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We consider the initial value problem for a class of nonlinear differential 

equations that involve Caputo fractional derivative. We obtain some results 

concerning the asymptotic behavior of solutions of these problems in 
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 مهخص انرسانة

 

 الاسم انكامم: وائم نغيمش الأحمدي

 

 بعض انمسائم ذات انرتب غير انصحيحةعنوان انرسانة: انسهوك انتقاربي نحهول 

 

 انتخصص: رياضيات

 

4102: مايوتاريخ اندرجة انعهمية  

 

 

 

التفاضلٍة غٍش الخطٍة رات ستب غٍش صحٍحة دسسنا مسألة القٍمة الابتذائٍة لنوع من المعادلات 

تحتوي على مشتقة كابوتو. حصلنا على نتائج تتعلق بالسلوك التقاسبً لحلول هزه المعادلات فً 

فضاء تم اختٍاسه بطشٌقة مناسبة.
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INTRODUCTION 

 

The fractional calculus deals with the generalization of differentiation and integration to 

arbitrary order. Many phenomena in various fields of science and engineering can be 

described by differential equations of non-integer order. Namely  they arise naturally in 

viscoelasticity  porous media  electrochemistry  control  electromagnetics  etc. [11  12  

15  18  21  26  28  33]. In fact it has been shown by experiments that derivatives of non-

integer order can describe many phenomena better than derivatives of integer order 

especially hereditary phenomena and processes. 

In this thesis  we consider the following fractional differential problems: 

 {
       

 
        (      )           

                                                       
    (0.1)   

 
{
      

 
        (   (    ))                

                                                                          
   

(0.2)   

where                 is continuous with        and               the 

function      is called a retarded argument  and 

 {
     

 
  (            )   (      )        

                                                                     
    (0.3)   

where             

In problems (0.1)  (0.2)  and (0.3)      
 

  is the fractional derivative in the sense of 

Caputo of order                              is continuous       for 

               and         
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Our objective is to investigate the asymptotic behavior of the solutions. We provide 

reasonable sufficient conditions under which all continuable solutions of these problems 

behave like polynomials of degree     for large values of time. 

Fractional derivatives by definition involve all the history of the state through a 

convolution with a singular kernel. In addition to this singularity  the convolution term is 

non-local in time. This fact complicates considerably the use of the existing methods in 

the literature. We intend to overcome these difficulties by some suitable estimations. To 

achieve this  we first establish the equivalence between (0.1)  (0.2)  and (0.3) and their 

corresponding nonlinear Volterra Integral equations in the space of continuous functions 

and then use suitable conditions on the nonlinearity     

We mention here that in [2] Baleanu and Mustafa showed that every continuable solution 

of the initial value problem 

{
        

        (      )               

                                                                            
    

has the asymptotic behavior              when     for             

Also in [19]  Medved  showed that every solution of the initial value problem 

{
       

        (      )                 

         
                                                               

    

is asymptotic to      as      where     are real constants    .  

In the theory of higher order nonlinear differential equations (say of order  )  an 

interesting topic is the study of the asymptotic behavior of solutions via solutions of the 

equation         This topic has been extensively investigated during the last four 
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decades for the case of second order nonlinear differential equations  see Cohen [5]  

Constantine [6  7]  Dzurina [10]  Lipovan [16]  Meng [20]  Y. Rogovchenko [31]  S. 

Rogovchenko and Y. Rogovchenko [29  30]  Y. Rogovchenko and Villari [32]  Tong 

[34]  Trench [35] and Yin [37]. Note that papers [5-7  17  35] are concerned with 

differential equations of the form 

               (0.4)   

Equation (0.4) was discussed for the nonlinear case by Cohen [5] and Tong [34]  and the 

linear case was studied by Trench [35]. All the results cited above have been obtained by 

using the Gronwall-Bellman inequality [3] or its generalizations due to Bihari [4] and 

Dannan [8]. On the other hand  [24  29-31] deal with differential equations of the form 

                  (0.5)   

Conditions presented there to ensure that solutions of (0.4) and (0.5) are asymptotic to 

linear functions for large values of time. 

The autonomous differential equation 

                (0.6)   

has been treated by Y. Rogovchenko and Villari in [32]. The authors transferred equation 

(0.6) to the following equivalent system 

 { 
  

                  

  
           

 (0.7)   

and gave conditions to ensure that for every solution         of (0.7) there exists     

such that                 and                 
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Dzurina [10] studied the neutral differential equation 

 (            )
  

  (      )     (0.8)   

            and showed that every nonoscillatory solution   of (0.8) is asymptotic 

to      as          are constants and      

The above mentioned topic has also been treated for higher order nonlinear differential 

equations by several researchers  see Akinyele and Dahiya [1] who studied the  th order 

differential equations with advanced argument 

       (   (    ))            (0.9)   

          and their main result is concerned with solutions of (0.9) which are 

asymptotic to the solutions of           as      and solutions of (0.9) which are 

asymptotic to          . 

