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ABSTRACT 
 
Full Name : Yasser Saad Abdulrahman Al-Ghamdi 

Thesis Title : IMPACT OF CODE CLONING ON FUNCTIONAL CORRECTNESS 
OF OBJECT-ORIENTED CLASSES 

Major Field : Computer Science 

Date of Degree : May, 2014 

Many software developers are incorporating code clones in source code as a natural habit 

while software is evolving.  Several arguments about the code clones if they are harmful 

or beneficial, several studies in the literature discussed code clones impact on the 

software from different perspectives on different levels.  However, the important question 

of the impact of code clones on software quality is in need of further studies to identify 

positive or negative impacts on quality aspects of the software.  An important aspect of 

software quality is functional correctness which is a sub-characteristic of software 

functional suitability.  Exploring code clone metrics to assess functional correctness 

might discover the impact of code clones on the product quality. 

The main objective of this research is to study empirically the relationships between 

software clones and functional correctness in object-oriented classes.  This research 

contains two empirical studies, the first one is to study clones and fault-proneness, and 

the second is to study code clones and fault-density. 

The results indicate that there are relationships between code clones and functional 

correctness.  In addition, there are relationships between clone location and fault-

proneness.  Similarly, we proved the relationships between types of code clones and 

fault-proneness in addition to fault-density as well.  This research revealed 3 clone 

metrics that are good indicators of fault-proneness, in addition to one clone metric that is 

a good indicator of fault-density.  Our study showed that when combine C&K metrics 

with clone metrics they perform better in fault-proneness and fault-density prediction.  

Finally, some recommendations for software developers are presented in this research 

towards incorporating code clones in the development of the software product. 
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 ملخص الرسالة
 

 ياسر بن سعد بن عبدالرحمن الغامدي :الاسم
 

 الوظيفية للبرامج كائنية التوجه الدقةنسخ رموز البرمجة على ثير تأ :الرسالة عنوان
 

 علوم الحاسب الآلي :التخصص
 

 2014مايو  :العلمية الدرجة تاريخ

معتادون على نسخ ولصق رموز البرمجة من وقت لآخر اثناء دورة تطوير  البرمجيات مطوري من العديد

ضار أم نافع, هل هو في كون استخدام النسخ للرموز البرمجية المختلفة البرامج.  هناك العديد من وجهات النظر 

هذا المجال.  من المهم جدا رة للعديد من الابحاث والدراسات في وكان سبب هذه الاختلافات هي النتائج المغاي

تحديد تأثير استخدام الرموز البرمجية اثناء تطوير البرامج لتلافي الأخطار المحتملة ان وجدت, وايضا للتركيز 

 .في حال تواجدهاالايجابية ايضا على الجوانب 

لدقة الوظيفية للبرامج نسخ الرموز البرمجية على ا ثيرالهدف الرئيسي من هذه الرسالة البحثية هو دراسة تأ  

 عملية لمطوري البرامجالنصائح وجهنا بعض العلى النتائج  واعتمادا كائنية التوجه.  في نهاية هذا البحث

 للاستخدام الامثل عند نسخ رموز البرمجة.
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CHAPTER 1 INTRODUCTION 

The demand on software applications is increasing in all of our daily activities.  In the 

same time, the expectations are also increasing which lead to the need for more complex 

and sophisticated software.  With this pressure to accommodate what the software 

industry needs, software developers tend to reuse some existing code to expedite the 

process of developing software.  The simplest form of reuse is what many software 

developers do which is “copy and paste”, which can be referred to it by “code cloning”.   

Code cloning is a common practice during software development where a software 

developer reuses similar code fragments to be part of a new development of software 

systems with or without minor modifications [1-4].   

Several studies have been conducted against identifying and measuring the impact of 

software cloning with respect to quality [5-11].  Some studies found negative impact of 

software clones [12, 13] and some researchers realized positive impact of software clones 

on the quality of the software [9].  The software quality is a strong desire to any project 

manager who cares about the success of the project.  Previous studies looked at the 

impact of code clones on the maintainability of the software [5, 10, 11].  Further studies 

to the nature of the impact of code cloning are important to measure and steer the right 

approach of software developer in order to decide about incorporating code clones or not.   

The functional suitability of a software system can be measured with multiple internal 

quality attributes and metrics [14].  Functional correctness used as sub-characteristic 

towards measuring the functional suitability of the software where fault-density and fault-

proneness will be used as metrics for functional correctness.  Therefore, there is a need to 
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conduct a study to identify the impact of code cloning on the functional correctness either 

positively or negatively. 

The ISO/IEC 25010 [14] standard defines eight characteristics of software product 

quality: functional suitability, maintainability, performance efficiency, compatibility, 

usability, security, reliability and portability. These characteristics are further divided into 

sub characteristics. Functional correctness is a sub-characteristic of the functional 

suitability characteristic. It is defined as “the degree to which a product or system 

provides the correct results with the needed degree of precision” [14]. Inverted proxy 

measures for functional correctness include fault proneness and fault density. 

By reaching any conclusion out of this study, it will contribute positively in considering 

quality aspects while incorporating code clones in software development.  This study will 

help software developers in managing their projects more effectively with less risk.  

During the life cycle of software development and especially in the coding phase, 

developers tend to use code clones for several reasons.  For example, saving development 

time to implement a newly added feature that has a similar component in another place 

within the same system or across similar systems, and/or reusing code clones that are 

well tested for a critical function that cannot handle any risk. All of the stated reasons are 

very legitimate to justify the use of code clones although some researches claim that the 

use of code clones has an impact on the software quality [12, 13].  Further studies are 

needed to clarify the impact of code clones on one aspect of product quality which is 

functional suitability, focusing particularly on a sub-characteristic which is functional 

correctness.  Two software measures will be used to study functional correctness, 

namely: fault-proneness, and fault density. 
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The definition of a code clone can be generally stated as an exact or similar copy of a 

code fragment.  There are many other definitions of a code clone that depend on the type 

and degree of similarity [2].  Similarity of code fragments can be classified in two main 

categories, namely: textual similarity, and functional similarity (semantic).   

Based on the two main categories, C.Roy and J.Cordy came up with four types of code 

fragment similarities.  The first three types are textual-similar [1, 2, 15] and the fourth 

type is functional-similar [3, 4]. 

The functional correctness will be evaluated using two software metrics, which are fault 

density, and fault proneness.  Functional correctness will indicate a certain aspect of 

software quality which is functional suitability.  In order to investigate the code cloning 

impact, a set of code clone metrics will be used.  Two different code clone analysis tools 

will be used to study a set of open source subject systems to detect and analyze the clones 

and try to achieve the needed measurements to judge the impact on functional 

correctness.  The focus of our research is to study the code clones on the class level and 

their impact on the functional correctness of the software system. 

1.1. Problem Statement 

A very common practice in software development environments is to use code cloning 

[1-4].  There are different reasons for incorporating code clones in the development 

cycle, such as cutting the time of development, and reaching earlier delivery date.  The 

quality of software product is a very essential requirement for the product stakeholders 

[9,16-18].  Functional suitability is a very important product quality attribute that 

software developers and project managers are looking for [19-22].  Moreover, two sub-



 

4 
 

characteristics of functional correctness are fault density and fault-proneness.  The 

current researches have reached the maturity level of detecting code clones effectively 

[23, 24], but, the next question is what the benefits of these code clones are [13, 25].  

Several studies in the literature explored the relationships between code clones and 

reliability [5], maintainability [10], stability [11, 26], error prone [6, 27].  The studies that 

discussed the relationships between code clones and error prone were focusing on certain 

code fragments namely, function level by Selim et al. and free code block by Rahman et 

al. 

To our knowledge only two researches discussed the relationship between clones and 

fault prediction in abstract level i.e. on component level [28] and on file level [29].  

Therefore, to the best of our knowledge there is no study discussed code cloning and its 

impact on functional correctness of object-oriented classes. 

1.2. Research Objective and Questions 

The main objective of this research is to empirically study the relationships between 

software clones and functional correctness.  Two empirical studies will cover the 

relationships between both aspects of functional correctness, i.e. fault-proneness and 

fault-density, with code clones.  In addition, an evaluation study that considers code 

clones metrics as inputs to an Artificial Neural Network of functional correctness 

prediction models. 

The following questions summarize the main objectives of this study: 
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1. Are there relationships between code clones and fault proneness of object-oriented 

classes? 

2. Are clone metrics good indicators of fault proneness? 

3. Do clone metrics have better fault proneness prediction than C&K metrics? 

4. Does the combination of clone metrics and C&K metrics as input in prediction 

models of fault proneness yield better results than clone metrics? 

5. Does the combination of clone metrics and C&K metrics as input in prediction 

models of fault proneness yield better results than C&K metrics? 

6. Are there relationships between code clones and fault density of object-oriented 

classes? 

7. Are clone metrics good indicators of fault density? 

8. Do clone metrics have better fault density prediction than C&K metrics? 

9. Does the combination of clone metrics and C&K metrics as input in prediction 

models of fault density yield better results than clone metrics? 

10. Does the combination of clone metrics and C&K metrics as input in prediction 

models of fault density yield better results than C&K metrics? 

 

1.3. Motivation 

The importance of software quality has recently rapidly increased, for large software 

products in particular [23], resulting in identifying various aspects of software quality 

attributes which can affect the quality, either in a positive way, so to focus on them, or in 

a negative way, so to avoid them.  Since code cloning is a common practice in software 
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development [24-27], the importance of studying its effects on software quality and on 

functional suitability in particular rises.  Knowing the impact of code cloning might affect 

any project plan [28]. With the assumption of having a negative impact, certain 

techniques are needed to overcome this issue, such as increasing the testing resources and 

efforts, or using a change tracking tool to assure the consistency in changes among the 

clones. In addition, using code clones metrics to predict functional correctness will help 

future researchers to build new prediction models using the new metrics. 

1.4. Research Contribution 

This research provides the following list of contributions: 

• Build and evaluate logistic regression models based on code clone metrics to 

predict fault-proneness 

• Build and evaluate logistic regression models based on code clone location 

metrics to predict fault-proneness 

• Build and evaluate logistic regression models based on code clone type metrics to 

predict fault-proneness 

• Build and evaluate linear regression models based on code clone metrics to 

predict fault-density 

• Build and evaluate linear regression models based on code clone location metrics 

to predict fault-density 

• Build and evaluate linear regression models based on code clone type metrics to 

predict fault-density 
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• Build and compare multivariate logistic regression models for fault-proneness 

using code clones metrics suite, C&K metrics suite, and the combinations of both 

suites 

• Build and compare multivariate linear regression models for fault-density using 

code clones metrics suite, C&K metrics suite, and the combinations of both suites 

• Build and compare Artificial Neural Network prediction models for fault-

proneness using code clones metrics suite and logistic regression models 

• Build and compare Artificial Neural Network prediction models for fault-density 

using code clones metrics suite and linear regression models 

1.5. Thesis organization 

The following organization is for the rest of the thesis. Chapter 2 highlights the literature 

of the relevant studies, followed by Chapter 3 which defines code clones suite of metrics, 

and contains definitions, taxonomies, examples, and metrics. Chapter 4 defines the 

empirical study of fault-proneness prediction using code clones metrics. Similarly, 

Chapter 5 defines the empirical study of fault-density prediction using code clones 

metrics. Finally, Chapter 6 concludes the contribution of the study and future work. 
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CHAPTER 2 LITERATURE REVIEW 

Several studies have been conducted to identify and measure the impact of software 

cloning with respect to software product quality in general.  Some studies discuss the 

negative impact of software clones [29-31].  The literature is covering three aspects of 

studying code cloning, namely: impact of software clones on software quality, software 

clones taxonomies and types, and software clones detection techniques and tools. 

2.1 Impact of Software Clones on Software Quality 

Monden et al. [5] conducted a study where they looked into the relation between the 

software clones and the quality of the software by clarifying the relation of code clones 

on the reliability and maintainability of the software.  This study was applied to a legacy 

system that lived in the industry for more than 20 years.  The experiment used a number 

of faults to measure the reliability, and revision numbers to estimate the maintainability. 

The estimation of reliability and maintainability were conducted for both cloned and 

none-cloned modules.  For the reliability, the results of the study showed that generally 

clone-included modules are more reliable than none-clone modules, except from the large 

portions of clones that decrease the reliability drastically compared to the no-clone 

modules.  For maintainability, the results of the study showed that the clone-included 

modules are less maintainable comparing to no-clone modules. The authors have 

recommended a quantitative analysis to reveal the reason of the findings of the work they 

have done.   

Selim et al. [6] studied the factors that lead software systems, which incorporate cloned 

code, to be defect-prone.  The study has focused on identifying the parts of the cloned 
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code that are high defect-prone by using certain predictors, which help the developers to 

identify the portions of their code that need intensive testing.  Two categories of 

predictors were used in this study, namely: control predictors, and clone predictors. They 

were used to build survival models using “cox models”.  The researchers have selected 

two open source systems and two clone detection tools to conduct the study.  As a result, 

they found that the defect-prone level of the clone-code is system-dependent due to the 

inconsistent results between the studied systems. One clone code was high risk to have 

defects, and the other is the opposite.  Also, modules with higher number of revisions 

need to be tested more intensively as they have higher risk of defects to occur.   

Mondal et al.[7] empirically studied the argument whether code clones are harmful or 

not, and tried to identify the contradictions sources proposed by earlier studies. They tried 

to come up with a framework that minimizes the differences in evaluating the 

experiments as much as possible.  Mondal et al. have selected nine of the leading studies 

that had contradictory results to build the new framework, and used almost all the metrics 

that are used by the nine methodologies. Their plan was to apply their study against 15 

open source systems with variety of languages and different types.  Initial results of some 

systems showed the contradictory findings, but at the end the researchers claimed that 

this empirical study will judge the debate of the previous studies and would suggest 

solutions to overcome any harmfulness of cloned code, if any.    

Kozlov et al. [8] analyzed the relation between the internal quality attributes of open 

source projects and code cloning metrics. The study covered three groups of internal 

quality attributes, namely: complexity metrics, low level attributes, and high level derived 
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attributes.  Apart from the internal quality attributes, seven code cloning metrics were 

studied as well, which were:- 

1. Number of clones in a file 

2. Number of files that have crosscutting clones 

3. Ratio of cloned code tokens within a file 

4. Ratio of tokens between any code clones across system 

5. Population of number of code clones 

6. Number of files that contain any code clones 

7. Range of hierarchy of the source files that contain the code clones 

Kozlov et al have come up with 14 hypotheses to study the relation between the code 

clones and the quality of the software system. Thirteen out of the 14 hypotheses were 

supported by the results of the study which indicated the strong relationships between the 

internal quality attributes and code clones metrics. 

Kapser and Godfrey [9] have studied the pros and cons of using code cloning through 

analyzing three categories of cloning patterns, namely: forking, templating, and 

customization.  They have explored eight cloning patterns of large systems that highlight 

both the positive and negative motivations of cloning.  The study mentioned several 

conditions where clones are used in a positive way and suggested solutions to manage 

code clones.  The study also showed, in real software systems, that cloning is an 

acceptable design solution taking into consideration a clone management tool to manage 

the clones for the long run to maintain the changes accordingly. Lozano and Wermelinger 

[10] tried to assess the impact of using code clones on the changeability of software 
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systems.  They came up with a hypothesis that claims the increase in changing efforts for 

a method is because it contains clones.  The researchers represented the changeability 

efforts by computing two other measures, namely: likelihood, and impact of change.  For 

consistency, the measure of change was considered for a period of time, either for the 

likelihood or the impact of the clones, from both measures they computed the work 

resulted by the change as a result of multiplying likelihood by the impact values and the 

lower value of the  work will reflect a better changeability.  The final result of this study 

is a method that has clones may increase the work of change.   

Krinke [11] has studied the stability of clone code over the non-clone code of 5 large 

open source software systems.  These 5 systems have long life development duration of 

more than 200 weeks of evolution.  The study yielded the following interesting 

observations: 1) the most dominant factor of stability issue is the massive number of 

deletions in clone code, 2) in general clone code has less number off additions, deletion, 

and other changes on average than non-clone code, 3) the clone code is more stable than 

non-clone code.  Krinke has suggested that eliminating the dominant factor which is 

deletions of clone code will increase the stability of the clone code and it will be more 

stable than non-clone code.  Krinke extended his work to estimate code stability by 

comparing the age of a cloned code against non-cloned code, he yielded that cloned code 

is more stable than non-cloned code[39]. 

Juergens et al. [40]  have studied the relationship between inconsistent clones and defect 

prone, they studied large scales subject systems.  They came up with a new algorithm to 

detect clones inconsistencies and it is an open source tool.  Their study yielded 
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inconsistent changes are significant lead to defects which increase the efforts of 

maintenance.   

Juergens et al. [41] have studied the application of code clone detection to assess the 

quality of requirements specifications to detect redundant information.  The case study 

covered more than 8000 pages of requirements specifications.  Juergens et al. have 

reached the conclusion that clones in requirements specifications are harmful. 

Rahman et al. [27] explored the relationship between code clones and defect proneness 

on free block code fragments.  Their findings were not in agreement with the claim that 

code cloning is “a bad smell”.  Moreover, they said incorporating code clones in 

development could be safe. 

Bettenburg et al. [25] studied the relationship between code clones and software defects 

at the release level as opposite to other studies which focused on the revision level.  They 

used three subject systems for their case study, they yielded that clones do not have major 

impact on defect proneness of the software quality at release level.  They have observed 

significant difference between their findings as rate of defects of the software at release 

level when compared with the revision level, which conclude that developers are able to 

manage clones evolvement while software development. 

Gode and Harder [26] have studied the impact of code clones on maintenance efforts by 

analyzing clone stability and compare it with the stability of non-cloned code.  They were 

in agreement with work results done by Krinke [11] which say code clones are more 

stable than non-cloned code in general.  They conducted their study against two open 

source subjects systems, exactly same as the subject systems that Krinke used in hi study. 
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In this research the impact of code cloning will be studied on a particular aspect of 

software functional suitability which is functional correctness using two software metrics 

namely: fault density and fault proneness.  To the best of our knowledge, we believe that 

the impact of code cloning on software quality was not explored thoroughly on the class 

level using adequate number of subject systems and wider range of clone metrics.  Hence, 

impact of code cloning will be studied on the class level in five object-oriented software 

systems.  The focus on the class level comes from the fact that classes in object-oriented 

is the basic building block of object-oriented software.  In the literature, only one study 

was conducted to study code clones in fault-prediction on a single system with three 

different releases, which is not enough to generalize any findings.  The following table is 

summarizing the previous studies on code clones in fault prediction. 

Table 1: Literature summary of studies on code clones 

 

Research Granularity Modeling approach # of modules # of 
systems

Clone metrics
Quality Attribute(s) Cloning impact results

Baba et al. (2008)
Component Logistic Regression

40, 32
2 2 metrics Fault-Prone Clone metrics improved fault-prediction

Kamei et al. (2011) File Logistic Regression (8,313),(9,663)
,(11,525)

one 
(3releases)

5 metrics Fault-Density For large modules, clone metrics improved fault-prediction

Monden et al. (2002) File None 2000 1 2 metrics Reliability and maintainability Increase reliability and decrease maintainability

Lozano et al. (2007) Methods None N.A 1 None Changeability Clones increase maintenance efforts

Kapser and Godfrey 
(2008)

Function, Free blocks None 783, 530 2 None Maintainability Positive impact on maintainability of software system

Krinke (2008) Free blocks None N.A 5 None Stability Cloned code are more stable than non-cloned code

Juergens et al. (2009) Free blocks/Tokens None N.A 5 None Program correctness Inconsistent  changes of clone increase faults

Juergens et al. (2010) SRS Documents None 8,667 pages 28 None Requirement redundancy Lower the quality of SRS which implies increase 
development and maintinance efforts

Rahman et al. (2010) Free blocks None N.A 4 3 metrics Fault-proneness Cloning is not harmful

Selim et al. (2010) Function Cox hazard model N.A 2 9 metrics Fault-proneness Risk of clones is system dependent

Bettenburg et al. (2010) Free blocks None N.A 3 2 metrics Defect proneness/Post-release 
quality

No significant impact on post-release level

Göde&Harder (2011) Free blocks/Tokens None N.A 2 4 metrics Stability Cloned code are more stable than non-cloned code and 
might require less maintinance efforts

Krinke (2011) Free block, File None 2202, 6406, 
552

3 None Stability Cloned code are more stable than non-cloned code

Our study Class
Logistic/Linear 

Regression, ANN
229, 256, 741, 

875, 935 5 systems 13 metrics Functional correctness
Cloning increases fault-proneness, non-cloned code 
has lower fault-density
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2.2 Software Clones Taxonomies and Types 

This section discusses different dimensions of software clones taxonomies based on what 

have been surveyed in the literature. 

2.2.1 Taxonomies Based on Similarity: 

Mayrand et al. [12] Taxonomy: they have done a systematic taxonomy with 8 levels of 

clones for functions, where every level has some metrics to be used as comparison 

criteria. 

Balazinska et al. [42] Taxonomy: This taxonomy has designed four levels of 

classification of clones where the first level has 2 categories of similarity, the second 

level has 3 categories of classification which talk about token differences and attributes, 

the third level has 10 categories of single token differences, and the fourth level has 3 

categories based on token-sequence differences. 

Bellon and Koschke [15] Taxonomy: They came up with a taxonomy that has three 

categories of to be used in comparison studies for the detection tools. 

Davey et al. [43] Taxonomy: They came up with 4 types of clones that are very similar to 

the taxonomy that Bellon and Koschke have done based on similarity between code 

portions, except that they consider a new type which considers the coincident clones. 

Kontogiannis [44] Taxonomy: Kontogiannis came up with four types of clones that are 

based on procedural code cloning which are considered to be basic types. 
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2.2.2 Taxonomies Based on Clone Location 

Kapser and Godfrey [45] Taxonomy: They have provided a different taxonomy among 

other taxonomies which the classification was based on a hierarchy defined by two 

characteristics of function and location. The taxonomy is divided into three categories, 1) 

based on the source file location that contains the clones, 2) based on type of code 

structure, 3) based on degree of similarity and overlap. 

Monden et al. [5] Taxonomy: The motivation to come up with this taxonomy is to find 

the relation between code cloning and quality of the software, it differentiates between 

the clones if they are in the same module (source file) or outside or could be a hybrid. 

2.2.3 Taxonomies Based on Refactoring Opportunities 

Balazinska et al. Taxonomy: This taxonomy is associating each clone category a risk 

value for potential removal and the removal strategy. 

Fanta and Rajlich's [46] Taxonomy: Their taxonomy based on object-oriented code that is 

probably will be removed, by dividing clones in two types namely: function clones and 

class clones. 

Golomingi's [47] Taxonomy: He proposed a number of scenarios of clone relationships 

and a set of refactoring methods 

2.3 Software Clones Detection Techniques and Tools  

During the last two decades many detection techniques of code clones detection have 

been developed and new detection tools were developed as well.  Several comparison 

studies that investigated software clones detection techniques and tools are listed below: 
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Roy and Cordy [2], came up with taxonomy of scenarios to build the model of creating 

the different types of clones (Type-1, Type-2, Type-3, and Type-4) and evaluate the 

quality in addition to the classified techniques and tools. 

The comparison study was conducted over 6 detection tools, where discovering strengths 

and weaknesses of the tools was the main objective.  Each tool was running against 8 

software systems to detect the clones with different techniques, and after that results were 

collected and analyzed [18]. 

Burd and Bailey [48], have conducted an evaluation study that shares almost the same 

goals of what Bellon et al. have done but for 5 detection tools. 

Roy and Cordy [49], have developed a framework for empirical evaluating code clone 

detection tools that automates the process of measuring recall and precision of different 

detection tools. 

As a result of surveying the literature, we have spotted some detection tools that might be 

helpful to our study.  A comparison table has been constructed as follows: 

Table 2: Summary table of clone detection tools from the literature 

 

As a result out of this comparison analysis, we have chosen CCFinderX to detect code 

clones from the five java subject systems. 

