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Petroleum Carrying Pipeline] 

Major Field : [Electrical Engineering] 

Date of Degree : [April 2014] 

 

 

 Crude-oil production process from a horizontal or near horizontal well often 

extracts a multiphase mixture of oil, water and gas. Accurate measurement of the ratio of 

multi-phase contents within the pipeline is important for successful logging and monitoring 

the oil supply. Although several electrical techniques exist in the literature to determine the 

phase ratio, a few of them use microwave sensors. The aim of this research work is to 

design the front-end of a simple microwave sensor to determine the contents of multiphase 

liquids flowing through a petroleum-carrying pipeline.  

 Electromagnetic (EM) scattering within the pipeline is governed by the geometrical 

and electrical properties of the pipeline. Since a pipeline resembles a cylindrical structure, 

a thorough analysis is essential on the modal behaviour of the cylindrical waveguide filled 

with multi-phase fluid.  Calculated solutions for single phase and simple two-phase cases 

are used to verify the model used by a full wave Finite Element Method (FEM) based 

simulator (HFSS). Simulated reflection responses (S11) of the pipeline model with two 

integrated antennas are used to monitor the oil and water level. The antenna places in the 

shielded region of the Plexiglass pipeline are used to monitor the resonant frequency 

changes with changing oil level of the pipeline. The antenna integrated in the non-shielded 



xix 

 

region of the pipeline is used to monitor the changes of the reflected power (|S11|) due to 

changing water level of the pipeline.  The observed responses are tabulated to generate a 

look-up table that can be used with experimental measurements of S11 to determine the 

contents of the steady-state three-phase pipeline. 

 Measurement setups are fabricated to experimentally verify the simulated look-up 

tables. Minor discrepancies between simulated and measured S11 curves are due to human 

errors during the in house fabrication and assembly process. Measurement setup without 

using the network analyser is also investigated. Basic measurements are performed using 

microwave components (VCO, circulator, directional coupler, detector, and voltmeter) 

demonstrated the proof of concept. An Arduino microcontroller is also integrated with this 

setup, which can store the look-up tables and display the contents level of the three-phase 

pipeline on a laptop.  

 The major drawback of the this two antenna reflection measurement setup is low 

resolution and measurement limit of maximum 30% of water contents of the steady state 

pipeline.  
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 ملخص الرسالة

 
 

 ينال شاهر عبد الفتاح الفاعوري :الاسم الكامل
 

 كهرومغناطيسية في مدى المايكرويف لقياس مستوى المواد في أنابيب النفططريقة  :عنوان الرسالة
 

 الهندسة الكهربائية التخصص:
 

 4102نيسان  :تاريخ الدرجة العلمية
 

 

من ليط خ يتم استخراج فقي في ثيير من الأييا الأ ب منيعملية الإنتاج من النفط الخام من بئر أفقي أو قر

 وجودةالممحتويات المن ثل مادة لنسبة  ةدقيق اتقياسومن المهم الحصول على من النفط والماء والغاز.  ةمتعددمكونات 

دد عنابيب لناا  سسايل وصدد ممدادات النفط. على الرمم من أ  العديد من التقنيات الكهربايية موجودة في الأفي خط 

عدد قليل منهم يستخدم أجهزة استشعاص الميكروويف. لا أ  م ،هذه المكوناتلتحديد نسب  من الأوصاق البحيية المنشوصة

ات بسط لتحديد محتويمالهدف من هذا العمل البحيي هو سصميم الواجهة الأمامية من جهاز استشعاص ميكروويف لذلك فإ  

 .البترولسحمل  التي نابيبالأ وطالتي ستدفق من خلال خط ةالسوايل المتعدد

الخصايص الهندسية والكهربايية  خط الأنابيب ملىداخل  المنبعية( EMالكهرومغناطيسية ) الأمواج خضعسو

لى سحليلا شاملا علذلك فإ  من الضروصي مجراء ، الشكل هيكل أسطوانيل مشابهنابيب الأخط  وبما أ خط الانابيب. ل

 للنموذج الأسطواني المملوء بمادةوبة حلول المحسال. وسستخدم كوناتمملوء بسايل متعدد المال هذا الهيكل الاسطواني

وسم استخدام الموجات   .ستخدممحاثاة المال برنامجمن قبل  النتايج التي سيتم الحصول عليهاللتحقق من  مادسين وأوايدة 

لأنبوب النفط الميبت عليه هواييا  من أجل  الكهرومغناطيسية المنعكسة والتي سم الحصول عليها من برنامج المحاثاة

قياس نسبة النفط والماء. الهوايي الميبت على جزء الأنبوب المحاط بطبقة مودلة، استخدم من أجل قياس الموجات 

المنعكسة والترددات لمستويات مختلفة من النفط. وثذلك الهوايي الميبت على الازء العازل من الأنبوب استخدم لقياس 

لطاقة المنعكسة لمستويات مختلفة من الماء. وسم صدد النتايج التي يصل عليها من أجل سكوين جدول مرجعي مقداص ا

 والذي سيستخدم مع النتايج المقاسة عملية من أجل سحديد نسب المواد اليلاثة الساثنة داخل أنبوب النفط. 
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المرجعية التي سم سكوينها من خلال  عدد من الخطوات العملية سم بنايها من أجل التحقق من دحة الاداول

برنامج المحاثاة. وسم ملايظة نسبة اختلاف بسيطة بين النتايج وذلك بسبب عدم الدقة البشرية في استخدام الأجهزة 

المتوفرة في المختبر أثناء عملية ساميع الهوايي مع الأنبوب. وسم التحقق من ساربة عملية لإيااد النتايج بدو  استخدام 

سحليل الإشاصات. وهذه التاربة سم عملها باستخدام أدوات عدة ميل: )جهاز التردد المتحكم من قبل الاهد، مدوص جهاز 

سم استخدامه  Arduinoالإشاصة، موجه الإشاصة، وجهاز قياس الاهد( من أجل سأثيد دحة المبدأ. وأيضا معالج من نوع 

ذي يقوم بتحليل النتايج وعرض مستوى المواد على جهاز في هذه التاربة من أجل سخزين الاداول في ذاثرسه وال

 الحاسوب.

ولكن هذا الهوايي المصنع لمراقبة المواد يعاني من قلة الدقة في سحديد نسب المياه الساثنة في الأنبوب والتي 

 من اصسفاع الأنبوب. %03سزيد عن 
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1 CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

 

Multiphase flow refers to the flow of two or more physically distinct or mixed 

materials in a container or a pipeline. It can be widely found in many engineering 

applications, such as, power generation, chemical engineering and crude oil extraction and 

processing. Oil production and supply involves multiphase flow of liquids composed of 

oil, water and gas [1]. Oil retrieval process often involves the injection of water and gas 

into the well to maintain the pressure and viscosity of the extracted liquids. This process 

requires constant monitoring using multiphase flow sensors, to optimize the efficiency of 

the oil production line.  

The existing multiphase flow sensors can be classified into the following major 

groups: Mechanical (visual, float-type mechanisms, absolute pressure, differential 

pressure, thermal, weight measuring), Optical, X-ray or Gamma ray, Nuclear Magnetic 

resonance (NMR) and Electrical [2], [3]. Popular electrical sensors excite the two-phase 

fluid with a low frequency signal and measures the electrical parameters between 

electrodes. Commonly measured parameters are capacitance, resistance and inductance, 

which can determine the dielectric properties (permittivity and conductivity) of the mixture 

related to two phase contents oil and gas.  
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In industrial conditions, non-intrusive sensors are preferable because they are 

reliable, easier to maintain and less prone to erosion, corrosion or excessive pressure drop 

problems. Some examples of non-intrusive sensors used in multiphase measuring are: 

Absolute Pressure, Temperature, Differential Pressure, Conductance, Capacitance, 

Gamma, X-ray, Microwave, Ultrasound and infrared. [2]. There are various approaches 

based on microwave techniques to measure volume fraction and phase distributions in 

multiphase flow, such as: microwave tomography [4], [5], open cylindrical resonator based 

on two microstrip patch couplers [6], near field proximity measurements [7], Composite 

Right/Left-Handed (CRLH) Transmission Line resonator [8] and capacitive 

electromagnetic flow meter [9], [10]. 

In this research, the steady state three-phase contents within a petroleum-carrying 

pipeline are excited with two simple microwave sensors (antennas) located on the 

perimeter of the pipeline in a consecutive manner. The optimized antennas are located in 

the shielded and the non-shielded regions of the pipeline depending on the requirement of 

monitoring oil-air or water-oil levels of the mixture. The resonant frequency and power 

level of the reflected signal (S11) are observed to detect the oil and water levels, 

respectively. Initial measurements are done using the network analyzer to check and verify 

the simulated look-up tables, which relates the S11 responses with the content level within 

the pipeline. Final measurements are done with a standalone system that eliminates the 

requirement of the expensive network analyzer. Finally, a sample measurement is done to 

proof that an Arduino microcontroller can be used to store the look-up tables with which 

the measured S11 responses can be compared to display the three phase content ratio of the 

pipeline.  
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1.2 Thesis Motivation 

 

Different concepts and devices are available for measuring the phase fractions of 

the multi-phase flow within petroleum carrying pipeline. Some of these devices use 

microwave signals but they are either complex or expensive. Therefore, a simple 

microwave measurement technique is needed to reliably observe the ratio of steady state 

two-phase and three-phase contents within the petroleum-carrying pipeline.  

 

1.3 Thesis Objectives 

 

The objectives for this work can be summarized as follow: 

1. Analytically solve, understand and analyze the modal behavior of a cylindrical 

pipeline, loaded with single-phase or simple two-phase mixture of air, oil or water. 

This will help understand the Electromagnetic (EM) characteristics of the 

multiphase mixture within the pipeline, resembling the cylindrical waveguide. 

2. Using the analytical solutions, select proper meshing and excitation techniques 

available in the professional software (HFSS) to model the steady state multiphase 

pipeline with ideal excitation. Verify the model by comparing the simulated mode 

charts with analytical results of step 1.  

3. Use the validated software model to analyze the multi-phase petroleum-carrying 

pipeline, which is too complicated to solve analytically. Thoroughly investigate the 

modal behavior of the pipeline to understand how modes are affected by changing 

levels of the three-phase contents of the pipeline. 
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4. Design and optimize practical microwave excitation/measurement techniques of 

the pipeline using low profile printed antennas. Determine the techniques best 

suited for monitoring the levels of air, oil and water contents of the mixture. This 

is important, as due to different electrical properties of water and oil, same 

technique may not be suitable for monitoring both materials.   

5. Use the optimized simulated model of the pipeline with two integrated antennas to 

generate the look-up tables, which links the oil and water levels with measured S11 

responses.  

6. Fabricate the pipeline segment with two integrated antennas to perform the two-

phase and three-phase measurements for monitoring the oil and water levels. These 

measurements will help in corroborating the two look-up charts, prepared in step 5. 

Design and use an experimental setup (using microwave VCO, control components, 

microcontroller) that can monitor the multiphase contents without using the 

expensive network analyzer and provide the content level by comparing the 

measured S11 response with pre-generated look-up table. 

 

1.4 Thesis Overview 

 

This thesis is organized in six chapters as follows: 

Chapter 2 of this thesis briefly describes the existing analytical methods available 

in the literature to calculate the cutoff wavenumbers of a partially loaded circular 

waveguide. In addition, this chapter also discusses the basic techniques and sensors 
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available in the literature for detecting the content level of a multi-phase mixture within a 

petroleum-carrying pipeline.  

In Chapter 3, the analytical derivation is presented to find the cutoff wavenumbers 

in a circular waveguide loaded with two off-centric dielectric cylinders. This novel 

formulation and solution is used to determine the theoretical electrical parameters of a 

petroleum-carrying pipeline, ideally loaded with two cylindrical oil samples.  

Chapter 4 discusses the design of the microwave monitoring setup in details and 

the steps followed to achieve the optimum design of the level sensors to correctly find the 

content levels of the pipeline. Initially, the relative permittivity (r) of the available 

Plexiglass material is determined by curve fitting techniques, where the experimental S11 

response is fitted with simulated (HFSS) reflection responses for different predicted r 

values. Then, the effect of the curved Plexiglass substrate on the resonance condition of 

the antenna is investigated to optimize the design. Finally, the pipeline with integrated 

antennas is designed and optimized. Correct monitoring technique is finalized to monitor 

the two-phase mixtures (oil-air and water-oil) within the pipeline. Simulation results for 

the pipeline filled with different combinations of two-phase (Air-Oil, Oil-Water) and three 

phase (Air-Oil-Water) cases are plotted and analyzed. Look-up tables that relates the 

changes in resonant frequency with changing level of oil and changes in reflected power 

with changing level of water are tabulated.   

In the 1st part of Chapter 5, the relative permittivity of the available Plexiglass 

material is found by fabricating and testing the designed patch antenna using available 

Plexiglass substrate. Curve fitting technique is used for this purpose. Similar antenna on a 
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curved Plexiglass substrate is also fabricated and tested to predict the antenna behavior 

within the pipeline. Finally, the optimized design of the measurement setup required the 

fabrication of 3 GHz and 3.3 GHz aperture coupled patch antennas and assembling them 

within the shielded (with conductive cover around the outer surface of the pipeline) and 

non-shielded part of the pipeline to monitor air, oil and water level changes, respectively.   

This chapter also presents the look-up table formulated to relate the S11 response of the 

measurement setup with the level of its multi-phase contents. Random entries in the look-

up table are validated with experimental results. The last part of chapter 5 discuses a self-

sufficient measurement setup made of an S-band microwave components and Arduino 

microcontroller. Sample test results of this setup are presented to encourage future studies 

in this topic. Finally, chapter 6 describes the conclusions drawn from this research work 

and recommendations on future work to be carried on this subject. 
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2 CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

 

This chapter will focus on the methods and the techniques that are available in the 

literature to determine the content ratio of a circular petroleum-carrying pipeline.  The 

literature review chapter is splits into two parts. The first part covers the methods and 

approximations that are used to come up with a basic analytical solution of the targeted 

structure. The second part covers some of the popular techniques used to measure the two- 

and the three-phase contents of the petroleum carrying pipeline.  

 

2.2 Dielectric Loaded Circular Waveguide                    

 

In order to analyze the dielectric properties of the multiphase contents of a 

petroleum-carrying pipeline, the pipeline is modeled as a circular waveguide. The 

equations governing the waveguide are then used to calculate the modal behavior of a 

dielectric loaded circular waveguide. In the literature, models exists for perfectly 

conducting waveguides loaded with dielectric rods in a concentric or off-centric manner 

(eccentric). 
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2.2.1 Concentric Loading 

 

In the case of a concentric loading, equations governing the modal behavior exist 

in the literature [11] and most of the published papers dealing with eccentric loading 

verified their solution process with concentric solutions first [12]. Figure 2-1(a) shows a 

circular waveguide (filled with ε2 and µ2) is concentrically loaded with a dielectric rod 

(with ε1 and µ1). The related phase constant, normalized to the material of the outer 

cylinder, is plotted in Figure 2-1(b). The radius of the outer cylinder is b=0.4λ2 and it is 

filled with air (εr2=1, µ2= µ0), while the inner cylinder is filled with a material having a 

dielectric constant of (εr1=10, µ1= µ0) and radius varying from a=0.01b to a=b. Note that 

Figure 2-1(b) has the following limitations: 

 Every point in this curve corresponds to different geometry (different a or b). 

 The curve corresponds to a certain frequency. 

 The curve combined both real (kz < k2) and complex (kz > k2) values of the 

Bessel functions. 
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Figure 2-1: (a) Partially Filled Waveguide; (b) Phase Constant for the Partially Filled Waveguide [11] 

2.2.2 Eccentric Loading 

 

The calculation of the cutoff frequencies and propagation constants of a cylindrical 

waveguide, eccentrically (off-centrically) loaded with a dielectric cylinder, has been the 

subject of many investigations. Some of the popular methods to find the cutoff frequencies 

are as follows: 

(I) Simple point-matching method [13], is popular in loaded waveguide with two 

conductors, where one conductor encloses the other. In reference [14] Davies et al. has 

investigated the legitimacy of this method as a modeling tool. Another example of this 

technique has been reported in [15]. 

(II) Least-squares boundary residual method (LSBRM) [16], where Yeo has 

described the application of LSBRM to the analysis of a circular waveguide loaded with 

an off-centric dielectric rod. Because this technique represents a particular case of least-
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squares minimization, it is mathematically more rigorous than the point matching method. 

In addition, the LSBRM has already been successfully utilized to model a variety of other 

complicated structures, such as planar transmission lines and symmetrical waveguide 

junctions. 

 (III) The third technique available in the literature is called the null-field method 

[17]. In reference [18], the null-field method has been used to compute the cutoff 

frequencies of the asymmetrically loaded cylindrical waveguide for both the transverse 

electric and transverse magnetic modes. This technique is important for hybrid microwave-

integrated-circuit designers, interested in accurately modeling the dielectric resonator 

enclosed within a metallic box.  

(IV) Vector Finite Element Approach. In reference [19], this method has been 

applied to study the cutoff frequencies of higher-order modes and dispersion characteristics 

of a uniform waveguide with circular outer conductor and eccentric inner conductor 

supported by dielectric slab between the conductors. In this method the structure is divided 

into triangular elements, with each one represented by three edge elements. The electric 

field in a single triangular element is expressed as a superposition of three edge elements 

with three vector basis functions overlapping each triangular cell. The value of the basis 

function is constant along one edge while it is simultaneously zero along the other two 

edges. 

(V) Surface Integral Formulation. This method has been used in [20] to obtain the 

cutoff wavenumbers for an arbitrary waveguide, but this method leads to the existence of 

spurious modes. A modification to this technique to get rid of these modes has been 
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reported in [21]. They use this method to obtain the cutoff wavenumbers for TE and TM 

modes for a coaxial waveguide with the outer conductor having circular cross section and 

the inner conductor having a rectangular cross section. The advantage of this technique is 

that it can be applied to any cross section because it depends on the method of moments to 

find the electric field and because of this, the formulation becomes a little complicated and 

needs more processor time to find the modes. Several comments on the formulation 

followed in this paper [21] has been pointed out in [22]. 

(VI) Finite Difference in Time Domain (FD-TD) which has been used in [23] to 

find the cutoff frequencies for the coaxial waveguide with circular and rectangular cross 

sections for the inner and outer conductors. This method is better than the Finite Difference 

(FD) method since it has a second order accuracy in time and space derivation, also; it did 

not need any special treatment on the structure boundaries. 

(VII) Boundary Value Method (BVM). An example of this method is used in 

reference [12], where Ragheb applied it to a circular waveguide loaded with eccentric 

dielectric cylinder as shown in Figure 2-2. The behavior of the cutoff wavenumbers versus 

eccentricity from the center of the circular waveguide has been plotted in Figure 2-3, where 

this figure shows how the normalized cutoff wavenumber will act due to an increase in the 

eccentricity of the loaded cylinder from the center of the outer cylinder. The field 

components of circular waveguide modes have angular variations and split into odd and 

even modes when the central conductor begins to shift axis from concentric to off-centric 

configuration. However, only even modes in the off-centric guide correspond to the coaxial 

modes with no angular variations.  
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Figure 2-2: Circular Waveguide Loaded with One Eccentric Conductor or Dielectric Cylinder 
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The modal characteristics of the eccentric structure, shown in Figure 2-2 above, has 

also been solved using Boundary value method in references [24], [25], [26], [27], [28]. 

