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Changing position of Center of Gravity (CoG) for an aerial vehicle is a challenging part 

in navigation and control of such vehicles. In this thesis, the work done to improve all-

accelerometers based inertial navigation systems is presented. A novel approach using 

such setup is explored, analyzed, and extended based on an issued patent. The thesis 

provided improved method for estimating the position of CoG, so that control rules can 

be updated accordingly to achieve better trim conditions for the air vehicle. The 

accelerometers’ readings were used to find the angular velocity/acceleration using 

Kalman Filter (KF), Extended KF (EKF) and Unscented KF (UKF). The angular velocity 

was then used to extract the vehicle’s attitude. Standard Recursive Least Squares (RLS), 

Normalized Least Mean Squares (NLMS) and Weighted RLS (WRLS) Identification 

techniques were investigated and used in estimating the position of CoG. A gravity 

compensation technique was implemented to correct the acceleration readings. Along 

with the angular velocity/acceleration and vehicle’s attitude, the corrected 

accelerometers’ measurements were used to find the inertial information of the vehicle 

and its CoG position under the influence of varying gravity effect using an identification 

scheme. 
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 ملخص الرسالة
  
  

  يزن محمد سليمان الرواشدة :ا�سم الكامل
  

  نظام م#حة متطور با!عتماد على حساسات التسارع الخطي :عنوان الرسالة
  

  التحكم و ھندسة النظم التخصص:
  

  2014أيار  :تاريخ الدرجة العلمية
 

للمركبات الطائرة.  في ھذه الرسالة,  يتم تقديم العمل الذي اسھم في  التحكم و الم�حةان تغير مركز الثقل يعد تحديا كبيرا امام 

بشكل رئيس. لقد تم التوصل إلى حل فريد باستخدام ھذا الحساس   الخطي تطوير نظام الم�حة المعتمد على حساس التسارع

فيھا. إن ھدف ھذه الرسالة ھو زيادة دقة تحديد مركز  المقترحةيث تم تطوير و تحليل النتائج اعتمادا على براءة اختراع ح

لقد تم استخدام قراءات حساسات  الثقل بحيث يتسنى تحديث أنظمة التحكم تبعا لذلك مما يساعد في تحسين استقرار المركبة.

تم بعد ذلك استخدام السرعة الدورانية  KF, EKF, UKF. التسارع الخطي في ايجاد السرعة و التسارع الدورانيين باستخدام

في ايجاد مركز الثقل. كما تم استخدام طريقة لتقليل RLS, WRLS, NMLS  في ايجاد وضعية المركبة. كما تم التحقق من

م استخدام وضعية أثر الجاذبية ا�رضية على قراءة الحساس المستخدمة. الى جانب استخدام السرعة و التسارع الدورانيين فقد ت

المركبة و قراءات حساسات التسارع الخطي المعدلة في ايجاد معلومات الم�حة و مركز الثقل تحت تأثير الجاذبية ا�رضية 

  System Identification. المتغيرة باستخدام طريقة
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1 CHAPTER 1 

I�TRODUCTIO� 

Dynamic equations of an aircraft vehicle are normally derived under the assumption of 

known and stationary Center of Gravity (CoG). Variations in loads due to picking 

up/dropping off loads or consuming fuel will result in a change in both the vehicle’s mass 

and position of CoG. This immigration in the position of CoG will introduce dynamic 

couplings to the flight dynamics [1]. This dynamic coupling will appear in the angular as 

well as the linear accelerations and in the lateral and longitudinal motions [2]. According 

to FAA [3], a CoG limits envelope is determined for each craft, in which a safe and good 

flight conditions can be maintained even under CoG position changes. Different 

approaches to estimate the position of CoG have been reported in literature, for example 

in [2] an adaptive weighted data fusion based on optimal weight distribution principle, 

and an identification technique based on neural network were utilized to improve the 

effectiveness of such estimation. In [1], the change in CoG position was modeled to 

describe its effect on an aircraft under heavy load airdrop. While in [4], both static and 

dynamic measurements were used to estimate the position of CoG of a helicopter on 

ground and in-flight respectively. The dynamic approach of [4] depends on finding the 

modal frequencies by solving an eigenvalue problem were any change in a certain modal 

frequency will be an indication of a CoG position change which can be determined 

through monitoring that particular frequency. Changing position of CoG in helicopters 
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was also the main concern of [5], in which an estimation algorithm, based on Extended 

Kalman Filter (EKF), consists of a rigid body aircraft motion feedback and an internal 

model of the helicopter was presented. This estimation algorithm was successful in 

estimating the CoG position within 1 second and its weight within 10 seconds provided 

that sufficient motion is present to ensure the observability of the parameters. Also, 

different ways of finding CoG position and the moment of inertia of a spacecraft on the 

ground were reported in [6]. 

In this thesis, a new approach to estimate the CoG position based on an All-

accelerometers Inertial Measurement Unit (IMU) as proposed in [7] is evaluated and 

improved.   

Having an estimate of CoG position, it then can be transferred to a vehicle management 

system, such as Active Center of Gravity, that could transfer  fuel among the fuel tanks to 

adjust the position of CoG as required during flight [2], or to update the control approach. 

In [8], different controllers, namely linear PD, feedback linearization, and adaptive 

controllers, were tested in controlling a Quadrotor subjected to various disturbances 

including the change in CoG position where the first two controllers failed to achieve the 

desired responses. 

It is obvious that the change in the position of CoG greatly affects the behavior of air 

vehicles during maneuvering or disturbances. It sometimes may lead to instability, which 

will endanger the safety of lives onboard or at least the asset itself in the case of 

unmanned aerial vehicles (UAV). It is true that adaptive, and robust control schemes can 

handle such cases in a very good way, but still there is a need to estimate the position of 
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CoG which will be reflected as more fuel saving and increased maneuverability if the 

vehicle still controllable. The previous claim depends for sure on the quality of the 

estimation by which the position of CoG is provided.  

For aerial vehicles, measuring the attitude, velocity, and acceleration are one of the 

important measurements a measuring suite must provide. Although it is true that different 

types of sensors may be used to measure the same quantity, it is the design requirements 

that make a certain type favored over others. For attitude measurements, inclometers and 

gyroscopes are the first choices most the time. For velocity one may use the 

accelerometer and integrates its measurements with respect to time to retrieve the 

velocity provided that the initial velocity is known. Different sensors may be used to 

measure directly or indirectly the same physical quantity and it is the responsibility of the 

designer to choose among the available alternatives the best one that meets the 

requirements. 

It is the main focus of this thesis to show how the usage of only linear accelerometers can 

be possible to retrieve the vehicle’s dynamics, hence the name All-accelerometers. It 

should be noted that it is not intended here, by any means, to set up a comparison 

between different types of sensors that can be used in navigation. The feasibility of using 

a certain type of accelerometers in this thesis depends on the precision it can provide as 

will be stated in Chapter 9. 

In general, Inertial Measurement Units (IMUs) are used in aerial vehicles to retrieve the 

vehicle dynamics, so the better this IMU is, the better the measurement it can provide. As 

will be shown later in chapter three, most IMUs consist of a number of gyros, 
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accelerometers, inclometers, magnetometers that may vary according to the application. 

The IMU unit is one block within the Inertial Navigation System (INS) that is actually 

used in navigation, and the fact is clear again: the better the IMU is, the better the INS 

will be.  

In All-accelerometer based IMUs, the only used sensors are linear accelerometers. The 

accelerometers’ measurements are affected by the gravity effect. So in this thesis, the 

usage of only linear accelerometers to build an IMU that is capable of compensating for 

varying gravity acceleration without external aids, providing the kinematics of CoG, and 

providing redundancy on both the elements level and the IMU level is presented.  

The previous objectives were formulated in an identification scheme, where the inertial 

acceleration, CoG kinematics, and acceleration due to gravity are to be determined. Such 

a problem formulation has not been reported in literature up to the point this thesis has 

been written as far as the author is aware of.   

This thesis is organized as follows:  

Chapter two will put forward some important terminology that is used in this work. In 

addition, Frames used in navigation and the transformation among them will be 

presented. Finally, the chapter will conclude by providing the dynamics equations that 

can be used in conjunction with the thesis’s results in control design applications. 

Chapter three provides a survey of some efforts done so far in the area this thesis is 

involved in, namely: CoG position estimation, Gravity compensation, and All-

accelerometers INS. 
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Chapter four opens the door in front of the reader to meet the set of dynamic equations 

used to describe the motion of a rigid body in 3D space, based on the rigid body 

dynamics theory. In addition, it exposes the usage of SimMechanics library in this work. 

Chapter five presents the first main block in this thesis, namely: the development of an 

IMU based on all-accelerometers method without introducing the gravity effect into the 

scene, and only an estimation of the position of the CoG along with the vehicle inertial 

acceleration are shown. 

Chapter six will add another piece into the scene, which is the design of different filters 

which can be used within the proposed IMU to retrieve a better estimation of the vehicle 

dynamics. 

In Chapter seven, the extension of the previous formulation to include gravity effect will 

be presented. The identification problem formulation presents the estimation of CoG 

Kinematics, Gravity Compensation, and the Inertial Acceleration of the vehicle is also 

shown. 

Chapter eight will handle the identification problem formulated in Chapter seven in more 

detail. Different techniques are used and the results are compared to each other.  

In Chapter nine, different parts building up the thesis body are brought together and 

simulation results show the performance of the proposed IMU. 

Finally, Chapter ten will propose future extensions for the current achievements and will 

state some conclusions. 
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The main objectives of this thesis are listed next: 

1- Investigate a suitable filter technique to estimate vehicle’s angular velocities from 

All-accelerometers measurements. 

2- Compensating for the gravity effect which was ignored in [7] and the following 

will be investigated: 

a. Gravity compensation without knowing the Center of Gravity (CoG) 

position. 

b. Gravity compensation with knowing the Center of Gravity (CoG) position. 

3- Use different system identification methods to improve the estimation of the 

position of the Center of Gravity (CoG). 

4- Investigate the relation between the CoG position and Gravity compensation in an 

Identification scheme. 
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2 CHAPTER 2 

AIR VEHICLES �AVIGATIO� 

Navigation can be defined as the ability to move an object between two points provided 

the information about its acceleration, orientation and time are available. There are basic 

types of navigation that one may encounter, namely: Pilotage, Dead Reckoning, Celestial, 

Radio, Radar, and finally Satellite navigation. It is worth noting that these types can be 

combined to enhance the performance of a particular type. 

Inertial navigation is a dead reckoning type of navigation system that computes its 

position based on inertial motion sensors, i.e. gyroscopes and accelerometers. Once the 

initial position is provided, the system keeps tracking it through the usage of available 

inertial measurements. The Inertial Navigation System (INS) is immune against weather 

changes and it does not depend on external aids in its operation as a basic mean, rather it 

can be considered as self-contained, so that it cannot be jammed or detected. The most 

serious problem it has is that its performance may deteriorate with time because of 

accumulation of errors caused by bias instability and drifts, or due to the numerical 

technique used to retrieve some variables from their time derivatives [9]. Inertial 

navigation systems must therefore be frequently corrected using values from some other 

types of navigation systems.  

The main advantages of the Inertial Navigation systems is the fact of being self-

contained, undetectable, and immune against signal jamming and unavailability of GPS 
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information. It is off course evident that other methods still have attractiveness and 

advantages acting side by side to their disadvantages, but it is for sure not intended in this 

thesis to make a comparison between different types and techniques available for 

navigation systems. One may imagine the possibility of having a navigation system that 

is completely autonomous and still have the ability to fuse data from outside sources to 

enhance its performance, to justify the importance of such types. 

It is clear that for locating an object, a reference is needed which can be inertial “Fixed” 

or non-inertial “Moving” frame. So, it is a must to describe the frames of reference 

commonly used in flight navigation and the relations between them. 

2.1 Frames of Reference used in �avigation 

The main types of frames of reference used in navigation, control, guidance may differ 

according to the type of object or vehicle being dealt with and the assumptions made too. 

In some cases, the number of frames used may vary as well, so it is preferable to restrict 

the context on those types mainly used in air vehicles. The main frames used in flight 

navigation are the following [10]: 

1. The geodetic coordinate system. 

The geodetic coordinate system is used in GPS-based navigation. This coordinate 

system characterizes a coordinate point near the earth’s surface in terms of longitude, 

latitude, and height (or altitude) denoted by λ, ϕ, and h respectively.  

2. The Earth-Centered Earth-Fixed (ECEF) coordinate system denoted by (OcXcYcZc). 

3. The local North-East-Down (NED) coordinate system denoted by (OnXnYnZn). 
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4. The vehicle-carried NED coordinate system denoted by (OnvXnvYnvZnv) 

5. The body coordinates system denoted by (ObXbYbZb). 

It is worth mentioning that the last type is considered to be a non-inertial frame in which 

the work to be done in this thesis is based upon. It should be clear how the well-defined 

transformations will serve in moving the analysis from one frame to another especially 

when it comes to the stage of making the data available for flight dynamic modeling and 

automatic flight control which are based on both the body and vehicle-carried NED 

frames. 

Figure 1, shows the different frames mainly used in flight navigation and the relationship 

between them. These frames are described in more detail in Literature, such as [10]. 

 

  
 

Geodetic, ECEF, and local NED coordinate systems 
Local NED, vehicle-carried NED, and body 

coordinate systems 

Figure 1: Frames of Reference used in navigation.[10] 

Now, Inertial Navigation Systems are presented in more detail. 
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2.2 Inertial �avigation Systems 

An Inertial navigation System (INS) is a device that uses inertial sensors, i.e. 

accelerometers and gyroscopes, to continuously estimate the position, velocity, and 

angular (attitude) rate of the vehicle in which it is installed. 

An INS contains the following: 

• Dedicated electronics. 

• An Inertial Measurement Unit (IMU). 

• Navigation computer unit. 

A number of gyroscopes and accelerometers are contained in an IMU and they are 

fastened to a common frame to keep the same relative orientation between them. 

The body rotational motion, with respect to inertial reference frame, can be measured 

using gyroscopes or by a number of linear accelerometers.  

There are two types of INS, namely: Gimbaled, and Strapdown. 

2.2.1 Gimbaled (Stabilized platform) 

This is the main type of INS devices. In such systems, the sensors are fixed to a stabilized 

platform to isolate them from the vehicle rotational motion. Application need very 

accurate navigation data are still using this type of INS.  

At least three gimbals, as shown in Figure 2, are required to isolate the sensors from the 

vehicle’s rotational motion in 3D space, typically labeled roll, pitch, and yaw (Azimuth) 
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axes. A mechanism, consists of gimbals and torque servos, is used to cancel out the 

rotation of stable platform on which the inertial sensors are mounted. 

 

Figure 2: Gimbaled I�S schematic diagram. [11] 

 

The basic principle for stabilized platform is the cancellation of relative orientation with 

respect to the inertial frame. This approach will serve a lot in reducing the mathematics 

involved and will allow simpler calculations to be implemented than the Strapdown type. 

A sensitive angle measuring device is connected to each gimbal and it senses the change 

in angular position with respect to the stabilized position, i.e. parallel to the inertial 

frame, and this change is sent to a dedicated control loop that actuates the servo motors 

responsible of controlling the position of each gimbal. This approach is highly 

sophisticated and can be considered more accurate than the strapdown approach, so it is 

still used in many vehicles requiring high navigation accuracy such as ships. The main 

problem associated with such type, is the possibility of being locked about one axis so no 

motion about that axis will be measured and a reset process must take place. Other issues 

to be considered are its high cost and tedious maintainability that requires close attention 

to its structure and components especially the mechanical ones so an alternative does 

exist. The INS mechanization of the gimbaled type is shown in Figure 3. 
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Figure 3: Stable platform (Gimbal) inertial navigation algorithm. [12] 

 

2.2.2 Strapdown I�S 

In order to avoid the mechanical problem associated with Gimbaled type INS, a 

Strapdown type INS was put forward in which the inertial sensors are rigidly fixed on/in 

the vehicle frame. Several points must be considered before dealing with such type, such 

as the mathematics involved, which can be taken care of due the availability of 

sophisticated Digital Signal Processing (DSP) devices, and the errors associated with 

MEMS devices that may deteriorates the whole system during flight as time passes. So a 

compromise will be involved when considering such type of INS at least in the current 

years since huge advancement is taking place in MEMS industry, that may take it to 

better level than they are at the moment.  During the course of the thesis, extra care will 

be taken regarding the usage of the linear-accelerometers-based strap down INS in a 

configuration called: All-accelerometers in which only accelerometers are used and hence 

the name. It is worth mentioning that this method does not force the usage of MEMS 

accelerometers, rather it would be only a choice to reduced cost with acceptable accuracy 

to facilitate the usage of such techniques in small-sized vehicles. Further investigation 

about the effect of using different types of accelerometers may be a subject by itself 
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which is beyond the scope of this thesis. A typical strapdown INS fitted in a plane is 

shown in Figure 4 along with the standard notation ascribed to it by Aerospace 

community. A block diagram for strapdown INS is also shown in Figure 5, and the INS 

mechanization of this type is shown in Figure 6. 

 
Figure 4: A typical strapdown I�S. [13] 

 
Figure 5: Strapdown inertial navigation unit block diagram. [14] 

 
Figure 6: Strapdown inertial navigation algorithm. [15] 
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The following section contains the basic mathematics relating the body frame with the 

vehicle carried NED frame, the vehicle carried NED frame with local NED frame, and 

also the relation between the inertial frame and the vehicle carried NED frame. The first 

and second relations can be further used as an intermediate transformation between the 

vehicle body frame and the ECEF frame, which then can be transformed into the geodetic 

frame of reference if the navigation problem is to be solved with respect to it. 

In this thesis, only the results obtained in the vehicle body frame will be presented 

although the complete picture of how the proposed IMU can be used to solve the 

navigation problem is shown in Chapter 9. Solving the navigation problem in more detail 

through the integration of the method proposed here can be an extension to the current 

work as can be found in Chapter 10. 

2.3 Flight �avigation Frames Transformations 

In this section, some of the important flight navigation transformations will be presented 

briefly. These relations can be used to facilitate projecting the INS measurements onto 

different frames and solving the navigation problem.  

2.3.1 Transformation between Body (b) and vehicle-Carried (nv) frames 

Automatic flight control and the modeling of flight dynamics relay heavily upon this 

transformation. The translational (1-4) and rotational (5-6) Kinematics relations between 

these frames respectively are given as follows [10]: 

V

�� =  ��/��V

��� =  ��/�� � u��v��w��� (1) 
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��� =  ��/��a
��� =  ��/�� � u� ��v� ��w� ��� (2) 

�����,� = ��/��a
�� !,�� = ��/�� �a�",��a�#,��a�$,��� (3) 

��/�� =  % c'c( c's( −s's+s'c( − c+s( s+s's( + c+c( s+c'c+s'c( + s+s( c+s's( − s+c( c+c'- (4) 

.pqr2 = 3 4ϕ�θ�ψ� 8 (5) 

3 =  91 0 −s'0 c+ s+c'0 −s+ c+c'< (6) 

Where, (c_ ) and (s_ ) denote cos ( _ ) and sin ( _ ) respectively, and ( ����,>?) is the 

projection of proper acceleration (a� !,�), see (18), measured in the body frame, denoted 

by subscript b, onto the vehicle-carried NED frame, denoted by subscript nv. The linear 

acceleration and velocity are denoted using (��) and (V

�) respectively. (@A� , B� , C� DE
) is the 

Euler angles rates in vehicle-carried frame, and (FG, H, IJE) is the angular rates in body 

frame. (��/��) and (3) are transformation matrices. As shown in Figure 6, the previous 

transformation is essential for Strapdown INS measurements to be projected onto the 

correct frame in which the navigation problem is to be solved. Before that, the gravity 

should be compensated for to provide the true kinematic accelerations of the vehicle. 

It is obvious that, in all-accelerometers method, the angular velocity estimation is 

provided through the usage of the available accelerometers’ measurements, which are 
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affected by gravity, to solve nonlinear equations. So and in this case, the gravity 

compensation must be done before even projecting the measurements onto other frames. 

This compensation will be the subject of Chapter seven. However, it will be clear that the 

gravity effect will not affect the estimation of the angular velocity and acceleration and 

hence it will not affect the vehicle’s attitude as well. 

2.3.2 Transformation between local (n) and vehicle-carried �ED (nv) frames 

Under the assumption of aligned local and vehicle-carried NED frames, the 

transformation between them will be identity, i.e. the kinematics relations for both the 

translational and rotational motion will be given as follows [10]: 

V

�� =  ��/��V

��� (7) 

��� =  ��/��a
��� (8) 

��/�� =  %1 0 00 1 00 0 1- (9) 

.pqr2 = 3 4ϕ�θ�ψ� 8 (10) 

3 = %1 0 00 1 00 0 1- (11) 

2.3.3 Relation between vehicle-Carried (nv) and Geodetic (g) frames 

In this section, the relation between vehicle-carried and geodetic frames is presented. 

Theses equations are essential when considering the GPS-All-Accelerometer aided INS. 



17 
 

Specifically, the relation between the geodetic position derivative and the vehicle-carried 

velocity which is given as follows, neglecting the earth self-rotation [10]: 

K� = ν��(NN + h)cosφ (12) 

S� =  u��MN + h (13) 

ℎ� = −V>? (14) 

u� �� = − v��W sinφ(NN + h)cosφ + u��w��MN + h + a�",�� (15) 

v� �� = u��v��sinφ(NN + h)cosφ + v��w��NN + h + a�#,�� (16) 

w� �� = − v��WNN + h − u��WMN + h + g + a�$,�� (17) 

a� !,�� = �a�",��a�#,��a�$,���  (18) 

P\ = � λφh� (19) 

MN = ^_�(1 − `W)(1 − `W sinW S)a/W (20) 

bN = ^N!c1 − `W sinW S (21) 

e = 0.08181919 (22) 
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RN! = 6,378,137.0 meter (23) 

Where, (g) is the acceleration due to gravity, and (lm) is a point in the geodetic system 

represented by longitude (λ), latitude (φ), and height (altitude: h). According to WGS 84, 

(MN) and (bN) are the meridian and the prime vertical radii of curvature respectively. (e) 

is the first eccentricity. 

2.4 Flight Dynamics Equation 

 In [16], the flight dynamic equations of motion for a rigid body were derived referenced 

to an arbitrary point (A) not necessarily its center of mass. They explicitly include the 

change in the position of center of mass (equivalent to center of gravity in a uniform 

gravitational field), so that its effect can be reflected onto the control law of the flight 

dynamics. This change is estimated by the proposed IMU. The equations are given as 

follows [16]: 

n o�p = q(r�s + Ωuvs − Ωwxs − yΩuW + ΩwWz∆|� + yΩpΩu − Ω� wz∆}�
+ yΩpΩw + Ω� uz∆~� + � sin B) 

(24) 

n o�u = q(x�s + Ωwrs − Ωpvs + yΩpΩu + Ω� wz∆|� − (ΩpW + ΩwW)∆}�
+ yΩuΩw − Ω� pz∆~� − � cos B sin A) 

(25) 

n o�w = q(v� s + Ωpxs − Ωurs + yΩpΩw − Ω� uz∆|� + yΩuΩw + Ω� pz∆}�
− yΩpW + ΩuW z∆~� − � cos B cos A) (26) 
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n �sp = �ppΩ� p − �puΩ� u − �pwΩ� w + �puΩpΩw − �pwΩpΩu + y�ww − �uuzΩuΩw
+ yΩwW − ΩuW z�uw
+ q �yΩpxs − Ωurs + v� s − � cos B cos Az∆}�
+ yΩpvs − Ωwrs − x�s + � cos B sin Az∆~�� 

(27) 

n �su = −�puΩ� p + �uuΩ� u − �uwΩ� w + �uwΩpΩu − �puΩuΩw + (�pp − �ww)ΩpΩw
+ (ΩpW − ΩwW)�pw
+ q �yΩ}rs − Ω|xs − v� s + � cos B cos Az∆|�
+ yΩ}vs − Ω~xs + r�s + � sin Bz∆~�� 

(28) 

n �sw = −�pwΩ� | − �uwΩ� } + �wwΩ� ~ + �pwΩ}Ω~ − �uwΩ|Ω~ + y�uu − �ppzΩ|Ω}
+ yΩ}2 − Ω|2z�pu
+ q �yΩ~rs − Ω|vs + x�s − � cos B sin Az∆|�
+ yΩ~xs − Ω}vs − r�s − � sin Bz∆}�� 

(29) 

Where, (∆G = F∆|� , ∆}� , ∆~�JE) is the change in the position of CoG (l
��) in the body 

frame, (F) and (M) denote the force and moment respectively. (I) and (m) denotes the 

inertia matrix and the mass of the object respectively. (�
� = FA, B, CJE) is the Euler 

angles, (Ω

� = @Ωp, Ωu , ΩwDE
) denotes the angular velocity of the object, 

(Ω

�� = @Ω� p, Ω� u , Ω� wDE
) denotes its angular acceleration, and finally (��s = Frs, xs, vsJE) 
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represents its linear velocity. Equations (24-26) can be given in a compact form as 

follows: 

n o�s = q(���s + Ω

� × ��s) + Ω

�� × q∆G + Ω

� × (Ω

� × q∆G) + v


�) (30) 

Where, v


� = F���B, −���B���A, −���B���AJE�  

Also, Equations (27-29) can be given in a compact form as follows: 

n �

�s = �Ω

�� + Ω

� × �Ω

� + q∆G × ���s + qΩ

� × (∆G × ��s) + q��s × yΩ

� × ∆Gz − ∆G × v


� (31) 

Where, � = 9 �pp −�pu −�pw−�up �uu −�uw−�wp −�wu �ww <  

Equations (24-29) provide the starting point when the mass and Inertia of the vehicle are 

to be found as will be stated in Chapter 9. 

2.5 Summary 

This chapter presented the needed mathematical relations between the flight navigation 

frames mainly used in aerospace applications and also presented the kinematics and 

dynamics of an air vehicle which can be used once this work is extended, see Chapter 9. 

The block diagram shown in Figure 7 shows how the proposed IMU may fit within a 

complete aeronautic system, where (�
� = Fl
�� , ��� , ���JE) denotes the kinematics of CoG, 

(��s = ���s) is the linear acceleration of the vehicle at point (A), and finally any vector with 

subscript denoted by (�/�) resembles that this vehicle’s dynamical variable was obtained 

when taking the CoG as the reference, and if it is subscripted by (�/�) it indicates that 
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point (A) is the reference. This IMU apparently provides more useful information than 

the traditional IMUs, and it should be kept in mind that it is the responsibility of the INS 

system to handle the needed transformations among those variables to provide them in 

the right frame. 

The previous description of the proposed IMU was only the first thought once this thesis 

was started. In Chapter 9, it will become clearer that the proposed IMU reach the stage 

where it can be considered a complete INS by itself. 

 

Figure 7: Block diagram and the ideal features of the proposed IMU.  
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3 CHAPTER 3 

LITERATURE REVIEW 

In this chapter, the work done in investigating the field of this thesis and the work 

previously reported in literature is presented. It was organized into categories under each 

one of them the related references are included. It is true that some of those references 

may include topics from other’s categories, so that they were organized according to the 

main point of interest each one has. Figure 8 shows the spectrum of the selected 

references over years. 

 

Figure 8: References spectrum related to I�S. 

 

3.1 Thesis background 

The following, contains the main part of the literature review done during the preparation 

phase for this thesis, which was intended to establish a deep understanding of all-
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accelerometers based IMUs and the problems associated with it. Although not all the 

references are directly related to the objectives of this thesis, they still of value since they 

may form a starting point for future work and the extension of the proposed method so 

that further improvement will be involved when considering the problems found in 

literature. While in progress, new references in certain topics were added and they are 

referred to in the appropriate places.  

3.2 I�S Aided Systems 

In many applications, it is not sufficient to depend only on the Inertial Navigation System 

(INS) for a long period of time; because it is subjected to drift that propagate with time. 

So, it is usually aided with other navigation sensors that may vary in number and type 

according to the application of concern. 

 

In [17], the limitations found in the Kalman Filter (KF) and smoothing techniques found 

in INS/GPS are analyzed. In order to overcome these limitations, an on-line smoothing 

method was proposed, and field tests showed that its results were better than those 

obtained using Kalman Filter in about 60%. 