Tool Detection Technique Supported Language(s) Clone Type Clone Granularity
SimScan Tree-based Java 1, 2, 3 Free Text
CCFinder Token-based C, C++, Java, COBOL 1, 2, 3 Free Text
Simian Text-based C, C++, C#, Java, 1, 2 Free Text
NiCad Text-based C, C#, Java 1, 2, 3, 4 Any structure
CCFinderX Token-based C, C++, C#, Java, COBOL 1, 2, 3 Free Text
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CHAPTER 3 TYPES AND USED METRICS SUITES 

In this chapter, code clone types and calculated metrics are discussed in details with some 

examples and illustrations in addition to C&K metrics.  As the practice of simple reuse 

activity is commonly incorporated by copy and paste with or without modifications in the 

cycle of software development, we need to analyze and try to identify such advantages or 

disadvantages out of using code clones.  After introducing clone types, clone metrics will 

be discussed with regards to definitions, scale and range, and what implications are out of 

these metrics on software. 

3.1 Clone Types 

Many researches discussed clone types and taxonomies are mentioned in (Sec 2.2).  For 

the purpose of this study, two dimensions of clone types were chosen to be the part of 

code clones study on functional correctness, namely clones that are based on similarity 

and clones that are based on location. 

• Clones that are based on similarity 

Similarity of code fragments can be classified in two main categories [2], namely: 1) 

textual similarity, 2) functional similarity (semantic).  In this study, textual similarity will 

only  be considered, whereas functional similarity has a limitation that there is no 

detection tool exist to detect functional clones [2]. 

Textual clones are categorized into three types, namely Type-1, Type-2, and Type-3.  The 

criterion of dividing the clones into three types is the degree of similarity between the 

clone fragments.  Below are the definitions of the three types with examples. 
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Type-1: 

In this type, the two code fragments are exact copies except the whitespaces and 

comments might be different. 

Example of Type-1: 

Fragment A: 

if (x >= y) { 
z = w + y; // Comment1 
w = w + 1;} 
else 
z = w - x; //Comment2 

Fragment B: 
if (x>=y) { 
// Comment1' 
z=w+y; 
w=w+1;} 
else // Comment2' 
z=w-x; 

Fragment B is an exact copy of A except that some comments and whitespaces are 

different, which tells that it is a type-1 clone. 

Type-2: 

This type is very similar to Type1 except fragment A may have different identifiers, 

variable types, comments and layout than fragment B. 

Example of Type-2: 

Fragment A: 
 
if (x >= y) { 
z = w + y; // Comment1 
w = w + 1;} 
else 
z = w - x; //Comment2 

Fragment B: 
 
if (a >= b) 
{ // Comment1' 
y = x + b; 
x = x + 5; //Comment3 
} else  
y = x - a; //Comment2' 

Fragment B is a copy of A except that some of the identifiers, variables and whitespaces 

are different which tells that it is a type-2 clone. 

Type-3: 
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This type is very similar to type-2 except that extra modifications like having deleted, 

added, or updated statements. 

Example of Type-2: 

Fragment A: 
 
if (x >= y) { 
z = w + y; // Comment1 
w = w + 1;} 
else 

z = w - x; //Comment2 

Fragment B: 
if (x >= y) { 
z = w + y; // Comment1 
e = 1; // This statement is added 
w = w + 1; } 
else 

z = w - x; //Comment2 

Fragment B is a copy of A except that a new line was added and some of the identifiers, 

variables and whitespaces are different which tells that it is a type-3 clone. 

Clones that are based on location 

One of the aspects that was investigated while studying code clones is clone location as 

reported by Monden et al.[5].  In their study, they came up with two classifications for 

clone-pairs, namely in-module and inter-module clone pairs.  In our study, inter-clones, 

intra-clones and hybrid-clones terms were named to classify the clones that are based on 

location.  The following are the definitions of the clones based on location.  

Inter-clone: This type is corresponding to two clone fragments that are located into two 

different files (in our case two different object-oriented classes). 

Intra-clone: This type is corresponding to two clone fragments that are located within the 

same file (in our case same object-oriented class). 
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Hybrid-clones: Which refers to the clone fragment that has two corresponding pairs, one 

within the same file and the other pair is outside the file. 

The following is a general example that contains all the types mentioned above, namely 

type-1, type-2, type-3, inter-clone, intra-clone, and hybrid clones. 

class A { 
    void display() { 
if (x >= y) {  
z = w + y; // Comment1 
w = w + 1;} 
else 
z = w - x; //Comment2 
} 
 
void simpleMath() { 
if (a >= b) 

{ // Comment1' 

y = x + b; 

x = x + 5; //Comment3 

} 

else 

y = x - a; //Comment2' 

} 
static int Fact(int n) 
{ 
    if (n <= 1) return 1; 
    return n * Fact(n - 1);  
} 
}    //End of class A 

class B { 
    void display() { 
if (x>=y) { 
z=w+y; 
 // Comment1' 
w=w+1; 
} 
else // Comment2' 
z=w-x; 
} 
Void plot() { 
if (x >= y) { 
z = w + y; // Comment1 
e = 1; // This statement is added 
w = w + 1; } 
else 
z = w - x; //Comment2 
} 

static int factorial(int n) 
{ 
    int sum = 1; 
    if (n <= 1) return sum; 
    while (n > 1)    { 
        sum *= n; 
        n--;    }    return sum;  
} 
}      //End of class B 
 

In the previous example, Fragment-1 and Fragment-2 make a type-1 clone-pair where 

both fragments are exact ones except whitespaces and comments are different.  Whereas 

Fragment-1 and Fragment-3 are making type-2 clone-pair since both fragments are 
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similar except in the identifiers and variable names including whitespaces are different.  

Fragment-3 and Fragment-4 make a type-3 clone-pair, where they are similar code 

fragments but there was an added statement in Fragment-4 with compare to Fragment-3.  

The last example is for type-4, which is represented by the clone pair of Fragment-5 and 

Fragment-6, where they are similar in the functionality of calculating the factorial of a 

given number but implemented into different coding methods. One coded in iteration 

method and the other in recursive method. 

3.2 Clone Metrics 

The clone metrics used in this study can be grouped into two sets, namely existing 

metrics and new metrics.  The existing metrics are system generated by detection tools, 

and the new metrics are new to be used to study the impact on functional-correctness and 

they are manually collected metrics.  The set, which was generated by clone detection 

tools and analysis, consists of:  NBR (neighbor): Count of classes containing a cloned 

fragment from current class, RSA (ratio of similarity between another files): it is the 

percentage of tokens covered by a clone between a class (in our case a file) and another 

class, RSI (ratio of similarity within the class): it is the percentage of tokens similar to 

another within a class, CVR (coverage): represented by max(RSA, RSI), RNR (ratio of 

non-repeated tokens): Ratio (percentage) of tokens that are not included in repeated part 

of a code fragment of the code clone [40], Total Clone fragments (TCF), Clone-Density 

(CD) (number of clones per class normalized by size of the class based on lines of code), 

CRFL: the percentage of cloned LOC in class.  The second set is clone metrics, which 
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was produced by our study based on location and similarity types.  Further details of the 

13 clone metrics such as definitions and examples are listed below. 

M1: Neighbor (NBR) 

Neighbor is a metric that refers to the number of classes that share a particular code 

fragment.  It ranges from 0 to (n-1) where n is the total number of classes. 

M2: Ratio of similarity between files (RSA) 

It is the percentage of code covered by a clone between a file (in our case a class) and 

another class.  It ranges between 0.0 to 1.0 where 0 value means there is no similarity 

between the two classes and 1 means the whole class was copied. 

M3: Ratio of similarity within the class (RSI) 

It is the percentage of code covered by a clone between a file (in our case a class) and 

another class.  It ranges between 0.0 to 1.0 where 0 value means there is no similarity 

within the class and 1 means half of the class is a clone of the other half. 

M4: Coverage (CVR) 

It is the percentage of code covered by a clone within the class or outside the class. So, it 

ranges from 0.0 to 1.0 similarly to RSA and RSI. 

M5: Ratio of non-repeated tokens (RNR)  

It is the ratio (percentage) of tokens that are not included in the repeated part of a code 

fragment of the code clone.  It ranges from 0.0 to 1.0. 

M6: Total Clone fragments (TCF) 
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This metric represents number of code fragments that have clones whether internal clones 

or external clones. 

M7: Percentage of cloned LOC in class (CRFL) 

This metric represent the ratio of cloned code in number of lines of code in the class.  It 

ranges from 0.0 to 1.0 where 0 means there is no clone in the class and 1 means the 

whole class is cloned somewhere else. 

M8: Clone density (CD) 

This metric measures the clone density of a class by dividing number of clones by LOC 

of the class and multiplied by 1000 to get more readable figures. 

M9: number of type-1 clones (T-1) 

This metric represents number of code fragments that are of type-1 clones. 

M10: number of type-2 clones (T-2) 

This metric represents number of code fragments that are of type-2 clones. 

M11: number of type-3 clones (T-3) 

This metric represents number of code fragments that are of type-3 clones. 

M12: number of inter-clone fragments (inter-clone) 

This metric represents number of code fragments that are of type inter-clone. 

M13: number of intra-clone fragments (intra-clone) 

This metric represents number of code clones that are of type intra-clone. 
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There are some relations between clone metrics used in this study such as: 

M1 = (M9: T-1) + (M10: T-2) + (M11: T-3) = (M12: inter-clone) + (M12: inter-clone) 

M4 = max (M2: RSA, M3: RSI). 

Below is a subset of generated metrics out of class A and class B that were used earlier to 

explain types of clones based on similarity and location: 

Class M9: T-1 M10: T-2 M11: T-3 M12: inter-clone M12: inter-clone 

A 1 1 0 1 1 

B 1 0 1 1 1 

 

3.3 C&K Metrics Definitions 

This suite of metrics is a well-known object-oriented suite of class structural metrics.  

These metrics are used in the comparison study against the code clone metrics in 

predicting fault-proneness and fault-density.  This suite of metrics consists of six metrics, 

namely weighted methods per class (WMC), depth of inheritance tree of a class (DIT), 

number of children (NOC), coupling between objects (CBO), response for a class (RFC), 

and lack of cohesion in methods (LCOM).  Further details are listed below about C&K 

metrics. 

WMC: It measures number of methods defined locally within a class given that all 

methods have same complexity. 
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DIT: It measures number of parent classes of a class, by calculating the inheritance 

hierarchy of a class’s ancestors. 

NOC: It measures the number child classes that are directly related to a class. 

CBO: When two classes are coupled that means there is shared member functions and/or 

instance variables, thus CBO is the number of classes that are coupled with a class of 

interest. 

RFC: It is the number of methods that can be called directly by member methods 

including the internal methods of a class. 

LCOM: A class is called cohesive when it is operating a single, so, lack of cohesion is a 

value between 0 and 1 that represent a state of class when its methods’ pairs are not 

sharing instance variables.  The formula used to calculate this metric is: non-cohesive 

methods – cohesive methods, where negative values are set to zero and considered a 

cohesive class. 
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CHAPTER 4 EMPIRICAL STUDY OF SOFTWARE 
CLONES AND FAULT-PRONENESS  

In this chapter the fault-proneness prediction using clone metrics will be explored 

empirically to find useful results regarding clone metrics.  Additionally, it contains a 

comparison study between clone metrics suite and C&K metrics suite performance in 

predicting fault-proneness. 

4.1 Goal and Research Questions:  

The goal of this empirical experiment is to analyze the code clone metrics for the purpose 

of exploring the relationships with respect to class fault-proneness from the point of view 

of the software developer in the context of object-oriented open source systems. 

In this part of the study, the following research questions are the motivation of the 

research: 

A. Are there relationships between code clones and fault proneness of object-oriented 

classes? 

For this question three hypotheses were constructed: 

HYP-A1:  

H0: There are no relationships between code clones and fault proneness of object-

oriented classes 

H1: There are relationships between code clones and fault proneness of object-

oriented classes 
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HYP-A2:  

H0: There is no relationship between clone types and fault proneness 

H1: There is a relationship between clone types and fault proneness 

HYP-A3:  

H0: There is no relationship between clone location and fault proneness 

H1: There is a relationship between clone location and fault proneness 

B. Are clone metrics good indicators of fault proneness? 

For this question we have 13 hypotheses: 

HYP-B1:  

H0: number of clone fragments is not a good indicator of fault proneness 

H1: number of clone fragments is a good indicator of fault proneness 

HYP-B2:  

H0: clone density is not a good indicator of fault proneness 

H1: clone density is a good indicator of fault proneness 

HYP-B3:  

H0: CRFL is not a good indicator of fault proneness 

H1: CRFL is a good indicator of fault proneness 

HYP-B4:  
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H0: NBR is not a good indicator of fault proneness 

H1: NBR is a good indicator of fault proneness 

HYP-B5:  

H0: RSA is not a good indicator of fault proneness 

H1: RSA is a good indicator of fault proneness 

HYP-B6:  

H0: RSI is not a good indicator of fault proneness 

H1: RSI is a good indicator of fault proneness 

HYP-B7:  

H0: CVR is not a good indicator of fault proneness 

H1: CVR is a good indicator of fault proneness 

HYP-B8:  

H0: RNR is not a good indicator of fault proneness 

H1: RNR is a good indicator of fault proneness 

HYP-B9:  

H0: Inter-class clone is not a good indicator of fault proneness 

H1: Inter-class clone is a good indicator of fault proneness 
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HYP-B10:  

H0: Intra-class clone is not a good indicator of fault proneness 

H1: Intra-class clone is a good indicator of fault proneness 

HYP-B11:  

H0: Type-1 clone is not a good indicator of fault proneness 

H1: Type-1 clone is a good indicator of fault proneness 

HYP-B12:  

H0: Type-2 clone is not a good indicator of fault proneness 

H1: Type-2 clone is a good indicator of fault proneness 

HYP-B13:  

H0: Type-3 clone is not a good indicator of fault proneness 

H1: Type-3 clone is a good indicator of fault proneness 

 
C. Do clone metrics have better fault proneness prediction than C&K metrics? 

HYP-C: 

H0: Clone metrics are not better predictors of fault proneness than C&K metrics 

H1: Clone metrics are better predictors of fault proneness than C&K metrics 
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D. Does the combination of clone metrics and C&K metrics as input in prediction 

models of fault proneness yield better results than clone metrics? 

HYP-D: 

H0: The combination of clone metrics and C&K metrics as input in prediction models 

of fault proneness does not yield better results than clone metrics only 

H1: The combination of clone metrics and C&K metrics as input in prediction models 

of fault proneness yields better results than clone metrics only 

E. Does the combination of clone metrics and C&K metrics as input in prediction 
models of fault proneness yield better results than C&K metrics? 

HYP-E: 

H0: The combination of clone metrics and C&K metrics as input in prediction models 

of fault proneness does not yield better results than C&K metrics only 

H1: The combination of clone metrics and C&K metrics as input in prediction models 

of fault proneness yields better results than C&K metrics only 

 

4.2 Variables and Data Collection: 

 The study of the relationships between software clones and fault proneness used 

thirteen metrics as independent variables.  Fault proneness is represented by a dependent 

variable which has only two values (dichotomous), either a class has a fault or not.  The 

fault data were imported from a published study [50].  To measure the feasibility of using 

the clone metrics to predict fault proneness, we used a probabilistic statistical 
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classification model called logistic regression.  Logistic regression was selected because 

of the fact that a simple classifier such as logistic regression gives similar results to 

sophisticated classifiers [51]. 

 Clone metrics have been collected from five subject systems, Velocity, Synapse, 

Camel, Ant, and Xalan.  There are common characteristics between subject systems such 

as they all are written in Java.  In addition, they are open source systems and were 

obtained from Apache repositories.  The subject systems have variant combinations of 

different sizes of classes.  The variance in sizes of the subject systems will minimize the 

possibility of the data to be biased to certain type or category of systems. 

 

Table 3: Descriptive Statistics of the subject systems 

 

The above table shows the variance in the selected systems for this study in terms of size 

(classes), faults and clones.  Comprehensive system is an auxiliary system that combines 

all the five subject systems into one system. 

4.2.1 Variables Used in the Study  

 Data that were used in this study can be grouped into three sets: first, ready data 

which were collected from previous studies, this set has the following data: faults and 

System: Total # Classes No. of classes 
with faults

No. of classes 
with clones

Velocity 229 78 (34%) 56 (24%)
Synapse 256 86 (34%) 128 (50%)
Ant 741 166 (22%) 288 (39%)
Xalan 875 411 (47%) 381 (47%)
Camel 935 188 (20%) 174 (20%)
Total 3036 929 (31%) 1027 (34%)
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line of code.  The second set is data that were generated by clone detection tools and 

analysis which are:  NBR (neighbor): Count of classes containing a cloned fragment from 

current class, RSA (ratio of similarity between another files): it is the percentage of 

tokens covered by a clone between a class (in our case a file) and another class, RSI (ratio 

of similarity within the class): it the percentage of tokens similar to another within a 

class, CVR (coverage): represented by max(RSA, RSI), RNR (ratio of non-repeated 

tokens): Ratio (percentage) of tokens that are not included in repeated part of a code 

fragment of the code clone [49], Total Clone fragments (TCF), CRFL: the percentage of 

cloned LOC in class.  The third set is data were produced by our study based on some 

taxonomy, like whether a clone is exist within the same class or with a different class that 

resides in different file, and also, based on the clone fragment types which depend on 

degree of similarities between clones. 

 For comparison purposes Chidamber & Kemerer (C&K) suite of metrics were 

included for the same subject systems, data were imported from [50]. 

4.2.2 Data Collection Tools: 

Clone metrics were collected from two tools, namely: CCFinderX and VisCad.  

CCFinderX [13] is a token-based clone detection and visualization tool that detects 

clones and produces metrics as well.  It is an evolutionary version of the command line 

CCFinder, it provides extra features and has a GUI that provides some metrics and 

enables the user to preview the clone code fragments and compare them visually side by 

side.  VisCad [52] is a clone visualization tool that analyzes clones and produces clone 

metrics as well.  Data collection went through two phases which are 1) Clone detection, 
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and 2) metrics collection.  The below section is explaining the two phases and the tools 

used in each: 

First, in order to detect the clones CCFinderX is used to generate the clone fragments for 

the five subject systems.  CCFinderX from the literature has higher recall and comparable 

precision [47].  The default settings of the tool were used as is, 30 tokens as minimum 

length of tokens.  This setup will ensure only non-trivial clones to be detected, this setup 

was used by many research projects [53].  CCFinderX provided visual distribution of the 

clones over different packages of the system. 

Second, in order to get the clone metrics on the class level, both CCFinderX and VisCad 

were used to extract clone metrics on the class level.  After sufficient search and 

comparisons among many clone detection tools, CCFinderX was found to be widely used 

in many studies [48]. CCFinderX provides seven types of metrics on class level but 5 

clone metrics were selected to be part of this study and the remaining two metrics 

namely: 1) length of clone fragments in tokens and 2) number of clone fragments.  The 

two metrics were eliminated because the length in tokens is not a standard measurement 

and the second metric which is number of clone fragments was dropped because it 

contained quite big number of false positives, instead manual corrected numbers of 

clones were included.  VisCad is also providing four metrics on the class level which are 

1) number of clone fragments 2) number of lines of code 3) number of lines of clone 

fragments 4) the percentage of cloned LOC in class.  Metrics 1 and 4 are selected to 

conduct our study, and 2 and 3 were omitted for the reason that they are covered and 

normalized in metric 4.  In addition, we have identified 5 clone metrics based on some 

categorization taxonomies. 
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Since dealing with raw clone data is very challenging [52], a need for a tool to analyze 

and visualize is a desire.  VisCad is a visualization and analysis tool that helps to get 

useful information from raw clone data that was produced by detection tools. 

4.3 Descriptive Statistics 

After generating some statistics of the subject systems such as Min, Max, Mean, and 

Standard Deviation, we found some general observations of these subject systems.  All of 

the systems as showed in the histogram [Figure 1] have a common feature which is the 

classes that contain clones are more faulty than those clone-free classes, this consistent 

reading looks to be an interested observation.  The opted subject systems represent 

sufficient variations in size as number of classes, in addition to the percentage of classes 

that have clone/s.  Fair different distributions are existing as well with respect to faults 

among the five systems.   

Camel and velocity have the smaller average of number of clone fragments per class, 

whereas synapse and xalan have the highest average values.  When the clone fragments 

are normalized with class KLOC, we observed that synapse has the highest value, while 

velocity and camel have the least values.  The percentage of cloned LOC in a class was 

extremely high in xalan system camel was on the other extreme very low, whereas 

velocity, synapse and ant were almost close to each other. 
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Figure 1: Histogram of Clones and Faults Distribution 

 

Further information can be found in the below tables: 
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Table 4: Descriptive Statistics of Velocity 

 

From the above table, we noticed velocity system has a low average of TCF when 

compared with other subject systems, similarly applies to clone density.  The locations of 

the clones in velocity system were almost equal on average between inter-clones and 

intra-clones.  The type-1 clones are higher than type-2 and type-3.  From the C&K 

metrics values, it reflects that the degree of inheritance and number of children classes 

are relatively low when compared with other subject systems.  This could be due to the 

small size of the system in number of classes. 

Mean Minimum Maximum Std.Dev.
TCF 0.51092 0 13 1.3133
CD 2.55563 0 35.714 6.0914
CRFL 0.37005 0 16.046 1.6215
NBR 0.25328 0 4 0.6987
RSA 0.07958 0 0.997 0.2209
RSI 0.04483 0 0.994 0.1497
CVR 0.11947 0 0.997 0.2536
RNR 0.92103 0.043 1 0.1089
Inter-clones 0.23144 0 4 0.5876
Intra-clones 0.27948 0 13 1.1996
Type-I 0.20961 0 4 0.5847
Type-II 0.14847 0 4 0.5885
Type-III 0.15284 0 7 0.6677
wmc 9.02183 0 153 14.1351
Dit 1.67686 1 5 0.8887
Noc 0.43668 0 39 2.7548
Cbo 10.8079 0 80 12.7227
Rfc 22.9782 0 250 27.3691
Lcom 80.3406 0 8092 554.868

Descriptive Statistics (velocity)
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Table 5: Descriptive Statistics of Synapse 

 

For synapse system, we noticed it has the highest average of TCF and CD when 

compared with other subject systems.  The location of the clones in synapse system, 

where the inter-clones have almost two times the intra-clones in the system.  The type-1 

clones are less than type-2 and type-3 whereas type-3 is the highest value of clone types.  

From the C&K metrics values, the scores of synapse are much similar to velocity system, 

it reflects that the degree of inheritance and number of children classes are relatively low 

compared with other subject systems.  Again, this could be due to the relatively small 

size of the system in number of classes. 

 

Mean Minimum Maximum Std.Dev.
TCF 1.47656 0 12 2.1979
CD 7.29426 0 63.83 11.8548
CRFL 0.70372 0 5.083 1.0893
NBR 4.625 0 28 8.0206
RSA 0.13759 0 0.992 0.2205
RSI 0.08355 0 0.976 0.1684
CVR 0.20399 0 0.992 0.2549
RNR 0.91536 0.234 1 0.0827
Inter-clones 0.98047 0 8 1.5093
Intra-clones 0.49609 0 12 1.4686
Type-I 0.33984 0 6 0.9361
Type-II 0.50781 0 8 1.243
Type-III 0.62891 0 6 1.2299
wmc 7.62109 0 67 9.1098
dit 1.64063 1 5 0.7845
noc 0.41016 0 19 2.1872
cbo 12.7539 0 83 11.7426
rfc 29.5273 0 172 25.8331
lcom 41.0859 0 1931 175.819

Descriptive Statistics (synapse)
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Table 6: Descriptive Statistics of Ant 

 

For ant system, we noticed it has type-1 and type-3 are more popular than type-2.  The 

location of the clones in ant system, the inter-clones is a bit higher than intra-clones in the 

system.  From the C&K metrics values, the scores of ant system, it shows that the degree 

of inheritance is the highest compared with other subject systems.  