Dahiya and Zafer [9] investigated the  th order differential equations with a retarded 

argument 

       (        (    ))            (0.10)   

                    and showed that under certain conditions (0.10) has a 

solution   with the asymptotic property  

   
   

    

    
        

We also mention here that Philos  Purnaras  and Tsamatos [27]  Trench [36] considered 

the  th differential equations not involving the lower derivatives of the form 

                      (0.11)   
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In [27]  sufficient conditions are established in order that  for any real polynomial of 

degree at most            there exists a solution of (0.11) which is asymptotic at 

infinity to this polynomial. Also sufficient conditions are given for every solution of 

(0.11) to be asymptotic at infinity to a real polynomial of degree       

In [14]  the lower derivatives appear explicitly  

         (               )         (0.12)   

Kong showed that under some assumptions every solution   of equation (0.12) satisfies 

         

                       as       

Finally  the neutral  th order differential equation 

 
  

   
            ]    (   (    ))                  (0.13)   

with               was investigated in [25]. The author presented necessary and 

sufficient conditions for (0.13) to have the asymptotic property that 

    
   

    

  
          

exists and is a positive value.  

 

This thesis is organized as follows: in chapter 1  we give a historic review. In chapter 2  

we introduce some definitions  lemmas  properties and notation needed later in the thesis. 

Chapter 3 is about the asymptotic behavior of solutions of (0.1). In chapter 4  we study 

the asymptotic behavior of solutions of (0.2). Chapter 5 is devoted to the asymptotic 

behavior of solutions of (0.3). We conclude our thesis with some recommendations for 

future work. 
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CHAPTER 1 

LITERATURE REVIEW 
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In this chapter  we review some of the works done concerning the asymptotic behavior of 

solutions of differential equations. 

1.1 Second order differential equations 

 

In this section  we present the main theorems concerning the asymptotic behavior of 

solutions for different forms of second order differential equations. 

Definition 1.1 

We write       (    ) if       
    

    
    and       (    ) if     

   
|
    

    
|     

where    
   

|
    

    
|            |

    

    
|  

Definition 1.2 

A solution   of a differential equation is called continuable if   exists for all         

Definition 1.3 

We say that a solution   of a differential equation possesses the property     if  

                as      where     are real constants      

1.1.1 Differential equations not involving the first derivative 

 

Here we consider the following equation 

             (1.1)   
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Theorem 1.4 

Suppose that   satisfies the following conditions: 

(i)   is continuous in                     

(ii) the derivative    exists in   and satisfies           in    

(iii) |      |         | | in    

(iv) ∫    
 

 
           

Then any continuable solution of equation (1.1) possesses the property       

 

In the proof of Theorem 1.4  Cohen [5] used Bellman's method [3] and Gronwall's 

inequality. In the next theorem  Tong [34] used the same method as Cohen and Bihari's 

inequality [4] to generalize Theorem 1.4. 

Theorem 1.5  

Let   be continuous in                    Assume that there is a nonnegative 

continuous function   defined for      and a continuous function   defined for     

such that 

(i) |      |       (
| |

 
) in    

(ii) ∫          
 

 
 

(iii)   is positive and nondecreasing  for      

(iv) ∫
  

    
 

 

 
   



9 

 

Then any continuable solution of equation (1.1) possesses the property      

Remark 1.6 

Theorem 1.5 without assumption (iv) becomes false as it has been pointed out by Kong 

[14] and Meng [20]. They exhibited the following counterexample: 

suppose we have the following equation 

    
 

  
                       

Let                    the conditions (i)  (ii)  and (iii) are satisfied but the 

previous equation has a solution         which is not asymptotic to a nontrivial linear 

function as    . The assumption (iv) is crucial and it has been added by Constantine 

[6]. 

 

In the next theorem [27]  conditions are given which are sufficient for every solution to 

be asymptotic at infinity to a line.  

Theorem 1.7 

Assume that  

|      |        (
| |

 
)          

is satisfied for all                        where   and     are nonnegative 

continuous real-valued functions on        such that  

∫               

 

  

∫            
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g is a continuous real valued function on        which is positive  increasing on       

and such that ∫
  

    
  

 

 
. Then every solution u on the interval            of the 

differential equation (1.1) is asymptotic to a line          for           

                  for      

 and  in addition  we have 

               for    , 

where        are real numbers (depending on the solution  ). More precisely every 

solution   on the interval              of (1.1) satisfies 

                     for    , 

and  in addition   

              for      

where         ∫        (      )  
 

 
  and           ∫   (      )  

 

 
  

1.1.2 Second order differential equations involving the first derivative 

The asymptotic behavior of solutions of the equation 

                       (1.2)   

was studied by Kong [14] in case   belongs to the following class  . 
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Definition 1.8  

A function   is said to belong to   if   is positive  nondecreasing  continuous on    and 

satisfies 

 
    

 
  (

 

 
)           

(1.3)   

It is easy to see that     implies ∫
  

     
   

 

 
 In fact  from (1.3)  letting        

we get  
    

 
       i.e.             which implies 

∫
  

    

 

 

 ∫
  

     

 

 

    

 

In the following we give the main result of [14]. The proof is based on an extension of 

the basic Bihari's inequality [4]. 

