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ABSTRACT 
 

Full Name : [Ismail Adewale Olumegbon] 

Thesis Title : [Two dimensional J-matrix approach to quantum scattering] 

Major Field : [Physics] 

Date of Degree : [December, 2013] 

We present an extension of the J-matrix method of scattering to two dimensions in 

cylindrical coordinates. In the J-matrix approach we select a zeroth order Hamiltonian, 

H0, which is exactly solvable in the sense that we select a square integrable basis set that 

enable us to have an infinite tridiagonal representation for H0. Expanding the 

wavefunction in this basis makes the wave equation equivalent to a three-term recursion 

relation for the expansion coefficients. Consequently, finding solutions of the recursion 

relation is equivalent to solving the original H0 problem (i.e., determining the expansion 

coefficients of the system's wavefunction). 

The part of the original potential interaction which cannot be brought to an exact 

tridiagonal form is cut in an NxN basis space and its matrix elements are computed 

numerically using Gauss quadrature approach. Hence, this approach embodies powerful 

tools in the analysis of solutions of the wave equation by exploiting the intimate 

connection and interplay between tridiagonal matrices and the theory of orthogonal 

polynomials. In such analysis, one is at liberty to employ a wide range of well established 
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methods and numerical techniques associated with these settings such as quadrature 

approximation and continued fractions.  

To demonstrate the utility, usefulness, and accuracy of the extended method we use it to 

obtain the bound states for an illustrative short range potential problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 

 

 

 

 

 ملخص الرسالة

 

 

 إسماعيل أديوال أولومقيبون :الاسم الكامل
 

 ثناشية الأبعاد Jتفسير التشتت الكمي بواسطة مصفوفة  :عنوان الرسالة

 

 الفيزياء :التخصص
 

 م3102أكتوبر  :تاريخ الدرجة العلمية
 

في  . ات الاسطوانيةفي الإحداثيللتشتت الكمي ثنائية البعد   Jمصفوفة  نقدم في ىذه الدراسة امتدادا لنهج

، وىي قابلة للحل تماماً، بمعنى أن نختار أساساً  H0نختار ىاميلتون من الدرجة الصفرية ،  Jالمصفوفة  نهج

على ىذا  دالة الموجة إن توسيع.  H0 للهاميلتون مربعاً قابلًا للتكامل يمكننا أن يكون ىناك تمثيل لا نهائي

إيجاد حلول فإن وبالتالي، . لمعاملات التوسع الحدودة يثلاث الإعادةقة علاالأساس يجعل معادلة الموجة تكافيء 

 (.دالة الموجة للنظام أي تحديد معاملات توسيع)الأصلية  H0 يكافيء حل مشكلة الإعادة ىذهلعلاقة 

على في الفضاء وبالنسبة للأجزاء الأصلية من التفاعل التي لا يمكن جلبها إلى الشكل المحدد فإنو يتم قطعها 

. يالتربيع باستخدام نهج غاوس ويتم احتساب عناصر المصفوفة لها عددياً  N x N أساسالأساس 

علاقة الة من خلال استغلال ي، فإن ىذا النهج يجسد أدوات قوية في تحليل الحلول للمعادلة الموجوبالتالي
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يستطيع الفرد ، ىذا التحليل في مثل. الحدود المتعامدة ةنظرية متعددالو  والتفاعل بين المصفوفات الوثيقة

 يتقريب التربيعالمثل  ،رتبطة بهذه الإعداداتموتقنيات رقمية  ،توظيف مجموعة واسعة من أساليب راسخة

 .المتصلةوالكسور 

للتدليل على فائدة ، ودقة الأسلوب الذي نتبعو للطريقة الموسعة، فإننا نستخدمو للحصول على الحالات 

 .ذات مدى قصيرالمحدودة لمسألة توضيحية 
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1 CHAPTER 1 

INTRODUCTION 

Theoretically, steady state solution of scattering problem can be obtained by solving the 

time-independent energy eigenvalue equation ( ) 0H E   , where H represents the 

Hamiltonian operator and E the positive continuous energy. It is a difficult challenge to 

solve the eigenvalue equation analytically for dynamic system in general. Only matrix 

diagonalization gives all possible eigenvalues, but fails to produce scattering states 

solution. This anomaly led to the emergence of the tri-diagonalization approach upon 

which the J-matrix method is built. 

J-matrix is an algebraic technique suitable for solving eigenvalue problems and obtaining 

scattering information by employing the square integrability of the orthogonal 

polynomials. It deals with the reference Hamiltonian analytically, and solves the potential 

matrix element approximately using numerical approach. Also, the square integrable 

bases chosen must support a tridiagonal matrix representation. This idea gives strength to 

the J-matrix approach as a good computational tool. It is this basis that provides the 

parameters needed to ensure stability, convergence, and accuracy of the computational 

procedure. 
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The J-matrix method in three dimensional form was originally introduced in 1974 [1-2], 

and has since undergone several developments over the years. Some of the notable 

developments include: 

1. Relativistic generalization of the J – matrix method by Horodecki [3] and its  

refinement by Alhaidari et al. [ 4] 

2. Yamani et al. generalized the J-matrix method to any convenient L
2
 – basis [5] 

3. The case of long range potential was done by Vanroose et al. [6] with the 

introduction of additional term in the three term recursion relation which takes 

into account the asymptotic behavior of the potential. 

4. Alhaidari et al. [7] presented the integration approach as an alternative to the 

classical differential approach for regularization of the reference problem. They 

also made notable developments and applications in [8], [9], [10]. 

 

In 2009, Alhaidari et al. developed the J-matrix formalism in one dimension [11]. Owing 

to the achievement in one and three dimensions, it sets the stage and motivates us to 

proceed in evolving the J-matrix formalism in two dimensions. This way, we would 

complete the J-matrix formalism in all physical dimensions. 

There has been tremendous interest in two dimensional systems in recent years especially 

with the experimental realization of Graphene in 2004 [12]. Theoretical treatment of such 

two dimensional systems which include potential scattering theory, has greatly increased. 

Recently, Schneider et al. discussed the resonant scattering in Graphene based on the 

matrix green function formalism [13]. An important question of topological concern in 

two dimensional systems is the effect of the number of spacial dimensions. The 
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advantage of a two dimensional space can be seen in the case of Poisson’s equation for a 

point charge, which is solved for  ln r  in two dimensions with a stronger singularity at 

the origin rather than the  r
-1

  in three dimensions.  

 

1.1 Objectives of the study 

2 We extend the J-matrix method of scattering to two dimensions with cylindrical 

symmetry, determine its tridiagonal representation, and obtain the bound states, 

resonances, and scattering phase shift for an illustrative problem. The main objectives 

to be achieved in this study are listed below. 

3 Objective 1: To determine the regular solution of the J-matrix reference problem in 

Laguerre and oscillator basis. This is termed the Sine-like solution 

4 Objective 2: J-matrix regularization of the irregular reference solution in Laguerre 

and oscillator basis. This is termed the Cosine-like solution. 

5 Objective 3: Calculating the matrix element of the scattering potential using gauss 

quadrature. 

6 Objective 4: Numerical computation of bound state and resonances for a short range 

potential. 

7 Objective 5: Study of scattering through a short range potential and evaluation of the 

associated phase shift 

 



4 

 

8 CHAPTER 2 

LITERATURE REVIEW 

9 To comprehend the nature and dynamics of subatomic systems, there is need to carry 

out scattering experiments. A scattering experiments, where flux of particles is 

uniformly directed towards the target we seek to understand. The flux of radiation 

scattered off an obstacle, with the scattered radiation containing the relevant 

information about the system under study. A theory of potential scattering 

formulation is needed to study and analyze scattering experiments.  

10  

11  

12  
13 Figure 2.1: Schematic diagram of a typical scattering experiment 

14  

15 A potential function is configured in a manner that it models the scattering system 

(e.g target nuclei). The proposed model is then checked against the experimental 

results. The characteristic feature of such a potential function is that its range must be 

finite, so that it is zero in the asymptotic region. Owing to the freedom of the incident 

and scattered particles, it then only makes sense to represent them with sinusoidal 

wave functions, whose phase difference (phase shift) is the carrier of information for 

ikxe

 i kx
e


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the scattering system. Mathematically, we can represent the solution of the free wave 

equation by two independent sinusoidal functions like sin(kx) and cos(kx + δ), with x 

representing the space of configuration. The phase shift δ dependents on angular 

momentum and the model potential parameter and energy. 

16 For a large class of physical models, the Hamiltonian can be decomposed into the 

sum of two components, namely the reference Hamiltonian, H0 and the potential V, 

such that H = H0 + V. The reference Hamiltonian is simple; possess an infinite range 

and a high degree of symmetry, it can thus be solved analytically. For the potential, it 

can either be solved by perturbation methods if its contribution is infinitesimal or by 

algebraic methods if it is limited to a region confined in function or configuration 

space. For the class of scattering problems to be examined, it is assumed that the 

potential will vanish at the asymptotic region that is beyond the finite region. As a 

result, the solution to the problem can be obtained by solving the reference wave 

equation 0( ) 0H E   . Using the algebraic scattering method, the kinematic 

solution of the reference Hamiltonian is obtained by calculating the matrix 

components of the operators in a complete set of square integrable bases. The two 

asymptotic solutions of the reference Hamiltonian are written as infinite series of 

square integrable basis functions that are in equivalence with the Hamiltonian’s 

domain. The basis however, is required to support a tridiagonal matrix with infinite 

representation of the wave operator. This sort of Tridiagonalization creates a regular 

solution space. This special basis, when extended to infinite space,  will produce 

continuous value of energy, which is an important requirement for quantum 

scattering. In addition, the solution of the reference Hamiltonian is obtained as an 
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orthogonal polynomial which obeys three term recursion relations based on the 

infinite tridiagonal matrix representation. 

17  

2.1   Basis set technique and diagonalization  

 

The Evolution of fast computing machines has made it possible to perform structural 

calculations in both nuclear and atomic systems. The Hamiltonian of such systems is 

represented by a matrix using a finite bound state like basis. The matrix so constructed is 

then diagonalized to yield discrete energy eigenvalues and eigenfunctions which 

approximated the energy spectrum of the system and the resulting discrete state’s wave 

function. The problem with the use of diagonalization is that it only provides us with 

information on discrete states and not on the continuous spectrum of the Hamiltonian. 

This led theorist to believe that the basis set technique could not be used for the purpose 

of extracting scattering information. 