 

Mean Minimum Maximum Std.Dev.
TCF 1.22672 0 23 2.5223
CD 4.2636 0 125 8.6587
CRFL 0.38031 0 12.662 1.2115
NBR 1.06343 0 17 2.7054
RSA 0.10364 0 0.995 0.2207
RSI 0.04078 0 0.719 0.1015
CVR 0.13476 0 0.995 0.2306
RNR 0.92568 0.401 1 0.0714
Inter-clones 0.64238 0 13 1.3112
Intra-clones 0.58435 0 15 1.8795
Type-I 0.4143 0 12 1.1797
Type-II 0.39676 0 12 1.1386
Type-III 0.41565 0 14 1.1866
wmc 11.11471 0 120 11.9931
dit 2.52632 1 7 1.3982
noc 0.73549 0 102 4.813
cbo 11.10121 0 499 26.4039
rfc 34.50202 0 288 36.0712
lcom 89.61538 0 6692 350.8238

Descriptive Statistics (ant)
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Table 7: Descriptive Statistics of Xalan 

 

For xalan system, we noticed it has type-1 more popular than type-2 and type-3 are.  The 

location of the clones in xalan system where almost equal on average between inter-

clones and intra-clones.  The NBR score is relatively high which tells that a sufficient 

number of inter-clones are existing in xalan system.  From the C&K metrics values, the 

scores of xalan system, it shows that the degree of inheritance is relatively high compared 

with other subject systems. 

 

Mean Minimum Maximum Std.Dev.
TCF 1.5543 0 46 3.4885
CD 3.9639 0 90.164 7.8479
CRFL 5.3335 0 142.558 21.2005
NBR 4.5051 0 53 12.2377
RSA 0.1885 0 0.999 0.3397
RSI 0.0405 0 0.99 0.1179
CVR 0.2203 0 0.999 0.3415
RNR 0.9264 0.176 1 0.0789
Inter-clones 0.784 0 18 1.6166
Intra-clones 0.7703 0 44 2.6829
Type-I 0.6789 0 24 1.6949
Type-II 0.5623 0 18 1.6409
Type-III 0.3131 0 42 1.7629
wmc 11.1166 0 133 16.2814
Dit 2.5223 1 8 1.444
Noc 0.5166 0 29 2.3329
Cbo 12.1714 0 168 17.9159
Rfc 29.5394 0 409 37.2219
Lcom 125.2491 0 7774 584.212

Descriptive Statistics (xalan)
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Table 8: Descriptive Statistics of Camel 

 

For camel system, we noticed that type-2 is more popular than type-1 and type-3.  The 

location of the clones in camel system, the inter-clones is higher than intra-clones in the 

system.  From the C&K metrics values, the scores of camel system, it shows that the 

degree of inheritance is relatively on average compared with other subject systems.  

  

Mean Minimum Maximum Std.Dev.
TCF 0.41649 0 13 1.2069
CD 2.57428 0 96.15 8.0377
CRFL 0.15795 0 6.7 0.5458
NBR 0.24411 0 6 0.741
RSA 0.05939 0 1 0.1892
RSI 0.02318 0 0.79 0.0962
CVR 0.08051 0 1 0.2066
RNR 0.9185 0.289 1 0.0829
Inter-clones 0.25161 0 13 0.9025
Intra-clones 0.16488 0 7 0.7779
Type-I 0.10064 0 6 0.4275
Type-II 0.07281 0 7 0.4619
Type-III 0.24304 0 9 0.8536
wmc 8.58458 0 166 11.2927
Dit 1.97216 0 6 1.2878
Noc 0.52891 0 39 2.6425
Cbo 11.14775 0 448 22.836
Rfc 21.70664 0 322 25.1681
Lcom 79.99893 0 13617 531.7098

Descriptive Statistics (camel)



 

42 
 

Table 9: Descriptive Statistics of Total 

 

For total (aggregated) system, we noticed that all types are almost equal in average.  The 

location of the clones in the aggregated system, the inter-clones is higher than intra-

clones in the system.  From the C&K metrics values, the scores of the aggregated system, 

they show that the degree of inheritance is relatively on average compared with other 

subject systems. 

4.4 Principal Component Analysis 

In order to study the correlations of a suite of metrics and find out whether the correlation 

between the metrics is weak or strong, Principal Component Analysis (PCA) is 

conducted to measure common dimensions between the metrics if any [54-58]. 

Mean Minimum Maximum Std.Dev.
TCF 1.03888 0 46 2.5065
CD 3.78409 0 125 8.495
CRFL 1.7664 0 142.56 11.6362
NBR 2.04283 0 53 7.3703
RSA 0.11553 0 1 0.258
RSI 0.0392 0 0.99 0.117
CVR 0.14742 0 1 0.2707
RNR 0.92246 0.043 1 0.0815
Inter-clones 0.56046 0 18 1.3071
Intra-clones 0.47842 0 44 1.8631
Type-I 0.37232 0 24 1.1725
Type-II 0.33542 0 18 1.1643
Type-III 0.33114 0 42 1.2797
Wmc 9.88402 0 166 13.2085
Dit 2.21582 0 8 1.3481
Noc 0.55881 0 102 3.217
Cbo 11.54135 0 499 21.1423
Rfc 27.84448 0 409 32.3868
Lcom 92.13608 0 13617 491.5333

Descriptive Statistics (total)
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All the systems have three Principal Components (PC), except xalan which has additional 

Principal Component to be four in total.  In general, there is no single metric that belongs 

to a specific PC across all the systems.  This reflects that these metrics are not strongly 

correlated to each other.  It was observed that some metrics coexist together over 

different systems, for example, (RSA, CVR) are found together in the same component 

across all the systems.  (NBR, RSA, CVR), for velocity, synapse, and camel, this group 

belongs to the first component (PC-1) for three systems and in PC-2 in one system.  (CD, 

RSA, CVR), for velocity, synapse, and camel, this group belongs to PC-1 for three 

systems and in PC-3 in one system. 

In summary of PCA analysis, these clone metrics don’t have strong correlations between 

them.  In addition, there is no specific dimension that can be generalized for all of the 

subject systems. 

The results of PCA analysis are summarized in the following tables and PCA detailed 

tables are in the Appendix A: 

Table 10: Principal Components of Velocity   Table 11: Principal Components of Synapse 

             

 

Velocity
PC-1 PC-2 PC-3
CD TCF CRFL
NBR Intra-clones RSI
RSA TypeII RNR
CVR TypeIII
Inter-clones
TypeI

Synapse
PC-1 PC-2 PC-3
CD TCF RSI
CRFL Intra-clones RNR
NBR TypeI TypeIII
RSA TypeII
CVR
Inter-clones
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Table 12: Principal Components of Ant Table   13: Principal Components of Xalan 

             

 

Table 14: Principal Components of Camel 

 

4.5 Mann-Whitney Test 

In this section, we are trying to answer question A and its sub-questions (sec.4.1).  In this 

empirical study, Mann-Whitney test is used to help in answering the question of having a 

relationship (if any) between code clones and fault-proneness.  Mann-Whitney test is a 

non-parametric test that gives cumulative probabilities of certain null hypothesis by 

measuring the sum of the ranked two-sample data [59].  The software used to conduct 

Mann-Whitney tests is STATISTICA software package.  The readings of Mann-Whitney 

tests are summarized in the below tables: 

Ant
PC-1 PC-2 PC-3
TCF CRFL CD
RSI NBR RSA
Intra-clones Inter-clones CVR
TypeII TypeI RNR
TypeIII

Xalan
PC-1 PC-2 PC-3 PC-4
TCF CRFL C RNR
RSI NBR Inter-clones
Intra-clones RSA TypeI
TypeII CVR
TypeIII

Camel
PC-1 PC-2 PC-3
CD RSI TCF
CRFL RNR Inter-clones
NBR Intra-clones TypeI
RSA TypeIII TypeII
CVR
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Table 15: Mann-Whitney test for general clones including all types 

 

As we can see in the above table, the numbers in bold show the significance figures.  

Although velocity and camel systems’ p-values are > 0.05, the general trend, as it is clear 

in [Figure 1], shows that there is a relationship between code clones and fault-proneness.  

So, we reject the null hypothesis of HYP-A1. 

To answer question Q.A-2, Mann-Whitney test for all systems was conducted and 

presented below based on clone location, namely inter-clone, intra-clone, and hybrid-

clone. 

Table 16: Mann-Whitney test for clone locations whether inter clones or intra clones 

 

Mann-Whitney test shows that there is no significant difference among the individual 

groups of data.  This cannot lead us to any conclusion for clone location relationship with 

fault-proneness.  Another visit to the histogram for fault distribution over the clone 

location groups will give more information that will help us in reaching a conclusion. 

Fault-Proneness p-value

velocity 0.11083
synapse 0.00022
ant 0.00001
xalan 0
camel 0.29342
comprehensive 0

Glossary B:
Velocity
inter-VS-intra A B C D
A
B 0.837674
C 0.588365 0.54998
D 0.370406 0.381106 0.741486

A: InterOnly B: IntraOnly C: Inter&Intra D: Has No Clones
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Figure 2: Velocity-Faults Distribution Based on Location 

From the p-values above, there is no significant difference between clones based on 

location with respect to fault-proneness.  However, the histogram of the system shows 

that classes having inter-clones and hybrid-clones are more fault-proneness than classes 

without clones.  The summary in [Table 28] has a generic view of the test results with the 

context of all subject systems in this study. 

 
Table 17: Mann-Whitney test for clone locations whether inter clones or intra clones 

 

Mann-Whitney test shows that there are significant differences between inter-clones and 

the group of no-clones, similarly between intra-clones and no-clones group.  This 

51% 

24% 

50% 

26% 

49% 

76% 

50% 

74% 

inter-clones intra-clones hybrid-clones no-clones

velocity

FAULTS DISTRIBUTION BASED ON 
LOCATION 

Faulty Non-Faulty

Glossary B:
Synapse
inter-VS-intra A B C D
A
B 0.530538
C 0.195563 0.173503
D 0.002341 0.041395 0.481821

A: InterOnly B: IntraOnly C: Inter&Intra D: Has No Clones
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observation alone cannot lead us to any conclusion to judge if there is a relationship 

between clone locations with fault-proneness.  Another visit to the histogram for fault 

distribution over the clone location groups will provide more information that will help 

us in reaching a conclusion. 

 

 

Figure 3: Synapse-Faults Distribution Based on Location 

From the p-values above, there are some significant differences between clones based on 

location groups of data with respect to fault-proneness.  However, the histogram of the 

system shows the classes that have inter-clones, intra-clones and hybrid-clones are more 

fault-proneness than classes without clones.  The summary in [Table 28] has a generic 

view of the test results with the context of all subject systems in this study. 

47% 
58% 

31% 
23% 

53% 
42% 

69% 
77% 

inter-clones intra-clones hybrid-clones no-clones

synapse

FAULTS DISTRIBUTION BASED ON 
LOCATION 

Faulty Non-Faulty



 

48 
 

Table 18: Mann-Whitney test for clone locations whether inter clones or intra clones 

 

Mann-Whitney test shows that there are significant differences between inter-clones and 

the groups of no-clones, intra-clones, and hybrid-clones.  Similarly, between intra-clones, 

hybrid-clones and no-clones group.  These observations alone cannot lead us to any 

conclusion to judge if there is a relationship between clone locations with fault-

proneness.  Another visit to the histogram for fault distribution over the clone location 

groups will provide more information that will help us in reaching a conclusion. 

Glossary B:
Ant
inter-VS-intra A B C D
A
B 0.012847
C 0.024002 0.790891
D 0.264261 0.000748 0.001512

A: InterOnly B: IntraOnly C: Inter&Intra D: Has No Clones
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Figure 4: Ant-Faults Distribution Based on Location 

From the p-values above, there are some significant differences between clones based on 

location groups of data with respect to fault-proneness.  However, the histogram of the 

system shows that classes having inter-clones, intra-clones and hybrid-clones are more 

fault-proneness than classes without clones.  The summary in [Table 28] has a generic 

view of the test results with the context of all subject systems in this study. 

Table 19: Mann-Whitney test for clone locations whether inter clones or intra clones 

  

Mann-Whitney test shows that there are significant differences between inter-clones and 

the groups of no-clones, and hybrid-clones.  Similarly, between intra-clones and no-

23% 

45% 42% 

17% 

77% 

55% 58% 

83% 

inter-clones intra-clones hybrid-clones no-clones

ant

FAULTS DISTRIBUTION BASED ON 
LOCATION 

Faulty Non-Faulty

Glossary B:
Xalan
inter-VS-intra A B C D
A
B 0.289347
C 0.020035 0.435781
D 0.002452 0.007499 0.000015

A: InterOnly B: IntraOnly C: Inter&Intra D: Has No Clones
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clones groups.  These observations alone cannot lead us to any conclusion to judge if 

there is a relationship between clone locations with fault-proneness.  Another visit to the 

histogram for fault distribution over the clone location groups will provide more 

information that will help us in reaching a conclusion. 

 

Figure 5: Xalan-Faults Distribution Based on Location 

From the p-values above of xalan system, there are some significant differences between 

clones based on location groups of data with respect to fault-proneness.  However, the 

histogram of the system shows that classes having inter-clones, intra-clones and hybrid-

clones are more fault-proneness than classes without clones.  The summary in [Table 28] 

has a generic view of the test results with the context of all subject systems in this study. 

Table 20: Mann-Whitney test for clone locations whether inter clones or intra clones 

53% 
62% 

70% 

39% 

47% 
38% 

30% 

61% 

inter-clones intra-clones hybrid-clones no-clones

xalan

FAULTS DISTRIBUTION BASED ON 
LOCATION 

Faulty Non-Faulty
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Mann-Whitney test for camel system shows that there are significant differences between 

inter-clones and the group of inter-clones.  Similarly, between intra-clones and no-clones 

groups.  These observations alone cannot lead us to any conclusion to judge if there is a 

relationship between clone locations with fault-proneness.  Another visit to the histogram 

for fault distribution over the clone location groups will provide more information that 

will help us in reaching a conclusion. 

 

Glossary B:
Camel
inter-VS-intra A B C D
A
B 0.015312
C 0.716188 0.28341
D 0.653338 0.01442 0.822319

A: InterOnly B: IntraOnly C: Inter&Intra D: Has No Clones
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Figure 6: Camel-Faults Distribution Based on Location 

From the p-values above of camel system, there are some significant differences between 

clones based on location groups of data with respect to fault-proneness.  However, the 

histogram of the system shows the classes that have inter-clones, intra-clones and hybrid-

clones are more fault-proneness than classes without clones.  The summary in [Table 28] 

has a generic view of the test results with the context of all subject systems in this study. 

Table 21: Mann-Whitney test for clone locations whether inter clones or intra clones 

 

17% 

43% 

23% 19% 

83% 

57% 

77% 81% 

inter-clones intra-clones hybrid-clones no-clones

camel

FAULTS DISTRIBUTION BASED ON 
LOCATION 

Faulty Non-Faulty

Glossary B:
total
inter-VS-intra A B C D
A
B 0.027711
C 0.006534 0.708274
D 0.000001 0 0

A: InterOnly B: IntraOnly C: Inter&Intra D: Has No Clones
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Mann-Whitney test for the aggregated system shows us a glance for the overall systems 

behavior with respect to fault-proneness.  The results show that there are significant 

differences between all different groups except between intra-clones and the group of 

hybrid-clones.  These observations alone cannot lead us to any conclusion to judge if 

there is a relationship between clone locations with fault-proneness.  Another visit to the 

histogram for fault distribution over the clone location groups will provide more 

information that will help us in reaching a conclusion. 

 

Figure 7: Comprehensive-Faults Distribution Based on Location 

From the p-values above of the comprehensive system, there are many significant 

differences between clones based on location groups of data with respect to fault-

proneness.  However, the histogram of the system shows the classes that have inter-

clones, intra-clones and hybrid-clones are more fault-proneness than classes without 

38% 
49% 51% 

25% 

62% 
51% 49% 

75% 

inter-clones intra-clones hybrid-clones no-clones

Comprehensive

FAULTS DISTRIBUTION BASED ON 
LOCATION 

Faulty Non-Faulty
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clones.  The summary in [Table 28] has a generic view of the test results with the context 

of all subject systems in this study. 

Mann-Whitney test for clones based on types: 

Velocity: 

Table 22: Mann-Whitney Test Based on Types 

  

Similar to location based clones, Mann-Whitney test shows that there is no significant 

difference among the individual groups of data.  This cannot lead us to any conclusion for 

clone types relationships with fault-proneness.  Another visit to the histogram for fault 

distribution over the clone types groups will give more information that will help us in 

reaching a conclusion. 

 

A: B: C: D: E: F: G: H: 
Type-I Type-II Type-III  Type-I&II Type-I&III Type-II&III Type-I&II&III Has No Clones

cloneTypes A B C D E F G H
A
B 0.471758
C 0.399217 0.920573
D 0.471758 1 0.920573
E 1 1 1 1
F 0.362051 0.789268 0.696835 0.789268 1
G 1 1 1 1 1 1
H 0.068368 0.912591 0.72815 0.912591 1 0.791214 1

Glossary A:



 

55 
 

 

Figure 8: Velocity-Faults Distribution Based on Types 

From the p-values above, there is no significant difference between clones based on types 

with respect to fault-proneness.  However, the histogram of the system shows that all 

clone types in the classes except the ones that contain Type-2 and Type-3 are more fault-

proneness than classes without clones.  The summary in [Table 29] has a generic view of 

the test results with the context of all subject systems in this study. 

Synapse: 

50.00% 
33.33% 35.71% 33.33% 

100.00% 

25.00% 

100.00% 

50.00% 
66.67% 64.29% 66.67% 

0.00% 

75.00% 

0.00% 

Type-1 Type-2 Type-3 Type-1&2 Type-1&3 Type-2&3 Type-1&2&3

velocity-1.6.1

Faults Distribution Based on Clones Types 

% with-faults % without-faults
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Table 23: Mann-Whitney Test Based on Types for Synapse 

 

Mann-Whitney test shows that there are significant differences among some of the 

individual groups of data such as Type-1 and Type-3, similarly Type2 and Type-3.  

Additionally, four groups have significant differences between them.  This might not lead 

us to any conclusion for clones based on type relationships with fault-proneness.  Another 

visit to the histogram for fault distribution over the clone types groups will give more 

information that will help us in reaching a conclusion. 

A: B: C: D: E: F: G: H: 
Type-I Type-II Type-III  Type-I&II Type-I&III Type-II&III Type-I&II&III Has No Clones

cloneTypes A B C D E F G H
A
B 0.379672
C 0.006371 0.000053
D 0.370899 0.078965 0.177933
E 0.66194 0.222127 0.077101 0.70255
F 0.758467 0.236724 0.023944 0.554114 0.87278
G 0.234322 0.071191 0.899503 0.563703 0.410594 0.326349
H 0.00164 0.000001 0.952347 0.143415 0.054155 0.010536 0.912624

Glossary A:
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Figure 9: Synapse-Faults Distribution Based on Types 

From the p-values above, there are significant differences between clones based on types 

with respect to fault-proneness.  However, the histogram of the system shows that all 

clone types in the classes except the ones that contain Type-3 are more fault-proneness 

than classes without clones.  This could be due to the fact that usually the developer gets 

something to clone and modify, will reassess the new code and probably resolve any 

faults.  The summary in [Table 29] has a generic view of the test results with the context 

of all subject systems in this study. 

Ant: 

Table 24: Mann-Whitney Test Based on Types 

  

58.82% 
72.00% 

22.22% 
41.67% 50.00% 53.33% 

25.00% 

41.18% 
28.00% 

77.78% 
58.33% 50.00% 46.67% 

75.00% 

Type-1 Type-2 Type-3 Type-1&2 Type-1&3 Type-2&3 Type-1&2&3

synapse-1.2

Faults Distribution Based on Clones Types  

% with-faults % without-faults

A: B: C: D: E: F: G: H: 
Type-I Type-II Type-III  Type-I&II Type-I&III Type-II&III Type-I&II&III Has No Clones

cloneTypes A B C D E F G H
A
B 0.87893
C 0.912091 0.785434
D 0.536988 0.455452 0.577842
E 0.10651 0.084094 0.109041 0.339557
F 0.920888 0.828061 0.983615 0.682326 0.207859
G 0.475282 0.406865 0.508444 0.881586 0.459849 0.606935
H 0.041517 0.072827 0.013538 0.013795 0.0004 0.127608 0.020791

Glossary A:
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Mann-Whitney test shows that there are significant differences among some of the 

individual groups of data such as Type-1 and Type-3, Type1&2, Type-1&3 and Type-

1&2&3 against no-clones group.  This might not lead us to any conclusion for clone 

types relationships with fault-proneness.  Another visit to the histogram for fault 

distribution over the clone types groups will give more information that will help us in 

reaching a conclusion. 

 

Figure 10: Ant-Faults Distribution Based on Types 

From the p-values above, there are significant differences between clones based on types 

with respect to fault-proneness.  However, the histogram of the system shows that all 

clone types in the classes are more fault-proneness than classes without clones.  The 

summary in [Table 29] has a generic view of the test results with the context of all subject 

systems in this study. 

Xalan: 

28.07% 26.79% 28.95% 34.38% 
47.62% 

29.17% 36.36% 

71.93% 73.21% 71.05% 65.63% 
52.38% 

70.83% 63.64% 

Type-1 Type-2 Type-3 Type-1&2 Type-1&3 Type-2&3 Type-1&2&3

ant-1.7

Faults Distribution Based on Clones Types 

% with-faults % without-faults
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Table 25: Mann-Whitney Test Based on Types 

 

Mann-Whitney test shows that there are significant differences among some of the 

individual groups of data such as Type-1, Type-2, Type-3, Type-1&2 against Type-1&3.  

Type-2, Type1&2, Type-1&3 and Type-1&2&3 against no-clones group.  This might not 

lead us to any conclusion for clone types relationships with fault-proneness.  Another 

visit to the histogram for fault distribution over the clone types groups will give more 

information that will help us in reaching a conclusion. 

 

Figure 11: Xalan-Faults Distribution Based on Types 

From the p-values above, there are significant differences between clones based on types 

with respect to fault-proneness.  However, the histogram of the system shows that all 

A: B: C: D: E: F: G: H: 
Type-I Type-II Type-III  Type-I&II Type-I&III Type-II&III Type-I&II&III Has No Clones

cloneTypes A B C D E F G H
A
B 0.02032
C 0.863085 0.059145
D 0 0.000203 0
E 0.000021 0.020804 0.000247 0.964277
F 0.032362 0.563703 0.051673 0.05726 0.162604
G 0.000013 0.027252 0.000245 0.648912 0.76659 0.227425
H 0.384058 0.042036 0.495527 0 0.000034 0.059755 0.000019

Glossary A:

34.88% 
54.17% 

33.33% 

83.00% 82.61% 
62.50% 

79.31% 

65.12% 
45.83% 

66.67% 

17.00% 17.39% 
37.50% 

20.69% 

Type-1 Type-2 Type-3 Type-1&2 Type-1&3 Type-2&3 Type-1&2&3

xalan-2.6

Faults Distribution Based on Clones Types 

% with-faults % without-faults
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clone types in the classes except the ones that contain Type-1 & Type-3 are more fault-

proneness than classes without clones.  The yielded result for Type-3 could be due to the 

fact that usually the developer gets something to clone and modify, will reassess the new 

code and probably resolve any faults.  The summary in [Table 29] has a generic view of 

the test results with the context of all subject systems in this study. 

Camel: 

Table 26: Mann-Whitney Test Based on Types 

 

Mann-Whitney test shows that there is a significant difference with the individual group 

of data as Type-2 against no-clones group.  This might not lead us to any conclusion for 

clone types relationships with fault-proneness.  Another visit to the histogram for fault 

distribution over the clone types groups will give more information that will help us in 

reaching a conclusion. 