Theorem 1.9 

Assume that 

(i)   is continuous in                          

(ii) there exist nonnegative continuous functions       defined for     such that 

|        |         (
| |

 
)          | |   

where          and ∫           
 

 
      . Then every solution   of equation (1.2) 

satisfies 
         

                 as      where         Furthermore  if   does 

not change its sign when              and      then equation (1.2) has solutions 

such that             

 



12 

 

Next we present two theorems concerning different forms of the nonlinearity            

Making use of Bihari's inequality [4] and its derivatives due to Dannan [8]   

S. Rogovchenko and Y. Rogovchenko [29] obtained the following results. 

Theorem 1.10  

Suppose that  

(i)   is continuous in                          

(ii) there exist nonnegative continuous functions          defined for      and 

continuous functions       defined for       respectively such that 

|        |         (
| |

 
)          | |             

where for       the functions       are positive  nondecreasing  ∫           
 

 
  

        and ∫
  

           
  

 

 
  Then any continuable solution of equation (1.2) 

possesses the property      

Example 1.11 

Consider the nonlinear differential equation 

               (
  

     
)            (

     

       
)             

(1.4)   

Here we have  

      
  

    
        

  

    
                              

By Theorem 1.10  all continuable solutions of equation (1.4) have the property      
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The next theorem gives the desired asymptotic behavior only for continuable solutions 

with initial data satisfying additional conditions. 

Theorem 1.12 

Suppose that  

(i)   is continuous in                          

(ii) there exist nonnegative continuous functions       defined for    , and 

continuous functions       defined for       respectively such that 

|        |         (
| |

 
)          | |   

where for        the functions       are positive and nondecreasing  

(iii)                                       for            where the 

functions       are continuous for      

(iv) ∫                       
 

 
 

(v) assume that there exists a constant     such that  

    (           )        ∫
  

           
 

 

 

 
(1.5)   

Then any continuable solution   of equation (1.2), with initial data 

          
        such that |  |  |  |     possesses the property      
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Example 1.13 

Consider the nonlinear differential equation 

 
                                         (1.6)   

For equation (1.6)  we have 

                                                        

To find the value of   we solve the inequality (1.5). The left hand side of (1.5) is equal to 

          (∫        

 

 

 ∫        

 

 

)  
 

 
  

and the right hand side of (1.5) is equal to 

∫
  

     
 

 

 

 

 

  

Thus we need  
 

 
 

 

 
  and this implies that    . We conclude by Theorem 1.12 that all 

continuable solutions of equation (1.6) with initial data satisfying |  |  |  |    have 

the property       
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Remark 1.14 

Theorem 1.4 is a special case of Theorem 1.10 because if we take  

                                                    

then all the hypothesis of Theorem 1.10 are satisfied. The conclusion of Theorem 1.4 

follows from that of Theorem 1.10. 

Remark 1.15 

Theorem 1.5 is a special case of Theorem 1.10 because if we take 

                                                   

then the conditions in Theorem 1.10 are fulfilled. The conclusion of Theorem 1.5 follows 

from that of Theorem 1.10. 

1.1.3 Autonomous differential equations 

 

We consider the autonomous differential equation 

              (1.7)   

The investigation of this type of equations is done by Y. Rogovchenko and Villari [32] in 

the phase plane. Equation (1.7) is equivalent in the phase plane to the following system 

 { 
  

                  

  
           

 
(1.8)   

and the main result is stated as: 
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Theorem 1.16 

Suppose that for the system (1.8) the following conditions hold: 

(i)   is continuous in      

(ii) for any      the function                  

(iii) for any fixed   
  the function           

      is strictly decreasing  

(iv) the function      which satisfies the equation  (        )    is defined for 

              and                  (                ) exists. 

Then for every solution         there exists     such that                 and  

                

Example 1.17  

Consider the system (1.8) with the function 

            
            

Here we have          the graph of       is actually a trajectory of system (1.8)  and 

the system has a family of solutions                    while all other trajectories 

in the phase plane tend to the line                 

1.1.4 Perturbed differential equations 

 

In this section  we consider the equation 

                         (1.9)   

where the functions              and              are continuous. 

Mustafa [23] established the existence of a global solution   of equation (1.9) that admits 

the representation                as      where              for       
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Theorem 1.18 

Assume that the nonlinearity   in (1.9) satisfies the inequality 

|      |      | |            

where                  is a continuous function that is nondecreasing in the 

second argument. Suppose further that there exists a number     such that 

 
∫      |    |         

 

  

 
(1.10)   

where              for       Then (1.9) has a solution   defined in        with the 

asymptotic representation                         

Example 1.19  

 Fix            ]  Let            be a nonnegative continuous function. Introduce 

  and    by the formulae        ∫             
 

  
 and    

 

 
(  

 

 
)
 

    

The nonlinearity        of the Emden-Fowler equation  

     
 

         ] 
              (1.11)   

satisfies the hypotheses of Theorem 1.18. In fact  condition (1.10) reads as 

∫
 

  

 

  

(
      

        
)

 

   ∫
 

  

 

  

(
      

    
)

 

   ∫
 

  

 

  

(  
 

    
)
 

  

 ∫
 

  

 

  

(  
 

 
)
 

    
 

  
(  

 

 
)
 

    

It is easy to check that equation (1.11) has the exact solution               for 
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1.1.5 Quasilinear differential equations 