 

In [18], the Hemispherical Resonator Gyro (HRG) was discussed. A milli-HRG has been 

accomplished that withstands a wide range of temperature from +5 to +50 ˚C. This milli-

HRG can provide precise INS with lowered bias stability (0.00035˚/hr) and angular 

Random Walk (ARW) of (0.0003˚/√hr). So, it can hold the altitude performance over 

extended time duration and can be used in applications that require fast time response; 

since its alignment time is very short. 
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In [19], an invariant observer approach was applied to an aided-INS consists of 

magnetometer and GPS. Extended Kalman Filter (EKF) is usually used for such systems 

were the error dynamics are non-linear, then the equations are linearized and a Kalman 

Filter for the linearized model is built. Invariant observer, recently introduced, used to 

obtain a non-linear structure which possesses the same symmetries as the original model 

in a systematic way. 

 

Invariant observer combined with invariant EKF methodology is more robust than a 

conventional EKF which makes it suitable for a large variety of applications. 

 

In [20], a localization approach for an Omni-directional Automatic Guided Vehicle 

(AGV) with Mecanum wheels was proposed. The encoder attached to the Omni-wheels 

cannot be used because of the large slip the wheel experiences while in side motion. So, 

the encoder were used a long with a gyro and accelerometer which proved to be efficient. 

 

In [21], a combined system of GPS, Omnidirectional Vision sensor, Odometer, and INS 

was presented. A wide field of view can be obtained using Omnidirectional Vision 

sensors. This system was used with a ground vehicle to make its navigation possible in 

case of extended periods of GPS outage. Experiments showed that this approach can 

reduce the position, velocity, and attitude accumulation errors during GPS outages. 

 

In [22], stereo visual odometry, and IMU were fused together using Kalman Filter to 

enable a Quad-Rotor UAV to navigate in an indoor environment where GPS signal is 
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weak or unavailable. Necessary equations of motion of the Quad-Rotor, along with the 

Kalman design process were shown. Both altitude and Yaw angle were stabilized using 

PD controllers. Flight tests showed the effectiveness of this approach. 

 

In [23], a self-contained dynamics-aided error correction method was developed and used 

to correct the rapid drift occurring in Inertial Navigation Systems (INS) when aiding 

sensors, such as GPS, are not available. This method uses the dynamic equations of the 

carrier vehicle, i.e. land vehicle in this case, for updating the Kalman Filter, responsible 

of navigating the vehicle, when the main source of aiding the information is unavailable.  

 

Vehicle dynamics were identified using an expert system based on fuzzy logic according 

to this method. The position accuracy was increased to about 15 m in field tests with GPS 

signal was not available for about 3 minutes when using the proposed method, which is 

small once compared to the unaided case which has an error larger than 100 m. 

3.3 Calibration 

In [24], a low-accuracy turn table was used to determine the parameters of a 

mathematical model of instrument errors of strapdown INS. The algorithm used here has 

a distinguished feature such that the characteristics of the turn table sensors are not 

directly used in it. 

 

In [25], a fast and inexpensive method for calibrating an accelerometer-array is proposed, 

which can estimate the accelerometers’ offset, scale factors, sensitive direction, and 

position on a rigid body. This method guarantees that the estimated accelerometers-array 
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parameters are globally optimum in the least-squares sense. It was experimentally tested 

and it showed that when it is used to compute the angular velocity of a rigid body from 

the acceleration measurements, the error can be significantly reduced. It is mainly 

composed of two steps, namely static and dynamic calibrations, where the dynamic 

calibration step do not add much to the results obtained in the static calibration. 

 

In [26], a multi-position calibration method, which does not require the precise alignment 

of sensors with either local level frame or to the vertical direction, of a low-cost MEMS-

based INS is described and discussed. This method is fast and efficient since the 

accelerometers’ results converged rapidly. Bias and scale factors were found. 

 

In [27], all-accelerometers INS method was implemented and fused with the vehicle 

dynamics using a Kalman filter to estimate true values. This method was tested in a 2-D 

motion and it gave reasonable results where the drift effect in velocity and position were 

reduced. 

3.4 Errors 

In [28], shearer dynamics positioning used in coal mining is discussed and analyzed. The 

usage of strapdown INS is suitable for such environment where the usage of other aiding 

devices is hard or impossible. The accuracy of the shearer positioning depends on the 

error value introduced by the following sources: 

• Accelerometers and Gyroscopes drift errors. 

• Vibration during operation which introduces acceleration and angular velocities. 

• Truncation errors in attitude calculations. 
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• Initial alignment error of INS compared to the reference axes. 

 

This paper only focused on the alignment problem, so a non-linear filter was used in 

initial alignment based on the shearer misalignment angle. A quaternion method rule was 

established to compensate for alignment errors found in INS and the derivation of non-

linear EKF was shown. 

 

In [29], an algorithm capable of compensating the biases of angular-rate sensors was 

presented. This algorithm integrates inertial sensors, GPS, magnetometer, and barometric 

altimeter. It was used mainly for low-cost Unmanned Aerial Vehicles (UAVs). The 

equations needed to retrieve vehicle attitude, velocity, and acceleration were derived 

using Euler-Rodrignes parameters. 

3.5 Faults 

In [30], an all accelerometers based, fault-tolerant IMU that consists of 13 single-axis 

linear accelerometers is presented. It uses a combination of redundant accelerometers, 

identification technique to identify faults, and a state-estimator to enable taking 6-DOF 

measurements. The initial value problems faced traditionally in almost all IMU is solved 

here by presenting an observer, where the issue of observability was also covered. 

 

In [31], a fault-tolerant optimal robust filter for linear discrete time-varying systems is 

proposed. The algorithm solves Linear Matrix Inequality (LMI) to obtain the optimal 

robust H∞ estimator, and uses H-index to maximize the minimum effect of faults on the 
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residual output of the filter. This makes the system robust to disturbances, and at the 

same time, sensitive to faults. 

 

The Robust Fault-Detection Filter (RFDF) was investigated for Linear Discrete Time 

Variant (LDTV) systems and a simulation example proved the claims. 

 

In [32], a method based on Least Absolute Deviations (LAD) for dynamic systems was 

used to detect jumps in the bias signal of gyros in INS. LAD is claimed to be more 

accurate, for the same purpose, than Kalman filter combined to least-squares method. 

3.6 Build I�S 

In [33], an INS using one 3-axis rate gyro and three 2-axis linear accelerometers were 

used. Error analysis was implemented based only on accelerometers’ position error and 

other sources of error were not investigated. The gravity was compensated using a 2-axis 

inclometer. 

 

In [34], a strapdown INS algorithm was developed using Geometric Algebra (GA). This 

method resulted in kinematic equations that can be solved using differential equation 

methods. Despite being stable for high-maneuver applications; it is very sensitive to the 

measurement noises, so a proper GA-based filtering algorithm is needed. 

 

In [35], an instrumental error evaluation and optimization algorithm has been proposed. 

The result of testing this algorithm on several different benchmarks showed its good 

accuracy and efficiency for choosing the optimal sequence of elementary operations 
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execution (i.e. multiplication, division, etc.) and for the instrumental error estimation. 

This algorithm was used to increase the accuracy of a six single-axis accelerometer array 

used to build a gyro-free IMU. The minimum number of bits of the computation engine 

required was reduced from 16-18 bit to 13-14 bit with the same total instrumental error 

value. 

3.7 Dead Reckoning 

In [36], an approach which integrated the location estimation using Dead Rockening 

techniques in step-based pedestrian navigation is addressed. GPS and INS information 

can be fused together through the usage of EKF which showed to be less efficient 

compared to a particle filter when both are used to extract navigation information from 

the same setup. Different types of Distance sensing devices were mentioned and a brief 

description for each one of them was included. 

3.8 Center of Gravity Change 

The position of Center of Gravity (CoG) is of great importance; since the attitude of the 

air vehicle is affected by the position of CoG. It is designed to be kept within certain 

limits known as “CoG limits”. A drastic change beyond those limits may drive the 

vehicle towards instability. So it is important to know how exactly this change will affect 

the maneuverability of the vehicle and towards what extent it can deteriorate its 

controllability.  

 

In [8], an adaptive tracking controller based on output feedback linearization that 

compensates for dynamical changes in the center of gravity of the quad rotor was 

presented. The stability of the controller was proven using lyapunov theory. 
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In [37], a spacecraft center of mass was estimated online using multi-accelerometers 

under the assumption of zero linear acceleration when the spacecraft is in steady mode 

and the position of center of mass is not changing, then the equations of motion can be 

very much simplified and the position of center of mass was estimated using a recursive 

least squares method. 

 

In [6], different ways of finding the CoG position and finding the moment of a space craft 

on the ground were introduced. It explains the parallel axis theorem and how to use it in 

finding the inertia of a space craft. 

3.9 ALL-Accelerometers Method 

In [38], angular velocity/acceleration, and linear acceleration of a rigid body were 

obtained using simple matrix operation. The positioning of the four accelerometers in a 

frame was discussed and the sign ambiguity in angular velocity was solved. This method 

uses four 3-axis accelerometers, not installed at the CoG, and without gyros. Neither 

numerical integration nor differentiation was used, and the resulting angular velocity is 

bounded with no drift. Gravity effect was ignored.  

 

In [39], an IMU was built using MEMS to find angular velocity/acceleration, and linear 

acceleration of a rigid body. It consists of two 3-axis accelerometers and a gyro. The 

alignment process is needed to remove the misalignment and the errors were analyzed. 

As in [38], neither numerical integration nor differentiation was used, and there was extra 

measurements but never been used. Different schemes for accelerometers distribution 

were considered and their effect on the invertibility of the structure matrix was examined. 
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The effects of sensors alignment, position, and instrumental errors were explored. Gravity 

effect was ignored. 

 

In [40], the design, and calibration of IMU based on twelve 1-axis accelerometers were 

presented. The location and direction of these sensors are determined by optimizing the 

numerical condition number of structure matrix. Also, orientation installation errors of 

each sensor are identified, and angular velocity was obtained without integration. This 

method was more general than the previous methods; since it allows (m) number of 

accelerometers to be included, although it used 12 for a specified structure. Redundancy 

is mentioned but not utilized, and the angular acceleration tensor was obtained without 

differentiation and the gravity effect was removed. 

 

In [41], differential sensing was used to cancel the contribution of gravity in the 

accelerometers’ measurements. It is based on integration, and the error analysis was 

carried out. 

 

In [42], Einstein well-defined principle was argued, showing that the gravity acceleration 

can be separated from body acceleration from within the accelerometers’ measurements. 

A mathematical model relating gravity and motion was derived, and it states clearly that 

6 accelerometers are enough. 
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In [43], angular velocity and linear acceleration were found using only three 1-axis 

accelerometer.  Various types of deterministic misalignment errors were investigated, and 

sampling rate was found to affect the algorithm. 

 

In [44], it was also found that, as in [52], only 6 accelerometers are required to 

completely define the kinematics of a rigid body, and it showed when this method can 

fail in practice so a nine accelerometers-based method was devised where it showed to be 

stable and superior compared to other methods. Gravity effect was ignored.  

 

In [45], different configurations of linear accelerometers were tested and the 

corresponding IMU mechanization equations were derived which was not shown in other 

resources. 

 

In [46], a gyro-free (all-accelerometers) IMU design was presented, where the position 

and orientation of the sensors were identified through a calibration scheme. An unscented 

Kalman filter (UKF) was used to fuse the angular acceleration and angular rate 

measurements to remove the ambiguity in the angular velocity sign. Measurements using 

a 3-D rotation table were collected, and an improvement in the results was clear. 

 

Interestingly, it showed that out-of-plan accelerometer resulted in lower accuracy so this 

has to be checked when dealing with such configuration such that found in [7]. Also, the 

calibration procedure was unable to compensate for non-ideal sensor characteristics; 

simply because the sensor’s model does not include them. 
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In [47], a constrained unscented Kalman filter (UKF) was designed to estimate the 

angular motion of a rigid body using all-accelerometers IMU. The results obtained were 

better than those obtained from an ordinary UKF; since it was not sensitive to drift errors. 

Gravity effect was ignored. 

 

In [48], the feasibility of designing all-accelerometers based INS using accelerometers’ 

measurements only to compute the angular velocity/acceleration, and linear acceleration 

of a rigid body was investigated and conditioned. The effects of accelerometers locations’ 

errors were analyzed, and an algorithm that identifies and compensates these errors was 

developed. 

 

In [49], the minimum number of single axis accelerometers used to implement the 

algorithm was nine, and the accelerometers used must not be collinear. Also, it showed 

the reasons why gyroscopes are avoided and replaced by accelerometers, and suggested 

using a mathematical integration method that does not depend on time, namely the 

square-rooting of the centripetal acceleration. At the end, it was recommended to keep 

the installed gyroscopes, in the UAVs under study, and not to replace them with 

accelerometers since the later did not give the expected accuracy obtained when using the 

gyroscopes for a 1 m wingspan UAV. 

 

The error equations introduced can be used to compare an all-accelerometer design with 

an angular-rate sensor design. 
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3.10 Alignment 

One, Two, and Three-axis accelerometers are available in the market and these 

components are used to build MEMS-based INS. At the micro-scale, the mass comprising 

each axis has misalignment, and on the IMU level the whole accelerometer package has 

misalignment and disorientation with respect to the assembly axes. It is the essence of 

INS built using these components to have the sensitive axis for each accelerometer 

aligned exactly with the assembly principle axis along which the acceleration is to be 

measured. Practically speaking, this is not possible so a compensation for any deviation 

from the ideal case has to be included to correct the readings from the all-accelerometer 

IMU. It is not to be mistakenly thought that no alignment is needed at the assembly stage, 

rather it is needed before assembly (coarse alignment), and after the assembly at the IMU 

level. Installing the INS on the Vehicle body needs another calibration (coarse and/or 

fine) to know the transformation matrix needed to compensate for the deviation from the 

vehicle body coordinate system. The appreciation of the alignment process will be 

enough, if it is known that even a 0.01˚ will result in large deviation in position in some 

cases when it is projected to the vehicle body coordinate system as time passes.  

 

In [50], an initial alignment error model for in INS on a stationary base was derived 

based on lyapunov transformation. A drift estimator was implemented to remove the drift 

found in inertial sensors. A standard Kalman filter and a Multi-objective filter to deal 

with certain model and Gaussian noise, and with uncertain, non-Gaussian noise 

respectively. 
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In [51], a lyapunov transformation was used this time to show the equivalence of 

strapdown INS (SINS) and Gimbal INS (GINS). Using this transformation, the results 

obtained when analyzing GINS errors can be applied to INS. It also shows that the INS is 

not completely observable, so a linear transformation is used to establish an observable 

subspace, thus the observable states and unobservable ones of INS error model can be 

dynamically decoupled. 

 

In [27], an innovative estimation scheme to solve the initial and divergent problems for 

an all-accelerometers INS is presented. It also can provide an upper bound to initiate the 

platform attitude. Recursive least-squares (RLS) method was used to solve the problem 

of initial and divergent associated with all-accelerometer method. The velocity and 

position of the ship were estimated through the usage of Kalman filter. 

 

In [52], a non-linear model for large initial azimuth alignment error for strapdown INS 

was derived. The accuracy of attitude error estimation using the unscented Kalman filter 

(UKF), the extended Kalman filter (EKF), and the 2nd order divided difference filter 

(DDF2) was determined showing the superiority of DDF2 over UKF, and EKF. 

In [53], a marginalized unscented Kalman filter (MUKF) is proposed to deal with large 

initial alignment errors in strapdown INS under marine mooring condition. It was 

compared to Unscented-Kalman filter (UKF), and Extended-Kalman filter (EKF), and it 

showed through experiment and simulation that MUKF can achieve at least, if not better, 

a comparable results to traditional UKF at a considerable reduced computation. It used 

the same error model found in [52]. 
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In [54], in a previous reference, alignment was done on a stationary base but in some 

cases this will not be the case; consider a car engine is started, or a plane preparing to 

take off, so there is a need to investigate the ability of doing the alignment under such 

conditions. In this paper, the vibrations’ effects are treated as noises, so that they will not 

appear in the system and measurement matrices. Doing that, the fine alignment on a 

vibrating base on the ground can be done quickly and accurately. 

 

In [55], the alignment of SINS is done during flight in such a way that the carrier aircraft 

(CA) provides the auxiliary information to the UAV in a scheme called In-Flight Transfer 

Alignment (TA) which requires usually about 10 minutes and the carrier aircraft is 

required to perform an S-turn maneuver. Usually, in TA only the velocity of CA is 

transferred to UAV, while in this paper, both the velocity and attitude information of CA 

were transferred to UAV resulting, as shown from the simulation results, in a better 

accuracy and reduced time interval for alignment process. 

 

In [56], a fast and accurate stationary alignment method for SINS is proposed based on 

two-position alignment principle. The main difficulty associated with the self-alignment 

technique is that the system is not completely observable which can be solved using this 

method. Observability analysis was done and a model for the alignment error was 

derived. 

The foundation of [56] is established in [57]. 
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3.11 �umerical Methods 

Almost all Inertial Navigation Systems needs to use integration at some point, which 

raise the concern about which integration method should be used. References [61-62] 

introduce interesting methods. In [58], it shows the numerical double integration of the 

noisy accelerometers measurements to extract the position information for which the 

error is proportional to the square root of the integration time cubic, and inversely 

proportional to the square root of the sampling frequency.  

 

In [59], the error of real time numerical integration in INS was decreased using a method 

called “Subtractive Composite Simpson Method” (SCSM) which depends on Simpson’s 

1/3 and 3/8 rules. The main disadvantage for this method is the huge consumption of 

memory since it requires all the sample from the beginning of the integration, so as a way 

around this defect it is combined with a 4th order Runge-Kutta method since it is stable 

and simple, but unfortunately its error also accumulate over time although it solves the 

memory consumption issue. 

 

Interestingly, [49] promotes the usage of Square-Rooting the Centripetal Acceleration 

method which does not depend on time. The main problem with this method is that the 

error-bound blows up when the denominator is zero, so a combination between the 

previous methods is advised. 

 

As in [60], a Kalman filter is used to avoid integrating the angular acceleration 

numerically to find the angular velocity. 
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3.12 Performance 

In [60], the redundant IMUs with different sensor configurations were analyzed. 

Redundancy will increase the reliability of IMU measurements for extended period of 

time. This reliability is increased if a suitable geometric configuration for a given number 

of redundant sensors is achieved. This paper presents a general derivation to obtain such 

a configuration. It also gives information about the way to calculate the reliability of a 

sensor distribution, mean time to fail, performance index, geometric dilution of precision, 

and reliability. 

 

In [61], the solution of the spacecraft navigation problem in the near-Earth space was 

presented. It means the determination of the coordinates, velocities, and orientation with 

respect to the navigation coordinate system (geocentric, geographical, or geodetic). SINS 

use data of the following types: 

• Measured or Inertial data: from accelerometers and Gyros. 

• Initial conditions determined during alignment. 

Lately, Gravity Gradiometry and INS were combined together allowing the precise 

determination of gravitational field parameters and to solve the navigation problem as 

well. This system can be useful for flight to planets of the solar system whose 

gravitational field is known with low precision. The SINS dynamics with errors where 

derived in detail and a numerical analysis of its operation and errors were done, which 

helps in making the decision on inclusion or exclusion of the corresponding terms from 

the considered error model upon designing a navigation system, based on the estimation 

of higher order of smallness in error equations. 
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In [62], Error dynamics of all-accelerometers based IMU were analyzed. A compensator 

for each accelerometer was used to remove its scale error and bias found in its 

measurements. The configuration error caused by location and orientation errors can be 

compensated as well. 

 

A larger cube (One configuration) achieves higher angular acceleration accuracy but 

structure flexibility may then contribute as an error source, while a small cube makes the 

accelerometers more sensitive to noise, so higher resolution accelerometers must be used. 

This approach does not involve integration of the angular acceleration numerically so it 

limits the growth of the angular rate error. 

3.13 Simulation 

Simulation plays an important role in many applications, and navigation is not an 

exception. Zhang, et al in his paper [63] used MATLAB and Simulink to build a free 

open-source simulation environment for testing the strapdown INS (SINS). This platform 

deals with air-vehicles in particular where six flight routines were used to validate this 

model, namely static, circle, line, s-shape “required for alignment procedure”, and two 

sets of real static data. 

3.14 Testing 

In [64], the methods and procedures used to check strapdown INS (SINS) device are 

presented. These methods and procedures are used to check the errors in SINS output 

orientation parameters under rolling, pitching, and yawing. It also estimate the accuracy 

of SINS alignment on a test bench and the accuracy of the test bench itself, so that the 
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errors generated to the test procedures can be calculated showing the real results of the 

SINS device.   

3.15 Data Fusion 

Having multiple sources for same/related data can be considered crucial for validating, 

error and fault detection, but at the same time if this information is not processed 

correctly, it may lead to erroneous results and conclusions. Data Fusion is one of the 

techniques used to deal with multiple data sources, which have the ability to combine it 

and increase the reliability and confidence in the measurements when it is implemented 

on sensors. Redundancy is one factor that may invite the usage of data fusion. In [7], the 

data fusion is described on the ring level and it is used to validate measurement and to 

detect faults at the same time, but no algorithm what so ever is described about the fusion 

of data between redundant rings.  

 

Allerton, et al [65], described data fusion algorithms for inertial network systems that can 

be used for [7] at the ring level and at the redundant rings level. In his paper, he stated 

that these algorithms will increase the accuracy of estimates of inertial state vectors in all 

the network nodes including the navigation states. They also improve the fault-tolerance 

of inertial network system. Dynamic alignment and Calibration of distributed inertial 

systems is also a feature of these algorithms. 

 

This paper focuses on the IMU level, so it does not consider the gravity compensation, 

and accelerometers/gyros errors and it also consider an ideal communication channels 
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which is not the case in real avionic data buses, so it is maybe worth investigating the 

effect and robustness of such algorithms in the case of drop-packets and latency. 

 

One more thing to add, is that these algorithms depends on the fact that the center of 

gravity is well-known beforehand so that the master node will be fixed there against 

which all other slave nodes will align and correct themselves, a fact that can misled the 

system especially in varying center of gravity location. 

3.16 Implementation 

Implementing INS algorithm using hardware is one of the factors that affect the 

performance of INS device/algorithm. It is true that the inertial sensors play significant 

role in obtaining the dynamical states of a rigid body, as well as the hardware that does 

the signal acquisition and processing. Embedded computers facilitate the implementation 

of INS using a compact platform instead of bulky devices. Since the results of a 

navigation algorithm depends on the measurement, it is essential to consider the 

acquisition rate, processing time, round-off/truncation errors, the processing, and the 

computational power needed. Sequential execution consumes more time than parallel 

execution where the latter is more complex since of mutual dependency on variable in 

multiple threads may exist. Ordinary digital signal processing hardware, or for short DSP, 

is a good candidate for INS implementation but it lacks the parallel thread capabilities. 

Field Programmable Gate Array (FPGA) provides an alternative for the DSP devices in 

such cases [66]. 
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The introduced complexities due to FPGA are analyzed in [66], and it is well-known that 

better performance may sometime result in more complex implementations. 

3.17 I�S Mechanization 

Oliver J. Woodman [67], in his technical report “Introduction to inertial navigation”, did 

a great work starting from analyzing the MEMS components used mainly in most 

Strapdown INS (SINS), namely: gyroscopes and linear accelerometers, till modeling one 

of the INS devices available in the market, i.e. XSens Mtx device. It was shown that the 

accuracy of a gyro which limits the INS accuracy in general. 

 

 During the literature review phase of this thesis, a complete comparison between 

ordinary IMU (containing a gyro) and all-accelerometers (gyro-free) methods was not 

found. 

3.18 Patents 

Four patents were investigated, and the main objective of this thesis is to investigate [7] 

in more detail. Three of those patents were concerned about finding the position of center 

of gravity during flight; since it has direct impacts on the quality, stability, controllability, 

and maneuvering capabilities if immigrated outside its limits, known as “CoG limits”. 

Patents [68] and [69] are somehow simple; since they do not offer robustness or 

corrections against faults, while [7] is well-designed so it is capable to show some 

robustness against faults and some errors, while Patent [70], deals with the faults by 

introducing redundant units interacting with each other to form a fault-tolerant scheme. 
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4 CHAPTER 4 

SIMULATI�G RIGID BODY DY�AMICS 

 

In this chapter, the basic dynamic equations used to formulate the work in this thesis are 

presented. Despite being simple, they still have the potential to render the work done here 

possible and valuable, Thanks to ALLAH. The implementation of these equations was 

done using the SimMechanics library side by side with other MATLAB and Simulink 

features. In chapter five, the method presented in [7] is simulated in a more detail. 

4.1 Rigid Body Dynamics equations 

The motion of a rigid body in 3D space can be described as a combination between a 

translational, and a rotational motion. Everything starts by defining the position of a point 

in 3D space with respect to two frames, namely the inertial and non-inertial frames. This 

is essential in this work; since in flight navigation, the usage of different reference frames 

is involved for both types of frames. Assuming flat non-rotating earth model, the position 

of a point (P), see Figure 9, is given in 3D space as follows: 

l
�� = 
̂�� + I�? (32) 

Where, (l�) is the position of point (P) with respect to the inertial frame (�>�>�>�>), (^�) 
is the position of the origin of the moving coordinate system, i.e. non-inertial frame 

(��������) which is allowed to be translated and rotated, with respect to the inertial one, 
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and (I?) is the position of point (P) with respect to the non-inertial frame. By taking the 

time derivate of equation (32), the velocity of point (P) will be given by: 

�l
���� = � 
̂���� + V

� × I�? (33) 

Where (V

�) is the angular velocity of the non-inertial frame, and (×) denote the cross 

product between two vectors.  

 

Figure 9: Inertial and non-inertial frames. 

Taking the time derivate of equation (33) will result in the inertial acceleration (���) of 

point (P) with respect to the inertial frame as given by (34). 

��� =  
̂��� +  Ω

�� × I�? +  I��? + 2Ω

� × I��? +  Ω

� × (Ω

� × I�?) (34) 

Where, ( �̂�) is the linear acceleration of the origin of the non-inertial coordinate system 

with respect to inertial frame (n) and (Ω

�� ) is its angular acceleration. (I��?) and (I��?) are the 

acceleration and velocity of point (P) respectively with respect to the non-inertial frame. 

Equation (34) is the main equation upon which the remaining work depends. 

One last thing to mention here is that the angular acceleration and velocity are the same at 

each point of the object, and based on this fact the positioning of the proposed IMU will 

be flexible. 
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4.2 Simulating Rigid Body Dynamics using SimMechanics  

SimMechanics is a multi-body dynamics simulation library found in Simulink simulation 

environment. It provides various approaches to handle dynamical problems. One of its 

simplest usages is shown in this thesis where it was used to simulate the dynamics of a 

rigid body in 3D space acted upon by several forces and moments. Despite the fact that 

these forces and moments may get several profiles, certain profiles for the forces and 

moments were adopted to make the simulation easy. In this section, only the blocks used 

from the library are briefly explained here. It is worthy to note that there is no need to 

write down any code that reflects the dynamical equations previously stated, and this 

enables the user to focus on the problem in his hand. 

4.2.1 Machine Environment Block 

A connected diagram formed of SimMechanics blocks is defined in SimMechanics as a 

Machine. Each machine must have one fixed frame (Ground Block) to which the machine 

is attached. Another block that is called the Environment block is essential in each 

SimMechanics diagram since it determines the way to simulate the machine, and how the 

simulation is visualized and linearized and to understand the way the blocks within the 

machine are related to each other, i.e. mechanical constraints and Degrees of Freedom 

(DoF) each block has relative to the block attached to it. The Machine Environment 

Block also accepts a Simulink signal as a Gravity signal. This feature is very important 

when considering the gravity compensation part introduced in later chapters, see Figure 

10. 
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Figure 10: Machine Environment Block with gravity as a Simulink signal. 

 

4.2.2 Six-DOF Mechanical Joint Block 

 

The Six-DoF block, shown in Figure 11, consists of three translational joints forming 

three translational degrees of freedom and three rotational joints allowing the rotation 

about the translational axes. The Six-DOF Mechanical Joint Block enables the simulation 

of a rigid body, attached to a non-inertial frame �������� , in 3D space by having a 6-

DoF motion relative to the inertial frame �>�>�>�>. 

 
Figure 11: Six-DOF Mechanical Joint Block. 

 

4.2.3 Weld Mechanical Joint Block 

When two objects are attached to each other with no relative motion between them is 

allowed, they are said to be rigidly locked to each other. Such a constraint can be realized 

using a Weld joint block. This joint is equivalent to a motion with zero-DoF, see Figure 

12. 



