. 

Consequently, judgments are made on how each attribute affects the final outcome 

(Saaty, 1982). This technique is a flexible decision making approach which has several 

interesting features such as (Saaty, 1982; Saaty and Vargas, 2000): 

- Enables professionals to improve their judgment and understanding as well as 

refine previous problems‘ definitions. 

- It does not urge consensus but synthesizes representative outcome from diverse 

judgments. 

- It gives decision makers the ability to determine relative priorities and degree of 

belongings and let them make their choice between alternatives based on their 

goals. 
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- Provides an overall index or estimate of the desirability or risk of each alternative. 

- Consistency of judgments used to determine priorities and weights is guaranteed. 

- Its hierarchical structure mimics human natural ability to sort elements into levels. 

- Capable of dealing with interdependence of elements in the systems. 

- Solves problems using deductive integration. 

- It can be used for direct resources allocation, benefit/cost analysis, resolves 

conflicts, designs and optimizes the systems. 

There are three main concepts featuring AHP (Saaty, 1982; Saaty, 2008): 

1- Hierarchical structure and decomposition, which means breaking the problem into 

separate elements. 

2- Priority setting, which is the ranking of elements based on their relative 

importance and degree of belonging. 

3-  Logical consistency, which ensures that judgments and ranking used for 

determining priorities are consistent. 

The hierarchical structure that was used in the DSS for WDN is shown in Figure 3.1. The 

key index for that structure is risk, which is the parent of the entire structure. This 

structure is an improvement of the hierarchical structure which was developed by 

Francisque et al. (2009). The system comprises four levels, where each level has several 

parameters (attributes or elements). The first level contains vulnerability and sensitivity, 

which are children elements for parent attribute ―risk‖. The second level contains two 

children groups, one for parent attributes ―vulnerability‖ and ―sensitivity‖ as shown in 

Figure 3.1. The third level has four children groups for parents: hydraulics, structure 



44 

 

integrity, water quality, and schools‘ capacity. The fourth level contains three children 

attribute groups for parent attributes: potential intrusion, physico-chemical and microbial 

parameters as shown in Figure 3.1. 

3.1.4.2 Development of membership functions  

Fuzzification can be defined as a process by which measurable and non-measurable input 

data are transformed into a homogenous scale (0-1), or the process of changing crisp 

values into fuzzy (Francisque et al., 2009; Ross, 2009). One of the main characteristics of 

fuzzy sets is their ability to consider and deal with uncertainty in decision making 

process. Since many parameters are not actually deterministic and they have different 

levels of uncertainties due to measurements, human errors or approximate methodologies 

are used to obtain data. Parameters can be classified as fuzzy and represented by 

membership functions if the uncertainty encountered is caused by imprecision, vagueness 

and ambiguity (Ross, 2009). 

Triangular (TENs), Gaussian and trapezoidal (ZENs) fuzzy subsets (fuzzifiers) are 

usually used to fuzzify input data (Lee, 1996; Wang, 1999; Sadiq, 2004a and 2004d; 

Francisque et al., 2009). Using these fuzzy subsets, real input data, regardless of its type, 

can be mapped to fuzzy sets. In addition to its ability of transforming data into a 

membership function of a scale ranging from 0 and 1, fuzzifiers are used to simplify 

computations during the fuzzy inference machine process and eliminate noise that may be 

available and could corrupt input data. When membership functions in the fuzzy IF-

THEN rules are Gaussian or rectangular, then Gaussian and rectangular fuzzifiers can 

simplify computational analysis during the fuzzy inference process (Wang, 1999). Figure 
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3.2 can be used to illustrate the fuzzification for TDS, where the input value is 450 ppm 

(crisp real value).  

Using triangular membership functions in which their boundaries and structure were 

constructed using water quality standards and thresholds from literature, crisp TDS 

values were transformed into fuzzy subsets ―Low‖, ―Med‖ and ―High‖ and memberships 

[     ,     ,      ]. According to the membership functions and fuzzy sets in Figure 3.2, 

a TDS value of 450 ppm can be presented after fuzzification as [0.25, 0.75, 0], which 

implies that the membership of the crisp value (450 ppm) is 0.25 to the ―Low‖ fuzzy 

subset, 0.75 to the ―Med‖ fuzzy subset and does not have any membership to the ―High‖ 

fuzzy subset. 

3.1.4.3 Defining weights  

The general framework for DSS presented in Figure 3.1 shows that 32 parameters and 

attributes are distributed into four levels which are further subdivided into several parent-

child relationships. Parent attributes are determined by defining weights for each ‗child‘ 

attribute comprising that parent attribute or sometimes called ‗degree of belonging‘ to 

parent attribute (Chu et al., 1979). Relative importance of children attributes comprising 

parent attribute are not equal and, therefore, weighting criteria is required to define the 

degree of belonging and effect of each child attribute to its parent attribute. Figure 3.4 

shows a schematic diagram for parent and children attributes. Parent attribute has three 

children A, B and C. These children attributes comprise the parent attribute but may not 

have equal relative importance, weights and degree of belonging to the parent attribute. 

Based on the relative importance of children attributes, a weight for each of the children 
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attributes is defined. These weights are normalized to unity (Chu et al., 1979; Sadiq et al., 

2004b; Francisque et al., 2009; Ross, 2009). 

Saaty (1982) developed a scaling, ranking and prioritizing scheme for AHP. After 

developing the AHP structure shown in Figure 3.1, prioritizing the elements – which is an 

essential component of AHP – needs to be set to maintain judgment consistency. Table 

3.2 shows the scale for pairwise comparison between elements to determine the relative 

importance, degree of belongings and, finally, weights for each element.  

Recall Figure 3.4 and assume that there are three children elements A, B and C. To 

determine their relative importance, first, the reciprocal matrix should be constructed to 

show pairwise comparisons between these three elements according to the scale 

summarized in Table 3.2. 
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Figure ‎3.4 Parent-child attributes 

 

Table ‎3.2 Pairwise comparison scale (Saaty, 1982; Saaty, 1990) 

Importance Definition Explanation 

1 Equal importance of both 

elements 

Two activities contribute equally to the 

objective 

3 Weak importance of one element 

over another 

Experience and judgment slightly favor one 

activity over another 

5 Essential or strong importance of 

one element over another 

Experience and judgment strongly favor one 

activity over another 

7 Demonstrated importance of one 

element over another 

An element is strongly favored over another 

and  its dominance is demonstrated in practice 

9 Absolute importance of one 

element over another 

The evidence favoring one element over 

another is of highest possible order of 

affirmation 

2, 4, 6, 8 Intermediate values between two 

adjacent judgments 

Comparison is needed between two judgments 
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Table 3.3 shows the general form of reciprocal matrix, where d, e and f are relative 

importance scales ranging from 1 to 9 as presented in Table 3.2. Suppose element A is 

more important than element B by scale of d, element A is more important than element 

C by scale of e, and element B is more important than element C by scale of f. 

Accordingly, element B is more important than element A by the reciprocal of the 

importance of A over B, i.e. (  ⁄ ) and so on.  

Suppose d, e and f are equal to 4, 6 and 2, respectively, as shown in Table 3.4. To 

normalize the matrix, each column entry will be divided by the total of that column as 

shown in Table 3.5. Finally, the average of each row of the normalized matrix is 

calculated to find the weights as follows: 

   

 
     

 
     

 
    

 
      

   

  ⁄
     

 
     

 
    

 
      

   

  ⁄
     

  ⁄
     

 
    

 
      

        [   
  
  
  

  ]  [  
    
     
    
  ] 
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Table ‎3.3 General form for reciprocal matrix 

Element A B C 

A 

B 

C 

1 

  ⁄  

  ⁄  

d 

1 

  ⁄  

e 

f 

1 

 

 

Table ‎3.4 Illustration for reciprocal matrix 

Element A B C 

A 

B 

C 

1 

  ⁄  

  ⁄  

4 

1 

  ⁄  

6 

2 

1 

Column 

Total 
1.42 5.50 9.00 

 

 

Table ‎3.5 Normalization of reciprocal matrix 

Element A B C 

A 

 

B 

 

C 

 

    
 

  ⁄

    
 

  ⁄
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There is another method for approximating weights, by summing each row and then 

normalize it with respect to the total sum to obtain weights    for each element as shown 

below (Francisque et al., 2009): 

                      [   
  
  
  

  ]  [  
    
     
    
  ] 

The difference between the two methods in calculating weights is negligible, but for 

elements more than three, the approximation may lack accuracy, therefore, using the first 

method is preferred (Saaty, 1982). 

Before using these weights, scale and priorities in the reciprocal matrix, it should be 

tested for consistency. In decision making problems, creating a consistent judgment is 

important to avoid taking decisions based on judgments with low consistency that may 

appear to be random (Saaty, 1982; Saaty and Vargas, 2000; Saaty, 2008). There are 

several methods by which measuring and maintaining consistency is made. Two methods 

are presented as follows: 

i. Equating method 

Recall the reciprocal matrix in Table 3.4. There are three priorities (judgments) from 

experts for that matrix                . According to the assumed relative 

importance, the following relations can be made: 

        (3.1) 

(3.2) 

 

B  𝑑A   
⬚
    A  

B

𝑑
 

C  𝑒A 
⬚
    A  

C

𝑒
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(3.3) 

or, 

 

(3.4) 

and since, 

(3.5) 

 

∴ regardless of the actual value of    , for priorities to be consistent, f must be 

equal to: 

(3.6) 

 

therefore, 

(3.7)  

 

where     is the equated priority and     is the actual experts‘ priority, 

(3.8) 

 

So, priorities should be equated as shown above to maintain consistency, where     will 

be used to replace the actual experts‘ priority    . Accordingly, weights for the 

illustrative example will be: 

∴  
B

𝑑
 
C

𝑒
  

𝐶  
𝑒

𝑑
B 

𝐶  𝑓B 

 

𝑓⬚  
𝑒⬚
𝑑⬚

 

𝑓𝑒𝑞  
𝑒𝑒𝑥
𝑑𝑒𝑥

 

𝑓𝑒𝑞 ≠ 𝑓𝑒𝑥  
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where modified reciprocal matrix is presented in Tables 3.6 and 3.7. 

This method is applicable when the difference between experts‘ judgments or 

priorities (   ) and equated priority (   ) is small. If the difference is significant, 

consistency ratio method (C.R.) can be used. 

ii. Consistency Ratio (C.R.) 

In real applications, it is sometimes difficult to get consistent priorities or judgments 

from experts. Therefore, the key issue here is not being consistent, but it is whether 

the consistency level is accepted or not. For the matrix in Table 3.8,  

   ≠
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Table ‎3.6 Illustration for modified reciprocal matrix 

Element A B C 

A 

B 

C 

1 

  ⁄  

  ⁄  

4 

1 

  ⁄  

6 

3/2 

  

Column 

Total 
1.42 5.67 8.50 

 

 

Table ‎3.7 Normalization of modified reciprocal matrix 

Element A B C 

A 

B 

C 
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Table ‎3.8 Inconsistent priorities and weights 

Element A(0.70) B(0.19) C(0.11) 

A 

B 

C 

1 

  ⁄  

  ⁄  

4 

1 

  ⁄  

6 

2 

1 
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Therefore, the priorities are inconsistent and they should be tested using C.R. to check the 

consistency level. Saaty (1982) proposed to multiply the element‘s weight for the 

inconsistent priorities by the relative priority of that element as shown in Table 3.6. 

Consistency ratio is defined as: 

 

(3.9) 

 

where:  

C.R. = Consistency Ratio 

R.I.  = Random Consistency Index 

C.I. = Consistency Index, which is defined as: 

(3.10) 

where: 

       is the average of dividing the row totals in the matrix shown in Table 3.9 by 

inconsistent weights 

                             

Weights for inconsistent priorities are considered ―consistent‖ if the C.R. is less than 

10%. Table 3.10 shows sets of values where each value is an average random 

consistency index (R.I.) derived from a sample of randomly generated reciprocal 

matrices using scale priorities presented in Table 3.2 (Saaty and Vargas, 1994). For 

the case discussed here, n = 3 and from Table 3.10, R.I. is equal to 0.52. 

𝐶 𝑅  
𝐶 𝐼 

𝑅 𝐼 
 

𝐶 𝐼  
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 −  
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Table ‎3.9 Inconsistent matrix after multiplication 

Element A B C 
Row 

Total 

A 

B 

C 

0.70 

     

     

0.76 

0.19 

     

0.66 

0.22 

0.11 

2.12 

0.59 

0.33 

 

 

 

 

 

Table ‎3.10 Average Random Consistency Index (R.I.) 

n 1 2 3 4 5 6 7 8 9 10 

R.I. 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 
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Therefore, from the matrix in Table 3.9 and Equations (3.9) and (3.10):  

[          ]   [                    ]  [ ]  

[
    
    
    
]  [
    
    
    
]  [
    
    
    
] 

     
              

 
      

     
    −  

 
       

     
     

    
       

Therefore, since C.R. is less than 0.1, the inconsistency was ignored and the original 

weights were considered consistent. 

        [   
  
  
  

  ]  [  
    
     
    
  ] 

3.1.4.4 Aggregation 

Aggregation is the process by which fuzzy sets representing the outputs for each 

parameter or element (child element) [     ,     ,      ] are combined or aggregated to 

produce a single output for group of elements (parent fuzzy set output) (Mathworks, 

2012).  

Fuzzy sets produced from fuzzification for all elements (A, B and C) and weights 

calculated for each element were used to determine the aggregated fuzzy set for parent 

group using matrix multiplication (Sadiq and Rodriguez, 2004; Francisque et al., 2009).  
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For hierarchical system presented in Figure 3.4, fuzzy sets for all child elements after 

fuzzification will be as follows: 

 

                       (3.11) 

 

Therefore, parent fuzzy set can be represented by matrix multiplication as: 

 

 

            (3.12) 

 

This parent fuzzy set produced from matrix multiplication in Equation (3.12) was used in 

further calculation. This fuzzy set was considered as parent element in the current level, 

but was also considered as a child element in the upper level in the AHP, where the same 

process was repeated until the final risk fuzzy set was produced as indicated in Figure 

3.1. 

3.1.4.5 Defuzzification 

The process by which fuzzy sets [     ,     ,      ] are converted to representative 

crisp value is called defuzzification (Wang, 1999; Francisque et al., 2009). It is the 

opposite of fuzzification, while fuzzification converts crisp values into fuzzy sets, 

defuzzification uses fuzzy sets to calculate single crisp value (Ross, 2009). There are 

 𝜇𝑙𝑜𝑤
𝑃𝑎𝑟𝑒𝑛𝑡 𝜇𝑚𝑒𝑑

𝑃𝑎𝑟𝑒𝑛𝑡 𝜇 𝑖𝑔 
𝑃𝑎𝑟𝑒𝑛𝑡  [𝑤𝐴 𝑤𝐵 𝑤𝐶] ×  

𝜇𝑙𝑜𝑤
𝐴 𝜇𝑚𝑒𝑑

𝐴 𝜇 𝑖𝑔 
𝐴

𝜇𝑙𝑜𝑤
𝐵 𝜇𝑚𝑒𝑑

𝐵 𝜇 𝑖𝑔 
𝐵

𝜇𝑙𝑜𝑤
𝐶 𝜇𝑚𝑒𝑑

𝐶 𝜇 𝑖𝑔 
𝐶

  

 

𝜇𝑙𝑜𝑤
𝐴 𝜇𝑚𝑒𝑑

𝐴 𝜇 𝑖𝑔 
𝐴

𝜇𝑙𝑜𝑤
𝐵 𝜇𝑚𝑒𝑑

𝐵 𝜇 𝑖𝑔 
𝐵

𝜇𝑙𝑜𝑤
𝐶 𝜇𝑚𝑒𝑑
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several methods to defuzzify fuzzy sets, such as the first maximum, the last maximum, 

the mean of maximum, the center of area, weighted average and others. Weighted 

average method or scoring is preferred by many researchers (Lu et al., 1999; Silvert, 

2000; Sadiq and Rodriguez, 2004; Francisque et al., 2009), especially in environmental 

applications. According to the weighted average method, to convert the fuzzy sets into 

crisp value, each fuzzy set will be multiplied by a constant weight and the product 

summation is the crisp value as follows: 

(3.13)  

where a, b and c are weights for each fuzzy set. 

In this study, since there are only three fuzzy sets, ―low‖, ―med‖ and ―high‖, weights of 

0, 0.5 and 1 were suggested for a, b and c, respectively  (Francisque et al., 2009). For the 

fuzzy set representing low risk (    ), it is acceptable to neglect this risk and assign a 

zero to weight a, because low risk implies high safety and secure system. Similarly, for 

the fuzzy set representing high risk (     ), weight c should be entirely considered since 

it represents the situation with highest risk and lowest security level. Fuzzy set 

representing moderate risk (    ) represents the midway or the mean between low and 

high risk, therefore, assigning 0.5 to b is logically accepted. 

3.1.5 Fuzzy Rule-Based (FRB) 

For the parameters and elements used in the AHP, basic assumption of independence of 

children elements was made. This can be accepted for most of the elements presented in 

Figure 3.1, but there are few elements that have some sort of dependence or interrelations 

between them which cannot be ignored.  

C i p v     (Ri k I   x)  (𝑎 × 𝜇𝑙𝑜𝑤)  (𝑏 × 𝜇𝑚𝑒𝑑)  (𝑐 × 𝜇 𝑖𝑔 ) 
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FRB is used to aggregate dependent child elements using IF-THEN rules based on the 

knowledge of experts. One of the most common approaches for merging human 

knowledge into engineering processes using artificial intelligence mechanisms is the IF-

THEN rules in the form of (Ross, 2009): 

IF premise (antecedent), THEN conclusion (consequent) 

IF-THEN rules are classified to be the heart of fuzzy systems. These rules characterize 

human knowledge, such as classifications and/or judgments, and engineering facts using 

continuous membership functions (Wang, 1999). Although this approach may look 

simple, it is very effective and has many applications. Suppose a hydraulic engineer is 

required to control water pressure in the WDN using pumping power, so that pressure is 

acceptable all over the network. Actions that should be taken by the engineer can be 

controlled using IF-THEN rules as follows: 

IF pressure is low, THEN apply more pumping power 

IF pressure is medium, THEN apply moderate pumping power 

IF pressure if high, THEN apply less pumping power 

The words ―low‖, ―medium‖, ―high‖, ―more‖, ―moderate‖ and ―less‖ are defined and 

characterized using membership functions. Using IF-THEN rules, typical membership 

function can be constructed between pressure and pumping power as presented in Figure 

3.5 which shows the membership function for ―low‖ fuzzy set only, where the horizontal 

and vertical axes represent the power needed and membership values, respectively. 
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The challenging step is using all these rules and membership functions to construct a 

single system. Different fuzzy systems have different approaches for combining rules and 

membership functions. Generally, major combining approaches for fuzzy systems that are 

commonly used are: (1) pure fuzzy systems, (2) Mamdani fuzzy systems, (3) Sugeno 

fuzzy systems and (4) fuzzy systems with fuzzifier and defuzzifier (Wang, 1999; Guney 

and Sarikaya, 2009).  

General framework for pure fuzzy systems is represented in Figure 3.6, where A and B 

represent inputs and outputs, respectively. The fuzzy interface engine combines IF-THEN 

rules from input fuzzy sets to output fuzzy sets. The drawback of this approach is the use 

of natural language words for its input and output fuzzy sets, which is not applicable for 

all engineering problems that have  numeric values and variables.  

Mamdani and Sugeno fuzzy systems allow the consequent part of the fuzzy rules (THEN) 

to be in mathematical form. These approaches are weighted average, which means that 

different rules can be given different weights based on their importance and effect on the 

output. The general framework for Mamdani and Sugeno methods is presented in Figure 

3.7. The main problem with these two approaches is the consequent part of the fuzzy 

rules which cannot anymore represent human knowledge since it is a mathematical 

formulation. In addition, the fuzzy system becomes rigid with limited freedom to apply 

different fuzzy logic principles. Fuzzy systems with fuzzifiers and defuzzifiers present 

the advantages of pure, Mamdani and Sugeno fuzzy systems without suffering from the 

drawbacks of the original methods. Real values and variables are transformed into fuzzy 

sets using fuzzifiers for inputs and after the analysis, fuzzy sets are transformed into real 
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Figure ‎3.5 Membership function for ―low‖ class 

  

 

Figure ‎3.6 Pure fuzzy system‘s framework 

 

 

Figure ‎3.7 Mamdani and Sugeno systems‘ framework 
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values and variables using defuzzifier for outputs as was explained in detail regarding 

FSE. This approach gives the ability to use a wide range of data types from linguistic 

classes and natural language words to numerical variables (Wang, 1999) and, 

accordingly, this approach was used in this research. Figure 3.8 shows the general 

framework for this fuzzy system. In this study, fuzzifier and defuzzifier used for FSE 

were exactly the same. The change was only in the aggregation process. 

The element groups with  sign in Figure 3.1, imply that the groups‘ elements were 

considered independent of each other, and aggregated crisp values for the parent element 

were determined using weighted average method as discussed previously. Element 

groups with  sign indicate that elements in these groups are somehow dependent or 

related to each other. Thus, the IF-THEN FRB rules were used for aggregation instead of 

the weighted average method to ensure that relations among elements were considered.  

For groups such as hydraulics, potential intrusion, physico-chemical and microbial, a 

single representative value for elements such as pressure, pH, TDS…etc., was considered 

when using FSE. This representative value is usually the arithmetic mean. In order to 

reflect the variation and range of data from this representative value, two penalty factors 

were added to these elements. Adding such penalty would increase the risk index in case 

there is a significant diversion in the data records from representative value or from the 

optimal acceptable range of the considered factor. Diversion fuzzy sets and relevant 

element fuzzy sets were aggregated using FRB to produce fuzzy sets which consider risk 

due to violation of the hydraulic or environmental standards as well as the risk caused by 

significant diversion of data from the representative value used in the analysis.  

To illustrate the application of FRB, suppose pH fuzzy sets are: 
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Figure ‎3.8 Framework for systems with fuzzifiers and defuzzifiers 
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and the diversion (penalty) fuzzy sets are: 

     
    

    
    

     
    
  

Consider the following as the IF-THEN rules controlling the relation between pH risk 

and diversion risk: 

IF pH level is LOW and diversion is LOW, THEN LOW 

IF pH level is LOW and diversion is MED, THEN LOW 

IF pH level is LOW and diversion is HIGH, THEN MED 

IF pH level is MED and diversion is LOW, THEN MED 

IF pH level is MED and diversion is MED, THEN MED 

IF pH level is MED and diversion is HIGH, THEN HIGH 

IF pH level is HIGH and diversion is LOW, THEN HIGH 

IF pH level is HIGH and diversion is MED, THEN HIGH 

IF pH level is HIGH and diversion is HIGH, THEN HIGH 

These rules are represented in Table 3.11.  

Aggregated new fuzzy sets for pH can be written as: 
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Table ‎3.11 Fuzzy rule-based for pH 

 

pH level 
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LOW LOW MED HIGH 

MED LOW MED HIGH 

HIGH MED HIGH HIGH 
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where                 is the final fuzzy set for pH which considers risk from pH 

level and diversion from representative value or optimal range. 

3.2 Hydraulic Module (Phase II) 

In this phase, a database for Al-Khobar WDN was prepared that will provide the 

necessary information for the fuzzy algorithms developed in ―risk assessment module‖. 

Risk assessment was performed for predefined nodes in the WDN. Hydraulic simulation 

model WaterGEMS was used to generate spatial hydraulic data risk assessment module.  

WaterGEMS is the newer edition of the well-known hydraulic model WaterCAD, 

developed by Bentley Systems (2006). WaterGEMS is a hydraulic and water quality 

model for WDN in which it provides the ability for designing, simulating, operating and 

managing WDNs. The model is capable of analyzing steady, extended period 

simulations, water age, fire-flow analysis and many other features. The model was used 

in many case studies either for modeling WDN, leak detections, demands and nearly all 

aspects related to hydraulic modeling (Bentley Systems, 2013). In addition to its powerful 

hydraulic modeling features, WaterGEMS is compatible with ArcGIS, which allows the 

modeler to geospatially model water systems using GIS (Meadows and Walski, 2001). 

3.3 Optimization Module (Phase III) 

In this module, the water quality monitoring stations will be selected following the 

demand coverage approach.  Generally, the method is based on simple concept which 

states that downstream nodes with maximum demand are considered potential monitoring 

stations and nodes upstream are considered ―covered‖ by these potential monitoring 

stations under specific conditions.  Details of this approach can be found at Lee and 
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Deininger (1992).  The developed coverage matrices based on the demand coverage 

approach were used to identify the optimal locations for MSs using the optimizations 

models which will be developed in chapter 4. 

3.4     Display Module (Phase IV) 

GIS was used extensively all over the study to display regional indices at the WDN. All 

the maps generated in this study were developed by GIS model. In addition, it was used 

to divide the city into sub-regions using Theissen method as will be discussed in the 

model development chapter (Chapter 4). 