 

In this section  we consider a class of second order quasilinear ordinary differential 

equations of the form: 

  |  |            | |      (1.12)   

where we assume that       are constants  and             is continuous and  

positive on      . We call equation (1.12) super-homogeneous if     and sub-

homogeneous if      

The next theorem due to M. Mizukami  M. Naito and H. Usami [22] provides a necessary 

and sufficient condition for continuable solutions of (1.12) to have the property      

Theorem 1.20 

Any continuable solution of (1.12) has the property     if and only if  ∫            
 

 
 

Example 1.21 

Let      Consider equation (1.12) with        : 

  |  |          | |              (1.13)   

Then any continuable solution of (1.13) has the property     if and only if          

1.1.6 Neutral differential equations 

 

Neutral equations are equations in which the delay appears in the highest derivative. One 

type of neutral differential equations is the following: 

 (            )
  

  (      )     (1.14)   
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where                     is continuous         and      Before we 

mention the main result in [10]  we give the definition of oscillatory and nonoscillatory 

solution. 

Definition 1.22  

A nontrivial solution is called oscillatory if it has arbitrarily large zeros  otherwise  it is 

called nonoscillatory.  

Using proper integral inequalities  Dzurina [10] proposed the following theorem 

concerning the asymptotic behavior of solutions of (1.14). 

Theorem 1.23  

Suppose that           and: 

(i)   is continuous in                               

(ii) there exist a nonnegative continuous function   defined for         and a 

continuous function   defined for     such that 

|      |       (
| |

 
)   

where for      the function   is positive  nondecreasing  ∫          
 

  
 and 

∫
  

    
  

 

  
  Then every nonoscillatory solution   of (1.14) possesses the property      
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Example 1.24  

Consider the nonlinear neutral differential equation 

 (     
 

 
      )

  

 (
 

  
 

 

      
)  (  

  

       
)  

     

        
    (1.15)   

where      Set       (
 

  
 

 

      
) and      

  

    
. Then applying Theorem 1.23 

we deduce that any nonoscillatory solution   of (1.15) possesses the property      We 

observe that 

       
 

 
 

is a solution of (1.15) which is clearly asymptotic to           

1.2 Higher order differential equations 

 

In this section  we present some results concerning the asymptotic behavior of solutions 

for different forms of  th order differential equations.  

1.2.1 General homogeneous equations  

 

The asymptotic behavior of solutions of the equation 

         (               )         (1.16)   

was studied by Kong [14]. 
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Theorem 1.25 

Assume that  

(i)   is continuous in            

(ii) |                 |  ∑        
   
   (

|  |

      
)  for       

where                 are nonnegative and continuous on        ∫           
 

 
 

and                   

Then every solution   of equation (1.16) satisfies 
         

                     

 as       where         Furthermore  if    does not change its sign when          

             and      then equation (1.16) has solutions such that         

           

Remark 1.26 

If      then we obtain the result of Theorem 1.9. 

1.2.2 Equations not involving the lower order derivatives  

 

The equation  

 
                   

 

(1.17)   

which is a special case of (1.16) was studied by Philos  Purnaras  and Tsamatos [27]  In 

Theorem 1.27  sufficient conditions are given for every solution to be asymptotic at 

infinity to a real polynomial of degree at most      
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Theorem 1.27 

Assume that  

|      |        (
| |

    
)          

is satisfied for all                      , where    and     are nonnegative 

continuous real-valued functions on        such that  

∫                  

 

  

∫               

 

  

 

g is a continuous real valued function on        which is positive, increasing on       

and such that ∫
  

    
  

 

 
. Then every solution u on the interval            of the 

differential equation (1.17) is asymptotic to a polynomial                
     for 

          

                   
       for       

and  in addition  we have 

        ∑                  
        

   

   

  

where               are real numbers (depending on the solution  ). More precisely 

every solution   on the interval             of (1.17) satisfies   

                                     for      
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and  in addition  

        ∑                                 
     for                

 where    
 

  
*                 ∫

          

        
  (      )  

 

 
+              

Remark 1.28 

If      then we obtain the result of Theorem 1.6. 

1.2.3 Higher order differential equations with retarded argument 

 

Consider the equation 

       (        (    ))        (1.18)   

where               is continuous    and   are continuous on                 

and                

The following theorem [9] is about the asymptotic behavior of solutions of (1.18). 

Theorem 1.29  

Assume that   is a nonnegative continuous function on        and     is continuous 

for     and nondecreasing for     such that |        |       (
| |

     ]   )  and 

∫ |    |     
 

 
 If ∫          

 

 
 then equation (1.18) has a solution   with the 

asymptotic property  
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Example 1.30 

Consider the equation  

            (    ⁄ )                                 (1.19)   

so that                               ⁄    and  (     (    ))          We 

may take         and            According to Theorem 1.29  equation (1.19) has a 

solution asymptotic to           Indeed              is such a solution. 

1.2.4 Higher order differential equations with advanced arguments 

 

We consider the equation  

       (   (    ))        (1.20)   

where              is continuous    and   are continuous on       with 

         . 

Theorem 1.31 [1] states that some solutions of (1.20) are asymptotic to polynomials 

under certain conditions.  