47 
 

 

Figure 12: Weld Mechanical Joint Block. 

 

4.2.4 Rigid Body Block 

Using a Rigid Body Block, it is possible to define a rigid body with specified mass and 

moment of inertia tensor. Additional information such as the position of CoG within the 

body is needed as well as, at least, one extra body coordinate system to completely define 

a rigid body in SimMechanics. Additional body coordinate systems can be added to 

define the geometry of the rigid body, see Figure 13. This block also accepts STL 

(sterolithographic) file format to visualize its geometry. This STL file can be generated 

using the available CAD packages.   

 
Figure 13: Body Block. 

 

4.2.5 Body Actuator Block 

The Body Actuator block is used to exert a generalized force consists of a linear force 

and a rotational torque which can be generated using the available Simulink signals. The 

generalized force is applied to the CoG in this work, see Figure 14. 
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Figure 14: Body Actuator Block. 

4.2.6 Body Sensor Block 

The Body Sensor block, shown in Figure 15, is used to measure the position, linear 

velocity/acceleration, angular velocity/acceleration, and the rotation of the rigid body 

with relative to the reference selected from the dialog box as shown in Figure 16. The 

measurements generated by this block can be used in Simulink environment directly 

without any conversion or interfacing blocks.     

 

Figure 15: Body Sensor Block. 

 

 

Figure 16: Available measurements in a Body Sensor Block. 



49 
 

Next, the usage of SimMechanics library in modeling the main measuring device in the 

proposed IMU is presented. 

4.3 Modeling a Tri-axis linear accelerometer using SimMechanics  

The flexibility gained using SimMechanics Blocks enabled the modeling of a generic Tri-

axis accelerometer model. Although it is simple; since it does not include the cross-

coupling, directly, and scale-factor effects usually exist in real tri-axis accelerometers as 

well as other sources of errors, it is still capable of providing the possibility of 

introducing misalignments and disorientations usually involved in assembly process of 

such type of IMUs. The only source of error included was the measurement noise. To 

ensure the functionality of the identification routine presented in later chapters, the 

introduced noise was within the usual noise level found in real accelerometers and was 

modeled as a white noise. 

Other sources of errors and non-linearity can be added, but it was not the objective of this 

thesis to investigate the performance of the proposed IMU through any of the available 

error analysis techniques. So, this can be considered as a part of the future work. 

4.3.1 Accelerometer model 

 

Figure 17 shows the tri-axis linear accelerometer model used in this thesis. It was 

completely parameterized to ensure its reusability later on. This model consists basically 

of two Body Sensor Blocks, shown in Figure 15, and three White Noise Blocks and other 

basic blocks. Faults were also included and they are allowed to be one of the following 

types: {None, No-Output, Wrong-Output}. These faults are also used to check the Fault 



50 
 

Detection and Isolation (FDI) procedure proposed by [7] although it was not reported in 

this thesis.  

The simulation setup and results of the accelerometer model are shown in Figure 18 and 

Figure 19 respectively. There are two available measurements, one with respect to the 

inertial frame (��) and the other with respect to the body frame (��) to which the 

accelerometer is attached to. The later will be used, and it is the responsibility of the INS 

to provide the measurements in the desired frame by utilizing the available measurements 

provided by the IMU. 

 

Figure 17: Tri-axis model used in the thesis, where measurements are provided with respect to: (Ae) Inertial, 

and (Ab) Body frames. 

 

Figure 18: Simulation setup used to test the tri-axis accelerometer model. 
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(a) (b) 

 

(c) 

Figure 19: Accelerometer measurements relative to: (a) world (b) body coordinate systems when 

located at CoG (c) same as (b) but when shifted 2 meters in the X-direction from CoG. 

 

 Figure 19.a shows the accelerometers measurements with respect to world (Inertial) 

frame. Both Figures 19.b and 19.c show the measurements but with respect to the body 

frame. The main difference between those two figures is that Figure 19.b shows the 

accelerometer’s measurements when it coincides with the BODY CoG while Figure 19.c 

shows the accelerometer’s measurement when it is shifted two meters in the X-direction 

from the BODY CoG.  
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Figure 19.c reflects the necessity of finding the position of CoG to compensate for such 

offset. Figures 19.a, 19.b and 19.c were obtained using the setup shown in Figure 18 and 

using the same applied torque and force. 
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5 CHAPTER 5 

ALL-ACCELEROMETERS BASED IMU 

 

The feasibility of designing All-accelerometers based IMU using only linear 

accelerometers’ measurements to compute the linear/angular accelerations, and the 

angular velocity of a rigid body was investigated in [48]. It is possible to use different 

number of accelerometers to design All-accelerometers IMU where the issue of 

singularity must be taken into consideration when finding the optimum number of linear 

accelerometers arranged in a specific structure [40]. The accelerometers’ measurements 

can be used to determine the angular velocity/acceleration and the linear acceleration of a 

rigid body using different approaches such as simple matrix operation [38], Geometric 

Algebra (GA) [34], or by using filters such as Unscented Kalman Filter (UKF) [46] just 

to name few. It is worth mentioning that IMUs based on both rate gyros and linear 

accelerometers are still under research, see [33]. 

In [71], Flat-Earth Model (FEM) and the more precise Around-Earth model (AEM) were 

used to check the induced error when using the simpler model (FEM) compared to 

(AEM) in designing a Strapdown Inertial Navigation System (SINS). The results were 

encouraging to adopt the simpler FEM model in the proposed IMUs.  

Using linear accelerometers in certain configurations enables finding the angular 

acceleration of the body they are attached to when their outputs are treated in differential 

mode. One of those configurations is the diamond configuration by which two linear 
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accelerometers are separated equally about a point in three perpendicular directions, i.e. 

one pair per axis. The differential output can then be fed into a Kalman Filter (KF) or the 

like to estimate the body angular velocities from the noisy linear accelerometers’ 

measurements.  Redundant sensors are used to consolidate the accelerometers’ 

measurements. In the IMU found in [7], only two pairs of linear tri-axial accelerometers 

were used in the Y and Z directions which make a total number of 12 accelerometers. 

The available accelerometers’ channels in each tri-axial accelerometer are used to 

facilitate fault detection and isolating the faulty sensors. 

In this Chapter, implementation of the IMU along with the procedure suggested by [7] is 

done and will serve as an evaluation of this version of IMU. Based on the results, other 

versions will be presented as can be found in Chapter 6. 

The proposed IMU, found in [7], is used in the setup shown in Figure 20. This setup 

helps in improving guidance and control of aerial Vehicles, and more particularly to track 

the changes in the position of CoG of a moving vehicle due fuel consumption or changes 

in its payload. Redundancy is available at the IMU level and at the Ring level to increase 

the reliability of such instrument. The distribution of these rings is somehow flexible to 

overcome the constraints imposed on such instruments when installed in real vehicles. 

Although these IMUs can operate in centralized or distributed modes, the latter is adopted 

here and the former will be a subject of future work. 

In Figure 20, all the accelerometers are arranged in a symmetric way around the point (m) 

at a distance (µ) forming a ring, from now on sometimes referred to as a Ring, where (l�) 
is a 3-axis linear accelerometer’s position, (��) is the position of Center of Gravity 
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(CoG), (�>) is the origin of the inertial coordinate system, (^�)  is the vector from inertial 

frame origin (�>) to CoG, and (^?�) is the vector from the CoG �� to origin of Ring (j), 

where j = 1, 2, 3, ... etc. 

 

Figure 20: Two Rings approach based on the proposed IMU. 

 

5.1 Mathematical Derivation 

Rigid body dynamics equations can be used to describe the motion of a rigid body in 3-D 

space relative to a reference frame. A local non-inertial frame called the body frame (b), 

located at Center of Gravity (CoG) of the vehicle, and an inertial frame (n), located at 

center of Earth, are presented. Non-rotating Flat earth model is adopted to reduce the 

complexity of equations. Basic equation of motion for a point P, see Figure 9, with 

respect to the inertial frame is given by equation (34) in Chapter 4. 

Now, if the CoG is stationary, i.e. I�? =  I�? = 0, then the acceleration of the point P is 

given by: 
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��� =  
̂��� +  Ω

�� × I�? +  Ω

� × (Ω

� × I�?) (35) 

5.1.1 Estimation of Angular Velocities and Accelerations 

The total inertial acceleration at point P1 with respect to body frame can be expressed as, 

see Figure 20 and by given ��� =  
̂���:  
 ��� = ��� + 
̂��?� + Ω

�� × y 
̂�?� + µ��z + 2Ω

� × 
̂��?� + Ω

� × (Ω

� × ( 
̂�?� + µ��)) (36) 

Or in matrix format as: 

9��p���u���w� < = %�p�u�w - + 9I�?�pI�?�uI�?�w < + 2 9 0 −Ωw ΩuΩw 0 −Ωp−Ωu Ωp 0 < 9I�?�pI�?�uI�?�w <
+ � 0 −Ω� w Ω� uΩ� w 0 −Ω� p−Ω� u Ω� p 0 � % I?�pI?�u + µI?�w -

+ �−ΩwW − ΩuW ΩpΩu ΩpΩwΩpΩu −ΩwW − ΩpW ΩwΩuΩpΩw ΩwΩu −ΩuW − ΩpW
� % I?�pI?�u + µI?�w - 

(37) 

The acceleration as measured by a tri-axial accelerometer at point 2 is given by: 

9�Wp��Wu��Ww� < = %�p�u�w - + 9I�?�pI�?�uI�?�w < + 2 9 0 −Ωw ΩuΩw 0 −Ωp−Ωu Ωp 0 < 9I�?�pI�?�uI�?�w <
+ � 0 −Ω� w Ω� uΩ� w 0 −Ω� p−Ω� u Ω� p 0 � % I?�pI?�u − µI?�w -
+ �−ΩwW − ΩuW ΩpΩu ΩpΩwΩpΩu −ΩwW − ΩpW ΩwΩuΩpΩw ΩwΩu −ΩuW − ΩpW

� % I?�pI?�u − µI?�w - 

(38) 

The subscript (b) denotes the body frame and it will be omitted since the remaining work 

in this thesis is in the body frame unless otherwise stated.  
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All the accelerometers are assumed to be perfectly aligned with respect to the body 

frame. 

The differential output of the accelerometers at points P1 and P2 is given by: 

9��p��u��w < − 9�Wp�Wu�Ww < = � 0 −Ω� w Ω� uΩ� w 0 −Ω� p−Ω� u Ω� p 0 � % 02µ0 -
+ �−ΩwW − ΩuW ΩpΩu ΩpΩwΩpΩu −ΩwW − ΩpW ΩwΩuΩpΩw ΩwΩu −ΩuW − ΩpW

� % 02µ0 - 

(39) 

The difference of the accelerations of the points P3 and P4 is then given by: 

9�ap�au�aw < − 9� p� u� w < = � 0 −Ω� w Ω� uΩ� w 0 −Ω� p−Ω� u Ω� p 0 � % 002µ-
+ �−ΩwW − ΩuW ΩpΩu ΩpΩwΩpΩu −ΩwW − ΩpW ΩwΩuΩpΩw ΩwΩu −ΩuW − ΩpW

� % 002µ- 

(40) 

The differential output of the two accelerometers within the first ring on the body y-axis 
gives: 12µ (��p − �Wp) = −Ω� w + ΩpΩu (41) 

12µ y�Wu − ��uz = ΩwW + ΩpW  (42) 

12µ (��w − �Ww) = Ω� p + ΩuΩw (43) 

The differential output of the two accelerometers within the first ring on the body z-axis 
gives: 12µ (�ap − � p) = Ω� u + ΩpΩw (44) 

12µ y�au − � uz = −Ω� p + ΩuΩw (45) 
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12µ (� w − �aw) = ΩuW + ΩpW (46) 

From (41) - (46), the state equations: 

Ω� p = 14µ (��w − �Ww − �au + � u) (47) 

Ω� u = −ΩpΩw + 12µ (�ap − � p) (48) 

Ω� w = ΩpΩu − 12µ (��p − �Wp) (49) 

While the remaining equations are as follows: 12µ y�Wu − ��uz = ΩwW + ΩpW (50) 

12µ (� w − �aw) = ΩuW + ΩpW (51) 

12µ y�au − � u + ��w − �Wwz = ΩuΩw (52) 

Equations (47), (48), and (49) can be solved using numerical methods. Once these 

equations are solved, the values of the calculated angular velocities can be used to check 

the consistency of measurements by substituting them in equations (50-52). If the errors 

between the left side and right side of those equations are within a certain threshold, say a 

normal accelerometer noise level, then the available measurements are considered 

healthy and can be used for further stages. If they do not, then a fault detection algorithm 

will be used to point out the faulty measurements and to isolate the faulty sensors. This 

algorithm makes use of the available measurements from the redundant rings in the setup. 

It is apparent that this approach provides redundancy at the IMU level and the IMUs level 

as a whole. If the previous test is passed, then the angular velocities are re-estimated 

using all the healthy measurements by using a Kalman filter as follows: 
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Equations (47) to (52) can be linearized and discretized in the following state equations: 

��(¢ + 1) = �(¢)��(¢) + £r

�(¢) + V

�(¢) 
(53) �
�(¢) = ¤(¢)��(¢) + ��(¢) 

Where, V(¢) and �(¢) are random white noises, and: 

�� = FΩp, Ωu , ΩwJE 

 r

� =
¥¦¦
¦¦¦
§ 14µ (��w − �Ww − �au + � u)12µ (�ap − � p)12µ (��p − �Wp) ©̈©©

©©ª
 

�
�(¢) =
¥¦¦
¦¦¦
§ 12µ (�Wu − ��u)12µ (� w − �aw)14µ (�au − � u + ��w − �Ww)©̈©©

©©ª
  

�(¢) = %1 0 00 1 −«Ωp0 «Ωp 1 - ,    £ = %« 0 00 « 00 0 −«- ,   ¤(¢) = 9Ωp 0 ΩwΩp Ωu 00 Ωw 0 <  

Where, T is the sampling rate in seconds. 

The steps proceed as follows: 

� Prediction 

��¬(¢ + 1|¢) = �(¢)��¬(¢|¢) + £r

�(¢) (54) 

� Correction 

��¬(¢|¢) = ��¬(¢|¢ − 1) + ®(¢)(�
�(¢) − ¤��¬(¢|¢ − 1)) (55) 

Where: 
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®(¢) = l(¢)¤E(¢)(^uu + ¤(¢)l(¢)¤E(¢))¯�  

l(¢ + 1) = �(¢)l(¢)�E(¢) + ^pp
− �(¢)l(¢)¤E(¢) �^uu + ¤(¢)l(¢)¤E(¢)�¯� ¤(¢)l(¢)�E(¢) 

 

Where, ^pp and ^uu are 3X3 weighing matrices. 

This process is done within each ring, in the case of distributed IMUs configuration, and 

if the difference between the results obtained from all rings is within a certain threshold, 

then the angular velocities are consolidated using all the available measurements by 

simply taking their average. 

5.1.2 Estimation of CoG position and inertial acceleration 

The angular velocities and accelerations were previously found by utilizing the difference 

in the accelerometers’ measurements coexist on the same axis. It is possible to show that 

the addition of those measurements will help in finding a relation that reflects the 

kinematics of the CoG. At the moment, it is the position of CoG to be found. By adding 

the accelerometers’ measurements at points P1 and P2 the following equation will result: 
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9��p��u��w < + 9�Wp�Wu�Ww < = %�p�u�w - + 9I�?�pI�?�uI�?�w < + 2 9 0 −Ωw ΩuΩw 0 −Ωp−Ωu Ωp 0 < 9I�?�pI�?�uI�?�w <
+ � 0 −Ω� w Ω� uΩ� w 0 −Ω� p−Ω� u Ω� p 0 � %I?�pI?�uI?�w -

+ �−ΩwW − ΩuW ΩpΩu ΩpΩwΩpΩu −ΩwW − ΩpW ΩwΩuΩpΩw ΩwΩu −ΩuW − ΩpW
� %I?�pI?�uI?�w - 

(56) 

Moreover, the previous addition will give the acceleration at the center of the ring by 

using six accelerometers virtually located at the center of the ring, which cannot be 

practically possible; because each accelerometer has a finite size and they cannot share 

the same position. The same result can also be obtained when adding the measurements 

of the other pair of accelerometers found on the Z axis which will help in providing the 

first level of sensor validation within the IMU itself. Equation (57) reflects this fact 

clearly. 

y��� + ��Wz = (��a + �� ) (57) 

Comparing both sides of equation (57) over a short window of time may help in avoiding 

wrong decisions resulted because of the noisy measurements. 

It is clear, from equation (56), that the body linear acceleration cannot be retrieved 

simply, although the angular velocities and accelerations were found previously, because 

of the unknown kinematics of the CoG. 
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To simplify the situation, the rate of change in the position of CoG is assumed to be much 

less than the rate of change of the body inertial acceleration. In this case, it can be safely 

assumed equal to zero. Equation (56) can then be simplified to: 

9��p��u��w < + 9�Wp�Wu�Ww < = %�p�u�w - + � 0 −Ω� w Ω� uΩ� w 0 −Ω� p−Ω� u Ω� p 0 � %I?�pI?�uI?�w -

+ �−ΩwW − ΩuW ΩpΩu ΩpΩwΩpΩu −ΩwW − ΩpW ΩwΩuΩpΩw ΩwΩu −ΩuW − ΩpW
� %I?�pI?�uI?�w - 

(58) 

In (58), only the inertial acceleration and CoG position with respect to the first ring are to 

be found, using for example a Recursive Least-Squares (RLS) method or the like. 

Equation (58) can be written in a vector form as: 

°� = ��� + £ 
̂�?� (59) 

Where: 

°� = (��� + ��W + ��a + �� )/4 (60) 

£ = %��� ��W ��a�W� �WW �Wa�a� �aW �aa- = @Ω� D + FΩ ×J
= � 0 −Ω� w Ω� uΩ� w 0 −Ω� p−Ω� u Ω� p 0 � + �−ΩwW − ΩuW ΩpΩu ΩpΩwΩpΩu −ΩwW − ΩpW ΩwΩuΩpΩw ΩwΩu −ΩuW − ΩpW

� 

��� is the acceleration measured at point l� , � = 1,2,3, ��� 4. 
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The formulation of the RLS method, discussed in more detail in chapter 8, is given as 

follows: 

Rearrange (59) in the form of: 

°� = ±|� (61) 

Where: 

|� = FI?�p, I?�u , I?�w, �p, �u , �wJE 

± = 9��� ��W ��a 1 0 0�W� �WW �Wa 0 1 0�a� �aW �aa 0 0 1< 

 

The procedure then proceeds as follows: 

� Initialize: K� and |�. 

� Recursion: 

² = 1 + �I��`(±±E)K� 

®³ = (K�±E)/² 

³́ = °³ − ±³|³ 

|³µ� = |³ + ®³ ³́ 

(62) 

The same calculations are done independently for all rings. As in the case of estimated 

angular velocities and accelerations, the best estimate of the position of CoG with respect 

to say, Ring 1, is given for the two ring case by: 
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¶̂¬?� = 12 � 
̂�¬?�� + 
̂�¬?�W� = 12 ( 
̂�¬?� + 
̂�¬?W + �·�) (63) 

Where, 
̂�¬?�� = 
̂�¬?� is the estimation of the CoG position relative to the first ring 

calculated using the measurements of the first ring, while 
̂�¬?�W = 
̂�¬?W + �·� is the 

estimation of the CoG position relative to the first ring calculated using the measurements 

of the second ring.   

Using more rings can improve further the reliability, accuracy and precision of the 

measurements, and hence the navigation parameters values along with the position of 

CoG. Figure 21, shows a three-Ring configuration that can be used to determine the 

position of CoG of an F-15 jet fighter plane. Each ring can be placed anywhere within the 

plane body and all what is needed to know is the relative distances between the rings 

(��W, �Wa, �a�) and the position of each ring with respect to the vehicle datum which can 

be considered possible to have. 

 

The modified version of the IMU found in [7] is shown in Figure 22 where it is apparent 

that the main difference is the additional pair of linear accelerometers on the vehicle’s X-

axis. The effect of this addition will be appreciated later on through the simulation results 

in this chapter. The underlying equations governing the behavior of this version as well 

as others will be presented in more detail in Chapter 6. 
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Figure 21: F-15 jet fighter with three-Ring 

configuration. [18] 

Figure 22: Two Rings approach based on the proposed 

IMU using 18-accelerometer/Ring version. 

5.2 Simulating All-accelerometers Based IMU 

In this part, the simulation results obtained when simulating the proposed IMUs are 

presented, following the same procedure previously introduced. The SimMechanics 

Library has been used to model an arbitrary object in 3D space subjected to various 

Forces and Torques. SimMechanics blocks were used since they give more freedom in 

the design process as well as different situations can be investigated such as 

misalignments and disorientation in the accelerometers when they are assembled to form 

a ring. 

 

The accelerometer model, shown in Figure 17, was used in the simulation model shown 

in Figure 23 to form the two rings. Figure 23 shows a SimMechanics machine that 

resembles a composite rigid body in the form of cube whose mass is (0.5Kg) and the 

length of its side is (1m) with (1Kg) added masses at each corner subjected to force and 

moment acting at its equivalent CoG and it is allowed to move in 6-DOF motion in the 
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space where no gravity force is active. Figure 24 clearly represents this composite body 

shape. 

 

It can be seen from equation (60) that the B matrix depends totally on the angular motion 

of the body. So, it is a must to have sufficient rotational motion to obtain a good 

estimation of the position of CoG using this approach. Next, different scenarios for 

applied moment, and force are used to cover larger number of possibilities that may 

include the change in torque, force, and CoG position. Figure 25 shows the force and 

moment profiles used in this simulation. 

 

The CoG position of the composite body was found using the following equation: 

¤�¸ =  ∑ q�I��º�∑ q�º�  (64) 

Where (N) is the total number of additional masses, that is 8, (m¼) is the value of the 

added mass taken here to be (1 Kg), and (r�¼) is its position relative to the cube geometric 

center in meters. 
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Figure 23: Composite rigid body SimMechanics Machine. Figure 24: SimMechanics visualization of the 

composite rigid body given in the example. 

 
(a) 

 
(b) 

Figure 25: (a) Applied Moment (�.m), (b) Force (�) profiles used in the simulation. 

 

The position of the composite body CoG, relative to the cube geometric center (0,0,0), 

was forced to change by dropping one added mass at the end of each interval, an interval 

equals 20 seconds in simulation time. The effect is resembled by abrupt changes in its 
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position as can be seen in Figure 26. The new composite inertia is calculated by 

SimMechanics and the resulting dynamic equation is solved internally. The two Rings 

were located at (0.5,0,0) meters and (-0.5,0,0) meters respectively. Table 1 shows the 

schedule used in dropping the additional masses and the resulting CoG position. 

 
Table 1: Simulation Schedule. 

Total Mass 
(Kg) 

Composite Body CoG 
Position (m) 

Dropped Mass 
Position (m) 

Time Interval 
(seconds) 

8.5 (0,0,0) - 0-20 

7.5 (-0.0667,-0.0667,-0.0667) (0.5, 0.5, 0.5) 20-40 

6.5 (-0.1538,0,0) (0.5, -0.5, -0.5) 40-60 

5.5 (-0.2727,-0.0909,0.0909) (0.5, 0.5, -0.5) 60-80 

4.5 (-0.4444,0,0) (0.5, -0.5, 0.5) 80-100 

3.5 (-0.4286,-0.1429,0.1429) (-0.5, 0.5, -0.5) 100-120 

2.5 (-0.4,-0.4,0) (-0.5, 0.5, 0.5) 120-140 

 

 
Figure 26: Composite Object CoG Position (m) relative to the Geometric Center (0, 0, 0). 

 

5.2.1 Simulating All-accelerometers Based IMU with 12-accelerometers 
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Figures 27-30 shows the errors in the estimations using the 12-accelerometer version as 

found in [7] by taking (µ = 0.1 m ). Another modified version of the IMU proposed in 

[7] is simulated, and will be covered in more detail in Chapter 6.  

 
Figure 27: Estimation error of the position of the composite body CoG (m) using 12-accelerometer IMU version 

in Two-Rings Configuration. 

 
Figure 28: Estimation error of the acceleration of the composite body (m/sec2) using 12-accelerometer IMU 

version in Two-Rings Configuration. 
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Figure 29: Estimation error of the angular velocity of the composite body (rad/sec) using 12-accelerometer IMU 

version in Two-Rings Configuration. 

 
Figure 30: Estimation error of the angular acceleration of the composite body (rad/sec2) in the range of 10-9 

using 12-accelerometer IMU version in Two-Rings Configuration. 
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5.2.2 Simulating All-accelerometers Based IMU with 18 accelerometers 

The simulation results of the second modified version with noise enabled, and by taking 

(µ = 0.1 m ), are shown next. Better results were obtained using this version which 

reflects the effect of the additional pair of linear accelerometers on the vehicle’s X-axis. 

 

Figure 31: Estimation error of the position of the composite body CoG (m) using second modified version in 

Two-Rings Configuration. 

 

Figure 32: Estimation error of the acceleration of the composite body (m/sec2) using second modified version in 

Two-Rings Configuration. 
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Figure 33: Estimation error of the angular velocity of the composite body (rad/sec) using second modified 

version in Two-Rings Configuration. 

 

 

Figure 34: Estimation error of the angular acceleration of the composite body (rad/sec2) using second modified 

version in Two-Rings Configuration. 

 

The usage of SimMechanics library facilitates a lot of things and makes the analysis and 

design of IMUs easier. It is worth mentioning that the addition of a third ring does not 

add much to this problem so the results were not presented. 

It is clear that the whole performance of the proposed IMUs totally depends on the 

angular motion availability, i.e. angular velocity and/or acceleration, and that can be seen 

from the estimation results in the period 20-80 seconds where no angular motion is 

present. Additionally, the abrupt changes of the CoG position caused by dropping the 
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additional masses caused deterioration in the estimations of CoG position and body linear 

acceleration using simple RLS approach. Moreover, the more accelerometers’ 

measurements used the better the estimation will be and that can be seen from Figures 27 

and 31 where the later reflects the effect of the additional accelerometers pair attached to 

the X-axis in the second modified version. To obtain better results, the number of 

accelerometers involved in CoG position estimation can be increased by using additional 

Rings (IMUs) and then fuses the estimation results obtained from the individual Rings. In 

the previous context, this was done using simply the average value although more 

sophisticated techniques can be used to fuse those estimations. Another approach to 

consider using the proposed IMUs is the Centralized estimation where all the 

accelerometers’ measurements are fed into one central estimation unit which utilizes all 

the measurements and obtain better estimation results. The centralized approach will 

introduce coupling between the Rings and will raise a concern about the sensor network 

capacity and efficiency. This coupling will make the formulation of the problem a little 

bit more complicated but it deserves the investigation. Also, the previous points raise 

questions about the minimum angular motion needed to facilitate good CoG estimation as 

well as the most suitable estimation technique that can be used to handle abrupt and 

gradual changes in CoG position.  

5.3 Summary 

In both [1] and [2], the estimation of the CoG position depends on the position and mass 

of the individual objects causing the CoG and mass variations such as cargo and 

passengers. This knowledge, if possible to have, may lack accuracy and cause a bad 
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estimation in both the mass and CoG position of the aircraft. While in [5], a dynamic 

model of the helicopter was used along its weight and balance, i.e. CoG position, to build 

an EKF that was used to enable estimating both the gross weight and CoG location of that 

helicopter. Unlike the previously mentioned methods, the proposed IMUs do not need the 

aircraft dynamic model to facilitate its job, yet it can be used to enhance the estimation 

results obtained, which broaden the range of application they can be used in. In [35], a 

spacecraft center of mass was estimated online using multi-accelerometers under the 

assumption of zero linear acceleration when the spacecraft is in steady mode and the 

position of center of mass is not changing, then equation (34) can be very much 

simplified and the position of center of mass was estimated using a recursive least 

squares method. Here, the CoG is allowed to move and inertial acceleration may or may 

not exist. In the case where there is no angular motion, an estimation of CoG position 

may be flagged as unavailable, and the flight controller may keep the previous position. 

The error covariance is an indication of the estimation quality so that it can be checked 

before critical decisions can be taken. 

 

The main contribution of this technique, besides finding the linear and angular 

accelerations and angular velocity,   is the ability to use it in CoG position estimation 

which was not tackled before using this approach in such configurations, to the best of 

the author’s knowledge.   