3.5      Risk Management Module (Phase V) 

In this module, the contribution of each factor on the overall risk was studied and 

quantified using multi-criteria decision making (MCDM). In addition, the sensitivity of 

each factor on the overall risk, vulnerability and sensitivity of the system was 

investigated using Monte Carlo simulation. 
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4 CHAPTER 4 

DSS Tool and Optimization Model Development 

In this research, Decision Support System (DSS) tool and optimization model were 

developed. The DSS tool was developed using FSE and FRB to prioritize risks in any 

WDNs. On the other hand, the optimization model was developed to maximize monitored 

demand in the WDN by selecting optimal locations for MSs. The details of these tool and 

model are discussed in the following sections. 

4.1 DSS Tool Development 

The DSS tool was developed to prioritize risk between different sub-regions within the 

WDN. For this purpose, the WDN has to be divided into sub-regions in order to quantify 

and characterize risk assessment associated with them. Thessien method was applied to 

divide the WDN into sub-regions based on the existing monitoring stations using ArcGIS 

package which was used for the zoning process.  

The DSS tool was developed based on FSE and AHP. Figure 3.1 shows the general 

framework for the developed DSS. Risk indices for sub-regions were determined by the 

aggregation of different components (or attributes) in AHP. According to the framework 

of the DSS, there are four levels in this system, each level is presented in different color. 

Level one (green) is considered as child attributes for level two (blue), and while level 

two are the parent attributes for level one, they are at the same time child attributes for 
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level three (gray), and so on. Child attributes were aggregated together using FSE to 

determine the risk index for the parent attribute. 

Each attribute has a fuzzy set which was developed based on the characteristics of the 

attribute, for example, the developed fuzzy set for TDS is shown in Figure 4.1. The 

boundaries for low, med and high membership functions are based on TDS standards 

presented in literature which define low, med and high levels of TDS. For attributes 

where there are no predefined boundaries or standards, or when there is no experts‘ 

agreement about the classification of the attribute, logical approximations and/or 

averages of existing standards were used to generalize the boundaries for the attributes. 

Table 4.1 summarizes the fuzzy sets boundaries for all ―level one‖ attributes. Shapes of 

different fuzzy sets are shown in Appendix B. Triangular and trapezoidal fuzzy shapes 

were used in this study. Note that boundaries for population density and distribution of 

students shown in Table 4.1 are for the case study in this research. Equations (4.1) and 

(4.2) show how these boundaries were developed. 

When dealing with large data records, limiting the analysis to representative values (such 

as mean or median) for each attribute may not be wise, especially for attributes with high 

diversity in data. Therefore, in addition to the fuzzy sets developed for defining the risk 

boundaries based on the representative value of the attribute, additional fuzzy sets such as 

―representative diversions percentage‖ and ―optimal diversions percentage‖ were added 

for some of the attributes as discussed in Chapter 3. Instead of quantifying the risk based 

only on a single representative value (average), which might be too rough to reflect the 

variations of the entire data record, the diversity of the entire field data from the 

―representative value‖ and ―optimal standards‖ was considered too. These fuzzy sets can 
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Figure ‎4.1 Fuzzy set for TDS 
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Table ‎4.1 Fuzzy sets thresholds and types 

Parameter Nature of fuzzy set 
Thresholds 

Type 
A B C D E F 

TDS 

Data (ppm) 0 300 500 700 ∞ 
 

Triangular 1 

Representative Diversions (%) 0 25 50 100 
  

Triangular 2 

Optimal Diversions (%) 0 25 50 100 
  

Triangular 2 

Temperature 

Data (C°) 0 20 25 30 100 
 

Triangular 1 

Representative Diversions (%) 0 25 50 100 
  

Triangular 2 

Optimal Diversions (%) 0 25 50 100 
  

Triangular 2 

pH 

Data 0 5.5 6.5 8.5 9.5 14 Trapezoidal 

Representative Diversions (%) 0 25 50 100 
  

Triangular 2 

Optimal Diversions (%) 0 25 50 100 
  

Triangular 2 

Free Chlorine 

Data (ppm) 0 0.2 0.3 1.2 1.3 ∞ Trapezoidal 

Representative Diversions (%) 0 25 50 100 
  

Triangular 2 

Optimal Diversions (%) 0 25 50 100 
  

Triangular 2 

Turbidity 

Data (NTU) 0 0.5 0.8 1 ∞ 
 

Triangular 1 

Representative Diversions (%) 0 25 50 100 
  

Triangular 2 

Optimal Diversions (%) 0 25 50 100 
  

Triangular 2 

Pipes Type Percentage of badness 0 25 50 75 100 
 

Triangular 3 

Potential Industrial 

Intrusion 
Percentage by area 0 25 50 75 100 

 
Triangular 3 

Pipe Age (Option 2) Average age 0 20 30 40 60 
 

Triangular 2 

Pipe Break (Option 3) Breakage ratio 0 0.25 0.5 0.75 1 
 

Triangular 3 

 

 

7
1
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Table 4.1 Continued 

Parameter 

 

Nature of fuzzy set 

 

Thresholds Type 

 A B C D E F 

Schools 

No. of Elementary students 0 709 1418 2835 ∞   Triangular 1 

No. of Intermediate students 0 317 633 1266 ∞   Triangular 1 

No. of Secondary students 0 273 546 1092 ∞   Triangular 1 

Hospitals No. of beds 0 40 80 120 160 ∞ Triangular 2 

Pressure 

 

Nodes with low and high pressure (%) 0 25 50 100     Triangular 2 

Optimal Diversions (%) 0 25 50 100     Triangular 2 

Velocity Pipes with low and high velocity (%) 0 25 50 100     Triangular 2 

Optimal Diversions (%) 0 25 50 100     Triangular 2 

Water Age 

 

Nodes with high water age 0 25 50 100     Triangular 2 

Optimal Diversions (%) 0 25 50 100     Triangular 2 

Population Population density 0 9420 18840 300000     Triangular 2 

Sewer System Coverage 
Percentage of area not covered by 

sewer system 

0 25 50 75 100   Triangular 3 

Water Table Dry-Wet pipes (%) 0 25 50 100     Triangular 2 

 

 

7
2
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be thought of as penalties which will increase the risk indices if there is a high divergence 

between the ―representative value‖ and attribute‘s field data. Similarly, additional 

penalties will be added to risk indices if there is high divergence between ―optimal 

standards‖ and attribute‘s field data. 

Most of the attributes‘ boundaries for fuzzy sets were determined based on the standards 

of each attribute published in literature and operational standards – for Al-Khobar WDN 

– (WHO, 1996; AWWA, 2002; WHO, 2003; Sarbatly and Krishnaiah, 2007; Gupta, 

2008; WHO, 2008; USEPA, 2009; Francisque et al., 2009), as shown in Table 4.1. 

However, since some of the attributes did not have predefined standards or they may 

change from one place to another or from one sub-region to another, therefore some 

standards were developed to determine the boundaries for these attributes. Examples of 

such attributes include number of students in elementary, intermediate and secondary 

schools, population density, pipe breaks and pipe age. 

For the number of school students in a sub-region, fuzzy med class for number of 

students boundary was determined using Equation (4.1) as follows: 

∑   
 
 

 
        (4.1) 

where: 

n = number of sub-regions 

i =  school type (elementary, intermediate and secondary) 

S =  number of students at sub-region i 



74 

 

Low and high fuzzy classes are half and twice med class boundary, respectively. Fuzzy 

med class for population density was determined using the average population density for 

the city as shown in Equation (4.2). Low and high fuzzy classes for population density 

are zero and twice the average, respectively. 

∑ (
  

  
) 

        (4.2) 

where: 

   =   Population at sub-region i. 

   =  Area at sub-region i. 

To evaluate the pipe breaks in any sub-region, a weighted breakage ratio index was 

developed to enhance risk prioritization. The weighted breakage ratio (WBR) ranges 

between zero and 1, where zero indicates low fuzzy class and 1 indicates high fuzzy 

class. WBR is defined as follows: 

     
   

   
     (4.3) 

where: 

     =  Weighted breakage ratio for    pipe material. 

i   =  Pipe material (AC, PVC, Steel…etc.). 

RB  =  Historical breakage ratio for    pipe material. 

PM   =  Percentage of pipe material i in the sub-region. 
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Based on the data collected from Al-Khobar municipality, PMs for AC, PVC and steel 

pipes are 65%, 10% and 25%, respectively. Accordingly, sub-regions where AC pipes are 

dominant will be characterized with high risk of pipe breakage and sub-regions where 

PVC pipes are dominant will be characterized with low risk of pipe breakage. 

For evaluating the pipes age in the sub-regions, a weighted age average index was 

developed. In every sub-region, there are different pipe sets. Each set represents pipes 

that have been installed in the same period. In this tool, the weighted age average (WAA) 

ratio is defined as follows: 

     
   

   
     (4.4) 

   ∑          (4.5) 

where: 

i :  Pipes set i. 

    :  Pipe ages for pipe set i at the sub-region. 

    :  Percentage by area of pipe set i in the sub-region. 

RA :  Average age of pipes in the sub-region. 

Pipes with zero, 30 and 60 years of age represent the low, med and high fuzzy class, 

respectively. Pipe breakage risks vary for different types of pipe materials, however, AC 

pipes are the worst in terms of breakage ratio and health concerns. Accordingly, 
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percentage of AC pipes in each sub-region was used as the risk index for pipe breakage 

as presented in Table 4.1.  

Percentage of areas in which water table fluctuates above and below WDN was used to 

evaluate the water level effect on pipes. This variation in water level can cause intrusion 

and breakage due to variation of external pressure acting on pipes. The percentage of 

pipes that were experiencing fluctuation of groundwater level were used to classify this 

attribute as shown in Table 4.1.  

Potential industrial intrusion was approximated by the industrial areas within the sub-

regions. Similarly, area of corrosive soils – that might harm the pipelines – in each sub-

region was used to approximate the aggressiveness of the surrounding soil on pipes. 

For standard of living and activity index, setting boundaries for these attributes was 

approximated based on real estate values at each sub-region and the existing activities. In 

general, standard of living is characterized to have three classes, namely low, med and 

high income rates, while activity is classified to include the following three classes: 

residential, commercial and industrial. These classes were numerated by using the 

percentage of area of each class within the specified sub-region. Subsequently, each class 

was assigned a different weight during the aggregation process based on the severity of 

each class. For example, people in areas with low income rate, will tend more to drink 

water from the WDN compared to people with high income rates who will tend to buy 

bottled drinking water. Therefore, the risk on the low income rate class due to 

deterioration of water quality is expected to be high compared to areas or sub-regions 

occupied by high income rate class. Tables 4.2 to 4.11 show weights used for  
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Table ‎4.2 Weights for Hydraulics attribute 

  Pressure Velocity Water age 

Pressure 1 3 4 

Velocity 0.33 1 1.33 

Water age 0.25 0.75 1 

 

Table ‎4.3 Weights for Physical and chemical attribute 

 

TDS Temp pH 

TDS 1 3 0.33 

Temp 0.33 1 0.1 

pH 3 0.9 1 

 

Table ‎4.4 Weights for microbial attribute 

 

Chlorine 

R. Turbidity 

Chlorine R. 1 4 

Turbidity 0.25 1 

 

Table ‎4.5 Weights for Water Quality attribute 

 

P-C Microbial 

P-C 1 0.5 

Microbial 2 1 

 

Table ‎4.6 Weights for Intrusion attribute 

  Industrial Sewer 

Industrial 1 0.33 

Sewer 3 1 
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Table ‎4.7 Weights for Structure Integrity attribute 

  Type Age Break P. Int. Water table 

Pipe type 1 2 1 3 9 

Pipe age 0.5 1 0.5 1.5 4.5 

Pipe break 1 2 1 3 9 

Potential intrusion 0.33 0.67 0.33 1 3 

Water table 0.11 0.22 0.11 0.33 1 

 

Table ‎4.8 Weights for Schools attribute 

  Elementary Intermediate Secondary 

Elementary 1 3 5 

Intermediate 0.33 1 1.67 

Secondary 0.2 0.6 1 
 

 

Table ‎4.9 Weights for Sensitivity attribute 

  Population Schools Hospital Activity 

Standard 

of living 

Population 1 3 2 4 5 

Schools 0.33 1 0.67 1.33 1.67 

Hospital 0.5 1.5 1 2 2.5 

Activity 0.25 0.75 0.5 1 1.25 

Standard of living 0.2 0.6 0.4 0.8 1 

 

Table ‎4.10 Weights for Vulnerability attribute 

  Water Quality Structure I. Hydraulics 

Water Quality 1 1 1 

Structure I. 1 1 1 

Hydraulics 1 1 1 

 

Table ‎4.11 Weights for Risk attribute 

  Vulnerability Sensitivity 

Vulnerability 1 1 

Sensitivity 1 1 
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aggregation process. These weights were developed based on inputs collected from 

experts in addition to weights published in literature (Francisque et al., 2009). These 

weights were used to evaluate the importance of each attribute compared to other 

attributes as explained in Chapter 3. A copy of the survey can be found in Appendix A. 

The attribute indices were developed after performing the following: fuzzification, 

aggregation and defuzzification as discussed in Chapter 3. The development of the 

indices can be illustrated by the following example for physico-chemical attribute as 

shown below. 

The physico-chemical attribute was developed by aggregating the fuzzified three child 

attributes including TDS, pH and temperature as shown in Figure 3.1. Each child attribute 

has three membership functions, [     ,     ,      ], which indicate low, med and high 

fuzzy class for each child attribute. Suppose the membership functions for representative 

values and diversions penalties for TDS, pH and temperature child attribute are presented 

in matrices form as shown in Tables 4.12 and 4.13, respectively. Using FRB as discussed 

in Chapter 3, the overall membership functions for child attributes can be developed as 

shown in Table 4.14. 

Based on the relative weights matrix for physico-chemical attribute shown in Table 4.3, 

the developed weights for TDS, pH and temperature are: 

                  [   

    
   
     

  ]  [  
    
     
    
  ] 
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Table ‎4.12 Assumed membership functions for TDS, pH and temperature 

 

µL µM µH 

TDS 1 0 0 

Temp 0 0.48 0.52 

pH 1 0 0 

 

 

 

Table ‎4.13 Assumed diversion membership functions for TDS, pH and temperature 

 

µL µM µH 

TDS 0.49 0.26 0.25 

Temp 0 0 1 

pH 1 0 0 

 

 

 

Table ‎4.14 Overall membership functions for TDS, pH and temperature 

  µL µM µH 

TDS 0.49 0.51 0 

Temp 0 0 1 

pH 1 0 0 
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Accordingly, aggregating child attributes to determine parent attribute (physico-

chemical) membership functions, gives: 

     
      

       
    [            ] × [

         
   
   

] 

     
      

       
    [                  ] 

Finally, crisp value for parent attribute (usually used for risk, vulnerability and sensitivity 

indices) can be determined by using weights (Table 4.15) which were developed using 

weighted average method (Lu et al., 1999; Silvert, 2000; Sadiq and Rodriguez, 2004; 

Francisque et al., 2009) as follows: 

Physico-chemical Index (Crisp value) = (0 x 0.80) + (0.5 x 0.12) + (1 x 0.008) 

Physico-chemical Index (Crisp value) = 0.14 

Similar procedure was applied for every child and parent attributes. It should be noted 

that diversions penalties matrix was developed by applying FRB between representative 

diversions and optimal diversions. 

4.2 Decision Support System (DSS) Tool 

The DSS tool was developed using Excel platform and macros. It is capable of estimating 

the risk indices for a wide variety of factors affecting WDN including water quality, 

infrastructure, population distribution as well as human and industrial activities. The DSS 

was applied on each sub-region in the WDN to prioritize regional indices such as 

vulnerability, sensitivity and risk. Input data used for the DSS are either changing on 

short time basis such as water quality parameters including TDS, chlorine residuals, pH, 

TDS…etc., or variables that do not change in short period such as types of pipes, pipes  
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Table ‎4.15 Weights for different indices based on weighted average method 

 Index                  

Physical and Chemical  0 0.5 1 

Microbial  0 0.5 1 

Water Quality 0 0.5 1 

Structural Integrity  0 0.5 1 

Schools  0 0.5 1 

Hospitals  0 0.5 1 

Activity  0.2 0.3 1 

Standard of living  0.2 0.5 1 

Pressure  0 0.5 1 

Velocity  0 0.5 1 

Water Age  0 0.5 1 

Hydraulics  0 0.5 1 

Population  0.2 0.5 1 

Sensitivity  0 0.5 1 

Vulnerability 0 0.5 1 

Risk 0 0.5 1 
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materials, number of hospital beds, human and industrial activities, income rate…etc. In 

general, the developed DSS tool can be applied for any WDN. 

The DSS was developed so that it updates all indices such as vulnerability, sensitivity and 

risk, directly as soon as the input data are entered into the Excel sheet prepared for data 

input. The DSS tool is capable of showing daily, monthly and annual indices for 

hydraulics, water quality, structure integrity, vulnerability, sensitivity and risk. 

The developed DSS tool consists of 32 sheets in which all the operations related to FSE 

and FRB are performed, which include fuzzification, aggregation, weighting, 

defuzzification and crisp values development, in addition to presenting output indices for 

every attribute shown in Figure 3.1. Sample snapshots of the developed DSS tool are 

presented in Figures 4.2 to 4.6. 

In order to make sure that FSE and FRB operations are operating correctly as well as the 

inputs were entered and output are presented correctly, 195 checks were used in the 

developed DSS tool. Soft copy of the DSS tool is in appendix D. 

Sources of input data vary depending on the attribute, which are mainly collected from 

the field, either for daily varying attributes such as water quality parameters or long-term 

varying attributes such as infrastructure characteristics. However, hydraulic parameters 

were simulated using WaterGEM software package based on the developed and 

calibrated WDN model for Al-Khobar city (Al-Zahrani and Al-Ghamdi, 2008).  
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Figure ‎4.2 Sample input sheet for DSS tool 
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Figure ‎4.3 Thresholds sheet used for the DSS tool 
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Figure ‎4.4 Internal check sheet of the DSS tool 
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Figure ‎4.5 Sample analysis of one of the FSE processes for one attribute 

8
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Figure ‎4.6 Sample output sheet of the DSS tool

8
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4.3 Optimization Model   

Another objective of this research was to optimize water quality monitoring stations in 

WDN. The main component in locating MS using DCM is developing the demand 

matrix, which shows the percentage of flow from each PMS node. To develop the 

demand matrix, each node was considered as a potential contamination node and 

accordingly, flow from each node has to be traced all over the network. In this study, 

WaterGEM package was used for tracing the flow. Each simulation traces water flow 

from a single node all over the network and, consequently, tracing matrix shows the 

percentage of water flowing from the specified single node towards the other nodes in the 

network during a simulation period of 24 hours. These tracing matrices were used to 

construct flow fraction and demand coverage matrices. Figure 4.7 shows a snapshot of 

tracing matrix at hour 1 of the day. 

Converting the tracing matrix into demand matrix is a very complex process, especially 

for real network. For each tracing matrix, 12 supporting matrices were used to: 

-  eliminate traced flow less than the flow threshold (CT),  

- construct initial demand matrix,  

- select maximum demand for each node in case a single node covers several flow 

paths, and 

- ensure that each demand at each node will be covered once only.  

In other words, to determine the demand matrix for one hour from the 24 hours in the 

day, 12 supporting matrices were required to develop the final demand matrix which will  
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Figure ‎4.7 Tracing matrix 
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be used for developing coverage matrices for optimization. At this stage, it was necessary 

to use nine macro-algorithms to control this huge size of database.  

Finally, coverage matrices were developed from the demand matrices. Coverage matrices 

show the demand monitored by PMS. For each CT value and demand pattern, one 

coverage matrix was developed.  

Four optimization models were developed for to determine the optimal locations for 

monitoring stations based on different four objective functions. These models are: 

- Demand coverage optimization: In this model water demand was the only key 

parameter used in the optimization. The objective was to locate optimal 

monitoring stations that will maximize demand coverage. 

- Risk optimization: In this model, water demand as well as risk indices produced 

by the DSS were used for determining the optimal locations for monitoring 

stations. The monitoring stations with the highest demand and risk index were 

selected to be the optimal monitoring stations. 

- Vulnerability optimization: In this model, water demand and vulnerability indices 

produced by the DSS were used for determining the optimal locations for 

monitoring stations. The monitoring stations with the highest demand and 

vulnerability index were considered as optimal monitoring stations. 

- Sensitivity optimization: Similar to risk and vulnerability optimizations, 

sensitivity index and water demand were used for locating the optimal monitoring 

stations. 

Mathematical formulation for these models is presented in sections 4.3.1 and 4.3.2. 
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4.3.1 Demand coverage optimization 

The main objective of identifying optimal locations of monitoring stations in WDN is to 

increase the representativeness of the monitoring system and, consequently, maximize the 

monitored (covered) demand. If    is the total demand covered by node    as shown in 

Equation (4.6), then the objective function for maximizing demand coverage can be 

expressed as follows: 

 

           (4.6) 

 

           (4.7) 

subjected to: 

(4.8) 

 

(4.9) 

where: 

  =  number of total nodes covered by node i. 

   =  An integer value that determines if there is a monitoring station at the node or 

none, where ―1‖ represents the existence of the monitoring station at node i. 

Similarly, ―0‖ implies that there is no monitoring station at node i. 

   =   number of total nodes in the network. 

𝐷𝑖   𝑑𝑖 𝑗

𝑚

𝑗=1

 

𝑀𝑎𝑥  𝐷𝑖𝑥𝑖

𝑛

𝑖=1

 

 𝑥𝑖

𝑛

𝑖=1

≤ 𝑀𝑆 

∑  𝒅𝒊 𝒋 ∗ 𝒙𝒊 
𝒘
𝒊=𝟏

𝒅𝒊
≤ 𝟏 
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   =  maximum allowable number of monitoring stations to be used for the network. 

This number is a predefined value based on the economical and practical factors.  

w =  number of PMS covering node i. 

To avoid the duplication of coverage for each demand, constraint 4.9 was added so that 

each node must be covered only once so that the total covered demand will not exceed 

100% if ―hypothetically‖ each node was a monitoring station in the network. This 

constraint will force the optimization algorithm to cover each node once to avoid 

coverage duplication. 

For the previous example, this constraint 4.9 can be rewritten as: 

(               )   ≤  ⁄  for    

(          )   ≤  ⁄  for    

      ≤  ⁄  for    

      ≤  ⁄  for    

(          )    ≤  ⁄  for    

Furthermore, regional constraint was added to ensure that every sub-region in the 

network will have at least one monitoring station as shown in Equation (4.10). In this 

research, the analysis was performed for two cases (i) considering regional constraint, 

and (ii) without considering regional constraint. This was done to understand and 

examine the effect of regional constraint on the total coverage of the monitoring system. 
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           (4.10) 

where: 

z = Total number of monitoring stations in sub-region A. 

     = An integer variable    for nodes in sub-region A. 

4.3.2 Risk optimization 

Rather than considering only demand as the key parameter for locating monitoring 

stations, other parameters were considered which include risk, vulnerability and 

sensitivity indices developed from the DSS. This intends to enhance the optimization 

analysis such that sub-regions with higher risk, vulnerability and/or sensitivity should 

have first priority when locating monitoring stations. The objective function developed 

for this case can be explained as follows: 

  

           (4.11) 

 

           (4.12) 

where   is the risk, vulnerability or sensitivity index for node j. 

Similar to absolute demand optimization, risk optimization was subjected to the same 

constraints presented in Equations (4.6) to (4.10). 
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Using LINGO optimization platform, optimization code was developed to fulfill and 

maximize the coverage of the monitoring system at Al-Khobar WDN using the coverage 

matrices. Appendix C shows the optimization code used.  
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5 CHAPTER 5 

Application and Analysis of Results  

5.1 Study Area 

Al-Khobar city is located in the Eastern Coast of Saudi Arabia and it extends from the sea 

coast in the east to the west as shown in Figure 5.1.  It has an area of approximately 64 

km
2
 with a population of about 300,000, which is expected to rise to approximately 

590,000 by 2015. The general topography and elevation of the area is sea level near the 

corniche area then gradually rising in the northwest direction up to 30 meters.  This high 

variation in elevations throughout the city domain causes the pressure to increase in water 

mains near the corniche area (e.g., typical pressure close to sea level 120 is 29 m), and for 

low pressure in the northwest of the city (e.g., typical pressure in high lands is 13 m).  

Contour map for Al-Khobar city is shown in Figure 5.2. 

 The rapid growth in population as well as the comprehensive development resulted in a 

sharp increase in water consumption.  Water demands in Al-Khobar city have increased 

from 23.61 million cubic meters (MCM) in 1983 to 58.52 MCM in 2004 and are 

expected to reach 111.95 MCM by the year 2020 (Al-Zahrani, 2002).   