Using separation of variables in [29], Conformal Mapping in [30], [31], [32] and Finite 

Difference in [33]. Electromagnetic properties of this structure using point matching and 

conformal mapping methods are also available in literatures [34], [35], [36]. 

For the behavior of the propagation constant in the region below cutoff frequency, 

an exact solution based on the characteristic equation has been worked out in [37] for the 

case of a coaxial waveguide. It was demonstrated that two types of hybrid electromagnetic 

fields could propagate in the structure: (1) the even hybrid field which has even TE and 

odd TM fields and (2) the odd hybrid field that has odd TE and even TM fields. 

 

 Figure 2-3: Cutoff Wavenumber versus Eccentricity for Odd Modes (a=0.5λ, b=0.2 λ, εr2=1) [12] 
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2.3 Multiphase Sensors and Techniques 

 

There are many research papers on multiphase flow and it is very important for 

industrial applications, especially for petroleum producing companies. Particularly the 

ratio of the multiphase contents within the pipeline allowed the determination of the water-

cut, which is important to monitor and optimize the oil flow. In addition, modelling the 

nonlinear interaction between the multi-phase contents of the pipeline is also important in 

analyzing the oil flow.  

 

2.3.1 Flow Patterns 

 

The flow pattern of the two-phase contents within the pipeline mainly depends on 

the pipeline orientation, such as vertical or horizontal. Figure 2-4 shows the two-phase flow 

patterns in a horizontal pipeline. Two types of flow are presented, which are the one 

considered in this research, wavy flow, where the fluid level is not constant due to the flow 

movement and the stratified flow, which has a steady state level and a comparison between 

them will be presented in the next chapter. 
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Figure 2-4: Two-Phase Flow Patterns in Horizontal Tubes [38] 

 

The flow pattern within the pipeline are mostly determined by visual observations, 

e.g. by the use of a high-speed camera, but this is only possible for flows in transparent 

tubes. In recent years, analytical techniques have been made available that uses various 

instruments to determine the flow pattern for non-transparent pipes. Pressure transducers 

or void fraction sensors (either electrical impedance or radiation based techniques) together 

with mathematical and statistical models are commonly used to analyze the signal 

fluctuation characteristics to determine the flow pattern [39]. In [40] a more comprehensive 

and fundamental treatment of the two-phase flow transitions and a unified model for 

predicting flow-pattern transitions for the whole range of pipeline inclinations is presented. 
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2.3.2 Multiphase Flow Sensors 

 

Some examples of non-intrusive sensors used in multiphase measuring are: 

Absolute Pressure, Differential Pressure, Conductance, Capacitance (Impedance), Gamma, 

X-ray, Microwave, Ultrasound and Infrared or Optical. [2] 

In order to select a sensor for an application, the suitability of the sensor should be 

tested according to the following criteria [2]: 

(1) Known behavior in oil/water/gas flows 

(2) Frequency (or dynamic response) 

(3) Complexity of sensor output processing 

(4) Commercial availability 

(5) Cost 

(6) Non-intrusive design 

(7) Reproducibility 

(8) Ruggedness/complexity 

 

The non-intrusive sensors mentioned above are tested according to these criteria 

and they are ranked as A (represent the best) B or C sensors, as summarized in Table 2-1. 

In spite of the microwave sensors is not the best, it is selected here because oil companies 

although it has all types of sensors but they are still interested into the microwave range to 

know their capabilities and to find a way to enhance their measurements. 
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Table 2-1: Sensor Selection Criteria [2] 

Sensor 
Criteria 

1 2 3 4 5 6 7 8 

Absolute pressure A A A A A A A A 

Differential pressure A A A A A A A A 

Conductance A A A B B A A A 

Impedance A A A B B A A A 

Gamma A B A A B A A B 

X-ray A B B B C A A B 

Microwave B B B B B A B B 

Ultrasonic B B B B B A B B 

IR/Optical B C C B B A B B 

 

2.3.3 Measurement Techniques 

 

In the literature, a variety of techniques exist to monitor the multiphase flow in the 

pipeline. In [41], they apply the method based on dielectric spectroscopy to investigate two 

kinds of flow in the pipeline: the homogeneous flow of oil and water and the annular flow 

oil, water and gas. In this process, two different probes are inserted within the pipeline: one 

at high frequency (around 40 GHz) to determine the composition of the liquid phase, i.e. 

the oil–liquid ratio and the water–liquid ratio; a second one at low frequency (10–800 

MHz) to calculate the gas ratio or gas hold-up. The reason for the two frequency bands are 

based on the signal penetration, which is inversely proportional to the frequency, as shown 
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in Figure 2-5. However, this intrusive design needs to insert probes within the pipeline, 

which requires drilling and that will cause leaking or cleaning related problems. 

 

 

Figure 2-5: Schematic of the Device that Consider the Annular Case Flow [41] 

 

In reference [42], the authors introduce a capacitance wire-mesh sensor to measure 

the permittivity of the mixture, as shown in Figure 2-6. This sensor consists of two plates 

placed at a certain distance from each other and connected to two probes. Each plate is 

made of 16 wires, mounted in a rectangular acrylic frame that itself is part of a rectangular 

flow channel. The sensor can be used to measure transient phase fraction distributions in a 

flow cross-section. The drawback of this intrusive sensor was low mechanical rigidness 

and less protection of the probes from sandy component or solid particles of the fluid. 
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Figure 2-6: Capacitance Wire-Mesh Sensor [42] 

In [43] a non-intrusive electromagnetic cavity sensor shown in Figure 2-7 is 

developed for detecting the content of an oil pipeline by transmitting a 10 mW signal in 

the range of 100 – 350 MHz. This sensor technique is based upon measuring the dielectric 

constant of the combined oil, gas and water phases. The drawbacks of this design are the 

antenna dimension is big, low resolution, and this is because the range of the frequency is 

in the MHz. 

In reference [44]  the microwave sensor consisted of two coaxial probes, separated 

by a certain distance, as shown in Figure 2-8. This sensor is used to determine the water 

holdup of the hydrocarbon mixture for a near horizontal oil-carrying pipeline. It is noticed 

from the figure that this design is intrusive and there is possibility for leakage due to high 

pressure within the pipeline. 
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Figure 2-7: Laboratory Prototype Cavity Resonator Setup [43] 

 

Figure 2-8: (a) Cross Section, (b) Side View of the Measurement Unit. [44] 

Another intrusive technique was described in [45], [46], [47] and [48] are based on 

tow microstrip couplers connected in a Composite Right Left Handed (CRLH) manner. An 

example of such a sensor is shown in Figure 2-9, which is related to [45]. The figure shows 

a schematic of the dominant mode excited within the cylindrical waveguide using the 

coaxially feed microstrip patch and a parasitic patch. Two sets of the patches are connected 

using microwave couplers to measure reflection and transmission parameters in order to 

determine the content ratio.   
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Figure 2-9: Two Microstrip Patch Couplers Assembled as a Microstrip Sensor [45] 

 

In [49] an impedance technique is presented by placing electrodes at the perimeter 

of a pipeline and measuring the impedance across the electrodes, there are many different 

possibilities to arrange a system of electrodes for void fraction measurement purposes. Two 

cases have been considered electrical conductivity and capacitance probes; depending on 

the type of instrumentation used and liquid material to be investigated. 

Commonly used radioactive sources of gamma radiation include isotopes of 

americium, cesium or cobalt. Radiation is generally detected by using a scintillator coupled 
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to a photo detector. The scintillator absorbs radiation and emits visible light by 

fluorescence [50]. 

Another technique for multiphase measurements is multiphase flow imaging 

tomographic and commonly called process tomography or industrial process tomography, 

finds many applications in the imaging and measurement of industrial processes. A 

tomographic image is a two-dimensional representation of a slice through an object. The 

use of various tomographic methods is widespread in diagnostic medicine [51] and several 

imaging modalities originally developed for medical imaging are now being adapted to 

industrial process imaging. The use of tomographic imaging for the investigation of 

multiphase flows has been reported in a few exhaustive review papers [52], [53], [54], [55] 

and books [56], [57], [58]. 

An application of one of the tomography types called Electric Resistance 

Tomography (ERT) has been done in [59]. Figure 2-10 shows the experimental setup for 

the ERT were it carried out in an acrylic test pipe in the horizontal direction with 38 mm 

in diameter. The phase continuity and appearance of phase inversion were investigated 

using conductivity (wire and ring) probes and an Electrical Resistance Tomographic (ERT) 

system. In this technique the phase has been monitored to determine the flow and especially 

the process of phase inversion or continuity affected by interfacial tension of the materials 

by adding a small concentration of glycerol to water. 
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Figure 2-10: Electrical Resistance Tomographic (ERT) Sensors Placed at the Periphery of the Test Pipeline and 

Embedded on the Acrylic Wall. [59] 

 

In spite of the huge contribution in the field of petroleum measurement, only 0.2% 

of current oil wells are instrumented with multiphase flow meters as estimated in [60]. 

Thus, there still exists the need for new researches and innovations for this field of study. 

 In this work, the designed sensor is not intrusive, which mean nothing will be 

inserted in the direction of flow like [41], [42] and [44] because it will be attached and 

wrapped around the inner perimeter of the pipeline. This will protect our sensor from 

damaging caused by high pressure, solid particles within the flow or even through the 

cleaning process of the pipeline, no hole in the pipeline wall required like [45], [46], [47] 

and [48]. In addition, it did not required complex processing of the output data compared 

to [59].   
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2.4 Antenna Basics 

 

In this research work, a planar antenna will be designed and used to monitor the 

contents ratio of the pipeline. According to the IEEE Standard Definitions, the antenna or 

aerial is defined as “a means of radiating or receiving radio waves" [61]. In other words, 

antennas act as an interface for electromagnetic energy, propagating between free space 

and guided medium. Amongst the various types of antennas that include wire antennas, 

aperture antennas, reflector antennas, lens antennas etc., microstrip patches are one of the 

most versatile, conformal and easy to fabricate antennas. 

Good antenna design is a critical factor in obtaining useful response from 

microwave sensors and wireless devices. This is especially true in low power and compact 

designs, where antenna space is less than optimal. To obtain the desired performance, the 

designed antenna needs to be optimized to provide required matching, gain/loss, and 

radiation pattern. 

 

2.4.1 Basic Antenna Parameters 

 

Some of the basic antenna characteristics that a designer should be familiar before 

starting the design process are briefly described below: 

Antenna gain relates the intensity of an antenna in a given direction to the intensity 

that would be produced by a hypothetical ideal antenna that radiates equally in all 

directions (isotropically) and has no losses. 
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Antenna Directivity is defined by direction to the radiation intensity averaged over 

all directions. 

Antenna Bandwidth is defined as the range of frequencies within which the 

performance of the antenna, with respect to some characteristics, conforms to a specified 

standard [61]. 

Antenna Radiation Patterns An antenna radiation pattern is a 3-D plot of its 

radiation far from the source. Antenna radiation patterns usually take two forms, the 

elevation pattern and the azimuth pattern. The elevation pattern is a graph of the energy 

radiated from the antenna looking at it from the side (E-Plane). The azimuth pattern is a 

graph of the energy radiated from the antenna as if you were looking at it from directly 

above the antenna (H-Plane). 

To select correct antenna for our application, the basic characteristics of different 

types of antennas are tabulated in Table 2-2. 

Table 2-2: Antenna Comparison 

 
Radiation 

Pattern 
Power Gain Directivity Polarization 

Dipole Broadside Low Low Linear 

Multi Element 

Dipole 
Broadside Low/Medium Low Linear 

Flat Panel Antenna Broadside Medium Medium/High Linear/Circular 

Parabolic Dish 

Antenna 
Broadside High High Linear/Circular 

Yagi Antenna Endfire Medium/High Medium/High Linear 

Slotted Antenna Broadside Low/Medium Low/Medium Linear 

Microstrip Antenna Endfire Medium Medium Linear 
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Maximum intensity (Max U) 

The radiation intensity (U) is the power radiated from an antenna per unit solid 

angle. Professional simulator, HFSS, can calculate the maximum intensity of the radiation 

in watts per steradian using, 

𝑈(𝜃, ∅) =
|𝐸|

𝜂0
𝑟                                                      (2.1) 

Where 

• U (,) is the radiation intensity in watts per steradian. 

• |E| is the magnitude of the E-field. 

• 0 is the intrinsic impedance of free space and it is equal to 376.7 ohms. 

• r is the distance from the antenna, in meters. 

Peak Directivity 

Directivity is defined as the ratio of an antenna’s radiation intensity in a given 

direction to the radiation intensity averaged over all directions. Peak directivity, in turn, is 

the maximum directivity over all the user-specified directions of the far-field infinite 

sphere.  

Directivity is a dimensionless quantity represented by 

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 4𝜋
𝑈

𝑃𝑟𝑎𝑑
                                             (2.2) 
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Where 

• U is the radiation intensity in watts per steradian in the direction specified. 

• Prad is the radiated power in watts. 

• For a lossless antenna, the directivity will be equal to the gain. However, if the antenna 

has inherent losses, the directivity is related to the gain by the radiation efficiency of the 

antenna. 

Peak Gain 

Gain is four pi times the ratio of an antenna’s radiation intensity in a given direction 

to the total power accepted by the antenna. Peak gain, in turn, is the maximum gain over 

all the user-specified directions of the far-field infinite sphere. 

The following equation is used to calculate gain in HFSS: 

𝐺𝑎𝑖𝑛 = 4𝜋
𝑈

𝑃𝑎𝑐𝑐
                                                        (2.3) 

Where 

• Pacc is the accepted power in watts entering the antenna. 

Gain can be confused with directivity, since they are equivalent for lossless 

antennas. Gain is related to directivity by the radiation efficiency of the antenna. If the 

radiation efficiency is 100%, they are equal. The realized gain however, is four pi times 

the ratio of an antenna’s radiation intensity in a given direction to the total power incident 
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upon the antenna port(s). Peak realized gain, in turn, is the maximum realized gain over all 

the user-specified directions of the far-field infinite sphere.  

Radiated Power 

Radiated power is the amount of time-averaged power (in watts) exiting a radiating 

antenna structure through a radiation boundary.  

For a general radiating structure in HFSS, radiated power is computed as 

𝑃𝑟𝑎𝑑 = 𝑅𝑒{∫𝐸 × 𝐻∗
𝑠

. 𝑑𝑠}                                       (2.4) 

• 𝑅𝑒 is the real part of a complex number. 

• s represents the radiation boundary surfaces. 

• E is the radiated electric field. 

• H* is the conjugate of H. 

• ds is the local radiation-boundary unit normal directed out of the 3D model. 

The accuracy of the computed radiated power depends on the accuracy of E and H 

on the absorbing boundary. In some cases it is possible that the computed radiated power 

may deviate slightly from the actual radiated power. To increase the accuracy of the 

radiated power, seed the mesh on the absorbing boundary. As a check, you can use the S-

parameters — if ports have been defined — to calculate the radiated power. 
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Accepted Power 

The accepted power is the amount of time-averaged power (in watts) entering a 

radiating antenna structure through one or more ports. For antennas with a single port, 

accepted power is a measure of the incident power reduced by the mismatch loss at the port 

plane.  

For a general radiating structure in HFSS, accepted power is computed as 

𝑃𝑎𝑐𝑐 = 𝑅𝑒{∫ 𝐸 × 𝐻∗
𝐴

. 𝑑𝑠}                                         (2.5) 

Where 

• A is the union of all port boundaries in the model. 

For the simple case of an antenna with one lossless port containing a single 

propagating mode, the above expression reduces to 

𝑃𝑎𝑐𝑐 = |𝑎|2(1 − |𝑠11|
2)                                         (2.6) 

Where 

• a is the complex modal excitation specified. 

• s11 is the single-entry generalized scattering matrix (without renormalization) computed 

by HFSS. 
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Incident Power 

Incident power is the total amount of time-averaged power (in watts) incident upon 

all port boundaries of an antenna structure. Incident power is set at your discretion in the 

Edit Sources window. 

For the simple case of an antenna with one lossless port containing a single 

propagating mode, the incident power Pincident is given by propagating mode, the incident 

power Pincident is given by 

𝑃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 = |𝑎|2                                                   (2.7) 

Where 

• a is the complex modal-project excitation specified in the Edit Sources window. 

Radiation Efficiency 

The radiation efficiency is the ratio of the radiated power to the accepted power 

given by 

𝑒 =
𝑃𝑟𝑎𝑑

𝑃𝑎𝑐𝑐
                                                         (2.8) 
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2.4.2 Microstrip Patch Antenna 

 

This type of antenna is described in this subsection because it is used as a 

microwave sensor in chapter 4. The microstrip antenna, in its simplest form consists of a 

dielectric substrate sandwiched between two conducting surfaces: the antenna plane and 

the ground plane. The simplified microstrip patch antenna is shown in Figure 2-11. 

 

Figure 2-11: Construction of Basic Rectangular Microstrip Patch Antenna 

 

Microstrip patch antennas radiate primarily because of the fringing fields between 

the patch edge and the ground plane. Since the propagating EM fields lay, both in the 

substrate and in free space, a quasi-TEM mode is generated. The length and width of the 

patch are given by (a) and (b) respectively. The substrate thickness is given by h. 
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Feeding Techniques 

 

A number of feeding mechanisms have been developed for microstrip antennas 

[61]. Most often, the feed mechanism determines the complexity of the microstrip antenna 

design. Popular feed techniques can be classified into two major categories as follows. 

1. Directly connected to the patch: A direct electrical connection is used to feed 

the radiating patch element. Like, microstrip line, coaxial probe. 

Microstrip Line Feed is one of the most commonly used feed technique; a 

conducting strip is connected directly to the edge of the microstrip patch. Inset feed is one 

in which the microstrip line feed is inset into the patch [62] to provide the right impedance 

match between the patch and the feed line; refer Figure 2-12. The advantage of this 

technique is that both the feed and the patch lie on the surface of the substrate and therefore 

is planar in construction. This technique is efficient on thin substrates; thick substrates 

should be avoided as they could result in spurious feed radiation and cross polarization 

effects. 

 

Figure 2-12: Microstrip Line Feed 
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The Coaxial feed or probe feed has the inner conductor connected of the coaxial 

cable to the patch through a hole in the substrate and the outer shield grounded by 

connecting to the microstrip ground plane; see Figure 2-13. Though it is easy to place the 

feed at any location on the patch, the disadvantage with this technique is it provides narrow 

impedance bandwidth and is difficult to model [63]. 

 

Figure 2-13: Coaxial Probe Feed 

 

2. Coupled to the patch: Electromagnetic field coupling is used to feed the patch. 

Like, aperture coupling and proximity. 

In Aperture Coupled Feed, the feed line is separated from the patch by the ground 

plane. Electromagnetic coupling is used to transfer power from the feed line to the patch 

through a small aperture in the ground plane. To avoid cross-polarization the coupling 

aperture is centered under the patch as shown in Figure 2-14. It is a multi-layered design, 

the efficiency of aperture coupling is lower compared to other techniques, but it is easy to 

model [64]. The drawback of this configuration in addition to the less in efficiency, a 

perfect alignment between layers and production cost. 
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Feed substrate guides the EM wave from the input point (SMA connector) to the 

coupling aperture. Thus, thinner substrate with higher dielectric constant is selected to 

effectively perform this operation with minimum feed-line radiation. Where, the width of 

the feed line is selected to match the characteristic impedance of the system. 