However, the work of Hazi and Taylor [14] gave a glimpse of hope by expanding a set of 

discrete exponentially decaying function followed by diagonalization of the Hamiltonian 

to describe resonances. Their approach is called the “stabilization method”, where they 

stabilize real discrete eigenvalues around the resonance energy by varying the 

computational parameters. The stabilization method produced good approximations 

around the resonant energies regions. Although the work of Hazi and Taylor was based 

on a one dimensional potential model, stabilization method has accurately obtained 

resonance energies of ideal systems like e
-
 and H2 [15]. 
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Building on the stabilization technique, the Reinhardt group at Harvard was able to obtain 

scattering information from discrete eigenvalues of both the reference and scattering 

Hamiltonian [16]. They were able to accurately obtain scattering results using the 

assumption that if the basis  
1

0

N

n n





 is a certain Laguerre function, then the abscissas fall 

as the transformed zeros of an orthogonal polynomial with known properties [17]. This 

ensures that the discrete eigenfunctions of the finite N X N Hamiltonian Ho, can be 

expressed as a finite sum of L
2
 basis as 

                                    
1

0

( ) ( ) ( )
N

N N n n

n

E B E P E 




                                    (2.1.1)                                      

Where ( )nP E  is an orthogonal polynomial. 

Heller and Yamani of the Harvard group proposed that the potential be represented by a 

finite subset of complete basis. This idea gave birth to the J–matrix method. The name 

arose from the fact that the operator J = Ho – E in either Laguerre or oscillator basis 

function is Tridiagonal.  

 

2.2   Orthogonal polynomials and recursion relation  

 

Let   
0n n

P x



be a complete set of orthogonal polynomials in the space with 

coordinate  ,x a b  . Orthogonality can be defined in terms of the weight function 

( )x  as  
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                                                    ( ) ( ) ( )

b

n m mn

a

x p x p x dx                                   (2.2.1) 

and ( )np x  is a polynomial of degree n in x. These polynomials satisfy the following 

symmetric three-term recursion relation. 

1 1 1( ) ( ) ( ) ( )n n n n n n nxp x a p x b p x b p x             1; 0, 0n b                          (2.2.2) 

together with the initial condition 0 ( ) 1p x  . The “recursion coefficient”  ,n na b  are 

elements of  . Associated with these orthogonal polynomials is the following infinite 

dimensional real tridiagonal symmetric matrix. 

                                    

0 0

0 1 1

1 2 2

2 3

a b

b a b

b a b

b a x

x x x

x x x

x x

H

 
 
 
 
 

  
 
 
 
 
 

                                 (2.2.3) 

The recursion relation (2.2.2) could be written as the matrix eigenvalue equation, 

x p H p . For numerical implementations, however, the space is reduced to a finite 

space in N dimension spanned by   
1

0

N

n n
P x




. The resulting tridiagonal matrix in (2.2.3) 

yields a finite NXN matrix. The set of real eigenvalues of this matrix, 
1

0

N

n n





, are called 

the zeros of the polynomial ( )Np x , that is, ( ) 0N np   . In this setting, Gauss quadrature 

integral approximation of a function f(x) that belongs to L
2 

[a, b] states that 



9 

 

                                                    

1

0

( ) ( ) ( )

b N

n n

na

x f x dx f  





                        (2.2.4)                    

 

The “numerical weight”, n , is the square of the zero component of the normalized 

eigenvector of H,  
1

0

N

mn m




 , associated with the eigenvalue 

n . That is 2

0n n   , where 

n n n    . 

 

2.3   Tridiagonal Physics: J-matrix method  

 

The J-matrix method is a process of  tridiagonalization where a linear operator, which can 

be a differential or difference operator acts on a function space given by a set of linearly 

independent function  
0n n

f



 with the operator L acting tridiagonally on these 

functions 
0n n

f



.  That is 

 

                                   

1 1

0 0 1 0 0

,      1n n n n n n nLf A f B f C f n

Lf A f B f

    

 
                          (2.3.1)                               

 

where  , ,     are constants for all  n n nA B C n
 

The two above equations can be combined with the assumption that C0 = 0. It can then be 

said that 0
( )n nn

p z y


  is a formal eigenfunctions of L for the eigenvalue z if pn obeys 

                            1 1 1 1 ( ) ( ) ( ) ( )n n n n n n nzp z C p z B p z A p z     
                  (2.3.2) 
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for n ϵ N and A-1 = 0. In case Cn ≠ 0 for n ≥ 1, the recursion relation can be used to find 

Pn(z) as a polynomial of degree n in z by defining P0(z) = 1. This measure can provide 

relevant information on L if {yn}
∞

n=0 gives a basis for the function space on which L acts. 

Tridiagonalization also provides information on eigenvalue, bound states etc. The 

Tridioagonal relation is a three term recursion relation, and the works of [18], [19], [20], 

[21], [22] has established the relationship between three term recursion relation and 

orthogonal polynomials. This background forms the basis of J-matrix approach. The 

work of Al-Salam and Chihara [23] also explained that if  
0n n

f



 is a class of orthogonal 

polynomial with differential relation 

                              
1 1

( )
( ) ( ) ( ) ( )n

n n n n n n

df x
G x A f x B f x C f x

dx
   

                 (2.3.3)
 

where ( )G x  is a polynomial of degree 2 , then the function nf  is either Jacobi, 

Laguerre or Hermite polynomials: 

                   

             , , , , , ,2 ( , )

1 1

( ) ( ) ( )

1

1

1 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) 2 ( )

n n n n n n n

n n n

n n

d
x P x A P x B P x C P x

dx

d
x L x nL x n L x

dx

d
H x nH x

dx

            

  

 





   

  


(2.3.4)

 

Where ( , ) ( )nP x  , ( ) ( )nL x , ( )nH x  denote Jacobi, Laguerre, and Hermite polynomials 

respectively. 

 



11 

 

2.4   The computational tools of the J-matrix method  

 

If we consider a scattering system of incident particles and structureless targets with a 

total Hamiltonian H can be represented by a time-independent Schrodinger wave 

equation ( ) 0H E   , where   is the wavefunction. If the total Hamiltonian is 

broken into two components, such that 

                                               
H H V 

                                                      (2.4.1)
 

where H  is the free Hamiltonian and V, the potential. The free Hamiltonian is 

considered to be the Hamiltonian of the system describing infinite separation of the 

incident particle from the target where V = 0. 

If we assume that V is composed of two parts, such that 

                                     0V V V 
                                                                    (2.4.2)

 

Where V0 is the analytical part and V the short range potential, which when added to the 

free Hamiltonian gives the reference Hamiltonian 

                                 0 0H V H 
                                                                     (2.4.3)

 

which can be represented by a tridiagonal matrix using a proper L
2
 basis,  

0n n





. 

Expanding the wavefunction   in terms of this complete basis, especially for the case 

of bound state determination, 
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n n

n

a  , with the wavefunction energy-normalized as  

                                                  
( ) ( ') ( ')E E E E                                   (2.4.4) 

However, in scattering phenomena, this approach does not necessarily give a solution to 

the Schrodinger equation. Nonetheless, by taking the short range potential to be zero 

(H=H0), we can find in the basis, a state  so that
   

                                       0( ) 0n H E  
     For all n.                                (2.4.5) 

is satisfied outside a dense region of space, V , around V .  An important condition for 

the selection of a suitable basis, is the fact that the operator J = H0 - E must be 

Tridiagonal or Jacobian. Tridiagonal, in this sense, means that  0 0n mH E    

where 1n m  . By expanding the basis   in the basis set  n , such that 

m ma   we can rewrite 2.4.5 as  

                 
 0 0n m m

m

H E a    or 0nm mm
J a   for all n.                     (2.4.6) 

where nmJ  represents the tridiagonal matrix of H0-E in the basis set  n . nmJ  can be 

used to express a recursion relation for a specific H0 and  n  in terms of na  and 1na  , 

such that we have 

                                   , 1 1 , , 1 1 0n n n n n n n n nJ a J a J a       for n>1                         (2.4.7) 

                                   00 0 01 1 0J a J a   
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The nature of Solution to the tridiagonal recursion equations is arrived at by considering 

H0 as characteristically second order operator, and as such there exists two independent 

solutions to the tridiagonal equation. In the asymptotic region, these two solutions behave 

like free particles i.e. sin(kr) and cos(kr), where 2k E . If we consider the two 

solutions as  

                                                     
n n

n

S s 
                                             (2.4.8)

 

                                                     
n n

n

C c   

where sn and cn are two sets of independent expansion coefficients. In the asymptotic 

region,    lim sin( )
r

r S kr



              

lim cos( )
r

r C kr


  

10 20 30 40 50
r

1.5

1.0

0.5

0.0

0.5

1.0

1.5

r cos r

sin r

 

Fig. 2.2: Asymptotic plot of the sine-like and cosine-like solution for = 1, λ = 1, k = 0.5 

(atomic units)  
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However, at the origin, they behave differently. One solution S  is regular everywhere, 

while the other solution C  is irregular and blow up at the origin. 

10 20 30 40 50
r

1.0

0.5

0.5

1.0

r reg r

sin r

 

Fig. 2.3: Plot of the sine-like, and regular solutions for = 1, λ = 1, k = 0.5 (atomic units)   

10 20 30 40 50
r

5

4

3

2

1

1

r irr r

cos r

 

Fig. 2.4: Plot of the cosine-like and irregular solutions for = 1, λ = 1, k = 0.5 (atomic 

units)   
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The regular solution is expanded in terms of the basis set  ns , and solved with the 

conditions that it satisfies the tridiagonal recursion relation and  0 0n H E S   , for 

all n. The irregular solution however, is expanded in the basis set {cn}, and regularized 

with that conditions that the first tridiagonal relation is satisfied and 0
00 0 01 1

2

ks
J c J c  . 

 

2.5   Phase-shift and S-matrix  

 

The matrix representation of V can be approximated in the dense subspace V , owing to 

its short range nature. This is done using the first N elements of the basis set  
1

0

N

n n





 for 

some large integer N, so that the potential is confined to an “N-box” as  

                                        

          n,m N-1

0                          otherwise

n m

nm

V
V

  
 
                            (2.5.1)

 

This kind of approximation is similar to one employed in the R-matrix theory of 

scattering, where the effectiveness of  V  is confined to a configuration space box of 

radius R. 

                                      

( )          r R

0               otherwise           

V r
V

 
 
                                (2.5.2)

 

Seeking the phase shift of scattering using the J-matrix approach: 

                                    
 

0

0N

m n

n

J V 




                                                  (2.5.3) 
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The m = 0 term gives: 

                                 
 

0
0N

nn
J V d  ,     for   n=0,1,2,….,N-1 

                               
     0 1 100 01 0, 1

... 0N N N

NN
J V a J V a J V a 
          (2.5.4) 

The m = 1 term gives: 

                           
     0 1 110 11 1, 1

... 0N N N

NN
J V a J V a J V a 
               (2.5.5) 

The m = N-1 term gives: 

                             

   

   

0 11,0 1,1

1 1,1, 1

...