Al-Khobar WDN mainly serves urban areas. The total length of the network is 

approximately 472,652 m as shown in Table 5.1.  Historically, growth and expansion of 

the city happened during different periods, therefore, the network consists of pipes with 

different materials and ages.  Figure 5.3 shows the skeleton of Al-Khobar WDN. 
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Figure ‎5.1 Location of Al-Khobar city 
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Figure ‎5.2 Elevation contour map for Al-Khobar city 
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Table ‎5.1 Lengths, materials and sizes of pipes used in Al-Khobar water distribution 

system (Al-Zahrani and Al-Ghamdi, 2008) 

Diameter Length according to the type Total 

mm inch Plastic Ductile Iron Asbestos Fiber Glass m 

50 2 627    627 

60 2.5     0 

75 3 8422    8422 

80 3.2 15209  47500  62709 

100 4 9275  21310  30585 

110 4.4 54168    54168 

150 6 30464 11376 48403  90243 

160 6.4 84035  429  84464 

200 8 15120 3519 9528  28167 

225 9 19354  3700  23054 

250 10 306  543  849 

280 11 7687    7687 

300 12 26746  10082  36828 

315 12.6 6822    6822 

350 14  42   42 

380 15.2     0 

400 16 9435 160 11520 123 21238 

500 20   4960  4960 

600 24  130 7520  7650 

700 28     0 

800 32  494   494 

1000 40  3643   3643 

   Total   472,652 
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Figure ‎5.3 Skeleton of Al-Khobar water distribution network 
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Desalinated water from Al-Aziziah plant and groundwater wells are the two main sources 

of water supply for Al-Khobar WDN. Detailed information about Al-Khobar WDN and 

its hydraulics has been reported by Al-Zahrani and Al-Ghamdi (2008). 

5.2 Hydraulics of Al-Khobar WDN 

Al-Khobar WDN is modeled hydraulically and calibrated using WaterGEM package. The 

hydraulic model is capable of performing hydraulic and water quality simulations. To 

develop the overall risk using the DSS, simulations were performed to estimate three 

hydraulic variables, namely pressure, velocity and water age. 

5.2.1 Pressure head characteristics 

In Al-Khobar WDN, there is only one central pumping station and several elevated tanks 

distributed all over the city to maintain operational pressure head in the WDN, which is 

ranging between 5 and 35 m. Figure 5.4a shows simulated average pressure head for all 

demand scenarios and patterns from the calibrated hydraulic model of the sub-regions of 

Al-Khobar WDN. The average maximum pressure for all demand scenarios of all sub-

regions varies between 13 and 41 m while the average minimum pressure for the same 

demands varies between 7 and 31 m as shown in Figures 5.4b and 5.4c, respectively. The 

highest pressure in the city usually occurred at the city center, especially at sub-region 94 

and its surroundings, since the main pumping station is located in this sub-region. It is 

observed that pressure decreases for sub-regions away from the center but it does not 

violate the minimum acceptable pressure set by the water authorities (5 m) as indicated in 
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(a) (b) 

 

 

   

(c)       (d) 

 

Figure ‎5.4 Pressure head characteristics: 

a) average pressure , b) average maximum pressure, c) average minimum pressure 

and d) percentage of nodes having pressure violating upper and lower limits 
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Figures 5.4a and 5.4c. Analysis of pressure head of approximately 1000 nodes shows that 

the percentage of nodes in each sub-region where recorded pressure violates the upper or 

lower pressure limits – based on all conducted scenarios – were less than 25%. Figure 

5.4d shows regional percentages of nodes exceeding pressure limits. It is clear that the 

sub-regions surrounding the central pumping station, i.e. sub-region 94, showed the 

highest percentages of pressure violations due to high pressure existing at the central 

pumping station. Away from sub-region 94, pressure violations decrease till it becomes 

almost zero in most of the sub-regions. 

5.2.2 Velocity characteristics 

To avoid erosion and sedimentation, Gupta (2008) recommends that velocity should 

range between 0.4 and 1.5 m/s. Figure 5.5a shows that average regional velocity in the 

WDN ranges between 0.06 and 0.77 m/s. Only four out of the 16 sub-regions have 

average velocity within the recommended range. The average maximum velocity for all 

demand scenarios is ranging between 0.27 and 4.58 m/s while the average minimum 

velocity for all demand scenarios is ranging between 0 and 0.1 m/s as shown in Figures 

5.5b and 5.5c. The results indicate that the velocity in the WDN is not within the 

recommended range which may cause erosion in sub-regions where velocities are high 

such as sub-regions 75 and 94, or may cause sedimentation in sub-regions where low 

velocity exists such as sub-regions 105 and 119. Detailed investigation of velocities 

within sub-regions 75 and 94 indicates that pipes having velocities higher than 2 m/s are 

very few and mainly at pipes connected directly to pumps or tanks. Accordingly, 

velocities at these pipes did not have any effect on the regional average velocities for 
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(a)       (b) 

   

(c)       (d) 

Figure ‎5.5 Velocity characteristics: 

a) average velocity, b) average maximum velocity, c) average minimum velocity and 

d) percentage of pipes having velocity violating the upper and lower limits 
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these sub-regions. On the other hand, it can be said that significant number of pipes in the 

city have velocities less than 0.4 m/s. Figure 5.5d shows the percentages of pipes having 

velocity either above or below the recommended range. Most of the pipes violating the 

recommended velocity range are those having low velocity. Obviously, the results 

indicate that there is a high possibility for sediments to accumulate in the pipes due to 

low velocity. 

5.2.3 Water age characteristics 

To avoid stagnant zones in WDN, which could be a suitable environment for bacterial 

growth and deterioration of water quality, the water within the network should not stay 

more than 3 days (72 hours). In literature, some conservative studies emphasize that 

water age must be less than 1.3 days (31.2 hours) (AWWA, 2002). Figure 5.6a shows the 

average water age in Al-Khobar city which varies between 1.6 and 9.64 hours. Remote 

sub-regions away from the city center and pumping station have higher water age, such 

as sub-regions 77 and 119, which are 6.14 and 9.64 hours, respectively. 

The average maximum water age for all demand scenarios shows similar trend as 

revealed from Figure 5.6b, which ranges between 1.65 and 15.11 hours. Similarly, the 

average minimum water age for all demand scenarios shows higher water age in the 

northern and southern borders of the city as can be seen in Figure 5.6c, which ranges 

between 1.65 and 15.11 hours. For all demand scenarios, water age was always less than 

the recommended standards. Figure 5.6d indicates that for all sub-regions of Al-Khobar 

WDN, the percentage of junctions having water age higher than the standards is zero.  
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 (c)       (d) 

 

Figure ‎5.6 Water age characteristics: 

a) average water age , b) average maximum water age, c) average minimum water age 

and d) percentage of junctions having water age higher than recommended limits 
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5.2.4 Hydraulic index 

Pressure, velocity and water age represent the hydraulic characteristics of the WDN. 

According to Figures 5.4d, 5.5d and 5.6d, it is clear that in most of the sub-regions, 

hydraulic properties are within the acceptable limits. There are two sub-regions (75 and 

94) in which more than 20% of the nodes showed pressure either higher or lower than the 

recommended limits, while for the other sub-regions the percentage is less than 7% and 

mostly 0% as shown in Figure 5.4d. For velocity, the percentage of pipes having higher 

or lower velocity (mainly lower velocities) than the acceptable limits exceeds 41% and 

approaches 100% in some sub-regions such as sub-regions 77 and 105 as shown in Figure 

5.5d. Unlike pressure and velocity, water age was within the recommended range in all 

sub-regions for all demand scenarios, which implies that water age will have no effect in 

the prioritization of risk between sub-regions since it shows 0% violations for all sub-

regions as shown in Figure 5.6d. Thus, based on WDN characteristics of Al-Khobar, 

pressure and velocity will control risk level caused by hydraulic properties and the effect 

of pressure will be higher than velocity since it was given higher weight during the 

aggregation process according to the opinion of the experts. Figure 5.7 shows the risk 

index for hydraulic properties for all the sub-regions. Sub-regions 75 and 94 show high 

hydraulic risk index of 0.80 and 0.75, respectively, while other sub-regions have 

hydraulic risk index of less than 0.31.  

The calculated hydraulic risk index at sub-regions 75 and 94 was found to be high 

compared to other sub-regions, which is attributed to the existence of the central pumping 

station in sub-region 94. This causes the pressure to violate the recommended limits at 

these sub-regions and, subsequently, increases the hydraulic risks at these sub-regions. 
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Figure ‎5.7 Risk index for hydraulic properties 
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5.3 Structure Integrity 

5.3.1 Potential intrusion 

Infrastructure and structure integrity of the WDN are judged based on pipe breaks, age 

and material, in addition to potential intrusions of wastewater or industrial waste in case 

of the occurrence of pipe breaks. Historical records of Al-Khobar municipality indicate 

that 65%, 25% and 10% of pipe breaks occurred in the red, yellow and green areas, 

respectively, as shown in Figure 5.8. Based on the pipe break ratio, pipe breakage risk 

index was developed for each sub-region. Figure 5.9 shows pipe breakage risk index for 

each sub-region of Al-Khobar WDN. Southern sub-regions have high breakage ratio 

indicating high risk index. Sub-regions located in the low breakage ratio zone have a risk 

of zero, such as sub-regions 102 and 119. Sub-regions falling between different breakage 

ratio zones, such as sub-region 98, 103, 120 and 121, have risk index based on the 

aggregation of different breakage ratios in those sub-regions. It should be noted that the 

age of pipes in the northern part of the city is approximately 31 years and mostly made of 

PVC, while pipes age in the center and south of the city is 44 years and mostly made of 

asbestos as shown in Figures 5.10 and 5.11. 

Intrusions of contaminants to the system could occur due to the following: (1) dumping 

of wastewater in areas with no sanitary system or (2) industrial activities such as 

automobile workshops and wastewater treatment plant. Possible intrusion of 

contaminants or wastes from the surface to the surroundings of the pipes may cause 

hazardous risk if there are cracks or leaks in the WDN. In places where household 

wastewater is dumped in private manholes, the possibility that water in the distribution  
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Figure ‎5.8 Areas with high, med and low breakage ratios 

 

 

Figure ‎5.9 Pipes breakage risk index for each sub-region 
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Figure ‎5.10 Pipes‘ age in the city 

 

 

Figure ‎5.11 Pipes material in Al-Khobar city 
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network might get contaminated is high. However, if the area is served by a sanitary 

sewer system, the possibility for contamination risk is low. In this study area, all sub-

regions are served by a sanitary sewer system, which indicates that the risk due to 

dumped wastewater is almost zero as shown in Figure 5.12, assuming no leakage in the 

sanitary system. To the extreme south of the city, wastewater treatment plant and 

automobile workshops are located, where both have the potential for causing hazardous 

contamination to the water transported by the distribution system in case of pipe break or 

leakage. Figure 5.13 shows the locations of the activities within Al-Khobar city. Figure 

5.14 shows that industrial intrusion risk index for the city is low except for sub-regions 

76, 77, 81 and 82. Sub-region 82 has the maximum risk index (0.87) since the wastewater 

treatment plant is located in this sub-region, while sub-regions 76, 77 and 81 have 

automobile workshops. 

Based on the analysis of pipes breaks and potential intrusions caused by wastewater or 

industrial contaminations, potential intrusion risk index was developed as shown in 

Figure 5.15. The major factors that have significant influence on the risk index are pipe 

break ratios and industrial intrusions. The contribution of sanitary system to the risk 

index is negligible since the whole city of Al-Khobar is served with a sanitary sewer 

system. The northern part of the city has low potential intrusion risk (such as sub-regions 

98 and 102). Also, pipe breakage ratios at these sub-regions are low since there is no 

industrial activity in this part of the city. Moving to the south, risk increases due to the 

increase of pipe breakage ratios and it reaches maximum risk in the extreme south where 

wastewater treatment plant and automobile workshops are located.  
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Figure ‎5.12 Sanitary system coverage risk index for each sub-region 

 

 

Figure ‎5.13 Activities in Al-Khobar city 
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Figure ‎5.14 Industrial intrusion risk index for each sub-region 

 

 

Figure ‎5.15 Potential intrusion risk index for each sub-region 
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5.3.2 Pipe material 

In general, the WDN of Al-Khobar city is either asbestos or PVC, as shown in Figure 

5.11, except for a small part of the network located north of the city, where pipes are 

made of steel. 

Cracks and breakages have been widely reported in asbestos pipes in the city. According 

to Al-Khobar water authority, approximately 65% of the total breaks occurred in asbestos 

pipes. Asbestos is considered as a carcinogen material, although its risk relevant to 

drinking water is not substantial (Morris, 1995). However, some studies show that there 

was a correlation between high levels of asbestos in drinking water and  risk of cancers in 

areas where asbestos is naturally found in water sources (Millette et al., 1983). On the 

other hand, PVC has been used as a replacement for asbestos pipes since there is no 

proven carcinogen risk associated with using PVC to transport water. In addition, PVC 

pipes are cheaper in the long run (Subramanian and Madhavan, 2005). Figure 5.16 shows 

risk index based on pipe material for each sub-region within Al-Khobar WDN. Since 

asbestos is classified as risky to transport water, then maximum risk in sub-regions where 

asbestos pipes exist is expected and risk will decrease as the percentage of asbestos pipes 

reduces in the sub-regions such as sub-regions 102, 103 and 121. 

5.3.3 Pipe age 

In general, the pipes in the northern part of the city are 31 years old, while in the center 

and south of the city the pipes are 44 years old as shown in Figure 5.10. Based on the fact 
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Figure ‎5.16 Pipe material risk index for each sub-region 
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that pipes in the southern sub-regions are asbestos and are old compared to sub-regions in 

the north where pipes are PVC and relatively new, pipe age risk index was developed as 

shown in Figure 5.17. In general, new pipes tend to have less problems such as cracks or 

leakage compared to the old pipes. However, in Al-Khobar WDN the situation is more 

critical since the old pipes are asbestos, which accordingly will increase the risk in sub-

regions having older pipe connections. 

5.3.4 Water table and soil 

In addition to pipe material, age and breakage, there are other factors which might affect 

pipes condition such as water table levels and soil aggressiveness surrounding the pipes. 

It is assumed that there will be no significant effect on pipes if water table is totally above 

or below the pipe network. However, if the level of water table is fluctuating, then any 

change in external pressure acting on the pipes might cause cracks and pipes failure 

(Najjaran et al., 2006). Records from Al-Khobar municipality show that WDN is located 

within the first 3 m below ground surface, while maximum elevation of water table is 3 m 

below ground surface, which implies that the WDN is totally above the water table even 

in the coastal areas. For soil, if it is aggressive, pipes might corrode and weaken 

especially steel pipes. Fortunately, in Al-Khobar city most of the pipes are asbestos and 

PVC which excludes the corrosion risk for pipes. Therefore, in this study no risks are 

expected to be generated from water table and soil surrounding the pipes. Pipes material, 

age, breaks, sanitary coverage, industrial and wastewater intrusions, water table levels 

and soil surrounding pipes give a clear view about the infrastructural condition of the 

WDN. It is obvious that the southern sub-regions of the city have multi issues that may  
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Figure ‎5.17 Pipe age risk index for each sub-region 
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increase risk index, such as high pipe breakage ratio and presence of industrial activities 

as well as aged pipes with low quality material. Considering and aggregating these 

factors together will map the risks threatening the infrastructure and structure integrity of 

the WDN. Figure 5.18 shows the structure integrity risk index which ranges between 0.18 

and 0.63. As expected, sub-regions in the southern part of the city have higher risk index 

compared to the city center and the northern part. Sub-regions in the north such as 98 and 

119 have PVC pipes, relatively newer pipes, low pipe breakage ratio and no industrial 

activity or potential intrusions (either industrial or wastewater), which explains the 

relative low risk in these sub-regions. Sub-regions in the south such as 79 and 82 have 

asbestos pipes, older pipes, high pipe breakage ratio and industrial potential intrusions, 

which explains the higher risk index compared to the northern sub-regions. Sub-regions 

in the city center such as 103 and 121  have interrelated characteristics from northern and 

southern sub-regions, which explains why risk index in these sub-regions is in the 

midway between low risk northern sub-regions and high risk southern sub-regions. 

5.4 Water Quality 

In this study, the characteristics of the quality of water transported in the network were 

investigated, which are physico-chemical and microbial properties. Daily water quality 

data records for about a year between 2012 and 2013 were used to develop water quality 

risk indices. 

5.4.1 Physico-chemical index 

In Al-Khobar WDN, TDS level can be considered as an indicator of the amount of 

groundwater pumped into the network. High TDS in a region usually indicates that the  
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Figure ‎5.18 Structural integrity risk index for each sub-region 
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major source of water feeding that region is groundwater. Similarly, low TDS indicates 

that the main feeding source is desalinated water. However, if TDS is high in regions 

where desalinated water is supposed to be the main source, this might indicate a 

groundwater intrusion into the water network. In addition, TDS higher than 500 ppm 

results in excessive scaling in water pipes (WHO, 1996). 

Studying TDS levels all over the WDN of Al-Khobar shows higher levels to the northern 

part of Al-Khobar city and sub-region 81 located south of the city. Average daily TDS 

over a period of about 10 months ranges between 500 and 1600 ppm in most of the areas 

in the north as shown in Table 5.2. Generally, the levels are low (less than 500 ppm) in 

the south except for sub-region 81 where average TDS level is 2129 ppm, which is the 

highest all over the city since most of the pumped water in this sub-region is 

groundwater. The central part of Al-Khobar has low TDS level ranging between 250 and 

500 ppm. The city in the last decades was expanding to the north and south directions 

more than the west direction. The newly developed areas are fed partially or totally by 

groundwater wells to cover the increasing demand, which explains the significant high 

TDS levels in the north and south areas. The central part of the city is mainly fed by 

desalinated water and, consequently, TDS levels are low. In addition to supporting 

demand coverage, groundwater wells are also used to increase pressure in case any zones 

in the WDN are suffering from low pressure. Figure 5.19 shows TDS distribution in the 

city, which was developed based on data collected during 2012 and 2013. TDS levels 

were higher in the city before 2012, but Al-Khobar municipality is recently becoming 

more dependent on desalinated water to reduce groundwater usage since it is considered 

as a strategic reserve as stated in the 9
th
 Strategic Plan for the country.  Sub-regions 81,  
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Table ‎5.2 Statistical summary for TDS (ppm) 

Sub-Region Average Max Min 

74 248 1330 58 

75 301 852 58 

76 461 1094 82 

77 442 2020 89 

78 144 2110 49 

81 2128 2540 0 

82 360 2200 55 

94 366 835 129 

98 507 2340 70 

102 461 2350 70 

103 147 2190 52 

104 1603 3770 105 

105 1612 2740 100 

119 531 832 97 

120 528 841 96 

121 402 1711 83 
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Figure ‎5.19 TDS distribution (ppm) 
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104 and 105 have average TDS of 2129, 1603 and 1611 ppm, respectively, which are the 

highest in the city. While water source in sub-region 81 is mainly from groundwater, sub-

regions 104 and 105 have a significant share of groundwater which is reflected clearly in 

the TDS level. As can be revealed from Figure 5.19, TDS levels can be used as an 

indicator for water source in each sub-region, such that sub-regions with relatively high 

TDS represent relatively higher share of groundwater compared to desalinated water as in 

the case of sub-regions 104, 105 and 119. Similarly, low TDS represents low share of 

groundwater feeding the sub-region compared to desalinated water share as in the case of 

sub-regions 74, 76 and 94. Water in the city center and in the south is mainly desalinated 

water such as in sub-regions 74, 75, 76, 77 and 82. Water in sub-regions 79 and 103 is 

totally desalinated water, with a very low TDS (less than 150 ppm). In sub-region 79, the 

elevated tank is fed with desalinated water only, and in sub-region 103, the main 

reservoir (Al-Yarmook) is fed directly from the desalinated plant. This reservoir feeds the 

surrounding sub-regions to the north and city center. 

Exposure to high or low pH might cause different health consequences such as eye 

irritations and skin disorders (WHO, 1996). Unlike TDS, pH levels, as shown in Table 

5.3 and Figure 5.20, seem to be consistent all over the WDN ranging between 7 and 8 

which is the optimal pH level. 

WHO (2011) recommends that water temperature in pipes should be less than 25 C°. 

Temperatures higher than 25 C° were found to be suitable for the growth of some 

microorganisms. In Al-Khobar WDN, the average temperature in the southern part of the 

city is about 25 C° and increases gradually till it reaches 28 C° to the north as shown in 

Figure 5.21 and Table 5.4.  



125 

 

 

 

 

Table ‎5.3 Statistical summary for Temperature (C°) 

Sub-region Average Max Min 

74 27.81 39.60 15.40 

75 26.43 37.20 2.04 

76 25.58 36.50 15.50 

77 25.97 36.60 16.10 

78 26.12 36.70 3.40 

81 25.13 37.20 0.00 

82 25.47 38.70 15.10 

94 26.91 37.10 16.10 

98 27.80 36.90 14.90 

102 27.65 37.10 16.20 

103 27.66 37.60 16.90 

104 27.59 37.10 17.10 

105 27.53 37.40 15.60 

119 27.94 39.00 16.20 

120 28.00 39.10 16.40 

121 27.60 37.56 16.10 
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Table ‎5.4 Statistical summary for pH 

Sub-region Average Max Min 

74 7.87 8.22 7.00 

75 7.84 8.15 7.50 

76 7.73 8.10 7.17 

77 7.77 8.10 7.15 

78 7.98 8.30 7.15 

81 7.33 8.18 7.02 

82 7.91 8.22 7.07 

94 7.78 8.10 7.18 

98 7.76 8.20 7.26 

102 7.76 8.15 7.15 

103 7.96 8.50 7.07 

104 7.41 8.17 7.00 

105 7.42 8.43 7.02 

119 7.71 8.00 7.18 

120 7.70 8.12 7.20 

121 7.79 8.21 7.17 
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Figure ‎5.20 pH distribution of water in Al-Khobar network 

 

 

Figure ‎5.21 Temperature distribution (C°) of water transported in Al-Khobar network 
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Based on the fuzzy analysis for TDS, pH and temperature, distribution of risk index for 

physico-chemical properties is shown in Figure 5.22. In general, risk index associated 

with physico-chemical parameters is ranging between 0.11 and 0.31, which is a relatively 

low risk, since most of the sub-regions have risk index less than 0.28. This index reflects 

that the condition of the WDN in terms of physico-chemical properties is acceptable 

compared to the recommended limits of TDS, pH and temperature listed in literature. 

Sub-regions 81, 104, 105, 119 and 120 show relatively higher risk compared to the other 

sub-regions, which can be explained by comparing Figures 5.19 to 5.21 with Figure 5.22. 

Figures 5.20 and 5.21 indicate consistent levels of pH and temperature in the city, which 

makes TDS the key parameter in risk prioritization between sub-regions. Figures 5.19 

and 5.22 show that sub-regions with relatively high TDS levels (Figure 5.19) are the 

same sub-regions with relatively high risk in terms of physico-chemical properties 

(Figure 5.22). On the other hand, Figures 5.23 to 5.25 show the percentage of diversions 

of TDS, pH and temperature from optimal values and standards. Again, while pH and 

temperature show relative consistency between different sub-regions in the city, TDS 

shows significant difference between the sub-regions in terms of diversion of TDS levels 

from optimal standards. Figure 5.23 shows that maximum diversions from optimal 

standards are recorded in the same sub-regions showing higher TDS levels, which 

explains why these sub-regions have relatively higher risks compared to other sub-

regions in the city in terms of physico-chemical properties.   

5.4.2 Microbial index 

Free chlorine serves as a security factor for protecting water in the WDN from any 

possible bacterial or microbial risks. Optimal level of free chlorine at any location and 
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Figure ‎5.22 Risk index for physico-chemical properties 
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Figure ‎5.23 TDS percentage of diversion from optimal standards 

 

Figure ‎5.24 pH percentage of diversion from optimal standards 
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Figure ‎5.25 Temperature percentage of diversion from optimal standards 
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any time should range between 0.3 and 1.2 mg/l, but should not exceed 2 mg/l or be less 

than 0.2 mg/l. Table 5.5 shows average free chlorine levels in different sub-regions which 

range between 0.35 and 1.07 mg/l. Average free chlorine levels are acceptable and within 

the optimal range as shown in Figure 5.26. In sub-region 94, average free chlorine level 

was the highest because it is the sub-region where the central pumping station and 

chlorine boosters are located. Excluding sub-region 94 which represents the maximum 

level, average free chlorine in the other sub-regions ranges between 0.37 and 0.69 mg/l. 

In general, the southern part of the city has relatively higher levels of free chlorine 

compared to the northern part which can be related to the water supply in each sub-region 

and disinfection practices for desalinated water (which makes most of the water in the 

southern part of the city) and groundwater (which makes a significant share of water in 

the northern part of the city). On the other hand, free chlorine diversions from acceptable 

limits show that the majority of the sub-regions do not have any significant violations. 

Percentage of diversions ranges between 1 and 36% as shown in Figure 5.27. 

Turbidity is another indicator of water quality. WHO (2008) recommends that turbidity 

of water in WDN should be ranging between 0.1 and 5 NTU while USEPA (2009) was 

more conservative and emphasized that it should not be more than 1 NTU. In Al-Khobar 

city, regional turbidity did not exceed 0.29 NTU as shown in Figure 5.28. Although 

turbidity levels are within the acceptable limit, with zero percentages of diversion, as 

shown in Figure 5.29, it seems to be relatively higher in the southern part of the city, 

most probably due to the higher possibility of breaks, age and material of the pipes.  