 

 

Figure 2-14: Aperture Coupling 

 

 

Figure 2-15: Proximity Coupling 
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Proximity coupling feeding technique, has a feed line sandwiched between two 

different substrates, see Figure 2-15. The microstrip antenna is on the top dielectric and the 

ground plane is on the bottom dielectric slab. The feed line is placed between the two 

dielectric slabs. The coupling is primarily capacitive in nature [64]. This feed mechanism 

provides greater than 13% fractional bandwidth [61] [64]. The fabrication complexity 

however is greater than any of the previous designs. 

Along with a number of advantages [65] microstrip antennas also suffer from some 

disadvantages [62] [63] like narrow bandwidth, low efficiency, low Gain, spurious 

radiation and surface wave excitation. While spurious radiation and surface waves can be 

eliminated by using the right feed mechanisms and substrate thickness [62], the issues of 

major concern are poor bandwidth and low radiation efficiency. Microstrip antennas 

inherently suffer from ohmic losses and dielectric losses making it a high Q device [62]. 

In order to achieve greater bandwidth and gain we must increase substrate thickness but 

this could result in surface waves [63]. 
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3 CHAPTER 3 

ELECTROMAGNETIC FIELDS INSIDE A DIELECTRIC 

LOADED CIRCULAR WAVEGUIDE 

 

In this chapter, the cutoff wavenumbers are calculated for a cylindrical waveguide 

uniformly loaded with two dielectric cylinders. The analytical formulations based on the 

boundary value method are carried out for fields within the waveguide and the dielectric 

cylinders to find the corresponding guided-wave modes. This method is selected here 

because it is accurate and its dependency on the numerical approximation is the lowest 

compared to the other methods mentioned in the previous chapter. In addition, this method 

was used in [12] for finding the cutoff frequency for a circular waveguide loaded with one 

eccentric dielectric cylinder and it has been used to extend their work. The addition theorem 

of the Bessel function is used to transform the fields from one coordinate to other in order 

to apply the boundary conditions and to facilitate field matching using the orthogonally 

property of the Bessel functions. The present problem can be extended to model a circular 

waveguide loaded with multiple dielectric (oil) cylinders and to validate the excitation of 

related software (HFSS) model, suitable for finding the content ratio within three phase 

petroleum carrying pipeline.  
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3.1 Introduction 

 

In Order to derive analytical expressions for the two-phase combinations shown in 

Figure 3-1(a), the models can be approximated to the one shows in Figure 3-1(b) and later 

in this chapter, it will be shown that this is a very good approximation. The analytical 

solution of the modal behavior of a simple dielectric (oil or water) loaded cylindrical 

pipelines are then used to validate the excitation and meshing of the software model of the 

same geometry. These software (HFSS) models are later used to find content ratio of more 

complicated mixture. 

 

(a) 

 

(b) 

Figure 3-1: Cross Section of a Petroleum Carrying Pipeline: (a) Two-Phase Flow Scenarios, (b) Approximated 

Model 
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3.2 Solution of Wave Equation in Cylindrical Coordinates 

 

Before the analysis for the targeted geometry starts, it will be better to know the 

behavior of the fields in general. The solution to this equation has been derived in many 

books [66], [67]. Here the solution is derived to relate it to our problem. 

The general wave equation or the Helmholtz equation is given as 

022  k                                                     (3.1) 
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k                                                            (3.3) 

Where, (ρ, ɸ, z) are the cylindrical coordinates as illustrated in Figure 3-2, 2  is 

the Laplacian operator of a scalar quantity ( ) and (k) is the propagation constant. 

Substituting Equation 3.2 into 3.1, we obtain the wave equation in cylindrical coordinates 
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z
                             (3.4) 

In order to obtain a solution to Equation 3.4; the separation of variables method 

can be utilized as follow 

     z                                                    (3.5) 
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Figure 3-2: Cylindrical Coordinate System 

 

Substitute 3.5 in 3.4 yields, 
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Dividing both sides of Equation 3.6 by   and thus changing the partial derivatives to 

ordinary derivatives to have 
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Since 
2222

zyx kkkk  in Cartesian coordinate, so by following the same 

procedure in cylindrical coordinate and starting by the last term since it is function in one 

variable only; one can assume  

2
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21
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z
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After substituting 3.8 in 3.7 and multiply both sides by
2 , it can be written as 
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Now, the phi term is function in one variable so it can be equated to a constant i.e. 
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Replacing 
22

zkk   in 3.9 by its equivalent in 3.11 and multiplying by P then 

Equation 3.9 can be written as 
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 The separated equations given in 3.8, 3.10 and 3.12 have a known solution. The 

solution to 3.8 can be one of the following solutions 

  zjkzjk zz eBeAz


 111                                            (3.13-a) 

Or 

     zkDzkCz zz sincos 112                                       (3.13-b) 

Solution to 3.10 can have the similar representation as follows 

   jnjn eBeAz   221                                             (3.14-a) 

Or 

      nDnCz sincos 222                                         (3.14-b) 

For Equation 3.12, the solution will be in the form of Bessel functions 

       kYBkJAz nn 331                                              (3.15-a) 

Or 

       kHDkHCz nn

)2(

3

)1(

32                                         (3.15-b) 

The total solution will be the multiplication of the three separate solutions as 

Equation 3.5 implies. In our case, the solution will be the exponentially in z since the wave 

is travelling in the positive z direction and periodically in phi and for the radial direction, 

it will be the Bessel function solution since the outer cylinder will be conducting which 
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means that it is not radiating outside the outer cylinder. So the final solution will be of the 

following form, 

            zjk

nn
zenDnCkYBkJAAz


   sincos,, 22331       (3.16) 

3.3 Geometry Description 

 

The geometry of the problem is shown in Figure 3-3, which represents a cross 

section in the x-y plane of a circular waveguide partly filled with two eccentric dielectric 

cylinders. The outer circle represents a cross section of a perfectly conducting cylinder of 

radius (a), while the interior circles of radius (b) and (c) are representing the cross section 

of two dielectric cylinders. Three regions of interest are defined in this problem. Region (I) 

is inside the first dielectric cylinder which has a local coordinates as (x1, y1, z), region (II) 

is inside the second dielectric cylinder which has a local coordinates as (x2, y2, z). The 

permittivity and the permeability of the dielectric cylinder of region (I) are ɛ1 and µ1 and 

for the dielectric cylinder in region (II) are ɛ2 and µ2 while for the dielectric cylinder in 

region (III) are ɛ3 and µ3 respectively. In addition to the global coordinate system (x, y, z) 

at the center of the conducting circular cylinder, another coordinate system (x1, y1, z) at the 

center of the dielectric cylinder at region (I) and a third coordinate system (x2, y2, z) at the 

center of the dielectric cylinder at region (II) are defined. 

The triangle shown in Figure 3-3 used to illustrate the addition theorem of the 

Bessel functions. This theorem means in transfer the electromagnetic fields that are 

represented in a certain coordinate to be represented into another coordinate system. Since 

the fields here are represented in Bessel functions; so this method will be of help. 
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Figure 3-3: Geometry of the Problem 
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3.4 Problem Formulation 

 

In order to analyze this problem it is preferred to use the cylindrical coordinates 

system (ρ, ɸ, z) in the three coordinates defined before. 

The electric and magnetic fields components in region (I) in terms of the local 

coordinates (ρ1) are: 
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The Fields in region (II) in terms of the local coordinates (ρ1) are: 
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The Fields in region (III) in terms of the local coordinates (ρ1) are: 
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Where 
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333222111                ,               ,   kkk               (3.24) 

While Jn(x) and Yn(x) are Bessel functions of the first and second kind respectively 

with argument x and order n. For odd fields the zero order coefficients are equal to zero. 

The other field components in each region can be obtained by applying the 

Maxwell’s equations. The boundary conditions that are applied in this case require the z 

and ɸ components of electric and magnetic fields (Ez, Hz, Eɸ, Hɸ) since these are the fields 

that are tangential to the cylinders considered. So the fields in region (I) can be derived as 

follows: 
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Using Maxwell’s equations, the fields in region (III) can be derived as follows: 
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The unknown coefficients in the above equations An, Bn, Cn
(1), Cn

(2), Dn
(1), Dn

(2), 

Fn
(1), Fn

(2), Gn
(1) and Gn

(2) can be obtained by applying the boundary conditions of 

continuous Ez, Hz, Eɸ, Hɸ on ρ1=b and ρ2=c and vanishing Ez, Eɸ at ρ=a surfaces. 

Applying the boundary condition of continuous electric field Ez at ρ1=b leads to 
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While the continuous magnetic field Hz at ρ1=b leads to 
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Applying the boundary condition of continuous electric field Eɸ at ρ1=b leads to 
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Applying the boundary condition of continuous magnetic field Hɸ at ρ1=b leads to 
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Substitute (3.32) and (3.34) into (3.35) yields 
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Substitute (3.32) and (3.34) into (3.36) yields 
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Equations (3.37) and (3.38) can be written as 
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Now, to apply the boundary condition of continuous Ez, Hz, Eɸ and Hɸ at ρ2=c, the 

fields in region-II and region-III should be expressed first in terms of the ρ2 local coordinate 

system by using the addition theorem of Bessel functions illustrated by the triangle shown 
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in Figure 3-4. This theorem has been used a lot in the literature for its usefulness. [68], 

[69], [70]  

 

 

 

Figure 3-4: Triangle Used to Form the Addition Theorem of Bessel Function [71] 
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Equations (3.47-a) and (3.47-b) can be written as follows: 
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Where Bn(x) could be Jn(x) or Yn(x) and (d) is the distance between the centers of 

the two coordinates. 

Applying equation (3.48-a) on Equations (3.19 and 3.20) gives: 
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 Where the previous two equations represent the continuous z-component of electric 

and magnetic fields in region (II) in terms of (ρ2) coordinates. Using Maxwell’s equations, 

the ɸ-components of continuous electric and magnetic fields in region (II) can be derived 

as follows: 
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Where 
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Applying equation (3.48-a) on Equations (3.21 and 3.22) gives: 
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Where 
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In the above equations ɛm is 1 for m=0 and 2 otherwise. 

Applying the boundary condition of continuous electric field Ez at ρ2=c leads to 
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Applying the boundary condition of continuous magnetic field Hz at ρ2=c leads to 
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Applying the boundary condition of continuous electric field Eɸ at ρ2=c leads to 
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Applying the boundary condition of continuous magnetic field Hɸ at ρ2=c leads to 

    

    

    

    































































































nm

nm

n

mnmn

z

nm

nm

n

mnmn

nm

nm

n

mnmn

z

nm

nm

n

mnmn

S

T
ddkYGddkJG

c

mk

T

S
ddkYFddkJFk

P

Q
ddkYDddkJD

c

mk

Q

P
ddkYCddkJCk

,

,

0

213

)2(

213

)1(

3

,

,

0

213

)2(

213

)1(

3

,

,

0

212

)2(

212

)1(

2

,

,

0

212

)2(

212

)1(

2

)()(                  

 )()(

)()(                  

 )()(











            (3.68) 



54 

 

In order to enforce the boundary condition of vanishing electric field at ρ=a, the 

fields in region-III must be expressed in terms of global coordinates using the addition 

theorem of Bessel functions given by 
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Equation (3.69) can be written as follows 
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Applying equation (3.70) on equations (3.21 and 3.29) gives: 
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Now, applying the boundary condition of vanishing Ez and Eɸ components at ρ=a, 

gives 
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Equation (3.76) can be written as follow 
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Equations (3.39, 3.40, 3.65, 3.66, 3.67, 3.68, 3.75 and 3.77) have non-trivial 

solution if the determinant of the coefficients Cn
(1), Cn

(2), Dn
(1), Dn

(2), Fn
(1), Fn

(2), Gn
(1) and 

Gn
(2) vanishes. The solution of the resulting determinant will give the value of kz 

corresponding to the 1st, 2nd … and nth cutoff Wavenumbers. Once the value of kz is 

obtained for the ith cutoff Wavenumbers, the unknown coefficients can be obtained and the 

field distribution inside the waveguide is then defined completely. 
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3.5 Algorithm for Obtaining Cutoff Wavenumbers 

 

 In order to solve for the fields inside the structure under consideration; it is needed 

to find the cutoff wavenumber. 

 The previous equations generated by applying the boundary conditions can be 

sorted and written in the following way 

BAX                                                                (3.78) 

Where A is the matrix of size 8N*8N that contain the fields coefficients. Since the 

geometry under consideration that is described by the previous equations, contain an 

infinite summation. It is observed that this summation can be limited to a few terms, which 

is enough to replace the infinite summation and at the same time insure the convergence.  

Table 3-1 describe the number of terms needed to reach the convergence of the first 

cutoff wavenumber value for both cases odd hybrid mode and even hybrid mode for a 

geometrical characteristics of (a=0.6 λ, b=0.2 λ, c=0.1 λ, d1=0.3 λ, d2=0.1 λ, εr1=3.6, 

εr2=1.0, εr3=1.0. From the table it is obvious that the convergence reached at the first nine 

terms for the even hybrid mode case and at the first ten terms of the odd hybrid mode case; 

so N=10 it is chosen for the simulation for both cases and this will make the size of matrix 

A 80*80 elements. X is a vector of size 8N*1 which means eight set of unknowns and these 

unknowns are Cn
(1), Cn

(2), Dn
(1), Dn

(2), Fn
(1), Fn

(2), Gn
(1) and Gn

(2). For the value of B in the 

above equation, it is zero since the right side of all the boundary condition equations is 

zero. 
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Table 3-1: Convergence of Numerical Results for the First Cutoff Wavenumber 

N Kz Even Running Time Kz Odd Running Time 

1 0 2.979 s 0.02902 3.910 s 

2 2.41140 5.772 s 4.11120 5.958 s 

3 2.52927 9.816 s 3.97531 11.299 s 

4 2.52217 15.638 s 3.99531 17.349 s 

5 2.52233 21.718 s 3.99622 24.632 s 

6 2.52224 29.839 s 3.99680 34.943 s 

7 2.52226 36.789 s 3.99698 44.590 s 

8 2.52227 45.719 s 3.99703 55.329 s 

9 2.52228 55.501 s 3.99704 65.770 s 

10 2.52228 65.178 s 3.99705 80.257 s 

11 2.52228 74.504 s 3.99705 90.312 s 

 

 

 

   

   

0

..

...

...

..

8*8*88*81

*18*11



NNNNNN

NNNN

aa

aa

A                                (3.79) 

Matrix A has only one unknown that is the cutoff wavenumber kz and in order to 

find it and in the same time insuring a non-trivial solution; the determinant of matrix A 

should equal to zero. The procedure followed in finding the cutoff wavenumbers is as 

follow. First, an initial value is given for kz i.e. kz=0 and then evaluating the determinant 

of A then repeat the process by taking another value of kz and notice that until kz=2π; the 
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value of the determinant will be a real value and after that the determinant of A will be a 

complex value. To locate the cutoff wave number the vector that contains the values of the 

determinant corresponding to every value of kz should be examined for any sign change. 

Once the sign change its location then another sub routine to exactly determined the value 

of the cutoff wavenumber to five decimal digits. Then go to the second sign change etc. If 

the value of the determinant is complex then the real part only is investigated; because the 

zero is determined by the sign change in the real part of the determinant and not the 

imaginary part, since the sign change in it will cross the imaginary axis and not the real 

one which means that the magnitude of the determinant at that point will not be zero. 

After the value of the cutoff wavenumber is determined and matrix A is completely 

defined; then the system given in Equation 3.78 can be solved for the unknown X. 

 

3.6 Results and Discussion 

 

Five types of results are presented in this section. First, verification of the algorithm 

derived previously with the one concentric loading cylinder available in the literature, 

which is a relation between the cutoff wavenumber and the geometry at a certain frequency. 

Second, some examples of the cutoff wavenumbers for different geometrical parameters 

for the case of one eccentric dielectric cylinder loaded to a circular waveguide. Third, a 

general case in which the cutoff wavenumbers for a waveguide loaded with two dielectric 

cylinders are tabulated for different geometrical parameters. The fourth part introduced a 

modification to the expression involved in finding the cutoff wavenumber to be related to 

the operating frequency rather than the geometry. These solutions are used to validate the 
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excitation of the software model of the related geometry. The last part present the 

simulation results from the validated software model for the cases that is either too difficult 

or cannot be solved analytically. 

3.6.1 Verification of the Code 

 

In order to check the accuracy of the analytical formulations for the dielectric (oil) 

loaded waveguide, the results are compared with two cases available in the literature. First 

the verification uses the findings of the concentrically loaded circular waveguide in [11]. 

In order to configure our geometry to match the concentric case, one of the dielectric 

cylinders has been positioned at the center of the circular waveguide while the other 

cylinder was filled with the same material of the waveguide, as sketched in Figure 3-5(a). 

The calculated phase constant (kz) normalized to the propagation constant of the outer 

cylinder (k2) is plotted with respect to the radius of the inner dielectric concentric cylinder 

for a fixed waveguide radius of b=0.4 λ2 and εr1=10, εr2=1, as shown in Figure 3-5(b). The 

continuous line represent the literature while the dotted points generated from our code, 

which shows a perfect match in the results. 
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(a) 

 

(b) 

Figure 3-5: Normalized Phase Constant for Different Dielectric Loading Cylinder Radii 
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The second verification uses the results of reference [12] for a circular waveguide, 

eccentrically loaded with one dielectric cylinder. The value of kz is calculated for different 

values of dielectric cylinder radii and different eccentricity. The geometry of our code has 

been modified according to what is shown in Figure 3-6, so by filling one of the cylinders 

with the material of the waveguide; it is considered as a one dielectric cylinder loading. 

Table 3-2 shows the cutoff phase constants of eccentrically loaded circular waveguide for 

various geometrical parameters, where (a, b and c) represent the radii of the circular 

waveguide and the two loaded cylinders respectively, (d1 and d2) represent the eccentricity 

of the two loaded cylinders from the origin of the global coordinates. The characteristics 

of the materials for this table are: ɛr1=3.6, ɛr2=ɛr3=1 as described in A in Figure 3-6. 

Table 3-3 shows the cutoff phase constants of two eccentrically loaded circular waveguide 

for various geometrical parameters, ɛr1=1.0, ɛr2=ɛr3=3.6 as representing by B in Figure 3-6. 

The cutoff wavenumbers in the bold format represents the new modes discovered for such 

a geometry, where it was not found for the code written for the one eccentric loaded 

cylinder and this is proofs the resolution of our code compared to the literature. 