0

N N

N N

N

N N N N NN N

J V a J V a

J V a J s tc

 

  

   

    
                         (2.5.6) 

The m = N gives: 

                         
   , , 1 1 1 1, 1 0N N N N N N N N N N NJ s tc J s tc J a        

               (2.5.7)
 

Thus, 

                     
   , , 1 1 , , 1 1 1, 1 0N N N N N N N N N N N N N N NJ s J s t J c J c J a               (2.5.8) 

Let us write the three term recurrence relation for sN and cN: 

                    , 1 1 , , 1 1 0N N N N N N N N NJ d J d J d      ;     where dm= sm  or cm        (2.5.9) 

Thus, 

                          , , 1 1 , 1 1N N N N N N N N NJ c J c J c                                                 (2.5.10a) 
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                         , , 1 1 , 1 1N N N N N N N N NJ s J s J s                                                  (2.5.10b) 

Using (2.5.10a), (2.5.10b) in (2.5.8) we get: 

                         
 , 1 1 , 1 1 1 0N N N N N N NJ a J s tc                                                 (2.5.11) 

Writing our (N+1) equations in matrix form: 

     

     

     

     

00 01 0, 1
0

10 11 1, 1 1

22,0 2,1 2, 1

1,11,1,0 1,1 1, 1

, 1 , 1 1

0
0

0 0

00

0 0

N

N

NN N N N

N N NNN N NN N N N

N
N N N N N

J V J V J V
a

J V J V J V a

J V J V J V a

J saJ V J V J V J c

Jt
J J c





   

   

  

   

   

     

 
  
  
  
  

  
  
  
  

   


 

 

 
 

 

  , 1 1N Ns 

 
 
 
 
 
 
 
 
 
 

    (2.5.12) 

A system of (N+1) equations in (N+1) unknowns: (a0,a1,…,aN;t). 

We remark here that the first set of N-equations can be solved independently for 

(a0,a1,…,aN-1), then we use the value of aN-1 found in (2.5.11) to obtain the phase shift 

through t = tanδ 

                              
  ˆ ;H E a W    ,nm m n        0 1 1

ˆ , ,...,
t

Na a a a        (2.5.13) 

                                      

1,

          0

          0

         

          0

          0

 N N NJ d

W



 
 
 
 
 
 
 
 
 



 

;          N N Nd s tc 
                      (2.5.14)

 

                               
 

1
ˆ H E W GWa


   ;       

1
G H E


                     (2.5.15) 
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                               1 1, 1 1,N N N N N Na G J d                                                          (2.5.16) 

Using (2.5.16) in (2.5.11) and solving for t gives: 

                           
    , 1 1, 1 1, , 1 1 1 0N N N N N N NN NNN NJ G s cJ tJ s tc        

   (2.5.17)
 

                           

1, 1 1,

,

1

1 11 1 ,

N N N N

N N N N

N N

N N

s s

c

G J
t

G J c





  

  

 
  

  




                                               (2.5.18) 

Since, tant  , and 2iS e   then, 

                        

2

2

sin 1 1 1 1 1
tan

cos 1 1

i i i

i i i

e e e S

i e e i e i S

  

  










  
   

                            (2.5.19)
 

                        

1
tan

1

S
i

S


 
  

                                                                          (2.5.20)

 

                       

tan

tan

i
S

i









                                                                                 (2.5.21) 

But 
1, 1 1,

1 1 1,

1

1 ,

tan
N N

N

N N N N

N N N NN

G J

G J

s s

c c
   

  


 

  



 
 

 

                             

   

   
1 1 1, 1 1,

1 1 1, 1 1,

N N N N N N N N

N N N N N N N N

c is G J c is
S

c is G J c is

    

    





 


 
                        (2.5.22) 

Equation (2.5.22) is the same as equation (2.14) in the paper of Yamani & Abdelmonem 

[24]. Due to the fact that numerical computation and stability shows that cN + isN blows 

up, we prefer to write (2.5.22) in terms of their ratios: 
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 

 

 
 
 

 

1, 1 1,

1 1 1 1

1 1
1, 1 1,

1 1

1

1

N N

N N N N

N N N N

N NN N
N N N N

N N

c is
G J

c is c is
S

c isc is
G J

c is

  

   

 
  

 

 
 

  
 
 

             (2.5.23)

 

Defining:    
 

 
1 1

1

1 1

N N

N

N N

c is
T

c is

 



 





   and    

 

 1 1

N N

N

N N

c is
R

c is



 





 

Thus,                     
1, 1 1,

1

1, 1 1,

1

1

N N N N N

N

N N N N N

G J R
S T

G J R



  

 

  

  
  

                                          (2.5.24)

 

We recall that only G contains the scattering potential, so 
1, 1N NG  

 is the only dynamic 

factor. The factors 1NT  , 
NR , and 

1,N NJ 
 are kinematics related to the H0-problem and are 

independent of V 

 

2.6   The Numerical scheme  

 

Solutions of Schrodinger equation for certain potentials have been studied in details over 

the years using several numerical and perturbative schemes since exact analytical 

solutions are non-existent. Several of these computational schemes for investigating 

electron scattering have focused on quantal methods [25].  In general, there are two class 

of numerical methods employed in electron scattering, namely the perturbation-series 

expansion and the non-perturbative close-coupling approach. The perturbation-series 

expansion is based on Born series variation, and has successfully been used for high 

energy collision. But, the close-coupling expansion is based on the basis set technique, 
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and used to simulate low energy collision. Close-coupling has been achieved by various 

iterative, non-iterative, and algebraic numerical procedures [26], [27]. Over the years, 

calculation of energy spectrum has been achieved using numerical methods, with and 

without the Pekeris approximation [28-31]. Such as the variational method without the 

Pekeris approximation [32], hyper-virial perturbation method without the Perekis 

approximation [33], the modified shifted large 1/N approach [34], Supersymmetry [35, 

36], and the shifted 1/N expansion [37]. Other semi-analytic numerical approach include 

asymptotic iteration methods (AIM) [38], the two-point quasi-rational approximation 

technique (TQA) [39], Nikiforov-Ufarov method [40, 41], and the exact quantization rule 

(EQR) [42]. Many of these numerical techniques suffer setbacks owing to their 

cumbersomeness, limited accuracy and too long computational time. Correction of these 

anomalies led to the emergence of the J-matrix approach. 

 

2.7   Model potential  

 

To understand the scattering of subatomic structures, there is need for a configuration 

potential function that will model the system. Such potentials provide an effective model 

for physical systems, and a test model for numerical procedure constructed for solving 

complicated systems. Some of these potentials have been studied over the years, such as 

the Hellman potential, Hulthen potential, Yukawa potential, tamed Yukawa potential, 

Morse potential, Inverse Morse potential, to mention but a few. These potentials have 

been used to model singular but short-range interactions in different areas of Physics, 

especially high energy physics, and atomic-molecular physics.  
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Table 2.1: Different potentials and their parameters 

 

 

 

 

 

 

 

 

 

An important property of these potentials is that they are singular short range potentials ( 

except Morse potential is regular). Short range potentials are characterized by two 

important parameters; the strength, and range of the potential. They can be generally 

described as  

                                                
( ) ( )V r g r

r


 

                                       (2.7.1)
 

where α and 1/ µ are respectively the strength and range of the potentials. Short range 

potentials are exponentially small in the asymptotic domain, ( ) ( )rV r O e  , 0  , for 

r  . Also, these potentials have the behavior 
1

( )V r
r

 , for 0r  , that is they 

Potential Function Parameters 

Yukawa r

Y

A
V e

r

   
A, µ 

Hulthen 

1
Hu r

V A
e


 


 

A, µ 

Hellman r

He

A e
V B

r r



    
A,B, µ 

Morse 2 ( )/ ( )/
[ 2 ]e e e er r r r r r

M eV D e e
    

   eD , 
e

r ,α 

Kratzer 2

2

2
( ) e e

K e

r r
V r D

r r

 
   

 
 

eD , 
e

r
 

Inverted Kratzer 
2

1
( )

2
IV r

r r


 

 

τ
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show a coulomb-like behavior at small distances. The short range feature of the potentials 

is enhanced by the fact that ( )g r  decays sharply at large distances. Computation of 

resonances has suffered a setback owing to the singularity of these potentials at the 

origin. Hence, the need for an approach that will take care of this singularity while giving 

an accurate and stable solution. In fact, this is a major benefit of the J-matrix approach. 

The J-matrix absorbs the singularity in the reference Hamiltonian while leaving the non-

singular part to numerical computation. The Hamiltonian is decomposed into two parts; 

the reference Hamiltonian H0, and the effective potential U(r).  H = H0 + U(r) 

The reference Hamiltonian (H0) absorbed the isolated singularity, while the effective 

potential which is bounded everywhere and non-singular is treated numerically.  

 

2.8   Bound and Resonance states  

 

 

Fig. 2.5: typical distribution of bound and resonances states (Ref: [44]) 
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If we consider a particle of mass m moving on the real line ( , )x   subject to a 

constant potential energy V(x) at both ends, such that 

                                                    

( )L R
xx

V V x V


   

                                                  
,[ ( ) ] 0lim R L

x

x V x V


 
                                (2.8.1)

 

Then, we have a bound potential V(x) when L RV V , assuming that smaller of  VL or VR 

is zero. If we consider a quantum mechanical system described by a wave function 

( , )x E  which obeys Schrodinger’s equation 

                                                  2 2[ ( )] ( , ) 0x k V x x E    .                       (2.8.2) 

There exist three possible quantum states: bound state, resonant state, and scattering state. 

Bound states are characterized by real negative energy with square integrable wave 

function. Bound state solutions decay exponentially at the asymptotes. Resonant states 

are characterized by wave functions with only outgoing waves at large distance, and its 

solution exist at complex energy
2

resE E i


  ( 0, 0)resE   
 
. While, scattering state 

has real positive energy whose wave function is a superposition of the incident and 

scattered waves. Alternatively, Bound states have negative energy states which are 

stationary, while resonance or quasi-bound states are states with positive energy which 

are initially bounded, but eventually tunnel through the potential barrier as shown below. 
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Fig. 2.6: potential supporting bound states and resonances. 

Generally speaking, energy spectrum of the Hamiltonian as defined by the poles of the 

Green function 
, ( )L ZG E in the complex energy plane can be grouped into three parts: (1) 

bound states which are characterized by a discrete set of points on the real negative 

energy axis. (2) Scattering states which are characterized by a continuum on the real 

positive energy line. (3) Resonant states which are composed of discrete set of points in 

the lower half of the complex energy plane. 

The study of resonance is crucial to the understanding of scattering of particles. Over the 

years, different techniques have evolved to investigate and analyze resonances with a 

view to improving accuracy and enhance efficiency of computations with regard to 

locating resonance widths and positions. Resonance energies are subset or poles of the 

scattering S-matrix situated in the lower half of the complex energy plane. Resonance 

states are unstable bound like-state whose decay rate increases with the negative value of 

the imaginary part of the resonance energy. Resonance states can be classified as shallow 

or deep based on stability and decay rate. Shallow or sharp resonances are more stable 
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resonances with slow decay rate located close to the real energy axis, while the deep or 

broad resonances are less stable resonances with fast decay rate located far from the real 

energy axis. An important sufficient condition for obtaining resonance position 
RE and 

width 2 IE  , is the singularity of the S-matrix elements at complex resonance energy E. 

1( ) 0,    R IS E E E iE    .  One way to expose hidden resonances is to use the complex 

rotation method. 