Based on the analysis and aggregation of free chlorine and turbidity, microbial risk 

distribution was developed. Figure 5.30 shows microbial risk index for each sub-region.  
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Table ‎5.5 Statistical summary for residual chlorine (ppm) 

Sub-region Average Max Min 

74 0.50 0.70 0.10 

75 0.61 1.00 0.30 

76 0.59 0.80 0.00 

77 0.59 0.80 0.00 

78 0.37 0.80 0.00 

81 0.60 0.80 0.00 

82 0.48 0.80 0.00 

94 1.07 2.00 0.10 

98 0.52 0.80 0.10 

102 0.35 0.80 0.10 

103 0.69 0.90 0.00 

104 0.56 0.80 0.10 

105 0.54 0.80 0.10 

119 0.43 0.70 0.10 

120 0.43 0.70 0.00 

121 0.61 1.04 0.06 
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Figure ‎5.26 Free chlorine levels in the city (mg/l) 

 

Figure ‎5.27 Free chlorine percentage of diversion from optimal standards 
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Figure ‎5.28 Turbidity levels in the city (NTU) 

 

Figure ‎5.29 Turbidity percentage of diversion from optimal standards 
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Figure ‎5.30 Risk index for microbial properties 
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Since turbidity is consistent all over the city in terms of values and percentage diversions 

from optimal standards (as shown in Figures 5.28 and 5.29), free chlorine plays a vital 

role in controlling prioritization of risks between sub-regions. It can be seen from Figure 

5.30 that there is low microbial risk index with relatively higher risk in sub-regions.  

Accordingly, water quality risk index for each sub-region was developed using physico-

chemical and microbial indices (Figures 5.22 and 5.30) as shown in Figure 5.31. It is 

obvious that water quality risk is low in the WDN since water quality parameters (TDS, 

pH, temperature, free chlorine and turbidity) are generally within the recommended 

standards. Water quality regional risk indices range between 0.14 and 0.43, which 

indicates relatively low risk. 

5.5 Vulnerability 

Vulnerability of the WDN is identified by aggregating hydraulic properties, water quality 

and structural integrity.  Risk indices for hydraulic properties, structural integrity and 

water quality are presented in Figures 5.7, 5.18 and 5.31, respectively. Figure 5.7 shows 

that in terms of hydraulic properties such as pressure and water age, sub-regions in the 

center have high risk indices such as sub-regions 75 and 94. Structure integrity for the 

WDN has low risk index in the northern sub-regions of the city compared to both 

southern and central sub-regions as shown in Figure 5.18. Structure integrity risk index 

increases towards the south till it reaches maximum risk index of 0.63 in sub-region 82. 

In terms of water quality, there is no significant risk as shown in Figure 5.31. 

Aggregation of these factors will develop vulnerability index for the WDN as shown in  
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Figure ‎5.31 Risk index for water quality 
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Figure 5.32. Vulnerability index ranges between 0.12 and 0.54. Most of the sub-regions 

have moderate to low vulnerability except for sub-regions 75 and 94 which have 

relatively high vulnerability. 

Major factors affecting vulnerability are hydraulics properties and structure integrity 

since water quality risk index is low all over the city. Sub-regions which have high risk 

due to hydraulic properties and structure integrity, i.e. sub-regions 75 and 94, are the sub-

regions in the city center which have high vulnerability. Sub-regions in the north, such as 

98 and 102, have low risk in terms of hydraulic properties and structure integrity, which 

is reflected in the vulnerability index. Sub-regions in the extreme south of the city, such 

as sub-regions 77 and 82, have low risk index due to hydraulic properties but they have 

high risk index due to structure integrity, which explains why vulnerability indices in that 

zone are higher than the northern sub-regions but at the same time less than sub-regions 

in the city center.  
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Figure ‎5.32 Vulnerability risk index for water quality 
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5.6 Sensitivity 

Sensitivity of the sub-region gives a sense of possible consequences and casualties in 

case anything went wrong in the WDN. Standard of living, population density, activity, 

number of beds in hospitals and number of students are measures for regional sensitivity 

in case any possible deterioration of water quality, hydraulics or structure integrity 

occurred within the WDN. Standard of living of individuals is highly dependent on 

income rate. Usually, individuals with high income rate tend to improve their life quality 

in terms of residence, vehicles, food and drinks such as water. Individuals with high 

income rate tend to buy bottled water for drinking and cooking rather than using pumped 

water through the WDN. On the other side, individuals with low income rates tend to use 

pumped water for drinking and/or cooking, which makes them more sensitive to any 

consequences that may happen in the WDN. Figures 5.33 shows an estimation for high, 

moderate and low standard of living zones in Al-Khobar city. Standards of living were 

estimated based on real estate prices in these sub-regions. Each sub-region has different 

mixture of individuals with different income rates and standard of living as shown in 

Figure 5.34. From Figure 5.33, the southwestern part of the city is the most sensitive in 

which most of the low income individuals live, especially sub-regions 74, 76, 77 and 94, 

as shown in Figure 5.34. Population density is high at the city center and decreases 

towards the northern and southern borders of the city. Sub-regions 74, 75, 94 and 121 

have the highest population density as shown in Figure 5.35. In residential areas, people 

tend more to use water either for drinking, cooking, washing or bathing compared to 

areas with different activities such as commercial and industrial. Accordingly, residential 

areas are more sensitive to any change in water quality than other zones. Figure 5.36   
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Figure ‎5.33 High, moderate and low standard of living zones in the city 

 

Figure ‎5.34 Ratio of income rate for individual in each sub-region 
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Figure ‎5.35 Population density across the city 

 

 

Figure ‎5.36 Zones for different activities in the city 
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shows zones of different activities in the city and Figure 5.37 shows the ratio of activities 

in each sub-region. Figure 5.37 shows that sub-regions 74, 76, 94, 98, 102 and 121 have 

higher residential areas than commercial and industrial areas. 

In addition to the above, there are groups in the community who are more sensitive to any 

deterioration of water quality than others. Patients and school students are more sensitive 

to waterborne illnesses and their immune system is either weak or not fully developed 

(Francisque et al., 2009). In Al-Khobar city, there are 8 main hospitals with varying 

capacities ranging from 30 to 600 beds. Figure 5.38 shows the locations of these 

hospitals. Figures 5.39, 5.40 and 5.41 show the locations of elementary, intermediate and 

secondary schools in the city, respectively. Students in elementary schools are more 

sensitive to waterborne illnesses than other students since their age is less than 12 years 

and their immune system is not fully developed (Francisque et al., 2009). Figure 5.42 

shows regional comparison in terms of total number of elementary, intermediate and 

secondary students in the city. Sub-regions such as 74, 75 and 121 have the maximum 

number of students, especially elementary students, which makes these sub-regions more 

sensitive compared to other sub-regions. 

Aggregation of all these factors determines the sensitivity of each sub-region. It is 

obvious that sub-regions 74, 75, 94, 120 and 121 are more sensitive than others. Fuzzy 

methods were used to aggregate these factors to determine the sensitivity prioritization 

for different sub-regions in the city as shown in Figure 5.43. Sensitivity index ranges 

between 0.03 and 0.86. Sub-regions in the center, such as 74, 75, 94 and 121, are more 

sensitive to any deterioration of water quality in the WDN compared to others. On the  



145 

 

 
 

Figure ‎5.37 Ratio of activities in each sub-region 
 

 
Figure ‎5.38 Locations of hospitals 
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Figure ‎5.39 Locations of elementary schools 

 

 
Figure ‎5.40 Locations of intermediate schools 
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Figure ‎5.41 Locations of secondary schools 

 

 
Figure ‎5.42 Regional comparison of number of students in the city 
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Figure ‎5.43 Sensitivity of sub-regions 
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other hand, sub-regions in the north and in the south, such as 81, 82, 102 and 119, have 

the least sensitivity mainly because they have low population density, low number of 

students and less residential areas. 

5.7 Risk Assessment 

Total regional risk is based on the vulnerability and sensitivity of each sub-region. Most 

vulnerable and sensitive sub-regions are the sub-regions with the highest risk index. Sub-

regions with the highest vulnerability, as shown in Figure 5.32, are sub-regions 75 and 94 

with vulnerability index of 0.51 and 0.54, respectively. On the other hand, sub-regions 

74, 75, 94, 120 and 121, as shown in Figure 5.44, are the most sensitive sub-regions with 

sensitivity index of 0.75, 0.68, 0.86, 0.60 and 0.59, respectively. Sub-regions 75 and 94 

are from the most vulnerable and sensitive sub-regions, which indicates that they have 

high risks compared to other sub-regions, accordingly, it is expected that they will have 

the highest risk indices. Total risk indices range between 0.11 and 0.70. In general, the 

results indicate that northern and southern sub-regions have the least risk index, which is 

a reflection of the low vulnerability and sensitivity of these sub-regions. Sub-regions in 

the city center are the most sensitive sub-regions in the city, as shown in Figure 5.43, and 

also the most vulnerable, especially sub-regions 75 and 94, as shown in Figure 5.32. This 

explains the relatively high risk in the city center compared to other sub-regions in the 

city. Table 5.6 shows risk indices for all sub-regions. It is clear that sub-regions 75 and 

94 have high risk indices such as pressure index, velocity index, hydraulics index, 

schools index, activity index, standard of living index, population density index and, 

finally, vulnerability and sensitivity indices. On the other hand, sub-regions 102 and 104 

have low risk indices for most of the indices. This implies that the total risk index reflects 
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 the general condition of each sub-region in terms of hydraulics, structure integrity, water 

quality and sensitivity. 
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Figure ‎5.44 Total risk index for each sub-region 
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Table ‎5.6 Indices for sub-regions with highest and lowest total risk 

 

 

Index 
Sub-Regions 

74 75 76 77 79 81 82 94 98 102 103 104 105 119 120 121 

Physico-Chemical 0.14 0.14 0.25 0.25 0.11 0.30 0.17 0.18 0.27 0.25 0.11 0.31 0.31 0.31 0.31 0.29 

Microbial 0.24 0.13 0.15 0.16 0.43 0.24 0.32 0.33 0.16 0.16 0.16 0.14 0.19 0.21 0.21 0.53 

Water Quality 0.21 0.14 0.18 0.19 0.32 0.26 0.27 0.28 0.20 0.19 0.15 0.20 0.23 0.25 0.24 0.45 

Intrusion 0.50 0.50 0.55 0.50 0.54 0.55 0.63 0.50 0.00 0.00 0.15 0.00 0.00 0.00 0.24 0.31 

Structure Integrity 0.59 0.59 0.61 0.59 0.60 0.61 0.63 0.59 0.18 0.18 0.30 0.18 0.18 0.18 0.37 0.43 

Water Age 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.50 0.50 

Pressure 0.00 0.99 0.13 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.02 

Velocity 1.00 0.84 1.00 1.00 1.00 0.00 1.00 0.83 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 

Hydraulics 0.21 0.80 0.29 0.21 0.21 0.00 0.21 0.75 0.29 0.21 0.21 0.00 0.21 0.22 0.31 0.30 

Vulnerability 0.34 0.51 0.36 0.33 0.38 0.29 0.37 0.54 0.22 0.19 0.22 0.12 0.20 0.21 0.31 0.40 

Schools 0.88 0.94 0.73 0.00 0.32 0.00 0.17 0.61 0.36 0.02 0.49 0.00 0.00 0.00 0.48 1.00 

Hospitals 0.00 0.19 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

Activity 1.00 0.92 0.71 1.00 0.76 0.16 0.30 0.74 0.92 0.97 0.60 0.32 0.30 0.60 0.61 0.82 

Standard of living 1.00 0.85 0.67 0.70 0.50 0.24 0.16 0.54 0.50 0.50 0.56 0.50 0.50 0.33 0.36 0.50 

Population Density  0.96 0.75 0.35 0.33 0.20 0.20 0.20 0.97 0.25 0.28 0.46 0.20 0.20 0.26 0.48 0.70 

Sensitivity 0.75 0.68 0.35 0.26 0.17 0.03 0.06 0.86 0.46 0.21 0.39 0.10 0.10 0.14 0.60 0.59 

Total Risk 0.54 0.60 0.35 0.30 0.28 0.16 0.21 0.70 0.34 0.20 0.30 0.11 0.15 0.18 0.45 0.49 

1
5
2
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5.8 Locating Monitoring Stations (MSs) 

Distributing water through the piping networks is the final process before the treated 

water reaches the end points of use. Beyond this process, there is no defense line that 

would provide protection to consumers if water quality deteriorates, regardless of the 

causes, during distribution. In WDN, efficient monitoring system can track water quality 

during distribution and reflects its condition in addition to raising alerts in case of water 

quality deterioration. Developing monitoring system requires defining some parameters 

such as the coverage threshold (CT) and sampling strategies in situ. Although there is no 

predefined value for CT, it can range from 25% to 75% (Lee, 1990). As CT increases, the 

monitoring system becomes more conservative and, consequently, less number of flow 

paths will be monitored. For example, if CT is assumed to be 80%, it means that the flow 

path which makes up 80% (or more) of the water passing through a node will be 

considered in the analysis. However, flow paths making less than 80% of water passing 

through the node will not be covered. On the other side, using low value for CT will 

cover more flow pathways, but it will be questionable in terms of its representativeness of 

water quality. If CT was 10%, this implies that the water quality of a flow path will be 

considered as ―covered‖ at a specific node even if it makes only 10% of the total water 

passing through that node. Therefore, wise choices based on preliminary analysis should 

be taken to avoid drawbacks for using high or low CT, especially considering that the 

relation between CT and final optimized monitoring system is highly dependent on the 

layout and operation of the WDN. It should be noted that words such as covered or 

monitored are used interchangeably in this discussion. Both words mean that the 

downstream MS (Monitoring Station) is capable of representing water quality of the 
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nodes upstream. Therefore, these upstream nodes are considered ―covered‖ or 

―monitored‖ by the downstream MS. 

5.8.1 Preliminary analysis 

Preliminary analysis of investigating the effect of CT on the optimal selection of MSs 

locations and the total monitored demand (TMD) was conducted to understand the 

relation between CT and the proposed monitoring system for the specific network under 

consideration, i.e. Al-Khobar WDN. Four different scenarios were examined with the CT 

values of: 40%, 50%, 60% and 70%. This range of CT values was selected since it covers 

the most practical values that maximize TMD and also it minimizes the possible 

drawbacks for using high or low CT as much as possible. In most of the studies, CT 

values did not exceed 70% (Kumar et al., 1997; Al-Zahrani and Moied, 2003; Liu et al., 

2012). 

Interesting fact about WDN is that flow patterns and demands are not constant or steady 

during 24 hours of operation. The demand variation during the day means that the 

optimal locations of the MSs will also vary. For Al-Khobar WDN, demand pattern 

changes every hour, which means that there are 24 different demand patterns. Selecting 

the optimal locations (nodes) for MSs based on these 24 pattern demands will result in 24 

sets of optimal locations for MSs, one set for each pattern. Furthermore, seven grouped 

demand patterns were developed in this study. Instead of using 24 hourly demand 

patterns, another alternative was to consider four 6 hours, two 12 hours or a single 24 

hours demand patterns as will be discussed later. 
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Since there were four CT values that were investigated and 31 different single and 

grouped demand patterns, the preliminary study examined 124 different optimization 

scenarios as shown in Table 5.7. In addition, the analysis investigated the effect of using 

different number of MSs, including 15, 20, 30, 50, 100, 200 and 250. Accordingly, the 

total number of scenarios for the preliminary study is 868 scenarios.  

The general trend of TMD for the different CT values was as expected; as CT values 

increase, less flow paths were considered. Figures 5.45 and 5.46 show the effect of CT in 

TMD percentages for different number of MSs in the WDN. TMD is the highest when 

CT is 40%, while it is the lowest when CT is 70%.  For CT values of 40%, 50% and 60%, 

the differences between coverages are relatively insignificant compared to the estimated 

TMD when CT is 70% as shown in Figures 5.45 and 5.46. Usually, a single value for CT 

is used, but using two values representing the upper and lower limits for CT will show the 

effect of this parameter on the final optimization process for selecting MSs optimal 

locations. 

Accordingly, in this study CT values of 40% and 60% were considered, since there is no 

significant difference in terms of TMD between 40%, 50% and 60% and most of the 

previous studies assumed CT values to be within this range. Another reason for analyzing 

the network for CT values of 40% and 60% is because higher values of CT such as 70% 

may ignore valuable flow paths if they count less than 70% of the water passing through 

the proposed monitoring nodes.  
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Table ‎5.7 Demand pattern scenarios for each CT 

Pattern 
Coverage Threshold (CT) 

40% 50% 60% 70% 

S
in

g
le

 h
o
u
r 

Hour 1 Hour 1 Hour 1 Hour 1 

Hour 2 Hour 2 Hour 2 Hour 2 

Hour 3 Hour 3 Hour 3 Hour 3 

Hour 4 Hour 4 Hour 4 Hour 4 

Hour 5 Hour 5 Hour 5 Hour 5 

Hour 6 Hour 6 Hour 6 Hour 6 

Hour 7 Hour 7 Hour 7 Hour 7 

Hour 8 Hour 8 Hour 8 Hour 8 

Hour 9 Hour 9 Hour 9 Hour 9 

Hour 10 Hour 10 Hour 10 Hour 10 

Hour 11 Hour 11 Hour 11 Hour 11 

Hour 12 Hour 12 Hour 12 Hour 12 

Hour 13 Hour 13 Hour 13 Hour 13 

Hour 14 Hour 14 Hour 14 Hour 14 

Hour 15 Hour 15 Hour 15 Hour 15 

Hour 16 Hour 16 Hour 16 Hour 16 

Hour 17 Hour 17 Hour 17 Hour 17 

Hour 18 Hour 18 Hour 18 Hour 18 

Hour 19 Hour 19 Hour 19 Hour 19 

Hour 20 Hour 20 Hour 20 Hour 20 

Hour 21 Hour 21 Hour 21 Hour 21 

Hour 22 Hour 22 Hour 22 Hour 22 

Hour 23 Hour 23 Hour 23 Hour 23 

Hour 24 Hour 24 Hour 24 Hour 24 

S
ix

 h
o
u
rs

 1
st 

6 hours 1
st 

6 hours 1
st 

6 hours 1
st 

6 hours 

2
nd 

 6 hours 2
nd 

 6 hours 2
nd 

 6 hours 2
nd 

 6 hours 

3
rd

 6 hours 3
rd

 6 hours 3
rd

 6 hours 3
rd

 6 hours 

4
th
 6 hours 4

th
 6 hours 4

th
 6 hours 4

th
 6 hours 

Twelve hours 
1

st
 12 hours 1

st
 12 hours 1

st
 12 hours 1

st
 12 hours 

2
nd

 12 hours 2
nd

 12 hours 2
nd

 12 hours 2
nd

 12 hours 

Twenty-four hours 24 hours 24 hours 24 hours 24 hours 
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(a) 

 
(b) 

 

Figure ‎5.45 Average TMD percentages for: 

(a) Hourly demand patterns and (b) 6 hours demand patterns 
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(a) 

 
(b) 

 

Figure ‎5.46 Average TMD percentages for: 

(a) 12 hours demand patterns and (b) 24 hours demand patterns 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0 50 100 150 200 250 300

%
 o

f 
d

e
m

an
d

 c
o

ve
ra

ge
 

Number of MSs 

CT = 40% CT = 50% CT = 60% CT = 70%

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

%
 o

f 
d

e
m

an
d

 c
o

ve
ra

ge
 

Number of MSs 

24 hours (40%) 24 hours (50%) 24 hours (60%) 24 hours (70%)



159 

 

5.8.2 Demand coverage optimization 

In order for the water quality monitoring system to secure and protect consumers from 

any possible deterioration of water quality, MSs should be located optimally in order to 

maximize covered and monitored water. Once the water is pumped to the network, there 

is no defense line that can protect consumers other than monitoring. Failure of the 

monitoring system or its low efficiency could cause delivery of water in unacceptable 

quality and, consequently, casualties due to water quality deterioration may occur. 

Therefore, it is very important to make sure that MSs are placed in the right optimal or 

proper location(s). 

Currently, there are 16 MSs in Al-Khobar city WDN. According to Al-Khobar authority, 

one of the MSs is out of service, which leaves the network with 15 MSs. The MSs are 

distributed over the WDN as shown in Figure 5.47. In general, most of the MSs are 

located close to major pumping locations such as Makkah tank, central pumping stations 

and pumping wells. 

The main reason behind locating MSs in these locations is to monitor water quality 

directly after pumping to make sure that chlorine levels and TDS (after blending 

groundwater and desalinated water) are within the acceptable limits. Although it is 

beneficial to locate few of the MSs immediately after blending, chlorine injection, and 

pumping points, but exclusively locating MSs at these places ignores the fact that water 

quality can be disrupted and deteriorated during delivery through WDN at locations far 

away from these points due to intrusion of contaminants through crack or due to 

intentional criminal and/or terrorist acts.  
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Figure ‎5.47 Existing locations of MS at Al-Khobar WDN 
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MSs located at nodes which have significant high water demand can protect more 

consumers and can minimize possible casualties caused by any possible accidental or 

intentional contamination events. 

In Al-Khobar WDN, there are 871 non-zero nodes, where each node has water demand 

ranging from 1 to 20 m³/hr. All of these nodes are considered potential monitoring 

stations (PMSs) and have equal chance for being chosen during the optimization process 

based on the objective functions and constraints explained in Chapter 3.  

Water demand for the network under study at Al-Khobar city is approximately 135,310 

m³/day. Demand varies from one hour to another and between day and night. Locating 

MSs was conducted by considering hourly, 6 hours, 12 hours and 24 hours demand 

patterns (total of 31 demand patterns) and setting every non-zero demand node as PMS. 

TMD for each pattern is shown in Figures 5.48 and 5.49. The figures indicate that the 

ratio between the number of MSs used and TMD is not linear, so for example, when 50 

MSs were able to cover 56.91% (for 24 hours demand pattern) of the total demand during 

24 hours, 250 MSs were able to increase demand coverage by only 38.55%, resulting in a 

total demand coverage of 95.46%.  

The results indicate that the ratio between the TMD and the number of MSs decreased 

beyond 30 MSs. In other words, the demand coverage efficiency per single MS was 

reduced and higher number of MSs is required to increase TMD significantly. However, 

according to the water authorities in Al-Khobar city, it is not possible to establish a 

monitoring system that contains more than 50 MSs due to economic and practical 
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Figure ‎5.48 Demand coverage when CT equals 40% 
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Figure ‎5.49 Demand coverage when CT equals 60% 
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constraints. Based on this, the maximum possible number of MSs that can be used is 50 

MSs. Therefore, in this study, two CT values were considered with 31 demand patterns, 

and four possible choices as candidate number of MSs can be used for Al-Khobar WDN 

(15, 20, 30 and 50). Accordingly, the total scenarios investigated in this research summed 

up to 248 scenarios. However, the possibility of locating 100, 200 and 250 MSs was also 

investigated. 

There are 24 hourly demand patterns in Al-Khobar WDN. For each single hourly demand 

pattern, a complete optimization analysis was conducted to select the optimal locations 

for the MSs. Besides the 24 hourly demands, the analysis for each pattern was done twice 

using CT values of 40% and 60%. Accordingly, 48 optimization analyses were conducted 

for hourly demands using objective function for absolute demand optimization and 

constraints 3.25 and 3.26 as discussed in section 3.4.2 of Chapter 3. Tables 5.8 and 5.9 

show TMD based on the optimization analyses for hourly demands using 50 MSs or less. 