 

Figure 3-6: Modification to our Geometry to be an Equivalent Representation to One Cylinder Loading  
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Table 3-2: Cutoff Phase Constants of Eccentrically Loaded Circular Waveguide for Various Geometrical 

Parameters, ɛr1=3.6, ɛr2=ɛr3=1.0, c=0.1 λ and d2=0.1 λ 

Parameters Kz for Even Modes 
Ragheb 

[12] 
Kz for Odd Modes Ragheb [12] 

a=0.4 λ 

b=0.2 λ 

d1=0.1 λ 

7.88283 

7.65216 

--- 

7.65215 

9.55673 

7.85866 

6.28244 

5.67614 

--- 

7.85864 

--- 

5.67614 

a=0.5 λ 

b=0.1 λ 

d1=0.1 λ 

7.86626 

5.53306 

1.71487 

--- 

5.53306 

1.71487 

9.53589 

6.28318 

5.56400 

4.86323 

1.71695 

--- 

--- 

5.56400 

4.86323 

1.71695 

a=0.5 λ 

b=0.25 λ 

d1=0.25 λ 

8.73332 

7.89547 

6.51968 

6.28318 

5.02973 

4.23373 

2.91516 

8.72719 

--- 

--- 

--- 

4.99398 

4.20584 

2.91066 

9.74670 

9.57228 

6.32390 

6.05857 

4.39828 

3.64735 

9.72329 

--- 

6.32714 

--- 

4.34611 

3.64868 

a=0.4 λ 

b=0.3 λ 

d1=0.1 λ 

9.71399 

7.92129 

6.75400 

6.28318 

6.02938 

5.45116 

3.83582 

9.71125 

--- 

--- 

--- 

5.99272 

5.43116 

3.82775 

10.20149 

9.61720 

7.53617 

5.84622 

3.79449 

10.19060 

--- 

7.53065 

5.78959 

3.78590 

a=0.6 λ 

b=0.2 λ 

d1=0.3 λ 

7.88283 

7.63256 

4.72535 

3.96839 

2.52228 

--- 

7.63247 

4.72539 

3.96783 

2.52241 

8.05041 

6.27944 

5.81567 

4.51392 

3.99705 

8.04762 

--- 

5.81567 

4.51449 

3.99511 

a=0.6 λ 

b=0.5 λ 

d1=0.1 λ 

11.07897 

9.83641 

9.72090 

8.21116 

8.09686 

7.61821 

6.91871 

6.76650 

6.28318 

5.85652 

3.89814 

1.78024 

11.07890 

9.83541 

9.71989 

8.20779 

--- 

7.60648 

--- 

--- 

--- 

--- 

--- 

--- 

11.21953 

10.18996 

9.59565 

8.31401 

7.62994 

7.24687 

5.86445 

5.78746 

5.50953 

3.90268 

1.76785 

11.21950 

10.18980 

9.67719 

8.31385 

7.62941 

--- 

--- 

--- 

--- 

--- 

--- 

a=0.6 λ 

b=0.3 λ 

d1=0.1 λ 

9.84688 

7.91121 

7.51959 

5.85324 

5.30833 

0.13050 

9.84688 

--- 

7.51959 

5.85324 

5.30833 

1.30543 

9.85776 

9.59120 

6.99126 

6.28309 

5.85446 

5.33106 

0.36911 

9.85776 

--- 

6.99126 

--- 

5.85446 

5.33106 

3.69184 
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Table 3-3: Cutoff Phase Constants of Eccentrically Loaded Circular Waveguide for Various Geometrical 

Parameters, ɛr1=1.0, ɛr2=ɛr3=3.6, c=0.1 λ and d2=0.1 λ 

Parameters Kz for even modes Ragheb Kz for odd modes Ragheb 

a=0.4 λ 

b=0.2 λ 

d1=0.1 λ 

9.67465 

7.88562 

7.71369 

6.24732 

5.56729 

3.70285 

1.10602 

9.67465 

--- 

7.71369 

6.28319 

5.56729 

3.70285 

--- 

 

8.76502 

7.02305 

6.24815 

3.29720 

2.47475 

 

8.76502 

7.02306 

6.28319 

3.29720 

--- 

a=0.5 λ 

b=0.1 λ 

d1=0.1 λ 

11.06333 

10.14808 

9.08352 

8.59944 

8.40708 

7.86692 

5.91542 

5.37234 

4.42961 

11.0633 

10.1481 

9.08352 

8.59944 

8.40708 

--- 

--- 

--- 

--- 

11.06149 

10.74860 

10.1300 

9.53590 

8.76263 

8.42120 

5.89887 

5.37263 

3.88760 

2.60970 

11.0615 

10.7486 

10.1299 

--- 

8.76263 

8.42120 

--- 

--- 

--- 

--- 

a=0.5 λ 

b=0.25 λ 

d1=0.25 λ 

10.83814 

9.50857 

8.79523 

7.90003 

7.34011 

6.16453 

3.91598 

2.49196 

10.83881 

9.50848 

8.79521 

--- 

7.33952 

--- 

--- 

--- 

10.90504 

10.23675 

9.57258 

8.67393 

7.56225 

6.34011 

6.00933 

2.98744 

1.86793 

10.9050 

10.2367 

--- 

8.67388 

7.56224 

6.28319 

--- 

--- 

--- 

a=0.4 λ 

b=0.3 λ 

d1=0.1 λ 

11.52435 

8.20208 

7.90976 

7.83077 

6.29103 

4.72683 

--- 

8.283 19 

--- 

7.83078 

6.28319 

4.72682 

9.59922 

8.21523 

6.19387 

4.06773 

--- 

8.21523 

6.28319 

4.06773 

a=0.6 λ 

b=0.5 λ 

d1=0.1 λ 

8.34424 

7.94791 

6.64174 

6.26141 

5.16503 

4.75667 

3.45731 

8.34424 

--- 

6.64174 

6.28319 

5.16503 

4.75667 

--- 

8.93669 

7.48205 

6.30446 

5.82425 

4.88411 

4.00887 

8.93669 

7.48208 

6.28319 

5.82425 

4.88411 

--- 

a=0.6 λ 

b=0.3 λ 

d1=0.1 λ 

10.69665 

10.01160 

9.29181 

9.04351 

7.91809 

7.79675 

7.51143 

6.59679 

4.82163 

3.84946 

3.63660 

10.6967 

10.0116 

9.29181 

9.04351 

--- 

7.79675 

--- 

--- 

--- 

--- 

--- 

10.86864 

10.37987 

9.72070 

9.59180 

8.98442 

8.55893 

7.50705 

6.76139 

4.82139 

3.81566 

3.58350 

10.8686 

10.3799 

9.72070 

--- 

8.98442 

8.55893 

--- 

--- 

--- 

--- 

--- 
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3.6.2 Cutoff Wavenumbers of Two Dielectric Loaded Circular Waveguide 

 

After the code had been verified, now the cutoff wavenumber for more general 

cases can be evaluated. Figure 3-7 shows an example of a circular waveguide (resembling 

a petroleum carrying pipeline) loaded with two dielectric cylinders with r=2.15 (similar to 

crude oil). The results of the cutoff wavenumber for this structure for different radii of the 

dielectric cylinders and the waveguide and for different eccentricity have been calculated 

and tabulated in Table 3-4, where the even and odd cutoff wavenumbers are calculated 

according to the previous algorithm. These tabulated cutoff wavenumbers represents the 

modes that can propagate in the structure shown in Figure 3-7 with the parameters given 

in the Table 3-4. The parameters given in the table it similar to ones described in Figure 3-3. 

 

 

Figure 3-7: Schematic Diagram for a General Case 
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Table 3-4: Cutoff Phase Constants of Two Cylinders Eccentrically Loaded Circular Waveguide for Various 

Geometrical Parameters, ɛr1=2.15, ɛr2=2.15, ɛr3=1.0 

Parameters Kz for Even Modes Kz for Odd Modes 

a=0.50 λ 

b=0.10 λ 

c=0.10 λ 

d1=0.10 λ 

d2=0.10 λ 

--- 

--- 

7.34254 

5.33528 

1.62922 

7.88698 

6.28318 

5.35209 

4.44753 

1.63212 

a=0.50 λ 

b=0.10 λ 

c=0.10 λ 

d1=0.20 λ 

d2=0.20 λ 

--- 

--- 

7.34254 

5.27728 

1.79629 

7.88698 

6.28318 

5.34106 

4.38069 

1.83878 

a=0.60 λ 

b=0.10 λ 

c=0.10 λ 

d1=0.20 λ 

d2=0.20 λ 

--- 

7.34254 

5.62455 

3.76931 

0.25929 

6.28318 

5.65617 

5.00665 

3.77480 

1.59460 

a=0.60 λ 

b=0.25 λ 

c=0.20 λ 

d1=0.30 λ 

d2=0.40 λ 

6.30099 

6.28318 

4.43664 

3.15239 

2.08326 

7.02976 

6.26537 

5.52063 

4.34293 

3.40394 
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3.6.3 Modified Expression 

 

The Previously calculated cutoff wavenumbers are waveguide geometry 

dependent. Since petroleum-carrying pipelines have a few preset dimensions and the 

requirement are to observe the frequency dependency of the cutoff wavenumbers, the 

derived expressions is modified in this section. This allowed us to observe the cutoff charts 

for a fixed geometry with respect to a desired microwave frequency sweep. 

In order to do this, the code should not be normalized with respect to frequency. 

An example of this is shown in Figure 3-8; this figure represents the mode chart for a 

circular waveguide concentrically loaded with an oil cylinder. The cutoff wavenumbers 

have been calculated at certain frequency values for the first few number of modes, which 

is noticed from the discrete plot. 

The cutoff frequencies for any propagating mode can be easily found from the 

cutoff wavenumber of that mode using [66] 

3,2,1

2

3,2,1

,1 kk
k

k

f

f
z

z

c

m 













                                    (3.80) 

Where; 

fm is the cutoff frequency for a certain mode 

fc is the operating frequency 

kz is the cutoff wavenumber 

k1, k2, k3 is the propagation constant in region 1, 2 and 3 respectively. 
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Figure 3-8: Mode Chart for Circular Waveguide Partially Filled with Concentric Oil Cylinder 

 

3.6.4 Optimizing Simulated Model 

 

To solve the waveguide with a more complicated air-dielectric mixtures; a 

commercial finite element method based simulation software called High Frequency 

Structure Simulator (HFSS) is used. However, proper excitation and modelling of the 

dielectric loaded waveguide is critical to get accurate results. So the analytically calculated 

cutoff wavenumbers of the two dielectric cylinder loaded circular waveguide is compared 

with the simulated cutoff wavenumbers of the same geometry to verify/tune the simulated 
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model. Once verified, the software model is used to observe the resonance behavior of 

more complicated mixtures within the petroleum-carrying pipeline. 

 

3.6.4.1 Excitation Method 

 

 The validated excitation method for this structure is shown in Figure 3-9, where the 

cross section of the circular waveguide along with the cross sections of the two dielectric 

cylinders should all be selected and assigned as one port. By exciting the structure with 

this method, the cutoff wavenumbers and other properties will differ for any change in the 

eccentricity. In addition to excitation, proper meshing is also selected to match the 

simulated cutoff wavenumbers with the calculated values. 

 

3.6.4.2 Solution Method 

 

 After the structure is properly excited, the solution type should be tuned to match 

the theoretical calculation. Since the HFSS is based on finite element method and this 

method is based on dividing the structure into a mesh grid, the smaller the mesh size the 

more exact you can get but of course more processing time. The mesh size was tuned 

according to its Maximum Normal Deviation and it is found that using a normal deviation 

of 7.5 degree will give an excellent approximation to the calculated value with percentage 

of error between 0.1 % - 0.28 % for the first three modes and with suitable processing time 

as detailed in Table 3-5. A comparison between calculated and simulated results are 

tabulated in Table 3-6 for the first five modes. 
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Table 3-5: Maximum Mesh Tuning for HFSS 

Maximum Normal Deviation 

(Degree) 

fc (GHz) TE11 fc (GHz) TM01 fc (GHz) TE21 

22.5 3.54 4.64 5.88 

15 3.52 4.6 5.84 

10 3.52 4.6 5.84 

7.5 3.52 4.58 5.82 

5 3.52 4.58 5.82 

Calculated 3.516432975 4.593020672 5.832710354 
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Figure 3-9: Proper Excitation of the Structure 

 

Table 3-6: Calculated and Simulated Cutoff Frequency for the First Five Modes 

Mode Analytical fc (GHz) Simulation fc (GHz) 

TE11 1.7582 1.7675 

TM01 2.2957 2.3525 

TE21 2.9165 2.9375 

TM11 3.6591 3.7175 

TE01 3.6591 3.7175 
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At this point, as the analytical code has been validated by the results available in 

the literature and the software model in turn has been verified by the analytical results, the 

pipeline with complex mixtures can be simulated for the required frequency range. From 

now on, the cylindrical waveguide geometry is fixed to a=25mm, the reason for this 

specific radius because it is the radius of the pipeline sample used in the experimental 

process as will explain more in the next chapters. 

The simulated model of the concentrically loaded waveguide is shown in 

Figure 3-10. Initially the air filled (εr=1) waveguide radius is selected to be a=25mm. The 

radius of the concentric dielectric cylinder representing crude oil (εr=2.15) is selected to be 

5mm. The simulated cutoff frequencies are observed at the edges of the circular waveguide, 

where the port is defined and excited as described before. Figure 3-11 shows the mode 

chart of both analytical and simulated data for the first three modes TE11, TM01 and TE21. 

For one eccentric loaded cylinder model shown in Figure 3-12, the simulated and the 

analytically found cutoff wavenumbers are plotted in Figure 3-13. The simulated model 

for a circular waveguide loaded with two eccentric dielectric cylinders (crude oil) is shown 

in Figure 3-12 and its mode chart is plotted in Figure 3-13. 

The mode chart shown in Figure 3-15 is validated with the cutoff wavenumbers 

generated from the analytical solution for the model shown in Figure 3-14. In order to have 

a clear view for the verifications, it splits into two plots; the odd hybrid modes are shown 
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in Figure 3-16 and for the even hybrid modes it is verified in Figure 3-17. From these 

figures, it is noticed that an excellent agreement between the results are achieved. 

 

Figure 3-10: Simulated Model for One Cylinder Symmetrically Loaded to a Circular Waveguide 

 

Figure 3-11: Mode Chart for a Circular Waveguide Filled with a Concentric Oil Cylinder 
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Figure 3-12: Simulated Model for One Oil Filled Cylinder Eccentrically Loaded to a Circular Waveguide 

 

Figure 3-13: Mode Chart for a Circular Waveguide Filled with an Eccentric Oil Cylinder 
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Figure 3-14: Simulated Model for a Circular Waveguide Loaded with Two Dielectric Oil Cylinders 

 

 

Figure 3-15: Mode Chart for a Circular Waveguide Loaded with Two Oil Cylinders 
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Figure 3-16: Analytically and Simulated Mode Chart for Odd Hybrid Modes 

 

Figure 3-17: Analytically and Simulated Mode Chart for Even Hybrid Modes 
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3.6.5 Simulation of More Complex Models 

 

As increasing the number of the cylinders loaded into the waveguide considerably 

increases the complexity of analysis, analytical formulation is extremely tedious. So the 

validated HFSS model is used in this section to obtain the cutoff frequencies of the 

waveguide (pipeline) arbitrarily loaded with multiple dielectric (oil) cylinders. 

Conventional Circular waveguides normally supports TE or TM modes. The 

dominant/fundamental mode supported by this structure is the TE11 mode, which is double 

degenerate (in sines and cosines). Therefore, the first two modes on HFSS appear to be 90° 

rotated (mode 1 and mode 2 in Figure 3-15). The next mode is TM01, which is non-

degenerate and has a circular symmetry (mode 3 in Figure 3-15). Then, follow, TE21, which 

is a double degenerate in sines and cosines (mode 4 and mode 5 in Figure 3-15). So the 

first five modes are processed in the simulated model to represent the first three modes in 

a conventional circular waveguide. 

Once the circular waveguide is eccentrically loaded with another dielectric 

cylinder, the modes will change from pure TE/TM to hybrid modes. These hybrid modes 

can be divided into odd or even categories as explained earlier and it can be seen from the 

shift in the odd double degenerate modes TE11 and TE21 curves as shown in the mode chart 

for the two cylinder loaded case of Figure 3-15. This shift it is not noticeable for the 

concentric loaded case of Figure 3-11. 

The mode chart for four different cases of circular waveguide loaded with multiple 

dielectric cylinders are plotted in Figure 3-18 to Figure 3-21. The cutoff wavenumbers and 
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dielectric constant at an operating frequency of 10 GHz are summarized in Table 3-7. The 

purpose is to investigate the cutoff wavenumbers with increased dielectric loading 

simulating a wavy flow of oil within the pipeline. The resulted cutoff chart is plotted in 

Figure 3-22. The cutoff frequency of a waveguide modes are inversely proportional to the 

dielectric constant as given by, 

a
f mnTMTE

cmn
2

/ 
                                                   (3.81) 

Where, mn  represents the nth zero (n=1, 2, 3, …) of the Bessel function of the first 

kind of order m (m=0, 1, 2, …) in case of TE modes or its derivatives in case of TM modes, 

the relative permeability is usually one for the materials under consideration air, oil and 

water so Equation 3.81 can be written as 

r

mnTMTE

cmn
a

c
f

2

*/ 
                                              (3.82) 

Where, c is the speed of the light in free space and it is equal to 3*108 m/s 

As the number of the loaded oil cylinders increased, the effective dielectric constant 

of the mixture also increased and this will reduce the cutoff frequency for all modes as 

shown in Figure 3-18 to Figure 3-23. Although the wavy flow of oil within the pipeline is 

more realistic, for simplicity of analysis a more simplified stratified flow of oil is 

considered. The resulted mode charts of air-oil mixture within a pipeline metal case is 

shown in Figure 3-23. Note that the tabulated results in Table 3-8 shows less than 0.3% 

difference in the simulated cutoff wavenumbers for wavy and stratified flow.  
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Figure 3-18: Four Oil Cylinders Loading a Circular Waveguide (Case 1) 

 

Figure 3-19: Eight Oil Cylinders Loading a Circular Waveguide (Case 2) 



79 

 

 

Figure 3-20: Twelve Oil Cylinders Loading a Circular Waveguide with Mixed Radii (Case 3) 

 

Figure 3-21: Overlapping of the Loaded Dielectric Cylinders (Case 4) 



80 

 

Table 3-7: Summary of the Complicated Simulation Models 

Case # Cutoff Wavenumber Dielectric Constant 

Case 1 248.1513 1.4019 

Case 2 258.0564 1.5160 

Case 3 263.9892 1.5866 

Case 4 275.3913 1.7266 

 

 

Figure 3-22: Wavy Flow Case 
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Figure 3-23: Stratified Flow Case 

Table 3-8: Comparison between Wavy Flow and Stratified Flow  

Case # Cutoff Wavenumber Effective Dielectric Constant 

Wavy Flow 290.0821 1.9157 

Stratified Flow 290.3813 1.9196 

Error Percentage 0.07664 %  0.20316 % 
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When the center of the loaded dielectric cylinder starts to shift from the center of 

the circular waveguide, the conventional waveguide mode of TE and TM will become 

hybrid modes that combine both TE and TM, that mean all the electric and magnetic field 

components will exist in the direction of the propagation. In this case and with the 

eccentricity increased, it is became difficult to find a single mode of operation. However, 

the existence of the second mode does not cause any interference as the level of oil 

increases. 

Although the mode chart shown in Figure 3-18 to Figure 3-21, has not to do 

anything in the determination of the mode charts for different oil portions and not to be 

analytically verified since it is too much complicated to be solved analytically. It there just 

to check the consistency of the HFSS results by monitoring the cutoff frequencies in 

addition the effective dielectric constant of the mixture, which are better than directly 

converts from tow dielectric loading cylinders to the stratified flow case. 

 Since the stratified flow and the wavy flow are very close to each other, the 

stratified flow is considered for different oil-air levels. These levels are tabulated in what 

is called a fill factor table and it is listed in Table 3-9. This table summarize the first five 

hybrid modes along with the propagation constant and the effective waveguide wavelength 

for the first mode at 10 GHz operating frequency for a completely air filled waveguide with 

5% increment in oil level until the case of completely oil filled waveguide. 