 

Fig. 2.7: Hidden resonance exposed by complex rotation (Ref: [45]) 

 

2.9   Complex scaling method  

 

As stated earlier, resonance energies are subset of the Green’s function poles , ( )l ZG E
 
(for 

real  and Z), which are situated in the lower half of the complex energy plane. One way 

of exposing the “hidden resonances” which are situated below the real line of the 

complex energy plane is to employ the complex scaling (complex rotation) method. It 

exposes the resonance poles thereby ensuring their easier study and manipulation. This 
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method transforms the radial component as ir re  , where θ is the scaling angle. The 

pole structure is then transformed in the E-plane as: 

                                             
1

, ( ) ( )l ZG E H E   
                                           (2.9.1)

 

where H  is the complex-scaled full Hamiltonian, which is composed of : (1) the branch 

cut that lies on the real positive energy axis and undergoes a clockwise rotation by 2θ; (2) 

the discrete bound state energy on the negative energy axis;  (3) isolated hidden 

resonances in the lower half of the complex E-plane get exposed. The complex E-plane is 

composed of two Riemann sheets. The first and second sheet represents the upper and 

lower half of the E-plane, respectively. The bound states are located on the upper half of 

the first energy sheet, while the conjugate anti-bound states are located on the lower half 

of the second energy sheet. Poles of the resonant and anti-resonant states are located on 

the lower half of the second energy sheet. 

 

Fig. 2.8: Complex E-plane (Ref: [46]). 
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Complex scaling method (CSM) was laid down by Aguilar, Balslev, and Combes in 1971 

[47, 48], and Simon proposed its direct application to resonance [49], where it was used 

to derive the resonance energy and width by solving the eigenvalue problem 

H E    , where E is a complex eigenvalue. The boundary condition for the outgoing 

wave for the complex scaled Schrodinger’s equation should be such that arg 2E  . 

CSM has over the years been applied to the understanding of resonance in the field of 

nuclear, atomic and molecular physics  to obtain resonance parameters and scattering 

cross-section [50]. In the work of Aguilar, Balslev, and Combes, CSM was formulated by 

using the transformation U(θ) for radial coordinate r and conjugate momentum k; 

( ) ,  ( )  i iU r re U k ke     . The complex scaled Schrodinger equation 

( ) ( ) ( ) ( )H E      undergo transformation such that 1( ) ( ) ( )H U HU    , 

where 1( ) ( )U U    and 3 /2( ) ( ) (re ) i iU e        . The factor 3 /2ie  resulted from 

the Jacobian transformation in three-dimensional space. The properties of the solution 

obtained are summarized as follows: 

1. The bound and resonant state solutions are characterized by square integrable 

function. 

2. The bound states energies are not affected by complex scaling 

3. If the scaling angle θ is set to larger than θr 
11

( = tan ( ))
2 2

r

rE
  

, describing the 

resonance position. The resonance energy Er and half width Γ/2 are real and 

imaginary parts of the complex eigenvalue E(θ) i.e. ( )  -i
2

rE E


 . 
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4. The continuum spectrum which is initially imparted to the beam is rotated clock 

wisely by 2θ from the positive real axis in the complex energy plane. 

 

Fig. 2.9: A schematic distribution of the eigenvalue of H(θ) (Ref: [46]) 

  

2.10   Reference Hamiltonian in 3D J-matrix  

 

The dynamical properties particle moving in a certain potential V(r) with spherically 

symmetry and under the influence of Coulomb field, can be illustrated by the Schrodinger 

equation, 

                          

2

2 2

1 ( 1)
( ) ( ) 0

2 2

d l l Z
H E V r E

dr r r
 

 
        

               (2.10.1)

 

where  and E represents angular momentum quantum number and total energy 

respectively. In atomic units, 1m e   . The wave function ( )r which is 

parametized by , Z, and E, can be expanded in  a complete basis set n . The choice of 
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the basis is done to ensure that the reference Hamiltonian is represented in the form of a 

tridiagonal matrix. Hence, the basis must be compatible with the domain of the 

Hamiltonian, and satisfy the boundary conditions at 0r  and r  . Also, the basis is 

parametized by a positive length scale parameter  as ( )n r  . 

                            
/2( ) ( );      n=0,1,2,...x v

n n nr A x e L x   
                     (2.10.2)

 

where , 0, 1, ( )v

nx r v L x     is a Laguerre polynomial, and An is a normalization 

constant ( 1) / ( 1)n n v     . The reference Hamiltonian 0( )H H V  in the chosen 

basis, has a matrix representation 

                          

2 2 2

0 2 2

( 1)
( ) ( ) ( )

2 2
nm n m

d l l Z
H x x

dx x x

  
 


   

       (2.10.3)
 

Following complex rotation and transformation on H0 ( ir re  ) or 

equivalently ie    , the reference Hamiltonian is then manipulated using differential 

equation, and properties of Laguerre polynomial to obtain a tridiagonal matrix 

representation for 2 1v   . 

                   
 

2 2

0 , , 1

2 2
2 2 1

, 1

8
( ) 2 1 ( )

8 8

               + ( 1)( 1) (2 1)
8 2

nm n m n m

n m nm

Z
H n v n n v

n n v v l x

 
 



 








 
      

 

       
 (2.10.4) 

 1 1 n

nm n

A
x

Av




  
  

 
 is a symmetric matrix, and ( )n n  is the larger (smaller) of the 

integers m and n. Using 2 1v   results in tridiagonal matrix representation of the 
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reference Hamiltonian. The basis n , though not orthogonal, can be represented by an 

overlap matrix. 

     

, , 1 , 1(2 1) ( ) ( 1)( 1)

                         

n m nm n m n m n mn v n n v n n v              

(2.10.5) 

 

2.11   Potential matrix and Gauss quadrature in J-matrix  

 

Gauss quadrature integral approximation of a function f(x) that belongs to L
2
[a,b] states 

that 

                                           

1

0

( ) ( ) ( )                 

b N

n n

na

x f x dx f  





              (2.11.1)

 

The numerical weight, n , is the square of the zero component of the normalized 

eigenvector of H, 
1

0

N

mn m




 , associated with the eigenvalue n . That is 2

0n n   , 

where n n nH    . One can show that
0

( )  ; , 0,1,..., 1kn
k n

n

p n k N


  


 

Using the recursion relation, orthogonality of the Laguerre polynomial, together 

with
0 ( ) 1vL x   suggest the definition of the density function ( ) / ( 1)v xx x e v     in the 

interval[ 0, )a b  . Orthogonal polynomial pn(x) can also be put into a standard form 

as
( 1) ( 1)

( ) ( )
( 1)

v

n n

v n
p x L x

n v

   


  
. Now, to calculate the matrix elements of the potential 

V(r), we evaluate   
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0 0

( ) ( ) ( )   = ( ) ( ) ( / )

    

v x v v

nm n m n m n mV r V r r dr A A x e L x L x V x dx    
 

   (2.11.2) 

with some appropriate power σ. This integral can be put in the form  

               0

( 1) ( 1)
( ) ( ) ( ) ( / )

( 1) ( 1)
nm n m n m

n v m v
V A A x p x p x V x dx

n m

 


     


    
   (2.11.3)

 

Using the definition of the Gauss quadrature approximation, we have 

                    

1

0

( 1) ( 1)
( / )

( 1) ( 1)

N

nm n m nk mk k

k

n v m v
V A A V

n m

 




     
  

   


            (2.11.4)

 

Using the normalization constant
( 1)

( 1)
n

n
A

n v

 


  
, the potential matrix elements 

become 

                                 
1

0

( / )
N

nm nk mk k

k

V V  




   .                                             (2.11.5) 

Based on the above formalism, the reference Hamiltonian is fully accounted for, while 

the potential V is approximated by its basis representation, such that  

                              

0

0

( ) ,     0 n,m N-1

( ) ,              N ,

nm nm

nm

nm

H V
H

H n m

  
 

                                  (2.11.6)
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2.12   Computational procedure  

 

Based on the theoretical formalism, the important parameters needed to ensure stability, 

accuracy, and convergence of our computational procedure are λ, θ, and N. The 

procedure is enumerated as follows: 

1. For small enough fixed value of N and a chosen eigenvalue, we vary the value of 

θ and the scaling parameter λ. The study of the variation of λ and θ will show a 

plateau visible over the range of the parameters. The plateau is an indication of 

stability of the eigenvalue. 

2. From the plot of the plateau of stability, we choose the value of λ and θ from the 

middle of the plateau, we then proceed to calculate the bound states for θ=0, and 

θ>0 for resonance energies by employing the complex scaling method. 

3. Having achieved stability, we set to improve the accuracy of the result by 

increasing the dimension of the space N. This increase is carefully done up to the 

precision that maintain stability of the results. 
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18 CHAPTER 3 

TWO DIMENSIONAL J-MATRIX 

3.1 Introduction to two dimensional scattering  

 

Two dimensional quantum scattering has been discussed by a number of authors [51-53]. 

The Spherical Bessel and Neumann functions in three dimensions become ordinary 

Bessel (regular at the origin) and Neumann (irregular) functions, owing to circular 

symmetry in two dimensions. The mathematical formalism involved in two dimensional 

scattering is similar to the one used in scattering of cylindrical waves in three dimensions 

[54]. As such, it has many of the complexities inherent in three dimensional scattering.  

In the past, Lapidus presented a mathematical description of two dimensional quantum 

scattering [55], while Adhikari [56] went further to study the analytical properties of the 

scattering amplitude. 

In the following two sections we consider the two dimensional problem where the 

reference Hamiltonian is the radial part of the free Hamiltonian. We find two independent 

sets of expansion coefficients for the asymptotic reference wavefunction. We show that 

one of these two wavefunctions is the exact regular solution of the reference problem. 

The other one is uniquely regularized in that it is asymptotically identical to the exact 

irregular solution of the reference problem. We show that scattering information is 

contained in the phase difference between these two asymptotic solutions. 
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3.2    Regular J-matrix solution of the reference problem  

 

A point particle in a certain short range potential  ,V r   with cylindrically symmetric 

potential and of mass M can be described by a two-dimensional time-independent 

Schrödinger wave equation as follows  

 
2 2

2 2

1 1
( , ) ( ) ( , ) 0

2
H E r r V r E r

M r r r r
   



     
         

     

, (3.2.1) 

  

where ( , )r   is the wave function and r and   represent the particle’s polar coordinates 

[57]. 