As expected, the estimated TMD is higher when CT equals 40% compared to TMD when 

CT was 60%. Increasing the CT value limits the number of PMSs that can be selected and 

excludes valuable water flow paths if their contribution to water at nodes (PMSs) is less 

than the CT. However, for Al-Khobar WDN, the difference in TMD when CT equals 

40% and 60% was insignificant. For example, the demand coverage at hour 7 considering  

20 MSs is 55.19% and 49.07% for CT values of 40% and 60%, respectively. 
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Table ‎5.8 TMD percentages for different hourly demand patterns for different numbers of 

MSs (CT = 40%) 

Demand 

Patterns 

Number of MSs proposed 

0 15 20 30 50 

Hour 1 0 47.62 53.93 64.28 77.99 

Hour 2 0 48.70 54.71 64.18 77.02 

Hour 3 0 48.25 54.49 63.97 76.01 

Hour 4 0 51.88 58.27 67.23 79.03 

Hour 5 0 49.41 55.40 64.36 77.11 

Hour 6 0 47.94 53.75 62.94 74.97 

Hour 7 0 49.23 55.19 64.80 76.98 

Hour 8 0 47.50 53.75 64.13 77.13 

Hour 9 0 47.70 53.39 63.27 75.61 

Hour 10 0 46.42 53.12 63.28 75.95 

Hour 11 0 48.31 54.09 63.00 75.05 

Hour 12 0 46.92 53.83 63.46 74.96 

Hour 13 0 48.45 54.46 64.52 78.72 

Hour 14 0 46.13 52.59 62.69 76.21 

Hour 15 0 44.43 50.86 60.94 75.98 

Hour 16 0 44.03 50.54 60.22 73.98 

Hour 17 0 41.87 47.82 58.41 74.43 

Hour 18 0 46.91 52.71 62.38 77.08 

Hour 19 0 43.63 50.68 61.40 75.76 

Hour 20 0 44.26 51.21 61.21 76.16 

Hour 21 0 43.67 49.96 60.44 75.50 

Hour 22 0 45.04 50.85 60.60 75.79 

Hour 23 0 45.37 51.16 61.16 75.23 

Hour 24 0 45.17 51.97 62.83 76.13 
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Table ‎5.9 TMD percentages for different hourly demand patterns for different numbers of 

MSs (CT = 60%) 

Demand 

Patterns 

Number of MSs proposed 

0 15 20 30 50 

Hour 1 0 44.51 49.94 59.08 71.40 

Hour 2 0 41.50 46.69 55.22 66.04 

Hour 3 0 45.17 50.76 59.50 71.13 

Hour 4 0 46.77 52.15 60.63 71.12 

Hour 5 0 45.72 50.56 59.10 69.69 

Hour 6 0 46.58 51.44 59.40 70.04 

Hour 7 0 44.39 49.07 57.16 68.45 

Hour 8 0 45.95 51.19 59.38 70.27 

Hour 9 0 44.51 49.72 58.00 68.30 

Hour 10 0 45.44 50.88 58.55 68.21 

Hour 11 0 43.13 47.90 56.23 67.99 

Hour 12 0 45.13 50.30 58.40 68.70 

Hour 13 0 43.67 49.34 57.57 68.60 

Hour 14 0 43.10 48.37 56.58 67.01 

Hour 15 0 43.28 48.49 56.80 68.43 

Hour 16 0 42.65 48.64 57.06 68.70 

Hour 17 0 40.85 47.19 56.19 68.00 

Hour 18 0 41.42 47.33 56.40 68.60 

Hour 19 0 42.56 48.54 57.28 69.07 

Hour 20 0 41.62 47.27 55.95 68.72 

Hour 21 0 39.87 46.21 55.30 67.87 

Hour 22 0 41.54 47.59 56.49 67.89 

Hour 23 0 42.13 47.53 55.74 67.25 

Hour 24 0 42.66 48.85 57.70 69.41 
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Similar conclusion can be drawn for each of the 24 hourly demand patterns as shown in 

Tables 5.8 and 5.9.  

From the 7-hr demand pattern (Figure 5.50), it is clear that TMD is higher when CT 

equals 40% compared to TMD when CT was 60%, regardless of the number of MSs used 

in the optimization analysis. Similarly, summary of results shown in Tables 5.8 and 5.9 

supports the same conclusion for each of all the 24 hourly demand patterns.  

When considering 15 MSs (which is the same number of existing MSs), not less than 

41.87% and 39.78% of demand is covered in the WDN for CT values of 40 and 60%, 

respectively. TMD percentage can be increased to be more than 73% and 66% if 50 MSs 

were selected for hourly demand patterns for CT values of 40% and 60%, respectively. In 

other words, using 50 out of 871 nodes (ratio of 0.057), at least 66% of the demand can 

be monitored. For this small ratio of MSs used, the percentage of covered demand is 

interesting, especially if compared to previous studies. Lee and Deininger (1992) were 

able to cover 50% of the demand using 14 out of 211 nodes (ratio of 0.066), while Liu et 

al. (2012) were able to cover 96% of the demand using 7 out of 34 nodes (ratio of 0.206). 

If similar ratios were used in this study, such as 0.066 and 0.206, then about 58 and 180 

MSs should be selected. However, when selecting 58 and 180 MSs for Al-Khobar WDN, 

TMD becomes 82 and 97%, respectively, which is higher than the covered demand 

achieved by Lee and Deininger (1992) and Liu et al. (2012). In addition, this study is one 

of few studies where the analysis was conducted for a real network rather than a 

hypothetical one.  
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Figure ‎5.50 TMD comparison at hour 7 demand pattern for CT values of 40 and 60% 
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What is the best number of MSs that should be used? What is the minimum TMD that 

should be considered? These are open questions with no specific answer! Each network is 

a unique system, and answers to these questions are highly dependent on the WDN‘s 

economical and logistic constraints. From a theoretical point of view, the higher TMD the 

better, at least 50% of the demand should be covered. The idea here is that the monitoring 

system should reflect the actual water quality condition at the WDN as well as notify 

operators as soon as possible if there is any contamination risk. Both of these objectives 

require that the monitoring system should cover the demand in the network as much as 

possible. 

For the hourly demand patterns, if only 15 MSs were considered for each demand pattern, 

then the total number of MSs required will sum up to 106 and 84 possible optimal MSs, 

for CT values of 40% and 60%, respectively. The summary for hourly demand patterns 

scenarios (192 scenarios) is shown in Table 5.10. In fact, the sampling process at Al-

Khobar WDN does not take place on hourly basis. Actually, it would be economically 

and practically infeasible to operate 84 or 106 MSs, especially that the maximum number 

of MSs that can be used in the network is 50. Therefore, using less number of demand 

patterns by regrouping the 24 hourly demand patterns (number of patterns, not amount of 

flow) was considered as an alternative to overcome this economic and logistic obstacle. 

Instead of considering 24 hourly demand patterns, seven patterns were used: 1
st
 6 hours, 

2
nd

 6 hours, 3
rd

 6 hours, 4
th
 6 hours, 1

st
 12 hours, 2

nd
 12 hours, and 24 hours patterns. 

Each pattern represents the summation of demand for the time duration it stands for. For 

example, 2
nd

 6 hours simply represents the summation of demands for the second 6 hours  

  



170 

 

 

 

Table ‎5.10 Total number of MSs proposed for all hourly demand patterns 

Possible number of MSs 

at each demand pattern 

per day 

Proposed number of MS 

(CT = 40%) (CT = 60%) 

0 0 0 

15 106 84 

20 130 107 

30 162 133 

50 210 172 

100 299 257 

200 562 496 

250 646 619 

 

 

Table ‎5.11 Time duration for each grouped demand pattern 

Grouped Demand Pattern Duration 

1
st
 6 hours 00:00 – 06:00 

2
nd

 6 hours 06:00 – 12:00 

3
rd

 6 hours 12:00 – 18:00 

4
th
 6 hours 18:00 – 24:00 

1
st
 12 hours 00:00 – 12:00 

2
nd

 12 hours 12:00 – 24:00 

24 hours 00:00 – 24:00 
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of the day (from 6 am to 12 pm) and 1
st
 12 hours is the summation of demands for the 

first 12 hours of the day (from 12 am to 12 pm). Table 5.11 shows time duration for each 

grouped demand pattern. 

For the case of 6 hours demand patterns, daily demand was divided into four patterns, 

such that each one extends for 6 hours. Total demand at each 6 hours pattern equals to the 

sum of hourly demands during the same period. Figures 5.51 and 5.52 show demand 

coverage for the four 6 hours demand patterns (32 scenarios). In general, the same 

behavior was noted compared to hourly demand patterns; demand coverage is higher for 

lower CT values. The major difference between hourly demand patterns and 6 hours 

patterns is the reduction of TMD for 6 hours demand patterns compared to hourly 

demand patterns. Suppose 50 MSs were selected, while TMD for hourly patterns was 

more than 70% and 60% (for CT equals 40% and 60%, respectively), TMD for 6 hours 

patterns was reduced to less than 65% and 62% (for CT equals 40% and 60%, 

respectively) as shown in Tables 5.12 and 5.13. This reduction in coverage was due to the 

attempts for the optimization model to select the optimal locations of MSs for 6 hours 

interval in which the demand patterns change 6 times, which requires some sort of 

tradeoff. However, for hourly demand pattern, the model will select optimal locations of 

MSs for a single hour interval. This reduction of coverage can be thought of as a tradeoff 

between total number of MSs selected and TMD. For example, if only 15 MSs were 

selected at each demand pattern, then in the case of hourly demand patterns, the total 

number of MSs required during the entire day to reach TMD shown in Table 5.10 are 106 

and 84, respectively; while for 6 hours demand patterns, only a total of 38 and 31 MSs is 

required to achieve the TMD for 40% and 60% coverage criteria, respectively, as shown  
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(a) 

 

(b) 

 

Figure ‎5.51 TMD for demand patterns: (a) 1st 6 hours and (b) 2nd 6 hours 
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(a) 

 

 
(b) 

 

 

Figure ‎5.52 TMD for demand patterns: (a) 3rd 6 hours and (b) 4th 6 hours 
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Table ‎5.12 TMD percentages for different 6 hours demand patterns (CT = 40%) 

Demand 

Patterns 

Number of MSs proposed 

0 15 20 30 50 

1st 6 hours 0 34.61 40.90 50.08 63.09 

2nd 6 hours 0 33.33 39.14 49.22 63.80 

3rd 6 hours 0 30.79 37.45 47.38 61.03 

4th 6 hours 0 33.43 39.82 49.76 64.12 

1st 12 hours 0 28.32 34.27 44.36 59.54 

2nd 12 hours 0 29.98 35.78 45.85 60.12 

24 hours 0 25.37 31.70 41.87 56.19 

 

 

 

Table ‎5.13 TMD percentages for different 6 hours demand patterns (CT = 60%) 

Demand 

Patterns 

Number of MSs proposed 

0 15 20 30 50 

1st 6 hours 0 30.89 35.98 44.47 57.31 

2nd 6 hours 0 34.64 40.51 49.15 61.79 

3rd 6 hours 0 30.84 36.38 45.48 59.10 

4th 6 hours 0 30.59 36.61 46.28 59.76 

1st 12 hours 0 31.47 36.48 44.47 56.59 

2nd 12 hours 0 29.72 35.24 44.55 57.97 

Total 24 hours 0 28.24 33.31 41.89 55.13 
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in Table 5.14. However, using more MSs will increase the TMD. For the 1
st
 6 hours 

demand pattern, TMD reached 63.09 and 57.31% when using 50 MSs for CT values of 

40% and 60%, respectively. Other 6 hours demand patterns (2
nd

 6 hours, 3
rd

 6 hours and 

4
th
 6 hours) show exactly the same behavior as presented in Tables 5.12 and 5.13. Table 

5.14 shows the proposed number of MSs for all 6 hours demand patterns.  

In addition to the 6 hours grouped demand patterns, two 12 hours demand patterns were 

used to determine the optimal locations for MSs as shown in Table 5.11. In this scenario, 

the day was divided into two demand patterns, where each 12 hours demand pattern 

represents the summation of hourly demand patterns of the relevant duration. Tables 5.12 

and 5.13 show that when considering 12 hours demand patterns, further reduction in 

demand coverage was observed due to the same reasons that caused coverage reduction 

for 6 hours demand patterns. If 15 MSs were selected at each 12 hours demand pattern, 

then the total number of MSs required to achieve the TMD shown in Tables 5.12 and 

5.13 is 27 and 23, respectively, as shown in Table 5.15. TMD for 12 hours demand 

patterns (16 scenarios) is the least compared to the total number of MSs proposed for 

hourly demand patterns (Tables 5.8 and 5.9 ) and 6 hours demand patterns, as shown in 

Tables 5.12 and 5.13, since less number of MSs was used. Similarly, selecting more MSs 

will increase the TMD.  

The results indicate that 24 hours demand pattern requires less number of MSs compared 

to other demand patterns as shown in Table 5.16. However, the TMD for this demand 

pattern is the least compared to hourly, 6 hours and 12 hours demand patterns as 

presented in Tables 5.12 and 5.13.  
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Table ‎5.14 Total number of MSs proposed for all 6 hours demand patterns 

Possible number of 

MSs at each demand 

pattern per day 

Proposed number of MSs 

 (CT = 40%)  (CT = 60%) 

0 0 0 

15 38 31 

20 48 41 

30 60 57 

50 91 87 

 

 

Table ‎5.15 Total number of MSs proposed for all 12 hours demand patterns 

Possible number 

of MSs at each 

demand pattern 

Proposed number 

of MSs  

 (CT = 40%)  (CT = 60%) 

0 0 0 

15 27 23 

20 32 31 

30 43 44 

50 70 68 

 

 

Table ‎5.16 Total number of MSs proposed for 24 hours demand patterns 

Possible number 

of MSs at each 

demand pattern 

Proposed number 

of MSs 

 (CT = 40%)  (CT = 60%) 

0 0 0 

15 15 15 

20 20 20 

30 30 30 

50 50 50 
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The least TMD recorded was for a 24 hours demand pattern (8 scenarios). Tables 5.12 

and 5.13 show TMD for 24 hours demand pattern for different number of MSs. However, 

24 hours demand pattern requires the least number of MSs to reach TMD level in Tables 

5.12 and 5.13, as shown in Table 5.16. 

Due to the generalization of grouped demand patterns (compared to hourly patterns) and 

tradeoff between TMD and number of MSs selected, TMD was higher when CT was 60% 

compared to TMD when CT was 40%, such as 1
st
 12 hours and 24 hours demand 

patterns. However, this behavior during the selection of optimal locations of MSs using 

these demand patterns is limited by the selection of less number of MSs, particularly less 

than 30, as shown in Figure 5.53. When using more than 30 MSs, TMD is higher when 

CT is equal to 40%.  

It is also noticed that when CT is 40% and 60%, the TMD is not significant for Al-

Khobar distribution network, since there is a single central pumping station in which the 

flow paths do not change significantly. Accordingly, most of the flow paths fulfilling the 

40% coverage criteria will also be fulfilling the 60% coverage criteria.  

Four different classes of demand patterns were investigated, which are: hourly, 6 hours, 

12 hours and 24 hours. It was observed that as the time duration for each demand pattern 

increases, TMD decreases due to the tradeoff between maximizing TMD and the number 

of MSs used for grouped demand patterns (6, 12 and 24 hours). Accordingly, TMD 

maximization tendency for grouped demand patterns is lower compared to maximum  
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(a) 

 

 
(b) 

 

 

Figure ‎5.53 TMD for demand patterns: (a) 1st 12 hours and (b) 24 hours 
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TMD for hourly demand pattern due to the competition between optimal nodes at each 

hour (in the grouped demand pattern) in order to choose representative optimal locations 

for MSs for the entire demand pattern (6, 12 and 24 hours). Tables 5.17 and 5.18 show 

the average TMD for the four classes of demand patterns investigated in this study.  

Obviously, hourly patterns show higher coverage compared to the other patterns. 

Unfortunately, the selected MSs at each hourly pattern are not always the same. 

Therefore, to achieve the demand coverage for hourly patterns as shown in Tables 5.8 

and 5.9, or simply the average coverage as shown in Tables 5.17 and 5.18, high number 

of MSs are required as shown in Table 5.19. Similar conclusion can be drawn for 6 hours 

and 12 hours demand patterns. For example, if the maximum number of MSs allowed at 

each demand pattern is 15, therefore, to reach maximum demand coverages (TMD) and 

monitor the demand in the entire day, the total number of MSs required is 106, 38, 27 and 

15 for hourly, 6 hours, 12 hours and 24 hours demand patterns, respectively. Since the 24 

hours demand pattern is a single pattern, the number of MSs was 15. For other patterns, 

i.e. 6 hours demand patterns which consist of 1
st
 6 hours, 2

nd
 6 hours, 3

rd
 6 hours and 4

th
 6 

hours, the demand and water flow change frequently which might cause change in MS 

locations from one pattern to another. If 50 MSs were allowed to be selected at each 

demand pattern, the total number of MSs required to reach maximum demand coverages 

would increase to 210 for the case of hourly patterns as shown in Table 5.19. Instead, if a 

location is selected in one demand pattern, then it will not be counted again in the 

proceeding demand pattern. For example, if 15 MSs were selected for demand pattern 

and considering hourly demand patterns only, then the total number of MSs used to cover 

water demand for the entire day is 106 and not 360 (15*24 = 360) because there are 
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Table ‎5.17 Average TMD percentages for different number of MSs (CT = 40%) 

Demand 

Patterns 

Proposed number of MSs  

0 15 20 30 50 

Hourly Average 0.00 46.62 52.86 62.74 76.20 

6 Hours Average 0.00 33.04 39.33 49.11 63.01 

12 Hours 

Average 
0.00 29.15 35.02 45.10 59.83 

24 Hours 0.00 25.37 31.70 41.87 56.19 
 

 

 

 

 

Table ‎5.18 Average TMD percentages for different number of MSs (CT = 60%) 

Demand 

Patterns 

Proposed number of MSs 

0 15 20 30 50 

Hourly Average 0.00 43.51 49.00 57.49 68.79 

6 Hours Average 0.00 31.74 37.37 46.34 59.49 

12 Hours 

Average 
0.00 30.59 35.86 44.51 57.28 

24 Hours 0.00 28.24 33.31 41.89 55.13 
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Table ‎5.19 Total number of MSs required to reach maximum TMD level for different 

demand patterns 

(a) CT = 40%  

Number of MSs 

allowed per 

pattern 

Demand Pattern 

Hourly 6 Hours 12 Hours 24 Hours 

0 0 0 0 0 

15 106 38 27 15 

20 130 48 32 20 

30 162 60 43 30 

50 210 91 70 50 

100 299 163 125 100 

200 562 311 250 200 

250 646 382 314 250 

 

 

(b) CT = 60% 

Number of MSs 

allowed per 

pattern 

Demand Pattern 

Hourly 6 Hours 12 Hours 24 Hours 

0 0 0 0 0 

15 84 31 23 15 

20 107 41 31 20 

30 133 57 44 30 

50 172 87 68 50 

100 257 146 120 100 

200 496 287 233 200 

250 619 361 300 250 
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several optimal locations which were selected more than once during the analysis of 

different demand patterns. 

Practically and economically, it is impossible to consider the number of MSs selected 

based on the hourly demand patterns since the water samples are taken manually from the 

WDN. There should be a tradeoff between the number of MSs to be selected and TMD. 

Figure 5.54 shows the demand coverages for average demand patterns. Hourly demand 

patterns show the highest demand coverage, but at the same time the number of MSs 

required to achieve this coverage is infeasible. It would be difficult to collect samples on 

hourly basis from too many stations. On the other hand, although the 24 hours demand 

pattern requires fewer number of MSs, the low demand coverage accompanying this 

pattern makes it less attractive alternative. For 6 hours patterns, although it has a 

coverage less than that of the hourly patterns, it is higher than the coverages for 12 hours 

and 24 hours patterns as shown in Figure 5.54. In addition, 6 hours demand patterns 

require less number of MSs compared to hourly demand patterns as shown in Table 5.19. 

Furthermore, competition of optimal locations during the optimization process is less for 

6 hours demand patterns compared to 12 hours and 24 hours demand patterns since they 

(6 hours patterns) cover less duration. In other words, the competition between 6 sets of 

optimal locations is less compared to 12 and 24 sets of optimal locations, which is 

reflected in the higher levels of TMD for 6 hours patterns as shown in Tables 5.12, 5.13, 

5.17, and 5.18 compared to TMD levels for 12 hours and 24 hours demand patterns. 

From this perspective, 6 hours demand patterns are preferred over other demand patterns 

for selecting optimal locations for MSs in Al-Khobar WDN. 
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(a) 

 

(b) 

Figure ‎5.54 Daily average TMD for: (a) 40% CT and (b) 60% CT 
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In Al-Khobar WDN, water samples are collected between 6:00 am and 10:00 am. 

Accordingly, for the samples to be representative for the water quality during this timing 

in addition to increasing detection chances for any possible contamination, MSs should 

be identified during this specific duration. This will guarantee that the selected MSs will 

cover the demand at that specific timing. If 12 hours or 24 hours demand patterns were 

considered for locating MSs, then these stations will represent the optimal locations for 

the 12 hours and 24 hours duration, respectively. Based on Al-Khobar hydraulic 

simulation, the average water age for all the sub-regions in the WDN ranges between 1.6 

and 9.64 hours (Figure 5.6a), which implies that water quality is changing completely in 

the WDN within or in about 9.64 hours. This emphasizes that the MSs optimization 

should match with this input to ensure that the optimal locations of the stations represent 

the actual condition of water quality flowing during the sampling process. Based on the 

range of water age, it is obvious that 12 hours and 24 hours demand patterns may provide 

a general representation about water quality, however, careful attention should be paid 

since it covers time range higher than the water age in the WDN. For the sampling time 

between 6:00 am and 10:00 am, hourly and 6 hours patterns are more appropriate to be 

considered, but again for the hourly pattern, high number of MSs is an obstacle. 

Therefore, 6 hours demand pattern is more appropriate for Al-Khobar WDN. Identifying 

water quality MSs based on the 6 hours demand pattern will also provide more flexibility 

for field engineers to collect water samples within this period but not beyond it. In 

addition, sampling process in the WDN takes about 4 hours, which means that using 6 

hours pattern is more reasonable and practical compared to other demand patterns. Based 

on Table 5.11, the sampling period lies in the 2
nd

 6 hours demand pattern.  
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Figure 5.55 shows TMD comparison between 2
nd

 6 hours and hourly patterns for the 

sampling duration, between 6:00 am and 12:00 pm. Although TMD is less for 2
nd

 6 hours 

demand pattern, it should be considered, however, that 2
nd

 6 hours demand pattern 

requires less number of MSs compared to hourly patterns as shown in Figure 5.56. Table 

5.20 show the total number of monitoring stations required when adopting hourly and 2
nd

 

6 hours demand patterns for maximizing TMD during the sampling period. Note that the 

number of MSs considered at hour 8 demand pattern is less than the possible numbers 

because some MSs have already been selected (common between the demand patterns) 

during the previous demand pattern (hour 7). Similar observation is also valid for other 

hourly demand patterns.  

Figures 5.57 and 5.58 show the optimal MSs locations for 2
nd 

6 hours pattern. Although 

the proposed locations of the MSs maximize water demand coverage, but as can be 

revealed from the figures, there are some sub-regions, especially those far away from the 

city center, that do not have any recommended MSs. Even though hourly demand 

patterns have higher number of MSs as shown in Table 5.19, but similar to the 2
nd

 6 

hours demand pattern, some sub-regions do not have MSs as shown in Figures 5.59 and 

5.60. As can be observed from the figures, most of the MSs are located at the center of 

the city where most of the demands exist, but this leaves about half of the sub-regions 

unprotected as shown in Figure 5.61.  

By comparing Figures 5.57 and 5.58, it can be seen that MSs locations are scattered more 

through the network when CT is 40% compared to MSs locations when CT is 60%. This 

is more obvious for the case when proposing 15 MSs as shown in Figures 5.57a and 

5.58a. The majority of MSs, as shown in Figure 5.58a, are located in one sub-region  
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(a) 

 

(b) 

Figure ‎5.55 Demand coverage comparison between hourly and 2nd 6 hours demand 

patterns for: (a) 40% CT and (b) 60% CT 
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(a) 

 

(b) 

Figure ‎5.56 TMD comparison between required number of MSs for total hourly pattern 

from 6 am to 12 pm and 2nd 6 hours for:  (a) CT = 40% and (b) CT = 60% 
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Table ‎5.20 Possible number of MSs demand pattern for sampling duration (6 hours) 

 (a) CT = 40% 

Possible 

number  of 

MSs 

Demand Pattern for sampling duration (6 hours) 

Hour 7 Hour 8 Hour 9 Hour 10 Hour 11 Hour 12 
Total 

hourly 

2nd 

6 hours 
0 0 0 0 0 0 0 0 0 

15 15 8 10 7 6 6 52 15 

20 20 10 12 11 5 7 65 20 

30 30 14 17 10 7 8 86 30 

50 50 18 17 12 9 10 116 50 

100 100 32 20 12 17 9 190 100 

200 200 66 41 30 31 21 389 200 

250 250 72 46 30 36 18 452 250 

 

 

 

(b) CT = 60% 

Possible 

number  of 

MSs 

Demand Pattern for sampling duration (6 hours) 

Hour 7 Hour 8 Hour 9 Hour 10 Hour 11 Hour 12 
Total  

hourly 

2nd 

6 hours 

0 0 0 0 0 0 0 0 0 

15 15 6 3 4 5 1 34 15 

20 20 8 5 5 8 2 48 20 

30 30 12 6 8 8 1 65 30 

50 50 17 8 9 9 3 96 50 

100 100 28 11 13 10 4 166 100 

200 200 57 31 28 19 9 344 200 

250 250 73 34 26 18 9 410 250 
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(a)           (b) 

 

 

   

(c)           (d) 

 

Figure ‎5.57 Proposed locations of MSs based on 2nd 6 hours pattern considering 40% CT 

for: (a) 15 (b) 20 (c) 30 and (d) 50 MSs 
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(a) (b) 

 

 

    

(c)           (d) 

 

Figure ‎5.58 Proposed locations of MSs based on 2nd 6 hours pattern considering 60% CT 

for: (a) 15 (b) 20 (c) 30 and (d) 50 MSs 
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(a)           (b) 

 

 

   

(c)           (d) 

 

Figure ‎5.59 Proposed locations of MSs for all 6 hourly patterns considering 40% CT for: 

(a) 15 (b) 20 (c) 30 and (d) 50 MSs 

 

  

  



192 

 

 

              

 (a)           (b) 

 

   

(c)       (d) 

 

Figure ‎5.60 Proposed locations of MSs for all 6 hourly patterns considering 60% CT for: 

(a) 15 (b) 20 (c) 30 and (d) 50 MSs 
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(a)       (b) 

   

 

    

(c)           (d) 

 

Figure ‎5.61 Comparison of MSs numbers at each sub-region considering 40% and 60% 

CT for: (a) 15 (b) 20 (c) 30 and (d) 50 MSs 

 

  

  



194 

 

because the model was constrained by selecting nodes that maximize TMD (CT = 60%), 

which happened to occur in the central part of Al-Khobar WDN where most of the MSs 

were proposed. Although the difference in demand coverage using 2
nd

 6 hours pattern for 

CT values of 40% and 60% ranges between 1.31 and 2.01% only (in favor of the system 

where CT equals 40%) as shown in Tables 5.12 and 5.13, the fact that most of the MSs 

are grouped and clustered when CT is 60% may indicate a drawback for using high CT 

values. When using 50 MSs as shown in Figures 5.57d and 5.58d, the difference in 

monitoring distribution is insignificant regardless of the CT value used. In general, it can 

be concluded that the distribution of the MSs is directly affected by the number of MSs 

and CT values, i.e. decreasing the number of MSs and CT values will cause the MSs to be 

scattered all over the distribution network. 