 

The performance of the proposed IMU in [7], will be improved as well be shown in the 

next chapter. 
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6 CHAPTER 6 

FILTER DESIG� 

 

This part is very important in the sense that it provides an extraction method to retrieve 

the angular motion, needed to facilitate the CoG kinematics estimation and other INS 

tasks, from the available accelerometers measurements. As all-accelerometers IMUs 

depend only on the usage of linear accelerometers in certain configurations; hence no rate 

gyros are involved here as may be found in other IMUs. As a result of that, a dedicated 

filter is needed to extract the vehicle’s angular motion from the accelerometers 

measurements. The structure of the needed filter depends heavily upon the equations 

representing the angular motion. Different dynamical systems were stated; however only 

some of them were actually used to build different types of filters. In the previous 

Chapter, a quick overview of the IMU presented by [7], and the newly proposed one was 

given including a filter based on forward-finite difference approximation for which the 

performance was shown in the associated figures. Here, more details about different types 

of filters are presented and evaluated to facilitate implementing some of them in later 

stages. Next, a brief literature review about the usage of filters in IMUs and INS in 

general to solve various problems is presented. 

6.1 Literature Review 
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In [72], a matrix Kalman Filter (MKF) for a non-linear integrated navigation system 

using magnetic, inertial, and visual sensors was implemented and a pseudo-linear model 

was obtained. Lie derivatives were used to find the observability conditions of the non-

linear system.  

Calibration of INS errors was done through the usage of other sensors, such as magnetic 

and cameras sensors, since GPS is not available indoor. The magnetic sensor is able to, 

by sensing the earth’s magnetic field; provide a drift-free estimate of the heading 

direction.  

In [73], the non-linearity of Kalman Filter measurements resulting from the ultra-tight 

integration of INS and GPS will seriously affect the filtering results. Both a traditional 

and Extended Kalman Filters (EKF) are designed for such systems where the design of 

the Extended Kalman Filter depends upon its performance on stability, controllability, 

and observability obtained from the theoretical analysis of the traditional one.  

Implementation of EKF resulted in better estimation of all navigation parameters. 

GPS/INS integrated systems can be operating in three modes, namely: loose, tight, and 

ultra-tight, where in the: 

1- Loose mode: INS and GPS work separately and treated as independent navigation 

sensors. 

2- Tight mode: GPS receiver must zone at least four satellites steadily to ensure the 

system operates the same as the loose mode, through the usage of data fusion.  

3- Ultra-tight: Software and hardware are combined through data fusion, and it: 
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• Gives better performance than loose and tight modes. 

• Navigation output can be provided with less than four satellites. 

• Improved noise rejection and dynamic robustness of the entire system. 

• Can be realized through direct/indirect methods. 

In [74], the simulation of a robust H∞ filter showed a quick transient response and a more 

accurate estimate than Kalman Filter designed to solve the problem of initial alignment of 

an integrated strapdown INS. 

The traditional Kalman Filter expects dealing with white noises, and that requires the 

system and measurement noises to be with well-known statistical properties, which is 

practically difficult to have. It was shown that the Kalman Filter is better than that of H∞ 

Filter for white noise, and the opposite is true for colored and uncertain noise. 

In [75], a 2D navigation for land vehicle is achieved by integrating a low-cost single-axis, 

MEMS-based gyroscope, the vehicle odometer, and a GPS in a loosely integration 

configuration. The gyroscope and odometer are used to build a low-cost reduced inertial 

sensor system (RISS), which suffers from the non-stationary stochastic sensor errors and 

non-linear inertial sensors errors which cannot be handled by a Kalman Filter (KF) and 

its linearized error models. First order approximation on non-linear systems is used in the 

Extended Kalman Filter (EKF) which, as stated in [75], may cause poor performance and 

sometimes the divergence of the filter for systems with high non-linearity, while an 

Unscented Kalman Filter (UKF) is considered a better alternative that can provide better 

performance in the expense of increased computing time compared to EKF. 
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A Fast Orthogonal Search (FOS) algorithm with augmented KF was presented in [75] to 

deal with the non-stationary stochastic sensor errors problem. FOS needs to have some 

information about the system needed to be modeled which is not the case in Parallel 

Cascade Identification (PCI) technique. 

Sensors’ errors are of two types, namely: the deterministic parts and the stochastic parts, 

the former should be compensated for in navigation algorithm, whereas the later like bias 

drift is usually modeled as random processes. FOS was introduced by Korenberg (1987) 

and it is a numerical technique used to find the difference equations of a non-linear 

system. It can also be used in non-linear system identification. 

In [76], a Robust Kalman Filter (RKF) structure was used to facilitate in-motion 

alignment for a low-cost strapdown IMU. Strapdown Inertial Navigation Systems (SINS) 

error model was derived with velocity, attitude, position, and sensor errors as the state 

vector. GPS measurements were used to provide velocity information was employed as a 

measurement to the filter. Navigation parameters were better estimated. 

Outliers deteriorate the performance of a Kalman Filter, so a RKF have to meet two 

objectives, namely: 

1- Be nearly optimal when outliers are absent. 

2- Immune to outliers when they exist. 

In [77], an innovation based on adaptive EKF, for adopting dynamics model covariance 

matrix Q and measurement noise covariance matrix R, was used to improve navigation 

system performance during GPS signal outages. This approach takes care of the varying 
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errors found in INS by adaptively varying the Q and R matrices used in EKF resulting in 

smaller estimation error once compared to a standard EKF. 

In [78], an Adaptive Two-stage Extended Kalman Filter (ATEKF) for a fault-tolerant 

INS-GPS loosely coupled system was introduced. This ATEKF estimated the unknown 

bias effectively. An EKF may not be able to estimate effectively the time-varying 

unknown parameters while an ATEKF can do that efficiently. 

6.2 Filter Design 

As can be seen from the previous literature, the usage of filters is highly involved when 

solving problems related to INS. However, in this thesis the main focus regarding the 

usage of filters can be summarized in Figure 35. Future work may include other types of 

filters to solve other problems usually encountered when strapdown IMUs are used. 

In the proposed IMU, filters are needed at the following stages: 

1. Filter accelerometer measurements by removing bias, drift, cross couplings, 

disorientations, misalignments, and geometric problems (i.e. vibration, etc.). 

2. Find Ω|, Ω}, and Ωw (angular velocities) estimation in the body frame. 

3. Use Ω|, Ω}, and Ωw to find the vehicle attitude (using quaternion or Directional 

Cosine Matrix DCM). 

4. Find vehicle’s inertial velocity and position: 

a. With respect to body frame � projects them onto the navigation frame 

using quaternion or DCM. 
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b. Project the acceleration onto the navigation frame � finds them with 

respect to the navigation frame. 

 

Figure 35: The usage of Filters within the proposed IMU. 

Note: the previous options must be chosen according to error analysis, where the less 

erroneous method should be used.  

5. Optimal Smoothers to refine the estimated parameters. 

6. Distributed Sensors Data Fusion (at IMU, i.e. Rings, level). 

Next, the possible differential equations that can be used in Filter design for both the 

IMU presented in [7] and the one proposed here are presented along with a modified 

version of the IMU presented in [7]. The possible equations have been stacked in 3 × 3 

matrix format to ease equations manipulation. 

• Formulation of System equations using the setup proposed in [7]: 

Reference should be made to Figure 20. 
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Table 2: IMU Kinematics Equations for Systems 1 and 2. 

%000 ��� − ��W2µ ��a − �� 2µ - = 490 −Ω� w Ω� u0 0 −Ω� p0 Ω� p 0 < + 90 ΩpΩu ΩpΩw0 −ΩwW − ΩpW ΩwΩu0 ΩwΩu −ΩuW − ΩpW
<8 

System 1 (Unstable-nonlinear) System 2 (Unstable-nonlinear) 

Ω� p = 14µ (��w − �Ww − �au + � u) Ω� p = −ΩwΩu + 12µ (��w − �Ww) 

Ω� u = −ΩpΩw + 12µ (�ap − � p) Ω� u = −ΩpΩw + 12µ (�ap − � p) 

Ω� w = ΩpΩu − 12µ (��p − �Wp) Ω� w = ΩpΩu − 12µ (��p − �Wp) 

 

From the above table, where ��� denotes a 3 × 1 vector, two systems can be obtained one 

is marginally stable and the other is unstable. New system is described mathematically in 

Table 3. 

• New formulation of System equations using the setup proposed in [7]: 
 
Reference should be made to Figure 20. 

Table 3: IMU Kinematics Equations for Systems 3 and 4. 

½��� − ��¾� ��� − ��W2µ ��a − �� 2µ ¿ = (@Ω� D + FΩ ×J) 

½��� − ��¾� ��� − ��W2µ ��a − �� 2µ ¿ = À� 0 −Ω� w Ω� uΩ� w 0 −Ω� p−Ω� u Ω� p 0 � + 9−ΩwW − ΩuW ΩpΩu ΩpΩwΩpΩu −ΩwW − ΩpW ΩwΩuΩpΩw ΩwΩu −ΩuW − ΩpW
<Á 

System 3 (Unstable-nonlinear) System 4 (stable-linear) 

Ω� p = −ΩwΩu + 12µ (��w − �Ww) Ω� p = 14µ (��w − �Ww − �au + � u) 



82 
 

Ω� u = −ΩpΩw + 12µ (�ap − � p) Ω� u = −12� (��w − �¾w) + 14µ (�ap − � p) 

Ω� w = −ΩpΩu + 1� (��u − �¾u) Ω� w = 12� y��u − �¾uz − 14µ (��p − �Wp) 

(1-D) Measurements Equations 
(nonlinear) 

(3-D) Measurements Equations (nonlinear) 

1� (�¾p − ��p) = ΩwW + ΩuW  
14µ� y4µ(�¾p − ��p) + �(�au − � u + ��w − �Ww)z= ΩwW + ΩuW+ΩwΩu 

12µ y�Wu − ��uz = ΩwW + ΩpW 
14µ� y��ap − �� p + 2�(�Wu − ��u) + 2µ(��w − �¾w)z= ΩpW + ΩwW+ΩwΩp 

12µ (� w − �aw) = ΩuW + ΩpW 
14µ� y���p − ��Wp + 2µ(��u − �¾u) + 2�(� w − �aw)z= ΩpW + ΩuW +ΩpΩu 

 

As can be seen from Table 3, the new system formulation, namely System 3 suffers from 

the same problem of instability, while System 4 dynamics depends on the 

accelerometers’ measurements and this system will be stable as long as those 

measurements are bounded; so System 4 will be used in this Chapter.  

 

• Formulation of the IMU equations Proposed in this thesis: 
 
Reference should be made to Figure 22. 

Table 4: IMU Kinematics Equations for Systems 5 and 6. 

½��� − ��W2µ ��a − �� 2µ ��¾ − ��Â2µ ¿ = (@Ω� D + FΩ ×J) 

½��� − ��W2µ ��a − �� 2µ ��¾ − ��Â2µ ¿ = À� 0 −Ω� w Ω� uΩ� w 0 −Ω� p−Ω� u Ω� p 0 � + 9−ΩwW − ΩuW ΩpΩu ΩpΩwΩpΩu −ΩwW − ΩpW ΩwΩuΩpΩw ΩwΩu −ΩuW − ΩpW
<Á 
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System 5 (Unstable-nonlinear) System 6 (stable-linear) 

Ω� p = −ΩwΩu + 12µ (�aw − � w) Ω� p = 14µ (�aw − � w − �¾u + �Âu) 

Ω� u = −ΩpΩw + 12µ (�¾p − �Âp) Ω� u = 14µ (�¾p − �Âp − ��w + �Ww) 

Ω� w = −ΩpΩu + 12µ (��u − �Wu) Ω� w = 14µ (��u − �Wu − �ap + � p) 

(1-D) Measurements Equations 
(nonlinear) 

(3-D)Measurements Equations  (nonlinear) 

12µ (�Wp − ��p) = ΩwW + ΩuW  
14µ y2�Wp − 2��p + �¾u − �Âu + �aw − � wz = ΩwW + ΩuW+ΩwΩu 

12µ y� u − �auz = ΩwW + ΩpW 
14µ y�¾p − �Âp + 2� u − 2�au + ��w − �Wwz = ΩpW + ΩwW+ΩwΩp 

12µ (�Âw − �¾w) = ΩuW + ΩpW 
14µ y�ap − � p + ��u − �Wu + 2�Âw − 2�¾wz = ΩpW + ΩuW+ΩpΩu 

 

System 5 is also unstable and that actually was reported in [45]; hence the same 

procedure done before with System 4 is done again to produce a stable version of the 

proposed IMU resulting in System 6 as can be found in Table 4, so System 6 will be used 

in the remainder of this thesis.  

 

• Comparison between System 4 and System 6: 

The new formulation of System 4 introduces a coupling between the measurements of the 

two rings which puts a demand over the used network that connects them to provide the 

measurements without considerable latency. This will raise the concern about the 

network availability and latency which must also be reflected on the filter design 

problem. Such problems are beyond the objective of this thesis. Other than this coupling, 
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the main difference between systems 4 and 6 is that system 4 depends on the values of 

(L), i.e. the separation between the two rings, and (µ). In this case, some analysis must be 

done to determine the effect of (L) and its relation with (µ); since they affect the quality 

of angular acceleration estimated using the accelerometers’ measurements. As (µ) 

increases, the estimation of angular acceleration would be better and the opposite is true. 

The increased value of (µ) comes on the expenses of increased sensitivity to structural 

vibrations and design sizing limitation, so the problem is not that easy as it may seems 

from the first glance. Now, the effect of (� ≫ µ ) can be reflected on Systems 4 as follows: 

Table 5: IMU Kinematics Equations for Systems 4 when (� ≫ µ ). 
System 4* (stable-linear) 

Ω� p = 14µ (��w − �Ww − �au + � u) 

Ω� u ≈ 14µ (�ap − � p) 

Ω� w ≈ − 14µ (��p − �Wp) 

(1-D) Measurements Equations* (nonlinear) (3-D) Measurements Equations* (nonlinear) 

0 ≈ ΩwW + ΩuW  
14µ (�au − � u + ��w − �Ww) ≈ ΩwW + ΩuW +ΩwΩu 

12µ y�Wu − ��uz ≈ ΩwW + ΩpW 
14µ y�ap − � p + 2(�Wu − ��u)z ≈ ΩpW + ΩwW+ΩwΩp 

12µ (� w − �aw) ≈ ΩuW + ΩpW  
14µ (��p − �Wp + 2(� w − �aw)) ≈ ΩpW + ΩuW +ΩpΩu 

 

As (� ≫ µ ), the coupling between the two Rings is reduced. So, once System 4 is 

considered, it is worth investigating such condition. In fact, the error analysis is essential 
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to see the full picture each parameter is affecting the System with, and this will be a 

subject for future work, see Chapter 10. 

6.2.1 Models used in Filter Design 

In this chapter, the following filters are to be investigated, namely: 

1. Extended Kalman Filter EKF. 

2. Unscented Kalman Filter UKF. 

 

System 4 and 6 are of concern in this chapter; since System 4 is considered an 

improvement for what was proposed originally in [7] and its performance need to be 

examined, while System 6 is the one to be used in the proposed IMU in this thesis. 

 

Since the interest is in implementing the filter on a digital computer, one have to use the 

discrete version of Kalman Filters (KFs) but before that the previous systems must be 

converted into difference equations. 

 

• Discrete Version of System 4: 

 

Using the backward finite-difference approximation for the first derivative, System 4 can 

be discretized as shown in Table 6. 
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Table 6: Discrete Version of System 4 

System 4 (linear) Measurements Equations (nonlinear) 

Ωp(¢) = Ωp(¢ − 1) + «4µ (��w − �Ww− �au + � u) 

1� (�¾p − ��p) = ΩwW(¢) + ΩuW (¢) 

Ωu(¢) = Ωu(¢ − 1) − «2� (��w − �¾w)
+ «(4µ) (�ap − � p) 

12µ y�Wu − ��uz = ΩwW(¢) + ΩpW(¢) 

Ωw(¢) = Ωw(¢ − 1) + «2� y��u − �¾uz
− «4µ (��p − �Wp) 

12µ (� w − �aw) = ΩuW (¢) + ΩpW(¢) 

 

• Discrete Version of System 6: 

 

Using the backward finite-difference approximation for the first derivative, System 6 can 

also be discretized as shown in Table 7. 

 

Table 7: Discrete Version of System 6 

System 6 (linear) Measurements Equations (nonlinear) 

Ωp(¢) = Ωp(¢ − 1) + «4µ (�aw − � w− �¾u + �Âu) 

12µ (�Wp − ��p) = ΩwW(¢) + ΩuW (¢) 

Ωu(¢) = Ωu(¢ − 1) + «4µ (�¾p − �Âp− ��w + �Ww) 

12µ y� u − �auz = ΩwW(¢) + ΩpW(¢) 

Ωw(¢) = Ωw(¢ − 1) + «4µ (��u − �Wu− �ap + � p) 

12µ (�Âw − �¾w) = ΩuW (¢) + ΩpW(¢) 
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� Extended Kalman Filter: 
 

Since the system equations are linear and the measurements equations are non-linear in 

both systems 4 and 6, an EKF can be used to retrieve the angular velocities. Different 

measurements model will be investigated, namely: 1-D, 2-D, and 3-D measurement 

models. The previously shown discrete versions of Systems 4 and 6 are used along the 

procedure depicted in Figure 36 to build the intended first-order discrete-EKFs. 

 

Figure 36: Extended Kalman Filter Layout. [80] 

 

For both Systems 4 and 6, the matrices found in Figure 36 are given as follows: 

�Ä = vÄ = xÄ = `}`(3) 

(65) ^Ä = Å�W`}`(3),       ÆÄ = ÅWW`}`(3)       
Where: Å�W and ÅWW are the measurement and process noise variances respectively. 

The available measurement models for both Systems 4 and 6 are given as follows: 
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� System 4 Measurements Models: 

Reference must be made to Figure 20.  

Note that for the equations in the second Ring, every (L) must be replaced with (-L). 

 

• 1-D Measurements Model: 

 

Table 8: 1-D Measurement Model for System 4. 

(1-D) Measurements Equations (nonlinear) 

1� (�¾p − ��p) = ΩwW(¢) + ΩuW (¢) 
12µ y�Wu − ��uz = ΩwW(¢) + ΩpW(¢) 
12µ (� w − �aw) = ΩuW (¢) + ΩpW(¢) 

 

• 2-D Measurements Model: 

Table 9: 2-D Measurement Model for System 4. 

(2-D) Measurements Equations (nonlinear) 

14µ (�au − � u + ��w − �Ww) = ΩwΩu 

14µ� (�(�ap − � p) + 2µ(��w − �¾w)) = ΩwΩp 

14µ� (�(��p − �Wp) + 2µ(��u − �¾u)) = ΩpΩu 

 

• 3-D Measurements Model: 
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Table 10: 3-D Measurement Model for System 4. 

(3-D) Measurements Equations (nonlinear) 

14µ� y4µ(�¾p − ��p) + �(�au − � u + ��w − �Ww)z = ΩwW + ΩuW+ΩwΩu 

14µ� y�(�ap − � p) + 2�(�Wu − ��u) + 2µ(��w − �¾w)z = ΩpW + ΩwW+ΩwΩp 

14µ� y�(��p − �Wp) + 2µ(��u − �¾u) + 2�(� w − �aw)z = ΩpW + ΩuW +ΩpΩu 

 

� System 6 Measurements Models: 

 

Reference must be made to Figure 22. 

 

• 1-D Measurements Model: 

Table 11: 1-D Measurement Model for System 6. 

(1-D) Measurements Equations (nonlinear) 

12µ (�Wp − ��p) = ΩwW + ΩuW  
12µ y� u − �auz = ΩwW + ΩpW  
12µ (�Âw − �¾w) = ΩuW + ΩpW 

 

 

• 2-D Measurements Model: 
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Table 12: 2-D Measurement Model for System 6. 

(2-D) Measurements Equations  (nonlinear) 

14µ y�¾u − �Âu + �aw − � wz = ΩwΩu 

14µ (�¾p − �Âp + ��w − �Ww) = ΩwΩp 

14µ y�ap − � p + ��u − �Wuz = ΩpΩu 

 

• 3-D Measurements Model: 

Table 13: 3-D Measurement Model for System 6. 

(3-D)Measurements Equations  (nonlinear) 

14µ y2�Wp − 2��p + �¾u − �Âu + �aw − � wz = ΩwW + ΩuW +ΩwΩu 

14µ y�¾p − �Âp + 2� u − 2�au + ��w − �Wwz = ΩpW + ΩwW+ΩwΩp 

14µ y�ap − � p + ��u − �Wu + 2�Âw − 2�¾wz = ΩpW + ΩuW +ΩpΩu 

 

The measurement matrix (H) for Systems 4 and 6 obtained after linearization are given as 

follows: 

Table 14: Measurement Matrix for Systems 4 and 6, linearized version. 

1-D 2-D 3-D 

Ç = 2 9 0 Ωu ΩwΩp 0 ΩwΩp Ωu 0 <   Ç = 9 0 Ωw ΩuΩw 0 ΩpΩu Ωp 0 < Ç = 9 0 2Ωu + Ωw 2Ωw + Ωu2Ωp + Ωw 0 2Ωw + Ωp2Ωp + Ωu 2Ωu + Ωp 0 < 
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6.2.2 Simulation Results of System 4 with different Measurement Models 

Using EKF 

 

A Simulink model, shown in Figure 37, was used to simulate System 4 in which the 

coupling between the two Rings is clearly shown. The two Rings were added to the 

SimMechanics Machine previously shown in Figure 23. 

  

 

Figure 37: Simulink Model Used to Test System 4 with Different Measurement Models. 

 

• System 4: (� = 1 q, µ = 0.1 q ) with (1-D) Measurements Equations 
 

Next, only the results obtained from the first ring are displayed; since they are similar to 

those obtained from the second ring and from the averaged values. Figure 37 clearly 

shows the coupling between the measurements of the two Rings which put a demand on 

the sensor network used as was previously discussed. 
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Figure 38: Composite Body Angular Velocity about X-axis (rad/sec) using 12-accelerometer/Ring in Two-Ring 

Configuration. 

 
Figure 39: Composite Body Angular Velocity about Y-axis (rad/sec) using 12-accelerometer/Ring in Two-Ring 

Configuration. 

 
Figure 40: Composite Body Angular Velocity about Z-axis (rad/sec) using 12-accelerometer/Ring in Two-Ring 

Configuration. 
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It is obvious that the performance of System 4 using the EKF is very good except in the 

interval [112-120] seconds where there is an inversion in the estimation for the X and Z 

angular velocities, a closer view on the Z angular velocity is shown within this interval 

where the symmetry is obvious, see Figure 41. This problem is due to the angular 

velocity sign ambiguity which cannot be determined using the available non-linear terms.  

 
Figure 41: Composite Body Angular Velocity about Z-axis (rad/sec) using 12-accelerometer/Ring in Two-Ring 

Configuration, a close view. 

 

� Second-order discrete-EKFs 

It was shown in [81] that the state prediction of the second-order discrete-EKF is given 

by: 

|È¢+1− = °y|È¢+, É¢, ¢z + 12 n ∅�«I 9Ë2°�Ë|2 Ì|Í¢+
l¢+<�

�=1  

(66) 

o = ÎÏÎpÐpÍÑÒ = %1 0 00 1 00 0 1-      

From the above equations, it is clear that the second-order EKF will be equivalent to the 

first-order discrete-time EKF; so it will not be implemented here.  
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Now, instead of using the usual approach of discretization that depends on the usage of 

gradients, the backward finite-difference approximation for the first derivative, given in 

equation (65), see [82], is used as follows: 

°�(|�) = °(|�¯W) − 4°(|�¯�) + 3°(|�)2«  (67) 

Where, (T) is the sampling interval. Now, proceed as follows: 

Define               � = FΩp Ωu ΩwJE 

(68) �(¢) = 43 �(¢ − 1) − 13 �(¢ − 2) + 23 «q(¢) 

Where, q(¢) is the vector containing the accelerometers’ measurements inputs. 

Define,  

��(¢) = �(¢ − 2),     ��(¢ + 1) = �(¢ − 1) =  �W(¢) 

(69) 

�W(¢ + 1) = �(¢) = 43 �W(¢) − 13 ��(¢) + 23 «q(¢) 

Ó��(¢ + 1)�W(¢ + 1)Ô = % ~`I��(3) `}`(3)− 13 ∗ `}`(3) 43 ∗ `}`(3)- Ó��(¢)�W(¢)Ô + % ~`I��(3)23 « ∗ `}`(3)- q(¢) 

�(¢) = %0 1 11 0 11 1 0- ∗ ����y��(¢)z ∗ ��(¢) = ¤ ∗ ����y��(¢)z ∗ ��(¢) 

Now, the system is given by: 

Ó��(¢ + 1)�W(¢ + 1)Ô = % ~`I��(3) `}`(3)− 13 ∗ `}`(3) 43 ∗ `}`(3)- Ó��(¢)�W(¢)Ô + % ~`I��(3)23 « ∗ `}`(3)- q(¢) (70) 
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�(¢) = Ó��(¢)�W(¢)Ô = Ó ¤� ~`I��(3)~`I��(3) ~`I��(3)Ô Ó��(¢)�W(¢)Ô 

� = 9 ~`I��(3) `}`(3)− 13 ∗ `}`(3) 43 ∗ `}`(3)< , £ =  % ~`I��(3)23 « ∗ `}`(3)- 

Ç = Ó ¤� ~`I��(3)~`I��(3) ~`I��(3)Ô,         ¤� = 9 0 Ωu ΩwΩp 0 ΩwΩp Ωu 0 < 

By applying the EKF equations, as previously shown in Figure 36 using the matrices 

given in (70), System 4 gives approximately the same results and it did not solve the sign 

ambiguity problem. The results are as follows: 

 
Figure 42: Composite Body Angular Velocity about X-axis (rad/sec) using 12-accelerometer/Ring in Two-Ring 

Configuration, L = 1m, with 1-D measurement model. 
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Figure 43: Composite Body Angular Velocity about Y-axis (rad/sec) using 12-accelerometer/Ring in Two-Ring 

Configuration, L = 1m, with 1-D measurement model. 

 
Figure 44: Composite Body Angular Velocity about Z-axis (rad/sec) using 12-accelerometer/Ring in Two-Ring 

Configuration, L = 1m, with 1-D measurement model. 

 

• System 4: (� = 100 q, µ = 0.1 q ) with (1-D) Measurements Equations 
 

The effect of increased value of (L, i.e. the separation between the two rings) on the 

previous system is shown in the following figures: 
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Figure 45: Composite Body Angular Velocity about X-axis (rad/sec) using 12-accelerometer/Ring in Two-Ring 

Configuration, L = 100m, with 1-D measurement model. 

 

Figure 46: Composite Body Angular Velocity about Y-axis (rad/sec) using 12-accelerometer/Ring in Two-Ring 

Configuration, L = 100m, with 1-D measurement model. 
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Figure 47: Composite Body Angular Velocity about Z-axis (rad/sec) using 12-accelerometer/Ring in Two-Ring 

Configuration, L = 100m, with 1-D measurement model. 

 

• System 4: (� = 1 q, µ = 0.1 q ) with (2-D) Measurements Equations 
 

As not expected, the increased measurements were unable to provide better estimation 

than 1-D measurement model for the same process and measurement noise matrices, 

because of the added nonlinear complexities.  The results, obtained using 2-D 

measurement model, are shown in the following figures: 

 

Figure 48: Composite Body Angular Velocity about X-axis (rad/sec) using 12-accelerometer/Ring in Two-Ring 

Configuration, L = 1m, with 2-D measurement model. 
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Figure 49: Composite Body Angular Velocity about Y-axis (rad/sec) using 12-accelerometer/Ring in Two-Ring 

Configuration, L = 1m, with 2-D measurement model. 

 

Figure 50: Composite Body Angular Velocity about Z-axis (rad/sec) using 12-accelerometer/Ring in Two-Ring 

Configuration, L = 1m, with 2-D measurement model. 

 

• System 4: (� = 1 q, µ = 0.1 q ) with (3-D) Measurements Equations 

The same as in 2-D measurement model, the 3-D measurement model was unable to 

provide better estimation of the angular velocity for the same process and measurement 

noise matrices, because of the added nonlinear complexities. The results were as follows: 
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Figure 51: Composite Body Angular Velocity about X-axis (rad/sec) using 12-accelerometer/Ring in Two-Ring 

Configuration, L = 1m, with 3-D measurement model. 