 From Table 3-9, it is noticed that the first five modes are changing with this 5% 

resolution especially the first mode, which is changed from 2.4 GHz for complete oil filled 

waveguide to 3.5 GHz for complete air filled waveguide. So, in order to select a suitable 
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frequency to design the microwave sensor, which is the main purpose of this table, a 

frequency of 3.6 GHz is selected, which insure only the first two hybrid modes will 

propagate for the case of air filled waveguide. However, later in chapter 4, it is noticed that 

at this frequency with more oil fluid loaded to the waveguide, the third hybrid mode will 

interfere with the first mode of other oil-air filling.  Therefore, an operating frequency of 3 

GHz will be the suitable frequency of operation since the third mode, which starts at 3.1 

GHz will be excluded. 
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Table 3-9: Stratified Flow Results for Different Oil-Air Portions 

Percentage 

of Oil 
Cutoff Frequencies (GHz) 

Propagation Constant 

(rad/m) @ (f=10GHz) 

λeff (mm) 

(f=10GHz) 

100 % 2.395, 2.4, 3.1, 3.95, 3.95 298.3304 21.055 

95 % 2.4, 2.415, 3.12, 3.96, 4.0 298.2580 21.066 

90 % 2.4, 2.445, 3.12, 4, 4.08 297.9766 21.086 

85 % 2.41, 2.485, 3.12, 4.04, 4.16 297.4648 21.122 

80 % 2.425, 2.53, 3.16, 4.12, 4.2 296.7285 21.175 

75 % 2.45, 2.58, 3.16, 4.2, 4.28 295.7668 21.244 

70 % 2.48, 2.6, 3.2, 4.32, 4.36 294.8597 21.309 

65 % 2.52, 2.68, 3.28, 4.4, 4.4 294.1253 21.362 

60 % 2.56, 2.76, 3.32, 4.48, 4.52 293.1839 21.431 

55 % 2.64, 2.8, 3.44, 4.52, 4.64 291.9676 21.520 

50 % 2.72, 2.88, 3.56, 4.6, 4.76 290.3813 21.638 

45 % 2.84, 2.96, 3.68, 4.72, 4.88 288.2912 21.795 

40 % 2.92, 3.04, 3.84, 4.84, 4.92 285.4691 22.010 

35 % 3.08, 3.12, 4.0, 5.0, 5.0 281.5684 22.315 

30 % 3.2, 3.2, 4.2, 5.04, 5.16 275.9802 22.768 

25 % 3.28, 3.32, 4.36, 5.16, 5.32 267.5935 23.480 

20 % 3.36, 3.4, 4.48, 5.36, 5.48 254.5455 24.684 

15 % 3.4, 3.44, 4.56, 5.56, 5.6 234.1554 26.833 

10 % 3.44, 3.48, 4.56, 5.68, 5.72 209.5861 29.979 

5 % 3.48, 3.48, 4.56, 5.76, 5.8 198.0457 31.726 

0 % 3.5, 3.5, 4.56, 5.8, 5.8 196.2470 32.018 
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3.7 Conclusion 

 

An analytical solution based on the boundary value method is formulated to 

calculate the cutoff phase constants of a circular waveguide (oil pipeline) loaded with two 

eccentric dielectric (oil) cylinders. Simulated mode charts from an equivalent HFSS 

software model is compared with the analytical results to optimize the HFSS model 

excitation and meshing. Both cases for odd and even hybrid field are investigated.  

Verification of the analytical results with concentrically and eccentrically loaded 

dielectric cylinders are compared with literature to validate the analytical formulation. 

Higher number of modes are detected with our code compared to the cases reported in the 

literature which proof the sensitivity and the resolution of the code. 

The optimized HFSS model is used to solve the cutoff characteristics of more 

complex mixtures of air-oil contents within the pipeline. This allowed monitoring the 

variance of the cutoff wavenumbers and dielectric constants with small change in the air-

oil ratio within the pipeline. In addition, it is noted that wavy and stratified flow of oil 

within the pipeline shows similar electrical characteristics. 
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4 CHAPTER 4 

MICROWAVE MONITORING OF OIL CARRYING 

PIPELINE 

 

A simple three-phase microwave monitoring system is designed in this chapter by 

integrating two aperture coupled patch antennas into a 2-inch Plexiglass pipeline. Two 

different measurement techniques are used for the two different antennas placed in shielded 

and non-shielded parts of the pipeline for monitoring oil-air and water-oil levels, 

respectively. The aperture coupled patch antennas are placed in the inner side of the 

pipeline Plexiglass wall with the ground plane placed in the outer side. So the patch antenna 

is based on a curved Plexiglass substrate with thickness t=3 mm and relative permittivity 

of 2.7.  The microstrip feed line that excites the antenna is based on a Roger substrate with 

thickness t=1.27 mm and relative permittivity of 6.  Figure 4-1 shows a 2-inch shielded 

pipeline with an integrated antenna. Note that for accurately modeling the setup, the correct 

values of the relative permittivity of Plexiglass needs to be determined. Experimental 

investigation together with simulated reflection responses of the antenna is used for this 

purpose. Once optimized, the reflection response of the setup (antenna integrated within 

the pipeline) is used to generate a look-up table, which links the S11 responses to the multi-

phase content ratio of the petroleum-carrying pipeline.  
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The chapter starts with an introduction to the type of the antenna that will be used 

as the microwave monitoring setup and the description of the pipeline sample used to 

model the petroleum-carrying pipeline. After that, the design of the microstrip patch 

antenna is introduced. Then the optimization process of the simulated model and the 

generation of the look-up table from the optimized setup is presented. Note that different 

other techniques and setups were investigated during the research work, which led to the 

adopted technique, details are presented in Appendix A. 

 

 

Figure 4-1: Petroleum Carrying Pipeline with Multiphase Mixture and the Integrated Aperture Coupled 

Antenna 
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4.1 Introduction 

 

 

 

Microstrip patch antennas have the advantages of being conformal and easily 

installable despite of its inherent narrow impedance bandwidth. Detail characteristics and 

design process of this class of antenna is described in section 2.4.2 of chapter 2. In this 

chapter, aperture coupled microstrip antennas will be integrated to a 2-inch Plexiglass 

pipeline to monitor the level of its two and three phase contents. This simple non-intrusive 

technique uses only the reflection or S11 measurements from two antennas placed in the 

shielded and non-shielded part of the pipeline. Note that shielded pipeline means the outer 

wall of the pipeline is covered with conductive silver coating with appropriate patch 

excitation apertures on them. The 3 mm thick Plexiglass wall of the pipeline acted as the 

substrate of the patch. Since relative permittivity for the Plexiglass used ranges from (2.6 

- 3.5) [72], a combination of experimental and simulated studies are used to find the 

accurate value. Since petroleum companies are predicting the use of Plexiglass pipelines 

in near future and they are more suitable for laboratory experiments due to their 

transparency, pipelines made of Plexiglass material is used in this study. Plexiglass 

pipelines also have the advantages of integrating the patch antennas on the outer or inner 

perimeter, which can be excited using coaxial or aperture coupled feeding mechanism.  All 

of these cases are briefly investigated in this research work. The related simulation models 

and their results are presented in Appendix A. Note that these investigations allowed the 

design of the optimal setup for monitoring the multi-phase contents of the pipeline, by 

pointing out the problems associated with other dimensions and methods.  
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4.2 Design of Aperture Coupled Microstrip Patch Antenna 

 

A patch antenna that will be integrated within the pipeline is initially selected to 

operate at 10 GHz. The reason behind this selection is the small size of the antenna, which 

may allow the deployment of multiple elements with the circumference of the pipeline. To 

better couple the energy from the radiating patch to the multi-phase mixture within the 

pipeline, the patch is placed in the inner side of the pipeline wall. Thus, the antenna has to 

be based on Plexiglass substrate and the correct value of the relative permittivity was 

required for the available Plexiglass material. This is achieved by designing a patch antenna 

and experimentally observing its reflection (S11) response. Then, the HFSS simulator is 

used to obtain the S11 response for different values of relative permittivity (r), until the 

simulated S11 response matches the experimental curve. The r value of the simulated 

model that produced this match can be considered as the correct relative permittivity. This 

process resulted in an r =2.7 for the available Plexiglass material, as demonstrate in 

chapter 5.  

In an aperture coupled microstrip antenna, two substrates are separated by a ground 

plane, which has an aperture to couple energy from the feed line to the radiating patch. 

Typically, in an aperture-coupled antenna, the relative permittivity of the patch substrate is 

selected to be lower than the feed line substrate. In addition, the thickness (t) of the feed 

substrate is selected to be lower compared to antenna substrate. This is because the feed 

line substrate with high r and low ‘t’ supports the surface waves and better guide the 

inputted signal towards the aperture. On the other hand, the lower r and higher ‘t’ of the 
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antenna substrate maximizes radiated waves. The aperture coupled antenna designed in this 

chapter used Plexiglass with t=3 mm and r =3.4 as the antenna substrate and Rogers (TMM 

6 (tm)”) substrate with t=1.27 mm and r =6 as feed line substrate.  

The reason for selecting the aperture coupling method for this operation is to avoid 

liquid leakage that may occur by exciting the patch using coaxial probe feeding. In 

addition, aperture coupled antennas exhibits low spurious radiation due to the existence of 

the ground plane between the feed and the patch. However, the disadvantage of this feeding 

mechanism is the requirement of thoroughly aligning the feed line, the aperture and the 

patch to achieve good radiation characteristics. This makes the fabrication or assembly of 

this class of antenna challenging. The aperture size and position is selected to optimize 

antenna performance, where matching is performed by controlling the width of feed line.  

The initial design of the 10 GHz aperture coupled microstrip patch antenna is 

illustrated in Figure 4-2. Note that the antenna is based on flat Plexiglass substrate as this 

antenna is used to find the correct relative permittivity of the Plexiglass material (as 

descried earlier). The dimensions of the patch, feed line, aperture and substrates are listed 

in Table 4-1. Professional software (HFSS) is used to simulate the designed antenna. To 

properly create a software model, the designed antenna is enclosed by an air box (not shown 

in Figure 4-2), which has a distance of 0.25*λ from the edges of the substrate to properly 

implement perfectly match Layer (PML) boundary. The slab shown in Figure 4-2 is for 

assigning the excitation to the antenna. The port should be 5 to 10 times as wide as the 

width of the trace and 5 times as high as the thickness of the dielectric. Further, one edge 

of the port should coincide with the ground plane [73]. 
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Figure 4-2: Aperture Coupled Microstrip Patch Antenna 

 

Table 4-1: Specifications of Aperture Coupled Microstrip Patch Antenna that is integrated with the 2-

inch Pipeline Model 

Patch Width (mm) 8.5 

Patch Length (mm) 5 

Aperture Width (mm) 1.55 

Aperture Length (mm) 8.5 

Feed Width (mm) 1.9 

Feed Length (mm) 13.46 

Feed line Substrate Width (mm) 20 

Feed line Substrate Length (mm) 20 

Feed line Substrate Height (mm) 1.27 

Antenna Substrate Height (mm) 3 

Antenna Substrate Permittivity 6 

Antenna Substrate Permittivity 3.4 
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The simulated reflection response (S11) of the aperture-coupled antenna is shown 

in Figure 4-3. Note that the designed antenna is resonating at a center frequency of 9.9 GHz 

with a -10 dB impedance bandwidth of 19.2% and antenna gain of 6.45 dB. The 3D 

radiation pattern of the antenna is plotted in the inset of Figure 4-3. The 2D radiation pattern 

of the aperture-coupled antenna is shown in Figure 4-4.  Note that Figure 4-4(a) plots the 

azimuthal cut at phi=0o and Figure 4-4(b) plots the azimuthal cut at phi=90o.   

 

 

Figure 4-3: Reflection Coefficient of the Aperture Coupled Antenna 
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(a)                                                          (b) 

Figure 4-4: Two Dimensional Radiation Pattern (a) Azimuth Cut (Phi=0o) (b) Azimuth Cut (Phi=90o) and  

 

4.3 Excitation of Two-Phase Petroleum Carrying Pipeline 

 

4.3.1 Aperture Fed Antenna Integrated with a 2-inch Pipeline  

 

The software model of the aperture fed patch antenna, integrated with a 2-inch 

petroleum-carrying pipeline is shown in Figure 4-5. To reduce the computational time, the 

pipeline is modeled as polyhedron with 15 semi-circle segments. This also allowed us to 

better integrate the antenna with the pipeline. Note that the substrate width has been 

changed to match the width of the pipeline segment. The outer boundary of the pipeline is 

modeled as perfect conductor or shielded, so that the mode-charts calculated for a circular 

waveguide (in chapter 3) can be used for analysis. The reflection response (S11) for this 
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pipeline setup is shown in Figure 4-6. It is clear from the figure that there are many resonant 

modes. This is mostly due to the shielded outer conductor, as earlier demonstrated for a 

circular waveguide according to Equation 3.82. 

 

 

Figure 4-5: Pipeline Model Filled with Air with an Aperture Coupled Antenna Attached to it 
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Figure 4-6: Reflection Coefficient of the Shielded Pipeline with the Integrated Antenna 

 

4.3.2 Eliminating Higher Order Modes 

 

 In order to determine the level of the pipeline contents, the reflection coefficient 

should be reasonably distinct and preferably with predictable trends with respect to the 

changing contents of the pipeline. This can be achieved by reducing the number of modes 

excited within the pipeline, which require either reducing the operating frequency or the 

diameter of the pipeline. Since the pipeline diameter is already small (2-inch), reducing the 

operating frequency looked more feasible.  However, this required modifying the design 

of the antenna to resonate at a lower frequency. 
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  To select a proper frequency that insures single mode propagation within the 

pipeline, the cut-off numbers of the first three modes for the materials under investigation 

are calculated and tabulated in Table 4-2. It is clear from this table that two sets of antennas 

are needed to monitor oil-air and water-oil mixtures. For oil-air antenna, the resonant 

frequency of 3 GHz is selected, as it will optimally work for the central region with 50% 

oil and 50% air mixture within the shielded pipeline. For the water-oil antenna, instead of 

drastically redesigning the antenna, a similar antenna is used with a non-shielded pipeline. 

Since the absence of grounded silver coating reduces the surface waves within the 

Plexiglass, this also helps in limiting the excited modes for a water-oil filled pipeline.  

 

Table 4-2: Cutoff Frequencies of the First Three Modes for Different Materials 

Material First Mode TE11 Second Mode TM01 Third Mode TE21 

Air ( 1r ) 3.516 GHz 4.592 GHz 5.8327 GHz 

Oil ( 15.2r ) 2.3981 GHz 3.1322 GHz 3.9778 GHz 

Water ( 65r ) 0.4361 GHz 0.56967 GHz 0.72345 GHz 

 

The dimensions of the modified 3 GHz antenna are listed in Table 4-3 below: 
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Table 4-3: Specifications of Aperture Coupled Microstrip Antenna that is integrated with the 2-inch 

Pipeline Model 

Patch Width (mm) 45 

Patch Length (mm) 45 

Aperture Width (mm) 1.55 

Aperture Length (mm) 35 

Feed Width (mm) 1.9 

Feed Length (mm) 13.46 

Feed line Substrate Width (mm) 20 

Feed line Substrate Length (mm) 20 

Feed line Substrate Height (mm) 1.27 

Antenna Substrate Height (mm) 3 

Antenna Substrate Permittivity 6 

Antenna Substrate Permittivity 3.4 

 

 

4.3.3 Optimizing Antenna Placement and Orientation within the Pipeline 

 

In this subsection, a study on antenna location with respect to the content level and 

the antenna orientation is investigated. 
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4.3.3.1 Antenna Placement 

 

 Two possible locations for the antenna are displayed in Figure 4-7 considering the 

stratified flow case in a horizontal pipelines. The antenna in Figure 4-7(a) is placed on the 

top of the pipeline and is parallel to the boundary of the two-phase mixture. Whereas the 

antenna in Figure 4-7(b) is placed on the side of the pipeline and is perpendicular to the 

boundary of the mixture.  The reflection coefficients (S11) for these two cases are plotted 

in Figure 4-8, when the 2-inch pipeline is filled with a certain proportion of oil and water. 

It is noticed from the figure that both are resonating almost at the same frequency and the 

number of modes are the same. However, it is also clear from the figure that the antenna 

on the side of the pipeline is more sensitive to changing contents of the mixture compared 

to antenna placed on the top of the pipeline. So, the antenna positioned at the side of the 

pipeline is adopted for the optimum design.  
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(a)                                                                   (b) 

Figure 4-7: Placement of the Antenna with Respect to the Contents Level (a) Antenna on Top of the Pipeline 

(Parallel to the Level), (b) Antenna on the Side of the Pipeline (Perpendicular to the Level) 

  

Figure 4-8: Reflection Coefficient for Different Antenna Placement within the Pipeline 
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4.3.3.2 Antenna Orientation 

 

 For a square patch antenna, the radiating edges are mainly determined by the 

orientation of the feeding mechanism. Thus, the orientation of the aperture and the feed 

line determines the radiating edges of the patch. As a first case, let us investigate the 

antenna with feed line directed in the axial direction of the pipeline, as shown in the 

simulation model of Figure 4-7(a) and Figure 4-7(b). Note that the major disadvantage of 

this type of feeding is the difficulty in soldering the coaxial connector at the end of the feed 

line during fabrication. However, L-type coaxial connector can be used with limited 

difficulty. As a second case, we can investigate the antenna with feed line directed in the 

transverse direction of the pipeline. Figure 4-9 and Figure 4-11 shows this type of feeding 

for antennas located on the top and side of the pipeline, respectively. Figure 4-9 shows the 

2-inch pipeline model attached to it an aperture coupled antenna with transverse feeding 

mechanism. The related reflection response (S11) is plotted in Figure 4-10 for different 

portions of oil-air mixture. The S11 curve of the antenna, shown in Figure 4-11, is plotted 

in Figure 4-12 for different level of oil-air mixture. It is clear from these figures (4-10 and 

4-12) that as the level of oil changes 10% to 90% in steps of 10%, the resonant frequencies 

of Figure 4-12 changes more distinctive with an average frequency difference of 91 MHz 

due to every level change of oil within the mixture. Now although the power level of the 

reflected signals in Figure 4-10 are more compared to Figure 4-12, the different in resonant 

frequencies for the last few curves nearly overlapping to each other.  So the feeding 

mechanism of Figure 4-11 is selected for the optimum design of the pipeline setup for 

monitoring the multi-phase contents. 
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Figure 4-9: Antenna Placed on the Top of the Pipeline with its Feed Rotated 

 

Figure 4-10: Reflection Coefficient of the Antenna Placed on the Top of the Pipeline with its Feed Rotated 
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Figure 4-11: Modified Antenna Placed on the Side of a Pipeline with its Feed Rotated 

 

Figure 4-12: Reflection Coefficient of the Modified Antenna Placed on the Side of a Pipeline with its Feed 

Rotated 
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4.3.4 Look-Up Table for Content-Ratio versus Resonant Frequency for 

Shielded Pipeline  

 

Now since the optimum values of the patch dimension, position and orientation of 

the patch and the feeding mechanism are finalized, simulated results of the resonant 

behavior of a shielded pipeline can be recorded.  Table 4-4 links the resonant behavior of 

the antenna with the contents ratio of the two-phase (oil-water) mixture within the 2-inch 

pipeline. These resonant frequencies have shown approximately same minimum value of 

S11-5dB. The average difference between the resonant frequencies is 91 MHz for an 

increment of 10% oil content of the 2-phase (oil-air) mixture. This table can be used as a 

look-up table to compare the experimentally measured resonant frequencies of a 2-inch 

pipeline to determine the content ratio of air-oil mixture.  
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Table 4-4: Response of the Antenna Integrated in the Shielded Pipeline  for Different Air – Oil Proportions 