While maintaining that maximum demand coverage was the main objective, the analysis 

showed that some sub-regions did not have MSs. In order to improve the distribution of 

MSs in the WDN, at least one MS should be located in every sub-region to assure 

minimum level of demand coverage for each sub-region. Accordingly, additional 

constraint was added to the optimization model to ensure that at least one MS must be 

located within each sub-region. 

5.8.3 Regional MSs 

Developing monitoring systems for WDN is not only about protecting the majority of the 

population by maximizing TMD but it is also related to monitoring water quality in all 

sub-regions of the city. Distributing monitoring stations all over the WDN will ensure 

protection around the network and reflect the existing condition of water quality in the 

entire network. Sub-regions downstream as well as upstream sub-regions should be 



195 

 

monitored, even if demand at downstream sub-regions is low compared to that at 

upstream sub-regions. When water quality deteriorates due to operational deficiencies 

such as injecting too much chlorine or pumping contaminated water from tanks, MSs at 

upstream sub-regions will have the chance to detect this type of risk earlier before 

downstream sub-regions. However, if water quality deteriorates due to criminal/terroristic 

act, then all sub-regions should have minimum protection since there is usually no clue 

about where the strike is going to happen. 

Table 5.21 shows TMD for different number of MSs when CT is 40% and 60% after 

incorporating the regional constraint to the optimization model. Comparing demand 

coverages for CT values of 40% and 60% shows generally higher coverage when CT is 

40%. This is similar to what was observed from the previous analysis before adding the 

regional constraint (absolute optimal analysis). However, TMD was reduced after adding 

the regional constraint compared to coverages without the regional constraint, as shown 

in Tables 5.8, 5.9, 5.12, 5.13 and 5.21, regardless of the demand pattern used, due to 

forcing the optimization algorithm to locate at least one MS within each sub-region. 

Although new MSs locations do not guarantee maximum demand coverage compared to 

locations selected without considering the regional constraint, they are optimal in the 

sense of maximizing demand coverage as well as maintaining minimum monitoring and 

coverage for each sub-region. Similar to non-regional optimization, demand coverage for 

hourly demand patterns is higher than grouped patterns including 6 hours, 12 hours and 

24 hours demand patterns as shown in Table 5.21. Average TMD for different demand 

patterns classes for regional optimization is shown in Table 5.22. Coverage increased 
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Table ‎5.21 TMD percentages for regional optimization scenarios 

(a) CT = 40% 

Demand 

Pattern 

Proposed number of MSs 

per pattern 15 20 30 50 

Hour 1 32.50 45.17 59.26 75.75 

Hour 2 36.51 47.75 59.77 75.05 

Hour 3 35.58 46.36 59.60 74.38 

Hour 4 35.55 50.11 63.71 77.28 

Hour 5 37.25 47.77 60.27 75.58 

Hour 6 32.57 45.85 58.46 73.30 

Hour 7 33.70 48.21 60.74 75.16 

Hour 8 34.42 46.68 59.31 75.07 

Hour 9 34.57 46.69 58.26 73.62 

Hour 10 34.02 44.93 58.13 73.93 

Hour 11 31.74 47.36 58.98 73.08 

Hour 12 32.82 44.83 58.83 72.92 

Hour 13 30.98 47.28 59.76 76.53 

Hour 14 33.00 44.46 58.16 73.95 

Hour 15 31.26 42.86 56.50 73.12 

Hour 16 27.05 42.02 55.77 71.62 

Hour 17 27.81 39.45 53.23 71.43 

Hour 18 32.38 45.45 57.97 74.45 

Hour 19 28.73 41.52 56.80 73.69 

Hour 20 29.80 42.78 56.72 73.56 

Hour 21 29.29 42.14 55.99 73.35 

Hour 22 31.16 45.55 57.14 73.45 

Hour 23 26.99 45.09 57.81 73.12 

Hour 24 29.20 43.67 57.74 73.97 

1st 6 hours 18.55 30.24 45.62 61.12 

2nd 6 hours 20.85 32.14 44.16 61.28 

3rd 6 hours 17.53 28.04 42.06 58.28 

4th 6 hours 20.01 31.18 45.24 61.66 

1st 12 hours 16.79 26.53 39.26 56.87 

2nd 12 hours 17.33 28.43 40.56 57.55 

Total 24 hours 14.36 23.29 36.32 53.56 
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Table 5.21 Continue 

(b) CT = 60% 

Demand 

Pattern 

Proposed number of MSs 

per pattern 15 20 30 50 

Hour 1 28.60 43.48 55.14 69.71 

Hour 2 24.46 39.48 51.19 64.11 

Hour 3 30.86 44.51 56.16 69.57 

Hour 4 28.02 45.11 56.68 69.30 

Hour 5 35.72 45.17 55.37 67.51 

Hour 6 28.09 45.68 55.78 68.08 

Hour 7 25.95 43.11 54.07 67.03 

Hour 8 28.74 45.08 56.37 68.83 

Hour 9 28.45 44.09 54.82 66.80 

Hour 10 31.97 44.18 55.78 66.76 

Hour 11 26.09 42.74 52.87 66.47 

Hour 12 31.25 44.29 55.44 67.21 

Hour 13 28.62 41.91 54.48 67.12 

Hour 14 24.82 40.96 52.84 65.13 

Hour 15 24.62 41.02 53.06 66.50 

Hour 16 25.02 40.13 53.14 66.77 

Hour 17 27.07 38.36 51.94 66.10 

Hour 18 25.66 40.13 52.93 67.11 

Hour 19 23.78 39.23 53.13 67.16 

Hour 20 23.67 38.68 51.82 66.79 

Hour 21 22.92 36.69 50.96 66.04 

Hour 22 23.91 38.78 52.87 66.46 

Hour 23 24.91 41.18 52.49 65.79 

Hour 24 29.64 41.50 54.30 67.87 

1st 6 hours 18.94 29.16 40.99 55.26 

2nd 6 hours 19.56 32.07 45.61 59.94 

3rd 6 hours 18.90 29.14 42.01 57.15 

4th 6 hours 17.11 28.10 42.13 57.90 

1st 12 hours 18.51 29.91 41.27 54.77 

2nd 12 hours 17.46 27.41 40.75 56.12 

Total 24 hours 16.37 26.53 38.35 53.27 
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Table ‎5.22 Average TMD percentages for regional optimization 

(a) CT = 40% 

Demand Pattern 
Proposed number of MSs  

per pattern 15 20 30 50 

Hourly Average 32.04 45.17 58.29 74.06 

6-Hours Average 19.24 30.40 44.27 60.58 

12 Hours 

Average 
17.06 27.48 39.91 57.21 

24 Hours 14.36 23.29 36.32 53.56 

 

(b) CT = 60% 

Demand Pattern 
Proposed number of MSs  

per pattern 15 20 30 50 

Hourly Average 27.20 41.90 53.90 67.09 

6 Hours Average 18.63 29.62 42.69 57.56 

12 Hours 

Average 
17.99 28.66 41.01 55.44 

24 Hours 16.37 26.53 38.35 53.27 
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when more MSs were proposed. In addition, as more MSs are proposed, the demand 

coverage difference between regional and non-regional optimization decreases for all 

demand patterns and CT values. Table 5.23 shows average TMD differences between 

regional and non-regional optimization.  

Table 5.24 shows the total number of MSs proposed considering regional optimization. 

There is no significant difference between the total number of MSs used for regional and 

non-regional optimization as shown in Figure 5.62. TMD for all hourly and 6 hours 

demand patterns is shown in Figure 5.63.  

Hourly demand patterns have the highest TMD for regional optimization as shown in 

Table 5.22. In addition, similar to non-regional optimization, to reach maximum coverage 

levels shown in Table 5.21, higher number of MSs should be used as shown in Table 

5.24. This will not be practically and economically possible as discussed earlier. 

Recall that sampling period at Al-Khobar WDN is between 6:00 am and 12:00 pm, in 

addition to limiting the total number of MSs to 50. Grouped demand patterns including 

12 hourly and 24 hours demand patterns have the least demand coverages as can be seen 

in Tables 5.22 and 5.23, which show average TMD for different demand patterns classes. 

Therefore, two demand patterns can be investigated in which one of them can be selected, 

either hourly demand pattern for the sampling period or 2
nd

 6 hours pattern. Figure 5.64 

shows that average demand coverage for hourly patterns is higher compared to 2
nd

 6 

hours pattern. However, to reach the hourly pattern level of coverage, more MSs are 

required. Figure 5.65 shows the number of MSs required for hourly and 2
nd

 6 hours 

patterns to reach coverage levels shown in Figure 5.64. Coverage difference between the  
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Table ‎5.23 Average TMD difference between regional and non-regional optimization 

(a) CT = 40% 

Demand Pattern 
Proposed number of MSs  

per pattern 15 20 30 50 

Hourly Average 14.58 7.70 4.45 2.14 

6 Hours Average 13.80 8.93 4.84 2.43 

12 Hours 

Average 

12.09 7.55 5.19 2.62 

24 Hours 11.01 8.41 5.56 2.63 

 

(a) CT = 60% 

Demand Pattern 
Proposed number of MSs  

per pattern 15 20 30 50 

Hourly Average 16.30 7.10 3.59 1.69 

6 Hours Average 13.11 7.75 3.66 1.93 

12 Hours 

Average 

12.61 7.20 3.51 1.84 

24 Hours 11.87 6.78 3.54 1.85 
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Table ‎5.24 Proposed number of MSs to achieve maximum TMD levels for regional 

optimization 

(a) CT = 40% 

Number of MSs 

allowed per 

pattern 

Demand Pattern 

Hourly 6 Hours 12 Hours 24 Hours 

0 0 0 0 0 

15 104 35 22 15 

20 128 44 31 20 

30 159 66 43 30 

50 218 93 68 50 

100 306 163 125 100 

200 562 311 250 200 

250 646 382 314 250 

 

(b) CT = 60% 

Number of MSs 

allowed per 

pattern 

Demand Pattern 

Hourly 6 Hours 12 Hours 24 Hours 

0 0 0 0 0 

15 84 28 22 15 

20 102 38 29 20 

30 137 55 45 30 

50 181 85 66 50 

100 257 146 120 100 

200 496 287 233 200 

250 619 361 300 250 
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(a) 

 

 

(b) 

 

Figure ‎5.62 Total number of MSs required for regional and non-regional optimization: 

(a) Hourly demand pattern, (b) 6 hours demand patterns 
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 (a) 

 

 

(b) 

 

Figure ‎5.63 Average TMD for regional and non-regional optimization: 

(a) Hourly demand pattern, (b) 6 hours demand patterns 
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(a) 

 

 

(b) 

 

Figure ‎5.64 Demand coverage for hourly and 2nd 6 hours patterns: 

(a) CT = 40%, (b) CT = 60% 
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(a) 

 

 

(b) 

Figure ‎5.65 Number of required MSs for hourly and 2nd 6 hours patterns 

(a) CT = 40%, (b) CT = 60% 

0

20

40

60

80

100

120

0 15 20 30 50

To
ta

l n
u

m
b

e
r 

o
f 

M
Ss

 r
e

q
u

ir
e

d
 

Proposed number of MSs 

Hourly (Regional)

2nd 6-hours (Regional)

0

20

40

60

80

100

120

0 15 20 30 50

To
ta

l n
u

m
b

er
 o

f 
M

Ss
 r

e
q

u
ir

e
d

 

Proposed number of MSs 

Hourly (Regional)

2nd 6-hours (Regional)



206 

 

two patterns ranges between 7.24 and 14.88% in favor of hourly patterns as shown in 

Table 5.25, which indicates that as the allowable number of MSs increases, the coverage 

difference between hourly demand patterns and 2
nd

 6 hours demand patterns decreases. 

On the other hand, while 2
nd

 6 hours patterns require a range of MSs between 15 and 250 

to reach coverage levels in Figure 5.64, hourly patterns require between 33 and 452 MSs 

as shown in Table 5.26. In addition, higher coverage for hourly patterns requires the use 

of more than 50 MSs (Table 5.26), which is not a feasible option for Al-Khobar WDN 

due to practical and economical obstacles. However, the maximum number of MSs used 

for 2
nd

 6 hours demand pattern is 50. Therefore, 2
nd

 6 hours pattern is preferred over 

hourly demand patterns to be used for locating MSs even after adding the regional 

constraint. 

For both cases, when considering or relaxing the regional constraint, the 2
nd

 6 hours 

demand pattern was preferred over other demand patterns as discussed earlier. Figure 

5.66 shows that the total number of MSs used before and after adding the regional 

constraint for the 2
nd

 6 hours demand pattern did not change. Although adding the 

regional constraint has reduced the TMD, especially when the allowable number of MSs 

is less than 50 as shown in Figure 5.67, it should be clearly noted that the lack of 

distribution of MSs and the absence of minimum regional protection in the non-regional 

optimization were the reasons in the first place which led to adding the regional 

constraint. However, increasing the allowable number of MSs used will decrease the 

difference between demand coverage for regional and non-regional optimization 

significantly as shown in Table 5.27. Accordingly, it is recommended to identify the  
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Table ‎5.25 Coverage difference between hourly and the 2nd 6 hours demand patterns 

CT 
Proposed number of MSs at each pattern 

0 15 20 30 50 100 200 250 

40% 0.00 12.69 14.30 14.88 12.68 8.81 3.82 2.82 

60% 0.00 9.18 11.84 9.28 7.24 5.87 3.49 2.41 

 

 

Table ‎5.26 Number of MSs required for hourly and the 2nd 6 hours patterns 

(a) CT = 40% 

Number of MSs 

allowed per 

pattern 

Demand Pattern 

Hourly 2
nd

 6 Hours 

0 0 0 

15 41 15 

20 56 20 

30 78 30 

50 117 50 

 

(b) CT = 60% 

Number of MSs 

allowed per 

pattern 

Demand Pattern 

Hourly 2
nd

 6 Hours 

0 0 0 

15 33 15 

20 42 20 

30 66 30 

50 97 50 

 

 

Table ‎5.27 Coverage difference between regional and non-regional optimization for 2nd 

6 hours demand pattern 

CT 
Proposed number of MSs  

0 15 20 30 50 

40% 0.00 12.48 6.99 5.05 2.52 

60% 0.00 15.08 8.44 3.54 1.85 
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Figure ‎5.66 Proposed number of MSs for 2nd 6 hours water demand pattern 

 

 

 

Figure ‎5.67 Demand coverage for 2nd 6 hours water demand pattern 
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locations of the water quality monitoring stations based on the regional constraint with a 

minimum number of 15 MSs. Such an action will help increase the demand coverage and 

reduce the difference between regional and non-regional optimization, and will guarantee 

minimum protection level for all sub-regions in the city. For non-regional optimization, 

increasing the number of MSs did not guarantee that every sub-region is expected to be 

monitored by at least one station as shown in Figure 5.62, but for regional optimization, 

almost the same level of coverage can be achieved and at the same time it ensures that 

every sub-region is monitored as shown in Figures 5.68 and 5.69. There is at least one 

MS within each sub-region, while for non-regional optimization there are several sub-

regions without any MS even when the allowable number of MSs was 50. Figures 5.70 

and 5.71 show the proposed optimal locations for MSs based on regional optimization. 
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(a)           (b) 

 

 

    

(c)       (d) 

 

Figure ‎5.68 Comparison of number of MSs for regional and non-regional optimization 

based on 2nd 6 hours demand pattern and 40% CT for: 

(a) 15 (b) 20 (c) 30 and (d) 50 MSs 
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(a)           (b) 

 

 

 

     

(c)           (d) 

 

Figure ‎5.69 Comparison of number of MSs for regional and non-regional optimization 

based on 2nd 6 hours demand pattern and 60% CT for: 

(a) 15 (b) 20 (c) 30 and (d) 50 monitoring sets 
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(a)            (b) 

 

 

     

(c)           (d) 

 

Figure ‎5.70 Locations of monitoring stations for 2nd 6 hours demand pattern and 40% 

CT for: (a) 15 (b) 20 (c) 30 and (d) 50 MSs 
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(a)           (b) 

 

 

 

    

(c)           (d) 

 

Figure ‎5.71 Locations of monitoring stations for 2nd 6 hours demand pattern and 60% 

CT for: (a) 15 (b) 20 (c) 30 and (d) 50 MSs 
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5.8.4 Risk, vulnerable and sensitive optimization 

Most of the studies that dealt with identifying optimal locations of MSs in water 

distribution systems have used water demand as the key parameter for locating the MSs 

(Lee and Deininger, 1992; Kumar et al., 1997; Kessler et al., 1998; Harmant et al., 1999; 

Liu et al., 2011 and 2012). It is also considered as a reflection of the distribution and 

density of population in urban areas. Using demand for developing monitoring systems is 

logically accepted since the target is to monitor as much demand as possible to, 

consequently, protect consumers. However, it should be noted that possible consequences 

of potential accidental and/or intentional contaminations vary for different consumers in 

different sub-regions. Some sub-regions and population categories would be more 

vulnerable and/or sensitive to water quality deterioration in the WDN, such as densely 

populated sub-regions and children less than 10 years, respectively. The developed DSS 

using fuzzy synthetic evaluations showed that each sub-region has different 

characteristics than other sub-regions, which makes the expected consequences in case of 

water quality deterioration to vary for different sub-regions. Higher consequences are 

expected for some sub-regions more than the others since these sub-regions are having 

higher risk, vulnerability and sensitivity to water quality deterioration compared to other 

sub-regions as shown in Figures 5.32, 5.43 and 5.44. Therefore, in addition to demand, 

regional risk, vulnerability and sensitivity were also investigated in the study. This 

improvement of incorporating risk, vulnerability and sensitivity will enhance the 

monitoring system not only by maximizing TMD in all sub-regions, but also it will 

provide extra protection for sub-regions that are expected to have higher consequence or 

casualties for any water quality deterioration. Furthermore, additional constraints were 
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considered such as limiting the allowable number of MSs to 50 or less, and regional 

constraint was set to minimum level of protection for every sub-region as explained in 

Chapter 3. For this analysis, the 2
nd

 6 hours demand pattern was used, since it is the 

suitable demand pattern for Al-Khobar WDN. 

Table 5.28 shows the TMD for optimal locations of MSs based on the 2
nd

 6 hours 

demand pattern. There is insignificant coverage difference between MSs located based on 

demand (only), risk, vulnerability or sensitivity. When the allowable numbers of MSs are 

15 and 20, TMD for demand (regional), risk, vulnerability and sensitivity objective 

functions is the same, especially when CT is 40%. This indicates that the selected MSs 

based on the four objective functions are the same. The reason for a small coverage 

difference when using more than 20 MSs is because MSs locations using risk, 

vulnerability and sensitivity are a little bit different compared to the locations of MSs 

identified based on demand objective function only. Compared to MSs locations selected 

exclusively based on demand objective function, the change in MSs locations did not 

exceed 5, 6 and 15 MSs for risk, vulnerability and sensitivity objective functions, 

respectively. These relocated MSs were moved from sub-regions with relatively low risk, 

vulnerability or sensitivity to sub-regions having higher risk, vulnerability or sensitivity.  

The insignificant TMD difference and similarity of locations distributions of MSs 

between demand, risk, vulnerability and sensitivity optimizations can be explained using 

Figure 5.72 which shows regional populations density and regional risk, vulnerability and 

sensitivity indices. The central sub-regions in Al-Khobar city have the highest demand  
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Table ‎5.28 TMD for optimal locations of MSs based on the 2nd 6 hours demand pattern 

 (a) CT = 40% 

Objective 

function 

Proposed number of MSs 

15 20 30 50 

Demand (only) 20.85 32.14 44.16 61.28 

Risk 20.85 32.14 43.81 60.63 

Vulnerability 20.85 32.14 43.64 60.69 

Sensitivity 20.85 32.14 43.81 60.63 

 

(b) CT = 60% 

Objective 

function 

Proposed number of MSs 

15 20 30 50 

Demand (only) 19.56 32.07 45.61 59.94 

Risk 19.56 31.94 44.97 59.18 

Vulnerability 19.56 32.07 44.75 58.93 

Sensitivity 19.56 31.94 45.24 59.18 
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(a)       (b) 

 

   

(c)      (d) 

 

Figure ‎5.72 Population density and risk indices: 

(a) Population density (b) Vulnerability indices (c) Sensitivity indices (d) Risk indices 
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(and population density) as well as having the highest risk, vulnerability and sensitivity 

compared to sub-regions to the north and south of the city. On the other hand, for risk, 

vulnerability and sensitivity analysis, demand was also used as a component in the 

objective function because the target was to locate MSs that are capable to cover 

maximum demand taking into consideration risk, vulnerability and sensitivity variability 

between sub-regions. Quantifying risk, vulnerability and sensitivity based on regional 

indices is another reason for the insignificant differences in TMD and MSs distribution 

for the four objective functions. In regional analysis, regional risk, vulnerability and 

sensitivity indices for each node are equal to the overall indices for the sub-region they 

belong to. Developing nodal risk, vulnerability and sensitivity indices rather than regional 

indices would be recommended to show significant variability between the four scenarios 

(demand, risk, vulnerability and sensitivity). However, using nodal indices requires 

macro level of data collection which will significantly increase the costs for developing 

such monitoring systems. Also, this option may be difficult to implement for Al-Khobar 

WDN because it requires comprehensive data collection (nodal level) for water quality 

and sensitivity components (population, activity, standard of living, …etc.). This is 

beyond the ability of Al-Khobar municipality which is currently limited to only 15 MSs 

for water quality for the entire network. Therefore, it is reasonable that optimization 

results show similarities between the four objective functions. Figures 5.73 to 5.78 show 

the distribution of MSs based on risk, vulnerability and sensitivity objective functions. 

Table 5.29 shows comparison of the percentage of TMD for different objective functions. 

Maximum demand coverage was achieved when using demand as the only key parameter 
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(a)       (b) 

 

 

    

(c)       (d) 

 

Figure ‎5.73 Optimal monitoring locations for 2nd 6 hours demand pattern and 40% CT 

based on risk objective function for: 

(a) 15 (b) 20 (c) 30 and (d) 50 MSs 
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(a)       (b) 

 

 

    

(c)       (d) 

 

Figure ‎5.74 Optimal monitoring locations for 2nd 6 hours demand pattern and 40% CT 

based on vulnerability objective function for: 

(a) 15 (b) 20 (c) 30 and (d) 50 MSs 
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(a)       (b) 

 

 

 

    

(c)       (d) 

 

Figure ‎5.75 Optimal monitoring locations for 2nd 6 hours demand pattern and 40% CT 

based on sensitivity objective function for: 

(a) 15 (b) 20 (c) 30 and (d) 50 MSs 
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(a)       (b) 

 

    

(c)       (d) 

 

Figure ‎5.76 Optimal monitoring locations for 2nd 6 hours demand pattern and 60% CT 

based on risk objective function for: 

(a) 15 (b) 20 (c) 30 and (d) 50 MSs 
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(a)       (b) 

 

 

    

(c)       (d) 

 

Figure ‎5.77 Optimal monitoring locations for 2nd 6 hours demand pattern and 60% CT 

based on vulnerability objective function for: 

(a) 15 (b) 20 (c) 30 and (d) 50 MSs 
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(a)       (b) 

 

    

(c)       (d) 

 

Figure ‎5.78 Optimal monitoring locations for 2nd 6 hours demand pattern and 60% CT 

based on sensitivity objective function for: 

(a) 15 (b) 20 (c) 30 and (d) 50 MSs 
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Table ‎5.29 TMD for different objective functions 

(a) CT = 40% 

Objective function 
Proposed number of MSs 

15 20 30 50 

Demand (Non-Regional) 33.33 39.14 49.22 63.80 

Demand (Regional) 20.85 32.14 44.16 61.28 

Risk (Regional) 20.85 32.14 43.81 60.63 

Vulnerability (Regional) 20.85 32.14 43.64 60.69 

Sensitivity (Regional) 20.85 32.14 43.81 60.63 

 

(b) CT = 60% 

Objective function Proposed number of MSs 

15 20 30 50 

Demand (Non-Regional) 34.64 40.51 49.15 61.79 

Demand (Regional) 19.56 32.07 45.61 59.94 

Risk (Regional) 19.56 31.94 44.97 59.18 

Vulnerability (Regional) 19.56 32.07 44.75 58.93 

Sensitivity (Regional) 19.56 31.94 45.24 59.18 
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without considering the regional constraint. The drawback for this alternative is that some 

sub-regions are totally unprotected due to their low demand rates compared to highly 

populated sub-regions. Therefore, non-regional approach cannot be used due to the lack 

of minimum protection level for all sub-regions. On the other side, maximum TMD 

reduces (compared to non-regional approach) when adding regional constraints to 

guarantee minimum regional protection level as shown in Table 5.29, either for demand 

or risk, vulnerability and sensitivity objective functions.  