Theorem 1.31 

Assume that the following hold: 

(i)      is a continuous and nonnegative function on       and        for      

(ii) ∫ (    )
       

 
                

(iii) |           |      | (    )|
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(iv) ∫ |    |     
 

 

Then equation (1.20) has 

(a) solutions which are asymptotic to the solutions of            as      

(b) solutions which are asymptotic to           provided      

Example 1.32  

Consider the third order equation 

             ⁄            (1.21)   

Here   (   (    ))         ⁄        so that                             

and    
 

 
   The hypotheses of Theorem 1.31 are satisfied. The conclusion (a) therefore 

holds. A solution of equation (1.21) is given by               

Example 1.33  

Consider the fourth order equation  

                            (1.22)   

We clearly see that 

| (   (    ))|  |
   

      
      |  

   

      
|      |  

     
   

      
                   and      

The hypotheses of Theorem 1.31 are satisfied and therefore the conclusion (b) holds.  

A solution of equation (1.22) is given by          
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Example 1.34  

Consider the  th order equation  

                   ⁄            (1.23)   

Here we have | (   (    ))|         |   ⁄      |  so that               

           
 

 
 and           The hypotheses of Theorem 1.31 are satisfied and 

the conclusion therefore implies that there exist solutions of (1.23) which are asymptotic 

to the solution of            as      

1.2.5 Higher order neutral differential equations 

 

The neutral differential equation 

 
  

   
            ]    (   (    ))     (1.24)   

is considered under the following conditions:                     is 

nonnegative on              nondecreasing in          and              . In 

[25]  the author gives a sufficient and necessary condition for (1.24) to have the 

asymptotic property        
    

            exists and is a positive value. 
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Theorem 1.35 

Let   be an integer with         . Then equation (1.24) has a solution   such 

that        
    

    exists and is a positive value if and only if 

∫       

 

  

          ]         

for some    . 

1.2.6 Differential equations involving disconjugate differential operators 

 

We consider the equation 

                  (1.25)   

where     and    denotes the disconjugate differential operators 

   
 

     

 

  

 

       

 

  
 

 

  

 

     

 

  

 

     
    

We assume that              and              are continuous with  

                Put        
    

     
        

 

     

 

  
                and let 

                         and       

   (             )  ∫                           

 

 

  

For convenience of notation we let 
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In [20]  Meng proposed the following theorem about the asymptotic behavior of solutions 

of (1.25).  

Theorem 1.36  

Suppose that ∫                   
 

 
 and that there is a nonnegative continuous 

function    and      and a continuous function   defined  for     such that 

(i) ∫               ∫      |    |     
 

 

 

 
 

(ii) for       is positive nondecreasing and ∫
  

    
   

 

 
 

(iii) |      |       (
| |

       
)  for          

Then every solution   of (1.25) satisfies        (       ) as      and  

               as      

Remark 1.37 

If     and          for                 then equation (1.25) reduces to (1.1) and 

we get the result of Theorem 1.5. 
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CHAPTER 2 

PRELIMINARIES 
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In this chapter  we present some definitions  lemmas  properties and notation which will 

be used in our theorems later.  

2.1 Spaces of Integrable and Continuous Functions  

 

In this section  we present the definition of the space of  -integrable functions  and the 

space of continuous functions. We also give a characterization of the latter space. 

Definition 2.1 [13] 

We denote by                the space of Lebesgue real-valued measurable 

functions   on       for which ‖ ‖    where 

‖ ‖  (∫|    |   

 

 

)

 
 

        

Definition 2.2 [13] 

Let     ] be a bounded interval and let            We denote by       ] a space of 

functions which are   times continuously differentiable on     ] with the norm 

‖ ‖   ∑‖    ‖
 

 

 

   

∑    
      ]

|       |            

 

   

 

In particular  for    ,       ]       ] is the space of continuously functions   on  

    ] with the norm 

‖ ‖     
      ]

|    |  
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Lemma 2.3 [13] 

The space       ] consists of those and only those functions   which can be represented 

in the form   

 
         

       ∑         

   

   

  

 

(2.1)  

where        ]                  are arbitrary constants  and 

    
       

 

      
∫         

 

 

        

It follows from (2.1) that 

            
       

  
              

2.2 Riemann-Liouville Fractional Integral and Fractional Derivative 

 

In this section  we introduce the definition of the Riemann-Liouville fractional integral 

and fractional derivative on a finite interval of the real line. 

Definition 2.4 [13] 

The Gamma function      is defined by  

      ∫     

 

 

               
(2.2)  

where                   
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Definition 2.5 [13] 

The Riemann-Liouville fractional integral    
   of order     is defined by 

(   
  )    

 

    
∫

      

        
 

 

 

           

provided that the right hand side exists. It is called the left-sided Riemann-Liouville 

fractional integral. 

Definition 2.6 [13] 

The Riemann-Liouville fractional derivative    
   of order     is defined by 

(   
  )    (

 

  
)
 

(   
    )    

 
 

      
(
 

  
)
 

∫
      

          
     ]        

 

 

 

provided that the right hand side exists. If         then  

   
                

                

Property 2.7 [13] 

If        then for                    the relation 

 ( 
  
 

   
  )     

  
   

      
(2.3)  

hold almost everywhere on     ]   
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2.3 Caputo Fractional Derivative 

 

In this section  we present the definition of Caputo fractional derivative. 