Oil Percentage 

(%) 

Resonant Frequency 

(GHz) 
|S11| (dB) 

Angle of S11  

(Degree) 

100 2.24 -5.7558 -138.3609 

90 2.28 -5.1655 -155.2883 

80 2.38 -5.3609 -173.3193 

70 2.46 -5.2491 148.7225 

60 2.58 -5.2515 112.6414 

50 2.7 -5.2150 71.8641 

40 2.84 -5.1744 38.1486 

30 2.96 -5.0321 16.3423 

20 3.1 -5.2110 -21.1731 

10 3.2 -4.6215 -39.0316 

0 3.24 -4.3546 -50.3307 
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4.3.5 Look-Up Table for Content-Ratio versus Power of the Reflected Signal 

for non-Shielded Pipeline  

 

 In the previous setup, the pipeline with integrated antenna is optimized for detecting 

oil-air content ratio within a shielded pipeline. However, due to the different cut-off 

frequency of water filled pipeline, the antenna or the setup needs to be modified to 

successfully monitor the content ratio of water-oil mixture within the pipeline. Instead of 

drastically changing the dimension of the antenna, the selected modification to setup 

included minor modification of the antenna and removal of the silver shielding from the 

outer surface of the pipeline. This works as removal of the conductive layer reduces the 

unwanted surface wave modes and allow the reflected power to be controlled distinctively 

with changing ratio of water-oil mixture. Note that sea water in general has a very high 

relative permittivity of 81 and a conductivity of 4 S/m. The software model for the un-

shielded 2-inch pipeline filled with water-oil mixture is shown in Figure 4-13. Note that as 

per the design of the previous section, the same optimum position of the patch and feeding 

mechanism is used here. In this model, the pipeline is not covered with a perfect conductor 

sheet to avoid the higher order modes. In addition, a slightly modified 3.3 GHz antenna, 

which has an aperture area of 19*32 mm2 is used. The reflection coefficient for different 

water-air proportions and water-oil proportions are plotted in Figure 4-14 and Figure 4-15 

respectively, where the water level has been changed from 4% to 40% in steps of 4%. It is 

noticed that with increasing level of water within the water-oil mixture, the power of the 

reflected signal (S11) distinctively reduces. This is due to higher relative permittivity and 

conductivity of sea water, which considerably reduces reflected power.   
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Figure 4-13: 2-inch Pipeline Filled with Water – Oil 

 

 

Figure 4-14: Reflection Coefficient of the 2-inch Pipeline for Different Water-Air Proportions 
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Figure 4-15: Reflection Coefficient of the 2-inch Pipeline for Different Water-Oil Proportions 

 

Table 4-5: Response of the Antenna Integrated in the un-Shielded Pipeline for Different Air – Oil 

Proportions 

Water Percentage (%) |S11| (dB) Resonant Frequency (GHz) 

4 -6.979 3.248 

8 -6.543 3.256 

12 -5.956 3.264 

16 -5.276 3.264 

20 -4.416 3.248 

24 -3.137 3.224 

28 -1.524 3.208 

32 -1.492 3.208 

40 -1.477 3.208 
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4.4 Excitation of Three-Phase Petroleum Carrying Pipeline 

 

 

To measure the three phase contents within the 2-inch pipeline, a novel setup with 

two integrated antennas is proposed. The oil-air ratio monitoring needs a 3 GHz antenna 

integrated within the shielded part of the pipeline and the water-oil ratio monitoring needs 

a 3.3 GHz antenna integrated within the un-shielded region of the pipeline. The simulated 

model is shown in Figure 4-16.  To study the reflection coefficient for different contents 

levels, two antennas are excited consecutively. Figure 4-17 plots the simulation results of 

a three-phase pipeline with 10% water and oil level is changed from 10% to 80%, where 

the remaining portion will be filled by air. Since the level of water is low, as the level of 

oil increased the shift in the resonant frequency became more obvious and distinctive. The 

simulation model of a second three-phase mixture is also investigated. When the 3 GHz 

antenna in the shielded part of the pipeline is excited, it detected the presence of 60% oil 

within the pipeline. Now the 3.3 GHz antenna of the non-shielded part of the pipeline is 

excited and the resulted S11 response is plotted in Figure 4-18 for a mixture with 60% oil 

and changing water level from 4% to 20% with steps of 4%. It is clear from this figure that 

measuring the power level of the reflected signal (S11) will allow the determination of the 

water level from the look-up table, prepared in the previous section.  

In this 3rd example, the look-up table is again used to find the level of the three-

phase contents within the pipeline. As previously, the 3.3 GHz antenna in the non-shielded 

part of the pipeline is used to detect the water level and the 3-GHz antenna in the shielded 

part of the pipeline is used to detect the oil level. Thus, when the known three-phase 

mixture (80% oil, 12% water and 8% air) within the pipeline is exited with both the 
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antennas, it produced two distinct S11 curves. Figure 4-19 superimposes these responses. 

Note that the resonant frequency of left curve should provide information about the oil 

level and the lowest magnitude (|S11|) of the right curve should help detect the water level 

of the pipeline. Since the reflection coefficient for the shielded antenna (left curve) is 

resonating at 2.33 GHz, it is within the range of the resonance frequencies from 2.33GHz 

to 2.42GHz and as per look-up table of Table 4-4 the related oil level within the pipeline 

is 80%. Now, measuring the level of the reflected power (|S11|) of the right curve, it is clear 

that the value of -6.179 dB is within the range of the tabulated (Table 4-5) values of -6.2495 

to -5.616 dB, which relates to water level of 12%. Thus, the measured values correctly 

predicted the oil and water level of the pipeline. The remaining area of the pipeline that is 

occupied by air can be calculated from these values. 

In the design shown in Figure 4-16, the excitation of one antenna at the time or 

excitation both antennas together will not be of difference since the isolation between the 

antennas is less than -40 dB and this is due to the separation distance between the antennas, 

orientation and the location of the antennas are not on the same level. The antenna on the 

un-shielded part of the pipeline is at a lower level than the antenna on the shielded part in 

order to detect water level in a way that is more accurate. 

Several look-up tables have been generated from the model shown in Figure 4-16. 

By fixing the oil level and varying the water levels from 4% to 20% as tabulated in 

Table 4-6 to Table 4-10 and also by fixing the water level and changing the oil levels from 

10% to 90% as shown listed in Table 4-11 to Table 4-13. 

 



110 

 

  

 

Figure 4-16: Pipeline Model with Two Integrated Antennas in Shielded and non-Shielded Regions 

 

 

Figure 4-17: Reflection Coefficient of the 2-inch Pipeline for Different Oil Proportions at a 10% of Water 
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Figure 4-18: Reflection Coefficient of the 2-inch Pipeline for Different Water Proportions at 60% of Oil 

 

Figure 4-19: A Case of 80% Oil and 12% Water 
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Table 4-6: Reflection Coefficient of the un-Shielded Plexiglass Antenna at 30% of Oil Level 

Water Percentage (%) |S11| (dB) 
Resonant Frequency 

(GHz) 

4 -10.4053 3.40 

8 -8.7364 3.39 

12 -7.9712 3.384 

16 -6.8251 3.376 

20 -5.8426 3.368 

 

Table 4-7: Reflection Coefficient of the un-Shielded Plexiglass Antenna at 40% of Oil Level 

Water Percentage (%) |S11| (dB) 
Resonant Frequency 

(GHz) 

4 -9.3477 3.368 

8 -8.4009 3.368 

12 -7.9065 3.368 

16 -6.8288 3.376 

20 -5.8877 3.368 

 

Table 4-8: Reflection Coefficient of the un-Shielded Plexiglass Antenna at 50% of Oil Level 

Water Percentage (%) |S11| (dB) 
Resonant Frequency 

(GHz) 

4 -9.3581 3.36 

8 -8.4148 3.368 

12 -7.8032 3.368 

16 -6.7878 3.376 

20 -5.8584 3.36 
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Table 4-9: Reflection Coefficient of the un-Shielded Plexiglass Antenna at 60% of Oil Level 

Water Percentage (%) |S11| (dB) 
Resonant Frequency 

(GHz) 

4 -9.432 3.352 

8 -8.4332 3.36 

12 -7.8476 3.36 

16 -6.9130 3.344 

20 -5.8617 3.32 

 

 

 

Table 4-10: Reflection Coefficient of the un-Shielded Plexiglass Antenna at 70% of Oil Level 

Water Percentage (%) |S11| (dB) 
Resonant Frequency 

(GHz) 

4 -9.4475 3.336 

8 -8.2775 3.328 

12 -7.5945 3.312 

16 -6.4377 3.296 

20 -5.3860 3.272 
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 From the reflection coefficient of the antenna located in the un-shielded part, if for 

example the detected reflected value is -8 dB, from the Table 4-6 through Table 4-10, this 

will represent a water level of 8%. Then to determine the oil level, the table of the 8% of 

water will be used, which is Table 4-12 and the oil level is determined by the value of the 

operating frequency that is provided from the reflection coefficient of the antenna located 

in the shielded part of the pipeline. The air level will be the remaining portions of the 

pipeline as it is assumed that the pipeline contain a three-phase contents. 

 

Table 4-11: Reflection Coefficient of the Shielded Plexiglass Antenna at 4% of Water Level 

Oil Percentage (%) fc (GHz)  |S11| (dB) 

10 3.12 -4.2469 

20 3.02 -4.8092 

30 2.88 -5.8998 

40 2.74 -6.7890 

50 2.62 -7.1990 

60 2.50 -8.2756 

70 2.38 -8.3331 

80 2.30 -9.2567 

90 2.24 -8.6286 
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Table 4-12: Reflection Coefficient of the Shielded Plexiglass Antenna at 8% of Water Level 

Oil Percentage (%) fc (GHz)  |S11| (dB) 

10 3.04 -4.8571 

20 2.90 -5.6785 

30 2.78 -6.6462 

40 2.64 -7.9778 

50 2.52 -8.7206 

60 2.40 -8.5696 

70 2.32 -9.1447 

80 2.24 -8.9877 

90 2.20 -9.0248 

 

 

 

 

 

 

 

 



116 

 

 

 

 

 

Table 4-13: Reflection Coefficient of the Shielded Plexiglass Antenna at 12% of Water Level 

Oil Percentage (%) fc (GHz) |S11| (dB) 

10 2.88 -3.0018 

20 2.74 -4.3088 

30 2.60 -5.6677 

40 2.50 -7.0498 

50 2.40 -7.8536 

60 2.30 -8.8356 

70 2.22 -8.5738 

80 2.16 -7.9667 

90 --- --- 
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4.5 Conclusion 

 

 Due to limiting higher order modes, the initially designed 10 GHz antenna is 

modified to resonate at 3 GHz and is integrated in the shielded part of the 2-inch pipeline 

for detecting the contents of oil-air mixture. However, for detecting the contents of water-

oil mixture, the antenna is modified to resonate at 3.3 GHz and is integrated in the non-

shielded part of the pipeline. Note that the change of resonant frequency is measured to 

find the changing level of oil within the pipeline, whereas the change in the power level of 

the reflected signal is measured to find the level of water contents within the pipeline. 

Look-up tables is prepared and presented for both measurements to enable the experimental 

detection of three-phase contents ratio within a 2-inch pipeline. Note that during the three-

phase measurements, both antennas need to be excited in a consecutive manner. Note that 

this analysis assumes that the pipeline only filled with three-phase mixture. The main 

drawback of this technique is the level resolution that can be measured are quite large and 

a maximum of 30% water can be detected with an acceptable error as can be concluded 

from Figure 4-15. 

 

 

 

 

 

 

 



118 

 

5 CHAPTER 5 

FABRICATION PROCESS and EXPERIMENTAL 

RESULTS 

 

In the previous chapter, professional software is used to simulate a petroleum-

carrying pipeline with multi-phase contents. The simulated results are then tabulated in a 

look-up table, linking the S-parameter responses with content ratio of the multiphase 

mixture of air, oil and water. This chapter describes the fabrication and the experimental 

process, which will be used to verify the simulated results. First part of this chapter 

describes the fabrication of the aperture coupled patch antenna and the experimental 

verification of the exact relative permittivity of the FR4 substrate. This part also describes 

the integration process of antenna within the petroleum-carrying pipeline. The second part 

of the chapter describes the experimental setup and the steady state monitoring of two and 

three phase contents within the pipeline. This process involves the experimental validation 

of the simulated S11 responses (resonant frequency and power level), used in chapter 4 to 

create the look-up table.  

 

 



119 

 

5.1 Introduction 

 

 

The accuracy of simulated results generated using professional software mainly 

depends on the competency of the user. Although the author has considerable experience 

in using HFSS software, the best way to verify the accuracy of the simulated response is to 

compare them with experimental results. However, reliable measurement results requires 

fabricated prototype to perfectly match the simulated model, which is often difficult to 

achieve during in-house assembly. In this research work, maximum caution is used during 

the fabrication of the antenna and its placement within the pipeline to minimize 

misalignments or fabrication errors. Antenna resonance and radiation properties are 

verified using proper tools before integrating them within the pipeline. 

 

 

5.2 Fabrication Process 

 

In this section, an overview of the patch antenna fabrication and its integration 

into the pipeline is presented. 

 

5.2.1 Fabrication of the Aperture Coupled Microstrip Patch Antenna 

 

The printed circuit board (PCB) plotter is used to fabricate the optimized aperture 

coupled patch antenna, designed for monitoring the contents of the petroleum-carrying 

pipeline. The microwave plotter used for this purpose is LPKF ProtoMat S62 and is shown 
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in Figure 5-1. This compact high-speed plotter provides a very high precision and 

performance for quickly and easily milling and drilling microwave circuit board 

prototypes. It has an automatic tool change in three-dimensional operation supported by a 

laser guided camera for extra precision. The software interface between the PC and the 

plotter is called “Board Master”, which allows the user to control the device in a reasonable 

easy manner. Software called “Circuit Cam,” is also needed as an interface between the 

microwave simulators (Ansoft HFSS and Designer) and the “Board Master”. This software 

accepts the simulated model in gerber format and then transforms it into ‘LMD’ format, 

compatible to ‘Board Master’. Detail operating process of this class of dry PCB prototyping 

tool is available in reference [74].  

 

                             

Figure 5-1: The LPKF ProtoMat® S62 [74] 

Milling Head 

PCB Placement 
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The fabricated two layers aperture coupled antenna is shown in Figure 5-2. Note 

that the two layers are clear in figure (a), whereas the patch and microstrip feed line is 

shown in (b) and (c), respectively. The feed line is based on a roger substrate with r=6 and 

t=1.27 mm and the optimized width of the 50 feed line is 1.9 mm. The antenna substrate 

is selected to be Plexiglass substrate with r=2.6 to 3.5 and t=3 mm. Plexiglass is selected 

due to its importance in the petroleum industry as a material, proposed for next generation 

of petroleum carrying pipelines. Note that the feed line is connected with a SMA coaxial 

cable for connecting it to a signal sources. This antenna will be used to determine the 

correct relative permittivity of the Plexiglass substrate using experimental technique, as 

explained in the next section. 

 

       

(a)                                 (b)                                                          (c)                                

Figure 5-2: The Fabricated Sample, (a) Side View (b) Front View (c) Back View 
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The fabrication or plotting process of this antenna involved the following steps: 

(i) Export the optimized two-layer design of the antenna from Ansoft-HFSS to 

Ansoft-Designer.  

(ii) Using Ansoft-Designer, create a two-layer model in Gerber format.  

(iii) Import the Gerber file using Circuit-Cam software and introduce the 

necessary insulation to preserve the copper part from the milling tool. Save 

the model in “LMD” format. 

(iv) Import the “LMD” file using “Board Master” and plot the circuit on copper 

double sided printed circuit board (PCB)  

Using “Board Master” software, the position of the antenna on the PCB board can 

be controlled. Also the depth of the milling tool needs to be carefully adjusted not to 

remove any substrate material. This is particularly important for microwave antenna 

design, as the height of the substrate can changes the frequency response of the antenna or 

the feed line.  Board Master software also allowed us to accurately position the aperture 

and the feed location on the copper board as per simulated design.  

However, circular waveguide wall made of Plexiglass can change the frequency 

response of the antenna due to its curved shape. Therefore, an aperture coupled microstrip 

antenna based on a curved Plexiglass substrate is designed. The front and back view of the 

antenna is shown in Figure 5-3. Figure 5-3(a) shows the curvature of the substrate, which 

conforms to the curvature of a 2 inch pipeline. Figure 5-3(b) and 5-3(c) shows the patch 

and coupling aperture of the antenna. Note that the aperture on the ground needs to be 

correctly aligned to optimally excite the patch antenna using the feed line of Figure 5-2(c).   
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(a)                                  (b)                                                       (c) 

Figure 5-3: The Antenna Fabricated on a Curved Plexiglass Sample, (a) Side View (b) Front View (c) Back View 

 

 

5.2.2 Assembly of the Pipeline Measurement Setup 

 

A sample of steady-state petroleum carrying pipeline with three-phase mixture is 

shown in Figure 5-4. Note that the terminations in both end is sealed to avoid leakage. 

Since crude oil is sticky and thick liquid, it is difficult to setup any experiment involving 

crude oil, where this is chance of leakage. It is clear from this figure that the order of the 

phase contents are: top layer is filled with air, middle layer is occupied by oil and bottom 

layer is filled with water. This also corresponds to their relative permittivity, as air, oil and 

water have relative permittivity of 1, 2.15 and 81, respectively.  
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Figure 5-4: Pipeline Filled with 3-Phase Mixture of Air, Oil and Water 

 

The copper coated or shielded Plexiglass pipe with integrated aperture coupled 

patch antenna is shown in Figure 5-5. It is clear from this figure that the feed line of 

Figure 5-2(c) is used to excite the microstrip patch, carefully positioned within the 

Plexiglass pipeline. The copper shielding and the pipeline wall acts as the ground plane 

and the antenna substrate, respectively. Since the thickness of the patch is very small, it has 

minimal affect the flow of the 3-phase mixture and the periodical cleaning mechanism of 

the pipeline. 
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Figure 5-5: Shielded Plexiglass Pipeline with Integrated Aperture Coupled Antenna 

 

5.3 Experimental Setup 

 

5.3.1 Antenna Scattering Parameter Measurements 

 

The Vector Network Analyzer (VNA) is a very popular tool in measuring active 

and passive microwave devices [75]. This is a state of art equipment, which allows the 

measurements of the magnitudes and phases related to the reflection and transmission 

responses of a single or multi-port device [76]. In this research work, the reflection 

responses (S11-parameter) of the aperture coupled antenna are measured using this device 
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as shown in Figure 5-6. An ENA series network analyzer of type Agilent-E5071C [75] is 

used in this study to measure the scattering parameters of the patch antenna loaded with 

the 3-phase mixture as a superstrate. The 300 KHz – 20 GHz network analyzer offered 

highest RF performance and fastest speed in its class, with a wide frequency range and 

versatile functions [75].  