A: B: C: D: E: F: G: H: 
Type-I Type-II Type-III  Type-I&II Type-I&III Type-II&III Type-I&II&III Has No Clones

cloneTypes A B C D E F G H
A
B 0.279758
C 0.486572 0.08141
D 0.447336 0.181833 0.628601
E 0.794861 0.524923 0.441906 0.397887
F 0.289964 0.726095 0.144992 0.175735 0.435866
G 0.170904 0.073639 0.23353 0.386477 0.153643 0.066193
H 0.390033 0.04826 0.983603 0.621091 0.394569 0.125032 0.229494

Glossary A:
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Figure 12: Camel-Faults Distribution Based on Types 

From the p-values above, there are significant differences between clones based on types 

with respect to fault-proneness.  However, the histogram of the system shows that all 

clone types in the classes except the ones that contain Type-1&2 are more fault-

proneness than classes without clones.  Exceptional case is the group of classes that have 

Type-1&2&3 has only 6 classes and none of them is fault-proneness.  The summary in 

[Table 29] has a generic view of the test results with the context of all subject systems in 

this study. 

Total (aggregated) system: 

Table 27: Mann-Whitney Test Based on Types 

 

25.00% 
40.00% 

19.54% 12.50% 
28.57% 

50.00% 

0.00% 

75.00% 
60.00% 

80.46% 87.50% 
71.43% 

50.00% 

100.00% 

Type-1 Type-2 Type-3 Type-1&2 Type-1&3 Type-2&3 Type-1&2&3

camel-1.6

Faults Distribution Based on Clones Types 

% with-faults % without-faults

A: B: C: D: E: F: G: H: 
Type-I Type-II Type-III  Type-I&II Type-I&III Type-II&III Type-I&II&III Has No Clones

cloneTypes A B C D E F G H
A
B 0.047735
C 0.021237 0.000075
D 0 0.000464 0
E 0.001025 0.10372 0.000001 0.252056
F 0.155011 0.9763 0.003229 0.006211 0.167268
G 0.007362 0.257244 0.000024 0.121303 0.706086 0.328025
H 0.000545 0 0.822238 0 0 0.000473 0.000001

Glossary A:
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Mann-Whitney test shows that there are significant differences among some of the 

individual groups of data such as Type-1, Type-2, Type-3, Type-1&3 against Type-1&2.  

Type-1, Type-2, Type-1&2, Type-1&3, Type-2&3 and Type-1&2&3 against no-clones 

group.  This might not lead us to any conclusion for clone types relationships with fault-

proneness. 

 

Figure 13: Comprehensive-Faults Distribution Based on Types 

From the p-values above, there are significant differences between clones based on types 

with respect to fault-proneness.  However, the histogram of the system shows that all 

clone types in the classes are more fault-proneness than classes without clones.  The 

summary in [Table 29] has a generic view of the test results with the context of all subject 

systems in this study. 

34.83% 44.67% 
25.58% 

64.56% 56.52% 
44.44% 53.23% 

65.17% 55.33% 
74.42% 

35.44% 43.48% 
55.56% 46.77% 

Type-1 Type-2 Type-3 Type-1&2 Type-1&3 Type-2&3 Type-1&2&3

comprehensive

Faults Distribution Based on Clones Types 
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Table 28: Summary of Mann-Whitney Test for Clones Based on Location 

 

In the summary table [Table. 28], the data groups and their test results that participated in 

the Mann-Whitney test for clones based on location, where compared by fault-proneness.  

So, InterOnly > Has No Clones, means the classes that contain inter-clones are more 

fault-proneness than the classes with no-clones.  If * is associated with it, such as 

InterOnly >* Has No Clones, it means the classes that contain inter-clones are more fault-

proneness than the classes with no-clones and this difference is significant. 

From the summary table we observed that the classes that have both inter-clones and 

intra-clones together are more fault-proneness than the classes with no-clones across all 

the system.  In addition, two out of 5 systems have significant differences and 

consolidated with the results of the aggregated system that contains all the inputs of the 

subject systems in and treated as a single system.  Also, the classes that have intra-clones 

only, are more likely to be more fault-proneness than the classes with inter-clones only.  

An exception to this observation was found in velocity system, which could be due to its 

small size as number of classes.  Additionally, we have noticed for the medium-big 

systems (number of classes: 700+), they are more fault-proneness if the classes contain 

both inter-clones and intra-clones than classes with inter-clones only.  The classes that 

have intra-clones only are more fault-proneness than classes with no-clones, and this 

difference in fault-proneness is significant.  An exception from the last observation, again 

the velocity system which is the smallest subject system has opposite result.  We believe 

Velocity Synapse Ant Xalan Camel Total
A: InterOnly > < <* < <* <* B: IntraOnly
A: InterOnly > > <* <* < <* C: Inter&Intra
A: InterOnly > >* > >* < >* D: Has No Clones
B: IntraOnly < > > < > < C: Inter&Intra
B: IntraOnly < >* >* >* >* >* D: Has No Clones
C: Inter&Intra > > >* >* > >* D: Has No Clones
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this result for velocity system is negligible according to the general trend in addition to 

the result of the aggregated system which supports our observation. 

This concludes that there is a relationship between clone location and fault-proneness.  

So, we reject the null hypothesis HYP-A3. 

Table 29: Summary of Mann-Whitney Test for Clones Based on Types 

 

In the summary table [Table. 29], the data groups and their test results that participated in 

the Mann-Whitney test for clones based on types, were compared by fault-proneness.  So, 

Velocity Synapse Ant Xalan Camel Total
A:Type-I > < > <* < <* B:Type-II
A:Type-I > >* < > > >* C:Type-III
A:Type-I > > < < > <* D:Type-I&II
A:Type-I < > < <* < <* E:Type-I&III
A:Type-I > > < <* < < F:Type-II&III
A:Type-I < > < <* > <* G:Type-I&II&III
A:Type-I > >* >* < > >* H:Has No Clones
B:Type-II < >* < > > >* C:Type-III
B:Type-II = > < <* > <* D:Type-I&II
B:Type-II < > < < > < E:Type-I&III
B:Type-II > > < < < > F:Type-II&III
B:Type-II < > < <* > < G:Type-I&II&III
B:Type-II > >* > >* >* >* H:Has No Clones
C:Type-III > < < <* > <* D:Type-I&II
C:Type-III < < < <* < <* E:Type-I&III
C:Type-III > <* < < < <* F:Type-II&III
C:Type-III < < < <* > <* G:Type-I&II&III
C:Type-III > < >* < > > H:Has No Clones
D:Type-I&II < < < > < > E:Type-I&III
D:Type-I&II > < > > < >* F:Type-II&III
D:Type-I&II < > < > > > G:Type-I&II&III
D:Type-I&II > > >* >* < >* H:Has No Clones
E:Type-I&III > < > > < > F:Type-II&III
E:Type-I&III = > > > > > G:Type-I&II&III
E:Type-I&III > > >* >* > >* H:Has No Clones
F:Type-II&III < > < < > < G:Type-I&II&III
F:Type-II&III < >* > > > >* H:Has No Clones
G:Type-I&II&III > > >* >* < >* H:Has No Clones
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Type-1 > Type-2, means the classes that contain Type-1 clones are more fault-proneness 

than the classes with Type-2 clones.  If * is associated with it, such as Type-1 >* Type-2 

Clones, it means the classes that contain Type-1 clones are more fault-proneness than the 

classes with Type-2 clones and this difference is significant. 

From the summary table we observed that classes that contain Type-2 clones are more 

fault-proneness than the classes that have no-clones.  This observation is true for all the 

participated subject systems.  Additionally, three out of five systems have significant 

differences, and even the aggregated system is supporting this finding with significant 

differences.  Another observation is, when Type-1&3 represent the clone types in a class, 

most probably it will be more fault-proneness than if it has all the types Type-1&2&3.  

Third finding is the classes that have Type-1&3 is more fault-proneness than classes that 

have no-clones, and two out of the five subject systems have significant differences with 

respect to fault-proneness, yet the aggregated system consolidates the fact that the 

difference is significant. 

In general, the classes that contain only Type-3 have a tendency to be less fault-

proneness.  We got this observation from the Mann-Whitney test for the following groups 

in Table 29: (group A: group C), (group C: group E), (group C: group F), and (group C: 

group G).  For all of these groups either all the systems have consistent results or at least 

four out five in addition to the aggregated system with some differences are being 

significant. 

We observed as well the classes that contain Type-1&3 are more fault-proneness than if 

the classes have only Type-1 clones.  This observation was valid for all subject systems 
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except for synapse system, which could be due to its small size.  We believe that we 

could overlook this difference since the aggregated system supports this result. 

The classes that contain clones of Type-1&2 are more likely to be fault-proneness than 

the classes that have no-clones, an exception is observed with camel subject system.  

However, the general trend in addition to the aggregated collected system supports that 

classes with type-1&2 are more fault-proneness.  The result with camel system was not 

significant difference.  We can notice the same behavior of camel system for classes that 

contain Type-1&2&3 when compared with classes with no-clones of fault-proneness, 

whereas all the other subject systems show they are more fault-proneness than classes 

with no-clones. 

Similarly, for the classes that have Type-2&3 clones, they are more fault-proneness than 

classes with no-clones, we observe all systems except velocity support this finding 

including the aggregated system, which suggests we overlook this exception. 

These findings conclude that there are relationships between clone types and fault-

proneness.  So, we reject the null hypothesis HYP-A2. 

Summary of Mann-Whitney Results: 

Although velocity system has all null hypothesis accepted, the histogram in [Figure 1] 

shows the general trend across all the systems having the classes that contain clones are 

more fault-proneness.  So, this concludes that there is a relationship between code clones 

and fault-proneness. 

Similarly, from the summary in [Table 28] a relationship between clone location and 

fault-proneness has been proven. 
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Additionally, from the summary in [Table 29] relationships between clone types and fault-

proneness have been proven.  Hence, we reach to a conclusion that we reject the null 

hypotheses of HYP-A1, HYP-A2, and HYP-A3. 

4.6 Univariate Analysis 

In this section, we are trying to answer the question B and its sub-questions (sec.4.1).  For 

the five subject systems, univariate regression models for the fault-proneness variables 

were created.  The goal of univariate analysis is to find whether code clones metrics are 

good indicators of fault-proneness or not [60].  A summary of the results is shown in 

tabular format for each subject system.  The following approach will be followed during 

the univariate analysis for all the systems: 

• The univariate models will be assessed if they are statistically significant for all 

variables. 

• The Degree and direction of impact of the independent variables will be measured 

against fault-proneness.   

• The univariate models will be checked for goodness-of-fit using three measures, 

namely -2 Log Likelihood (-2LL), Cox & Snell R Square (CSRS), and Nagelkerke R 

Square (NR2).   

• The classification performance of these univariate models will be evaluated using 

Correctly Classified Rate and Receiver Operating Characteristic (ROC) Area, 

according to [61], we consider the following values for evaluation: ROC = 0.5 shows 

the classification is “not good”, “poor” for the values 0.5 < ROC < 0.6, “fair” for the 

values 0.6 ≤ ROC < 0.7, “acceptable” if 0.7 ≤ ROC < 0.8. 
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For velocity system, as shown below: 

Table 30: Univariate Analysis for Velocity system 

 

Independent variables assessment for statistically significance:  

Based on the p-values, TCF, CRFL, NBR, RSA, CVR, Inter-class, and Type-1 showed 

significant indicators of fault-proneness.  Whereas CD, RSI, RNR, Intra, Type-2 and 

Type-3 are none significant fault-proneness indicators.  NBR, RSA, CVR inter-class, and 

Type-1 are together as they are from the same leading principal component PC-1.  Based 

on these results, the following can be observed: 

Degree and direction of impact of the independent variables to fault-proneness: 

From the table the coefficients C1 shows the direction of impact, the independent 

variables that are based on clone types and location have positive impact, but for the 

remaining clone metrics have different impact.  All variables have positive impact except 

CD and RNR have negative impact, which means the class that has higher CD or RNR 

will be less fault-prone. 

Goodness-of-Fit: 

The following measures are representing the goodness-of-fit of the regression models:  

velocity C0 (intercept) C1
-2 Log 

likelihood
Cox & Snell R 

Square
Nagelkerke 
R Square

p-value
Correctly 

Classified Rate %
ROC Area

TCF -0.737 0.143 291.909 0.008 0.011 0.029 65.939 0.519
CD -0.652 -0.003 293.760 0.000 0.000 0.079 65.939 0.427
CRFL -0.762 0.308 286.641 0.031 0.042 0.004 67.249 0.541
NBR -0.787 0.473 288.079 0.025 0.034 0.000 65.502 0.551
RSA -0.735 0.873 291.729 0.009 0.012 0.001 64.192 0.548
RSI -0.667 0.143 293.756 0.000 0.000 0.971 65.939 0.452
CVR -0.741 0.639 292.357 0.006 0.009 0.019 66.376 0.524
RNR 0.430 -1.186 292.865 0.004 0.006 0.924 65.939 0.491
Inter-clones -0.823 0.659 286.054 0.033 0.046 0.000 66.812 0.545
Intra-clones -0.665 0.016 293.760 0.000 0.000 0.284 65.939 0.459
Type-1 -0.779 0.524 288.724 0.022 0.030 0.002 66.376 0.526
Type-2 -0.664 0.023 293.770 0.000 0.000 0.859 65.502 0.438
Type-3 -0.681 0.127 293.383 0.002 0.002 0.410 65.502 0.473
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-2 Log Likelihood (-2LL): it measure how bad is the prediction of dependent variables 

out of independent variables where a high value means the poorer is the model. 

Cox & Snell R Square (CSRS): it is one type of "pseudo-R" statistic which measures the 

goodness-of-fit of the model, a higher value means better goodness-of-fit of the model. 

Nagelkerke R Square (NR2): it is also a "pseudo-R" value where a high value means that 

the model fits well. 

For all the independent variables, they have relatively high (-2LL) values and low values 

of CSRS and NR2 which represent weak goodness-of-fits 

Classification Performance: 

The univariate analysis results for velocity system show that six out of thirteen metrics 

scored “poor” as a classification performance, and the remaining seven metrics scored 

“not good” for the classification.  As a result, all of these univariate models are not 

concrete classifiers for fault-proneness. 

Synapse system: 

Table 31: Univariate Analysis for Synapse system 

 

Independent variables assessment for statistically significance:  

synapse C0 C1 -2 Log likelihood
Cox & Snell R 

Square
Nagelkerke R 

Square
p-value

Correctly Classified 
Rate %

ROC Area

TCF -0.783 0.067 325.531 0.005 0.007 0.000 65.625 0.583
CD -0.639 -0.006 326.539 0.001 0.001 0.043 66.406 0.449
CRFL -0.738 0.079 326.376 0.002 0.002 0.001 66.406 0.555
NBR -0.986 0.060 312.757 0.053 0.074 0.000 67.969 0.605
RSA -0.692 0.078 326.795 0.000 0.000 0.016 66.406 0.434
RSI -0.724 0.499 326.396 0.002 0.002 0.040 66.406 0.494
CVR -0.780 0.471 325.971 0.003 0.005 0.002 66.406 0.553
RNR -0.245 -0.477 326.721 0.000 0.000 0.161 66.016 0.449
Inter-clones -0.747 0.065 326.241 0.002 0.003 0.003 66.406 0.540
Intra-clones -0.723 0.080 325.976 0.003 0.005 0.172 64.844 0.481
Type-1 -0.707 0.073 326.533 0.001 0.002 0.002 66.406 0.541
Type-2 -0.818 0.252 320.946 0.023 0.031 0.000 66.406 0.576
Type-3 -0.622 -0.099 326.025 0.003 0.004 0.555 66.406 0.456
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Based on the p-values, TCF, CD, RSI, CRFL, NBR, RSA, CVR, Inter-class, Type-1, 

Type-2 and Type-3 showed significant indicators of fault-proneness.  Whereas RNR and 

Intra are none significant fault-proneness indicators. 

Degree and direction of impact of the independent variables to fault-proneness: 

From the table the coefficients C1 shows the direction of impact, the independent 

variables that are based on clone types and location except Type-3 have positive impact, 

but for the remaining clone metrics have different impact.  All variables have positive 

impact except CD, RNR and Type-3 have negative impact, which means the class that 

has higher CD, RNR, and/or Type-3 will be less fault-prone. 

Goodness-of-Fit: 

In general (NR2) are relatively low like the case in velocity, but different behavior for the 

same variable between the two systems, and the same thing applies to (-2 LL) and CSRS 

values.  For all the independent variables, they represent weak goodness-of-fit. 

Classification Performance: 

The univariate analysis results for synapse system show that only one independent 

variable which is NBR has scored “fair” as classifier and six out of thirteen metrics 

scored “poor” as a classification performance, and the remaining six metrics scored “not 

good” for the classification.  As a result, all of these univariate models are not concrete 

classifiers for fault-proneness. 

Ant system: 
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Table 32: Univariate Analysis for Ant system 

 

Independent variables assessment for statistically significance:  

Based on the p-values, all variables except RSA and RNR, showed significant indicators 

of fault-proneness, whereas RSA and RNR showed none significant fault-proneness 

indicators.  These results are very similar to synapse where RNR is common between the 

two systems as non-significant fault-proneness indicator. 

Degree and direction of impact of the independent variables to fault-proneness: 

From the table the coefficients C1 shows the direction of impact, the independent 

variables that are based on clone types and location have positive impact, but for the 

remaining clone metrics have different impact.  All independent variables have positive 

impact except four namely: CD, CRFL, RSA and CVR have negative impact. 

Goodness-of-Fit: 

In general (NR2) are relatively low like the case in velocity and synapse, but different 

behavior for the same variable between the two systems, and the same thing applies to -2 

LL and CSRS values.  In this system, clone types and location metrics scored a little bit 

higher scores in general when comparing them with same metrics from velocity and 

ant C0 C1 -2 Log likelihood
Cox & Snell R 

Square
Nagelkerke R 

Square
p-value

Correctly Classified 
Rate

ROC Area

TCF -1.517 0.191 753.376 0.046 0.070 0.000 0.783 0.612
CD -1.168 -0.019 785.786 0.003 0.005 0.002 77.598 0.442
CRFL -1.215 -0.078 787.431 0.001 0.002 0.000 77.598 0.442
NBR -1.304 0.053 785.260 0.004 0.006 0.001 77.598 0.536
RSA -1.134 -1.236 781.313 0.009 0.014 0.266 77.598 0.465
RSI -1.325 1.817 783.233 0.007 0.011 0.000 77.598 0.584
CVR -1.184 -0.453 787.067 0.002 0.003 0.001 77.598 0.435
RNR -1.448 0.222 788.320 0.000 0.000 0.707 77.598 0.465
Inter-clones -1.398 0.214 776.134 0.016 0.025 0.000 77.463 0.535
Intra-clones -1.408 0.234 758.556 0.039 0.060 0.000 78.273 0.581
Type-1 -1.432 0.379 758.608 0.039 0.060 0.000 78.138 0.546
Type-2 -1.344 0.220 778.286 0.013 0.021 0.000 77.328 0.522
Type-3 -1.381 0.285 771.357 0.023 0.035 0.000 77.733 0.545
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synapse systems.  In general, all the independent variables represent weak goodness-of-

fits. 

Classification Performance: 

The univariate analysis results for ant system show that only one independent variable 

which is TCF has scored “fair” as classifier and seven out of thirteen metrics scored 

“poor” as a classification performance, and the remaining five metrics scored “not good” 

for the classification.  As a result, all of these univariate models are not concrete 

classifiers for fault-proneness. 

Xalan system: 

Table 33: Univariate Analysis for Xalan system 

 

Independent variables assessment for statistically significance:  

All independent variables showed significant indicators of fault-proneness.  Xalan has 

57% of its classes that contain clone fragments are fault classes which was the highest 

value among other systems, that could be related to the result of having all variables are 

significant fault-proneness indicators. 

Degree and direction of impact of the independent variables to fault-proneness: 

xalan C0 C1 -2 Log likelihood
Cox & Snell R 

Square
Nagelkerke R 

Square
p-value

Correctly Classified 
Rate

ROC Area

TCF 0.328 -0.145 1175.335 0.039 0.052 0.000 60.457 0.617
CD 0.101 0.005 1209.442 0.000 0.001 0.000 0.530 0.465
CRFL 0.253 -0.037 1166.600 0.048 0.064 0.000 53.600 0.530
NBR 0.300 -0.046 1161.495 0.054 0.072 0.000 53.943 0.573
RSA 0.143 -0.112 1209.477 0.000 0.000 0.000 51.657 0.474
RSI 0.161 -0.969 1207.001 0.003 0.004 0.000 53.714 0.540
CVR 0.171 -0.223 1208.532 0.001 0.002 0.000 50.971 0.513
RNR 1.974 -1.998 1204.968 0.006 0.007 0.000 51.200 0.560
Inter-clones 0.361 -0.333 1172.167 0.042 0.056 0.000 62.743 0.593
Intra-clones 0.206 -0.119 1194.843 0.017 0.023 0.000 57.371 0.546
Type-1 0.329 -0.350 1168.788 0.046 0.061 0.000 59.771 0.584
Type-2 0.267 -0.295 1178.292 0.035 0.047 0.000 61.943 0.598
Type-3 0.125 -0.011 1209.717 0.000 0.000 0.000 52.800 0.485
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From the table the coefficients C1 shows the direction of impact, all independent 

variables have negative impact, except for CD has positive impact.  This is surprising 

results as xalan behavior is the opposite of other systems with respect to direction of 

impact.   

Goodness-of-Fit: 

In general (NR2) are relatively low like the case in velocity, synapse and ant, but 

different behavior for the same variable between the two systems, and the same thing 

applies to CSRS values with higher scores for xalan.  On the other hand, (-2 LL) scored 

relatively higher values and this could be due to the concentration of faults in classes that 

have clone fragments.  In this system, clone types and location metrics scored a little bit 

higher scores in general in addition to CRFL and NBR when comparing them with same 

metrics from velocity, synapse and ant systems.  In general, all the independent variables 

have relatively low values which represent low goodness-of-fits. 

Classification Performance: 

The univariate analysis results for xalan system show that only one independent variable 

which is TCF has scored “fair” as classifier and nine out of thirteen metrics scored “poor” 

as a classification performance, and the remaining three metrics scored “not good” for the 

classification.  As a result, all of these univariate models are not concrete classifiers for 

fault-proneness. 

Camel system: 
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Table 34: Univariate Analysis for Camel system 

 

Independent variables assessment for statistically significance:  

Based on the p-values, TCF, CRFL, RSI, CVR, and Intra showed significant indicators of 

fault-proneness.  Whereas, CD, NBR, Inter-class, RSA, RNR, Type-1, Type-2 and Type-

3, are none significant indicators for fault-proneness. 

Degree and direction of impact of the independent variables to fault-proneness: 

From the table the coefficients C1 shows the direction of impact, the independent 

variables that are based on clone types and location have positive impact, but for the 

remaining clone metrics have different impact.  All variables have negative impact except 

NBR, RSA and RNR have positive impact.  Again, there is no consistent with other 

subject systems of this study. 

Goodness-of-Fit: 

The following measures are representing the goodness-of-fit of the regression models: -2 

Log likelihood (-2 LL), Cox & Snell R Square (CSRS), and Nagelkerke R Square (NR2).  

For all the independent variables, they represent weak goodness-of-fit. 