However, the difference between non-regional and regional demand coverage decreases 

as the number of MSs increases. For example, when selecting 50 MSs, the difference is 

only about 3% as shown in Figure 5.79. Accordingly, when considering regional 

alternative and selecting more than 15 MSs, the gap in demand coverage can be reduced 

between regional and non-regional alternatives while at the same time assuring that every 

sub-region is protected and monitored as well as the risk, vulnerability and sensitivity of 

each sub-region are considered. 
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(a) 

 

 

(b) 

Figure ‎5.79 Coverage difference between regional and non-regional scenarios for: 

(a) 40% CT and (b) 60% CT  
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6 CHAPTER 6 

RISK MANAGEMENT 

The overall risk of failure of delivering water to consumers in an acceptable quality 

depends on some factors which include physico-chemical properties of water, possibility 

of microbial growth, infrastructure condition, water hydraulics, population distribution, 

economic status, and services. To control and/or reduce regional risks indices, risks 

associated with either one or more of these factors should be reduced or eliminated. The 

reduction in the overall risk indices varies based on the contribution of each factor. On 

the other hand, logistic and economic expenses to reduce total risk vary significantly 

based on the strategy adopted for reducing total risk. For example, minimizing total risk 

by reducing TDS levels in sub-regions having high level of TDS is a relatively cheap 

solution compared to using PVC pipes instead of AC pipes. At the end, it is a matter of 

tradeoff, how much reduction of total risk is required and what are the possible and 

bearable solutions? The factors that can be considered to manage, control and/or reduce 

total risk are physico-chemical and microbial properties, structure integrity of the WDN, 

hydraulic properties of water and sensitivity of each sub-region in terms of population 

density, distribution, activities and presence of schools and hospitals. However, the 

sensitivity of each of these factors on the vulnerability and sensitivity risk indices varies 

based on the assigned weight (importance) in the fuzzy model. To determine this 

sensitivity, Montecarlo simulation was used. Montecarlo simulation is one of the most 

common approaches for determining the sensitivity of competing factors and for 
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probability-based uncertainty analysis (Abrahamsson, 2002). In Montecarlo simulation 

the uncertainity in the inputs can be modeled by developing probability density functions 

for input parameters. However, this is not always possible and therefore inputs are 

assumed to follow specific distributions based on the previous knowledge of each input 

parameter (Ferdous et al., 2009). Inputs in this study (TDS, temperature, pH levels, 

residual chlorine, turbidity, pipes age, pipes type, water age, pressure, velocity, standard 

of living, activity in regions, number of students, number of hospital beds and population 

density) were simulated using Montecarlo simulation by assuming uniform distribution 

for all the parameters and running the simulation for 1000 times. 

Outputs of the simulations show that vulnerability is more sensitive to changes in 

hydraulics and water quality as can be seen in figure 6.1 a. On the other hand, sensitivity 

risk index is more affected by the change in population density as shown in figure 6.1 b. 

In addition to the sensitivity of vulnerability and sensitivity risk indices, figure 6.1c 

shows that overall risk index is more sensitive to the changes in the sensitivity risk index 

compared to vulnerability risk index.  

Figures 6.1 shows that the sensitivity of the input factors is proportional to the weights 

assigned to each parameter in the DSS, which indicates the importance and the effect of 

these weight in the over all risks 

The reduced total risk is determined by eliminating risks expected from each of the 

previous factors at a time. By applying MCDM, the contribution of each factor on the 

total risk can be identified by assigning equal weight for all the factors. For the Goal 

Programming optimization and MCDM, the objective was to reduce the risk from every  
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Figure ‎6.1 Sensitivity percentage for each factor 

for: (a) Vulnerability risk index, (b) sensitivity risk index and (c) overall risk index 
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factor. Table 6.1 shows total risk indices for each sub-region when eliminating risks 

caused by each factor. For example, when controlling physico-chemical levels so that it 

lies within optimal standards, the total risk in sub-region 76 reduces from 0.354 to 0.340. 

However, if the structure integrity including pipes materials, breaks, ages, water table 

levels, soil conditions and potential intrusions was improved, the total risk will reduce 

from its original index of 0.354 to 0.253.   

It can be seen that most of the contribution on the total risk comes from structure integrity 

and sensitivity factors. Table 6.2 shows that the average contribution to the total risk from 

structure integrity and sensitivity are the highest. However, there is no way to reduce 

risks caused by sensitivity since it represents population density, standard of living, 

activities in the city, and distribution of schools and hospitals, which are factors that 

cannot be modified or changed. Therefore, risk contribution from sensitivity on the total 

risk can be considered as the minimum level of risk, since there is no possibility to have 

zero risk. Accordingly, structure integrity is considered as the factor with the highest  

contribution on the overall risk in the WDN, caused by several factors including pipes 

breakage ratio, material, age and potential intrusions.    

Hydraulic contribution on the total risk is relatively significant, with an average 

contribution of 13.1%, and physico-chemical and microbial contribution is the least with 

an average of 5.4 and 9.5% of the total risk as shown in Table 6.2.  

Total risk can be controlled and/or reduced by managing physico-chemical, microbial and 

hydraulic properties in addition to improving the structure integrity of the system. 

However, improving structure integrity should be considered as the first priority since  
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Table ‎6.1 Summary of the total risk after eliminating each factor at a time 

Sub-regions Current 
Factor controlled and/or eliminated 

Phy-Chem Microbial Structure 

Integrity 
Hydraulics Sensitivity 

74 0.541 0.534 0.514 0.443 0.506 0.168 

75 0.595 0.587 0.580 0.497 0.461 0.255 

76 0.354 0.340 0.337 0.253 0.305 0.180 

77 0.296 0.282 0.279 0.198 0.261 0.165 

78 0.275 0.269 0.228 0.175 0.240 0.188 

81 0.160 0.143 0.133 0.059 0.160 0.145 

82 0.213 0.203 0.177 0.108 0.178 0.185 

94 0.701 0.691 0.664 0.603 0.576 0.269 

98 0.339 0.324 0.321 0.309 0.290 0.110 

102 0.201 0.187 0.184 0.172 0.166 0.096 

103 0.305 0.299 0.287 0.255 0.270 0.109 

104 0.113 0.096 0.098 0.084 0.113 0.062 

105 0.154 0.137 0.133 0.125 0.119 0.102 

119 0.175 0.158 0.152 0.146 0.139 0.106 

120 0.453 0.436 0.430 0.391 0.401 0.155 

121 0.493 0.477 0.435 0.421 0.443 0.198 
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Table ‎6.2 Percentages of contribution of each factor to the total risk 

Sub-regions 
Factors 

Phy-Chem Microbial Structure 

Integrity 
Hydraulics Sensitivity 

74 1.4 5.0 18.1 6.5 69.0 

75 1.4 2.5 16.5 22.5 57.2 

76 4.0 4.7 28.5 13.8 49.0 

77 4.8 5.9 33.1 11.8 44.4 

78 2.2 17.2 36.4 12.8 31.5 

81 10.6 16.8 63.1 0.0 9.5 

82 4.5 16.7 49.4 16.5 13.0 

94 1.4 5.2 14.0 17.8 61.6 

98 4.4 5.3 8.6 14.3 67.4 

102 7.0 8.7 14.5 17.4 52.4 

103 2.1 5.9 16.2 11.5 64.3 

104 15.1 13.9 25.8 0.0 45.2 

105 11.1 13.7 19.0 22.8 33.4 

119 9.7 13.6 16.7 20.6 39.4 

120 3.8 5.1 13.8 11.6 65.8 

121 3.3 11.8 14.6 10.3 60.0 

Average 5.4 9.5 24.3 13.1 47.7 
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most of the pipes in the WDN are made up of AC, which have the highest percentage of 

pipe breakage in the network and are the oldest, in addition to health concerns relevant to 

the use of AC pipes which are classified as a carcinogenic material and were banned in 

several places in the world. Table 6.3 shows the minimum expected total risk when all 

the factors were controlled.  

Accordingly, managing risks in the WDN can be achieved based on a plan of two phases. 

The first and urgent phase is to improve the infrastructure of the WDN, mainly replacing 

asbestos by PVC pipes in the southern parts of the city. This will reduce the overall risks 

caused by pipe breaks, materials and ages as well as potential intrusion by 24.3%. The 

second phase is to improve the hydraulics and water quality within the system. These 

phases can be done simultaneously since the second phase will require less efforts and 

financial support relative to the first phase, where the overall risk reduction will be 52.3% 

as shown in Table 6.3. Soft copy of the MCDM model is in appendix D. 
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Table ‎6.3 Comparison between current and minimum total risks 

Sub-region 
Total Risk Reduction 

Current  Minimum percentage 

74 0.541 0.374 31 

75 0.595 0.340 43 

76 0.354 0.173 51 

77 0.296 0.131 56 

78 0.275 0.087 68 

81 0.16 0.015 90 

82 0.213 0.028 87 

94 0.701 0.431 38 

98 0.339 0.228 33 

102 0.201 0.106 48 

103 0.305 0.196 36 

104 0.113 0.051 55 

105 0.154 0.051 67 

119 0.175 0.069 61 

120 0.453 0.298 34 

121 0.493 0.296 40 

 Average reduction 52.3 
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7 CHAPTER 7 

CONCLUSION AND RECOMMENDATIONS 

In this research, a decision support system (DSS) was developed to prioritize regional 

risk for water distribution system (WDN) to ensure delivery of water to consumers with 

acceptable water quality level. The DSS considered 22 variables from different categories 

including water quality and hydraulic properties, in addition to factors such as structure 

integrity of the WDN and regional sensitivity based on the distribution, population 

density, income rates, activities in each sub-region and the presence of public service 

such as schools and hospitals. The developed DSS tool was able to prioritize risk, 

vulnerability and sensitivity in the WDN by aggregating 32 attributes using Fuzzy 

Synthetic Evaluation (FSE), Analytical Hierarchical Process (AHP) and Fuzzy Rule-

Based (FRB). 

The DSS tool was applied for Al-Khobar WDN in Saudi Arabia.  The study showed that 

the central parts of the city have high total risk indices compared to sub-regions in the 

north and south of the city. Central sub-regions have the maximum population density 

and are mainly residential areas, which make them sensitive sub-regions for any water 

quality deterioration. In addition, the vulnerability of the system at the central sub-regions 

is higher compared to other sub-regions in the WDN. However, vulnerability at sub-

regions in the south is relatively higher than sub-regions in the north of the city. High 

vulnerability in the central sub-regions occurred due to the water quality distributed, 

hydraulics and structure integrity and infrastructure of the system. The hydraulic index 
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for central sub-regions was high due to the high pressure in these sub-regions since they 

are close to the main pumping station. In addition, structure integrity including pipes 

ages, materials and breakage ratios is relatively low for sub-regions in the center and 

south of the city. Therefore, risk indices due to structural integrity were found to be high 

at these sub-regions. 

The results of this study found that the highest and lowest regional risk indices were 0.65 

and 0.13, respectively. Risk indices can be reduced by eliminating one or more of the 

factors contributing on the total risk, such as water quality properties, structure integrity 

and hydraulics.  

Total risk cannot practically be reduced to zero. However, it can be reduced to acceptable 

minimum levels. In general, the risk contribution of factors including physico-chemical 

and microbial properties, structure integrity, hydraulics and sensitivity to the total risk 

was found to be 5.4, 9.5, 24.3, 13.1 and 47.7%, respectively. Reducing total risk by 

improving the structure integrity of the system might be challenging from an economic 

point of view, however, major improvements in infrastructure should be considered as the 

first priority in risk management plans. In addition, improving water quality parameters 

and hydraulics of water as well as improving the infrastructure of the WDN can reduce 

the total risk by an average of 47.7%. 

It is recommended to manage risks in the WDN based on a plan of two phases. The 

urgent phase is to improve the infrastructure of the WDN, mainly replacing asbestos by 

PVC pipes in the southern parts of the city. This will reduce the overall risks caused by 

pipe breaks, materials and ages as well as potential intrusion. The second phase is to 



238 

 

improve the hydraulics and water quality within the system. These phases can be done 

simultaneously since the second phase will require less efforts and financial support 

relative to the first phase. Overall risk reduction if both phases were completed is 52.3%. 

Monitoring system has also been developed for Al-Khobar WDN based on Demand 

Coverage Method (DCM). In this research, several scenarios based on 24 hourly and 7 

grouped demand patterns (6 hours, 12 hours and 24 hours), four CT values (40, 50, 60 

and 70%) and monitoring stations ranging from 15 to 250 were studied. A total of 2046 

scenarios were investigated to develop a monitoring system for Al-Khobar city. The 

existing monitoring system was used for monitoring TDS and chlorine levels in the water 

and, consequently, the MSs were located directly after the blending stations, close to 

tanks and pumping stations. The objective was to develop a monitoring system that is 

capable of reflecting water quality in the entire network and protect consumers from any 

possible action that might cause water quality deterioration. DCM was applied to develop 

the monitoring system by maximizing the monitored demand. In general, using higher 

values for coverage threshold (CT) eliminates more flow pathways and, consequently, 

decreases the total monitored demand (TMD), while using low values for CT will not 

reflect the actual water quality in the WDN. It was shown that CT value has an effect on 

the selection of optimal MSs since potential monitoring stations (PMSs) change for 

different CT values. 

For non-regional optimization, where demand was the only parameter controlling the 

process and there was no regional constraint for locating MSs, TMD was higher for 

hourly demand patterns compared to grouped demand patterns. The maximum average 

TMD was found to be 76.20, 63.01, 59.83 and 56.19% for hourly, 6 hours, 12 hours and 
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24 hours demand patterns, respectively, when 50 MSs were used. However, it was 

noticed that no MS was proposed for areas with low water demand. Thus, a regional 

constraint was incorporated in the optimization model (regional optimization) to ensure 

minimum level of protection, such that at least one MS should exist in each sub-region.  

The results indicate that the TMD for regional optimization was lower than the non-

regional optimization. When 50 MSs were proposed, the maximum average TMD was 

found to be 74.06, 60.58, 57.21 and 56.56% for hourly, 6 hours, 12 hours and 24 hours 

demand patterns, respectively. However, this difference in TMD between regional and 

non-regional optimization increases as the number of MSs decreases. The average 

difference in TMD between regional and non-regional optimization was 14.58, 7.70, 4.45 

and 2.14% when using 15, 20, 30, and 50 MSs, respectively, for hourly demand patterns. 

Grouped demand patterns show similar behavior. 

In general, although hourly demand patterns showed higher TMD compared to grouped 

patterns all over this study, they required higher number of MSs as well, which is a 

drawback considering that increasing the number of MSs may not be practically and 

economically feasible. It was also noted that increasing the number of MSs per demand 

pattern has reduced the TMD difference between hourly and grouped demand patterns. 

For Al-Khobar WDN, the sampling period runs between 6:00 am and 12:00 pm. 

Accordingly, two demand patterns alternatives were investigated: hourly demand patterns 

and 2
nd

 6 hours demand pattern. Although hourly demand patterns have higher TMD 

compared to 2
nd

 6 hours demand pattern, the number of MSs required was twice the 

number of monitoring stations for 2
nd

 6 hours demand pattern. In addition, the difference 
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between the two alternatives reduces as the number of MSs used increases. However, the 

main drawback for hourly demand patterns is that they require more than 50 MSs, which 

is a constraint for Al-Khobar WDN. Therefore, 2
nd

 6 hours demand pattern is more 

applicable for this network. 

In addition to water demand, other parameters were considered to develop the monitoring 

system including risk, vulnerability and sensitivity indices which resulted from the DDS 

using fuzzy synthetic evaluation. Some of the locations of the MSs have been relocated 

based on the risk, vulnerability and sensitivity for each sub-region. In general, however, 

the TMD difference in regional optimization (demand only) compared to risk, 

vulnerability and sensitivity optimization was insignificant.  

Two CT values were investigated thoroughly in this study, including 40% and 60%. In 

general, TMD was relatively higher when CT was 40%, although in most cases the 

difference in TMD for both CT values was insignificant. However, if there is no regional 

constraint considered in the analysis, CT values alter the optimal locations of the MSs. 

While MSs were more scattered for non-regional optimization when CT was 40%, 

locations were more clustered when CT was 60%, especially when less number of MSs 

was considered. The total number of MSs used was relatively higher when CT was 40% 

compared to 60%. 

The proposed monitoring system considers demand and distribution in the city, risk, 

vulnerability and sensitivity of different sub-regions, in addition to ensuring that each 

sub-region has a minimum coverage level. Final locations of MSs show that the central 

area of the city requires more MSs compared to the northern and southern side of the city 
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due to the higher intensity of population and demands in addition to higher risk, 

vulnerability and sensitivity levels in the central area.   

However, in order to increase the monitoring duration for Al-Khobar WDN from the 

sampling period to the entire day, an automated monitoring system should be used. For 

this new monitoring system, hourly demand patterns can be used and, consequently, 

higher demand coverages can be achieved. 
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The survey used for estimating fuzzy weights 

Dear Sir, 

Thanks for participating in this survey. 

You are requested to rate the relative importance of different parameters relevant to water 

delivery through Water Distribution Networks. The aim of ranking is to determine (from 

your own expertise and opinion) what are the factors which have more effect and could 

cause higher risk to consumers. 

Rating scale should be between 1 – 9. Table 1 provides a scale to assign relative 

importance to different factors, while 1 indicates equal importance between the two 

factors compared, 9 indicates a supreme and extreme importance of one factor over the 

other. 

 

 

Table 1 – Importance scale 

Importance Definition Explanation 

1 Equal importance 
Two activities contribute equally to the 

objective 

2 Weak importance - 

3 Moderate importance 
Experience and judgment slightly favor one 

activity over other 

4 Moderate plus - 

5 Strong importance 
Experience and judgment strongly favor one 

activity over other 

6 Strong plus - 

7 

Very strong or 

demonstrated 

importance 

An activity is favored very strongly over 

another, its dominance demonstrated in 

practice 

8 Very, very strong - 

9 Extreme importance 

The evidence favoring one activity over 

another is of highest possible order of 

affirmation 
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Illustrative example 

Suppose you are required to rank comparative importance of temperature, PH and TDS as 

shown in Table 2.  

Table 2 

  Temperature pH TDS 

Temperature 1 
  pH   1 

 TDS     1 
 

Ranking procedure: 

1- You are required to fill yellow cells only 

2- Based on the scaling range (Table 1), suppose you think pH has a higher 

importance over temperature by factor of 2, than you will rank as follows: 

  Temperature pH TDS 

Temperature 1 2 
 pH   1 
 TDS     1 

 

3- Suppose you think TDS has a higher importance over temperature by a factor of 

5, than you will rank as follows: 

  Temperature pH TDS 

Temperature 1 2 5 

pH   1 
 TDS     1 

 

4- Suppose you think TDS has an equal importance as pH, than you will rank as 

follows: 

  Temperature pH TDS 

Temperature 1 2 5 

pH   1 1 

TDS     1 
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5- Suppose you think Temperature has a higher importance over pH by a factor of 7, 

than you will rank as follows: 

  Temperature pH TDS 

Temperature 1 1/7 
 pH   1 
 TDS     1 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B C 

A 1 
 

2 

B   1 
 C     1 

 

 

 

 

 

 

 

 

 

 Factor C is more important 

than factor A by factor 2 
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Survey 

Part 1: Water Quality 

a- In your opinion, which factor of these has more effect than others on water quality 

delivered to consumers through water distribution networks? 

  Temperature pH TDS 

Temperature 1 
  pH   1 

 TDS     1 
  

 

 

 

 

b- In your opinion, which factor of these has more effect than others on water quality 

delivered to consumers through water distribution networks? 

  Residual Chlorine Turbidity 

Residual Chlorine 1 
 Turbidity   1 

 

 

 

Part 2: Potential intrusion 

In your opinion, if there was an intrusion of contaminants to the water distribution 

system, how do you rank the dangerous effect of sewer intrusion and industrial (car 

workshops) intrusion compared to each other? 

  Industrial Sewer 

Industrial 1 
 Sewer   1 
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Part 3: Structure Integrity 

In your opinion, regarding water distribution networks infrastructure, what factors have 

more effect on water quality? How would you rank them?  

 

Note:  

Soil Type : The effect of soil surrounding pipes 

Water table : The effect of level of water table on the pipes. 

 

  P. Type P. Age 
Soil 

Type 
P. 

Intrusion Water Table 

Pipe type 1     

Pipe age   1    

Soil Type     1   

Potential intrusion       1 
 Water Table         1 

 

 

Part 4: School index 

In your opinion, what schools category will be more affected if students drink 

contaminated water delivered by the water distribution system? 

 

Note: 

Elementary schools : Students from 5 to 12 years old. 

Intermediate schools : Students from 12 to 15 years old. 

Secondary schools : Students from 15 to 18 years old.  

 

  Elementary Intermediate Secondary 

Elementary 1   

Intermediate   1 
 Secondary     1 
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Part 5: Sensitivity index 

In your opinion, If contaminated water was pumped through the water distribution 

network, How would you rank the following factors? Higher ranking indicates that the 

expected risks from one factor are higher than the other.  

Note: 

Population : Population density. 

Schools : All schools, elementary, intermediate or secondary. 

Hospitals : Possible patients affected. 

Activity : The activity of the area under study, residential, industrial, 

commercial.  

Standard of living : The average income rates for the area under study, high, med and 

low. Example: zones with low income have a higher possibility to drink water directly 

from tabs, while high income zones usually buy water. 