By employing the J-matrix formalism, we can expand the wave function  in a set of 

square integrable functions with discrete basis elements 

 
0n n





as ( , )r E ( ) ( )n nn

f E r , where r  is the set of real space coordinates and E 

represents energy of the particle. An important condition that characterize the discrete 

basis set is the compatibility with the Hamiltonian domain and vanishing  conditions at 

the boundary  for both  r = 0 and r =  . The expression in (3.1) can be separated based 

on cylindrical symmetry of the potential such that ( , ) ( ) ( ) /r R r F r   , which then 

yield the equation  

 
 

 
2 2

2

2 2 2 2

1 1/ 4 1
( ) , ( ) 0

2 2 2

rd d
F E r r V r F

dr r r d


   



   
         
     

(3.2.2)
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Where  = M = 1 .The equation (3.2.2) above can be expressed for non-central potentials 

of the form 

                                           
1 22

1
( , ) ( ) ( )V r V r V

r
  

                        

(3.2.3) 

The angular and radial parts then become  

     
2 2 2

2

2 12 2 2

1 1 1/ 4
( ) ( ) ; ( )

2 2 2

d d m
V F k F V r r E r

d dr r
    



   
         
   

(3.2.4

 

  

 

with E and k representing the eigenvalues of the radial and angular equations, 

respectively. Considering the exact solvability of the above angular equation, we choose 

a specific angular potential V2( ) that satisfies the periodicity condition  

V2( ) = V2( +2π) . Some of these angular potentials have been studied [58], for the 

purpose of ensuring a clear quantization process for the inter-related physical constants E 

and k, we settled for a simple form of the well-known Poschl-Teller potential 

                                        
 

2 2
( )

sin

B
V

p





                 (3.2.5)

 

B and p are physical constants. For the angular potential to satisfy the periodicity 

requirement, it is important that p must be an integral multiple of ½. Also, the potential is 

continuous with singularity at 0,
p


   thereby restricting the angular variable 
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0 / p   and ensuring that ( )F  vanish at these boundaries (0) ( / ) 0F F p  . For 

details on ( )F   see [58], the un-normalized angular wave function takes the form 

1 12

1 1
( ) (sin ) (cos ) ; 1 4 ; ( )

2 2
n

B
F p C p m p n

p

              (3.2.6) 

where n1 = 0,1,2…is a positive integer and κ is a real parameter so that we require that  

4B/p
2
 + 1 > 0. We now look at the radial equation (3.2.4). We have defined the reference 

Hamiltonian, termed H0, as  

2 2
2 2 2

0 1 12 2

1 1/ 4
; ( ) ; 0,1,2

2 2

d m
H m p n n

dr r



     

                 
(3.2.7) 

We begin by obtaining the solution to the reference problem analytically using the tools 

of the J-matrix method then after that we add the contribution of the scattering potential 

in the form of its matrix elements in a complete square integrable basis. Now, since the 

range of the potential is finite then its contribution is approximated by its matrix elements 

in a finite subset of the basis. The virtue of the J-matrix method is that it gives an exact 

solution of the problem for this truncated matrix model of the potential. Most other 

methods, on the other hand, give approximate solution of the problem for the exact 

potential. However, very often the truncated matrix elements of the potential give a 

faithful representation of the potential due to its short range. Nevertheless, the reference 

wave equation of the problem in 2D reads as follows  

 
2 2

2 2

1 1/ 4
( ) ( , ) ( , ) 0

2 2

d
J E r E E r E

dr r
 

 
     
 

m
,                (3.2.8) 



37 

 

where 0( )J E H E   is the reference wave operator. The solution to this equation 

yields two independent solutions (for 0E  ) , which represent the energy eigenfunctions 

of H0,  and has been obtained in most standard textbooks on quantum mechanics [59]. 

They are written in terms of the Bessel and Neumann functions as follows: 

                          ( , ) 2 ( )reg r E kr kr  m ,    (3.2.9) 

                        ( , ) 2 ( )irr r E kr kr  m ,               (3.2.10) 

where 2k E , ( )x  and ( )x  are the Bessel and Neumann functions, 

respectively. The regular solution is energy-normalized, ( )reg reg k k     , whereas 

the irregular solution is not square integrable (with respect to the integration measure, 

dr). Near the origin they behave as 
1/2

reg r



m

 and 
1/2

irr r
 


m

. On the other 

hand, asymptotically ( r ) they are sinusoidal:  2 4
2 cosreg kr  
   m  and  

 2 4
2 sinirr kr  
   m [60]. Now, in the J-matrix method, the emphasis is on the 

scattering information, which is contained in the phase difference between the two 

asymptotic sinusoidal solutions of (3.2.9) and (3.2.10). For that, the method replaces 

these two solutions with an equivalent series representation, in an L
2
 basis, that is 

identical to it asymptotically. Such L
2
 basis functions,  

0n n





, must be complete and 

should support an infinite tridiagonal matrix representation for the reference wave 

operator J = H0  E. These requirements endow the method with its powerful analytic and 

computational tools. On the one hand, the analytic tools of orthogonal polynomials 

associated with tridiagonal matrices and three-term recursion relation. On the other hand, 
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the stability and accuracy of the computational routines that favors tridiagonal matrices 

(e.g., in the calculation of their eigenvalues and eigenvectors) in addition to the use of 

Gauss quadrature approximation associated with tridiagonal representations. Now, one 

such basis, which is compatible with the domain of our problem (i.e., defined in the same 

range [0, ]r   and satisfies the boundary conditions), well behaved at the origin, and 

square integrable is [61] 

                   
1
2 /2( ) ( ) ( )y

n n ny A r e L y 
 

m
,    (3.2.11) 

where  is a positive basis parameter of inverse length dimension, and ( )nL y  is the 

associated Laguerre polynomial of order n with 1   . We choose to work in, what is 

referred to as, the “Laguerre basis” for which ( )y r . The normalization constant nA  is 

chosen in this basis to be ( 1) ( 1)nA n n       . In Appendix B, we repeat the 

same development in the “oscillator basis” for which
2( )y r . Using the differential 

equation of the Laguerre polynomials [62], their differential formula, 

1( )n n n
d
dx

x L n L n L      , and recursion relation we can show that the matrix 

representation of the wave operator J in the Laguerre basis will be tridiagonal only if  

2  m  giving 

  
 

 

2

02 2

, , 1 , 1

1
4

1
2

2 2
( )

2 ( 2 ) ( 1)( 2 1)

nm n m

n m n m n m

J E H E

n x n n n n

  
 

   

    

         
 

(3.2.12) 
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where m , 
2

2

1 4

1 4
cosx









   with 0     and k  . The reference wave 

function, which is regular at the origin and which we refer to from now on by sin ( , )r E , 

can be expanded as follows 

             
sin

0

( , ) ( , ) ( ) ( )reg n n

n

r E r E s E r  




                  (3.2.13) 

This is a solution of the homogeneous differential equation,  0 sin( , ) 0H E r E  . 

Using (3.2.13) and the fact that the basis set  
0n n





 is complete and orthonormal we 

arrive at a three term recursion relation for the expansion coefficients,  
0n n

s



, of the 

from 0nm mm
J s  , which explicitly reads 

         1 1
1
2

2 ( 2 ) ( 1)( 2 1)n n nn x s n n s n n s         ,    (3.2.14) 

with the initial condition  

                                          0 12 1 (2 1) 0x s s    .            (3.2.15) 

This recursion relation could be solved (modulo an arbitrary non-zero function of the 

energy) by correspondence with those of known orthogonal polynomials. However, in 

this work, we pursue a direct integration approach to obtain the expansion coefficients 

 
0n n

s



 by writing (3.2.13) as 

                      0

( , ) 2 ( ) ( ) ( )reg n n

n

r E y y s E y   




               (3.2.16) 
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After multiplication with the proper factor, this equation could be integrated using the 

orthogonality of the Laguerre polynomials giving  

                 
1 2 2

0
( ) 2 ( ) ( )y

n n ns E A y e L y y dy  


   .  (3.2.17) 

This integral could be evaluated using the result in [63] giving  

                 
1 1
2 2

( 1) 1
2( 2 1)

1( ) 2sin (cos )n n

n

n
s E C


 

  

  
   , (3.2.18) 

where 1 2 ( )nC x  is the ultra-spherical Gegenbauer polynomial. Using the differential 

equation of these polynomials [64], one can show that the sine-like coefficients satisfy 

the following second order energy differential equation 

   
2 2

2
2

2 2

1
2

1 4
1 ( ) 0

1
n

d d
x x n s E

dx dx x

 
       

 
.  (3.2.19) 

In the following section, we calculate the other independent asymptotic solution of the 

reference problem (the cosine-like solution, cos ).  

 

3.3      J-matrix regularization of the irregular reference solution  

 

Now, we look for a second independent solution,  
0n n

G



, of the above recursion relation 

that satisfies (3.2.14) but with the following inhomogeneous initial relation 

                           0 12 1 (2 1)xG G     ,   (3.3.1) 
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where  is a real parameter that depends on E and , which is fixed by the asymptotic 

boundary conditions as follows. The cosine-like solution (also called regularized 

solution) is defined by 

                                   
cos

0

( , ) ( ) ( )n n

n

r E G E r 




 .                          (3.3.2) 

In Dirac notation, we can write 
cos n nn

J J G   . Using completeness of the bi-

orthogonal basis, 
0

1n nn
 




  where 

m n mn   , and the fact that the J operator 

is tridiagonal in this representation we get 

   cos , , 1 1 , 1 1

0

m m m m m m m m m m

m

J J G J G J G 


   



   .  (3.3.3) 

Due to the fact that the set  
0n n

c



 satisfy the recursion (3.2.14) with its initial relation 

(3.3.1), all terms in the above equation vanish except for  m = 0, which then gives  

                cos 00 0 01 1 0J J G J G   .    (3.3.4) 

Using the J-matrix element as can be identified easily from (3.3.1) we obtain 

cos 0J    , which is written in r-space as 

            
2 2

cos 02 2

1 1/ 4
( , ) ( )

2 2

d
E r E r

dr r
  

 
    
 

.  (3.3.5)  

The Green’s function ( , )g r r  associated with the reference wave operator J, which 

satisfies ( ) ( , ) ( )J E g r r r r    , is given by 
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2

( , ) ( ) ( )
( )

reg irrg r r r r
W E

  
  ,    (3.3.6) 

where r  and r  stands for the largest and smallest among r and r . W(E) is the 

Wronskian of the two independent solutions shown in (3.2.9 & 3.2.10), which reads 

4W k    4   . Using the Green function, the solution of (3.3.5) becomes 

 

cos 0

0

0 0

0

( , ) ( , ) ( )

2
( ) ( ) ( ) ( ) ( ) ( )

r

irr reg reg irr

r

r E g r r r dr

r r r dr r r r dr
W

  


     





   

 
        

 



 

(3.3.7) 

Imposing the asymptotic boundary condition 
coslim ( , ) ( , )irr

r
r E r E 


  gives 

02W s   . Using the Wronskian and the value of s0 as given by Eq. (3.2.18) we obtain 

         
 

 
1 22

(2 1) 2sin
1 2

  
  

 
  
 

   (3.3.8) 

and 
4 2 1

1

k x
W

x



 


 


  while 0s   

 
 

1
2 2 4

1
22 1

(2 1)
x 

 


 
, (recall: cosx  ) 

Moreover, Gn obey the recursion relation (3.3.1) which can be brought into a simpler 

form through the transformation 

                               

( 1) (2 1)

( 2 1)
( ) ( )n n

n

n
G x c x

   

  
 ,                                 (3.3.9) 

Leading to 

  1 12 2 1 ( 2 ) ( 1) ; 1,2,3,....n n nn x c n c n c n                    (3.3.10) 
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The initial condition (3.3.4) can then be

 

written explicitly as follows  

 

             
 

0 1 2 2 1
4

2
(2 1)xc c



 
   


.    (3.3.11) 

Iterating the above recursion relation (3.3.10) starting from the initial condition (3.3.4) 

for successive values of n leads us to the following general structure of the solution  

            1 2

0 1( ) ( )n n nc c C x Q x

  ,                (3.3.12) 

where  

                       
   

3
2 1

2 4 2

2 2 1
2

1
4

(2 1)2 2
(1 )x




  


 

   
 

                      (3.3.13) 

and the new polynomials Qn satisfy the following recursion relation  

 
 

 

1 1

0 1 0

2 2 3 (2 1) ( 2) ; 1

2 3 2 0 ; 1

n n nn xQ n Q n Q n

xQ Q Q

        

   
  (3.3.14)  

Comparing this recursion relation for Qn with that associated with the Gegenbauer 

polynomial, we deduce that their recursion coefficients are shifted by one unit (i.e. 