 

Figure 5-6: S11 Measurement of the Patch Antenna Using Vector Network Analyzer 

 

At the initial stage of the design process, it was essential to determine the correct 

relative permittivity (r) of the Plexiglass material that will be used as a substrate of the 

designed aperture coupled microstrip antenna. Since the typical range of the relative 

permittivity of Plexiglass is between 2.6 to 3.5, the simulator software (HFSS) is used to 

observe the resonance behavior of the designed 4 GHz patch antenna for this range. The 

resulted frequency response is plotted in Figure 5-7. Note that the resonant frequency of 
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the aperture coupled patch antenna varies between 3.65 GHz to 4.06 GHz for changing r 

values. To determine the exact r, the fabricated antenna of Figure 5-2 is connected to the 

network analyzer to observe the reflection response. This experimentally obtained resonant 

frequency is then compared with the simulated set of resonant frequencies to determine the 

correct r, as shown in the next section. 

 

 

Figure 5-7: Reflection Coefficient for Different Plexiglass Dielectric Constant 

 

According to this finding, the simulation models needed to be corrected before 

listing the S-parameter responses in the look-up table, which links S11 responses with 

content ratio within the multi-phase pipeline. 
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5.3.2 Antenna Radiation Pattern Measurements 

 

To observe the radiation properties of this antenna, a radiation pattern measurement 

device with real-time scanning capabilities is used [77]. The operating principle of this 

device (called RFxpert) is based on the measurement of the near field response through a 

fast movement probe on a planar antennas consists of a 384 elements, positioned on its 

flatbed. The far field radiation patterns are then calculated and displayed through the 

interface software. The advantage of this process is the availability of the far-field data 

without requiring rotatable antenna radiation pattern measure setup within anechoic 

chambers. The RFxpert based radiation characteristics measurement setup is shown in 

Figure 5-8. Note that the antenna excitation signal is generated through the Agilent signal 

generator with the desired frequency and power level. Thus, when the excited antenna is 

placed on the flatbed of the device, the far field radiation pattern is displayed in the monitor. 

With proper setup, the RFxpert can also give the directivity of the antenna and the two 

dimensional cuts, as illustrated in the next section. 
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Figure 5-8: Aperture Coupled Microstrip Line Antenna Radiation Pattern Measurement 

 

5.3.3 S11 Measurements Technique for the 3-Phase Contents of the Pipeline 

 

The 1st part of this measurement process; VNA was used to measure the reflection 

response (S11) of the antenna, integrated within the 2-inch pipeline with multi-phase 

contents. This setup is shown in Figure 5-9(a) for a shielded Plexiglass pipeline for 

measuring two-phase content ratio for oil-air mixture. Similar setup but with different 

measurement technique for water-oil mixture uses an un-shielded pipeline or pipeline 

without silver shielding. In Figure 5-9(b), the pipeline has two antennas, one integrated in 



130 

 

the shielded part of the pipeline and the other in the non-shielded part. These antennas are 

used to measure the three-phase contents of the pipeline. 

The aim of the 2nd part of this measurement is to develop a prototype of a standalone 

unit that can measure the pipeline content ratio without using network analyzer. Standard 

S-band components are used for this setup to redirect the reflected signal voltage from the 

antenna to an Arduino microprocessor unit [78] that compares the voltage level with the 

pre-stored look-up table to provide output.  
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(a) 

                     

(b) 

Figure 5-9: S11 Measurement of the Aperture Coupled Antenna within the Pipeline Using Network Analyzer  

(a) Two-phase Measurement and (b) Three-Phase Measurement  

 

The setup for measuring the reflected signal using a microwave circuitry is shown 

in Figure 5-10. The 2-inch diameter pipeline used in this experiment is made of Plexiglass 

with permittivity of 2.7, wall thickness of 3 mm and length of 230 mm. The radiating patch 
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is carefully placed in the designated place within the pipeline; so that the aperture and the 

microstrip feed line can be properly aligned. The aperture is cut from the silver foil wrapped 

around the inner surface of the pipeline. The antenna assembly is very similar to the antenna 

fabricated and shown in Figure 5-3. The S-band (2-4 GHz) microwave components shown 

in Figure 5-10 are: voltage Control Oscillator (VCO), Circulator (CIR), Directional 

Coupler (DC) and a Crystal detector. In this experiment, the microwave signal is generated 

through the VCO, which need a 15 V for biasing and a tunable voltage is used to generate 

the required frequency. The signal is then fed to input port (port 1) of the circulator that 

output the power from port 2, where port 3 of the circulator is terminated with a 50 ohm 

matching impedance to protect the VCO from any unwanted reflected signals. The output 

signal from the circulator is connected to the input of the directional coupler. The output 

of the coupler is used to excite the aperture coupled antenna within the pipeline. The 

reflected signal (S11) from the antenna is output from the coupled port of the directional 

coupler to an S-band crystal detector. Note that in this figure the signal voltage of the 

detector is input into a voltmeter to get the voltage or power level of the reflected signal. 

This allows the verification/fine-tuning of the look-up table, formulated using the software 

model in chapter 4, to relate the reflected signal level with the content ratio of multi-phase 

contents of the pipeline.  

The setup with Arduino microprocessor is shown in Figure 5-11. The purpose of 

this proof of concept setup is to demonstrate that a self-sufficient measurement system can 

be developed with all the look-up tables stored in the memory of the microprocessor. 

Although the resolution of this basic setup is not very good, this setup proofs that a portable 
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device can be formulated from this concept to detect the content ratio of the petroleum-

carrying pipeline.  

 

Figure 5-10: Microwave Circuitry for Detecting the Reflected Signal from the Pipeline 

 

 

Figure 5-11: Microwave Circuitry with Arduino for Detecting, Analyzing and Displaying the Pipeline Contents 
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5.4 Experimental Results and Comparison 

 

The experimental setups used in this research work are described in the previous 

section. The experimentally measured results are presented in this section. The 

experimental results are also compared with the related simulated responses presented in 

chapter 4. 

 

5.4.1 Antenna Results 

 

The measurements started with the determination of the correct relative permittivity 

of the Plexiglass material used for antenna substrate. This required the reflection response 

of the fabricated aperture coupled patch antenna on a flat Plexiglass substrate (of 

Figure 5-2) to be measured. Using the experimental setup of Figure 5-4, this measurement 

resulted in the antenna resonating at 4.0 GHz. Now superimposing this experimental 

response on the simulated chart of Figure 5-12, it can be concluded that the dielectric 

constant of the Plexiglass used in this research work is r=2.7. This finding is used in the 

simulated antenna models in chapter 4 to list the S-parameter responses in the look-up 

table. This look-up table links the antenna resonance with the content ratio of the pipeline. 
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Figure 5-12: Antenna Resonant Frequency for Different Dielectric Constant of Plexiglass  

 

Now using the correct relative permittivity of the Plexiglass substrate, the aperture 

coupled patch antenna was re-simulated (as presented in chapter 4). The simulated and 

experimental S11 responses of the antenna are superimposed in Figure 5-13. Note that the 

experimented 10 dB impedance bandwidth of the antenna is 4.6%. To experimentally 

verify the simulated radiation properties of this antenna, measurement setup shown in 

Figure 5-6 is used. The simulated and measured 3D radiation pattern is plotted in 

Figure 5-14. The phi=90 cut of the pattern is shown in Figure 5-15. Although the 

experimental and simulated results are almost agreed, it is clear from these figures that the 

experimental setup is unable to measure the back lobe of the patch antenna. 
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Figure 5-13: Simulated and Measured S11 for the Aperture Coupled Patch Antenna 
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(a) 

 

 

(b) 

Figure 5-14: 3D Polar Plot of the Designed Antenna Directivity, (a) Simulation Using HFSS (b) Measured Using 

RFxpert 
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Figure 5-15: Simulated & Measured 2D Radiation Pattern at PHI=90o 

 

To check the changes in resonance characteristics due to curved Plexiglass 

substrate, the S11 response of the antenna (shown in Figure 5-3) is also experimentally 

observed and plotted in Figure 5-16. Note that a slight reduction in the impedance 

bandwidth and a 9% shift in the resonant frequency are observed. This is important to fine-

tune the look-up table used to link the content ratio of the pipeline with the resonant 

behavior of the antenna. 
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Figure 5-16: Simulated and Measured S11 for the Antenna Designed on a Curved Plexiglass 

 

5.4.2 Antenna S11 Measurements for Two-Phase Contents of the Pipeline 
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r=2.7, wall thickness of 3 mm and length of 230 mm. The optimum designs of the 

Plexiglass pipeline with integrated antenna, discussed in the previous chapter, are for: (a) 

pipeline covered with silver shielding or conducting-layer and (b) pipeline without the 

silver shielding. Both cases are investigated here due to experimentally verifying their 

individual advantages in measuring the content ratio of the pipeline. Note that the design 
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investigation started by monitoring two phase mixture (air and oil only), 3 GHz patch 

optimally worked with a two-phase mixture with 50% oil and 50% air. This is because (as 

explained in chapter 4) the antenna within the 2-inch shielded pipeline resonated at 2.4 

GHz for oil-filled and at 3.5 GHz for air-filled cases. Another reason for selecting this 

frequency is to eliminate the higher order modes, which interfered with the measurement 

process as oil or water contents of the mixture are increased. The measurement results of a 

2-inch pipeline, excited with a 3 GHz patch for both shielded and unshielded cases are 

presented in the following subsections: 

(a) Measurement of the Shielded Pipeline with Two Phase (Oil-Air) Mixture:  

The designed patch antenna is carefully placed within the 2-inch shielded pipeline 

sample in order to monitor the levels of its two-phase contents. As pointed out in chapter 

4 that the antenna positioned on the side of the pipeline exhibited better measurement 

resolution compared to the antenna placed at the top/bottom of the pipeline. Using the 

network analyzer, the S11 responses of the measurement setup (shown in Figure 5-9) is 

plotted in Figure 5-17. Note that for the shielded pipeline, the figure displays distinct 

antenna resonances at 3.24 GHz, 3.19 GHz and 2.71 GHz for 0 % (all air), 10 % and 50 % 

oil within the oil-air mixture, respectively. In chapter 4, the simulated results of equivalent 

two-phase mixture with 10% increment of oil is shown in Figure 4-12. The simulated and 

measured reflection responses of the air filled (0% oil) shielded 2-inch pipeline is plotted 

in Figure 5-18. The oil-air mixture with 10% oil and 50% oil cases are validated with 

measured results as shown in Figure 5-19 and Figure 5-20, respectively. Excellent 

agreement between the simulated and experimental resonant frequencies validates the idea 

of look-up table in determining the contents of multi-phase pipeline. Additional reflection 
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losses (lower |S11|) are due assumed loss-tangents of oil within the simulated model and 

inaccuracies during assembling the aperture coupled antenna within the pipeline. 

 

 

 

Figure 5-17: Measured S11 for a Pipeline Filled with Air, 10 % & 50 % of Crude Oil 
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Figure 5-18: Simulated and Measured S11 for a Pipeline Filled with Air 

 

Figure 5-19: Simulated and Measured S11 for a Pipeline Filled with 10 % of Crude Oil 
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Figure 5-20: Simulated and Measured S11 for a Pipeline Filled with 50 % of Crude Oil 

 

(b) Measurement of the non-Shielded Pipeline with Two Phase (Water-Air) Mixture:  

To monitor the content ratio of the two-phase mixture of water-air, the 3 GHz 

antenna used earlier needs to be modified. This is because the resonant frequency of a water 

filled 2-inch pipeline is 0.44 GHz and the presence of higher order modes cause detection 

problem when using a 3 GHz aperture coupled antenna (as also explained in chapter 4). To 

remedy this situation, two methods can be adopted: (1) Redesign the antenna to resonate 

at a lower frequency or (2) excite an un-shielded portion of the pipeline with the same 3 

GHz antenna.  The 2nd method is used in this research work. The experimental setup used 
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Plexiglass pipeline minimized the generation and support of the surface waves which 

probably reduced the number of unwanted reflected modes. This allowed the power level 

of the reflected waves due to change of water-air contents of the pipeline more distinctive 

and easy to monitor. The simulated reflection coefficient for different water-air contents of 

the two-phase mixture is re-produced in Figure 5-21, where the reflected power level of 

the 3.5 GHz signal changed with changing water level from 4% to 40% in steps of 4%. 

Note that the monitoring of water-air mixture is different from the one presented earlier for 

oil-air mixture. The earlier method depended on the shift of the resonant frequency with 

the changing contents of oil-air portion within the mixture. However, this measurement 

depends on the change in power level of the reflected wave (S11) depending on the contents 

of water-air portion within the mixture. Therefore, for a 2-inch unshielded pipeline with 

integrated aperture coupled antenna, the experimentally observed power level of the S11 

response is plotted in Figure 5-22, for four different levels of water within the water-air 

mixture. Compared to the simulated results, although the resonant frequency slightly shifts 

for different level or water, the power of the reflected signal demonstrates similar pattern. 

Figure 5-23 shows the superimposed plot of the simulated and measured S11 responses of 

the antenna, for the case of a pipeline filled with 8%. Thus, by measuring the lowest power 

level of the S11 signal, and using the look-up table created by the simulated responses, one 

should be able to determine the ratio of the water-air contents within the pipeline.  
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Figure 5-21: Simulated Reflection Coefficient of the 2-inch Pipeline for Different Water-Air Proportions 

 

Figure 5-22: Measured Reflection Coefficient of the 2-inch Pipeline for Different Water-Air Proportions 
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Figure 5-23: Simulated and Measured Reflection Coefficient of the 2-inch Pipeline filled with 8% of Water 

 

The S11 responses of pipeline with water-oil (two-phase) mixture are not measured 

since the existence of the air cannot be completely avoided. Similar cases of measurements 

involving the three phase (air-oil-water) mixture within the pipeline are discussed in the 

next section.  
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5.4.3 Antenna S11 Measurements for Three-Phase Contents of the Pipeline  

 

The experimental setup used for this case is shown in Figure 5-9(b). Note that two 

embedded aperture coupled antenna is used as follow; one integrated within the shielded 

section of the pipeline and the other integrated in the non-shielded part of the pipeline. 

They will be used to separately measure the oil-air and water-oil contents of the mixture, 

as explained in the previous section. The mutual coupling between the antennas is very low 

due to adequate separation between them. At the beginning of this experiment, the antenna 

in the non-shielded pipeline is excited to measure the power level of the reflected (S11) 

signal. With the help of the look-up table, this value will help in determining the water 

level. For a three-phase mixture with 10% water, the antenna in the shielded pipeline is 

excited to measure the changing S11 resonant frequencies for different level of oil-air 

mixture. The experimental results for this case are plotted in Figure 5-24 for oil levels of 

10% to 80% with steps of 10%. The related simulated S11 response of a 2-inch pipeline 

with three-phase mixture (10% water and changing oil level) is reproduced (from chapter 

4) in Figure 5-25. Comparing the simulated and experimental responses, it is noted that the 

same trend is achieved, where it starts at a resonant frequency of 3.42 GHz and as the 

amount of oil increased the resonant frequency is shifted to the left in a distinct manner. 

The following experiment uses the shielded antenna to determine the oil level 

within the three-phase pipeline. This is done by monitoring the resonant frequency of the 

antenna in the shielded region of the pipeline and comparing it with the look-up table of 

chapter 4. The result revealed that the oil content of the mixture is approximately 60% level 

of the pipeline. Now the antenna in the non-shielded part of the pipeline is energized to 
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determine the portion of the water within the pipeline. The related experimentally observed 

S11 response for the pipeline three-phase mixture (with 60% oil and changing water level) 

is plotted in Figure 5-26. Note that the power (voltage) level of the 3.3 GHz reflected signal 

decreases with increasing water level. This is accepted due to the high relative permittivity 

and conductivity of the sea water. The related simulated response for a 2-inch pipe with 

60% oil and changing water level from 4% to 20% is re-plotted in Figure 5-27. Note that 

the experimental data validates the simulated results, which is used to create the look-up 

table of chapter 4. 

The difference between the measured and the simulated reflection coefficients 

power level in the two-phase and three-phase cases are due to the difficulty in the alignment 

of the aperture location on the substrate to that located on the pipeline outer surface and 

this because of the curvature of the pipeline. This difference in the power level is not exists 

when the flat Plexiglass is placed on the fabricated antenna as shown in Figure 5-13. 
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Figure 5-24: Measured S11 for a Pipeline for Different Air-Oil Proportions at a 10% of Water 

 

Figure 5-25: Simulated Reflection Coefficient of the 2-inch Pipeline for Different Air-Oil Proportions at a 10% 

of Water 
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Figure 5-26: Measured S11 for a Pipeline for Different Water Proportions at 60% of Oil 

 

Figure 5-27: Reflection Coefficient of the 2-inch Pipeline for Different Water Proportions at 60% of Oil 
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5.4.4 Measurements of S11 Response without Using Network Analyzer  

 

Now using the setup without involving the network analyzer, shown in Figure 5-10, 

the VCO is tuned to generate 3.3 GHz signal, which is used to excite the antenna located 

in the non-shielded part of the pipeline. Since the pipeline is filled with a three-phase 

mixture of which 60% oil is present, the range of voltage values measured using the 

voltmeter for different level of water are tabulated in Table 5-1. 

Table 5-1: Detected Voltages Responses for Different Materials 

 Air (mV) Oil (mV) Water (mV) 

Min. 81 456 737 

Max. 112 510 779 

 

To make a simple prototype of the measurement device, the voltmeter is replace 

with an Arduino microcontroller as shown in experimental setup of Figure 5-11. Since all 

the look-up tables can be stored in the Arduino microcontroller memory and it allows 

analogue input signals, simple program can display the contents of the three-phase mixture 

on an interfaced laptop. In this setup, the voltmeter that provides the 15-volt power supply 

to the VCO can be replaced with a battery. Similarly, an electronic circuit connected to a 

battery can also generate the variable voltages needed to be supplied to the VCO for tuning 

the frequency of the generated microwave signal. The power supply of the Arduino board 

can be provided from the laptop through a USB connection, used for displaying the content 
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ratio. However, when testing this setup a voltage drop after connecting the Arduino is 

occurred, which mean a block should be inserted before the Arduino either to amplify the 

signal or to match the input impedance of the Arduino with the one received from the 

crystal detector. 

For hardware implementation of the Arduino board; the transmit and receive system 

has been designed and programmed. Figure 5-28 represent the MATLAB Simulink’s 

blocks used to program the Arduino. It starts by selecting one of the analog input of the 

Arduino to receive the voltage level from the crystal detector that represent a certain 

pipeline contents level, the selected input was pin 4. The received data is directly converted 

to a digital value through an Analog to Digital Convertor (ADC) that is associated with the 

input pin. After that, a gain block is added to convert the 10-bit digital number to something 

we can interpret, by multiplying the digital number by the value of the Arduino maximum 

voltage, which is 5 and divide by the resolution of the Arduino, which is 1023. Then a 

MATLAB function that contain the tabulated look-up table is stored in the Arduino 

memory. Finally, the data containing the proper material type is sent through a serial 

transmit block, which represent a virtual serial connection to a computer for receiving and 

displaying the type of the material. 

Figure 5-29 represent the program designed on the computer for receiving the data 

from Arduino, where Figure 5-29(a) represent the sub model inside the Arduino block 

shown in Figure 5-29(b). The program starts by Serial Configuration block to check the 

accuracy of the received data through a parity check, stop bit, hand shaking in addition to 

a baud rate that is used in the transmitter side, which is 9600 and the serial port used, which 

is COM8. After checking the received data, which is received by COM8 on the computer; 
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it is then entered to another MATLB function that associate the received material type 

decision from Arduino and convert it to a string of characters to be displayed on the 

computer through a display block. 