Classification Performance: 

camel C0 C1 -2 Log likelihood
Cox & Snell R 

Square
Nagelkerke R 

Square
p-value

Correctly Classified 
Rate %

ROC Area

TCF 1.458 -0.164 930.995 0.008 0.013 0.046 79.893 0.507
CD 1.425 -0.016 935.512 0.003 0.005 0.129 80.000 0.501
CRFL 1.415 -0.203 936.218 0.002 0.004 0.046 79.786 0.512
NBR 1.346 0.152 936.951 0.002 0.003 0.085 79.893 0.503
RSA 1.338 0.816 935.744 0.003 0.005 0.074 79.893 0.504
RSI 1.478 -3.237 918.381 0.021 0.034 0.000 80.214 0.539
CVR 1.400 -0.249 938.097 0.000 0.001 0.022 79.893 0.507
RNR 1.050 0.359 938.381 0.000 0.000 0.878 79.893 0.481
Inter-clones 1.400 -0.077 937.661 0.001 0.001 0.290 79.893 0.469
Intra-clones 1.439 -0.282 928.644 0.011 0.017 0.000 79.893 0.514
Type-1 1.380 -0.004 938.518 0.000 0.000 0.535 79.893 0.462
Type-2 1.409 -0.323 933.973 0.005 0.008 0.105 79.893 0.500
Type-3 1.444 -0.224 931.367 0.008 0.012 0.574 80.107 0.493
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The univariate analysis results for camel system show that eight out of thirteen metrics 

scored “poor” as a classification performance, and the remaining five metrics scored “not 

good” for the classification.  As a result, all of these univariate models are not concrete 

classifiers for fault-proneness. 

Comprehensive system (aggregated subject systems): 

Table 35: Univariate Analysis for Comprehensive system 

 

Independent variables assessment for statistically significance:  

All independent variables showed significant indicators of fault-proneness. 

Degree and direction of impact of the independent variables to fault-proneness: 

From the table the coefficients C1 shows the direction of impact, all variables have 

positive impact, which means that any class that has high value of any of clone metrics 

has also more fault-proneness. 

Goodness-of-Fit: 

The following measures are representing the goodness-of-fit of the regression models: for 

(-2 Log likelihood), comprehensive scored highly when it is compared to other systems 

total C0 C1 -2 Log likelihood
Cox & Snell R 

Square
Nagelkerke R 

Square
p-value

Correctly Classified 
Rate %

ROC Area

TCF -1.009 0.172 3633.675 0.034 0.048 0.000 70.356 0.605
CD -0.823 0.001 3739.443 0.000 0.000 0.000 69.401 0.501
CRFL -0.897 0.059 3651.408 0.029 0.040 0.000 70.982 0.580
NBR -0.948 0.062 3623.006 0.038 0.053 0.000 70.652 0.565
RSA -0.851 0.273 3736.158 0.001 0.002 0.000 69.401 0.541
RSI -0.883 1.521 3716.898 0.007 0.010 0.000 69.236 0.550
CVR -0.901 0.534 3725.207 0.005 0.007 0.000 69.401 0.575
RNR -1.267 0.485 3738.529 0.000 0.000 0.004 69.401 0.527
Inter-clones -0.967 0.248 3672.732 0.022 0.031 0.000 69.532 0.567
Intra-clones -0.911 0.180 3675.584 0.021 0.029 0.000 70.356 0.548
Type-1 -0.967 0.378 3635.863 0.034 0.047 0.000 70.191 0.572
Type-2 -0.927 0.302 3664.993 0.024 0.034 0.000 69.961 0.572
Type-3 -0.850 0.092 3731.284 0.003 0.004 0.000 69.401 0.516
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(3x results of camel, 10x results of velocity), but for Cox & Snell R Square which tells 

that how bad is the model fits, and Nagelkerke R Square (NR2) it didn’t perform much 

differently comparing to individual systems.  For all the independent variables, they have 

relatively low values which represent weak goodness-of-fit. 

Classification Performance: 

The univariate analysis results for comprehensive system show that 12 out of 13 metrics 

scored “poor” as a classification performance, and the excluded metric scored “fair” for 

the classification.  As a result, all of these univariate models are not concrete classifiers 

for fault-proneness. 

Summary of Univariate Analysis: 

From the results of the analysis the following findings are concluded to answer the 

thirteen hypotheses (HYP-B1, HYP-B2, HYP-B3, HYP-B4, HYP-B5, HYP-B6, HYP-

B7, HYP-B8, HYP-B9, HYP-B10, HYP-B11, HYP-B12, and HYP-B13): 

Decision criteria:  

1) If a metric scored p-value < 0.05 in across all the systems, then it is considered a 

significant indicator of fault-proneness.  Hence, there is a clear evidence to reject the 

null hypothesis. 

2) If a metric scored p-value ≥ 0.05 in across all the systems, then it is considered non-

significant indicator of fault-proneness.  Hence, there is a clear evidence to accept the 

null hypothesis. 

3) If a metric across systems has inconsistent results, we don’t have clear evidence to 

accept or to reject a hypothesis.  

• TCF metric is a fault-proneness significant indicator, so HYP-B1 is rejected.  
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• CD, there is no clear evidence to accept the hypothesis HYP-B2. 

• CRFL is a fault-proneness significant indicator, so HYP-B3 is rejected. 

• NBR, there is no clear evidence to accept the hypothesis HYP-B4. 

• RSA, there is no clear evidence to accept the hypothesis HYP-B5. 

• RSI, there is no clear evidence to accept the hypothesis HYP-B6. 

• CVR is a fault-proneness significant indicator, so HYP-B7 is rejected. 

• RNR, there is no clear evidence to accept the hypothesis HYP-B8. 

• Interclass, there is no clear evidence to accept the hypothesis HYP-B9. 

• Intra, there is no clear evidence to accept the hypothesis HYP-B10. 

• Type-1, there is no clear evidence to accept the hypothesis HYP-B11. 

• Type-2, there is no clear evidence to accept the hypothesis HYP-B12. 

• Type-3, there is no clear evidence to accept the hypothesis HYP-B13. 

4.7 Multivariate Analysis 

In this section, we are trying to answer the questions C, D, and E in  4.1.  For the five 

subject systems, univariate regression models for the fault-proneness variables were 

created [62].  This section shows the study of the subject systems with multivariate 

perspective, where WEKA software is used to generate features selection.  The attribute 

evaluator used is CfsSubsetEval and the search method used is BestFirst with bi-

directional setting.  After getting these attributes that mostly representative of the data in 

a subject system, they are incorporated in multivariate analysis to study their features 

using weka software with default values. 

For velocity system: 
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Table 36: Multivariate Analysis for Velocity system 

 

Independent variables assessment for statistically significance:  

The features selection yielded only one attribute to be selected which is TCF which is a 

member of PC-2, this means that the multivariate model will not reach better results than 

univariate model for TCF.  The selected attribute TCF was not even the best independent 

variable as fault-proneness indicator with regards to the correctly classified rate. 

Degree and direction of impact of the independent variables to fault-proneness: 

TCF is still affecting fault-proneness positively as it was in univariate analysis.   

Goodness-of-Fit: 

Similar behavior to (-2 LL), CSRS and NR2 where other variables have higher scores 

which reflect even weaker representation of goodness-of-fit. 

Classification Performance: 

This multivariate model has 0.519 as ROC area value which is less than 6 other variables 

in univariate models which tells how poor is the classification performance of the 

multivariate model. 

For synapse system: 

Table 37: Multivariate Analysis for Synapse system 

 

C1 -2 Log likelihood
Cox & Snell R 

Square
Nagelkerke R 

Square
p-value

Correctly Classified 
Rate

ROC 
Area

TCF 0.143 291.909 0.008 0.011 0.029 66% 0.519
Intercept -0.737

C1 -2 Log likelihood
Cox & Snell R 

Square
Nagelkerke R 

Square
p-value

Correctly Classified 
Rate % ROC Area

NBR 0.060 312.757 0.053 0.074 0.000 68% 0.605
Intercept -0.986
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Independent variables assessment for statistically significance:  

The features selection yielded only one attribute to be selected which is NBR that belongs 

to PC-1, this means that the multivariate model will not reach better results than 

univariate scores for NBR.  The selected attribute NBR was the best independent variable 

as fault-proneness indicator with regards to the correctly classified rate. 

Degree and direction of impact of the independent variables to fault-proneness: 

NBR is still affecting fault-proneness positively as it was in univariate model. 

Goodness-of-Fit: 

Except (-2 LL) score for NBR which was not the highest score among others, the 

multivariate model has similar behavior to univariate CSRS and NR2 where other 

variables have smaller scores which reflects even weaker representation of goodness-of-

fit. 

Classification Performance: 

This multivariate model has 0.605 as ROC area value which is higher than all other 

variables in univariate models which tells that same classification performance is 

maintained. 

For ant system: 

Table 38: Multivariate Analysis for Ant system 

 

Independent variables assessment for statistically significance:  

C1 -2 Log likelihood
Cox & Snell R 

Square
Nagelkerke 

R Square
p-value

Correctly Classified 
Rate ROC Area

CD -0.094 734.670 0.070 0.107 0.002 79% 0.577
RSI 2.535 0.000
RNR -0.451 0.707
Type-I 0.574 0.000
Intercept -0.873
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The features selection yielded four attributes to be selected which are: CD, RSI, RNR, 

and Type-1, they represent all PC groups in PCA.  The multivariate model did not reach 

better results than univariate scores, because there were three variables yielded better 

results for NBR.  The selected attribute NBR was the best independent variable as fault-

proneness indicator with regards to the correctly classified rate. 

Degree and direction of impact of the independent variables to fault-proneness: 

RNR still positively affects fault-proneness, whereas RSA still negatively affects fault-

proneness. 

Goodness-of-Fit: 

Except (-2 LL) score for NBR which was not the highest score among others, the 

multivariate model has similar behavior to univariate CSRS and NR2 where other 

variables have smaller scores which reflects even weaker representation of goodness-of-

fit. 

Classification Performance: 

This multivariate model has 0.605 as ROC area value which is higher than all other 

variables in univariate models which tells that same classification performance is 

maintained. 

For xalan system: 
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Table 39: Multivariate Analysis for Xalan system 

 

Independent variables assessment for statistically significance:  

The features selection yielded six attributes to be selected which are: NBR, RSA, CVR, 

RNR, Inter-class, and Type-2, again these metrics belong to all types of PC groups in 

PCA.  The multivariate model produced better results for correctly classified rate than all 

univariate variables scores.  The selected attributes are also statistically significant fault-

proneness indicators. 

Degree and direction of impact of the independent variables to fault-proneness: 

RSA still positively affects fault-proneness, whereas NBR, CVR, RNR, Inter-class and 

Type-2 still negatively affect fault-proneness. 

Goodness-of-Fit: 

The multivariate model has relatively better behavior when compare to univariate 

variables, especially Cox & Snell R Square and NR2 where the multivariate model has 

significant improvement over univariate models, NR2  value (0.213) which indicates 

much better representation of goodness-of-fit. 

Classification Performance: 

C1 -2 Log likelihood
Cox & Snell 

R Square
Nagelkerke 

R Square
p-value

Correctly Classified 
Rate % ROC Area

NBR -0.117 1057.561a 0.160 0.213 0.000 67% 0.726
RSA 3.470 0.000
CVR -0.311 0.000
RNR -2.263 0.000
Inter-class -0.328 0.000
Type-II -0.126 0.000
Intercept 2.408
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This multivariate model has 0.726 as ROC area value which is acceptable and higher than 

any ROC area values in univariate models, which tells that classification performance is 

much better for the multivariate model. 

For camel system: 

Table 40: Multivariate Analysis for Camel system 

 

Independent variables assessment for statistically significance:  

The features selection yielded two attributes to be selected which are: RSI, and Type-3, 

both of the metrics belong to PC-2.  The multivariate model produced no better than the 

highest correctly classified rate for any univariate models.  Only RSI from the selected 

features is statistically significant fault-proneness indicator. 

Degree and direction of impact of the independent variables to fault-proneness: 

RSI and Type-3 still negatively affect fault-proneness as they were in univariate models. 

Goodness-of-Fit: 

The multivariate model has maintained almost the same behavior as the best of univariate 

models, this applies to Cox & Snell R Square and NR2 where the multivariate model has 

slight improvement over univariate models, NR2  value (0.034) which indicates weak 

goodness-of-fit. 

Classification Performance: 

C1 -2 Log likelihood
Cox & Snell R 

Square
Nagelkerke 

R Square
p-value

Correctly Classified 
Rate % ROC Area

RSI -3.062 918.222 0.021 0.034 0.000 80% 0.522
Type-III -0.040 0.574
Intercept 1.484
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This multivariate model has (0.522) as ROC area value which indicates poor 

classification performance.  This value was slightly less than the best ROC value of the 

univariate models. 

For comprehensive collection: 

Table 41: Multivariate Analysis for Comprehensive system 

 

Independent variables assessment for statistically significance:  

The features selection yielded three attributes to be selected which are: TCF, RSA, and 

CVR, the multivariate model produced almost the same results for correctly classified 

rate as the best value of univariate models.  The selected attributes are statistically 

significant fault-proneness indicators. 

Degree and direction of impact of the independent variables to fault-proneness: 

RSA still negatively affects fault-proneness, whereas TCF, and CVR still positively 

affect fault-proneness. 

Goodness-of-Fit: 

The multivariate model has relatively better behavior when compare to univariate 

variables, especially Cox & Snell R Square and NR2 where the multivariate model has 

significant improvement over univariate models, NR2  value (0.049) which indicates 

slightly better representation of goodness-of-fit. 

Classification Performance: 

C1 -2 Log likelihood
Cox & Snell R 

Square
Nagelkerke 

R Square
p-value

Correctly Classified 
Rate % ROC Area

TCF     0.169 3633.108 0.034 0.049 0.000 70% 0.609
RSA -0.293 0.000
CVR 0.236 0.000
Intercept -1.006
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This multivariate model has 0.609 as ROC area value which is fair and higher than any 

ROC area values in univariate models, which tells that classification performance is 

better for the multivariate model. 

4.7.1 Validation of Fault-Proneness Prediction Model 

A cross-validation has been used to minimize the chance of getting a very good-fit of the 

explanatory model with high accuracy, as this is considered to be a threat to validity of 

the model.  Hence, all the five subject systems are combined in one data set, and each 

time one system will be left out to build the model and tested against the system that was 

left out.  The approach of using leave-one-out in building the model will help in 

generalizing the results and moving away from being biased to the small data set. 

Table 42: Correct classification rate for training data and Cross-Validation Data 

 
Keys: Numbers in Bold indicate the best value among others.  
Training Data:  model is built over data training being part of the same data set. 
Cross-V: model is built over data set based on cross-validation leave-one-out approach 
  

Training Data Cross-V
velocity 65.94% 73.03%
synapse 67.97% 72.88%
ant 79.08% 70.76%
xalan 66.63% 76.08%
camel 80.00% 70%
Avg. 71.92% 72.52%

Correctly Classified Rate
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Table 43: ROC Area for training data and Cross-Validation Data 

 
Keys: Numbers in Bold indicate the best value among others.  
Training Data:  model is built over data training being part of the same data set. 
Cross-V: model is built over data set based on cross-validation leave-one-out approach 

The above two tables shows the comparisons between the results of the multivariate 

models when the training data used within the same system and when cross validation 

leave-one-out is used.  In both accuracy measures, namely correctly classified rate and 

ROC area the all average were for the advantage of the models that were built using the 

cross-validation.  These results give higher confident in the regression model evaluation 

in being more realistic by using cross-validation. 

4.7.2 Comparisons of Code Clones Metrics and C&K Metrics in Predicting 

Fault-Proneness 

The comparisons between code clone metrics suite, C&K suite, and both combined in a 

single suite.  All suites are analyzed from different perspectives, namely goodness-of-fit, 

correct classified rate, and ROC area.  In general, the results are showing that the 

combined suite of clone metrics and C&K has better scores in all three perspectives than 

either clone metrics or the C&K metrics individually.  Starting with goodness-of-fit, the 

following table shows the scores for all the three suites against the five subject systems: 

Training Data Cross-V
velocity 0.519 0.644
synapse 0.605 0.614
ant 0.577 0.621
xalan 0.726 0.584
camel 0.522 0.649
Avg. 0.5898 0.6224

ROC Area
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Table 44: Multivariate Analysis - (Goodness-of-fit) 

Keys: Numbers in Bold indicate the best value among others.  
Both:  model is built over some selected attributes of both the clone and C&K metrics  
CLN: model is built over some selected attributes of the clone metrics only.  
C&K: model is built over some selected attributes of the C&K metrics only. 
 
It is clear that the combined suite is giving better prediction models than the individual 

suites.  This applies to -2 Log Likelihood, Cox & Snell R Square and Nagelkerke R 

Square values.  Similarly, C&K models are performing better than clone models. 

For the corrected classified rate which is used as accuracy measure, the generated models 

had some variations in the behavior, but in general, the overall average was for the sake 

of clone metrics.  The clone metrics had better correctly rate than other models in 3 

subject systems in addition to the average of all systems.  It was found that for one 

system out of five, the combined suite of metrics was performing better than other 

models.  On the other hand, the clone suite is performing better than the rest for three 

systems, whereas two systems the C&K suite was performing better than the remaining 

suites.  More details are in the following table in addition to the histogram: 

Both CLN C&K Both CLN C&K Both CLN C&K
velocity 3051.544 3179.741 3167.081 0.130 0.090 0.093 0.184 0.127 0.132
synapse 3047.683 3174.547 3154.646 0.122 0.082 0.088 0.173 0.116 0.124
Ant 2608.390 2719.549 2727.127 0.126 0.083 0.079 0.175 0.116 0.110
Xalan 2120.714 2325.392 2122.386 0.112 0.025 0.111 0.168 0.038 0.167
camel 2392.909 2512.682 2487.452 0.147 0.097 0.108 0.203 0.134 0.149
Avg. 2644.248 2782.382 2731.738 0.127 0.075 0.096 0.180 0.106 0.136

-2 Log likelihood Cox & Snell R Square Nagelkerke R Square
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Table 45: Multivariate Analysis - (Correctly Classified Rate) 

  
Keys: Numbers in Bold indicate the best value among others.  
Both:  model is built over some selected attributes of both the clone and C&K metrics  
CLN: model is built over some selected attributes of the clone metrics only.  
C&K: model is built over some selected attributes of the C&K metrics only. 

 

 

Figure 14: Histogram of Correctly Classified Rate in Multivariate Analysis 

The other perspective is the ROC area, the observation for ROC area regarding the 

inconsistent behavior.  This is the case with the combined suite, it gives the best model on 

average among the rest of suites.  However, the clone metrics suite was the best for the 

Both CLN C&K
velocity 66.81% 73.03% 66.81%
synapse 71.09% 72.88% 70.70%
ant 78.95% 70.76% 81.11%
xalan 59.31% 76.08% 59.66%
camel 78% 70% 78%
Avg. 70.87% 72.52% 71.33%

Correctly Classified Rate
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camel system, whereas C&K metrics suite was the best for two subject systems.  Further 

details are in the following table: 

Table 46: Multivariate Analysis - (ROC Area) 

  
Keys: Numbers in Bold indicate the best value among others.  
Both:  model is built over some selected attributes of both the clone and C&K metrics  
CLN: model is built over some selected attributes of the clone metrics only.  
C&K: model is built over some selected attributes of the C&K metrics only. 
 
The ROC curves are showing the performance of each suite in comparison with respect to 

others as listed below: 

 

 

Figure 15: Multivariate Analysis - ROC Curve for Velocity 

Both CLN C&K
velocity 0.684 0.644 0.708
synapse 0.751 0.614 0.762
Ant 0.787 0.621 0.798
Xalan 0.690 0.584 0.605
camel 0.631 0.649 0.636
Avg. 0.709 0.622 0.702

ROC Area
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Figure 16: Multivariate Analysis - ROC Curve for Synapse 
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Figure 17: Multivariate Analysis - ROC Curve for Ant 

 

 

 

Figure 18: Multivariate Analysis - ROC Curve for Xalan 
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Figure 19: Multivariate Analysis - ROC Curve for Camel 

 

As the observed results show that the ROC curve for multivariate models based on C&K 

metrics are performing better than multivariate models of clone metrics in average and in 

four out five subject systems as well.  Similarly, we can see also the behavior of the 

multivariate models of combined metrics suite, it is better than multivariate models of 

clone metrics in average and in four out five subject systems as well.  For the comparison 

of ROC behavior between multivariate models of C&K and the combined suite of 

metrics, there were no consistent results to judge which is better in general, because the 

average of the results was for the sake of the combined suite.  However, four out the five 

subject systems were C&K models performing better than the combined suite models.  

We conclude the following with respect to the hypotheses, we accept the null hypothesis 

of HYP-C, and we reject the null hypothesis HYP-D.  For the HYP-E, we don’t have a 

clear evidence to accept or to reject the null hypothesis. 
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4.7.3 Comparisons of Regression models of Code Clones Metrics and Neural 

Network Models in Predicting Fault-Proneness 

Although, basic classifiers such as logistic regression gives similar results to more 

sophisticated classifiers [51], it could be different for code clones when incorporated with 

ANN prediction models.  The Neural Network (NN) models that are used in this study is 

Multi-Layer Perceptron (MLP) model.  MLP is an artificial neural network of type feed-

forward that use back-propagation as supervised learning technique [63].  The results of 

regressions are compared with MLP models results.  After generating the MLP models 

with code clones metrics as inputs, slight differences are exist for the advantage of MLP 

models regarding the correctly classified rate and also for ROC area as can be seen in the 

following two tables: 

   

The ANN models are better in four subject systems with regard to correctly classified 

rate, yet the fifth subject system that the regression model was performing better, the 

difference is very marginal.  Moreover, for the ROC area ANN models scored better in 

four subject systems and again, the fifth subject system that regression models performed 

better, the difference in ROC value is very small.  Hence, using code clones metrics as 

inputs to artificial neural networks will probably enhance fault-proneness prediction. 

Regression NN:MLP
velocity 73.03% 74.28%
synapse 72.88% 73.38%
Ant 70.76% 70.59%
Xalan 76.08% 76.40%
camel 70% 71.63%
Avg. 72.52% 73.26%

Correctly Classified Rate
Regression NN:MLP

velocity 0.644 0.645
synapse 0.614 0.632
Ant 0.621 0.627
Xalan 0.584 0.580
camel 0.649 0.667
Avg. 0.622 0.630

ROC Area
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4.8 Threats to validity 

In this section, threats to validity will be discussed from four perspectives, namely threats 

to construct validity, threats to internal validity, threats to statistical conclusion validity, 

and threats to external validity. 

4.8.1 Construct Validity 

We have used fault-proneness and fault-density as attributes lead to functional 

correctness and leaving away the third dimension which is fault severity.  But our main 

focus of this study is to explore the implication of a class to be faulty when it contains a 

clone not to measure its severity.  Another threat to construct validity is when we have 

measured types of clones based on location.  We have looked at the clone whether it is 

inside the class or outside.  We didn’t consider where it is outside, it could be in the same 

component and it could be in another component.  The focus of this study is on class 

level so this has minimized the effects of ignoring specific location of the clone outside 

the studied class. 

4.8.2 Internal Validity 

In this empirical study, two threats to internal validity have been identified.  First, all of 

the faults information is gathered from another study where we relied on the accuracy 

they yielded [50].  Second, CCFinder was used exclusively to detect clones out of the 

five subject systems which might affect the results.  This threat was eliminated by having 

a manual inspection of the reported clones and then number of clones was corrected by 

removing false positive results. 
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4.8.3 Statistical Conclusion Validity 

In this research, we have done several statistical tests as part of our empirical studies of 

impact of code cloning on fault-proneness and fault-density of object-oriented classes.  

Thus, we have the following elements as threats to conclusion validity [64].  First, we 

might have an error in our answers to the null hypotheses, such as rejecting the null 

hypothesis where accepting the null hypothesis is the correct answer.  Second, we might 

accept a null hypothesis that should be rejected which is the correct answer.  In order to 

minimize the threats of statistical conclusion validity, the statistical power has to be 

increased [65-67].  As we tried to increase the mentioned statistical power by 

incorporating the following ways: First, we have increased the sample size of the 

experiment which increases the precision of estimate to dependent variables [68].  

Second, we have included only the factors that are directly related to our questions in 

order to answer the null hypotheses [69].   