 

Figure 52: Composite Body Angular Velocity about Y-axis (rad/sec) using 12-accelerometer/Ring in Two-Ring 

Configuration, L = 1m, with 3-D measurement model. 
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Figure 53: Composite Body Angular Velocity about Z-axis (rad/sec) using 12-accelerometer/Ring in Two-Ring 

Configuration, L = 1m, with 3-D measurement model. 

 

6.2.3 Simulation Results of System 6 with different Measurement Models 

Using EKF 

Here, the simulation results will only be presented without further comments. The effect 

of various measurements model will be clear once the observability of each system is 

checked. The Simulink model shown in Figure 54 was used to simulate System 6 with 

different measurement models.  
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Figure 54: Simulink Model Used to Test System 6 with Different Measurement Models. 

 

The simulation results are as follows: 

• System 6: (� = 1 q, µ = 0.1 q ) with (1-D) Measurements Equations 

 

Figure 55: Composite Body Angular Velocity about X-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, L = 1m, with 1-D measurement model. 
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Figure 56: Composite Body Angular Velocity about Y-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, L = 1m, with 1-D measurement model. 

 

 

Figure 57: Composite Body Angular Velocity about Z-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, L = 1m, with 1-D measurement model. 

 

• System 6: (� = 1 q, µ = 0.1 q ) with (2-D) Measurements Equations 
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Figure 58: Composite Body Angular Velocity about X-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, L = 1m, with 2-D measurement model. 

 

 
Figure 59: Composite Body Angular Velocity about Y-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, L = 1m, with 2-D measurement model. 
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Figure 60: Composite Body Angular Velocity about Z-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, L = 1m, with 2-D measurement model. 

 

• System 6: (� = 1 q, µ = 0.1 q ) with (3-D) Measurements Equations 

 
Figure 61: Composite Body Angular Velocity about X-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, L = 1m, with 3-D measurement model. 
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Figure 62: Composite Body Angular Velocity about Y-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, L = 1m, with 3-D measurement model. 

 

 
Figure 63: Composite Body Angular Velocity about Z-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, L = 1m, with 3-D measurement model. 

 

From all the previous simulation results, it is apparent that the best model is the linear 

state model with 1-D measurement model. The main problem to be solved here is the sign 

ambiguity, as stated before. The following algorithm provides the solution: 



107 
 

Integrate the state equations using numerical techniques, and then determine the sign of 

each “AngularVelocity” then feed them to the EKF and correct for the sign of the 

“Estimated_AngularVelocity” using the following pseudo code, example given here for 

the X-axis angular velocity but it is applicable to other axes as well: 

If (sign(AngularVelocity_X)*Estimated_AngularVelocity_X < 0)  % different 

Then Estimated_AngularVelocity_X = -1* Estimated_AngularVelocity_X; 

Elseif sign(AngularVelocity_X) == 0 

Then Estimated_AngularVelocity_X = 0 

End 

(71) 

This will reduce the sign ambiguity to the level of the noise available after integrating the 

angular acceleration obtained directly using the accelerometers’ readings as found in 

Systems 4 and 6. Similar approach to overcome sign ambiguity was also used in [38]. 

The results obtained, using the sign ambiguity algorithm in conjunction with EKF, are 

shown only for System 6. 

The performance of System 6 along with the 1-D measurement Model and the sign 

ambiguity algorithm is shown in the following figures: 
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Figure 64: Composite Body Angular Velocity about X-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, L = 1m, with 1-D measurement model, and Sign ambiguity algorithm. 

 

 
Figure 65: Composite Body Angular Velocity about Y-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, L = 1m, with 1-D measurement model, and Sign ambiguity algorithm. 
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Figure 66: Composite Body Angular Velocity about Z-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, L = 1m, with 1-D measurement model, and Sign ambiguity algorithm. 

 

Both Systems 4 and 6 allow the offline calculation for �, £, ÆÄ matrices where the only 

changing matrix is (H). Now, before preceding further it is recommended to check the 

observability of these linearized time-varying models (LTV) using different measurement 

models to have some insight about the simulation results shown so far which reflect the 

performance of the EKF using such models. 

6.2.4 Observability Check using different Measurement Models 

 

Mainly, Systems 4 and 6 treated in this thesis are non-linear time-varying systems in 

measurements. Both have been linearized and then discretized to make them usable 

within the framework of EKF as was shown previously in Figure 36. The resulting 

measurement matrices for different measurement models are as given in Table 14. The 

observability of a discrete and linear time-varying or a linearized and then discretized 

system with no process or measurement noise vectors can be defined as follows [83]: 
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Definition 1: A LTV or linearized system with no process or measurement noise vectors 

is observable at time �º if the state vector at time �º , |º can be determined from 

operations on the measurement sequence �º = F~�, … , ~ºJ where �º >  �� and �º <  ∞. 

The observability of such systems can be assessed by calculating the rank of the 

Observability Grammian, defined as follows [84]: 

ℳ(�Û) = n ФE(�Ä, ��)ÇE(�Ä)Ç(�Ä)Ф(�Ä, ��)Û
ÄÝ�  (72) 

Equation (72) can also be written in a recursive form as follows [84]: 

ℳ(�Û) = ℳ(�Û) + ФE(�Û, ��)ÇE(�Û)Ç(�Û)Ф(�Û, ��) (73) 

Along with, ℳ(��) = 0 as the initial condition. 

This test is based on evaluating the rank of 3 × 3 ℳ(�Û) matrix whose dimensions 

depend only on the dimensions of the state vector and not on the dimensions of the 

measurement vector or number of measurements [85]. 

The state equation for both Systems 4 and 6 are given as follows: 

�(�Äµ�) = Ф(�Ä)�(�Ä) + £(�Ä)r(�Ä) 

� = FΩp, Ωu , ΩwJE ,         Ф(�Ä) = `}`(3) 

(74) 

And their output equation is given by: 

�(�Û) = Ç(�Ä)�(�Ä) (75) 

Where, Ç(�Ä) depends on the measurement model used as was given in Table 14. 
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Making use of equation (74), equation (73) can be rewritten as follows: 

ℳ(�Û) = ℳ(�Û) + ÇE(�Û)Ç(�Û) (76) 

It is obvious from equation (76) that for the rank of the Observability Grammian ℳ(�Û) 

to be full, i.e. equals 3, the term ÇE(�Û)Ç(�Û) must be full rank at each time instant �Û. 

One way to ensure that is to check the positive definiteness of that term. A positive 

definite matrix is invertible, i.e. nonsingular, [86]. Knowing the fact that an invertible 

matrix must have a full rank enables insuring the observability of the system according to 

this condition. 

Next, the observability of both systems, using different measurement models, is 

investigated which can be used to understand the simulation results previously shown in 

more detail.  

• Observability of Systems 4 and 6 using 1-D measurement Model 

The linearized (Ç) matrix for this model is given as follows: 

Ç = 2 ∗ 9 0 Ωu ΩwΩp 0 ΩwΩp Ωu 0 < 

Now, the positive definiteness of the symmetric matrix Þß(àá)Þ(àá) is checked as 

follows: 

A symmetric n × n real matrix M is said to be positive definite if (�E��) is positive for 

every non-zero column vector Z of n real numbers.  

• Define a vector � = F� � �JE 

• Check whether ��E(âEâ)�� > 0, ∀��  ≠ 0
� 
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• If the previous step was valid, then the matrix is positive definite for all time 

instances and hence the system is observable. 

It can be shown that the result will be given by: 

y�Ωp + �ΩuzW + (�Ωp + �Ωw)W + y�Ωu + �ΩwzW > 0, ∀��  ≠ 0
� (77) 

Then, both systems are observable using this measurement model. 

• Observability of Systems 4 and 6 using 2-D measurement Model 

Similarly, the observability of both Systems 4 and 6 can be checked when they utilize the 

2-D measurement model. The linearized (Ç) matrix is given as follows: 

Ç = 9 0 Ωw ΩuΩw 0 ΩpΩu Ωp 0 < 

The same steps can be implemented to show that the Observability Gramian is given as 

follows: 

(�Ωw + �Ωp)W + y�Ωu + �ΩpzW + y�Ωw + �ΩuzW > 0, ∀��  ≠ 0
� (78) 

Then, both systems are observable using this measurement model. 

• Observability of Systems 4 and 6 using 3-D measurement Model 

The linearized (Ç) matrix is given as follows: 

Ç = 9 0 2Ωu + Ωw 2Ωw + Ωu2Ωp + Ωw 0 2Ωw + Ωp2Ωp + Ωu 2Ωu + Ωp 0 < 



113 
 

The same steps can be implemented to show that the Observability Gramian is given as 

follows: 

@y2Ωp + Ωuz� + (2Ωu + Ωp)�DW + @y2Ωu + Ωwz� + (2Ωw + Ωu)�DW
+ F(2Ωp + Ωw)� + (2Ωw + Ωp)�JW > 0, ∀��  ≠ 0
� 

(79) 

Then, both systems are observable using this measurement model. 

In light of the previous discussion, in order to explain the performance of the EKF built 

for Systems 4 and 6 utilizing the 2-D and 3-D measurement model it is good to remember 

that this observability, for Systems 4 and 6 using the 2-D and 3-D measurement model, 

was checked while neglecting the process and measurement noise vectors. 

Figure 36 shows how the evolution of the state covariance matrix depends on the state 

transition matrix Ф, denoted by (A) in Figure 36, the sensor matrix Ç, the process noise 

Q, the measurement noise R, and finally the statistics of the initial state vector l�. The 

later three matrices can cause the state covariance matrix P to exceed a predetermined 

threshold value or even to become unbounded, even though the pair (Ф, Ç) is observable; 

hence Observability is necessary but not sufficient [85]. Other types of Observability 

tests may be used to deepen the understanding of the situation in hand such as Stochastic 

Observability [85] which is beyond the scope of this thesis. 

It is worth noting that the observability test of System 4 will be different if non-ideal 

network was assumed to connect either the two Rings, or many Rings, together which is, 

as well, beyond the objective of this thesis. 
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� Unscented Kalman Filter Design 
 

This type of filters can be used if the system is highly non-linear which may cause EKF 

performance to deteriorate. Because EKF depends on linearization, a linearization error 

can result in errors in the transformation of means and covariance when a random 

variable is operated on by a non-linear function [81]. 

Figure 67 shows the UKF layout that can be followed to design such a filter for the 

systems proposed here. To ensure the compactness of the thesis body, a detail 

explanation for the UKF is avoided since it can be easily located in literature. So, in this 

section, the main concern will be about the performance of System 6 once an UKF is 

designed to utilize different measurement models.  

 

6.2.5 Simulation Results of System 6 with different Measurement Models 

Using UKF 

 

In this section, the simulation results obtained using the same previously presented 

Simulink model are shown for System 6 with 1-D and 3-D measurement models only; 

since the results obtained using UKF designed for System 6 utilizing 2-D measurements 

were unsatisfactory. 
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Figure 67: UKF layout. [87] 

 

• System 6: (� = 1 q, µ = 0.1 q ) with (1-D) Measurements Equations and Sign 

Correction and noise enabled. 
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Figure 68: Composite Body Angular Velocity about X-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, with 1-D measurement model, and Sign ambiguity algorithm with UKF. 

 

 

 

Figure 69: Composite Body Angular Velocity about Y-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, with 1-D measurement model, and Sign ambiguity algorithm with UKF. 
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Figure 70: Composite Body Angular Velocity about Z-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, with 1-D measurement model, and Sign ambiguity algorithm with UKF. 

 

 

• System 6: (� = 1 q, µ = 0.1 q ) with (3-D) Measurements Equations and Sign 
Correction and noise enabled. 

 

Figure 71: Composite Body Angular Velocity about X-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, with 3-D measurement model, and Sign ambiguity algorithm with UKF. 
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Figure 72: Composite Body Angular Velocity about Y-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, with 3-D measurement model, and Sign ambiguity algorithm with UKF. 

 

 

 

Figure 73: Composite Body Angular Velocity about Y-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, with 3-D measurement model, and Sign ambiguity algorithm with UKF, close view. 
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Figure 74: Composite Body Angular Velocity about Z-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, with 3-D measurement model, and Sign ambiguity algorithm with UKF. 

 

The following figures reflect the performance of the UKF designed for System 6 utilizing 

3-D measurement model. It can be clearly seen that the performance is deteriorated when 

sign correction algorithm is ignored and that makes the performance of the UKF similar 

to the EKF when this problem is considered. The following section discusses the 

question: Which non-linear filter to choose, UKF or EKF? 

 

Figure 75: Composite Body Angular Velocity about X-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, with 3-D measurement model, and Without Sign ambiguity algorithm with UKF. 
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Figure 76: Composite Body Angular Velocity about Y-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, with 3-D measurement model, and Without Sign ambiguity algorithm with UKF. 

 

Figure 77: Composite Body Angular Velocity about Z-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, with 3-D measurement model, and Without Sign ambiguity algorithm with UKF. 

 

It is obvious from the previous figures, that the UKF is unable to uniquely determine the 

sign of the angular velocity especially when allowing the CoG position to change. So, the 

corporation between the sign ambiguity algorithm and the UKF resolves this problem. 

6.2.6 Comparison between EKF and UKF 

Mainly, the measurement models suggested in Systems 4 and 6 were the motivation 

behind choosing the Extended and Unscented Kalman Filter versions to handle the non-
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linearity inherited by choosing such measurement models. Further investigation of the 

problem formulation and deeper understanding of the problem will result in a linear time-

invariant version of Systems 4 and 6, which will be discussed in the next section. 

However, the UKF is capable of handling more non-linearities within the system 

dynamics which the EKF cannot do. It was clear from Figures 53 and 63 that the EKF 

failed in retrieving the angular velocity when the 3-D measurement model was used with 

System 4 and System 6 respectively. On the opposite, the UKF was able to handle these 

non-linearities once applied to System 6 utilizing the 3-D measurement model as can be 

seen in Figures 71-74 with the aid of sign ambiguity algorithm. 

The main difference between 1-D and 3-D measurement models is the added 

accelerometers’ measurements in the case of the 3-D measurement model. This addition 

was the source of increased non-linearities found in the 3-D measurement models once 

compared to those found in the 1-D counterpart. This will make the estimation of the 

angular velocity more robust especially in the case of accelerometer failure provided that 

a utility capable of removing the outliers in the accelerometers’ measurements is 

involved, as can be seen in Chapter 9. 

Once the implementation of those filters within a finite precision device is considered, the 

computational power needed with each type must be evaluated. Once compared from this 

perspective, both filters share the same level of computational complexity [88]. 

In opposition to UKF, the EKF computation involves finding the Jacobian which makes it 

difficult to implement the EKF for non-linear systems which are not given analytically. In 

such cases, the computation of the Jacobian numerically will be difficult [81]. A more 
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detailed comparison between UKF and EKF can be found in [89] and specifically in 

navigation can be found in [90]. 

 So, it seems clear that when additional measurements, i.e. increased accuracy and 

robustness, are needed, the best choice would be using the 3-D measurement model along 

with the UKF. However, if it is intended to reduce the complexity of the overall design, 

then an EKF can be used along with 1-D measurement model. 

6.2.7 Is a non-linear Filter really needed? 

By examining the continuous time state equations of Systems 4 and 6, it is clear that a 

simpler approach can be taken to retrieve the angular velocity from the accelerometers’ 

measurements. In such an approach, the result will be a linear time-invariant system. 

Recall the state equations of system 6; they can be given in a state-space representation as 

follows: 

Ω� p = 14µ (�aw − � w − �¾u + �Âu) 

Ω� u = 14µ (�¾p − �Âp − ��w + �Ww) 

Ω� w = 14µ (��u − �Wu − �ap + � p) 
(80) 

9Ω� pΩ� uΩ� w < (�) =  £r

�(�) = Ω�

�(�) 

%}�}W}a- (�) = %1 0 00 1 00 0 1- 9ΩpΩuΩw < (�) = }�(�) 
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This system, System 7, can be discretized and a standard Kalman Filter (KF) can be 

designed. To maintain compactness of the thesis body, discussing the KF will be avoided 

and reference can be made to [81] for further details. The discretized version of the 

system given by (81) is shown below: 

Ω

�(¢ + 1) =  Ω

�(¢) + «£r

�(¢) 

}�(¢) = Ω

�(¢) 

(81) 

Where, T denotes the sampling period in seconds. 

The IMU proposed by this thesis, previously referred to as System 6, is investigated using 

this system and the results were as follows:  

 

Figure 78: Composite Body Angular Velocity about X-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, with Standard Kalman Filter and without noise. 
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Figure 79: Composite Body Angular Velocity about Y-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, with Standard Kalman Filter and without noise. 

 

Figure 80: Composite Body Angular Velocity about X-axis (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, with Standard Kalman Filter and without noise. 

 

Now, the results obtained when noise, greater than what have been used in UKF just to 

show the point of interest, was added are shown in Figure 81. It is clear that the noise, 

once integrated, will introduce a drift in the estimated angular velocity, so it is maybe 

essential to design a complementary filter or to introduce redundant measurements to 

enhance the performance of the standard Kalman Filter and the quality of the estimated 

angular velocity as can be found in [62]. 
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Figure 81: Composite Body Angular Velocities (rad/sec) using 18-accelerometer/Ring in Two-Ring 

Configuration, with Standard Kalman Filter and with noise. 

 

This system was provided only for sake of completeness and it seems attractive 

especially when implemented in real hardware devices. In such a case, the redundant 

accelerometers’ measurements can still be used in fault detection, CoG position 

estimation, and gravity tensor determination. 

6.3 Summary 

 
In this chapter, different systems have been formulated to make the best out of the 

available measurements in order to retrieve the angular velocity from the available 

accelerometers’ measurements. It was shown that for System 6, an UKF can preferably 

be used along with 1-D and 3-D measurement models. The observability of Systems 4 

and 6 was investigated and a conclusion was made that the observability is necessary but 

not sufficient for an EKF to operate nicely. System 7 was also introduced to complete the 

picture where a standard Kalman Filter simply acts as an integrator for the angular 

acceleration to retrieve the angular velocity. This approach suffers from the drift caused 
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by the noise available in the measurements so a solution is needed and can be found in 

[62]. System 7 can be of use once the gravity tensor is estimated as can be seen in 

Chapter 7. 

Table 15 shows the maximum percentage error quantifying the performance of different 

filters used to retrieve the angular velocity using the proposed IMU. It is clear that the 

standard Kalman Filter exhibits the best performance, then UKF, and Finally EKF. 

Table 15: Maximum Percentage Error of the estimated angular velocity obtained using different Filters 

Filter Type 

Maximum Percentage Error % 

Non-Linear Measurement model 

1-D 2-D 3-D 

Sy
st

em
 6

 

L
in

ea
r 

Sy
st

em
 EKF 

Without Sign 
ambiguity Solution 

17.5239 500.1133 18.1712 

With Sign 
ambiguity Solution 

8.6870 189.6023 8.8964 

UKF 

Without Sign 
ambiguity Solution 

5.0590 283.3059 5.8795 

With Sign 
ambiguity Solution 

3.1458 85.8435 3.8833 

Sy
st

em
 7

 

L
in

ea
r 
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em
 

KF 
Linear Measurement model 

1.1679 
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7 CHAPTER 7 

GRAVITY COMPE�SATIO� 

Inertial Navigation Systems (INS) depend on inertial sensors. The accelerometer is the 

only inertial sensor used in All-accelerometers IMUs. The measurements of the 

accelerometers are affected by the gravity force that must be compensated for before the 

measurements of the accelerometers are used further in other calculations. Equation (82) 

shows the relation between the inertial accelerometer measurements (���), for an 

accelerometer located at the stationary CoG, and the acceleration due to gravity (��).  

��� = ��� − �� (82) 

Where, ��� is the acceleration of the body to which the accelerometer is attached, and �� is 

commonly known to be equal to (9.81 m/sec2). In fact it is different from place to place 

and it depends on many factors which makes a gravity model hard to be built. In addition, 

as the accelerometers’ accuracy is increasing, due to new fabrication techniques, it was 

found that the error in the value of gravity acceleration contributes most in the overall 

navigation error; hence there is a need to reduce this error [94]. 

 

The gravitational field can be measured using a gravimeter, i.e. gravity meter, or a 

gradiometer. The later has a number of advantages because of which its usage becomes 

more frequent. Different types of gravity gradiometer devices are available, such as 

gradiometers based on electrostatic or rotating accelerometers. 
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Airborne gravity gradiometers are becoming popular in natural resources prospecting and 

in mining surveys as well; since aircraft can reach areas easily than a ground survey can 

do [91]. 

 

The feasibility of using an airborne gravity gradiometer in high precision INS is 

investigated in [92]. It is worth noting, at this point, that the sole focus of this thesis is on 

all-accelerometers based IMU that can be used with the available INS. So, the integration 

of gradiometer within INS is utilized through the all-accelerometers based IMU proposed 

here. 

 

As was shown previously in section 2.2, there are two main types of INS, namely: the 

stabilized platform and the strapdown INS. In the former, the angular motion of the 

carrier vehicle will not participate in the overall equations as was shown in [92]. In [93], 

the gravity gradiometer based on stabilized INS was presented, and the governing 

equations were derived in more detail where the cases of aided INS that combines INS 

measurements with low and high bandwidths from two IMUs with different qualities are 

included.  

 

The errors associated with integrated INS and a gravity gradiometer were analyzed in 

[94] where it shows that the errors associated with gravitation can be reduced to about 5 

meters after one hour of free-inertial navigation. It should be clear that the more precise 

acceleration and angular measurements are, the less error they will have once compared 

to gravity model errors which must be compensated for. 
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The effect of the earth model adopted in this thesis, namely FEM, is investigated in [95] 

where it shows that such a simple model will not be sufficient to accurately obtain the 

gravitational field using gradiometers in stabilized systems. So, the earth rotation must be 

included into the governing equations, or at least investigated in a strapdown INS, which 

will be a part of future work as will be shown in Chapter 10. 

 

The basic idea of using All-accelerometers based IMU in a strapdown configuration as a 

gravity gradiometer was presented in [44]. 

 

In [96], the usage of accelerometer-based gravity gradiometer is formulated and 

accordingly, the governing equations of Bell/Aero gravity gradiometer were derived. This 

part is very essential in this thesis; because one of its objectives is to compensate for 

gravity. It is intended to compensate for the gravity using only the accelerometers’ 

readings available from all-accelerometers IMU, so no gravity models or tables are used 

nor needed. 

 

In [74], a strapdown Inertial Navigation System (SINS) for an air vehicle was developed 

using the Flat-Earth model (FEM) and the NED coordinate system. The earth 

acceleration and rotation effects were neglected; since those generated from the aircraft is 

too large once compared to the earth’s counterparts, knowing that gravity is assumed to 

be constant. This approach can produce wrong results if the results presented in a 

stabilized system are considered as can be found in [95]. 
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In [97], the usage of 18 accelerometers was demonstrated to show how to extract angular 

velocity, angular/linear acceleration, and the gravitational gradient. Instrumental error 

analysis was done which showed that a gravitational field affects the errors in position, 

velocity and acceleration so that they increase without bound all the time. 

 

In [103-106], a correctable model of INS, which can be corrected via external means such 

as GPS and the like, to determine the earth’s gravitational field, was presented. It also 

show the reason why most the time gravimetry and INS are combined with each other.  

 

In [102], a Kalman filter is used to find the values of magnetic and gravitational fields 

from gyro measurements individually. INS was considered in Laparoscopic Surgery due 

to line of sight constraints where optical tracking is not possible. The gravity effect was 

removed from the accelerometers’ measurements using Kalman filter where a dynamic 

model of gravity estimation is presented. 

 

In [100], all-accelerometers and gravity gradiometer relationship was derived, and also 

the Bell/Aero gradiometer equations were derived. The advantages of using a 

gradiometer over using gravimeter were mentioned to be:  

1- Gravity gradient sensitivity to the high frequency information of earth is higher. 

2- Gravimeter can give gravity information in one direction only, where gradiometer 

can give five components of the symmetric and traceless gravity gradient tensor. 

3- It has more anti-jamming capabilities. 



131 
 

4- The gravimeter is affected by the movement of its carrier because it cannot 

distinguish the acceleration due to gravity and that of its carrier, where 

gradiometer is not. 

 

In [103], the All-Accelerometer based Gradiometer is assumed to be located at the CoG 

while in thesis, such assumption is not forced. 

 

The main participation of this thesis regarding the gravity compensation is to find the 

acceleration due to varying gravity under the assumption of varying CoG using an 

identification scheme which was not tackled before as far as the author is aware of. 

7.1 Problem Formulation 

Referring to Figure 22, the ideal accelerometer’s measurements can be given by the 

following equation: 

��� = ��� + 
̂��?Ä + Ω

�� × y 
̂�?Ä + µ�̂z + 2Ω

� × 
̂��?Ä + Ω

� × �Ω

� × y 
̂�?Ä + µ�̂z� − ��� (83) 

Where (i) denotes the accelerometer index within the (kçè) ring, (A

��) is the vehicle 

acceleration at the CoG relative to the inertial frame measured in the body frame, (R

��ê) is 

the vector from the CoG to the center of the (kçè) ring, (R

�� �ê) is the acceleration of the 

CoG relative to the (kçè) ring, (R

�� �ê) is the velocity of the CoG relative to the (kçè) ring, 

(μ¼) is the distance of the (içè) accelerometer from the center of the (kçè) ring which is 

assumed to be equal for all the accelerometers within the same ring and it is assumed to 

be less than 1 meter, (Ω

�) is the angular velocity of the body, (Ω

�� ) is its angular 

acceleration, (×) denotes the cross product between two vectors, and (sÍ) is the unit vector 
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in the X, Y, or Z directions corresponding to the axis where the accelerometer is attached 

to. Finally, (g
�¼) is the gravity vector measured in the body frame affecting the 

measurements of the (içè) accelerometer in the (kçè) ring. 

Practically speaking, these measurements are subjected to various sources of errors that 

make the ideal measurements impossible to have. Despite this fact, this chapter will use 

the ideal measurements just for simplicity of derivation of the remaining equations. Error 

analysis can be a part of future work, see Chapter 10. 

The actual measurements obtained from an accelerometer, i.e. a tri-axis one, are given by 

the following equation: 

��ì� = íîïðð(�)��� + �����ñ(�) + ��·�`










�� (84) 

Where, (íîïðð(�)) denotes a (3X3) matrix whose diagonal represents the Scale Factor for 

each channel of the tri-axis accelerometers, namely: x, y, and z channels, and its off 

diagonal are the Cross Coupling between the other two axes denoted by (�). (����ñ(�)) 
represents the bias each channel has which may vary with time. (��·�`










��) represents the 

noise each channel has, and most the time it is considered as a white noise for simplicity. 

(íîïðð(�)) is given as follows:  

íîïðð(�) =  91 + òp� �u� �w��p� 1 + òu� �w��p� �u� 1 + òw�< (85) 
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Recall that all the accelerometers within each ring are arranged in a diamond 

configuration, i.e. two accelerometers spaced equally about the ring’s center with a 

distance equal to ó in each axis. 

When taking the difference between each pair of accelerometers in one direction, i.e. X, 

Y, or Z axis, the following will result: 

For the tri-axis accelerometers pair in the X-axis of any ring, drop the ring index (k) and 

assume all rings are aligned to the body reference frame:  

��� − ��W = 2Ω

�� × µ·̂ + 2Ω

� × yΩ

� × µ·̂z − (��� − ��W) (86) 

 
For the accelerometers pair in the Y-axis of any ring: 

��a − ��  = 2Ω

�� × µ�̂  + 2Ω

� × yΩ

� × µ�̂ z − (��a − �� ) (87) 

 
For the accelerometers pair in the Z-axis of any ring: 

��¾ − ��Â = 2Ω

�� × µ¢¬ + 2Ω

� × yΩ

� × µ¢¬z − (��¾ − ��Â) (88) 

 

Where, · Í, �̂, and ¢¬ are the units vector in the ring X, Y, and Z axes respectively. 