 

 

Figure 5-28: Arduino Program 

 

(a) 

 

(b) 

Figure 5-29: Computer Side Program, (a) Sub Model for Receiving the Material Decision from Arduino (b) 

Displaying the Pipeline Contents 
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5.5 Conclusion 

 

Monitoring the content ratio of two-phase and three-phase petroleum carrying 

pipeline is presented. Different techniques are proposed to monitor water and oil contents 

of the pipeline. To determine the oil contents, the shift in the resonant (S11) frequencies of 

the antenna, integrated in a shielded portion of the pipeline is used. To determine the water 

contents, a 2nd antenna, integrated in the non-shielded region of the pipeline is used to 

monitor the power/voltage level of the reflected signal (S11). These measured values are 

compared with the look-up tables presented in chapter 4 to determine the oil and water 

contents of the pipeline. Once the two contents are known, the level of the 3rd content (air) 

can be calculated. Experimental results are used to verify the simulated results used to 

create the look-up tables. 
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6 CHAPTER 6 

CONCLUSION and FUTURE WORK 

 

6.1 Conclusion 

 

In this research, a novel analytical solution for a circular waveguide loaded with 

two dielectric cylinders is presented to predict the modal behaviors of an ideal petroleum-

carrying pipeline with partially loaded oil samples. The resulted mode charts are used to 

validate a similar HFSS (professional simulator) model of the pipeline in terms of selecting 

of proper meshing and ideal excitation methods. Once validated, this software model is 

used to produce simulated mode charts of the pipeline with multi-phase (air-oil-water) 

contents, which is too complicated to solve analytically. 

To introduce practical excitation to the pipeline, two patch antennas are designed 

and optimally integrated within the pipeline. To monitor the oil and water levels, two 

different types of measurements are realized by integrating patch antennas in the shielded 

and non-shielded parts of the pipeline. For air-oil measurements, a 3-GHz antenna is used 

to avoid higher order modes and generate a distinctive resonance response (S11) with 

changing oil level of the pipeline. For oil-water measurements, a 3.3 GHz patch antenna is 

integrated in the non-shielded part to relate the change in water level with the changes in 

the power level of the reflected signal (S11).  Look-up table is formulated for both cases for 

different level of oil and water contents of the pipeline.  
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To experimentally verify the simulated results, the measurement setups are 

fabricated. The experimental S11 responses verified the changes in resonant frequencies 

with changing level of oil within the pipeline. In the 2nd set of experiments, the monitored 

power level of the reflected signals (S11) corroborated the simulated curves that link the 

change in water level with change in reflected power. Minor disagreements between the 

simulated and experimental results are due to the inaccuracy of the in house fabrication 

process. The drawback of this design that it cannot detect water level more than 30 %, so other 

antenna could be used to enhance the resolution of our results. 

Finally, the standalone setup with microwave components and Arduino 

microcontroller is designed. This setup is individually tested for demonstration and 

encouragement of future work. 

 

6.2 Future Work 

 

The research work conducted here can be extended and enhanced in many ways. 

The enhancement can be on the analytical, design and simulation and experimental parts. 

Some of these enhancements are: 

 

6.2.1 Analytical Solution 

 Since water used in the extraction process of the oil from petroleum well is salty, 

which mean it has conductivity in addition to the permittivity, so it is imperfect 

dielectric. Therefore, in order to study this problem, water can be represented using 
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imperfect dielectric cylinders; accordingly, metallic waveguide loaded with 

imperfect dielectric cylinders has to be investigated. 

 Since the Plexiglass pipeline sample has been used in this research, which represent 

a waveguide with a dielectric shell, an analytical solution for this case can be 

derived by considering the fields inside the Plexiglass cylinder to be outward 

travelling wave instead of a standing wave. To do this Hankel functions of first and 

second kind should be used. 

 

6.2.2 Antenna Design 

 Using a helical antenna around the Plexiglass pipeline as a microwave sensor 

instead of the aperture coupled antenna used in which more power can be radiated 

depending on the number of the loops used. 

 

6.2.3 Circuit Design 

 Enhance the sensing and programming to take care of different flow types, such as 

non-steady state flow etc. and display the content level of the multi-phase liquid 

together with the flow types.    
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A. Appendix A 

Procedure Followed in Achieving the Optimum Design 

 

The investigated characteristics are pipeline radius, antenna resonant frequency, 

antenna feeding type, antenna orientation, antenna placement and a conducting coating on 

the outer surface of the pipeline. 

The procedure starts by considering a 4-inch pipeline sample provided from the 

Research Institute (RI) at KFUPM. The petroleum-carrying pipeline, which made from 

Plexiglass material, has a thickness of 5 mm, which should be considered in designing the 

superstrate layer of the antenna. So a superstrate layer should be added on the top surface 

of the patch in order to simulate this thickness of the pipeline. 

The antenna was fed using coaxial feeding, where the inner conductor of the coax 

is attached to the radiating patch and the outer conductor is connected to the ground plane. 

This type of feeding is easy to fabricate and has a low spurious radiation. 

 

A.1 Microstrip Path Antenna without a Superstrate Layer 

  

A coaxial fed microstrip patch antenna is illustrated in Figure A-1. This antenna 

substrate are made from Duroid, which has a relative permittivity of 2.2 and a thickness of 

1.6 mm, the bottom surface of this substrate is defined as a ground plane, which is a perfect 

conductor plane. The patch is placed on the top surface of the substrate. The dimensions of 

the patch and the substrate in addition to its radiation behavior are summarized in 
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Table A-1. The patch is fed through a coaxial cable, which is consist from a two conductor 

and a polyethylene material with a dielectric constant of 2.25 to isolate the two conductors. 

An Air Box is included in the design which has a distance of 0.25*λ from the edges of the 

substrate to encounter for the space around the antenna. 

 

 

Figure A-1: A Coaxially Fed 10 GHz Microstrip Patch Antenna 

Table A-1: Microstrip Antenna Specifications without the Superstrate layer 

Patch Width (mm) 8.5 

Patch Length (mm) 8.72 

Substrate Width (mm) 25 

Substrate Length (mm) 25 

Substrate Height (mm) 1.6 

Substrate Permittivity 2.2 

Resonant Frequency (GHz) 10.02 

Reflection Coefficient (dB) -22.03 

BW (GHz) 0.6 

Gain (dB) 7.9387 
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 The reflection coefficient of this antenna is shown in Figure A-2, which clearly that 

the antenna is radiating at 10GHz with a reflection coefficient of -22.03 dB and has a 10 

dB bandwidth of 600 MHz. The 3D radiation pattern is also shown in the figure, which has 

a nice radiation on the top surface of the antenna and nothing radiating in the bottom side 

since there exists a ground plane as expected. 

 The 2D radiation pattern can be represented through two angular measurements in 

spherical coordinate system, which are Azimuth and Elevation, the azimuth cut is shown 

in Figure A-3. Where in part (a) of the figure represent the azimuth cut at phi=0o and in 

part (b) represent the azimuth cut at phi=90o. Figure A-4 represent the elevation cut at 

theta=90o. 

 

Figure A-2: Reflection Coefficient for the Patch without Superstrate Layer 
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(a)                                                               (b) 

Figure A-3: 2D Radiation Pattern (a) Azimuth Cut (phi=0o), (b) Azimuth Cut (phi=90o) 

 

 

Figure A-4: Elevation Cut of a Radiation Pattern at (Theta=90o) 
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A.2 Microstrip Patch Antenna with a Superstrate Layer 

 

If the patch is placed on the outer perimeter of the pipeline, then the antenna should 

be designed by placing a superstrate layer of 5 mm of thickness made from a Plexiglass as 

shown in Figure A-5; the dimensions of the patch, substrate and superstrate are tabulated 

in Table A-2. Figure A-6 shows the reflection coefficient for this patch and it has a value 

of -17.96 dB with a bandwidth of 1.3 GHz and the azimuth cut at phi=0o and at phi =90o 

of the radiation pattern is shown in Figure A-7. 

 

 

Figure A-5: Microstrip Antenna with Superstrate Fed with a Coaxial Input 
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Table A-2: Microstrip Antenna Specifications with the Superstrate layer 

Patch Width (mm) 6 

Patch Length (mm) 7.5 

Substrate Width (mm) 25 

Substrate Length (mm) 25 

Substrate Height (mm) 1.6 

Superstrate Height (mm) 5 

Substrate Permittivity 2.2 

Superstrate Permittivity 3.4 

Resonant Frequency (GHz) 10 

Reflection Coefficient (dB) -17.96 

BW (GHz) 1.3 

Gain (dB) 9.33 

 

 

Figure A-6: Reflection Coefficient for the Patch with Superstrate 
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(a)                                                              (b) 

Figure A-7: 2D Radiation Pattern (a) Azimuth Cut (phi=00), (b) Azimuth Cut (phi=900) 

 

A.3 Excitation of Two-Phase Petroleum Carrying Pipeline 

 

A.3.1 Coaxial Fed of a 4-inch Pipe Sample 

 

A.3.1.1 Single Microstrip Antenna on a Pipeline 

 

The designed microstrip antenna should now be attached to the pipeline sample as 

shown in Figure A-8, which represents a section of a pipe with the designed antenna on its 

side. The superstrate layer here are encountered in the pipeline wall that is made from a 

Plexiglass material with a permittivity of 3.4. When the pipeline sample is filled with air, 

the antenna radiates at a resonant frequency of 9.92 GHz with a reflection coefficient of -
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20.6704 dB, the 10 dB bandwidth equal to 1.53 GHz as shown in Figure A-9.  Figure A-10 

shows the two dimensional azimuth cuts at phi=0o and phi=90o of the radiation pattern. 

 

 

Figure A-8: Model of a Pipeline with the Designed Antenna on its Side 
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Figure A-9: The Reflection Coefficient of the Model 

  

Figure A-10: Radiation Pattern (a) Azimuth Cut (phi=00), (b) Azimuth Cut (phi=900) 

 

8 8.5 9 9.5 10 10.5 11 11.5 12
-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

Frequency (GHz)

R
e
fl
e
c
ti
o
n
 C

o
e
ff

ic
ie

n
t 

(d
B

)

5.00

10.00

15.00

20.00

90

60

30

0

-30

-60

-90

-120

-150

-180

150

120

Ansoft LLC HFSSModel1Radiation Pattern 1
Curve Info

dB(rETotal)
Setup1 : LastAdaptive
Freq='10GHz' Phi='0deg'

9.20

12.40

15.60

18.80

90

60

30

0

-30

-60

-90

-120

-150

-180

150

120

Ansoft LLC HFSSModel1Radiation Pattern 2
Curve Info

dB(rETotal)
Setup1 : LastAdaptive
Freq='10GHz' Phi='90deg'



167 

 

 Three different materials are considered as a content of the pipeline shown above. 

These materials with the corresponding relative permittivity and operating frequency are 

summarized in Table A-3. The reflection coefficients of these scenarios is shown in 

Figure A-11. It is noticed that as the material dielectric constant increases the resonant 

frequency will reduce. 

Table A-3: Center Frequency for the Three Medium under Investigation 

Medium Permittivity Frequency (GHz) 

Air 1 10 

Oil 2.15 9.96 

Sea Water 81 9.1 

 

 

Figure A-11: Reflection Coefficient for Air, Oil and Water versus Frequency for a 4-inch Pipeline 
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A.3.1.2 Microstrip Antenna Transceiver Attached to the Pipeline 

 

Microstrip antenna transceiver is designed to operate at a center frequency of 10 

GHz and it is attached to the pipeline model as shown in Figure A-12. The purpose from 

this transceiver it to assign one antenna to send a signal and obtained the received signal in 

order to test if the transmission coefficient will have information about detecting level of 

the materials inside the pipeline. The reflection coefficient from the transmitted antenna 

and the transmission coefficient at the received antenna are plotted in Figure A-13. The 

antenna still resonating around 10 GHz with a -20 dB reflection coefficient. The 

transmission coefficient has a very low value of -27 dB; the low transmission is because 

the microstrip antenna is a low profile antenna, which did not, radiates high power, 

especially at this frequency range, which has a wavelength of 30 mm. So, the pipeline 

radius considered somehow too big to be analyzed by this small antenna. 

 

 

Figure A-12: Microstrip Antenna Transceiver Attached to the Pipeline Model 
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Figure A-13: Reflection and Transmission Coefficients for the Pipeline Transceiver 
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shown in Figure A-16, where in this figure the antennas have different transmission 

coefficient depending on its location with respect to the transmitter. The maximum 

transmission will be for the antenna in the directly opposite location to the transmitter. 

Therefore, if antenna 1 is assumed to be the transmitter, then the opposite one will be 

antenna 4 has maximum reception. Figure A-17 shows the radiation behavior from the 

transmit antenna. 

 

 

Figure A-14: Pipeline with Multiple Receivers 



171 

 

 

Figure A-15: Reflection Coefficient for Air Filled Pipeline 

 

Figure A-16: Transmission Coefficient for Air Filled Pipeline 
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Figure A-17: Shape of the Radiation from the Transmitter 

 

Figure A-18 and Figure A-19 shows the reflection and transmission coefficients in 

the case where the pipeline is totally filled with oil. It is noticed from the figure that all the 

antennas are resonating at the same frequency, which is a little less than the case of air 

since the dielectric constant is a little bigger. For the transmission coefficient, it behave 

similar to the air case, such that the opposite antenna to the transmitter has the maximum 

reception, but the received power is too small. One idea to solve the power problem is to 

use a 2-inch pipeline and placing the patch antenna on the inner perimeter of the pipeline 

as will be explained in the next sub section. 
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Figure A-18: Reflection Coefficient for Oil Filled Pipeline 

 

Figure A-19: Transmission Coefficient for an Oil Filled Pipeline 
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A.3.2 Coaxial Fed of a 2-inch Pipeline Sample 

 

 In order to have better results, a 2-inch pipeline sample is adopted. This sample has 

the same property pf the previous 4-inch one. In addition to pipeline dimension change, the 

microstrip patch antenna and its substrate now is attached to the inner perimeter of the 

pipeline in order to focus the signal towards the interior region of the pipeline and reduce 

the amount of surface wave through the pipeline wall. This antenna was fed by a coaxial 

cable through a hole in the Plexiglass pipeline wall as shown in Figure A-20. The antenna 

is retuned to operate at 10 GHz, the modified antenna specifications is summarized in 

Table A-4. The reflection coefficient of this model is plotted in Figure A-21. This model 

has a resonant frequency for the air filled case of 10.08 GHz and for oil filled is 9.1 GHz 

while for the pipeline filled with seawater, which has a conductivity of 4 siemens/m has a 

resonant frequency of 8.28 GHz with a reflection coefficient of -10.1426 dB. 

 

Figure A-20: MPA Located on the Inner Perimeter of a 2-inch Pipeline Sample 
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Table A-4: Microstrip Antenna Specifications that Located inside a 2-inch Pipeline 

Patch Width (mm) 11 

Patch Length (mm) 8.8 

Substrate Width (mm) 20 

Substrate Length (mm) 20 

Substrate Height (mm) 1.6 

Superstrate Height (mm) 3 

Substrate Permittivity 2.2 

Superstrate Permittivity 3.4 

Resonant Frequency (GHz) 10 

Reflection Coefficient (dB) -17.96 

BW (GHz) 1.3 

Gain (dB) 9.33 

 

 

Figure A-21: Reflection Coefficient for Air, Oil and Water versus Frequency for a 2-inch Pipeline 
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When the previous design is tested in the laboratory a leakage problem is faced 

even with many tries to seal the hole, it keep leaks. To solve this problem an aperture 

coupling of the antenna is used. Moreover, to reduce the number of modes detected in the 

case of 10 GHz operating frequency; the resonant frequency is reduced to 3.6 GHz, where 

at this frequency only the dominant mode in the case of air will propagate (see 2nd table in 

chapter 4) and two modes in the case of oil.  

Therefore, this frequency is selected and the patch antenna with aperture fed model 

on a part of a pipeline is shown in Figure A-22. In this model since at this frequency, the 

size of the patch is increased so it is wrapped on the inner surface of the pipeline sample 

and the outer surface is grounded except the location of aperture. In addition, the substrate, 

which located on the outer surface of the pipeline, is wrapped around that surface. This 

antenna is resonating at 3.665 GHz with a reflection coefficient of -18.8 dB as shown in 

the reflection coefficient plot in Figure A-23. The new patch antenna dimensions are listed 

in Table A-5. 
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Figure A-22: 3.6 GHz Aperture Antenna on a Curve Plexiglass Section 

Table A-5: 3.6 GHz Aperture Coupled Microstrip Antenna Specifications 

Patch Width (mm) 19 

Patch Length (mm) 19 

Aperture Width (mm) 1.55 

Aperture Length (mm) 10 

Feed Width (mm) 2 

Feed Length (mm) 28.5 

Substrate Width (mm) 40 

Substrate Length (mm) 44.5 

Substrate Height (mm) 1.27 

Superstrate Height (mm) 3 

Substrate Permittivity 6 

Superstrate Permittivity 3.4 

Resonant Frequency (GHz) 3.665 

Reflection Coefficient (dB) -18.8078 

BW (MHz) 100 

Gain (dB) 5.9743 

 

 

 



178 

 

 

 

Figure A-23: Reflection Coefficient of the Aperture Antenna on a Curve Plexiglass Section 

 

The patch now is attached to the 2-inch pipeline sample and its reflection coefficient 

are plotted for different oil and air combinations. The model is shown in Figure A-24 and 

the resulted reflection coefficient in Figure A-25. The levels here are corresponds to how 

much is covering the patch surface. For example, 0% patch means that the patch is in the 

air side and 100% patch means it is completely in the oil side and for 50% patch; the 

pipeline is half filled with oil. 
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 It is noticed from Figure A-25 that this operating frequency are successfully 

reduced the number of modes compared to Figure 4-6 shown in chapter 4, to two modes 

and this is expected because of the existence of oil as the calculation in Table A-6 proofed. 

It is also noticed that as the percentage of oil increased the resonant frequency and the 

power will both be reduced. However, this figure cannot be used to determine the oil level 

since the other mode is interfering with the first mode of other proportions. For example, 

at frequency of 3.5 GHz the second mode of 75% and 100% levels are coincide with the 

first mode level of 0% patch. The Operating frequency and the reflection coefficient are 

tabulated in Table A-6 along with their oil percentage. In addition, it can be seen from the 

figure that starting of 58% of oil, the third mode appears around 4.75 GHz. Therefore, as 

the pipe completely filled with oil, this mode will be around what is calculated in Table 4-2. 

  

 

Figure A-24: 3.6 GHz Patch Antenna Attached to a 2-inch Pipeline Sample 
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Figure A-25: Reflection Coefficient for Different Oil-Air Proportions 

Table A-6: Antenna Behavior for Different Oil Percentages 

Patch Percentage 

(%) 

Resonant Frequency 

(GHz) 

Reflection Coefficient 

(dB) 

Oil Percentage 

(%) 

0 3.545 -6.0854 31.75 

25 3.425 -17.4712 40.875 

50 3.29 -9.8151 50 

75 3.155 -6.7937 59.125 

100 3.05 -6.2016 68.25 
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From the last design, the existence of the second mode of some proportions cause 

a problem in detecting the oil level accurately since it is coincide with the first mode of 

other proportions. Therefore, the antenna need to be tuned to operate at a little bit smaller 

frequency. Therefore, the operating frequency reduced to 3 GHz to insure only the 

dominant mode in the case of oil will propagate. Moreover, the 3.0 GHz frequency is 

between the dominant modes of air and oil and it will be suitable to detect the different oil-

air levels. The rest of the optimization procedure is shown in details in chapter 4. 
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