1n n  ). These are just the associated Gegenbauer or Wimp polynomials as defined in 

Sec. 5.7.1 of [64] by 1 2( ,1)n nQ x . In the literature, 1 2( , )n x c  obeys the following 

recursion relation 

     1 2 1 2 1 2

1 1

1 2 1 2

0 1

2 1 2 2 1 ; 1

( , ) 1 ; ( , ) 0.

n n nn c x n c n c n

x c x c

  

 

 



         

 
(3.3.15) 
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Thus, the general solution for the recursion relation (3.3.10) can written as follows 

                    1/2 1/2

0 1( ) ,1n n nc x c C x x 

  .                     (3.3.16) 

And                       1/2

1

( 1) (2 1)

( 2 1)
( ) ,1n n n

n

n
G x s x x 



   

  
                      (3.3.17) 

The regularized cosine-like solution can then be written as follows 

   

cos

0

1/2 1/2

0 1

0

( 1) (2 1)

( 2 1)

( , ) ( ) ( )

,1 ( )

n n

n

n n n

n

n

n

r x G x r

c C x x r

 

  






 





   

  



   



             (3.3.18) 

To fix the parameter 0c we require that for  = 0 the solution reduces to the regular one, 

with ( )ns x  as expansion coefficients, giving 

             

 1
2 1

2 4 2
0 0

1
22

2 (1 )
(2 1)

c s x
 


 

  
 

.                  (3.3.19) 

Then our regularized cosine-like solution (3.3.18) becomes 

 

cos sin 1

0

1/2

sin 1

0

(2 1) ( 1)
( , ) ( , ) ( ) ( )

( 2 1)

(2 1) ( 1)
( , ) ,1 ( )

( 2 1)

n n

n

n n

n

n
r E r E Q x r

n

n
r E x r

n

    

   














   
 

  

   
 

  





 (3.3.20) 

To verify the validity of our approach we perform computations of the sine-like and 

cosine-like solutions defined by their respective expansions  

sin

0

( , ) ( ) ( )n n

n

r E s E r 




 , 
cos

0

( , ) ( ) ( )n n

n

r E G E r 




 .  (3.3.21) 
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Both should be regular at the origin and sin ( , ) ( , ) 2 ( )regr E r E kr J kr

    whereas 

coslim ( , ) lim ( , ) lim 2 ( )irr
r r r

r E r E kr Y kr

 
  

  . For illustration, we show in Figures 

3.1 and 3.2 the sine-like and cosine-like solutions obtained from the series expansions 

(3.3.20) for a given energy and angular momentum. As expected, the sine-like solution is 

identical to the regular solution (3.2.9) while the cosine-like solution coincides with the 

irregular solution only asymptotically but deforms itself near the origin, as imposed by 

the J-matrix regularization scheme, to comply with the vanishing of the wave function at 

this boundary. On the other hand, Figure 3.3 shows that the phase difference between 

these two solutions is exactly 2  asymptotically as required by construction. These two 

solutions, sin ( , )r E  and cos( , )r E , are the carriers of the scattering information at the 

detector side (far from the interaction center). This information is stored in the phase 

difference between the two solutions. In the absence of interaction, this phase difference 

is exactly 2  for all energies. 

Using the J-matrix approach, the reference Hamiltonian matrix  0 nm
H  is obtained from 

(3.2.12) by setting E = 0 whereas the matrix elements of the potential in the basis (3.2.11) 

are obtained by evaluating the integral 

     
 

0

1 2 2 2

0

( ) ( ) ( )

( ) ( ) ( )

nm n m n m

y

n m n m

V V r V r r dr

A A y e L y L y yV y dy

     

 




 

 






  (3.3.22) 

The evaluation of such an integral for a general short-range potential function V(r) is 

usually done numerically. We use Gauss quadrature approximation (see Appendix A in 

[4]), which gives 



46 

 

                      
1

0

( )
N

nm nk mk k k

k

V V  




   ,   (3.3.23) 

where k  and  
1

0

N

nk n




  are the N eigenvalues and corresponding normalized 

eigenvectors of the NN tridiagonal basis overlap matrix n m  , which is obtained from 

(3.2.12) as the tridiagonal matrix multiplying E 

  , , 1 , 12 2 1 ( 2 ) ( 1)( 2 1)n m n m n m n mn n n n n             
       

(3.2.24) 

 

Table 3.1: The explicit form of the J-matrix kinematics quantities,  ( ), ( )n nT E R E
, the 

finite Green’s function, 1, 1( )N Ng z  , and 1, ( )N NJ E  in the Laguerre basis. The 

eigenvalues of the finite N N  total Hamiltonian H are denoted by  
1

0

N

n n




  
and the 

eigenvalues of the truncated H obtained by removing the last row and last column are 

 
2

0

N

n n





.  

1, 1( )N Ng z      
2 1

0 0

1

2

N N

m nm n
z z

N
 

 

 

  
 
   

 nT E  
( ) ( )

( ) ( )

n n

n n

G E is E

G E is E




 

 nR E  
1 1

( ) ( )

( ) ( )

n n

n n

G E is E

G E is E 




 

( )ns E   
1 1
2 21

2
(2sin ) (cos )n

n

A
C 

 

 
   

 nG E     1/2 1/2

0 1

( 1) (2 1)

( 2 1)
cos cos ,1n n

n

n
c C    



   

  
    

1, ( )N NJ E   2 8 ( 2 )E N N   



47 

 

10 20 30 40 50
r

1.0

0.5

0.5

1.0

r reg r

sin r

 

Fig. 3.1: Plot of the sine-like, and regular solutions for = 1, λ = 1, k = 0.5. (Atomic units 

used) 
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Fig. 3.2: Plot of the cosine-like, and irregular solutions for = 1, λ = 1, k = 0.5 (Atomic 

units used) 
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Fig. 3.3: Asymptotic plot of the sine-like and cosine-like solutions  
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19 CHAPTER 4 

NUMERICAL RESULTS 

4.1    Bound states for the Kratzer potential  

 

To test the validity and show the utility of our 2D J-Matrix formalism we propose to 

consider the Kratzer potential as a model for the structure and dynamics of diatomic 

molecules and obtain the bound states and scattering phase shift for different diatomic 

molecules. Solutions of Schrodinger equation for motion of a particle under the influence 

of a central potential field is a very important problem in the field of theoretical Physics, 

as the solution thus obtained will help in understanding the structure and interaction of 

such system. One of such potential is the Kratzer potential, which was proposed a long 

time ago [65], and has been constantly revisited especially as its wave function can be 

used as basis set for diatomic molecules [66]. The role of Kratzer potential in the field of 

quantum and molecular chemistry cannot be overemphasized, owing to its extensive use 

in describing molecular structure and interactions [67-72]. Various numerical and 

analytical methods have been employed in solving Schrodinger equation with Kratzer 

potential in three dimensions, but not much has been done for two dimensional solutions. 

Some of the numerical approach for obtaining two and three dimensional solutions with 

Kratzer potential include Asymptotic iteration (AIM) [73], Supersymmetry (SUSY) [35], 

Exact quantization rule (EQR) [74], and the Nikifurov-Uvarov (NU) [75]. 

The Kratzer potential is defined by  
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2

2

2
( ) e e

e

r r
V r D

r r

 
   

 

                                           (4.1.1)

 

where eD is the dissociation energy and er is the equilibrium inter-nuclear separation. 

Figure 4.1 shows the shape of the Kratzer potential for different diatomic molecules, with 

minimum at er . The Kratzer potential is composed of both the coulombic repulsive part 

and the centripetal attractive part. The combinations of the two parts form an effective 

potential pocket, where a particle can be trapped in a Kratzer potential well. The r
-1

 term 

can be interpreted to be related to the coulombic potential energy for diatomic molecules, 

and the r
-2

 term is related to the electronic kinetic energy [76]. The figure also reveals 

that, as r goes to zero, V(r) goes to infinity owing to strong inter-nuclear orbital 

attraction, and as r goes to infinity, V(r) goes to zero. 

The aim of this work is to present the two-dimensional J-matrix approach to calculate the 

non-zero angular momentum solution of the Schrodinger equation for the Kratzer 

potential and obtain the bound states for different diatomic molecules. It is important to 

study bound state processes so as to understand the molecular spectrum of diatomic 

molecules. The Kratzer potential was solved exactly in any arbitrary dimension D ≥ 2, 

and presented in the literature [74]. For D = 2 (two dimension), we obtain,     

                      

2
2 2 2

2

2 2

2 21

2

e e e e
n

D r D r
E n

 


  
      

    

                          (4.1.2)       

Here,  is the reduced mass, which is equivalent to the mass M in our formalism. 
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The Kratzer potential is a singular potential with r
-1

 and r
-2

 singularities. Numerical 

solution is difficult to obtain as a result of the singularities. Hence, we need a numerical 

scheme like the J-matrix method where the singularities can be absorbed in the reference 

Hamiltonian and treated analytically. 

In two dimension, the reference Hamiltonian can be absorbed as 

                                            

2 2

0 2 2

1 1 4

2 2

d
H

dr r r

 
   

m
                                   (4.1.3) 

The Schrodinger equation can be described in the form (two dimensions) 

                
2 2

0 2 2

1 1 4
( ) [ ( )] ( ) [ ( )] ( )

2 2

d b
H r H V r r V r r

dr r r
  

 
        

                
22 2

2 2 2

21 1 4
( )

2 2

e e e eD r D rd b
H r

dr r r r r


 
                                       (4.1.4) 

Comparing (4.1.3) and (4.1.4) 

                                          2 2 21 1 2
4 4 e eb D r   m  

                                            

2 22

2

e e

e e

b D r

D r

  

  



m

m
                                                  (4.1.5) 

The above formalism set the stage for the code development. 