The gravity vector is a function of the position, so it may be given as follows [93]: 

�� =  F¸p(|(�), }(�), ~(�)) ¸u(|(�), }(�), ~(�)) w̧(|(�), }(�), ~(�))JE (89) 

 
The difference between two gravity vectors is considered as the gravity gradient which 

changes within a large distance in space that may reach kilometers [110,111]. The 

symmetric gravity gradient with respect to body frame is given by [44]: 
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Г� = ∇�/(2µ) = 9Гpp Гpu ГpwГpu Гuu ГuwГpw Гuw Гww < (90) 

 
Rearranging the previous equations and taking the appropriate part of the gravity gradient 

according to the axes of concern, then the previous equations will be given by: 

��� − ��W2µ = y@Ω� D + FΩ ×J − Г�z %100- (91) 

��a − �� 2µ = y@Ω� D + FΩ ×J − Г�z %010- (92) 

��¾ − ��Â2µ = y@Ω� D + FΩ ×J − Г�z %001- (93) 

 
Where the cross product was replaced by the multiplication of a skew symmetric matrix 

and a vector in the right order, and the matrices (@Ω� D), (FΩ ×J) are given as follows: 

@Ω� D = � 0 −Ω� w Ω� uΩ� w 0 −Ω� p−Ω� u Ω� p 0 �,         FΩ ×J = �−ΩwW − ΩuW ΩpΩu ΩpΩwΩpΩu −ΩwW − ΩpW ΩwΩuΩpΩw ΩwΩu −ΩuW − ΩpW
� (94) 

 
Although the gravity gradient is traceless; because it satisfies the Laplace’s equation 

assuming free air and the fact that gravitation is a conservative force [93], it is still 

impossible to determine the five elements uniquely using only the All-accelerometer 

configuration proposed in [7], so it was necessary to introduce another pair of 

accelerometers to render the needed elements observable. Arranging the previous three 

equations into one system yields: 
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½��� − ��W2µ ��a − �� 2µ ��¾ − ��Â2µ ¿ = (@Ω� D + FΩ ×J − Г�) (95) 

The previous system of equations contains nine equations need to be solved to determine 

the elements of gravity tensor, and both the angular velocity and acceleration. One 

approach to handle this system is to solve for the angular accelerations at the beginning, 

then through integrating the results the angular velocities can be obtained provided that 

their initial conditions are known [44]. After that, the elements of gravity tensor can be 

calculated. Implementing the previously stated procedure, the following equations can be 

solved and the results are as follows: 

Ω� p(¢«) =  y�aw(¢«) − � w(¢«)z − ��¾u(¢«) − �Âu(¢«)�4µ  , ¢ = 0, 1, 2, …  ∞ (96) 

Ω� u(¢«) =  y�¾p(¢«) − �Âp(¢«)z − y��w (¢«) − �Ww (¢«)z4µ  , ¢ = 0, 1, 2, …  ∞ (97) 

Ω� w(¢«) =  ���u(¢«) − �Wu(¢«)� − y�ap(¢«) − � p (¢«)z4µ  , ¢ = 0, 1, 2, …  ∞ (98) 

Ωp(¢«) ≅ Ωp(0) + n ÷ Ω� p. ��(Äµ�)E
ÄE

º
ÄÝ�    , ¢ = 0, 1, 2, …  ∞ (99) 

Ωu(¢«) ≅ Ωu(0) + n ÷ Ω� u . ��(Äµ�)E
ÄE

º
ÄÝ�    , ¢ = 0, 1, 2, …  ∞ (100) 

Ωw(¢«) ≅ Ωw(0) + n ÷ Ω� w . ��(Äµ�)E
ÄE

º
ÄÝ�    , ¢ = 0, 1, 2, …  ∞ (101) 

Гpp(¢«) ≅  − y��p (¢«) − �Wp (¢«)z2µ −  ΩwW(¢«) − ΩuW (¢«)   , ¢ = 0, 1, 2, …  ∞ (102) 

Гuu(¢«) ≅ − ��au (¢«) − � u (¢«)�2µ −  ΩwW(¢«) − ΩpW  (¢«)  , ¢ = 0, 1, 2, …  ∞ (103) 
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Гww(¢«) ≅  − y�¾w (¢«) − �Âw (¢«)z2µ −  ΩpW(¢«) − ΩuW (¢«)   , ¢ = 0, 1, 2, …  ∞ (104) 

Гpu(¢«) ≅  − y�ap (¢«) − � p (¢«)z + ���u (¢«) − �Wu (¢«)�4µ+  Ωp(¢«)Ωu(¢«) , ¢ = 0, 1, 2, …  ∞ 

(105) 

Гpw(¢«) ≅  − y�¾p (¢«) − �Âp (¢«)z + y��w (¢«) − �Ww (¢«)z4µ+  Ωp(¢«)Ωw(¢«) , ¢ = 0, 1, 2, …  ∞ 

(106) 

Гuw(¢«) ≅ − y�aw (¢«) − � w (¢«)z + ��¾u (¢«) − �Âu (¢«)�4µ+  Ωw(¢«)Ωu(¢«) , ¢ = 0, 1, 2, …  ∞ 

(107) 

 
Where, (T) is the sampling period. It is worth noting that the quality of results depends on 

the way the angular velocity is retrieved with using equations (99-101). System 7, 

previously shown in Chapter 6, can be used to retrieve the angular velocities, or a 

numerical integration technique can be used once the angular acceleration is calculated 

using equations (96-98). The results obtained using this approach depends on the 

numerical technique used, such as Trapezoidal or Simpson’s rules for example. More 

details can be found in [85]. Another way is to solve a system of non-linear algebraic 

equations as can be found in [106]. 

 

Now, recall the ideal accelerometer measurements’ equation: 

��� = ��� + 
̂��?Ä + Ω

�� × y 
̂�?Ä + ó��̂z + 2Ω

� × 
̂��?Ä + Ω

� × �Ω

� × y 
̂�?Ä + µ�̂z� − ���  

 
Three cases can be considered, namely:  
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• Case (1): the CoG position is known, along with its acceleration and velocity, in 

such case equation (1) will be given as: 

��� − 
̂��?Ä − Ω

�� × y 
̂�?Ä + ó��̂z − 2Ω

� × 
̂��?Ä − Ω

� × �Ω

� × y 
̂�?Ä + µ�̂z� = ��� − ��� (108) 

 
• Case (2): the CoG position is unknown and is moving with unknown constant 

velocity, in such case equation (83) will be given as: 

��� = ��� + Ω

�� × y 
̂�?Ä + ó��̂z + 2Ω

� × 
̂��?Ä + Ω

� × �Ω

� × y 
̂�?Ä + µ�̂z� − ��� (109) 

 
• Case (3): the CoG position is unknown and is accelerating, in such case equation 

(83) will be given as: 

��� = ��� + 
̂��?Ä + Ω

�� × y 
̂�?Ä + ó��̂z + 2Ω

� × 
̂��?Ä + Ω

� × �Ω

� × y 
̂�?Ä + µ�̂z� − ��� (110) 

 
In all the previous cases, the angular velocities and accelerations are known and it is now 

intended to find the unknown variables using the available accelerometers’ 

measurements. Before proceeding further, the concept of redundant rings will be 

presented and utilized to reflect the position of CoG into the previous three cases. This 

approach will help in increasing the availability and reliability of measurements and 

estimation of the unknowns and make the configuration less dependent on a particular 

ring which allows excluding a ring’s results once it is deemed faulty. Another thing to 

mention is that once such a configuration is established, a Centralized or Decentralized 

approach can be used to fuse the measurements and estimations of the available rings. 

Avionic networks, or the like, can be used to connect the rings to each other and to a 



138 
 

processing unit which makes the process more complicated if non-ideal network behavior 

is considered, which is beyond the scope of this thesis.  

 
Since the equations are to be derived with respect to the ring level, it is better to refer to 

its center instead of referring to individual accelerometers within the same ring. This 

approach will also increase the reliability of measurements within the same ring even in 

the case of a particular accelerometer failure. For example, the health of each channel in 

an accelerometer within a ring can be checked using the procedure described in [7]. It is 

also obvious that once this approach is used, then the data processing within a Ring will 

not be dependent on its radius (µ). However, the design process of a Ring is more 

concerned about reducing the sizing effect by choosing its radius (µ) in an optimal 

fashion that complies with the vehicle’s constraints and the desired measurements’ 

sensitivity.  

If all the accelerometers’ measurements are correct, i.e. have been checked as described 

in [7], the acceleration at the center of the (¢³ø) Ring is given by: 

��ùÄ = ∑ ���ÄÂ�Ý�6    , ¢ = 1,2, … b (111) 

Where, (N) is the number of redundant rings. 

Figure 82 shows a Three-Ring configuration from which the following equations can be 

derived: 


̂�� − 
̂�ú =  
̂�?� (112) 


̂�W − 
̂�ú =  
̂�?W (113) 


̂�a − 
̂�ú =  
̂�?a (114) 
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Figure 82: Rings Arrangement within a rigid body. 

 

Substituting equations (111-114) into (108-110) will change the previously mentioned 

cases as follows; where results are shown only for Ring 1: 

 
• Case (1): 

 ��ù� + 
̂��ú − Ω

�� × y 
̂�� − 
̂�úz + 2Ω

� × 
̂��ú − Ω

� × �Ω

� × y 
̂�� − 
̂�úz�= ��� − ��� 

(115) 

 
• Case (2): 

 

 ��ù� − Ω

�� × 
̂�� − Ω

� × yΩ

� × 
̂��z = ��� − Ω

�� × 
̂�ú − 2Ω

� × 
̂��ú − Ω

� ×yΩ

� × 
̂�úz − ��� 
(116) 

  
• Case (3): 

 ��ù� − Ω

�� × 
̂�� − Ω

� × yΩ

� × 
̂��z= ��� +  
̂�� ú − Ω

�� × 
̂�ú − 2Ω

� × 
̂��ú − Ω

� × yΩ

� × 
̂�úz − ��� (117) 
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Now, it is clear that the previous equations heavily dependent on the angular motion of 

the vehicle, that may not be available for some interval depending on the flight path, 

flight conditions, and the type of the vehicle, i.e. car on a flat surface.  

Recall that the gravitational gradient is given by (90) from which the gravity vector can 

be retrieved, in the body frame, as follows [93]: 

%�p�u�w - = �
�0 + ÷ Г�x
��. ��³
�  (118) 

 

Where (x
��) is the body inertial velocity evaluated in the body frame, and (���) is the 

gravity vector given at the initial position which is assumed to be known to certain 

accuracy in the body frame as well. If (x
��) is small so that it does not violate the 

assumption of constant gravitational gradient within a finite number of successive 

sampling intervals, then the gravity vector may be given by: 

%�p�u�w - = �
�0 + Г�ò� (119) 

 

Where, (ò�) is the inertial position of the vehicle measured in the body frame and its 

second derivative is the linear inertial acceleration of the vehicle (���) measured at the 

center of gravity with respect to the body frame. The general equation is given as follows 

making use of (118): 

��ù� − Ω

�� × 
̂�� − Ω

� × yΩ

� × 
̂��z + ��� = ò�� − 
̂��ú − Ω

�� × y 
̂�úz − 2Ω

� × 
̂��ú  
−Ω

� × �Ω

� × y 
̂�úz� − ÷ Г�x. ��³

� = q(�) 
(120) 
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Now, equation (120) will be discretized to reflect the exact relations between the 

unknown variable where four models are presented. A sampling interval equals to (ℎ) is 

chosen, and backward finite-divided-difference formulas for the first and second 

derivatives are used to obtain a numerical accuracy equals to �(ℎW) and the integral part 

is simplified first using the trapezoidal rule followed by the derivatives approximations. 

These equations are given as follows [85]: 

°�(|�) = 3°(|�) − 4°(|�¯�) + °(|�¯W)2ℎ  (121) 

°�(|�) = 2°(|�) − 5°(|�¯�) + 4°(|�¯W) − °(|�¯a)ℎW  (122) 

÷ Г�x. ��³
�  ≅  n ℎ2º

�Ý� ü÷ Г�(��)ò�(��) + Г�(��¯�)ò�(��¯�)³ýÒþ
³ý � (123) 

 

• Model I: 

Equation (120) can be simplified more by utilizing equations (121-123), and then 

equation (120) can be given as a discrete equation as follows: 

2ℎWq(¢) = �4ò�(¢) + �4� − 2ℎWyFΩ� J(¢) + FΩ ×J(¢)z − 6ℎFΩJ(¢)� 
̂�ú(¢)�− �10ò�(¢ − 1) + y10� − 8ℎFΩJ(¢)z 
̂�ú(¢ − 1)�+ �8ò�(¢ − 2) + y8� − 2ℎFΩJ(¢)z 
̂�ú(¢ − 2)�− �2ò�(¢ − 3) + 2 
̂�ú(¢ − 3)�
− ℎW2 n�3Г�(�)ò�(�) + y3Г�(� − 1) − 4Г�(�)zò�(� − 1)Ä

�Ý�+ yГ�(�) − 4Г�(� − 1)zò�(� − 2) + Г�(� − 1)ò�(� − 3)� 
 

  Where �a×a identity matrix, and ¢ = 0, 1, 2, …  ∞ 
 

(124) 
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2ℎWq(¢) + ℎW2 n�3Г�(�)ò�(�) + y3Г�(� − 1) − 4Г�(�)zò�(� − 1)Ä¯�
�Ý�+ yГ�(�) − 4Г�(� − 1)zò�(� − 2) + Г�(� − 1)ò�(� − 3)�

= ü(4� − 3ℎW2 Г�(¢))ò�(¢)
+ �4� − 2ℎWyFΩ� J(¢) + FΩ ×J(¢)z − 6ℎFΩJ(¢)� 
̂�ú(¢)�
− ü(10� + ℎW2 y3Г�(¢ − 1) − 4Г�(¢)z)ò�(¢ − 1)
+ y10� − 8ℎFΩJ(¢)z 
̂�ú(¢ − 1)�
+ ü(8� − ℎW2 yГ�(¢) − 4Г�(¢ − 1)z)ò�(¢ − 2)
+ y8� − 2ℎFΩJ(¢)z 
̂�ú(¢ − 2)�
− ü(2� + ℎW2 Г�(¢ − 1))ò�(¢ − 3) + 2 
̂�ú(¢ − 3)� 

 

 

Where,         FΩJ = 9 0 −Ωw ΩuΩw 0 −Ωp−Ωu Ωp 0 < (125) 

 

• Model II: 

Additionally, the numerical accuracy can be sacrificed to simplify the problem 

formulation and computation, by using backward finite-divided-difference formulas for 

the first and second derivatives that gives a numerical accuracy equals to �(ℎ) instead as 

follows [85]: 

°�(|�) = °(|�) − °(|�¯�)ℎ  (126) 

°�(|�) = °(|�) − 2°(|�¯�) + 2°(|�¯W)ℎW  (127) 

Then, equation (120) is given as follows: 
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ℎWq(¢) = �ò�(¢) + �� − ℎW �@Ω� D(¢) + FΩ ×J(¢)� − 2ℎFΩJ(¢)� 
̂�ú(¢)�− �2ò�(¢ − 1) + y2� − 2ℎFΩJ(¢)z 
̂�ú(¢ − 1)�+ �ò�(¢ − 2) + 
̂�ú(¢ − 2)�
− ℎW2 n�Г�(�)ò�(�) + yГ�(� − 1) − Г�(�)zò�(� − 1)Ä

�Ý�− Г�(� − 1)ò�(� − 2)� 
 

  Where �a×a identity matrix, and ¢ = 0, 1, 2, …  ∞ 
 

(128) 

ℎWq(¢) + ø�W ∑ �Г�(�)ò�(�) + yГ�(� − 1) − Г�(�)zò�(� − 1) − Г�(� −Ä¯��Ý�1)ò�(� − 2)� = �(� − ø�W Г�(¢))ò�(¢) + �� − ℎW �@Ω� D(¢) + FΩ ×J(¢)� −
2ℎFΩJ(¢)� 
̂�ú(¢)� − �(2� + ø�W yГ�(¢ − 1) − Г�(¢)z)ò�(¢ − 1) + y2� −

2ℎFΩJ(¢)z 
̂�ú(¢ − 1)� + �(� + ø�W Г�(¢ − 1))ò�(¢ − 2) + 
̂�ú(¢ − 2)�  

 

 

If the special case is considered, namely when the gravity tensor is constant, then the 

following two models can be obtained: 

• Model III: 

Equation (120) can be simplified more by utilizing equations (119, 121-122), and 

then equation (120) can be given as a discrete equation as follows taking the gravity 

tensor as constant: 

2ℎWq(¢) = �(4� − 2ℎWГ�(¢))ò�(¢)+ �4� − 2ℎW �@Ω� D(¢) + FΩ ×J(¢)� − 6ℎFΩJ(¢)� 
̂�ú(¢)�− �10ò�(¢ − 1) + y10� − 8ℎFΩJ(¢)z 
̂�ú(¢ − 1)�+ �8ò�(¢ − 2) + y8� − 2ℎFΩJ(¢)z 
̂�ú(¢ − 2)�− �2ò�(¢ − 3) + 2 
̂�ú(¢ − 3)� 
 

  Where �a×a identity matrix, and ¢ = 0, 1, 2, …  ∞ 

(129) 
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• Model IV: 

Using equations (119) and (126-127), then equation (120) is given as follows: 

ℎWq(¢) = �(� − ℎWГ�(¢))ò�(¢)+ �� − ℎWyFΩ� J(¢) + FΩ ×J(¢)z − 2ℎFΩJ(¢)� 
̂�ú(¢)�− �2ò�(¢ − 1) + y2� − 2ℎFΩJ(¢)z 
̂�ú(¢ − 1)�+ �ò�(¢ − 2) + 
̂�ú(¢ − 2)� 
 

  Where �a×a identity matrix, and ¢ = 0, 1, 2, …  ∞ 

(130) 

 

Finally, the regression forms of the previous four models will be given in Chapter 8. One 

of the previous models can be used according to the problem in hand, for example Model 

I can be used with Air vehicles having large MACH numbers where the gravity tensor 

cannot be approximated as a constant while Model II can be used for the same case with 

reduced computations especially when the CoG acceleration is not an added information 

to the problem. On the opposite, Models III and IV can be used with air vehicles having 

low MACH numbers.  

7.2 Simulating the Gravity Gradient 

In this chapter, the Gradiometer device was presented. The structure of the proposed IMU 

facilitates incorporating the Gradiometer into its functionality.  “Significant research has 

been conducted in recent decades on developing a practical all-accelerometer inertial 

navigation system and on developing a practical moving base gravity gradiometer. The 

former strives to measure kinematic motion in the presence of unwanted variations in 

gravity; the latter endeavors to measure variations in gravity in the presence of unwanted 

motion. Thus, goes the adage, one person’s signal is another person’s noise” [42]. 
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The European Space Agency (ESA) has launched a number of space missions serving the 

purpose of earth exploration among them is the Gravity field and Ocean Circulation 

Explorer (GOCE) Earth Explorer [131]. GOCE aims to measure the gravitational field 

and it is built about a Gradiometer instrument as shown in Figure 83. The resolution of 

the accelerometers’ measurements is less than 2.0¯�W �ñ�√
w . 

 

Figure 83: �omenclature and location of the 6 accelerometers of the GOCE Gradiometer in the Gradiometer 

Reference Frame (GRF) and with all Accelerometer Reference Frame (ARF) [132]. 
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Figure 84: Electrostatic Gravity Gradiometer (EGG) [133]. 

 

The main objective of Electrostatic Gravity Gradiometer (EGG) is to measure the three 

components of the GGT (Gravity-Gradient Tensor). The EGG instrument, designed and 

developed at ONERA (Office National d'Etudes et de Recherches Aérospatiales) and 

manufactured at Thales Alenia Space, France, is based on an ambient temperature, closed 

loop, capacitive accelerometer concept. 
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Figure 85: Major Reference Frames for Gradiometry [132]. 

 

The Gradiometer was attached to the GOCE spacecraft shown in Figure 86. 

 

 

Figure 86: GOCE spacecraft [131]. 
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7.2.1 Simulating Gravity Gradient using EGG 

Making use of the available data from the ESA website, the following figures show 

sample gravity gradient measurement along with the calculated gravity gradient using the 

equations described in this chapter. The units used are Eötvös, which is a non-SI unit 

named for Loránd Eötvös, a Hungarian physicist: 1 ´ = 10¯��¯W [93]. A MATLAB 

reader downloaded from ESA facilitates reading a GOCE EGG_NOM_1b product file 

containing the following data: 

• Time GPS 

• Common (CCM) and Differential (CDM) accelerations for each accelerometer 

pair. 

• Gravity Gradient Tensor components Гpp, Гuu , Гww , Гpu, Гpw , Гuw in EGG frame. 

• Gradiometer Inertial Attitude Quaternions (IAQ) 

• Quality 

 

Figure 87: Г�� gravity gradient component. 
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Figure 88: Г�� gravity gradient component. 

 

Figure 89: Г�� gravity gradient component. 

 

Figure 90: Г�� gravity gradient component. 
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Figure 91: Г�� gravity gradient component. 

 

Figure 92: Г�� gravity gradient component in order of 104. 

 

The following values were used to generate the calculated curves [134]: 

 

9ΩpΩuΩw < = % 01.170 - ∗ 10¯a  I��/�`� 

(131) 9Ω� pΩ� uΩ� w < = %000-   I��/�`�W 

� = 0.5 q 
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7.2.2 Simulating Gravity Gradient using SimMechanics/Simulink 

Figure 93 shows the Simulink model used to simulate the gradient. Making use of the 

SimMechanics library features, the following figures were obtained. 

 

Figure 93: Simulink model used to simulate the gravity gradient. 

 

Figure 94: Г�� simulated gravity gradient component. 

 

Figure 95: Г�� simulated gravity gradient component. 
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Figure 96: Г�� simulated gravity gradient component. 

 

Figure 97: Г�� simulated gravity gradient component. 

 

Figure 98: Г�� simulated gravity gradient component. 

 

Figure 99: Г�� simulated gravity gradient component. 
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7.2.3 Gravity Compensation Implementation 

The Simulink model shown in Figure 93 in which equation (119) was implemented since 

the gradient was constant as shown in Figures 94-99 was used to simulate the Gravity 

Compensation. Using a BODY Sensor Block to retrieve the body’s inertial velocity, the 

following results show the results: 

 

Figure 100: �� gravity component. 

 

Figure 101: �� gravity component. 

 

Figure 102: �� gravity component. 
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Figure 103: Body position (m) 

 

In Chapter 9, the Gravity Compensation will be a part of an identification problem where 

the effect of CoG position immigration will be shown clearly. 

7.3 Summary 

In the previous chapter, the gravity effect on the accelerometers’ measurements was 

ignored. However, it was shown in this chapter that this neglecting is not appropriate; 

since the acceleration due to gravity seriously affects the measurements. The governing 

equations by which this acceleration can be retrieved from the available accelerometers’ 

measurements were shown. First, the angular acceleration is found, from which the 

angular velocity can then be determined allowing the gravity tensor to be calculated. 

After the gravity tensor is calculated, the angular velocity can be re-estimated using one 

of the filters previously presented in Chapter 6.  
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8 CHAPTER 8 

SYSTEM IDE�TIFICATIO� 

 

In this Chapter, the resulting equations obtained in Gravity Compensation Chapter, 

Chapter 7, will be revisited and formulated in different forms that enable identifying the 

unknown parameters found mainly in equation (120) under various assumptions. 

Different identification techniques will be used and the results will be presented and 

discussed when appropriate. In order to focus mainly on the identification problem, a 

Body Sensor available in the SimMechanics Library is used to retrieve the actual angular 

velocity and acceleration values needed in the estimation routines. It will be shown in the 

next chapter that the quality of parameters’ estimation is dependent on the quality of the 

angular motion that can be obtained using the filters presented in Chapter 6.    

8.1 System models used in Identification problem 

The importance of equation (120) is raised because it shows the relationship between the 

main parts of this thesis, namely: Gravity Compensation, CoG position estimation, and 

finding the inertial vehicle acceleration all represented in the body frame. Using the skew 

matrix representation instead of cross product representation, equation (120) can be given 

as follows: 

q

�(¢) = ��ù� − y@Ω� D + FΩ ×Jz 
̂�� +  ��� = ò�� − 
̂�� ú − 2FΩJ 
̂��ú − (@Ω� D + FΩ ×J) 
̂�ú − ÷ Г�x
�� . ��³
�  (132) 
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Where: 

��ù� : is the acceleration measurement at the center of the �³ø Ring, given by equation 

(111). 

@Ω� D ��� FΩ ×J: are given by equation (94), and both are known. 

FΩJ :  is given by equation (38), and it is also known. 

��� : is the initial gravity vector at time (t�), and it is known provided that the initial 

vehicle attitude and gravity vector in the inertial space are known which can be 

possible to have. It will be shown in the next chapter that this vector must be 

appropriately defined in the body frame to facilitate Gravity Compensation, so the 

Direction Cosine Matrix (DCM), as can be obtained as will be shown in Chapter 9, 

can be used to map the initial gravity vector in the world coordinate to the body 

frame. This step is very important to render the objectives of this thesis possible. 

ò�� : is the inertial acceleration of the vehicle measured at CoG in the body frame, which is 

to be identified. 


̂��ú  ��� 
̂��ú  : are the acceleration and the velocity of the CoG respectively, which are to 

be identified, if appropriate.  


̂�ú  : is the position of CoG, which is to be identified. 

Г�  : is the gravity gradient measured in the body frame given by equation (90), and it is 

measured. 
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x
�� : is the inertial velocity of the vehicle measured in the body frame, which is to be 

identified. 

Equation (132) is an Integral-Differential equation, which in general non-identifiable, so 

approximations are needed to bring about identifiability [107]. Since this is the case, 

equation (132) will be discretized using equations (121-123) and equations (126-127) 

which in fact is one reason why there are many models appearing in this Chapter. The 

four models previously shown in Chapter 7 are revisited and formulated in regression 

forms that can be easily used later in identification methods.  The complexity of those 

models is justified by the inclusion of the gravity effect into the picture. To avoid such a 

complexity, further handling of the identification problem in this Chapter will neglect the 

direct contribution of the gravity effect; in order to ease focusing on the identification 

problem as well as to ease Simulating Models using Simulink and SimMechanics, 

although its existence is respected through the necessity of discretization. The second 

reason for presenting many models is that there is a need to investigate the possibility of 

retrieving all the information about the CoG, i.e. its position, velocity, and acceleration, 

as was depicted in Figure 7.  

Next, the models are investigated closely. The whole picture in which all the thesis 

objectives come together will be presented in the following Chapter.  

• Model I: 

Equation (132) can be discretized by utilizing equations (121-123). In this model, the 

exact equation given by (132) is discretized were all the CoG information, Gravity effect, 

and the inertial acceleration terms are preserved. The assumption made here was that the 
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gravity tensor is not constant and all the CoG information is needed to be identified. It 

will be shown later, through the simulation results, that such a demand cannot be 

fulfilled; since the CoG acceleration cannot be determined uniquely as can be clearly 

seen from equation (132) and hence the proposed IMU loses one of its claims shown in 

Figure 7, namely finding the CoG acceleration. This model is given as follows: 

2ℎWq

�(¢) + ℎW2 n�3Г�(�)ò�(�) + y3Г�(� − 1) − 4Г�(�)zò�(� − 1) + yГ�(�) − 4Г�(� − 1)zò�(� − 2)Ä¯�
�Ý�+ Г�(� − 1)ò�(� − 3)�
= 
�4� − 3ℎW2 Г�(¢)� ò�(¢) + �4� − 2ℎW �@Ω� D(¢) + FΩ ×J(¢)� − 6ℎFΩJ(¢)� 
̂�ú(¢)�
− 
�10� + ℎW2 y3Г�(¢ − 1) − 4Г�(¢)z� ò�(¢ − 1) + y10� − 8ℎFΩJ(¢)z 
̂�ú(¢ − 1)�
+ 
�8� − ℎW2 yГ�(¢) − 4Г�(¢ − 1)z� ò�(¢ − 2) + y8� − 2ℎFΩJ(¢)z 
̂�ú(¢ − 2)�
− 
�2� + ℎW2 Г�(¢ − 1)� ò�(¢ − 3) + 2 
̂�ú(¢ − 3)� 

(133) 

 

And the Regression Form: 

�

�(¢) = ��1(¢)ò�(¢) + �1(¢) 
̂�ú(¢)� − ��2(¢)ò�(¢ − 1) + �2(¢) 
̂�ú(¢ − 1)�+ ��3(¢)ò�(¢ − 2) + �3(¢) 
̂�ú(¢ − 2)� − ��4(¢)ò�(¢ − 3) + 2 
̂�ú(¢ − 3)� (134) �

�(¢) =  F�1(¢), – �2(¢), �3(¢), – �4(¢), �1(¢), −�2(¢), �3(¢), −2JBE(¢) BE(¢) = Fò�(¢), ò�(¢ − 1), ò�(¢ − 2), ò�(¢ − 3), 
̂�ú(¢), 
̂�ú(¢ − 1), 
̂�ú(¢ − 2), 
̂�ú(¢ − 3)J 
 

Where �

�(¢) is defined from above. 