Definition 2.8 [13] 

The fractional derivative     
   of order     on     ] is defined via the above 

Riemann-Liouville fractional derivative by 

     
       (   

 [     ∑
       

  

   

   

      ])      

where     ]    for          for       

Theorem 2.9 [13] 

Let     and     ]     If          ]  then the Caputo fractional derivative 

     
       exists almost everywhere on     ] and is represented by 

     
        

 

      
∫

         

          
 (   

      )   

 

 

  

The next lemma provides a formula for the composition of the fractional differentiation 

operator with the fractional integration operator. It shows that fractional differentiation is 

not the right inverse operator of the fractional integral in general. 

Lemma 2.10 [13] 

Let     and     ]     If         ]  then 
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 (    
  

   
  )         ∑

       

  
           

   

   

 (2.4)  

2.4 Two Important Lemmas 

 

In this section  we present the two lemmas which are very useful in our proofs. 

Lemma 2.11 [17] 

If          then for any     we have 

     ∫                     

 

 

  (2.5)  

for some positive constant    independent of    given by 

                    (  
 

 
)     (2.6)  

Lemma 2.12 [17] 

Let         and      Then there exists a positive constant          such that 

 ∫         ,
            

                         
          

 

 

 
(2.7)  
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CHAPTER 3 

ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF      

A CAUCHY TYPE PROBLEM  
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In this chapter  we consider the following problem: 

 {
      

 
        (      )             

                                                          
    

 (3.1)   

where     
 

  is the fractional derivative in the sense of Caputo of order 

                where               is continuous       for  

              and          

In Theorem 3.1  we assume that           . 

Theorem 3.1 

Suppose that  

(i)   is continuous in                        

(ii) there exists a nonnegative continuous function   defined for          and a 

continuous function   defined for     such that 

|      |       (
| |

    ) in    

where for      the function   is positive  nondecreasing   ∫
  

    
   

 

 
 and 

       (       )            Then any continuable solution   of (3.1) 

satisfies 

   
   

 
    

    
 

    

      
  

 

 



37 

 

Proof: 

We split our proof into two steps.  

Step 1: 

In this step  we want to show that there exists       such that 
|    |

        for any 

continuable solution   of (3.1).  

By applying     
  to both sides of the equation in (3.1) we get 

      
  

   
 

           
   (      )     

Since             then from Lemma 2.10 and Definition 2.5 we obtain the Volterra 

integral equation associated to (3.1): 

      ∑
  

  
      

      
   (      ) 

   

   

 
 (3.2)   

It follows that 

|    |  ∑
|  |

  
       

 |  (      )|

   

   

  

Making use of the assumption on   in Theorem 3.1 and the fact that      we get 

|    |  ∑
|  |

  
   

    

    
∫     (

|    |

    
)
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Thus we see that 

|    |  (∑
|  |

  

   

   

)      
    

    
∫     (

|    |

    
)

 

  

      

      *(∑
|  |

  

   

   

)  
 

    
∫    

 

  

 (
|    |

    
)  +  

 (3.3)   

Let 

      ∑
|  |

  

   

   

 
 

    
∫     (

|    |

    
)   

 

  

 
 (3.4)   

Then 

                       |    |                 

 

 (3.5)   

Differentiating both sides of (3.4) yields 

            
 

    
     (

|    |

    
)  

By (3.5) and the assumption that   is nondecreasing we have 

       
 

    
     (    ) 

or 

                     
     

 (    )
 

 

    
          

 (3.6)   

We integrate both sides of (3.6) and obtain 
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 ∫
  

    
 

 

    
∫                

 

  

    

     

  (3.7)   

Denoting by      an antiderivative of 
 

    
 it appears from (3.7) that 

 (    )   (     )  
 

    
∫       

 

  

 

Note that        exists and is monotone increasing because   is monotone increasing. 

Therefore 

        ( (     )  
 

    
∫      

 

  

) 

 
    ( (     )  

 

    
∫       

 

  

)      
 (3.8)   

where    is a positive real number. 

 Since ∫       
 

  
 is bounded   (     )  

 

    
∫       

 

  
 is in the image of  . The right 

hand side of (3.8) is well defined and 

         

Therefore in view of (3.3) the constant    is also a bound of   
|    |

    
, i.e. 

 

|    |

    
     

 (3.9)   
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Thus  

 
| (      )|       (

|    |

    
)             

 (3.10)   

Step 2: 

In this step  we want to show that         converges to infinity as      

              By differentiating (3.2) we get 

         ∑
  

      
      

        
     (      )

   

   

  
 (3.11)   

For the first term in the right hand side of (3.11) we see that 

∑
  

      
      

     

   

   

         

For the second term we have 

|    
     (      )|      

   |  (      )|           
                  

              

  
       

      
          as       

where                         (  
    

   
)     is the constant defined by (2.6) 

with   replaced by     and   replaced by       

Therefore            as                  
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Now  we want to prove that           converges to a finite limit (different from zero) as 

      

We have from (2.3) and (3.2)  

                    
       (      )  

 (3.12)   

We want to show that the limit of the integral in (3.12) is equal to zero.  