To determine the existence of bound states and resonances, we consider an electron 

trapped in a Kratzer potential. Adding the two dimensional centrifugal barrier results in 

an effective potential: 

                                    

2 2

2 2

2 1/ 4
( )

2

e e e e
eff

D r D r
V r

r r r


  

                                    (4.1.6)
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Figure 4.1: Shape of the Kratzer potential for relevant diatomic molecules 
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Figure 4.2: The effective Kratzer potential for relevant molecules at =1 
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Resonances occur if the Potential function contains a barrier behind which 

localization of positive energy electron exists. Mathematically, we first obtain the 

derivative of the effective potential with respect to r. 

                                               

2 2

3 2

2 1/ 4 2( ) e e e eD r m D rdV r

dr r r

 
    

                                               
( )

0
dV r

dr
  

                                               
2 22 1/ 4

2

e e

e e

D r m
r

D r

 
                                             (4.1.7) 

                                              ( )g r C  

                                             
2 22 1/ 4

( ) ;
2

e e

e e

D r m
g r r C

D r

 
   

                                            
( )

1
dg r

dr
                         

Since 
( )dg r

dr
is independent of r. Therefore V(r) has no extremum, and does not support 

resonance. 

However, bound states exist in certain regions where Veff(r) < 0 as shown in figure 4.2, 

that is, the minimum of the potential must be below the asymptote. We can therefore 

conclude that the Kratzer potential can support a finite number of bound states but no 

resonance. 
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4.2    Resonance states for the Inverted Kratzer potential  

 

In continuation of our test for the validity of the 2D J-Matrix formalism, we choose to 

consider the inverted Kratzer potential, having been treated as a model for electron 

scattering by negative ions [77], and obtain the resonances for different potential 

parameter. The inverted Kratzer potential is defined by  

                                           
2

1
( )

2

f
V r

r r
                                               (4.2.1)                                                                   

where f  > 0.  We calculated the resonances for the inverted Kratzer potential in two-

dimensional for first few n,  quantum numbers with model parameter f = 5, 10, 20, and 

50 and compare the results obtained with the exact analytical solution given by Complex 

dimensional scaling [78], and 1/ƞ expansion technique [79].  
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Fig. 4.3: inverted Kratzer potential for different values of f  
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Figure 4.3 shows the shape of the inverted Kratzer potential for different f. The inverted 

Kratzer potential is the sum of the columbic repulsive term, 1/r and the centripetal 

attractive term, - f /2r
2
. V(r) goes to a maximum at r = f, and as r goes to infinity, V(r) 

goes to zero from above. 

The inverted Kratzer potential was solved exactly in any arbitrary dimension D, and 

presented in the literature [78, 79]. For D = 2 (two dimension), we obtain the 

corresponding complex energy eigenvalue,
2

r

i
E E    as,  

                                           

2 2

2 2 2

2

2 2 2

1
( ( ) )

2
1

2( ( ) )
2

((2 1) )

1
( ( ) )

2

r

f n

f n

n f

f n

E

  

  

 

 



 



                                    (4.2.2) 

The Kratzer and inverted Kratzer potential are singular potentials with 1r   and 2r   

singularities, hence, we need a numerical scheme like the J-matrix method where the 

singularities can be handled and treated analytically. Based on the theoretical formalism, 

the important parameters needed to ensure stability, accuracy, and convergence of our 

computational procedure are λ, θ, and N.  
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Numerical computations were carried out with the standard parameters in Table 4.1 

[80-82] using the Laguerre basis set with N = 150 for the diatomic molecules. The 

energy eigenvalues obtained (Table 4.2-4.11) using the J-matrix approach is in 

excellent agreement with the exact results up to the precision that maintained 

numerical stability. At such significant digit, the numbers are rather truncated than 

rounded off. 

 

4.3    Phase-shift for the Inverted Kratzer potential  

 

Using the sine- and cosine-like solutions obtained above, we can write the asymptotic 

solution to the full scattering problem, 0H H V  , as 

                            2i ( )lim ( , ) ( , ) ( , )E

r
r E r E e r E   


  ,                    (4.3.1) 

where cos sin( , ) ( , ) i ( , )r E r E r E      and (E) is the energy-dependent phase shift that 

contains the contribution of the short range scattering potential V(r). We calculate (E) 

using the conventional formulation of the S-matrix in the J-matrix formalism [1-2], which 

reads as follows 

           
1, 1 1,2i ( )

1

1, 1 1,

1 ( ) ( ) ( )
( ) ( )

1 ( ) ( ) ( )

N N N N NE

N

N N N N N

g E J E R E
S E e T E

g E J E R E





  

 

  


 


,        (4.3.2) 
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for some large enough integer N and where 
i

i

n n
n

n n

c s
T

c s





, 

1 1

i

i

n n
n

n n

c s
R

c s



 





 and 

 2 2

1,
1
4

1
2

( 2 )n nJ n n     . The finite Green's function 
1, 1( )N Ng E 

 could be 

written in the Laguerre basis as follows 

          
   

2 1

1, 1 0 0

1
( )

2

N N

N N m nm n
g E E E

N
 

 

   
   
 
  ,       (4.3.3) 

Where  
1

0

N

n n





 is the set of eigenvalues of the finite NN matrix representation of the 

total Hamiltonian in the basis and  
2

0

N

n n





 are the eigenvalues of the truncated H 

obtained by deleting the last row and last column. For the phase shift computation, we 

considered the scattering region E>0, and examine energy and angular momentum 

dependence on the phase shift. 
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Fig. 4.4: Scattering phase shift (E) as a function of energy for Er = 0.0266-i0355, with f   

= 10 and =1.  
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Fig. 4.5: Scattering phase shift (E) as a function of energy for Er = 0.0107-i0.00158, 

with f =50 and =2.  
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Fig. 4.6: Plot of Abs[1-S(E)] as a function of energy for Er = 0.0266-i0355, with  

f =10 and =1.  
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Fig. 4.7: Plot of Abs[1-S(E)] as a function of energy for Er = 0.01069- i0.00158, with f 

=50 and =2.  

 

The above plots in Figures 4.4 to 4.7 shows that the Phase-shift and S-matrix are function 

of continuous energy. It also shows the resonance position (Er) of the resonance energy.  

That is 0.0266 in 4.4 and 4.6, and 0.01069 at 4.5 and 4.7. There is usually a pi-jump at 

the resonance energy as evident in these Plots.  

Table 4.1: Reduced masses and spectroscopically determined properties of various 

diatomic molecules in the ground electronic state. 

Parameters LiH I2 O2 HCl NO CO 

De(eV ) 2.515 1.582 5.157 4.619 8.044 10.845 

re (A) 1.5956 2.662 1.208 1.2746 1.1508 1.1282 

M (amu) 0.8801 63.4522 7.9975 0.9801 7.4684 6.8606 
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Table 4.2: Bound state energy eigenvalues of the Kratzer potential for LIH molecule (in 

eV) with different values of the rotational  and vibrational n quantum numbers (λ varies 

from 3 to 8, N = 50) 

 n J-matrix Exact  

0 0 -2.4675368690593 -2.46753686905937 

 1 -2.3760332946313 -2.37603329463134 

 2 -2.2895267624327 -2.28952676243272 

1 0 -2.4666308607095 -2.46663086070953 

 1 -2.3751772079391 -2.37517720793913 

 2 -2.2887169961193 -2.28871699611938 

2 0 -2.4639168327684 -2.46391683276841 

 1 -2.3726126718978 -2.37261267189782 

 2 -2.2862911715811 -2.28629117158112 

Table 4.3: Bound state energy eigenvalues of the Kratzer potential for HCL molecule (in 

eV) with different values of the rotational  and vibrational n quantum numbers (λ varies 

from 4 to 10, N = 50) 

 n J-matrix Exact  

0 0 -4.542168208642 -4.5421682086427 

 1 -4.3940324280697 -4.39403242806973 

 2 -4.2530270471624 -4.25302704716240 

1 0 -4.5408885637942 -4.54088856379422 

 1 -4.3928148662300 -4.39281486623009 

 2 -4.2518676164012 -4.25186761640124 

2 0 -4.5370539607935 -4.53705396079355 

 1 -4.3891662514363 -4.38916625143635 

 2 -4.2483931537989 -4.24839315379893 



61 

 

Table 4.4: Bound state energy eigenvalues of the Kratzer potential for O2 molecule (in 

eV) with different values of the rotational  and vibrational n quantum numbers (λ varies 

from 5 to 9, N = 50) 

 n J-matrix Exact  

0 0 -5.1264030057928 -5.12640300579288 

 1 -5.066684759179 -5.0666847591794 

 2 -5.0080039672929 -5.00800396729292 

1 0 -5.1262254913468 -5.12622549134686 

 1 -5.0665103374949 -5.06651033749491 

 2 -5.0078325669400 -5.00783256694002 

2 0 -5.1256930218180 -5.12569302181801 

 1 -5.0659871446473 -5.06598714464731 

 2 -5.0073184365280 -5.00731843652801 

Table 4.5: Bound state energy eigenvalues of the Kratzer potential for NO molecule (in 

eV) with different values of the rotational  and vibrational n quantum numbers(λ varies 

from 5 to 10, N = 50) 

 n J-matrix Exact  

0 0 -8.0027118464015 -8.00271184640152 

 1 -7.9215084717111 -7.92150847171110 

 2 -7.8415348092590 -7.84153480925909 

1 0 -8.0025021493716 -8.00250214937160 

 1 -7.9213019582383 -7.92130195823834 

 2 -7.8413314152258 -7.84133141522582 

2 0 -8.0018731242557 -8.00187312425579 

 1 -7.9206824825447 -7.92068248254473 

 2 -7.8407212966315 -7.84072129663154 
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Table 4.6: Bound state energy eigenvalues of the Kratzer potential for CO molecule (in 

eV) with different values of the rotational  and vibrational n quantum numbers (λ varies 

from 7 to 10, N = 50) 

 n J-matrix Exact  

0 0 -10.7943747372950 -10.79437473729500 

 1 -10.6938985116027 -10.69389851160270 

 2 -10.5948186640957 -10.59481866409570 

1 0 -10.7941370706252 -10.79413707062520 

 1 -10.6936641555550 -10.69366415555500 

 2 -10.59458755746670 -10.59458755746670 

2 0 -10.79342413344230 -10.79342413344300 

 1 -10.69296114914730 -10.69296114914730 

 2 -10.5938942982473 -10.59389429824730 

Table 4.7: Bound state energy eigenvalues of the Kratzer potential for I2 molecule (in eV) 

with different values of the rotational  and vibrational n quantum numbers (λ varies 

from 3 to 4, N = 50) 

 n J-matrix Exact  

0 0 -1.5790838270852 -1.57908382708525 

 1 -1.5736883946428 -1.57368839464281 

 2 -1.5683205677989 -1.56832056779893 

1 0 -1.5790791906147 -1.57907919061474 

 1 -1.5736837819149 -1.57368378191490 

 2 -1.5683159786517 -1.56831597865178 

2 0 -1.5790652813666 -1.57906528136663 

 1 -1.5736699438935 -1.57366994389352 

 2 -1.5683022113716 -1.56830221137165 
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Table 4.8: Resonances of the inverted Kratzer potential for f = 50 with different values of 

the rotational  and vibrational n quantum numbers (λ varies from 0.2 to 1.2, N = 30) 