4.8.4 External Validity 

This study has five external threats to validity.  First, all the subject systems are coming 

from a sole source which is Apache organization, other organizations could have 

different standard of coding and faults reporting which might affect the results.  Second, 

all of the subject systems are open source systems, which don’t represent all other 

spectrums of software industrials.  Third, all of the subject systems are written in Java, 

which other languages could have different behavior as LOC and inheritance play an 

important role in supplying metrics with different values from what Java systems 

provides like python and C++.  Fourth, the selected subject systems are ranged from quite 

small to relatively medium size, but we believe that the diversity of systems sizes is 



 

95 
 

giving us higher confidence that the subject systems are biased to a particular tier of 

systems size.  Fifth, the level of experience of the developers and domain knowledge of 

the software are important aspects that might influence number of faults or clones in the 

subject systems, but having five subject systems from different domains and sizes will 

minimize the effects of the mentioned factors.  
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CHAPTER 5 EMPIRICAL STUDY OF SOFTWARE 
CLONES AND FAULT-DENSITY 

Fault density is represented by a derived metric from normalizing the number of bugs per 

1K line of code (LOC).  Both faults and LOC were collected from published study results 

[41].  We used linear regression to model the usefulness of using clone metrics as 

predictors of fault density. 

5.1 Goal and Research Questions:  

The goal of this empirical experiment is to analyze code clone metrics for the purpose of 

exploring relationships with respect to class fault-density from software developer’s 

perspective in the context of object-oriented open source systems. 

In this part of the study, the following research questions are the motivation of the 

research: 

F. Are there relationships between code clones and fault density of object-oriented 

classes? 

For this question three hypotheses were constructed: 

HYP-F1:  

H0: There is no relationship between code clones and fault density of object-oriented 

classes 

H1: There is a relationship between code clones and fault density of object-oriented 

classes 

HYP-F2:  
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H0: There is no relationship between clone types and fault density 

H1: There is a relationship between clone types and fault density 

HYP-F3:  

H0: There is no relationship between clone location and fault density 

H1: There is a relationship between clone location and fault density 

G. Are clone metrics good indicators of fault density? 

For this question we have 13 hypothesis: 

HYP-G1:  

H0: number of clone fragments is not a good indicator of fault density 

H1: number of clone fragments is a good indicator of fault density 

HYP-G2:  

H0: clone density is not a good indicator of fault density 

H1: clone density is a good indicator of fault density 

HYP-G3:  

H0: CRFL is not a good indicator of fault density 

H1: CRFL is a good indicator of fault density 

HYP-G4:  

H0: NBR is not a good indicator of fault density 
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H1: NBR is a good indicator of fault density 

HYP-G5:  

H0: RSA is not a good indicator of fault density 

H1: RSA is a good indicator of fault density 

HYP-G6:  

H0: RSI is not a good indicator of fault density 

H1: RSI is a good indicator of fault density 

HYP-G7:  

H0: CVR is not a good indicator of fault density 

H1: CVR is a good indicator of fault density 

HYP-G8:  

H0: RNR is not a good indicator of fault density 

H1: RNR is a good indicator of fault density 

HYP-G9:  

H0: Inter-class clone is not a good indicator of fault density 

H1: Inter-class clone is a good indicator of fault density 

HYP-G10:  
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H0: Intra-class clone is not a good indicator of fault density 

H1: Intra-class clone is a good indicator of fault density 

HYP-G11:  

H0: Type-1 clone is not a good indicator of fault density 

H1: Type-1 clone is a good indicator of fault density 

HYP-G12:  

H0: Type-2 clone is not a good indicator of fault density 

H1: Type-2 clone is a good indicator of fault density 

HYP-G13:  

H0: Type-3 clone is not a good indicator of fault density 

H1: Type-3 clone is a good indicator of fault density 

 

H. Do clone metrics have better fault density prediction than C&K metrics? 

HYP-H: 

H0: Clone metrics are not better predictors of fault density than C&K metrics 

H1: Clone metrics are better predictors of fault density than C&K metrics 

I. Does the combination of clone metrics and C&K metrics as input in prediction models of 

fault density yield better results than clone metrics? 
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HYP-I: 

H0: The combination of clone metrics and C&K metrics as input in prediction models of 

fault density does not yield better results than clone metrics only 

H1: The combination of clone metrics and C&K metrics as input in prediction models of 

fault density yields better results than clone metrics only 

J. Does the combination of clone metrics and C&K metrics as input in prediction models of 

fault density yield better results than C&K metrics? 

HYP-J: 

H0: The combination of clone metrics and C&K metrics as input in prediction models of 

fault density does not yield better results than C&K metrics only 

H1: The combination of clone metrics and C&K metrics as input in prediction models of 

fault density yields better results than C&K metrics only 

5.2 Descriptive Statistics 

After generating some statistics of subject systems such as Min, Max, Mean, and 

Standard Deviation, we found some general observations of these subject systems.  As 

discussed in sec. 4.3, for distributed faults over classes, similarly, in this section we shed 

some lights on fault-density statistics.  As fault-density has non-discrete scale, some box-

plots have been generated to describe the distribution of fault-density in subject systems 

classes.   
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The following graphs (box-plots) show statistics of subject systems in addition to the 

auxiliary system (combining all subject systems into one): 

Fault-Density for Velocity System: 

Fault-Density for Velocity System
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Figure 20: Box-Plot of Fault-Density for Velocity System 

Fault-Density for Synapse system: 
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Fault-Density for Synapse System
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Figure 21: Box-Plot of Fault-Density for Synapse System 

Fault-Density for Ant System: 
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Figure 22: Box-Plot of Fault-Density for Ant System 

Fault-Density for Xalan System: 
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Fault-Density for Xalan System
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Figure 23: Box-Plot of Fault-Density for Xalan System 

Fault-Density for Camel System: 

Fault-Density for Camel System
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Figure 24: Box-Plot of Fault-Density for Camel System 
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Fault-Density for Comprehensive System: 

Fault-Density for Comprehensive System
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Figure 25: Box-Plot of Fault-Density for Comprehensive System 

 

Observations: 

As opposite to fault-proneness, classes without clones have higher fault-density than 

classes with clones. 

After investigating the input data, the average size of classes that have clones are almost 

double the size of classes that don’t have clones. 

Some of the classes that are faulty are very small in size as line of code, which will 

increase the fault-density in that class. 

The class size when it contains clone/s usually is not tiny class as per lines of code; it 

makes sense as clones needed when a class requires multiple features that are similar. 
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The following table shows the average LOC for the subject systems in both cases: 

 

The collected clone metrics that are based on types and location have been analyzed from 

fault-density perspective.  Based on each type, the ratios of faulty classes were generated. 

To Sum up, fault-density behavior didn’t match with fault-proneness behavior in the case 

when classes that contain clones were more fault-proneness, but apparently less fault-

density.  Therefore, we cannot judge that there is a direct relationship between fault-

density and fault-proneness. 

5.3 Principal Component Analysis 

Principal component analysis for the subject systems is discussed in details in (sec. 4.4). 

5.4 Mann-Whitney Test 

In this section, Mann-Whitney test is used to help in answering the question of having a 

relationship (if any) between code clones and fault-density.  Mann-Whitney test is a non-

parametric test that gives cumulative probabilities of certain null hypothesis by 

measuring the sum of the ranked two-sample data [50].  The software used to conduct 

Mann-Whitney tests is STATISTICA software package.  The readings of Mann-Whitney 

tests are summarized in below tables: 

Mann-Whitney test for general clones including all types: 

no-clones with-clones no-clones with-clones no-clones with-clones no-clones with-clones no-clones with-clones no-clones with-clones
Avg. LOC 230.92 304.70 104.02 313.95 160.37 471.20 189.27 833.67 86.76 261.08 142.08 541.39

comprehensivevelocity synapse ant xalan camel
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As we can see in the above table, numbers in bold highlight significant figures whereby 

velocity and camel systems’ p-values are more than 0.05, which is similar to the results 

of fault-proneness in sec. 4.5 .  However, the general trend as it is clear in the following 

box-plots: Figure 20, Figure 21, Figure 22, Figure 23, Figure 24, and Figure 25, show that 

there are inconsistent results of code clones and fault-density.  This means that where in 

some systems, the difference is significant, the box-plot shows the fault-density of classes 

with no-clones have higher fault-density.  So, we don’t have clear evidence to accept or 

reject the null hypothesis of HYP-F1. 

To answer question Q.F-2, Mann-Whitney test for all systems were conducted and 

presented below based on clone location, namely inter-clone, intra-clone, and hybrid-

clone. 

Mann-Whitney test for clone locations whether inter clones or intra clones: 

Table 47: Mann-Whitney Test Result-Fault-Density Based on Clones Location for Velocity 

 

Fault-Density p-level
velocity 0.54096
synapse 0.00478
ant 0.0002
xalan 0.04647
camel 0.64963
comprehensive 0

Glossary B:
Velocity
inter-VS-intra A B C D
A
B 0.884679
C 0.778884 0.668336
D 0.306627 0.393789 0.980535

A: InterOnly B: IntraOnly C: Inter&Intra D: Has No Clones
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Mann-Whitney test shows that there is no significant difference among individual groups 

of data.  This cannot lead us to any conclusion for clone location relationship with fault-

density.  Another visit to the box-plot for fault distribution over the clone location groups 

will give more information that will help us in reaching a conclusion. 

Fault-Density for Velocity Based on Location
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Figure 26: Box-Plot of Fault-Density Based on Location for Velocity System 

From the above box-plot, it shows that not only there is no significant difference from the 

Mann-Whitney test, but also the fault-density in the classes with no-clones are higher 

than classes with clones regardless of location.  The summary in [Table 59] has a generic 

view of the test results with the context of all subject systems in this study.  
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Table 48: Mann-Whitney Test Result-Fault-Density Based on Clones Location for Synapse 

 

Mann-Whitney test shows that there are significant differences between inter-clones and 

the group of no-clones, similarly between intra-clones and no-clones group.  This 

observation alone cannot lead us to any conclusion to judge if there is a relationship 

between clone locations with fault-density.  Another visit to the box-plot for fault 

distribution over the clone location groups will provide more information that will help 

us in reaching a conclusion. 

 

 

Glossary B:
Synapse
inter-VS-intra A B C D
A
B 0.940214
C 0.078206 0.121719
D 0.00266 0.049733 0.617308

A: InterOnly B: IntraOnly C: Inter&Intra D: Has No Clones



 

109 
 

Fault-Density for Synapse Based on Location
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Figure 27: Box-Plot of Fault-Density Based on Location for Synapse System 

From the p-values above, there are some significant differences between clones based on 

location groups of data with respect to fault-density.  However, the box-plot of the system 

shows the classes that have inter-clones, intra-clones and hybrid-clones are less fault-

density than classes without clones.  The summary in [Table 59] has a generic view of the 

test results with the context of all subject systems in this study. 

Table 49: Mann-Whitney Test Result-Fault-Density Based on Clones Location for Ant 

 

Glossary B:
Ant
inter-VS-intra A B C D
A
B 0.003809
C 0.017493 0.59593
D 0.173831 0.000018 0.000159

A: InterOnly B: IntraOnly C: Inter&Intra D: Has No Clones
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Mann-Whitney test shows that there are significant differences between inter-clones and 

the group of intra-clones, similarly between inter-clones and hybrid-clones.  The same 

applies to intra-clones and no-clones group whereby the difference is significant.  Data 

groups of hybrid-clones and no-clones group have also a significant difference such that 

the no-clones data group has higher fault-density than classes with hybrid-clones.  These 

observations alone cannot lead us to any conclusion to judge if there is a relationship 

between clone locations with fault-density.  Another visit to the box-plot for fault 

distribution over the clone location groups will provide more information that will help 

us in reaching a conclusion. 

Fault-Density for Ant Based on Location
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Figure 28: Box-Plot of Fault-Density Based on Location for Ant System 
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From the p-values above, there are some significant differences between clones based on 

location groups of data with respect to fault-density.  However, the box-plot of the system 

shows the classes that have inter-clones, intra-clones and hybrid-clones are always less 

fault-density than classes without clones.  The summary in [Table 59] has a generic view 

of the test results with the context of all subject systems in this study. 

Table 50: Mann-Whitney Test Result-Fault-Density Based on Clones Location for Xalan 

 

Mann-Whitney test shows that there are significant differences between hybrid-clones 

and the group of no-clones.  This observation alone cannot lead us to any conclusion to 

judge if there is a relationship between clone locations with fault-density.  Another visit 

to the box-plot for fault distribution over the clone location groups will provide more 

information that will help us in reaching a conclusion. 

 

Glossary B:
Xalan
inter-VS-intra A B C D
A
B 0.847402
C 0.074757 0.161262
D 0.195961 0.395867 0.023198

A: InterOnly B: IntraOnly C: Inter&Intra D: Has No Clones
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Fault-Density for Xalan Based on Location
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Figure 29: Box-Plot of Fault-Density Based on Location for Xalan System 

From the p-values above, there is a significant difference between hybrid-clones and the 

group of no-clones with respect to fault-density.  However, the box-plot of the system 

shows the classes that have inter-clones, intra-clones and hybrid-clones are less fault-

density than classes without clones.  The summary in [Table 59] has a generic view of the 

test results with context of all subject systems in this study. 

Table 51: Mann-Whitney Test Result-Fault-Density Based on Clones Location for Camel 

 

Glossary B:
Camel
inter-VS-intra A B C D
A
B 0.002939
C 0.689805 0.209724
D 0.353864 0.005785 0.953129

A: InterOnly B: IntraOnly C: Inter&Intra D: Has No Clones
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Mann-Whitney test shows that there are significant differences between inter-clones and 

the group of intra-clones.  Similarly between intra-clones and the group of no-clones.  

This observation alone cannot lead us to any conclusion to judge if there is a relationship 

between clone locations with fault-density.  Another visit to the box-plot for fault 

distribution over the clone location groups will provide more information that will help 

us in reaching a conclusion. 

 

Fault-Density for Camel Based on Location
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Figure 30: Box-Plot of Fault-Density Based on Location for Camel System 

From the p-values above, there is a significant difference between inter-clones and the 

group of intra-clones with respect to fault-density, in addition to the pair between intra-

clones and the group of no-clones.  However, the box-plot of the system shows that 

classes that have inter-clones, intra-clones and hybrid-clones are less fault-density than 
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classes without clones.  The summary in [Table 59] has a generic view of the test results 

with context of all subject systems in this study. 

Table 52: Mann-Whitney Test Result-Fault-Density Based on Clones Location for Comprehensive 

 

Mann-Whitney test shows that there are significant differences between inter-clones, 

intra-clones, and hybrid-clones each against the group of no-clones.  These observations 

alone cannot lead us to any conclusion to judge if there is a relationship between clone 

locations with fault-density.  Another visit to the box-plot for fault distribution over the 

clone location groups will provide more information that will help us in reaching a 

conclusion. 

 

Glossary B:
total
inter-VS-intra A B C D
A
B 0.077424
C 0.073267 0.937621
D 0.000033 0.000005 0.000001

A: InterOnly B: IntraOnly C: Inter&Intra D: Has No Clones
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Fault-Density for Comprehensive Based on Location
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Figure 31: Box-Plot of Fault-Density Based on Location for Comprehensive System 

From the p-values above, there is a significant difference between inter-clones, intra-

clones, and hybrid-clones each against the group of no-clones.  Similar to other subject 

systems, the box-plot of the comprehensive system shows classes that have inter-clones, 

intra-clones and hybrid-clones are less fault-density than classes without clones.  The 

summary in [Table 59] has a generic view of the test results with context of all subject 

systems in this study. 

Mann-Whitney test for clones based on types: 

Velocity: 
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Table 53: Mann-Whitney Test Result-Fault-Density Based on Clones Types for Velocity 

 

Similar to location based clones, Mann-Whitney test shows that there is no significant 

difference among the individual groups of data.  This cannot lead us to any conclusion for 

clone based on type relationships with fault-density.  Another visit to the histogram for 

fault distribution over the clone type groups will give more information that will help us 

in reaching a conclusion. 

A: B: C: D: E: F: G: H: 
Type-I Type-II Type-III  Type-I&II Type-I&III Type-II&III Type-I&II&III Has No Clones

cloneTypes A B C D E F G H
A
B 0.338635
C 0.572615 0.77156
D 0.338635 0.84889 0.846523
E 1 1 1 1
F 0.25356 0.599846 0.569204 0.599846 1
G 1 1 1 1 1 1
H 0.311663 0.845386 0.965223 0.86068 1 0.617445 1

Glossary A:
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Fault-Density Distribution of Velocity Based on Clone Types
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Figure 32: Box-Plot of Fault-Density Based on Type for Velocity System 

From the p-values above, there is no significant difference between clones based on types 

with respect to fault-density.  However, the box-plot of the system shows that all clone 

types in the classes are less fault-density than classes without clones.  The summary in 

Table 60 has a generic view of the test results with the context of all subject systems in 

this study. 

Synapse: 
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Table 54: Mann-Whitney Test Result-Fault-Density Based on Clones Types for Synapse 

  

Mann-Whitney test shows that there are significant differences among some of the 

individual groups of data such as Type-1 and Type-3, similarly Type2 and Type-3.  

Additionally, three groups have significant differences between them.  These 

observations might not lead us to any conclusion for clones based on type relationships 

with fault-density.  Another visit to the box-plot for fault distribution over the clone type 

groups will give more information that will help us in reaching a conclusion. 

 

A: B: C: D: E: F: G: H: 
Type-I Type-II Type-III  Type-I&II Type-I&III Type-II&III Type-I&II&III Has No Clones

cloneTypes A B C D E F G H
A
B 0.695297
C 0.007791 0.000181
D 0.230737 0.037091 0.306123
E 0.813012 0.881486 0.064347 0.264368
F 0.343776 0.123105 0.060884 0.510996 0.462354
G 0.117701 0.041953 0.940237 0.530621 0.24015 0.304306
H 0.0097 0.000058 0.814904 0.370551 0.078556 0.063934 0.877808

Glossary A:
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Figure 33: Box-Plot of Fault-Density Based on Type for Synapse System 

From the p-values above, there are significant differences between clones based on types 

with respect to fault-proneness.  This system in addition to other subject systems shows 

that all the data groups are less fault-density when compared with the data group of no-

clones.  The summary in [Table 60] has a generic view of the test results with context of 

all subject systems in this study. 

Ant: 
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Table 55: Mann-Whitney Test Result-Fault-Density Based on Clones Types for Ant 

 

Mann-Whitney test shows that there are significant differences among some of the 

individual groups of data such as Type-3 and no-clones, similarly Type-1&3 and no-

clones.  These observations might not lead us to any conclusion for clones based on type 

relationships with fault-density.  Another visit to the box-plot for fault distribution over 

the clone types groups will give more information that will help us in reaching a 

conclusion. 

 

A: B: C: D: E: F: G: H: 
Type-I Type-II Type-III  Type-I&II Type-I&III Type-II&III Type-I&II&III Has No Clones

cloneTypes A B C D E F G H
A
B 0.863691
C 0.993175 0.816115
D 0.979041 0.867588 0.960522
E 0.237335 0.180082 0.220332 0.146619
F 0.912008 0.774179 0.887866 0.756965 0.539503
G 0.696801 0.591025 0.730616 0.620432 0.44794 0.936887
H 0.064249 0.11566 0.032302 0.083191 0.002771 0.155191 0.067196

Glossary A:
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Figure 34: Box-Plot of Fault-Density Based on Type for Ant System 

From the p-values above, there are significant differences between clones based on types 

with respect to fault-proneness.  This system in addition to other subject systems 

continues the same behavior with respect to fault-density distribution.  All the data 

groups are less fault-density when compared with the data group of no-clones.  The 

summary in [Table 60] has a generic view of the test results with context of all subject 

systems in this study. 

Xalan: 
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Table 56: Mann-Whitney Test Result-Fault-Density Based on Clones Types for Xalan 

 

Mann-Whitney test shows that there are significant differences among some of the 

individual groups of data such as Type-1, Type-2, Type-3, Type-1&2 against Type-1&3.  

Type1&2, Type-1&3 and Type-1&2&3 against no-clones group.  This might not lead us 

to any conclusion about relationships between clone types and fault-density.  Another 

visit to the box-plot of the system for fault distribution over the clone types groups will 

give more information that will help us in reaching a conclusion. 

 

A: B: C: D: E: F: G: H: 
Type-I Type-II Type-III  Type-I&II Type-I&III Type-II&III Type-I&II&III Has No Clones

cloneTypes A B C D E F G H
A
B 0.105281
C 0.75533 0.183597
D 0.000317 0.553636 0.009959
E 0.000508 0.040001 0.000247 0.00889
F 0.029442 0.19507 0.032411 0.232356 0.645018
G 0.003527 0.174581 0.013374 0.072066 0.244076 0.649241
H 0.155765 0.405826 0.260517 0.000475 0.005463 0.124743 0.021507

Glossary A:
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Figure 35: Box-Plot of Fault-Density Based on Type for Xalan System 

From the p-values above, there are significant differences between clones based on types 

with respect to fault-proneness.  Similarly, this system in addition to other subject 

systems continues the same behavior with respect to fault-density distribution.  All the 

data groups are less fault-density when compared with the data group of no-clones.  The 

summary in [Table 60] has a generic view of the test results with the context of all subject 

systems in this study. 

Camel: 
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Table 57: Mann-Whitney Test Result-Fault-Density Based on Clones Types for Camel 

 

Mann-Whitney test shows that there is no significant difference among the individual 

groups of data.  All data groups have less fault-density when compared with the group of 

data of no-clones.  This cannot lead us to any conclusion for clone location relationship 

with fault-density.  Another visit to the box-plot for fault distribution over the clone 

location groups will give more information that will help us in reaching a conclusion. 

 

A: B: C: D: E: F: G: H: 
Type-I Type-II Type-III  Type-I&II Type-I&III Type-II&III Type-I&II&III Has No Clones

cloneTypes A B C D E F G H
A
B 0.203333
C 0.424845 0.051974
D 0.573016 0.250723 0.753837
E 0.857678 0.41028 0.405763 0.515296
F 0.405052 1 0.200271 0.264996 0.527079
G 0.175118 0.078984 0.236688 0.386477 0.156845 0.06789
H 0.599766 0.070484 0.661659 0.692529 0.56511 0.242631 0.233054

Glossary A:
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Figure 36: Box-Plot of Fault-Density Based on Type for Camel System 

From the p-values above, there is no significant difference between clones based on types 

with respect to fault-density.  However, the box-plot of the system shows that all clone 

types in classes are less fault-density than classes without clones.  The summary in Table 

60 has a generic view of the test results with context of all subject systems in this study. 

Total: 
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Table 58: Mann-Whitney Test Result-Fault-Density Based on Clones Types for Comprehensive System 

 

Mann-Whitney test shows that there are significant differences among some of the 

individual groups of data such as Type-1, Type-2, against Type-3, in addition to Type-1, 

Type-3 against Type-1&2.  Similar to Type-1, Type-2, Type-1&2, Type-1&3, Type-2&3 

and Type-1&2&3 against no-clones group.  This might not lead us to any conclusion 

about any relationship between clone types and fault-density. 

 

A: B: C: D: E: F: G: H: 
Type-I Type-II Type-III  Type-I&II Type-I&III Type-II&III Type-I&II&III Has No Clones

cloneTypes A B C D E F G H
A
B 0.145004
C 0.01959 0.000337
D 0.013149 0.735931 0
E 0.010316 0.168976 0.00001 0.109968
F 0.295857 0.930752 0.006878 0.98264 0.291
G 0.240978 0.985113 0.001841 0.878487 0.173412 0.800987
H 0.02011 0.000097 0.554418 0 0.000006 0.011262 0.001034

Glossary A:
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Figure 37: Box-Plot of Fault-Density Based on Type for Comprehensive System 

From the p-values above, there are significant differences between clones based on types 

with respect to fault-density.  However, the box-plot of the system shows that all clone 

types in classes have less fault-density than classes without clones.  The summary in 

[Table 60] has a generic view of the test results with the context of all subject systems in 

this study. 
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Table 59: Summary of Mann-Whitney Test for Fault-Density Based on Clone Location 

 

In the summary table [Table 59], data groups and their test results that participated in the 

Mann-Whitney test for clones based on location, were compared by fault-density.  So, 

InterOnly > Has No Clones, means the classes that contain inter-clones are more fault-

density than the classes with no-clones.  If * is associated with it, such as IntraOnly >* 

Has No Clones, it means classes that contain intra-clones are more fault-density than 

classes with no-clones and this difference is significant.   