 

• Model II: 

ℎWq(¢) = �ò�(¢) + �� − ℎW �@Ω� D(¢) + FΩ ×J(¢)� − 2ℎFΩJ(¢)� 
̂�ú(¢)�− �2ò�(¢ − 1) + y2� − 2ℎFΩJ(¢)z 
̂�ú(¢ − 1)� + �ò�(¢ − 2) + 
̂�ú(¢ − 2)�
− ℎW2 n�Г�(�)ò�(�) + yГ�(� − 1) − Г�(�)zò�(� − 1) − Г�(� − 1)ò�(� − 2)�Ä

�Ý�  
   Where Ia×a identity matrix, and k = 0, 1, 2, …  ∞ 

(135) 
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 ℎWq(¢) + ℎW2 n�Г�(�)ò�(�) + yГ�(� − 1) − Г�(�)zò�(� − 1) − Г�(� − 1)ò�(� − 2)�Ä¯�

�Ý�= 
�� − ℎW2 Г�(¢)� ò�(¢)
+ �� − ℎW �@Ω� D(¢) + FΩ ×J(¢)� − 2ℎFΩJ(¢)� 
̂�ú(¢)�
− 
�2� + ℎW2 yГ�(¢ − 1) − Г�(¢)z� ò�(¢ − 1) + y2� − 2ℎFΩJ(¢)z 
̂�ú(¢ − 1)� 

+ �(� + ø�W Г�(¢ − 1))ò�(¢ − 2) + 
̂�ú(¢ − 2)�   �

�(¢) =  F�1(¢), – �2(¢), �3(¢), �1(¢), −�2(¢), 1JBE(¢) BE(¢) = Fò�(¢), ò�(¢ − 1), ò�(¢ − 2), 
̂�ú(¢), 
̂�ú(¢ − 1), 
̂�ú(¢ − 2)J 
 

• Model III: 

Equation (132) can be simplified more by utilizing equations (121,122), and by taking the 

gravity tensor as a constant, Model III is given as follows: 

 2ℎWq(¢) = �(4� − 2ℎWГ�(¢))ò�(¢) + �4� − 2ℎW �@Ω� D(¢) + FΩ ×J(¢)� − 6ℎFΩJ(¢)� 
̂�ú(¢)�− �10ò�(¢ − 1) + y10� − 8ℎFΩJ(¢)z 
̂�ú(¢ − 1)�+ �8ò�(¢ − 2) + y8� − 2ℎFΩJ(¢)z 
̂�ú(¢ − 2)� − �2ò�(¢ − 3) + 2 
̂�ú(¢ − 3)�    Where Ia×a identity matrix, and k = 0, 1, 2, …  ∞ (136) 

�

�(¢) =  F�1(¢), – 10, 8, �1(¢), −�2(¢), �3(¢), −2JBE(¢) BE(¢) = Fò�(¢), ò�(¢ − 1), ò�(¢ − 2), 
̂�ú(¢), 
̂�ú(¢ − 1), 
̂�ú(¢ − 2), v


�ú(¢)J v


�ú(¢) = ò�(¢ − 3) + 
̂�ú(¢ − 3) 
 

• Model IV: 

Using equations (126-127), and by taking the gravity tensor as a constant, Model IV is 

given as follows: 

ℎWq(¢) = �(� − ℎWГ�(¢))ò�(¢) + �� − ℎW �@Ω� D(¢) + FΩ ×J(¢)� − 2ℎFΩJ(¢)� 
̂�ú(¢)�− �2ò�(¢ − 1) + y2� − 2ℎFΩJ(¢)z 
̂�ú(¢ − 1)� + �ò�(¢ − 2) + 
̂�ú(¢ − 2)� (137) 
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   Where, Ia×a identity matrix, and k = 0, 1, 2, …  ∞  �

�(¢) =  F�1(¢), −2, �1(¢), −�2(¢), 1JBE(¢) BE(¢) = Fò�(¢), ò�(¢ − 1), 
̂�ú(¢), 
̂�ú(¢ − 1), v


�ú(¢)J v


�ú(¢) = ò�(¢ − 2) + 
̂�ú(¢ − 2) 
 

Using the Backwards Finite-Difference approximation for the differential terms, the 

following models will result as stated in Table 16, taking (h) equals 1 time unit and 

neglecting the gravity contribution.  

Table 16: Various Models used in Identification parameters. 

1 Include R

�� � and approximate the derivative terms using O(hW) approximations. 

 �(¢) = 2ò�(¢) − 5ò�(¢ − 1) + 4ò�(¢ − 2) − ò�(¢ − 3) + y2� + 3FΩJ + @Ω� D + FΩ ×Jz 
̂�ú(¢)
+ (4FΩJ + 5�) 
̂�ú(¢ − 1) − (4� − FΩJ) 
̂�ú(¢ − 2) + 
̂�ú(¢ − 3) 

2 Neglect R

�� � and approximate the derivative terms using O(hW) approximations. 
 �(¢) = 2ò�(¢) − 5ò�(¢ − 1) + 4ò�(¢ − 2) − ò�(¢ − 3) − y3FΩJ + @Ω� D + FΩ ×Jz 
̂�ú(¢)

+ (4FΩJ) 
̂�ú(¢ − 1) + (FΩJ) 
̂�ú(¢ − 2) 
3 Neglect R

�� � and R

�� � approximate S
��  term using O(hW) approximations. 
 �(¢) = 2ò�(¢) − 5ò�(¢ − 1) + 4ò�(¢ − 2) − ò�(¢ − 3) − y@Ω� D + FΩ ×Jz 
̂�ú(¢) 
4 Neglect R

�� �, R

�� � , and do not approximate S
��  term. 
 �(¢) = ò��(¢) − y@Ω� D + FΩ ×Jz 
̂�ú(¢) 
5 Neglect R

�� � , and do not approximate any term.  
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 �(¢) = ò��(¢) − 2FΩJ 
̂��ú(¢ − 1) − y@Ω� D + FΩ ×Jz 
̂�ú(¢) 
6 Neglect R

�� �, approximate R

�� � using O(h), and do not approximate S
��  term. 
 �(¢) = ò��(¢) − y2FΩJ + @Ω� D + FΩ ×Jz 
̂�ú(¢) + 2FΩJ 
̂�ú(¢ − 1) 
7 Neglect R

�� �, approximate R

�� � using O(hW), and do not approximate S
��  term. 
 �(¢) = ò��(¢) − y3FΩJ + @Ω� D + FΩ ×Jz 
̂�ú(¢) + 4FΩJ 
̂�ú(¢ − 1) − FΩJ 
̂�ú(¢ − 2) 
8 Neglect R

�� �, approximate S
��  using O(hW), and do not approximate R

�� � term. 
 �(¢) = 2ò�(¢) − 5ò�(¢ − 1) + 4ò�(¢ − 2) − ò�(¢ − 3) − 2FΩJ 
̂�� ú(¢ − 1) − y@Ω� D + FΩ ×Jz 
̂�ú(¢) 
9 Neglect R

�� �, approximate S
��  using O(h), and do not approximate R

�� � term. 
 �(¢) = ò�(¢) − 2ò�(¢ − 1) + ò�(¢ − 2) − 2FΩJ 
̂��ú(¢ − 1) − y@Ω� D + FΩ ×Jz 
̂�ú(¢) 
10 Neglect R

�� �, approximate S
��  using O(hW), and approximate R

�� � using O(h). 

 �(¢) = 2ò�(¢) − 5ò�(¢ − 1) + 4ò�(¢ − 2) − ò�(¢ − 3) − y2FΩJ + @Ω� D + FΩ ×Jz 
̂�ú(¢)
+ 2FΩJ 
̂�ú(¢ − 1) 

11 Neglect R

�� �, approximate S
��  using O(h), and approximate R

�� � using O(hW). 

 �(¢) = ò�(¢) − 2ò�(¢ − 1) + ò�(¢ − 2) − y3FΩJ + @Ω� D + FΩ ×Jz 
̂�ú(¢) + 4FΩJ 
̂�ú(¢ − 1)
− FΩJ 
̂�ú(¢ − 2) 

12 Neglect R

�� �, approximate S
��  using O(h), and approximate R

�� � using O(h). 
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 �(¢) = ò�(¢) − 2ò�(¢ − 1) + ò�(¢ − 2) − y2FΩJ + @Ω� D + FΩ ×Jz 
̂�ú(¢) + 2FΩJ 
̂�ú(¢ − 1) 
13 Neglect R

�� � and R

�� � approximate S
��  term using O(h) approximations. 

 ò�(¢) − 2ò�(¢ − 1) + ò�(¢ − 2) − y@Ω� D + FΩ ×Jz 
̂�ú(¢) 
 

The previous models can be grouped as follows: models {4, 5, 6, and 7} can be used 

when the gravity can be found by external means other than the proposed IMU and when 

the CoG information is the concern. The remaining models, which are useful to meet the 

objectives of this thesis, can be used when CoG information, Gravity Estimation, and 

Inertial acceleration are needed to be determined simultaneously. It is worth mentioning 

that model 4 was proposed by [7] and was simulated in Chapter 5. 

The regression vectors for the models of interest can be generated using the following 

formats: 

F 
̂�ú(¢), 
̂�ú(¢ − 1), … , ò�(¢), ò�(¢ − 1), … J (138) 

Or  

Fò�(¢), ò�(¢ − 1), … , 
̂�ú(¢), 
̂�ú(¢ − 1), … J (139) 

 

The following Simulink Model, utilizing a Body Sensor to retrieve the angular motion 

needed, was used to test the identification results using the previously stated models. The 

entire models were tested using the same conditions so that the results can be compared 

with each other’s. 
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Figure 104: Simulink Model used in Parameter Identification. 

 

8.2 Recursive Identification methods used 

In general, there are two methods in use for parameter identification, namely: the 

Recursive Least-Squares (RLS), and the Maximum Likelihood Estimation (MLE) [108]. 

Mainly, three RLS identification techniques were investigated in this thesis despite the 

fact that other methods may have better advantages over the used techniques. Namely 

Standard Recursive-Least Squares RLS, Weighted RLS with Covariance Resetting, and 

the Normalized Least Mean Square (NLMS) methods were used to identify the 

parameters. Since these methods are will-known in literature, no description is provided 

here for Normalized LMS method but further details can be found in [109].  

The following are the steps used to implement the QR-D based WRLS: 

1. Find the QR-Decomposition of regression expression matrix ± to enhance its 

condition number. This can be done using different methods such as 

Householder or Givens Rotations. In this work, the (HI) MATLAB function 

was used. 
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2. Update the Regression Expression as follows: 

°� = ±|� = Æ ∗ ^ ∗ |�  →  ÆE ∗ °� = ^ ∗ |� 

(140) ÆE ∗ °� = ^ ∗ |�  →  V

� = ^ ∗ |� 

3. Now, use the modified Regression Expression in a WRLS scheme as follows 

[109]: 

®Ä� = l(Ä¯�)�^Ä�Eoo + �I��`(^Ä�l(Ä¯�)�^Ä�E ) 

(141) 

�̀Ä�(¢) = V

�(¢) − ^Ä�|Í�Ä�(¢ − 1) 

|Í�Ä�(¢) = |Í�Ä�(¢ − 1) + ®Ä� �̀Ä�(¢) 

lÄ� = 1oo (� −  ®Ä�^Ä�)l(Ä¯�)� 
The following expression will help to keep the covariance matrix positive [81]: 

lÄ� = 0.5 ∗ (lÄ�E + lÄ�) 

Where, (�) denotes the Ring index and ¢ is the iteration index. 

4. Now, check the trace of the covariance matrix as follows: 

�° («I��`(lÄ�) > «Ç)       �ℎ`� lÄ� = ² ∗ `}`(6) 

(142) 

Where, °� is the measurements vector, oo is the Forgetting Factor, «Ç is the Threshold 

used to decide whether to reset the covariance matrix or not, and ² is a large positive 

number. In this work oo, «Ç and ² were chosen based on trial and error basis. 
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For the standard RLS, equation (141) is only used with oo = 1. 

Next, the simulation results will show the performance of the used recursive techniques 

in identifying the desired parameters using different models. Models {4, 5, 6, and 7} are 

ignored.  

8.3 Simulation Results 

In this part, the simulation results of the previous models using the three identification 

methods will be presented when appropriate. These results will put forward a number of 

candidate models, and identification methods to be used in the next chapter where the 

complete picture is presented. The sampling period used was 0.01 seconds. The 

regression forms used were generated according to the form given by (138). A similar 

Simulink model to what was described in Chapter 5 was used to simulate those models. 

I. Simulation Results using Standard RLS Method: 

Here, the standard RLS proofed to be deficient in identifying the parameters of the LTV 

models; since it has an infinite memory which makes it unable to adopt for the various 

and rapid changes available in the LTV models. As a result, this method was excluded 

from the candidate methods for identification. However, the results obtained for models 

{1, 2, 3, and 8} are shown.  

• Model #1: 
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Figure 105: Estimated CoG Position using Standard RLS and Model #1. 

 

Figure 106: Estimated Vehicle Inertial Acceleration using Standard RLS and Model #1. 

 

• Model #2: 

 

Figure 107: Estimated CoG Position using Standard RLS and Model #2. 
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Figure 108: Estimated Vehicle Inertial Acceleration using Standard RLS and Model #2. 

 

• Model #3: 

 

Figure 109: Estimated CoG Position using Standard RLS and Model #3. 

 

 

Figure 110: Estimated Vehicle Inertial Acceleration using Standard RLS and Model #3. 

 

• Model #8: 
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Figure 111: Estimated CoG Position using Standard RLS and Model #4. 

 

Figure 112: Estimated Vehicle Inertial Acceleration using Standard RLS and Model #8. 

 

II. Simulation Results using Weighted RLS with Covariance Resetting Method: 

 

To keep the thesis body neat, the results obtained using this methods for models {1, 2, 3, 

and 8} are shown. Other models are just the same as the chosen ones except with 

different order of approximation. 

 
• Model #1: 
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Figure 113: Estimated CoG Position using Weighted RLS and Model #1. 

 

Figure 114: Estimated Vehicle Inertial Acceleration using Weighted RLS and Model #1. 

 

• Model #2: 

 

Figure 115: Estimated CoG Position using Weighted RLS and Model #2. 
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Figure 116: Estimated Vehicle Inertial Acceleration using Weighted RLS and Model #2. 

 

• Model #3: 

 

Figure 117: Estimated CoG Position using Weighted RLS and Model #3. 

 

 

Figure 118: Estimated Vehicle Inertial Acceleration using Weighted RLS and Model #3. 

 

• Model #8: 
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Figure 119: Estimated CoG Position using Weighted RLS and Model #4. 

 

Figure 120: Estimated Vehicle Inertial Acceleration using Weighted RLS and Model #8. 

 

III. Simulation Results using NLMS Method: 

As done before, only the results obtained for models {1, 2, 3, and 8} are shown. 

• Model #1: 
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Figure 121: Estimated CoG Position using �LMS and Model #1. 

 

Figure 122: Estimated Vehicle Inertial Acceleration using �LMS and Model #1. 

 

• Model #2: 

 

Figure 123: Estimated CoG Position using �LMS and Model #2. 
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Figure 124: Estimated Vehicle Inertial Acceleration using �LMS and Model #2. 

• Model #3: 

 

Figure 125: Estimated CoG Position using �LMS and Model #3. 

 

 

Figure 126: Estimated Vehicle Inertial Acceleration using �LMS and Model #3. 

• Model #8: 
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Figure 127: Estimated CoG Position using �LMS and Model #4. 

 

Figure 128: Estimated Vehicle Inertial Acceleration using �LMS and Model #8. 

The following table shows a quantitative analysis for the previous results. The Maximum 

Percent Error (MPE) is obtained for each identification method and for each model inside 

the interval (90-140) seconds. 

Table 17: System Identification MPE for CoG position Estimation 

 Standard RLS Weighted RLS NLMS 

Model #1 

X 102.1121 102.7192 110.7243 
Time 100.0000 99.5000 98.5000 

Y 101.4482 102.7504 110.3182 
Time 137.9800 121.0000 127.0100 

Z 99.5438 100.8855 122.2956 
Time 120.0000 120.0000 118.5100 

Model #2 

X 60.6850 22.0332 65.1889 
Time 93.0000 120.0600 92.0000 

Y 87.1672 61.2335 63.7798 
Time 120.0100 120.0100 127.6500 

Z 102.9022 91.3019 180.1168 
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Time 100.0100 120.0100 104.6600 

Model #3 

X 60.2622 6.3358 55.4748 
Time 93.0000 120.0200 92.0600 

Y 86.8984 35.2361 79.3716 
Time 120.0100 120.0100 120.0100 

Z 103.2529 50.0668 123.3972 
Time 100.0100 100.0100 103.0000 

Model #8 

X 102.2500 100.1517 83.1525 
Time 98.8400 119.5000 104.0000 

Y 102.0974 100.0103 97.0912 
Time 137.3000 128.5200 137.5000 

Z 97.1833 106.1809 131.7474 
Time 101.0100 118.5300 101.0000 

 

8.4 Selecting an Identification Method and a Model 

It is clear from the previous results, Figures 86-109 and Table 17, that the best method to 

choose is the Weighted-RLS (WRLS) method. Model 3 is considered the best model to 

choose; since it does not include the effects of CoG acceleration nor its velocity, as may 

be found in models {1, 2, 8, 9, 10, 11, and 12}.  

An attempt to make use of the state-space form of different models to build a discrete 

EKF was done but not reported here since its results are lacking and it is scheduled to be 

investigated in a future work. Model 13 is similar to model 3 but with reduced order of 

approximation.    

The performance of the WRLS can be improved by incorporating the QR-Decomposition 

which helps in improving the condition number of the regression matrix used if it is 

generated using the form given by (138). A QL-Decomposition can be used if the 

regression matrix is generated using the form given by (139). The results obtained using a 

QR-Decomposition based WRLS with Covariance Resetting utilizing model 3 are shown 

in Figures 110 and 111. 
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Figure 129: Estimated CoG Position using QR-D base WRLS and Model #3. 

 

 

Figure 130: Estimated Vehicle Inertial Acceleration using QR-D based WRLS and Model #3. 

It is worth mentioning that the most suitable value of the forgetting factor (FF) was found 

through trial and error procedure. This fact motivates the adaptive FF version of the QR-

Decomposition based WRLS method which is a subject of future work. 

Next, four identification schemes are proposed and only the first two were implemented 

due to time limitation. 

8.4.1 Competitive QR-Decomposition based WRLS Identification Scheme 

Basically, this scheme consists of two QR-Decomposition based WRLS filters, one of 

them estimates in forward direction and the other in the backward direction. The two 

results are averaged.  
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FW: �(¢) = −ò�(¢ + 3) + 4ò�(¢ + 2) − 5ò�(¢ + 1) + 2ò�(¢) − y@Ω� D + FΩ ×Jz 
̂�ú(¢) (143) 

BW: �(¢) = 2ò�(¢) − 5ò�(¢ − 1) + 4ò�(¢ − 2) − ò�(¢ − 3) − y@Ω� D + FΩ ×Jz 
̂�ú(¢) (144) 

 

The forgetting factor of the forward QR-D WRLS is 0.88 while that for the backward 

QR-D WRLS is 0.9. The results obtained, using this identification scheme, are shown in 

Figures 131 and 132. Figure 133 shows the Simulink blocks representing this scheme. 

 

Figure 131: Estimated CoG Position using Competitive QR-D base WRLS and Model #3. 

 

 

Figure 132: Estimated Vehicle Inertial Acceleration using Competitive QR-D based WRLS and Model #3. 

 

It is worth noting that the spikes at 100 and 120 seconds are due to simulation 

initialization problems and are not because of the identification scheme itself. 
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Figure 133: Simulink Blocks representing the Competitive QR-D based WRLS Identification Scheme. 

 

8.4.2 QR-Decomposition based WRLS Bank and Maximum Likelihood 

Estimation Identification Scheme 

 

In Chapter 5, the governing equations upon which this thesis is built were derived. A 

diamond arrangement, referred to as a Ring, was presented and its center was the main 

concern in those equations. Here, a similar derivation will be presented but this time will 

focus on the accelerometers’ positions within the same Ring to provide larger set of 

observations that will be fed into a Maximum Likelihood Estimator (MLE) to provide the 

best estimate using those observations, Figure 134 visualizes this arrangement. MLE 

consistency property depends heavily on the number of samples involved; hence it is 

preferable to increase this number if possible. The accelerometers used in the proposed 

IMU are all tri-axial linear accelerometers whose axes are assumed to be perfectly 

aligned with the vehicle principle axes. In addition, there positions within the airframe 

are assumed to be precisely known, in fact that may lead to consider the following cases: 
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1- Handling the measurements of each individual channel within an accelerometer 

{x, y, and z-channels} and use it to identify the unknowns. This configuration will 

result in 21 1-D identification problems including the virtual measurements at the 

Ring’s Center given by equation (111). 

 

2-  Handling the measurements of each individual accelerometer as pairs, (i.e. x-y, x-

z, y-z). This configuration will result in 21 2-D identification problems including 

the virtual measurements at the Ring’s Center. 

 
 

3- Handling the measurement of each accelerometer as one unit, i.e. xyz 

measurements at once. This will result in 7 3-D identification problems including 

the virtual measurements at the Ring’s Center. This case will be implemented 

next. 

 

Figure 134: Schematic Diagram illustrating the principle of QR-D based WRLS Bank Identification Scheme. 
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By considering the gravity acceleration to be the same within the Ring’s region, assuming 

the separation between the individual accelerometers is considerably small and by 

adopting model 3, the individual equations for each accelerometer is given as follows: 

��� +  ��� = ò�� + (@Ω� D + FΩ ×J)I�� − ÷ Г�x. ��³
�  (145) 

���� +  ��� = ò�� + (@Ω� D + FΩ ×J)I�? − ÷ Г�x. ��³
�  (146) 

 

Where, ��� denotes the 3x1 measurements of the �³ø accelerometer, I�� its position relative 

to the CoG, and the remaining are defined as before. Since the focus in this chapter is on 

the identification problem, the last terms from the right and left are set to zeroes. ���� is 

given by equation (111). Figure 134 can be used to find the position of CoG 
̂�ú  relative 

to the reference by using the Ring position 
̂�� and the �³ø accelerometer position within 

the Ring. This information will be used in the MLE. 

• MLE Derivation 

“MLE is a standard approach to parameter estimation and inference in statistics. MLE has 

many optimal properties in estimation: sufficiency, consistency, efficiency, and 

parameterization invariance. The principle of maximum likelihood estimation (MLE) 

states that the desired probability distribution is the one that makes the observed data 

‘‘most likely,’’ which means that one must seek the value of the parameter vector that 

maximizes the likelihood function” [108]. There are two types of MLE functions models 

that can be used here, namely the power and exponential maximum likelihood functions 

(MLF). The latter will be used to find the best estimate of the parameters provided that a 



181 
 

QR-D based WRLS Bank of size (N) is used to provide the observations. The idea here is 

to maximize this MLF and that can be done as follows: 

The MLF, or the joint probability density function of all observations, is given by 

°(|�, ~, ÅW) = 1(2�)ºW (ÅW)ºW exp ( −12ÅW n(|(�) − ~)Wº¯�
>Ý� ) (147) 

 

Where, |� (bx1) denotes the estimations, obtained using the QR-D based WRLS Bank 

identification scheme as per equations (145-146), which are assumed to be independent 

with Gaussian distribution, ~ is their mean and ÅW is the associated variance. 

In order to minimize this function, it is easier to deal with its logarithmic version, i.e. 

ln(°), which will be continuously differentiable. Hence; the maximization problem will 

be given as follows: 

q�|w,���� (Ï) = − b2 ln (2�ÅW) − −12ÅW n(|(�) − ~)Wº¯�
>Ý�  (148) 

 

Taking the partial derivatives of ln (°) with respect to both ~, ��� ÅW and equating them 

to zeroes will give rise to the following results, for scalar observations: 

zÍ = 1b n |(�)º¯�
>Ý�  

(149) 

ÅW = 1b n(|(�) − ~̂)Wº¯�
>Ý�  
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Where, |(�) denotes the nth observation. For of the estimated position of CoG using the 

estimated value of the vector I�� as was depicted in Figure 134, the covariance matrix will 

be given as follows, where the diagonal elements represent the variance: 

ÅW = 1b n(|�(�) − ~̂)(|�(�) − ~̂)Eº¯�
>Ý�  (150) 

 

Considering the 3-D identification problems configuration, these observations are given 

as follows: 


̂�ú� = 
̂�� + µ·̂ − I�� 
̂�ú¾ = 
̂�� + µ¢¬ − I�¾ 

(151) 
̂�úW = 
̂�� − µ·̂ − I�W 
̂�úÂ = 
̂�� − µ¢¬ − I�Â 
̂�úa = 
̂�� + µ�̂ − I�a 
̂�ú� = 
̂�� − I�? 
̂�ú  = 
̂�� − µ�̂ − I�   

 

As was expected, the result will turn to be the ordinary mean and variance usually 

encounter in similar problems. However, the MLE is an asymptotically unbiased 

estimator and as a result it will be unbiased if the number of observations involved tends 

to be significantly large and that can explain the introduction of the three cases in this 

section. 

Increasing the number of observation can be done by utilizing the three cases previously 

described, or the like if possible, but that will come with the expenses of increased 

computational complexity due to the increased number of QR-D based WRLS problems 

involved in such a scheme. So, a compromise must be done especially when such a 

scheme can be argued about because of the small separation of the accelerometer within 
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the Ring itself so that it may not provide additional information. However, such a scheme 

may be useful when a channel within an accelerometer or a whole accelerometer is 

deemed faulty. If this scheme proofed itself, it will eliminate the need for other Rings 

distributed along the airframe. 

Other additional features to mention about this scheme are as follows: 

a. It can be used in open/closed loop configuration. 

b. It can be implemented locally at the Ring Level and globally at the Rings Level. 

c. It can be running in parallel threads once implemented in real hardware.  

Figures 135 and 136 illustrate this concept, clearly. 

This method depends on resetting the covariance matrix when the estimation may 

diverge. The trace of the error covariance matrix is used as a criterion to decide whether 

to reset the covariance matrix or not once it exceeds a predetermined value which was 

picked on trial and error basis. Another way to determine the quality of estimation during 

the process itself is to apply constraints, i.e. providing constraints to check against them 

the estimated parameters’ values and to correct accordingly. “It was shown that the 

unique solutions to linear-equality constrained and the unconstrained LS problems, 

respectively, always have exactly the same recursive form. Their only difference lies in 

the initial values” [110]. The same thing can be considered as well for inequality 

constraints as can be found in [111]. In such a case, the individual units within the QR-D 

based WRLS bank may provide an estimate of the related accelerometer position, i.e. I�� 
and I�? and the following linear constraints can be applied and a correction can be made to 
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the estimation found by the individual units as can be seen from Figure 135. Those 

constraints come from the Geometric design of the Ring and they are as follows: 

I�� − I�W =  2µ·̂ 
(152) I�a − I�  =  2µ�̂ I�¾ − I�Â =  2µ¢¬ 

 

Where, µ denotes the relative position of all accelerometers in the designated directions 

measured from the Ring center. 

 

 

Figure 135: QR-Decomposition based WRLS Bank and Maximum Likelihood Estimation Identification Scheme 

Implemented locally within the proposed IMU in open/closed loop configuration. 

 

Figure 136: Global implementation of the MLE in open/closed loop configuration assuming ideal sensor 

network. 
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Simulating the previous scheme locally in open loop configuration resulted in the 

following figures: 

 

Figure 137: Estimated CoG Position using QR-D based WRLS Bank and MLE in local open loop configuration. 

 

Figure 138: Estimated Vehicle Acceleration using QR-D based WRLS Bank and MLE in local open loop 

configuration. 

 

Figure 139: CoG Position Variance, in order of 1e-9. 
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Inspired by the previous idea, the following scheme is proposed. 