 

  Population Schools Hospital Activity Standard of living 

Population 1       

Schools   1      

Hospital     1     

Activity       1 
 

  

Standard of living         1   
 

 

 

 

Thanks for participating in this survey. 
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APPENDIX B 

Shapes of membership functions used 
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Figure A.1 Shapes of fuzzy sets used in the study 

 

Triangular 1  
1 

A                   B             C             D                     E 

A             B                 C                                D                     

Triangular 2 
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APPENDIX C 

Optimization Models 
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Non-Regional optimization 

 

MODEL: 

! Optimization sample problem using coverage method 50%; 

 

SETS: 

   Nodes: Coverage_sum ,Include, Hydraulic_Index; 

 

!Nodes, Coverage_sum,Include,Risk_index, Sensetivity_Index,   

          Vulnerability_Index, Hydraulic_Index, SI_Index, WQ_Index, 

          Sum_Indicies, Coverage_hour1, Coverage_6_1, Coverage_12_1; 

ENDSETS 

 

!======================================================================

========; 

 

! Here is the data; 

DATA: 

   !Importing attribute values and set members from Excel; 

   Nodes, Coverage_sum , Hydraulic_Index= 

 

   @OLE('C:\LINGO12\Dissertation\Network\Excel for lingo 40%.xlsx'); 

 

 

   !Exporting Results to Excel; 

   @OLE('C:\LINGO12\Dissertation\Network\Excel for lingo 

40%.xlsx')=Include;    

 

 

 

ENDDATA 

 

!======================================================================

========; 

! Total Monitoring Nodes constraint nodes, 

  in which I am forcing the complier to use the sum to "include" 

  parameter as a tool for determining number of monitoring 

  stations ; 

 

! Setting constraint so that at least one monitoring station is choosen 

  from each region; 

 

Region_74 = @Sum(Nodes(J) | J #LE# 25: Include(J)); 

 

Region_75_A = @Sum(Nodes(J) | J #GE# 26: Include(J)); 

Region_75_B = @Sum(Nodes(J) | J #GE# 84: Include(J)); 

Region_75 = Region_75_A - Region_75_B; 

 

Region_76_A = @Sum(Nodes(J) | J #GE# 84: Include(J)); 

Region_76_B = @Sum(Nodes(J) | J #GE# 104: Include(J)); 

Region_76 = Region_76_A - Region_76_B; 
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Region_77_A = @Sum(Nodes(J) | J #GE# 104: Include(J)); 

Region_77_B = @Sum(Nodes(J) | J #GE# 112: Include(J)); 

Region_77 = Region_77_A - Region_77_B; 

 

Region_78_A = @Sum(Nodes(J) | J #GE# 112: Include(J)); 

Region_78_B = @Sum(Nodes(J) | J #GE# 118: Include(J)); 

Region_78 = Region_78_A - Region_78_B; 

 

Region_82_A = @Sum(Nodes(J) | J #GE# 118: Include(J)); 

Region_82_B = @Sum(Nodes(J) | J #GE# 120: Include(J)); 

Region_82 = Region_82_A - Region_82_B; 

 

Region_94_A = @Sum(Nodes(J) | J #GE# 120: Include(J)); 

Region_94_B = @Sum(Nodes(J) | J #GE# 223: Include(J)); 

Region_94 = Region_94_A - Region_94_B; 

 

Region_98_A = @Sum(Nodes(J) | J #GE# 223: Include(J)); 

Region_98_B = @Sum(Nodes(J) | J #GE# 374: Include(J)); 

Region_98 = Region_98_A - Region_98_B; 

 

Region_102_A = @Sum(Nodes(J) | J #GE# 374: Include(J)); 

Region_102_B = @Sum(Nodes(J) | J #GE# 485: Include(J)); 

Region_102 = Region_102_A - Region_102_B; 

 

Region_103_A = @Sum(Nodes(J) | J #GE# 485: Include(J)); 

Region_103_B = @Sum(Nodes(J) | J #GE# 553: Include(J)); 

Region_103 = Region_103_A - Region_103_B; 

 

Region_104_A = @Sum(Nodes(J) | J #GE# 553: Include(J)); 

Region_104_B = @Sum(Nodes(J) | J #GE# 583: Include(J)); 

Region_104 = Region_104_A - Region_104_B; 

 

Region_105_A = @Sum(Nodes(J) | J #GE# 583: Include(J)); 

Region_105_B = @Sum(Nodes(J) | J #GE# 594: Include(J)); 

Region_105 = Region_105_A - Region_105_B; 

 

Region_119_A = @Sum(Nodes(J) | J #GE# 594: Include(J)); 

Region_119_B = @Sum(Nodes(J) | J #GE# 741: Include(J)); 

Region_119 = Region_119_A - Region_119_B; 

 

Region_120_A = @Sum(Nodes(J) | J #GE# 741: Include(J)); 

Region_120_B = @Sum(Nodes(J) | J #GE# 830: Include(J)); 

Region_120 = Region_120_A - Region_120_B; 

 

Region_121 = @Sum(Nodes(J) | J #GE# 830: Include(J)); 

 

 

 !In this case I will force the compiler to use at least 1 node in each 

region; 

 

 

 

================================!======================================

;=== 

 

 !Optimization Process; 
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 !Number of monitoring stations allowed from the total nodes (871;) 

  @ For(Nodes@ :Sum(Nodes:Include)=50;) 

 

 

 !The Binary constraints ; 

  @ For(Nodes@:BIN(Include;)) 

 

 !The objective; 

 !Maximizing demand coverage; 

 

MAX  @( = SUM (Nodes: Coverage_sum * Hydraulic_Index * Include;)) 

 

END 

 

 

Regional optimization 

MODEL: 

! Optimization sample problem using coverage method 50%; 

 

SETS: 

   Nodes: Coverage_6_2 , Include; 

 

!Nodes, Coverage_sum,Include,Risk_index, Sensetivity_Index,   

          Vulnerability_Index, Hydraulic_Index, SI_Index, WQ_Index, 

          Sum_Indicies, Coverage_hour1, Coverage_6_1, Coverage_12_1; 

ENDSETS 

 

!======================================================================

========; 

 

! Here is the data; 

DATA: 

   !Importing attribute values and set members from Excel; 

   Nodes, Coverage_6_2 = 

 

   @OLE('C:\LINGO12\Dissertation\Network\With Regional 

Constraints\Excel for lingo (Regional Constraints) 60% 

corrected.xlsx'); 

 

 

   !Exporting Results to Excel; 

   @OLE('C:\LINGO12\Dissertation\Network\With Regional 

Constraints\Excel for lingo (Regional Constraints) 60% 

corrected.xlsx')=Include;    

 

 

 

ENDDATA 

 

!======================================================================

========; 
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! Total Monitoring Nodes constraint nodes, 

  in which I am forcing the complier to use the sum to "include" 

  parameter as a tool for determining number of monitoring 

  stations ; 

 

! Setting constraint so that at least one monitoring station is choosen 

  from each region; 

 

Region_74 = @Sum(Nodes(J) | J #LE# 25: Include(J)); 

 

Region_75_A = @Sum(Nodes(J) | J #GE# 26: Include(J)); 

Region_75_B = @Sum(Nodes(J) | J #GE# 84: Include(J)); 

Region_75 = Region_75_A - Region_75_B; 

 

Region_76_A = @Sum(Nodes(J) | J #GE# 84: Include(J)); 

Region_76_B = @Sum(Nodes(J) | J #GE# 104: Include(J)); 

Region_76 = Region_76_A - Region_76_B; 

 

Region_77_A = @Sum(Nodes(J) | J #GE# 104: Include(J)); 

Region_77_B = @Sum(Nodes(J) | J #GE# 112: Include(J)); 

Region_77 = Region_77_A - Region_77_B; 

 

Region_78_A = @Sum(Nodes(J) | J #GE# 112: Include(J)); 

Region_78_B = @Sum(Nodes(J) | J #GE# 118: Include(J)); 

Region_78 = Region_78_A - Region_78_B; 

 

Region_82_A = @Sum(Nodes(J) | J #GE# 118: Include(J)); 

Region_82_B = @Sum(Nodes(J) | J #GE# 120: Include(J)); 

Region_82 = Region_82_A - Region_82_B; 

 

Region_94_A = @Sum(Nodes(J) | J #GE# 120: Include(J)); 

Region_94_B = @Sum(Nodes(J) | J #GE# 223: Include(J)); 

Region_94 = Region_94_A - Region_94_B; 

 

Region_98_A = @Sum(Nodes(J) | J #GE# 223: Include(J)); 

Region_98_B = @Sum(Nodes(J) | J #GE# 374: Include(J)); 

Region_98 = Region_98_A - Region_98_B; 

 

Region_102_A = @Sum(Nodes(J) | J #GE# 374: Include(J)); 

Region_102_B = @Sum(Nodes(J) | J #GE# 485: Include(J)); 

Region_102 = Region_102_A - Region_102_B; 

 

Region_103_A = @Sum(Nodes(J) | J #GE# 485: Include(J)); 

Region_103_B = @Sum(Nodes(J) | J #GE# 553: Include(J)); 

Region_103 = Region_103_A - Region_103_B; 

 

Region_104_A = @Sum(Nodes(J) | J #GE# 553: Include(J)); 

Region_104_B = @Sum(Nodes(J) | J #GE# 583: Include(J)); 

Region_104 = Region_104_A - Region_104_B; 

 

Region_105_A = @Sum(Nodes(J) | J #GE# 583: Include(J)); 

Region_105_B = @Sum(Nodes(J) | J #GE# 594: Include(J)); 

Region_105 = Region_105_A - Region_105_B; 

 

Region_119_A = @Sum(Nodes(J) | J #GE# 594: Include(J)); 

Region_119_B = @Sum(Nodes(J) | J #GE# 741: Include(J)); 

Region_119 = Region_119_A - Region_119_B; 
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Region_120_A = @Sum(Nodes(J) | J #GE# 741: Include(J)); 

Region_120_B = @Sum(Nodes(J) | J #GE# 830: Include(J)); 

Region_120 = Region_120_A - Region_120_B; 

 

Region_121 = @Sum(Nodes(J) | J #GE# 830: Include(J)); 

 

 

 !In this case I will force the compiler to use at least 1 node in each 

region; 

 

@For(Nodes: Region_74>=1;) 

@For(Nodes: Region_75>=1;) 

@For(Nodes: Region_76>=1;) 

@For(Nodes: Region_77>=1;) 

@For(Nodes: Region_78>=1;) 

@For(Nodes: Region_82>=1;) 

@For(Nodes: Region_94>=1;) 

@For(Nodes: Region_98>=1;) 

@For(Nodes: Region_102>=1;) 

@For(Nodes: Region_103>=1;) 

@For(Nodes: Region_104>=1;) 

@For(Nodes: Region_105>=1;) 

@For(Nodes: Region_119>=1;) 

@For(Nodes: Region_120>=1;) 

@For(Nodes: Region_121>=1;) 

 

======================================================================!

;=== 

 

 !Optimization Process; 

 

 

 

 !Number of monitoring stations allowed from the total nodes (871;) 

  @ For(Nodes@ :Sum(Nodes:Include)=50;) 

 

 

 !The Binary constraints ; 

  @ For(Nodes@:BIN(Include;)) 

 

 !The objective; 

 !Maximizing demand coverage; 

 

MAX  @( = SUM (Nodes: Coverage_6_2 * Include;)) 

 

END 
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MODEL: 

! Optimization sample problem using coverage method 50%; 

 

SETS: 

   Nodes: Coverage_6_2 , Include; 

 

!Nodes, Coverage_sum,Include,Risk_index, Sensetivity_Index,   

          Vulnerability_Index, Hydraulic_Index, SI_Index, WQ_Index, 

          Sum_Indicies, Coverage_hour1, Coverage_6_1, Coverage_12_1; 

ENDSETS 

 

!======================================================================

========; 

 

! Here is the data; 

DATA: 

   !Importing attribute values and set members from Excel; 

   Nodes, Coverage_6_2 = 

 

   @OLE('C:\LINGO12\Dissertation\Network\With Regional 

Constraints\Excel for lingo (Regional Constraints) 60% 

corrected.xlsx'); 

 

 

   !Exporting Results to Excel; 

   @OLE('C:\LINGO12\Dissertation\Network\With Regional 

Constraints\Excel for lingo (Regional Constraints) 60% 

corrected.xlsx')=Include;    

 

 

 

ENDDATA 

 

!======================================================================

========; 

! Total Monitoring Nodes constraint nodes, 

  in which I am forcing the complier to use the sum to "include" 

  parameter as a tool for determining number of monitoring 

  stations ; 

 

! Setting constraint so that at least one monitoring station is choosen 

  from each region; 

 

Region_74 = @Sum(Nodes(J) | J #LE# 25: Include(J)); 

 

Region_75_A = @Sum(Nodes(J) | J #GE# 26: Include(J)); 

Region_75_B = @Sum(Nodes(J) | J #GE# 84: Include(J)); 

Region_75 = Region_75_A - Region_75_B; 
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Region_76_A = @Sum(Nodes(J) | J #GE# 84: Include(J)); 

Region_76_B = @Sum(Nodes(J) | J #GE# 104: Include(J)); 

Region_76 = Region_76_A - Region_76_B; 

 

Region_77_A = @Sum(Nodes(J) | J #GE# 104: Include(J)); 

Region_77_B = @Sum(Nodes(J) | J #GE# 112: Include(J)); 

Region_77 = Region_77_A - Region_77_B; 

 

Region_78_A = @Sum(Nodes(J) | J #GE# 112: Include(J)); 

Region_78_B = @Sum(Nodes(J) | J #GE# 118: Include(J)); 

Region_78 = Region_78_A - Region_78_B; 

 

Region_82_A = @Sum(Nodes(J) | J #GE# 118: Include(J)); 

Region_82_B = @Sum(Nodes(J) | J #GE# 120: Include(J)); 

Region_82 = Region_82_A - Region_82_B; 

 

Region_94_A = @Sum(Nodes(J) | J #GE# 120: Include(J)); 

Region_94_B = @Sum(Nodes(J) | J #GE# 223: Include(J)); 

Region_94 = Region_94_A - Region_94_B; 

 

Region_98_A = @Sum(Nodes(J) | J #GE# 223: Include(J)); 

Region_98_B = @Sum(Nodes(J) | J #GE# 374: Include(J)); 

Region_98 = Region_98_A - Region_98_B; 

 

Region_102_A = @Sum(Nodes(J) | J #GE# 374: Include(J)); 

Region_102_B = @Sum(Nodes(J) | J #GE# 485: Include(J)); 

Region_102 = Region_102_A - Region_102_B; 

 

Region_103_A = @Sum(Nodes(J) | J #GE# 485: Include(J)); 

Region_103_B = @Sum(Nodes(J) | J #GE# 553: Include(J)); 

Region_103 = Region_103_A - Region_103_B; 

 

Region_104_A = @Sum(Nodes(J) | J #GE# 553: Include(J)); 

Region_104_B = @Sum(Nodes(J) | J #GE# 583: Include(J)); 

Region_104 = Region_104_A - Region_104_B; 

 

Region_105_A = @Sum(Nodes(J) | J #GE# 583: Include(J)); 

Region_105_B = @Sum(Nodes(J) | J #GE# 594: Include(J)); 

Region_105 = Region_105_A - Region_105_B; 

 

Region_119_A = @Sum(Nodes(J) | J #GE# 594: Include(J)); 

Region_119_B = @Sum(Nodes(J) | J #GE# 741: Include(J)); 

Region_119 = Region_119_A - Region_119_B; 

 

Region_120_A = @Sum(Nodes(J) | J #GE# 741: Include(J)); 

Region_120_B = @Sum(Nodes(J) | J #GE# 830: Include(J)); 

Region_120 = Region_120_A - Region_120_B; 

 

Region_121 = @Sum(Nodes(J) | J #GE# 830: Include(J)); 

 

 

 !In this case I will force the compiler to use at least 1 node in each 

region; 

 

@For(Nodes: Region_74>=1;) 

@For(Nodes: Region_75>=1;) 

@For(Nodes: Region_76>=1;) 
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@For(Nodes: Region_77>=1;) 

@For(Nodes: Region_78>=1;) 

@For(Nodes: Region_82>=1;) 

@For(Nodes: Region_94>=1;) 

@For(Nodes: Region_98>=1;) 

@For(Nodes: Region_102>=1;) 

@For(Nodes: Region_103>=1;) 

@For(Nodes: Region_104>=1;) 

@For(Nodes: Region_105>=1;) 

@For(Nodes: Region_119>=1;) 

@For(Nodes: Region_120>=1;) 

@For(Nodes: Region_121>=1;) 

 

======================================================================!

;=== 

 

 !Optimization Process; 

 

 

 

 !Number of monitoring stations allowed from the total nodes (871;) 

  @ For(Nodes@ :Sum(Nodes:Include)=50;) 

 

 

 !The Binary constraints ; 

  @ For(Nodes@:BIN(Include;)) 

 

 !The objective; 

 !Maximizing demand coverage; 

 

MAX  @( = SUM (Nodes: Coverage_6_2 * Risk_Include;)) 

 

END 

MODEL: 

! Optimization sample problem using coverage method 50%; 

 

SETS: 

   Nodes: Coverage_6_2 , Include; 

 

!Nodes, Coverage_sum,Include,Risk_index, Sensetivity_Index,   

          Vulnerability_Index, Hydraulic_Index, SI_Index, WQ_Index, 

          Sum_Indicies, Coverage_hour1, Coverage_6_1, Coverage_12_1; 

ENDSETS 

 

!======================================================================

========; 

 

! Here is the data; 

DATA: 

   !Importing attribute values and set members from Excel; 

   Nodes, Coverage_6_2 = 

 

   @OLE('C:\LINGO12\Dissertation\Network\With Regional 

Constraints\Excel for lingo (Regional Constraints) 60% 

corrected.xlsx'); 
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   !Exporting Results to Excel; 

   @OLE('C:\LINGO12\Dissertation\Network\With Regional 

Constraints\Excel for lingo (Regional Constraints) 60% 

corrected.xlsx')=Include;    

 

 

 

ENDDATA 

 

!======================================================================

========; 

! Total Monitoring Nodes constraint nodes, 

  in which I am forcing the complier to use the sum to "include" 

  parameter as a tool for determining number of monitoring 

  stations ; 

 

! Setting constraint so that at least one monitoring station is choosen 

  from each region; 

 

Region_74 = @Sum(Nodes(J) | J #LE# 25: Include(J)); 

 

Region_75_A = @Sum(Nodes(J) | J #GE# 26: Include(J)); 

Region_75_B = @Sum(Nodes(J) | J #GE# 84: Include(J)); 

Region_75 = Region_75_A - Region_75_B; 

 

Region_76_A = @Sum(Nodes(J) | J #GE# 84: Include(J)); 

Region_76_B = @Sum(Nodes(J) | J #GE# 104: Include(J)); 

Region_76 = Region_76_A - Region_76_B; 

 

Region_77_A = @Sum(Nodes(J) | J #GE# 104: Include(J)); 

Region_77_B = @Sum(Nodes(J) | J #GE# 112: Include(J)); 

Region_77 = Region_77_A - Region_77_B; 

 

Region_78_A = @Sum(Nodes(J) | J #GE# 112: Include(J)); 

Region_78_B = @Sum(Nodes(J) | J #GE# 118: Include(J)); 

Region_78 = Region_78_A - Region_78_B; 

 

Region_82_A = @Sum(Nodes(J) | J #GE# 118: Include(J)); 

Region_82_B = @Sum(Nodes(J) | J #GE# 120: Include(J)); 

Region_82 = Region_82_A - Region_82_B; 

 

Region_94_A = @Sum(Nodes(J) | J #GE# 120: Include(J)); 

Region_94_B = @Sum(Nodes(J) | J #GE# 223: Include(J)); 

Region_94 = Region_94_A - Region_94_B; 

 

Region_98_A = @Sum(Nodes(J) | J #GE# 223: Include(J)); 

Region_98_B = @Sum(Nodes(J) | J #GE# 374: Include(J)); 

Region_98 = Region_98_A - Region_98_B; 

 

Region_102_A = @Sum(Nodes(J) | J #GE# 374: Include(J)); 

Region_102_B = @Sum(Nodes(J) | J #GE# 485: Include(J)); 

Region_102 = Region_102_A - Region_102_B; 

 

Region_103_A = @Sum(Nodes(J) | J #GE# 485: Include(J)); 

Region_103_B = @Sum(Nodes(J) | J #GE# 553: Include(J)); 

Region_103 = Region_103_A - Region_103_B; 
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Region_104_A = @Sum(Nodes(J) | J #GE# 553: Include(J)); 

Region_104_B = @Sum(Nodes(J) | J #GE# 583: Include(J)); 

Region_104 = Region_104_A - Region_104_B; 

 

Region_105_A = @Sum(Nodes(J) | J #GE# 583: Include(J)); 

Region_105_B = @Sum(Nodes(J) | J #GE# 594: Include(J)); 

Region_105 = Region_105_A - Region_105_B; 

 

Region_119_A = @Sum(Nodes(J) | J #GE# 594: Include(J)); 

Region_119_B = @Sum(Nodes(J) | J #GE# 741: Include(J)); 

Region_119 = Region_119_A - Region_119_B; 

 

Region_120_A = @Sum(Nodes(J) | J #GE# 741: Include(J)); 

Region_120_B = @Sum(Nodes(J) | J #GE# 830: Include(J)); 

Region_120 = Region_120_A - Region_120_B; 

 

Region_121 = @Sum(Nodes(J) | J #GE# 830: Include(J)); 

 

 

 !In this case I will force the compiler to use at least 1 node in each 

region; 

 

@For(Nodes: Region_74>=1;) 

@For(Nodes: Region_75>=1;) 

@For(Nodes: Region_76>=1;) 

@For(Nodes: Region_77>=1;) 

@For(Nodes: Region_78>=1;) 

@For(Nodes: Region_82>=1;) 

@For(Nodes: Region_94>=1;) 

@For(Nodes: Region_98>=1;) 

@For(Nodes: Region_102>=1;) 

@For(Nodes: Region_103>=1;) 

@For(Nodes: Region_104>=1;) 

@For(Nodes: Region_105>=1;) 

@For(Nodes: Region_119>=1;) 

@For(Nodes: Region_120>=1;) 

@For(Nodes: Region_121>=1;) 

 

======================================================================!

;=== 

 

 !Optimization Process; 

 

 

 

 !Number of monitoring stations allowed from the total nodes (871;) 

  @ For(Nodes@ :Sum(Nodes:Include)=50;) 

 

 

 !The Binary constraints ; 

  @ For(Nodes@:BIN(Include;)) 

 

 !The objective; 

 !Maximizing demand coverage; 

 

MAX  @( = SUM (Nodes: Coverage_6_2 * Vulnerability_Include;)) 
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END 

 

MODEL: 

! Optimization sample problem using coverage method 50%; 

 

SETS: 

   Nodes: Coverage_6_2 , Include; 

 

!Nodes, Coverage_sum,Include,Risk_index, Sensetivity_Index,   

          Vulnerability_Index, Hydraulic_Index, SI_Index, WQ_Index, 

          Sum_Indicies, Coverage_hour1, Coverage_6_1, Coverage_12_1; 

ENDSETS 

 

!======================================================================

========; 

 

! Here is the data; 

DATA: 

   !Importing attribute values and set members from Excel; 

   Nodes, Coverage_6_2 = 

 

   @OLE('C:\LINGO12\Dissertation\Network\With Regional 

Constraints\Excel for lingo (Regional Constraints) 60% 

corrected.xlsx'); 

 

 

   !Exporting Results to Excel; 

   @OLE('C:\LINGO12\Dissertation\Network\With Regional 

Constraints\Excel for lingo (Regional Constraints) 60% 

corrected.xlsx')=Include;    

 

 

 

ENDDATA 

 

!======================================================================

========; 

! Total Monitoring Nodes constraint nodes, 

  in which I am forcing the complier to use the sum to "include" 

  parameter as a tool for determining number of monitoring 

  stations ; 

 

! Setting constraint so that at least one monitoring station is choosen 

  from each region; 

 

Region_74 = @Sum(Nodes(J) | J #LE# 25: Include(J)); 

 

Region_75_A = @Sum(Nodes(J) | J #GE# 26: Include(J)); 

Region_75_B = @Sum(Nodes(J) | J #GE# 84: Include(J)); 

Region_75 = Region_75_A - Region_75_B; 

 

Region_76_A = @Sum(Nodes(J) | J #GE# 84: Include(J)); 

Region_76_B = @Sum(Nodes(J) | J #GE# 104: Include(J)); 

Region_76 = Region_76_A - Region_76_B; 
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Region_77_A = @Sum(Nodes(J) | J #GE# 104: Include(J)); 

Region_77_B = @Sum(Nodes(J) | J #GE# 112: Include(J)); 

Region_77 = Region_77_A - Region_77_B; 

 

Region_78_A = @Sum(Nodes(J) | J #GE# 112: Include(J)); 

Region_78_B = @Sum(Nodes(J) | J #GE# 118: Include(J)); 

Region_78 = Region_78_A - Region_78_B; 

 

Region_82_A = @Sum(Nodes(J) | J #GE# 118: Include(J)); 

Region_82_B = @Sum(Nodes(J) | J #GE# 120: Include(J)); 

Region_82 = Region_82_A - Region_82_B; 

 

Region_94_A = @Sum(Nodes(J) | J #GE# 120: Include(J)); 

Region_94_B = @Sum(Nodes(J) | J #GE# 223: Include(J)); 

Region_94 = Region_94_A - Region_94_B; 

 

Region_98_A = @Sum(Nodes(J) | J #GE# 223: Include(J)); 

Region_98_B = @Sum(Nodes(J) | J #GE# 374: Include(J)); 

Region_98 = Region_98_A - Region_98_B; 

 

Region_102_A = @Sum(Nodes(J) | J #GE# 374: Include(J)); 

Region_102_B = @Sum(Nodes(J) | J #GE# 485: Include(J)); 

Region_102 = Region_102_A - Region_102_B; 

 

Region_103_A = @Sum(Nodes(J) | J #GE# 485: Include(J)); 

Region_103_B = @Sum(Nodes(J) | J #GE# 553: Include(J)); 

Region_103 = Region_103_A - Region_103_B; 

 

Region_104_A = @Sum(Nodes(J) | J #GE# 553: Include(J)); 

Region_104_B = @Sum(Nodes(J) | J #GE# 583: Include(J)); 

Region_104 = Region_104_A - Region_104_B; 

 

Region_105_A = @Sum(Nodes(J) | J #GE# 583: Include(J)); 

Region_105_B = @Sum(Nodes(J) | J #GE# 594: Include(J)); 

Region_105 = Region_105_A - Region_105_B; 

 

Region_119_A = @Sum(Nodes(J) | J #GE# 594: Include(J)); 

Region_119_B = @Sum(Nodes(J) | J #GE# 741: Include(J)); 

Region_119 = Region_119_A - Region_119_B; 

 

Region_120_A = @Sum(Nodes(J) | J #GE# 741: Include(J)); 

Region_120_B = @Sum(Nodes(J) | J #GE# 830: Include(J)); 

Region_120 = Region_120_A - Region_120_B; 

 

Region_121 = @Sum(Nodes(J) | J #GE# 830: Include(J)); 

 

 

 !In this case I will force the compiler to use at least 1 node in each 

region; 

 

@For(Nodes: Region_74>=1;) 

@For(Nodes: Region_75>=1;) 

@For(Nodes: Region_76>=1;) 

@For(Nodes: Region_77>=1;) 

@For(Nodes: Region_78>=1;) 

@For(Nodes: Region_82>=1;) 
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@For(Nodes: Region_94>=1;) 

@For(Nodes: Region_98>=1;) 

@For(Nodes: Region_102>=1;) 

@For(Nodes: Region_103>=1;) 

@For(Nodes: Region_104>=1;) 

@For(Nodes: Region_105>=1;) 

@For(Nodes: Region_119>=1;) 

@For(Nodes: Region_120>=1;) 

@For(Nodes: Region_121>=1;) 

 

======================================================================!

;=== 

 

 !Optimization Process; 

 

 

 

 !Number of monitoring stations allowed from the total nodes (871;) 

  @ For(Nodes@ :Sum(Nodes:Include)=50;) 

 

 

 !The Binary constraints ; 

  @ For(Nodes@:BIN(Include;)) 

 

 !The objective; 

 !Maximizing demand coverage; 

 

MAX  @( = SUM (Nodes: Coverage_6_2 * Sensetivity_Include;)) 

 

END 
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