From the summary table we observed that only three groups maintained consistent results 

across all five subject systems, namely InterOnly < no-clones, IntraOnly < no-clones and 

Inter&Intra < no-clones.  All results show they have less fault-density than the classes 

with no-clones.  IntraOnly group against no-clones group show significant differences in 

three out of five subject systems and also consolidated by the aggregated system sharing 

the same significance.  The Mann-Whitney test results of Inter&Intra against no-clones 

showed significant differences in two systems in addition to the comprehensive system in 

total.  The box-plots show a general trend across all the subject systems, that classes with 

no-clones have higher fault-density, regardless of any type location.  Similarly, no clear 

relationship between different clone location groups that is consistent for all subject 

systems. 

Velocity Synapse Ant Xalan Camel Total
A: InterOnly > > <* > <* > B: IntraOnly
A: InterOnly > > <* > > > C: Inter&Intra
A: InterOnly < <* < < < <* D: Has No Clones
B: IntraOnly < > > < > > C: Inter&Intra
B: IntraOnly < <* <* < <* <* D: Has No Clones
C: Inter&Intra < < <* <* < <* D: Has No Clones
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We observed that classes that contain intra-clones only have higher fault-density than 

classes that have hybrid-clones, this is true for all systems except for ant subject system.  

Nevertheless, the overall trend and behavior of the aggregated system support our 

interpretation that classes with hybrid-clones would probably have higher fault-density 

than classes with only intra-clones. 

This summary concludes that there is no relationship between clone location and fault-

density.  So, we accept the null hypothesis HYP-F3. 

Table 60: Summary of Mann-Whitney Test for Fault-Density Based on Clone Types 
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In the summary table [Table 60], data groups and their test results that participated in the 

Mann-Whitney test for clones based on types, were compared by fault-density.  So, Type-

1 > Type-2, means the classes that contain Type-1 clones are more fault-density than the 

classes with Type-2 clones.  If * is associated with it, such as Type-1 >* Type-2 Clones, 

it means that classes that contain Type-1 clones have higher fault-density than classes 

with Type-2 clones and this difference is significant.  From the summary table we 

observed one major finding that is consistent across all the subject systems, that all 

Velocity Synapse Ant Xalan Camel Total
A:Type-I < < < < < < B:Type-II
A:Type-I > >* > > > >* C:Type-III
A:Type-I > > > >* < >* D:Type-I&II
A:Type-I < < < <* < <* E:Type-I&III
A:Type-I > > < <* > > F:Type-II&III
A:Type-I > > > >* > > G:Type-I&II&III
A:Type-I < <* < < < <* H:Has No Clones
B:Type-II > >* > > > >* C:Type-III
B:Type-II > >* > > > > D:Type-I&II
B:Type-II < < > <* > < E:Type-I&III
B:Type-II > > < < > > F:Type-II&III
B:Type-II > >* > > > > G:Type-I&II&III
B:Type-II < <* < < < <* H:Has No Clones
C:Type-III > > < >* < >* D:Type-I&II
C:Type-III < < < <* < <* E:Type-I&III
C:Type-III > > < <* < <* F:Type-II&III
C:Type-III > > > <* > >* G:Type-I&II&III
C:Type-III < < <* < < < H:Has No Clones
D:Type-I&II < < < <* > < E:Type-I&III
D:Type-I&II > > < < > < F:Type-II&III
D:Type-I&II > > < < > > G:Type-I&II&III
D:Type-I&II < < < <* < <* H:Has No Clones
E:Type-I&III > > < < > > F:Type-II&III
E:Type-I&III > > > > > > G:Type-I&II&III
E:Type-I&III < < <* <* < <* H:Has No Clones
F:Type-II&III > > > > > > G:Type-I&II&III
F:Type-II&III < < < < < <* H:Has No Clones
G:Type-I&II&III < < < < < <* H:Has No Clones
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classes that have no-clones have higher fault-density than classes that contain clones 

regardless of type or location.  The following data groups have consistent results 

regarding fault-density in all five subject systems in addition to the aggregated system: 

Type-I < Type-II, Type-I > Type-III, Type-I < Type-I&III, Type-I > Type-I&2&3, Type-

II > Type-III, Type-II > Type-I&II, Type-II > Type-I&II&III.  Type-III < Type-I&III, 

Type-I&III > Type-I&II&III and Type-II&III < Type-I&II&III.  Significance of the 

differences resulted of Mann-Whitney test for fault-density was not dominant within the 

results as can be seen from the summary table.  Only Type-I&III <* no-clones was 

significant in two systems out of five but consolidated by the aggregated system that 

contain all subject systems in one.  These findings conclude that there are relationships 

between clone types and fault-density.  So, we accept the null hypothesis HYP-F2. 

5.5 Univariate Analysis 

For the five subject systems, univariate regression models for the fault-density variable 

were created.  The goal of univariate analysis is to find out if code clones metrics are 

good indicators of fault- density.  A summary of the results is shown in tabular format for 

each subject system.  The following approach was followed during univariate analysis for 

all the systems: 

• The univariate models were assessed if they were statistically significant for all 

variables.  This was achieved through checking p-value of correlation results. 

• Degree and direction of impact of independent variables were measured against 

fault- density, which measure the direction of increase/ decrease of fault-density if 

metric value was increased/ decreased. 
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• Univariate models were checked for goodness-of-fit using two measures.  R Square 

(R2): it is a measure that shows how close/far the variation values of the response 

data to fitted regression models are.  It explains the goodness-of-fit of the model, 

where a higher value means better goodness-of-fit of the model.  The range of values 

is: 0% - 100%.  Adjusted R Square (AR2): it is also a statistical measure that adjusts 

R-squared value relatively to the number of data inputs.  Adjusted R-squared is 

always less than R-square, where a high value of AR2 means that the model fits well.  

0% - 100%. (Note: AR2 can be negative) 

• The prediction performance of these univariate models was evaluated.  Three 

statistical measurements were used to describe the prediction performance, namely 

Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Standard 

Deviation of Absolute Error (SDAE).   

For velocity system, as shown below: 

Table 61: Univariate Analysis for Fault-Density of Velocity System 

 

Independent variables assessment for statistically significance:  

From the above table, NBR and Inter-class showed significant indicators of fault-density.  

However, TCF, RSA, CVR, CRFL, CD, RSI, RNR, Intra, Type-1, Type-2 and Type-3 are 

C0 C1 R Square
Adjusted R 

Square
p-value

Mean absolute 
error

Root mean 
squared error

St.Dev 
absolute error

TCF 14.599 -3.006 0.007 0.003 0.520 20.064 46.891 42.474
CD 14.926 -0.729 0.095 0.009 0.648 19.971 46.917 42.547
CRFL 13.616 -1.493 0.003 -0.002 0.330 20.016 46.920 42.529
NBR 14.239 -4.642 0.005 0.000 0.035 20.001 46.842 42.450
RSA 14.320 -15.788 0.006 0.001 0.054 19.908 46.817 42.466
RSI 14.113 -23.418 0.006 0.001 0.342 19.889 46.833 42.493
CVR 15.393 -19.504 0.011 0.007 0.563 20.045 46.786 42.367
RNR -20.415 36.348 0.007 0.003 0.652 20.198 46.917 42.439
Inter-clones 14.476 -6.103 0.006 0.001 0.030 19.970 46.825 42.445
Intra-clones 13.661 -2.138 0.003 -0.001 0.138 20.032 46.953 42.558
Type-1 14.281 -5.808 0.005 0.001 0.101 19.941 46.846 42.483
Type-2 13.780 -4.827 0.004 -0.001 0.530 19.852 46.867 42.548
Type-3 13.587 -3.427 0.002 -0.002 0.928 20.048 46.956 42.554
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non-significant fault- density indicators.  Based on these results, the following can be 

observed: 

Degree and direction of impact of the independent variables to fault-density: 

From the table, the coefficients C1 show the direction of impact whereas the independent 

variables that are based on clone types and location have negative impact.  The remaining 

clone metrics have also negative impact except for RNR which has positive impact. 

Goodness-of-Fit: 

The following measures are representing the goodness-of-fit of the regression models: 

For all independent variables, they have relatively very low scores either for R2 or AR2, 

all variables have values between 0% - 1% which result in a very poor level as goodness-

of-fit of the model. 

Prediction Performance: 

Univariate analysis results for velocity system show that MAE and RMSE values are 

relatively high, and that they indicate poor prediction performance since they are 

negatively-oriented scores.  The SDAE scored on average ≈ 42 for all independent 

variables which comes relatively in the midrange values when compared with other 

subject systems. 

 

Synapse system: 
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Table 62: Univariate Analysis for Fault-Density of Synapse System 

 

Independent variables assessment for statistically significance:  

From the above table, TCF, CRFL, NBR, RSA, CVR, Inter-class, Type-1, and Type-2 

showed significant indicators of fault-density whereas RNR, RSI, Type-3, CD, and Intra 

are non- significant fault-density indicators. 

Degree and direction of impact of independent variables to fault-density: 

From the table, coefficients C1 show direction of impact, independent variables that are 

based on clone types and location have negative impact.  The remaining clone metrics 

have also negative impact except for RNR which has a positive impact. 

Goodness-of-Fit: 

Similarly, for all independent variables, they have relatively very low scores either for R2 

or AR2, all the variables have values between 0% - 1% which conclude very weak 

goodness-of-fit of the models. 

Prediction Performance: 

Univariate analysis results for synapse system show that all independent variables scored 

relatively low values for MAE and RMSE, which concludes that the prediction 

C0 C1 R Square
Adjusted R 

Square
p-value

Mean absolute 
error

Root mean squared 
error

St.Dev absolute 
error

TCF 7.311 -1.058 0.005 0.001 0.011 8.787 33.590 32.484
CD 6.681 -0.128 0.002 -0.002 0.095 8.724 33.634 32.547
CRFL 6.992 -1.767 0.003 -0.001 0.039 8.693 33.615 32.535
NBR 6.656 -0.196 0.002 -0.002 0.001 8.747 33.614 32.520
RSA 6.651 -6.560 0.002 -0.002 0.042 8.724 33.637 32.550
RSI 6.749 -11.980 0.004 0.000 0.458 8.650 33.566 32.496
CVR 7.524 -8.706 0.004 0.000 0.023 8.766 -8.706 32.534
RNR -24.781 33.352 0.007 0.003 0.331 9.103 33.687 32.497
Inter-clones 7.091 -1.369 0.004 0.000 0.042 8.829 33.607 32.489
Intra-clones 6.207 -0.924 0.002 -0.002 0.760 8.642 33.577 32.510
Type-1 6.204 -1.340 0.001 -0.003 0.022 8.663 33.582 32.509
Type-2 6.272 -1.031 0.001 -0.002 0.000 8.617 33.586 32.525
Type-3 6.723 -1.550 0.003 -0.001 0.356 8.699 33.587 32.504
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performance of synapse system is better than velocity.  The values of SDAE for all 

independent variables are on average ≈ 32 

 

Ant system: 

Table 63: Univariate Analysis for Fault-Density of Ant System 

 

Independent variables assessment for statistically significance:  

All variables except RSA and RNR showed significant indicators of fault-density, 

whereas RSA and RNR showed non-significant fault- density indicators.  These results 

are similar to synapse where RNR is common between the two systems as non-significant 

fault- density indicator. 

Degree and direction of impact of the independent variables to fault-density: 

From the table, coefficients C1 show the direction of impact, the independent variables 

that are based on clone types and location have negative impact. The remaining clone 

metrics have also negative impact except for RNR which has positive impact. 

Goodness-of-Fit: 

C0 C1 R Square
Adjusted R 

Square
p-value

Mean absolute 
error

Root mean 
squared error

St.Dev 
absolute error

TCF 1.589 -0.053 0.000 -0.001 0.000 2.410 7.116 6.700
CD 1.689 -0.039 0.002 0.001 0.020 2.391 7.111 6.702
CRFL 1.613 -0.235 0.002 0.000 0.001 2.396 7.110 6.699
NBR 1.635 -0.104 0.002 0.000 0.018 2.404 7.110 6.696
RSA 1.694 -1.647 0.002 0.000 0.513 2.370 7.108 6.706
RSI 1.570 -1.133 0.000 -0.001 0.000 2.395 7.115 6.704
CVR 1.730 -1.534 0.002 0.001 0.009 2.380 7.109 6.703
RNR -0.996 2.722 0.001 -0.001 0.849 2.391 7.121 6.712
Inter-clones 1.633 -0.171 0.001 0.000 0.004 2.411 7.113 6.697
Intra-clones 1.531 -0.013 0.000 -0.001 0.000 2.393 7.116 6.706
Type-1 1.563 -0.095 0.000 -0.001 0.000 2.405 7.116 6.701
Type-2 1.566 -0.107 0.000 -0.001 0.003 2.401 7.115 6.702
Type-3 1.544 -0.048 0.000 -0.001 0.000 2.399 7.117 6.705
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Similarly, for all the independent variables, they have extremely low scores either for R2 

or AR2, all variables have values around 0% which conclude very weak goodness-of-fit 

of the models. 

Prediction Performance: 

Univariate analysis results for ant system show that all independent variables scored 

relatively the lowest values for MAE and RMSE, which concludes that the prediction 

performance of ant system is the best among other subject systems.  For the values of 

SDAE for all independent variables are on average ≈ 6. 

 

Xalan system: 

Table 64: Univariate Analysis for Fault-Density of Xalan System 

 

Independent variables assessment for statistical significance:  

From the above table, TCF, RNR, RSI, Type-3, NBR, Inter-class, Intra, Type-1, and 

Type-2 showed significant indicators of fault-density, whereas RSA, CVR, CD, CRFL 

are none significant fault-density indicators. 

Degree and direction of impact of the independent variables to fault-density: 

C0 C1 R Square
Adjusted R 

Square
p-value

Mean absolute 
error

Root mean 
squared error

St.Dev 
absolute error

TCF 10.519 -0.918 0.003 0.002 0.000 14.155 59.325 57.644
CD 10.554 -0.369 0.002 0.001 0.087 14.153 59.431 57.754
CRFL 9.612 -0.097 0.001 0.000 0.363 14.112 59.333 57.663
NBR 10.161 -0.237 0.002 0.001 0.034 14.135 59.363 57.688
RSA 11.322 -11.832 0.005 0.003 0.849 14.042 59.249 57.594
RSI 9.842 -18.513 0.001 0.000 0.033 14.039 59.329 57.677
CVR 12.093 -13.616 0.006 0.005 0.681 14.211 59.208 57.510
RNR -32.192 44.564 0.006 0.005 0.010 14.391 59.412 57.676
Inter-clones 10.660 -2.000 0.006 0.005 0.000 14.266 59.326 57.619
Intra-clones 9.728 -0.826 0.001 0.000 0.009 14.036 59.332 57.681
Type-1 10.216 -1.656 0.002 0.001 0.000 14.171 59.308 57.623
Type-2 9.967 -1.556 0.002 0.001 0.000 14.107 59.319 57.651
Type-3 9.316 -0.716 0.000 -0.001 0.002 14.109 59.389 57.721
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From the table, coefficients C1 show the direction of impact, independent variables that 

are based on clone types and location have negative impact.  Remaining clone metrics 

have also negative impact except for RNR which has positive impact. 

Goodness-of-Fit: 

Similarly, for all the independent variables, they have extremely low scores either for R2 

or AR2, all variables have values around 0% which conclude very weak goodness-of-fit 

of the models. 

Prediction Performance: 

Univariate analysis results for xalan system show that all independent variables scored 

relatively midrange values for MAE and RMSE, which concludes that the prediction 

performance of xalan system is in the middle among other subject systems.  For the 

values of SDAE for all independent variables are on average ≈ 57. 

Camel system: 

Table 65: Univariate Analysis for Fault-Density of Camel System 

 

Independent variables assessment for statistically significance:  

C0 C1 R Square
Adjusted R 

Square
p-value

Mean 
absolute error

Root mean 
squared error

St.Dev 
absolute error

TCF 18.032 -3.412 0.001 0.000 0.296 28.239 107.536 103.818
CD 17.643 -0.401 0.001 0.000 0.481 28.177 107.572 103.872
CRFL 17.614 -6.344 0.001 0.000 0.304 28.187 107.556 103.852
NBR 18.160 -6.344 0.002 0.001 0.041 28.176 107.507 103.805
RSA 17.967 -22.820 0.002 0.001 0.039 28.116 107.522 103.837
RSI 17.190 -24.927 0.000 -0.001 0.000 28.110 107.582 103.901
CVR 18.577 -24.417 0.002 0.001 0.223 28.039 107.554 103.891
RNR -97.625 124.375 0.009 0.008 0.864 29.753 107.217 103.061
Inter-clones 17.512 -3.576 0.001 0.000 0.165 28.157 107.563 103.868
Intra-clones 17.173 -3.399 0.001 0.000 0.000 28.075 107.575 103.902
Type-1 17.360 -7.431 0.001 0.000 0.852 28.101 107.566 103.885
Type-2 16.765 -2.092 0.000 -0.001 0.171 28.035 107.599 103.938
Type-3 17.667 -4.343 0.001 0.000 0.812 28.158 107.554 103.858
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From the above table, NBR, RSI, RSA, and Intra showed significant indicators of fault-

density, whereas TCF, CD, CRFL, CVR, Inter-class, RNR, Type-1, Type-2 and Type-3 

are non- significant fault-density indicators. 

Degree and direction of impact of the independent variables to fault-density: 

From the table, coefficients C1 show the direction of impact, independent variables that 

are based on clone types and location have negative impact.  Remaining clone metrics 

have also negative impact except for RNR which has positive impact. 

Goodness-of-Fit: 

Similarly, for all independent variables, they have extremely low scores either for R2 or 

AR2, all variables have values around 0% which conclude very weak goodness-of-fit of 

the models. 

Prediction Performance: 

Univariate analysis results for camel system show that all independent variables scored 

relatively the highest values for MAE and RMSE, which concludes that the prediction 

performance of camel system is in the lowest among other subject systems.  For the 

values of SDAE for all independent variables, they are on average ≈ 103 which are the 

highest among all subject systems. 

 

Comprehensive system, as shown below: 
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Table 66: Univariate Analysis for Fault-Density of Comprehensive System 

 

Independent variables assessment for statistically significance:  

All independent variables showed significant indicators of fault-density. 

Degree and direction of impact of the independent variables to fault-density: 

From the table, coefficients C1 show the direction of impact, independent variables that 

are based on clone types and location have negative impact.   Remaining clone metrics 

have also negative impact except for RNR which has positive impact. 

Goodness-of-Fit: 

Similarly, for all the independent variables, they have extremely low scores either for R2 

or AR2, all variables have values around 0% which conclude very weak goodness-of-fit 

of the models. 

Prediction Performance: 

Univariate analysis results for comprehensive system show that all independent variables 

scored relatively midrange values for MAE and RMSE, which concludes that the 

C0 C1 R Square
Adjusted R 

Square
p-value

Mean absolute 
error

Root mean 
squared error

St.Dev 
absolute error

TCF 10.855 -1.229 0.002 0.002 0.000 15.838 69.788 67.979
CD 10.826 -0.330 0.002 0.001 0.000 15.840 69.805 67.995
CRFL 9.775 -0.111 0.000 0.000 0.000 15.705 69.840 68.063
NBR 10.193 -0.301 0.001 0.001 0.000 15.799 69.819 68.019
RSA 11.095 -13.132 0.002 0.002 0.000 15.837 69.776 67.966
RSI 10.343 -19.504 0.001 0.001 0.000 15.747 69.818 68.030
CVR 11.783 -14.955 0.003 0.003 0.000 15.958 69.744 67.905
RNR -43.851 57.922 0.005 0.004 0.040 16.336 69.720 67.791
Inter-clones 10.883 -2.328 0.002 0.002 0.000 15.866 69.794 67.978
Intra-clones 10.094 -1.078 0.001 0.000 0.000 15.717 69.825 68.044
Type-1 10.341 -2.048 0.001 0.001 0.000 15.768 69.814 68.021
Type-2 10.188 -1.818 0.001 0.001 0.000 15.740 69.823 68.037
Type-3 10.072 -1.491 0.001 0.000 0.008 15.724 69.832 68.050



 

140 
 

prediction performance of comprehensive system is in the middle among other subject 

systems.  For the values of SDAE for all independent variables are on average ≈ 68. 

 

Summary of Univariate Analysis: 

From the results of the analysis the following findings are concluded to answer the 

thirteen hypotheses (HYP-G1, HYP-G2, HYP-G3, HYP-G4, HYP-G5, HYP-G6, HYP-

G7, HYP-G8, HYP-G9, HYP-G10, HYP-G11, HYP-G12, and HYP-G13): 

1) If a metric scored p-value < 0.05 across all the systems, then it is considered a 

significant indicator of fault-density.  Hence, there is a clear evidence to reject the 

null hypothesis. 

2) If a metric scored p-value ≥ 0.05 across all the systems, then it is considered non-

significant indicator of fault-density.  Hence, there is a clear evidence to accept the 

null hypothesis. 

3) If a metric across systems has inconsistent results, then we don’t have clear evidence 

to accept or to reject a hypothesis. 

• TCF, there is no clear evidence to accept the null hypothesis of HYP-G1.  

• CD, there is no clear evidence to accept the null hypothesis of HYP-G2. 

• CRFL, there is no clear evidence to accept the null hypothesis of HYP-G3. 

• NBR, metric is fault-density significant indicator, so HYP-G4 is rejected. 

• RSA, there is no clear evidence to accept the null hypothesis of HYP-G5. 

• RSI, there is no clear evidence to accept the null hypothesis of HYP-G6. 

• CVR, there is no clear evidence to accept the null hypothesis of HYP-G7. 

• RNR, there is no clear evidence to accept the null hypothesis of HYP-G8. 
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• Interclass, there is no clear evidence to accept the null hypothesis of HYP-G9. 

• Intra, there is no clear evidence to accept the null hypothesis of HYP-G10. 

• Type-1, there is no clear evidence to accept the null hypothesis of HYP-G11. 

• Type-2, there is no clear evidence to accept the null hypothesis of HYP-G12. 

• Type-3, there is no clear evidence to accept the null hypothesis of HYP-G13. 

5.6 Multivariate Analysis 

In this section, we are trying to answer the questions H, I, and J in  5.1.  This section 

shows the study of the subject systems with multivariate perspective, where Weka 

software used to generate features selection.  The attribute evaluator used is 

CfsSubsetEval and the search method used is BestFirst with bi-directional setting.  After 

getting these attributes that mostly representative of the data in a subject system, they are 

incorporated in multivariate analysis to study their features using weka software with 

default values. 

For velocity system: 

Table 67: Univariate Analysis for Fault-Density of Velocity System 

 

Independent variables assessment for statistical significance:  

The features selection yielded two attributes to be selected which are CVR, and RNR, 

each one of the metrics belongs to different principal component, CVR belongs to PC-1 

C1 R Square
Adjusted R 

Square
p-value

Mean 
absolute error

Root mean 
squared error

St.Dev 
absolute error

CVR -16.385 0.014 0.006 0.563 20.111 46.769 42.316
RNR 25.461 0.652
Intercept -8.430
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and RNR belongs to PC-3.  Multivariate model produced no better than the scores of any 

univariate models as all of them are not significant indicators. 

Degree and direction of impact of the independent variables to fault-density: 

From the table, coefficients C1 show the direction of impact, the independent variable 

CVR has negative impact.  However, RNR has positive impact which means higher RNR 

value in a class yields higher fault-density. 

Goodness-of-Fit: 

Similar to univariate models of velocity system, all the independent variables, have 

relatively very low scores either for R2 or AR2, all the variables have values between 0% 

- 1% which conclude very weak goodness-of-fit of the models. 