For this integral we have 

|    
       (      )|      

     |  (      )|           
         

           
                              

where                       (  
    

     
)     is the constant defined by (2.6)  

with   replaced by       and   replaced by       

 Thus  

    
   

    
       (      )  

Hence  from (3.12) we see that 

   
   

                  

By (3.9) and    Hopital’s rule  it follows that 

   
   

    

    
    

   

         

      
 

    

      
  

The proof is complete. 
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Example 3.2  

Suppose that we have the following fractional differential problem: 

 
{
 (   

  
 

 
  )            

  
                

          
                                                         

 
 (3.13)   

where          and        For problem (3.13)  we have 

                  
  
   

Therefore all conditions of Theorem 3.1 are satisfied so any continuable solution   of 

(3.13) satisfies the asymptotic property  
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CHAPTER 4 

ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF       

A RETARDED CAUCHY TYPE PROBLEM 
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In this chapter  we are concerned with the following problem: 

 {
  (     

 
  )      (   (    ))                

                                                                       
   

(4.1)   

where     
 

  is the fractional derivative in the sense of Caputo of order  

               and                              are continuous with 

       and                    for               and       . The 

function      is called a retarded argument.  

In Theorem 4.1  we assume that           . 

Theorem 4.1:  

Suppose that 

(i)   is continuous in                        

(ii) there exists a nonnegative continuous function   defined for         and a 

continuous function   defined for     such that 

| (   (    ))|       (
| |

(    )
   ) in    

where for      the function   is positive  nondecreasing ∫
  

    
   

 

 
 and 

        (       )            Then any continuable solution   of (4.1) 

satisfies 
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Proof:   

By applying     
  to both sides of the equation in (4.1) we get 

      
  

   
 

           
  (   (    ))    

and since             then the last equation may be written as 

      ∑
  

  

   

   

      
      

  (   (    ))  (4.2)   

It follows that 

|    |  ∑
|  |

  
       

 

   

   

|     (    )|  

From the assumption on  and the fact that     we obtain 

|    |  ∑
|  |

  
   

    

    
∫     (

| (    )|

(    )
   )

 

  

   

   

     

and for        we see that 

|    |  (∑
|  |

  

   

   

)      
    

    
∫     (

| (    )|

(    )
   )

 

  

        

or 

 |    |      *∑
|  |

  

   

   

 
 

    
∫    

 

  

 (
| (    )|

(    )
   )  +   

(4.3)   
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Let 

      ∑
|  |

  

   

   

 
 

    
∫    

 

  

 (
| (    )|

(    )
   )    

(4.4)   

We see from (4.3) that 

 |    |                (4.5)   

If we choose       so large that         for      then it follows from (4.5) and the 

increasing nature of      that 

| (    )|  (    )
   

           

Differentiating both sides of (4.4) yields 

      
 

    
     (

| (    )|

(    )
   )  

Since   is nondecreasing we have for      

       
 

    
     (    ) 

or  

    
     

 (    )
 

 

    
            

If      then we see that 

 ∫
  

    
 

 

    
∫       

 

  

    

     

 
(4.6)   
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Denoting by      an antiderivative of 
 

    
 it appears from (4.5) that 

 (    )   (     )  
 

    
∫      

 

  

  

Note that     exists and is monotone increasing because   is monotone increasing. 

Therefore 

         (         
 

    
∫      

 

  

) 

 
    (         

 

    
∫       

 

  

)      

 

(4.7)   

where    is a positive real number.  

Notice that the range of   is open and ∫       
 

  
 can be made arbitrarily small by 

increasing the value   . Thus  (     )  
 

    
∫       

 

  
 is in the image of   for 

   sufficiently large and thus the right hand side of (4.7) is well defined. Therefore  

             and in view of (4.5) the constant    is also a bound for  
|    |

     i.e. 

 
|    |

    
          (4.8)   

Now  we have by (4.2) and (2.3)  

                   
      (   (    ))  
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We can show that         converges to infinity as                            

converges to a finite limit (different from zero) as      

and      
   

    
      (   (    ))    with the same argument as in Theorem 3.1  so we 

have 

   
   

                  

By (4.8) and   Hopital’s Rule  it follows that 

   
   

    

    
    

   

         

      
 

    

      
  

The proof is complete. 

 

Example 4.2 

Suppose that we have the following fractional differential problem: 

 
,
 (   

  
 

 
  )            

  
  

  (√ )

  (√ )    
        

          
          

                                              

 
(4.9)   

where             and       For problem (4.9)  we have 

     
  

    
            

  
       √   

Therefore all conditions of Theorem 4.1 are satisfied so any continuable solution   of 

(4.9) satisfies the asymptotic property  
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CHAPTER 5 

ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF      

A NEUTRAL CAUCHY TYPE PROBLEM  
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In this chapter  we are interested in the following problem: 

 {
      

 
  (            )   (      )           

                                                              
   

 (5.1)   

where     
 

  is the fractional derivative in the sense of Caputo of order  

                          where               is continuous  

     for                and         In Theorem 5.3  we assume that  

          . 