 

8.4.3 Geometric Optimization with linear constraints and MLE 

Identification Scheme 

 

Neglecting the gravity contribution, the objective function is given as follows: 

 =   � +  W +  a 

(153) 
 1 = ÷ �y�1 − ò� − vI1z«Æ1y�1 − ò� − vI1z  + y�2 − ò� − vI2z«Æ2y�2 − ò� − vI2z� . ���

0  

 W = ÷ �y�a − ò� − vIazEÆay�a − ò� − vIaz + y�  − ò� − vI zEÆ y�  − ò� − vI z� . ��³
�  

 a = ÷ �y�¾ − ò� − vI¾zEÆ¾y�¾ − ò� − vI¾z + y�Â − ò� − vIÂzEÆÂy�Â − ò� − vIÂz� . ��³
�  

 

The problem is to minimize   subjected to the constraints given by equations (152) then 

following the procedure given in MLE. 

Combining the two previously schemes results in the following scheme. 

 

8.4.4 Modified Geometric Optimization with linear constraints 

Identification Scheme 

Figure 140 shows the block diagram of this identification scheme where the cooperation 

between the previous identification schemes is obvious. The role of the QR-D based 

WRLS Bank Identification scheme is to provide the initial estimates for the Geometric 

Constrained Optimization scheme which then feeds its estimation to a MLE which 

corrects the estimations as was previously shown and provides a mechanism to correct 

the estimation of the WRLS identification scheme in case a feedback loop is established.  
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Figure 140: Block diagram of the Modified Geometric Optimization with linear constraints Identification 

Scheme. 

 

8.5 Minimum Angular Motion �eeded for CoG Position Determination 

Such a question is very important to be answered; since it determines the applicability of 

the procedure proposed in this thesis within real air vehicles. The proposed IMU must go 

with the limitations imposed on different types of air vehicles. For example, a free 

rotating missile is allowed to have angular motion about its Body Axes freely, while a 

commercial airliner angular motion is restricted to a certain bound to ensure the comfort 

of passengers onboard. By examining the regression matrix given in model 3, for instant, 

it can be easily told due to the nature of the angular motion matrix, namely (@Ω� D + FΩ ×J) 

that a sufficient angular velocity and/or acceleration, about any principle axis of the air 

vehicle enables identifying the coordinates of CoG position on the other two axes. So, an 

angular motion about at least two principle axes is needed to completely identify the CoG 

position. Table 18 gives a brief description about this situation. The estimation of the 

inertial acceleration is partially affected and in the case of adaptive forgetting factor 

version of the QR-D based WRLS this effect can be reduced further. 
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Table 18: Angular Motion plan To Identify CoG position   

CoG Change Roll Pitch Yaw 

X-Axis    

Y-Axis    

Z-Axis    

X-Y Plane    

X-Z Plane    

Y-Z Plane    

X-Y-Z    

X-Y-Z    

X-Y-Z    

 AND 

 OR 

  

The previous conclusion depends as well on the magnitude of the available angular 

motion needed to render the parameters identifiable. Such a magnitude can be determined 

through the consistency and bias analysis of the estimator used, which is beyond the 

scope of this thesis. It should be clear that the reaction of the flight controller must be 

considered in the sense that any change in CoG position will be considered as a 

disturbance which the controller tries to cancel.  

Basically, the proposed IMU may benefit from the instantaneous angular motion resulting 

from the change in the CoG position to estimate its position and then the controller will 

compensate for it, or it may totally depend on a planned angular motion by the controller 

(manned/unmanned vehicle) to determine the change in CoG position considered by the 
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controller as a disturbance which was cancelled. The latter approach comes to help in 

reducing the energy consumed to handle such a disturbance, as was mentioned in Chapter 

1. Both cases depend on the way the controller is interacting with the proposed IMU. 

The following figures illustrates the previous passages were an angular motion is 

restricted to be about one axis at a time. The QR-D based WRLS utilizing model 3 is 

used to simulate these cases. 

1- Angular Motion about X-axis only (Roll): 

 

Figure 141: Estimated CoG Position when only angular motion about X-axis is present.  

 

 

Figure 142: Estimated Inertial acceleration when only angular motion about X-Axis is present. 

 

2- Angular Motion about Y-axis only (Pitch): 
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Figure 143: Estimated CoG Position when only angular motion about Y-axis is present.  

 

 

Figure 144: Estimated Inertial acceleration when only angular motion about Y-Axis is present. 

 

3- Angular Motion about Z-axis only (Yaw): 

 

Figure 145: Estimated CoG Position when only angular motion about Z-axis is present.  
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Figure 146: Estimated Inertial acceleration when only angular motion about Z-Axis is present. 

 

8.6 Summary 

The RLS algorithms are known to pursue fast convergence even when the eigenvalue 

spread of the input signal correlation matrix is large. These algorithms have excellent 

performance when working in time-varying environments. All these advantages come 

with the cost of an increased computational complexity and some stability problems 

[109]. Using WRLS is the best method among the available RLS algorithms investigated 

here for tracking Time-Varying Systems. Although its statistical properties such as 

consistency in most cases is difficult to find, due to the complex dependency on the time-

varying characteristics and on the forgetting factor value [112]. Many efforts were 

reported in literature to investigate these properties of the RLS with exponential 

forgetting factor such as [120-123], in which they treat this problem in special cases that 

may not directly fit to the problem stated in this thesis. 

Another thing to keep in mind is the stability of the WRLS estimator when estimating 

time-varying parameters. The expression used in updating the error covariance matrix in 

WRLS algorithm is the one that may cause instability [109]. 
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Other alternatives especially when implementing the estimator in finite-precision is QR-

Decomposition based RLS, known for short QR-RLS, which stability can be easily 

proofed [109], so that it was adopted here to build a QR-D based WRLS algorithm. 

Another way to enhance the performance of WRLS used here is to introduce a 

conditional covariance resetting procedure by which the tracking capability of such 

method is drastically increased [117]. Actually, the WRLS used here was incorporated 

with this procedure taking the trace of the covariance matrix as the condition upon which 

the decision to reset the covariance matrix is taken; since it appears to provide the best 

overall performance [117]. Examples to show how WRLS with covariance resetting can 

outperform the performance of other methods like Least-Mean Squares are reported in 

[118]. In [119], a modified RLS algorithm is presented mainly with variable gain, 

forgetting factor, and reset condition. 

Another point of interest is the performance of the WRLS in the finite-precision which 

can change from that experienced in infinite-precision. Divergence and freezing in the 

parameter adaptation are examples, which may not be encountered with QR-RLS which 

performance and stability can be guaranteed [109]. 

Under the state-space model assumption, there will be a correspondence between the 

RLS and Kalman Filter that is worthy of investigation [113]. 

As was concluded by in [114], Least-Squares can be used to determine the model but the 

Maximum-Likelihood estimation is needed to estimate the parameters accurately, so it is 

highly recommended to implement MLE as an identification technique rather than using 

it for correcting the estimates as was done in this thesis. 
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Finally, it is worth noting that the angular velocity and acceleration used in the 

identification schemes were obtained from a Body sensor available in the SimMechanics 

library; and that enabled more focusing on the identification techniques. However, as will 

be shown in Chapter 9, the filter used to retrieve the angular velocity will affect the 

estimation results which are considered another motivation to investigate the error 

propagation within the different stages of the proposed IMU which will be a subject of 

future work. 
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9 CHAPTER 9 

COMPLETE PICTURE 

 

In this chapter, the complete picture tackled in this thesis, namely: how the navigation 

problem under the conditions of varying center of gravity and unknown varying gravity 

acceleration can be solved using an identification approach, is presented. The solution 

provided herein was based on the usage of linear accelerometers. Since linear 

accelerometers are affected by the gravitational forces; there is a need to compensate for 

the contribution of this effect. As was previously shown in equation (132), the 

accelerometers’ measurements contain the contributions of inertial acceleration, gravity 

effect, and the varying CoG kinematics which makes the problem of providing clean 

accelerometers measurements a little bit involved. As far as the author is concerned in 

literature, this kind of problems were partially considered, the focus most of the time was 

on solving problems containing two out of three contributors among those stated in 

equation (132), i.e. solving for the position of CoG of air vehicles when the gravity is 

known, see for example [1-2], or estimating the gravitational acceleration assuming 

stationary CoG as may be found in [129-130]. Besides that, most of these solutions utilize 

various components such as accelerometers, gyroscopes, and magnetic sensors integrated 

with GPS devices, whereas the solution provided in this thesis allows a completely 

passive INS provided sufficient angular motion is present. This is the first time, as far as 

the author is aware of, that such a problem is formulated in a way that brings all the parts 

together in an identification scheme. 
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9.1 The Proposed IMU Structure 

 

In this section, the various steps taken to achieve the function of the proposed IMU are 

pointed out with references made to the related parts found within this thesis or to the 

appropriate external references. Figure 147 shows the proposed IMU which contains 

parts already implemented and parts to be considered in future versions, such as IACR, 

estimated mass and inertia of the air vehicle where the current version was adjusted to 

suite such a future expansion. Moreover, a place for fault detection and correction was 

also reserved along with preconditioning and pre-filtering stage for the accelerometers’ 

measurements upon which this IMU depends. A look-inside this IMU setup follows in 

the following figures.  

 

Figure 147: The recent version of the proposed IMU. 

 

Figure 148 shows three blocks representing the actual accelerometers’ configuration 

(Ring) along with two additional blocks - to be implemented in future versions of this 

IMU- related to measurements preconditioning and pre-filtering. The fault utility was 
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also equipped with a Fatal Error flag that will give an indication to the autopilot about the 

current status of IMU whether it is functional, partially functioning, or completely failed 

which enables the autopilot to decide what to do next. 

 

Figure 148: Actual accelerometers’ configuration (Ring) along with Suggested units for future work. 

 

Figure 149 shows the inside formulation of the Ring used utilizing the tri-axial 

accelerometer model previously described in Chapter 5. 

 

Figure 149: A look inside the Simulated Ring. 
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In addition, Figure 150 shows the main three stages upon which the remainder of the 

work done in this thesis relay on. After the angular acceleration is extracted from the 

accelerometers’ measurements, it is numerically integrated to facilitate finding the 

gravity tensor in acceptable precision [42] or by using a Kalman filter. Then the angular 

velocity is re-estimated but now by using dedicated filters such as Extended (EKF) and 

Unscented (UKF) Kalman Filters. The integrator block shown in Figure 150 is used to 

retrieve the sign of the angular velocity as was shown in Chapter 6. 

 

Figure 150: Core units in the proposed IMU. 

 

After the angular velocity is found, the attitude determination can be made easy using the 

equations available in [123], were both the Quaternion and Euler Angles are made 

available to enable their usage by other units found in the autopilot configuration. Figure 

151 shows the Simulink block that solves the attitude problem along with IMU 

performance Unit- which to be implemented in future work- responsible of monitoring 

the performance of every unit within the proposed IMU and to report the IMU status to 

the autopilot unit. For example, if one of the filters diverges then it is logical to direct the 

attention of the autopilot that such a sudden change was due to numerical instability 

rather than an actual sudden change. This simple statement in fact does not reflect the 

simplicity of this monitoring unit, rather it shows that such an implementation can be 
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difficult, but it still can justify the existence of such a unit. This will be seen in section 

9.3 when hardware implementation problems may cause such performance deterioration. 

 

Figure 151: Attitude Finding unit along with IMU Performance Unit suggested for future work. 

 

Next, Figure 152 shows the Simulink blocks used to estimate both the Inertial Data and 

the Acceleration due to Gravity. Actually, at this stage the superiority of the proposed 

IMU is revealed; showing the interaction between the various stages within the IMU 

which makes it possible for alternative signal paths to be taken, such as smoothing and 

projecting the acceleration before or after the gravity is calculated. Such a choice must be 

made based on Error Analysis which will reflect how the error is propagated through this 

IMU as well as discovering the points of weakness to be fixed. Such an analysis is part of 

the recommended future work. 
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Figure 152: Units used to estimate inertial data and acceleration due to gravity. 

 

The Inertial Filter shown in Figure 152, which is to be implemented in the future, will use 

the Discrete Wiener Process Acceleration Model (DWPA) as a model to design a suitable 

filter to retrieve the desired Inertial Data. A good starting point will be found in [124]. 

Figure 153 shows the blocks reserved for future expansion, namely: finding the Instant 

Acceleration Center of Rotation (IACR), and the estimated vehicle mass and inertia 

where the later can make use of equations (24-29) found in Chapter 2. 

 

Figure 153: Blocks reserved for future expansion responsible of finding the mass and inertia of the vehicle.  
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Finally, optimal Smoothers are to be implemented in future work to provide smoothed 

versions of the estimated parameters that can be used later on in successive units in the 

autopilot configuration. Figure 154 shows the Simulink block that represents such unit. A 

good starting point can be found in [81].   

 

Figure 154: Block reserved for optimal smoothers suggested for future work. 

 

Figure 155 shows the signals flow diagram as found in the proposed IMU. 

9.1.1 Identification Model #3 with gravity effect included 

Here, the effect of including the acceleration due to gravity in the identification problem 

is reflected on identification Model #3, and it is given as follows: 

ℎWq

�(¢) + ℎW4 n�3Г�(�)ò�(�) + y3Г�(� − 1) − 4Г�(�)zò�(� − 1) + yГ�(�) − 4Г�(� − 1)zò�(� − 2)Ä¯�
�Ý�+ Г�(� − 1)ò�(� − 3)�

= 
�2� − 3ℎW4 Г�(¢)� ò�(¢)� − 
�5� + ℎW4 y3Г�(¢ − 1) − 4Г�(¢)z� ò�(¢ − 1)�
+ 
�4� − ℎW4 yГ�(¢) − 4Г�(¢ − 1)z� ò�(¢ − 2)� − 
�� − ℎW4 Г�(¢ − 1)� ò�(¢ − 3)�
− �ℎW �@Ω� D(¢) + FΩ ×J(¢)�� 
̂�ú(¢) + `(¢) 

(154) 
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And all the parameters are given as before. `(¢) is treated as an error that holds in it the 

contribution of vehicle’s inertial velocity as depicted in Figure 155. According to [42], 

the anomalous gravity can be retrieved by integrating the gravitation gradients measured 

in the body frame, after transformation to the navigation frame. This transformation can 

be simply done by pre-and post-multiplying the gravitation gradients by the appropriate 

DCM.  

 

 

Figure 155: Flow diagram of the proposed IMU showing I�S Mechanization procedure.  
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Figure 156: Estimating acceleration due to gravity using the proposed IMU according to [42]. 

 

9.1.2 Solving the Attitude Problem 

The proposed IMU can be used to retrieve the Attitude, and then the DCM, of the vehicle 

simply by integrating the non-linear differential equation given by (155) [120]. Although 

it seems not intimidating, still its solution may suffer from drift- especially if no angular 

velocity is present - and from a singularity at B = !�. The drift will cause a lot of trouble 

using this approach; since –as can be seen from Figure 155- this approach is highly 

dependent on the usage of the DCM. To avoid this problem an ideal DCM was used 

using the Body Sensor previously described. Other solutions for the Attitude problem are 

available but are beyond the scope of this thesis. 

9A�B�C� < = %1 �A�B �A�B0 �A �A0 �A/�B �A/�B- 9ΩpΩuΩw < 
(155) 
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9.2 Simulation Results 

In this section, the simulation results of the proposed IMU are shown. These results give 

a general overview about the IMU performance when operated in ideal situations namely, 

ideal DCM, and ideal accelerometers measurements. Further investigation of its 

performance must be conducted to reveal its actual behavior and to provide an insight 

about the error bounds associated with such operation in real applications with/out a 

controller action. Figure 157 shows the Simulink model used to facilitate this simulation. 

 

Figure 157: Simulink model used to facilitate simulating the complete IMU. 

 

Since this simulation was based on open loop actuation of a cube in 6-DOF, it was 

somehow difficult to meet the different requirements of the simulation, namely: 

maintaining a bounded attitude according to what SimMechanics permits, and providing 

an adequate “flight” path. As a result, the simulation was split into two parts, one that 

shows the solution of the navigation problem within 60 seconds to ensure that the attitude 

is within the allowed limits and another part with extended time duration for 1 hour to 

show the performance of the proposed IMU in tracking a varying gravity acceleration as 

may be encountered for long flight missions within which the gravity acceleration may 

change significantly. It is worth mentioning that this was done because the attitude 
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information will be lost after 60 seconds within which the CoG position was allowed to 

change. To summarize, the first part shows how the navigation problem can be solved 

under varying CoG position and insignificant gravity change, and the second part shows 

the performance of the proposed IMU in tracking a varying gravity acceleration under 

insignificant attitude or CoG position changes. Both were simulated using the same setup, 

hence the claim of this thesis is still valid but there is a need to solve the bounded attitude 

problem. 

Next, the simulation results of solving the navigation problem using UKF, EKF, and a 

standard KF are shown. In all cases, the QR-D based WRLS and Model #3 -as found in 

(154) - were used. Different types of filters required different Forgetting Factor, Process, 

and measurement noise matrices parameters’ settings. 

9.2.1 Explaining the simulation procedures 

In Chapter 7, ideal angular motion- obtained using a Body Sensor - was used to 

investigate the various identification methods and models in a step to maintain focus on 

selecting the best among them and the results was a QR-D based WRLS and Model #3. 

The later was modified as found in (154) to accommodate the gravity effect.  

9.2.2 Solving the navigation problem using UKF and QR-D based WRLS 

The following figures show the results obtained when solving the navigation problem 

using the UKF with 1-D and 3-D measurement models. 

• UKF with 1-D measurement model 

FF = 0.92, Q = 1e-9*eye(3) , R =  1e-10*eye(3) 
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Figure 158: Composite Body Attitude used to check the performance of the proposed IMU. 

 

Figure 159: Composite Body Inertial Acceleration, after subtracting the gravity contribution, obtained using the 

proposed IMU utilizing UKF with 1-D Measurement model.  

 

Figure 160: Composite Body Inertial Velocity obtained using the proposed IMU utilizing UKF with 1-D 

Measurement model. 
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Figure 161: Composite Body Inertial Position obtained using the proposed IMU utilizing UKF with 1-D 

Measurement model. 

 

Figure 162: Composite Body position obtained using the proposed IMU utilizing UKF with 1-D Measurement 

model. 

 

• UKF with 3-D measurement model 

FF = 0.915, Q = 1e-10*eye(3) , R =  1e-14*eye(3) 

 



207 
 

 

Figure 163: Composite Body Inertial Acceleration, after subtracting the gravity contribution, obtained using the 

proposed IMU utilizing UKF with 3-D Measurement model.  

 

 

Figure 164: Composite Body Inertial Velocity obtained using the proposed IMU utilizing UKF with 3-D 

Measurement model. 

 

Figure 165: Composite Body Inertial Position obtained using the proposed IMU utilizing UKF with 3-D 

Measurement model. 
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Figure 166: Composite Body position obtained using the proposed IMU utilizing UKF with 3-D Measurement 

model. 

 

9.2.3 Solving the navigation problem using EKF and QR-D based WRLS 

 FF = 0.915, Q = 0.01*eye(3) , R =  0.002*eye(3) 

 

Figure 167: Composite Body Inertial Acceleration, after subtracting the gravity contribution, obtained using the 

proposed IMU utilizing EKF with 1-D Measurement model. 

 

Figure 168: Composite Body Inertial Velocity obtained using the proposed IMU utilizing EKF with 1-D 

Measurement model. 
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Figure 169: Composite Body Inertial Position obtained using the proposed IMU utilizing EKF with 1-D 

Measurement model. 

 

Figure 170: Composite Body position obtained using the proposed IMU utilizing EKF with 1-D Measurement 

model. 

 

9.2.4 Solving the navigation problem using KF and QR-D based WRLS 

FF = 0.925, Q = 0.00225*eye(3) , R =  0.001*eye(3) 

 

Figure 171: Composite Body Inertial Acceleration, after subtracting the gravity contribution, obtained using the 

proposed IMU utilizing KF. 
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Figure 172: Composite Body Inertial Velocity obtained using the proposed IMU utilizing KF. 

 

Figure 173: Composite Body Inertial Position obtained using the proposed IMU utilizing KF. 

 

Figure 174: Composite Body position obtained using the proposed IMU utilizing KF. 

 

Next, the gravity estimation using the same setup but with extended time using the UKF 

with 3-D Measurement model is shown in Figure 175.  
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Figure 175: Gravity Estimation using the proposed IMU. 

 

9.3 Hardware Implementation 

In this section, some of the aspects related to the hardware implementation of the 

proposed IMU are presented starting from the linear accelerometers used, till the efficient 

pieces of hardware to be used, through the best way to implement the algorithms used to 

fit within a finite-precision devices and controllers.  Starting with accelerometers, various 

types of accelerometers are available and they differ in their properties and performance. 

Among other important factors to consider when selecting a specific accelerometer, the 

dynamic range, sensitivity, and the frequency response are very important to consider. It 

is worth noting that this thesis presents an IMU that can be implemented using different 

pieces of hardware and software approaches, so it is good to look at it, i.e. the proposed 

IMU, as an IMU Scheme that can be used with different parts to achieve certain design 

specifications such as precision and cost. 

MEMS accelerometers can provide acceleration measurements with good precision, but 

may not reach the precision of well-fabricated accelerometers like Cold-Atom 

interferometry usually used in sophisticated navigation systems. One should keep in mind 

that the additional cost comes with the increased performance expenses that are governed 
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by the application. Nevertheless, it is still possible to sacrifice the IMU performance to 

reduce the cost and this can be made for by moving towards integrated INS rather than 

being completely a passive INS. 

The increased precision needed by the proposed IMU to maintain its complete passive 

behavior is mainly consumed at the stage where the gravity tensor is estimated. So, in the 

case where low precision accelerometers are to be used then the available gravity models 

can be implemented bringing down the complexity of the problem tackled here in this 

thesis to only finding the inertial acceleration and the kinematics of CoG. In such case, 

other techniques available in the literature may excel over the proposed IMU scheme 

especially when used in land-vehicles where the gravity can be known with good 

precision. 

Next, the angular acceleration is determined by utilizing the difference between the 

corresponding pairs on each axis as was previously shown in Chapter 5. Afterwards, the 

angular velocity is found by numerically integrating the angular acceleration using one of 

the available numerical integration techniques; see [125] for example. This step is 

followed by straight forward algebraic operations to calculate the gravity tensor. It is 

clear that besides the available accelerometers’ precision, the numerical integration 

method used in finding the angular velocity also plays a significant role in the 

determination of the gravity tensor. 

Now, it is the time to enhance the estimation of the angular velocity by using filters. As 

was discussed in Chapter 6, the computational power needed by the EKF and the UKF 

can be comparable although it was preferred to proceed with the UKF based on the 3-D 
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measurement model; since it provides better estimation as well as reduced sensitivity 

towards wrong accelerometers’ measurements. In [126], a tutorial on how the UKF can 

be implemented on ARM Cortex-M3 processors (STM32) using Rapid STM32 Blockset 

in Simulink environment. 

One of the important things to consider when implementing these filters on finite-

precision devices -aside from the memory allocation problems – is the filter divergence 

and instability issues. In [81], a number of solutions are provided, namely: 

• Increase the Arithmetic precision. 

• Consider using Square-Root Filtering. 

• Maintain the positive definiteness of the error covariance matrix by using 

 l = (l + lE)/2 . 
• Choose appropriate initial value for P; to avoid large changes in its value. 

• Consider using Fading-Memory Filters. 

• Use fictitious process noise, especially when estimating constants. 

At the identification stage and as was stated in the previous chapter, the usage of QR-

Decomposition Based RLS method is highly recommended when this method is 

implemented on finite-precision microprocessor devices. 

Finally, finding the inertial velocity and inertial position of the air vehicle is affected by 

the performance of the filter used, or by the numerical integration method used [58].  

In light of the previous discussion, the proposed IMU performance depends on the 

sampling rate used. So, fast microprocessors with large memory allocation and multiple 
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threads must be used to reduce the execution time of the algorithms and increase the 

sampling rate. 

The multi-thread architecture can be used wisely to split the different tasks found inside 

the IMU into sub-tasks. Sub-tasks may be implemented with different updating rates as 

well. In [66], an FPGA device XC6VLX550T hardware platform accompanied by Xilinx 

ISE 12.3 software platform were used to parallelize the implementation of a strapdown 

algorithm on the basis of a fighter data and its computational complexity was analyzed 

and the results were encouraging to adopt such implementation. 

At last, one may find interesting related materials in [85, 128, and 136] which may help 

in the future work as will be shown in the next chapter.  
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10 CHAPTER 10 

FUTURE WORK 

 

During the course of this thesis, many problems usually encountered in guidance, 

navigation, and control of air vehicles started to show relationship to the problem stated 

here. For example, the usage of gravitational tensor in map matching can be implemented 

using the solution provided here; since it provides the needed information- thanks to its 

structure which is built around the same principles as Gradiometer instruments- and this 

in fact enables the usage of the proposed IMU in designing a potential field within 

cooperative schemes where agents are interacting nearby each other or in obstacle 

avoidance and many other applications that depends on the gravitational tensor 

measurement that are not mentioned here; to avoid lengthy lists. Finding the 

Instantaneous Acceleration Center of Rotation (IACR) and Instantaneous Velocity Center 

of Rotation (IVCR) that affect the transient dynamics of air vehicles are other examples, 

see [122] for more details.     

In this chapter, the recommended future work is listed. This list contains the main points 

found throughout the chapters of this thesis. This list is as follows: 

1- Build a more sophisticated Simulation Environment in which actual flight 

routines are possible. 
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This will enable testing the proposed IMU within actual flight paths rather than 

applying simple profiles of both forces and moments. A good starting point will 

be by using this IMU within the simulation example provided in Aerospace 

Blockset Examples in MATLAB.  “The vehicle model includes the aerodynamics, 

control logic, fault management systems (FDIR), and engine controls. It also 

includes effects of the environment, such as wind profiles for the landing phase. 

The entire model simulates approach and landing flight phases using an auto-

landing controller. Visualization for this model is done via an interface to 

FlightGear, an open source flight simulator package”. [128] Other useful resources 

can be found in [138-139] respectively. 

 

Figure 176: HL20 Example Simulink Model. 

 

2- Allow Gradual and abrupt changes in the position of CoG, see [1-2]. 

3- Build an IMU Monitoring Unit that determines the status of the IMU. 
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4- Build Accelerometer’s measurements Pre-conditioning and Pre-Filtering Units, 

see [28-32]. 

5- Build Estimation Smoother to refine the IMU generated estimates, see [81]. 

6- Build Inertial Data Filter, which facilitates retrieving the inertial acceleration, 

velocity and position of air vehicles, see [127]. 

7- Finding Instant Acceleration Center of Rotation (IACR), see [122]. 

8- Estimating the vehicle mass and inertia see [5-6]. 

9- Analyze the performance of both old and new IMU based on error analysis, see 

[60-62, 64]. 

10- Include the Earth’s rotation into the equations and see how this term can affect the 

IMU results. 

It was shown that the derivation of equations used here relayed on the Flat Earth 

Model (FEM), which was enough to solve the navigation problem, but it was 

shown in [95] that this assumption will affect the results obtained when the 

gravity compensation is included. 

11- Analyze the performance of the proposed IMU in Centralized Sensing Scheme. 

12- Consider the System Identification problem into more depth. 

As was stated in Chapter 8, the Weighted-Recursive Least-Squares (WRLS) 

method was unable to handle the problem when it becomes ill-conditioned; so 

WRLS with varying forgetting factor along with covariance resetting can be 

considered.  
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Maximum-Likelihood Estimation may also be a good candidate in addition to the 

QR-Decomposition-Based RLS Method. Paying more attention to the 

identification problem may result in better IMU performance.   

13- Use frequency domain identification, see [107]. 

14- Build Adaptive Forgetting Factor QR-D bases WRLS. 

15- Make use of RLS and Kalman Filter correspondence to build a state-space 

estimation model [113]. 

16- Study the stability of the gravity estimation presented in Chapter 9. 

17- Reduce the errors due to uncertainty in initial conditions, see [30]. 

18- From the error analysis to be done, the effect of the accelerometers separation 

within the same ring can be investigated and the possibility of having the 

proposed IMU built in a small chip. This is maybe highly to be possible with 

MEMS based accelerometers. However, this will not help in compensating for 

gravity using the procedure proposed here but it still can help in finding the 

angular velocity and acceleration as a replacement for gyroscopes. 

To conclude the work done so far within this thesis, it is evident that the various parts 

introduced were interacting smoothly. Nevertheless, the listed future work will take this 

IMU to higher level especially if the system identification problem was dealt with in 

more detail so that better performance can be obtained out of this IMU. 
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