Prediction Performance: 

The multivariate analysis results for velocity system show that both independent 

variables scored relatively low values for MAE and RMSE, which concludes that the 

prediction performance of velocity system is relatively poor.  The values of SDAE for all 

independent variables are on average ≈ 42. 

 

For synapse system: 

Table 68: Univariate Analysis for Fault-Density of Synapse System 

 

Independent variables assessment for statistically significance:  

C1 R Square
Adjusted R 

Square
p-value

Mean 
absolute error

Root mean 
squared error

St.Dev 
absolute error

TCF -1.052 0.012 0.004 0.011 9.210 33.682 32.462
 RNR 33.199 0.331
Intercept -23.089
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The features selection yielded two attributes to be selected which are TCF, and RNR.  

Each one of the metrics belongs to different principal component, TCF belongs to PC-2 

and RNR belongs to PC-3.  The multivariate model produced no better than the scores of 

any univariate models in addition to RNR is not significant indicator. 

Degree and direction of impact of the independent variables to fault-density: 

Both TCF and RNR maintained the same effects on the direction of impact as in 

univariate models where TCF is negative and RNR is positively affecting fault-density. 

Goodness-of-Fit: 

Similar to univariate models of synapse system, they have relatively very low scores 

either for R2 or AR2, all values are between 0% - 1% which conclude very weak 

goodness-of-fit of the models. 

Prediction Performance: 

The multivariate analysis results for synapse system show that the model scored 

relatively low values for MAE and RMSE, which concludes that the prediction 

performance of synapse system is relatively poor.  For the values of SDAE for all 

independent variables are on average ≈ 32. 

For ant system: 

Table 69: Univariate Analysis for Fault-Density of Ant System 

 

Independent variables assessment for statistically significance:  

C1 R Square
Adjusted R 

Square
p-value

Mean 
absolute error

Root mean 
squared error

St.Dev 
absolute error

RSA -1.530 0.003 0.000 0.513 2.373 7.115 6.712
RNR 1.724 0.849
Intercept 0.087
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The features selection yielded two attributes to be selected which are RSA, and RNR, 

both metrics belong to the same principal component PC-3.  The multivariate model 

produced no better than the scores of any univariate models as both are not significant 

indicators. 

Degree and direction of impact of the independent variables to fault-density: 

From the table, coefficients C1 show the direction of impact, the independent variable 

RSA has negative impact.  However, RNR has positive impact. 

Goodness-of-Fit: 

Similar to univariate models of ant system, they have relatively very low scores either for 

R2 or AR2, all values are between 0% - 1% which conclude very weak goodness-of-fit of 

the models. 

Prediction Performance: 

The multivariate analysis results for ant system show that the model scored relatively low 

values for MAE and RMSE, which concludes that the prediction performance of ant 

system is relatively poor although they are the best among the other subject systems.  For 

the values of SDAE for all independent variables are on average ≈ 6. 

 

For xalan system: 

Table 70: Univariate Analysis for Fault-Density of Xalan System 

 

C1 R Square
Adjusted R 

Square
p-value

Mean absolute 
error

Root mean 
squared error

St.Dev 
absolute error

RSI -3.552 0.009 0.006 0.033 14.451 59.175 57.416
CVR -12.527 0.681
RNR 38.153 0.010
Intercept -23.349
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Independent variables assessment for statistically significance:  

The features selection yielded three attributes to be selected which are RSI, CVR, and 

RNR.  Each one of the metrics belongs to different principal component, RSI belongs to 

PC-1, CVR belongs to PC-2 and RNR belongs to PC-4.  The multivariate model 

produced no better than the scores of any univariate models in addition to CVR is not a 

significant indicator. 

Degree and direction of impact of the independent variables to fault-density: 

RNR still positively affects fault-density, whereas CVR and RSI still negatively affect 

fault-density. 

Goodness-of-Fit: 

Similar to univariate models of xalan system, they have relatively very low scores either 

for R2 or AR2, all values are between 0% - 1% which conclude very weak goodness-of-

fit of the models. 

Prediction Performance: 

The multivariate analysis results for xalan system show that the model scored relatively 

low values for MAE and RMSE, which concludes that the prediction performance of 

xalan system is relatively poor.  For the values of SDAE for all independent variables are 

on average ≈ 57. 

 

For camel system: 
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Table 71: Univariate Analysis for Fault-Density of Camel System 

 

Independent variables assessment for statistically significance:  

The features selection yielded two attributes to be selected which are NBR, and RNR.  

Each one of the metrics belongs to different principal component, NBR belongs to PC-1 

and RNR belongs to PC-2.  The multivariate model produced no better than the scores of 

any univariate models in addition to RNR is not significant indicator. 

Degree and direction of impact of the independent variables to fault- density: 

From the table, the coefficients C1 shows the direction of impact, the independent 

variable NBR has negative impact.  However, RNR has positive impact. 

Goodness-of-Fit: 

Similar to univariate models of camel system, they have relatively very low scores either 

for R2 or AR2, all values are between 0% - 1% which conclude very weak goodness-of-

fit of the models. 

Prediction Performance: 

The multivariate analysis results for camel system show that the model scored relatively 

low values for MAE and RMSE, which concludes that the prediction performance of 

camel system is relatively poor.  For the values of SDAE for all independent variables are 

on average ≈ 102. 

 

C1 R Square
Adjusted R 

Square
p-value

Mean absolute 
error

Root mean 
squared error

St.Dev absolute 
error

NBR -6.530 0.011 0.009 0.041 29.900 107.120 102.917
RNR 125.151 0.864
Intercept -96.746
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For comprehensive collection: 

Table 72: Univariate Analysis for Fault-Density of Comprehensive System 

 

Independent variables assessment for statistically significance:  

The features selection yielded two attributes to be selected which are CVR, and RNR.  

The multivariate model produced no better than the scores of any univariate models. 

Degree and direction of impact of the independent variables to fault- density: 

From the table, the coefficients C1 shows the direction of impact, the independent 

variable CVR has negative impact.  However, RNR has positive impact. 

Goodness-of-Fit: 

Similar to univariate models of comprehensive system, they have relatively very low 

scores either for R2 or AR2, all values are between 0% - 1% which conclude very weak 

goodness-of-fit of the models. 

Prediction Performance: 

Multivariate analysis results for camel system show that the model scored relatively low 

values for MAE and RMSE, which concludes that the prediction performance of camel 

system is relatively poor.  For the values of SDAE for all independent variables are on 

average ≈ 67. 

C1 R Square
Adjusted R 

Square
p-value

Mean absolute 
error

Root mean 
squared error

St.Dev 
absolute error

CVR -12.686 0.007 0.006 0.000 16.422 69.644 67.691
RNR 51.781 0.040
Intercept -36.317
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5.6.1 Validation of Fault-density Prediction Model 

A cross-validation has been used to minimize the chance of getting an ideal goodness-of-

fit or exact match of the explanatory model with high accuracy, as this is considered to be 

a threat to validity of the model.  Hence, all the five subject systems are combined in one 

data set, and each time one system will be left out to build the model and tested against 

the system that was left out.  The approach of using leave-one-out in building the model 

will help in generalizing the results and moving away from being biased to the small data 

set. 

Table 73: Comparison of Multivariate Analysis - Training data Vs. Cross-validation 

Keys: Numbers in Bold indicate the best value among others.  
Training Data:  model is built over data training being part of the same data set. 
Cross-V: model is built over data set based on cross-validation leave-one-out approach.  

The above table shows the comparisons between the results of the multivariate models 

when the training data used within the same system and when cross validation leave-one-

out is used.  In this section, three measures were included in the comparison, namely 

Mean absolute error (MAE), Root mean squared error (RMSE), and Standard deviation 

of absolute error (SDAE).  In general, the overall average was for the advantage of the 

multivariate models that the training data was part of the same system.  The individual 

results were fluctuating from one to another, for example for MAE, xalan’s value is 

14.451 whereas the value when used cross-validation is 17.202 which considered 

relatively small difference.  However, for ant system, MAE is 2.373 while 20.637 for 

Training Data Cross-V Training Data Cross-V Training Data Cross-V
velocity 20.111 16.094 46.769 71.180 42.316 69.349
synapse 9.210 17.080 33.682 72.037 32.462 69.996
ant 2.373 20.637 7.115 79.797 6.712 77.099
xalan 14.451 17.202 59.175 73.544 57.416 71.520
camel 29.900 10.379 107.120 43.200 102.917 41.944
Avg. 15.209 16.278 50.772 67.952 48.365 65.982

Mean absolute error Root mean squared error Stdev. absolute error
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cross-validation model.  Similarly for RMSE, the differences are not consistent between 

the models of both types. 

To sum up, the results out of this comparison give the impression that the data used to 

build univariate models is dependent on the training set.  Hence, it yielded better 

prediction accuracy. 

 

5.6.2 Comparisons of Code Clones Metrics and C&K Metrics in Predicting 
Fault-density 

In this section, comparisons between code clone metrics suite, C&K suite, and both 

combined in a single suite.  All suites are analyzed from different perspectives, namely 

goodness-of-fit, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and 

Standard Deviation of Absolute Error (SDAE).  In general, the results show that the 

combined suite of clone metrics and C&K and C&K individually have been 

interchangeably better scores in all four perspectives than clone metrics suite 

individually. 

Starting with goodness-of-fit, the following table shows the scores for all the three suites 

against the five subject systems: 

Table 74: Comparison of Multivariate Analysis - Goodness-of-fit 

  
R Square Adjusted R Square 

Both CLN C&K R Square CLN C&K 
Velocity 0.026 0.007 0.020 0.024 0.006 0.019 
Synapse 0.027 0.007 0.008 0.025 0.006 0.007 
Ant 0.038 0.009 0.028 0.035 0.008 0.027 
xalan 0.034 0.005 0.030 0.032 0.005 0.029 
camel 0.012 0.006 0.012 0.010 0.005 0.011 
Avg. 0.027 0.007 0.019 0.025 0.006 0.019 

Keys: Numbers in Bold indicate the best value among others.  
Both:  model is built over some selected attributes of both the clone and C&K metrics  
CLN: model is built over some selected attributes of the clone metrics only.  
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C&K: model is built over some selected attributes of the C&K metrics only. 
 

From the results of the comparisons between the three suites, the difference between the 

clone metrics suite and C&K suite is noticeable in both measurements, namely R-square 

and Adjusted R-square.  Similarly, the difference between clone metrics and the 

combined suite is also drastic.  For R-square the combined suite was the highest value 

among other suites, similar for Adjusted R-square. 

In general, all the results of the three suites are still relatively very low and this represents 

weak goodness-of-fit.  Below are the histograms for both measurements R-square and 

adjusted R-square: 

 

Figure 38: Goodness-of-fit - R-Square 
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Figure 39: Goodness-of-fit - Adjusted R-Square 

For prediction performance, the analysis took into consideration three measurements, 

namely MAE, RMSE, and SDAE.  According to Willmott [61], RMSE is ambiguous and 

could be misleading indicator.  On the other hand, RMSE according to Chai [62], is good 

and gives non-ambiguous readings if data is normally distributed, which is not in our 

case.  Many researchers have adopted Willmott’s approach [63-65].  So, the primary 

measure that will be used in our study is MAE, whereas RMSE and SDAE will be used 

as support measurements to MAE.  It is clear that there is no specific pattern for the 

prediction performance behavior, although on average basis, C&K metrics suite gained 

the best results.  The following table has further information about the comparison 

analysis: 
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Table 75: Comparison of Multivariate Analysis -Prediction Performance 

 
Keys: Numbers in Bold indicate the best value among others.  
Both:  model is built over some selected attributes of both the clone and C&K metrics  
CLN: model is built over some selected attributes of the clone metrics only.  
C&K: model is built over some selected attributes of the C&K metrics only. 
 
The following are the histograms that describe the results in the above table: 

 

Figure 40: Prediction Performance - MAE 

Both CLN C&K Both CLN C&K Both CLN C&K
velocity 19.002 16.094 18.125 46.331 71.180 46.744 42.348 69.349 43.182
synapse 13.786 17.080 14.307 33.901 72.037 34.134 6.926 69.996 4.197
ant 12.889 20.637 10.819 23.002 79.797 20.772 19.064 77.099 17.744
xalan 15.492 17.202 15.093 59.867 73.544 60.116 57.861 71.520 58.224
camel 22.058 10.379 22.187 107.521 43.200 107.549 105.290 41.944 105.292
Avg. 16.645 16.278 16.106 54.124 67.952 53.863 46.298 65.982 45.728

Mean absolute error Root mean squared error Stdev. absolute error
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Figure 41: Prediction Performance - RMSE 

 

Figure 42: Prediction Performance - SDAE 

To sum up, the three measures of prediction performance showed that C&K metrics suite 

performed better than clone metrics suite in predicting fault-density.  For MAE, C&K 

suite performed better in three subject systems when compared with clone metrics suite, 

in addition, the average is better for C&K as well.  For RMSE and SDAE, C&K models 

were better in four out of five subject systems.  Hence, we accept the null hypothesis 
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HYP-H.  For the comparison between the multivariate models using combined suite 

versus the ones using clone metrics suite, there is no clear trend over the behavior of 

prediction performance based on the MAE results.  Although in two systems out of the 

five systems, the performance of clone metrics suite was better and three systems is the 

opposite, but the average of MAE was for the sake of the models that are based on clone 

metrics suite.  However, the results of RMSE and SDAE support the decision of 

considering the combined metrics suite models are performing better than the ones based 

on clone metrics, as for both RMSE and SDAE the combined suite is performing better in 

prediction in four out of five systems in addition to the average is in favor of the 

combined suite.  Hence, we reject the null hypothesis HYP-I.  The last part of comparing 

the multivariate models based on different metrics suites, is between the combined 

metrics suite versus C&K metrics suite.  The RMSE and SDAE had similar results in four 

out of five systems, the C&K metrics suite based models were performing better in 

predicting fault-density in addition the overall average.  However, MAE had two out five 

systems plus the average for the sake of C&K suite based models versus the remaining 

three systems where the MAE readings were better for the interest of the combined suite 

based models.  Since the differences are very marginal in addition to supporting results 

from RMSE and SDAE readings, we accept the null hypothesis of HYP-J. 

5.6.3 Comparisons of Regression models of Code Clones Metrics and Neural 
Network Models in Predicting Fault-density 

The Neural Network (NN) models that are used in this study are Multi-Layer Perceptron 

(MLP) models.  MLP is an artificial neural network of type feed-forward that use back-

propagation as supervised learning technique [54].  The results of linear regressions are 

compared with MLP models results.  After generating the MLP models with code clones 
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metrics as inputs, better performance was noticed for the advantage of linear regression 

models in all three measurements MAE, RMSE, and SDAE as can be seen in the 

following table: 

   

Table 76: Comparison of Multivariate Analysis -Prediction Performance versus ANN-MLP 

 

There are contradicting readings out of the general behavior of the prediction 

performance between the MLP models based and models based on clone metrics suite.  

MAE suggests that regression models performing better than MLP models, whereas 

RMSE and SDAE suggests the opposite.  Hence, we don’t have clear evidence to decide 

which is better in predicting fault-density. 

5.7 Threats to validity 

Threats to validity are discussed in (Sec. 4.8) from four perspectives, namely threats to 

construct validity, threats to internal validity, threats to statistical conclusion validity, and 

threats to external validity.  

  

Regression NN:MLP Regression NN:MLP Regression NN:MLP
velocity 16.094 31.5093 71.180 64.5597 69.349 56.47164493
synapse 17.080 8.6745 72.037 33.402 69.996 32.3191725
ant 20.637 3.0256 79.797 7.6706 77.099 7.053487107
xalan 17.202 19.0186 73.544 61.225 71.520 58.22945684
camel 10.379 23.506 43.200 108.4614 41.944 105.940306
Avg. 16.278 17.147 67.952 55.064 65.982 52.003

Stdev. absolute errorMean absolute error Root mean squared error
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CHAPTER 6 CONCLUSION AND FUTURE WORK 

Our study of code clones with respect to functional correctness of object-oriented classes 

yielded the following findings, three clone metrics are found to be good indicators of 

fault-proneness, namely TCF, the percentage of cloned LOC in class (CRFL), and 

coverage (CVR).  On the other hand, we found only one clone metric to be a good 

indicator of fault-density which is neighbor (NBR). 

For the software developer, the following general suggestions are passed with regard to 

incorporating code cloning in software development.  Minimize the use of code clones 

when developing software, since the relationships that were found with fault-proneness of 

object-oriented classes.  Detecting code clones and categorize them based on types will 

assist in identifying potential fault-proneness and fault-density in the product.  When 

using code clones, it is advisable to test any code before it is been cloned and used 

somewhere else.  Also, tracking the clones chains while development cycle, could 

minimize efforts to maintain and debug the product before/after release.  Classes that 

contain Type-2 clones increase the probability of being of being fault-proneness and 

increase level of fault-density when compared with other types (Type-1, Type-2) 

individually.  Similarly, a high risk of increasing fault-proneness and fault-density when 

incorporating Type-1 and Type-3 in the same class.Research Contributions 

The following are the contribution of this research: 

- Surveyed the literature for existing clone related metrics and proposed a suite of 

metrics that we expect it helps in studying the impact of functional correctness of 

object-oriented classes. 
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- Compared the classification performance of three models built based on the three 

suites, namely clone metrics suite, C&K metrics suite and the combined clone and 

C&K metrics suites in studying fault-proneness. 

- Compared the prediction performance of three models built based on the three suites, 

namely clone metrics suite, C&K metrics suite and the combined clone and C&K 

metrics suites in studying fault-density. 

- Built logistic-regression models for three suites of metrics, namely software clone 

metrics, C&K metrics, and combined suite of both clone and C&K metrics to study 

impact of software clones on fault-proneness of object-oriented classes. 

- Built linear-regression models for three suites of metrics, namely software clone 

metrics, C&K metrics, and combined suite of both clone and C&K metrics to study 

impact of software clones on fault-density of object-oriented classes. 

There was an unexpected general observation over both empirical studies, although a 

system that has higher fault-proneness in the cloned classes, it doesn’t imply that the 

cloned classes have higher fault-density.  After investigating the subject systems, we 

found out that the average LOC of the cloned classes are much higher than the average 

LOC of non-cloned classes, which in turn affected fault-density as LOC is an attribute of 

calculating its value. 

6.2     Future Work 

The following suggestions are regarded to future researches that might be an extension of 

this thesis: 
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- Explore and study other quality attributes using code clones such as change-

proneness and effort estimation. 

- Explore and study none object-oriented systems for functional correctness using 

clone metrics. 

- Explore and study other software domains and systems that are written in other 

languages. 

- Use other detection tools could also have different results than what we have 

concluded. 

- Explore relationships between clone metrics and test-case adequacy prediction.  
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Appendix 

Principal components analysis: 

 

1 2 3
Totalclnefr
agments

.348 .926 .074

Clone100
0loc

.744 .397 .168

CRFL .227 -.073 .819
NBR .899 .010 -.038
RSA .928 -.004 .050
RSI -.037 .395 .846
CVR .761 .217 .521
RNR .063 -.045 -.765
Interclass .910 .070 -.034
Intra -.064 .980 .098
TypeI .567 .474 -.028
TypeII .150 .690 .191
TypeIII .057 .798 .002

Rotated Component Matrixa

velocity

Component

Extraction Method: Principal Component 
Analysis. 
 Rotation Method: Varimax with Kaiser 
Normalization.
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1 2 3
Totalclnefr
agments

.465 .848 .196

Clone100
0loc

.868 .259 .129

CRFL .888 .103 .194
NBR .721 .158 -.165
RSA .941 .025 .027
RSI .036 .305 .874
CVR .788 .164 .506
RNR -.016 .198 -.789
Interclass .776 .397 -.036
Intra -.103 .861 .330
TypeI .157 .630 -.124
TypeII .285 .739 -.002
TypeIII .422 .289 .446

Rotated Component Matrixa

synapse

Component

Extraction Method: Principal Component 
Analysis. 
 Rotation Method: Varimax with Kaiser 
Normalization.

1 2 3
Totalclnefr
agments

.849 .496 .101

Clone100
0loc

.212 .304 .776

CRFL .093 .652 .470
NBR .101 .840 .223
RSA -.082 .444 .834
RSI .726 .037 .286
CVR .191 .368 .862
RNR -.101 .129 -.449
Interclass .267 .827 .220
Intra .953 .089 -.018
TypeI .468 .654 -.086
TypeII .655 .355 -.002
TypeIII .711 .064 .303

Rotated Component Matrixa

ant

Component

Extraction Method: Principal Component 
Analysis. 
 Rotation Method: Varimax with Kaiser 
Normalization.
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1 2 3 4
Totalclnefr
agments

.888 .050 .444 -.034

Clone100
0loc

.157 .071 .746 .456

CRFL .074 .880 -.139 -.147
NBR .024 .950 .004 -.120
RSA -.163 .835 .404 .179
RSI .596 -.064 .197 .517
CVR .026 .809 .414 .317
RNR -.132 -.014 .117 -.712
Interclass .343 .223 .766 -.213
Intra .948 -.070 .116 .085
TypeI .423 .046 .702 -.269
TypeII .753 .099 .072 .107
TypeIII .650 -.039 .137 .092

Rotated Component Matrixa

xalan

Component

Extraction Method: Principal Component Analysis. 
 Rotation Method: Varimax with Kaiser Normalization.

1 2 3
Totalclnefr
agments

.376 .577 .702

Clone100
0loc

.663 .471 .231

CRFL .737 .379 .095
NBR .768 -.014 .340
RSA .922 -.103 .083
RSI .082 .882 .066
CVR .855 .297 .106
RNR -.089 -.291 .225
Interclass .527 .007 .758
Intra -.029 .887 .210
TypeI .199 .039 .684
TypeII .027 .180 .766
TypeIII .417 .699 .236

Rotated Component Matrixa

camel

Component

Extraction Method: Principal Component 
Analysis. 
 Rotation Method: Varimax with Kaiser 
Normalization.
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Table 77: Literature summary of studies on code clones 

 

Research Granularity Modeling approach # of modules # of 
systems

Clone metrics
Quality Attribute(s) Cloning impact results

Baba et al. (2008)
Component Logistic Regression

40, 32
2 2 metrics Fault-Prone Clone metrics improved fault-prediction

Kamei et al. (2011) File Logistic Regression (8,313),(9,663)
,(11,525)

one 
(3releases)

5 metrics Fault-Density For large modules, clone metrics improved fault-prediction

Monden et al. (2002) File None 2000 1 2 metrics Reliability and maintainability Increase reliability and decrease maintainability

Lozano et al. (2007) Methods None N.A 1 None Changeability Clones increase maintenance efforts

Kapser and Godfrey 
(2008)

Function, Free blocks None 783, 530 2 None Maintainability Positive impact on maintainability of software system

Krinke (2008) Free blocks None N.A 5 None Stability Cloned code are more stable than non-cloned code

Juergens et al. (2009) Free blocks/Tokens None N.A 5 None Program correctness Inconsistent  changes of clone increase faults

Juergens et al. (2010) SRS Documents None 8,667 pages 28 None Requirement redundancy Lower the quality of SRS which implies increase 
development and maintinance efforts

Rahman et al. (2010) Free blocks None N.A 4 3 metrics Fault-proneness Cloning is not harmful

Selim et al. (2010) Function Cox hazard model N.A 2 9 metrics Fault-proneness Risk of clones is system dependent

Bettenburg et al. (2010) Free blocks None N.A 3 2 metrics Defect proneness/Post-release 
quality

No significant impact on post-release level

Göde&Harder (2011) Free blocks/Tokens None N.A 2 4 metrics Stability Cloned code are more stable than non-cloned code and 
might require less maintinance efforts

Krinke (2011) Free block, File None 2202, 6406, 
552

3 None Stability Cloned code are more stable than non-cloned code

Our study Class
Logistic/Linear 

Regression, ANN
229, 256, 741, 

875, 935 5 systems 13 metrics Functional correctness
Cloning increases fault-proneness, non-cloned code 
has lower fault-density
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