In what follows  we shall use the following lemma  which gives us useful information 

about properties of nonoscillatory solutions of (5.1). 

Lemma 5.1 [10] 

Let                    eventually and define 

            
        

    
                       (5.2)   

If                then             
 

    
  

Proof: 

Suppose that       . Then     and we see that 

       
   

     
 

   
 

and  

       
   

     
 

   
  

Assume that  
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    ̅  
    

   
 

and 

       
   

        
   

 (  )  
    

   
  

where            We shall prove that          

(a) Suppose that         and     . It follows from (5.2) that for any     

           
        

    

      

   
  

Taking     ̅ and letting      we get 

  
    

   
  

      

   
   

That is 

           

Setting   
       

  
 we are led to                     . This is a contradiction. 

(b) Suppose that         and     . Then (5.2) implies 

           
      

   
      

Putting      and letting      we get 

  
    

   
  

      

   
  

That is 

           

Setting   
       

  
 we are led to                    . This is a contradiction. 

The proof is complete. 
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Remark 5.2 

All inequalities in the proof of Theorem 5.3 are assumed to hold eventually  i.e. they are 

satisfied for all sufficiently large     

Theorem 5.3 

Suppose that  

(i)   is continuous in                         

(ii) there exists a nonnegative continuous function   defined for         and a 

continuous function   defined for     such that 

|      |       (
| |

    ) in    

where for      the function   is positive  nondecreasing ∫
  

    
   

 

 
 and 

        (       )            Then any nonoscillatory continuable solution 

  of (5.1) satisfies 

   
   

 
    

    
 

    

           
  

Proof: 

By applying     
  to both sides of the equation in (5.1) we get 

    
  

   
 

 (            )      
  (      )  

and since             then the Volterra integral equation associated to (5.1) is: 
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       (      )  ∑
  

  
      

  

   

   

    
   (      )   (5.3)   

 Let  

                     (5.4)   

 

and since      is a nonoscillatory solution of (5.3) thus we have  

|    |  |    |  

and (5.3) becomes  

     ∑
  

  
      

  

   

   

    
   (      )  

It follows that 

|    |  ∑
|  |

  
      

      
 

|  (      )|

   

   

  

From the assumption on   and the fact that     we obtain 

|    |  (∑
|  |

  

   

   

)      
    

    
∫     (

|    |

    )

 

  

       

                         *(∑
|  |

  

   

   

)  
 

    
∫    

 

  

 (
|    |

    
)  +    (5.5)   

 

                      *(∑
|  |

  

   

   

)  
 

    
∫    

 

  

 (
|    |

    
)  +  
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Let 

      ∑
|  |

  

   

   

 
 

    
∫     (

|    |

    
)   

 

  

  (5.6)   

 

We see from (5.5) that 

 |    |                
 (5.7)   

Differentiating both sides of (5.6) gives  

       
 

    
     (

|    |

    
)   

Since   is nondecreasing we have for     

       
 

    
     (    )  

or 

     

 (    )
 

 

    
           

Then we see that 

 ∫
  

    
 

 

    
∫       

 

  

    

     

  (5.8)   

Denoting by      an antiderivative of 
 

    
 it appears from (5.8) that 

 (    )   (     )  
 

    
∫      

 

  

  

Note that     exists and is monotone increasing because   is monotone increasing.  
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Therefore 

         ( (     )  
 

    
∫      

 

  

) 

     ( (     )  
 

    
∫       

 

  

)       (5.9)   

where    is a positive real number.  

Since ∫       
 

  
 is bounded   (     )  

 

    
∫       

 

  
 is in the image of  . The right 

hand side of (5.9) is well defined. Therefore               and in view of (5.7) the 

constant    is also a bound for  
|    |

     i.e. 

 

|    |

    
     

 (5.10)   

We have from (2.3) and (5.3)  

                   
       (      )  

Now  we can show that          converges to infinity as                  

          converges to a finite limit (different from zero) as      and 

    
   

    
       (      )    in exactly the same way we have done in the previous proofs  

so we find  

   
   

                  

By (5.10) and   Hopital’s Rule  it follows that 
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Now we put      
    

      then (5.2) implies  

           
        

    
        

where      
    

    . Lemma 5.1 insures that  

     
   

    

    
 

    

           
  

The proof is complete. 

 

Example 5.4 

Suppose that we have the following fractional differential problem: 

 
,
   

  
 

√ (     
 

 
      )          

  
 

  

     
        

          
                                                                                      

 
 (5.11)   

where          and       For problem (5.11)  we have 

     
  

    
             

  
   

therefore all conditions of Theorem 5.3 are satisfied so any nonoscillatory continuable 

solution   of (5.11) satisfies the asymptotic property  
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FUTURE WORK  

In the thesis  we have restricted ourselves to Caputo fractional derivative. It will be 

interesting to consider other types of fractional derivatives (Riemann-Liouville  Hilfer  

Hilfer-Hadamard …etc). Also it is important to consider different conditions on 

nonlinearities other than the ones we have considered. Further studies can be carried out 

on different forms of equations (Laplacian  autonomous  perturbed …etc). 
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