 n J-matrix Exact 

0 0 0.00985-0.001400 i 0.009851-0.0014001 i 

 1 0.00874-0.003885 i 0.008745-0.0038851 i 

 2 0.00691-0.005587 i 0.006913-0.0055870 i 

1 0 0.01004-0.00144 i 0.010049-0.001442 i 

 1 0.00889-0.00399 i 0.008899-0.003997 i 

 2 0.00700-0.00573 i 0.007002-0.005732 i 

2 0 0.01069-0.00158 i 0.010693-0.001585 i 

 1 0.00939-0.00436 i 0.009396-0.004369 i 

 2 0.00728-0.00621 i 0.007280-0.006210 i 

Table 4.9: Resonances of the inverted Kratzer potential for  f = 20 with different values of 

the rotational  and vibrational n quantum numbers (λ varies from 0.2 to 3.0, N = 30) 

 n J-matrix Exact 

0 0 0.0240-0.0054 i 0.02408-0.00545 i 

 1 0.0179-0.0135 i 0.01792-0.01355 i 

 2 0.0099-0.0162 i 0.00997-0.01622i 

1 0 0.025-0.005 i 0.0252-0.0058 i 

 1 0.018-0.014 i 0.0185-0.0144 i 

 2 0.009-0.017 i 0.0099-0.0170 i 

2 0 0.029-0.007 i 0.0298-0.0075 i 

 1 0.020-0.018i 0.0206-0.0180 i 

 2 0.009-0.020 i 0.0098-0.0201 i 
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Table 4.10: Resonances of the inverted Kratzer potential for f = 10 with different values 

of the rotational  and vibrational n quantum numbers (λ varies from 0.2 to 3.0, N = 30) 

 n J-matrix Exact 

0 0 0.046400-0.015049 i 0.0464009-0.0150495 i 

 1 0.025822-0.031609 i 0.0258225-0.0316096 i 

 2 0.007100-0.029938 i 0.0071005-0.0299387 i 

1 0 0.0511-0.0175 i 0.05113-0.01753 i 

 1 0.0266-0.0355 i 0.02666-0.03555 i 

 2 0.0059-0.0322 i 0.00591-0.03224 i 

2 0 0.07360-0.03135 i 0.073600-0.031353 i 

 1 0.02754-0.05398 i 0.027548-0.053983 i 

 2 -0.00083-0.04080 i -0.000832-0.040807 i 

 

Table 4.11: Resonances of the inverted Kratzer potential for f = 5 with different values of 

the rotational  and vibrational n quantum numbers (λ varies from 0.8 to 4.0, N = 30) 

 n J-matrix Exact 

0 0 0.08616-0.040563 i 0.086167-0.0405635 i 

 1 0.02615-0.063811 i 0.026159-0.0638116 i 

 2 -0.00493-0.044169 i -0.004938-0.0441692 i 

1 0 0.103806-0.055363 i 0.1038062-0.0553633 i 

 1 0.022400-0.076800 i 0.0224000-0.0768000 i 

 2 -0.010707-0.047590 i -0.0107079-0.0475907 i 

2 0 0.240000-0.320000 i 0.2400000-0.3200000 i 

 1 -0.059171-0.142011 i -0.0591715-0.1420118 i 

 2 -0.049940-0.047562 i -0.0499405-0.0475624 i 
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20 CHAPTER 5 

CONCLUSION 

21 To sum up, we have succeeded in formulating the 2D J-matrix. This step completes 

the J-matrix formalism in all physical dimensions [1, 11]. Through our journey in the 

J-matrix formalism we have realized that reduction in space dimension makes the 

problem more demanding and mathematically trickier, contrary to our expectation. 

The 2D J-matrix can be used to handle all scattering phenomena that take place in 

real 2D space such as those scattering problems related to surfaces or effective 2D 

scattering problem that result from the application of high magnetic field or other 

confining potentials. We have tested the validity of the formalism by checking the 

expected behavior of the two independent solutions whose expansion coefficient 

characterizes the kinetic part of the J-matrix formalism. We also used the formalism 

to find the bound states and resonances for exactly solvable potentials,  we selected 

the Kratzer potential, and inverted Kratzer potential, respectively. Our results are in 

excellent agreement with the exact ones and the accuracy of our results can be 

controlled by fine-tuning the basis parameters and the size of the basis set. However, 

we should mention that the most general formulating of the 2D J-matrix in Cartesian 

coordinates, that is in absence of cylindrical symmetry, still awaits its formulation. 

22  

23  
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24 APPENDIX A 

25  

26 J-MATRIX SOLUTION OF THE REFERENCE PROBLEM IN THE 

OSCILLATOR BASIS 

27  

28 In this appendix, we evaluate the solutions of the reference Hamiltonian using the 

oscillator basis defined by  

29  

1

/2 22 4( ) ( ) ; ( )y

n n ny A y e L y y r 
 

 
        (A1) 

30 where 1   , and  is a positive scale parameter. The normalization constant nA is 

chosen in this basis to be 2 ( 1) ( 1 )nA n n       . The reference Hamiltonian 

H0 is just the free kinetic energy operator. Therefore, the reference wave equation for 

the J-matrix is given by Eq. (3.2.8). Using the differential equation of the Laguerre 

polynomials [61], their differential formula and recursion relation we can show that 

the matrix representation of the wave operator J will be tridiagonal only if      

giving 

31  

 

02 2

, , 1 , 1

2 2
( )

2 1 ( ) ( 1)( 1)

mn m n

n m n m n m

J E H E

n x n n n n

 
 

   

  

         
 

(A2) 

32 where 2 2 2( ) 2x k E     . Thus, the expansion coefficients of the regular 

solution obey the following symmetric three-term recursion relation 

33    1 12 1 ( ) ( 1)( 1) 0n n nn x s n n s n n s           .  (A3) 

34 Using the following transformation to get rid of the square roots  

35  
( 1)

( 1)
( ) ( 1) ( )n

n n

n

n
s x B Q x

 

  
  ,      (A4) 
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36 with B  being a normalization constant that dependents on  and will be fixed later.  

Equation (B3) reduces to  

37  
 

 

1 1

0 1

2 1 ( 1) ( ) 0

1 0

n n nn x Q n Q n Q

x Q Q

        

   
    (A5) 

38 Comparing the above equation with the one associated with generalized Laguerre 

polynomials 

39    1 12 1 ( 1) ( ) 0n n nn x L n L n L                (A6) 

40 We can deduce that ( ) ( )n nQ x L x  up to an overall factor that is independent of n. 

Similar to what we did for the Laguerre basis in the main text; we use direct 

integration and identify the regular solution of the reference wave equation with the 

sine-like solution  

41  1
2 4

1/4

/2

0 0

( , ) 2 ( )

( ) ( ) ( ) ( )

reg

y

n n n n n

n n

E y y J y

s y s A y e L y

  

  
 

 

 



  
   (A7) 

42 Using the orthogonality of the Laguerre polynomials, we obtain 

43  
2 /2

0

( 1)

( 1)
( ) ( ) ( )y

n n

n

n
s E y e J y L y dy







 

  
  .   (A8) 

44 The result of this integral can be obtained from [62b] to give  

45  
2

1

/2 22( 1)

( 1)
( ) 2( 1) ( )n

n n

n

n
s E e L


 


 

  
  .   (A9) 

46 Using the differential equation of the Laguerre polynomials, one can show that the 

sine-like coefficients (A9) satisfy the following second order energy differential 

equation 
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47  
2 2

2

1 1 4 1 1ˆ ( ) 2 1 ( ) 0
2 4 4 2

n n

d d
D s E x x n s E
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 
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 

.  (A10) 

48 From this exact result, we can deduce the pre-factor in the transformation (A4) 

as
1 2
2 /22 l

B e 

 


  . The expansion coefficients in the second regularized cosine-

like solution, 

49 
cos

0

( , ) ( ) ( )n n

n

r E c E y 




 ,     (A11) 

50 Which obey the same recursion relation (A3) but with the inhomogeneous initial 

condition  

51 
00 0 01 1

0

;
2

W
J c J c

s
     ,    (A12) 

52 Where W is the Wronskian of the two independent solutions. Using the 

transformation 

53 (A4) in the form 

54 
( 1)

( ) ( 1) ( )
( 1)

n

n n

n
c x P x

n l

 
 
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,     (A13) 

55 with Pn obeying the three term recursion relation 

56 

 
2

2

1 1

1

2 /22
0 1 2

2 1 ( ) ( 1) 0

( 1 ) ; ( 1)

n n nn P n P n P
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 
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 
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      (A14) 

57 Following the same procedure for the Laguerre basis in the main text, the general 

solution of the recursion relation in A14 can be written in the form 

58 2 2 2 2

0( ) ( ) ( ) ( ,1)n n nP P L L      ,              (A15)              
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59 where ( )nL x  are the normal Laguerre polynomials while ( ,1)nL x  are the Laguerre 

polynomials of the second kind termed Wimp polynomials. They obey the same 

recursion relation as the Laguerre polynomials but with a recursion coefficient shifted 

by one unit (i.e., 1n n  ) [12]. Thus the cosine-like expansion coefficient are 

given by  

60 2 2 2 2

0 1

( 1)
( ) ( 1) ( ) ( ) ( ,1)

( 1)

n

n n n

n
c P L L

n l
    

 
      

.      (A16) 

61 To reduce the solution to a regularized one, we fixed the energy-dependent 

parameter 0P , by taking  = 0, our cosine-like solution in regularized form can be 

written as follows 

62 2

cos sin 1

0

( 1)
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n n
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 
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  
 . (A17) 

63 Having deduced all sine- and cosine-like coefficients, the two-dimensional J-matrix 

method in the Oscillator basis is completely defined.  

64  

65  

66  

67  

68  

69  

70  
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80 APPENDIX B 

81  

82 The following are useful formulas and relations satisfied by the orthogonal 

polynomials that are relevant to the development carried out in this work. They are 

found in most books on orthogonal polynomials [62]. We list them here for ease of 

reference. 

83  

84 (1) The Laguerre polynomials ( )nL x , where 1   : 

85  1 1(2 1) ( ) ( 1)n n n nxL n L n L n L                (B.1) 

86  1 1

( 1)

( 1) ( 1)
( ) ( ; 1; )n

n

n
L x F n x 




  

   
       (B.2) 
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90 (2) The Jacobi polynomials ( , )( )nP x  , where 1, 1     : 
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97  

98 (3) The Pollaczek polynomials ( , )nP x  , where 0   and 0    : 

99    1 12 ( )cos sin ( 2 1) ( 1) 0n n nn x P n P n P                        (B.11) 
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102 where
22 (2 )1

2
( , ) (2sin ) ( )xx e ix   


      . 

103 (4) The hyperbolic Pollaczek polynomials ( , )nP x


 , where 0   and θ > 0, are 

defined in terms of their recursion relation 

104    1 12 ( )cosh sinh ( 2 1) ( 1) 0n n nn x P n P n P
  
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107 Where 
221

2
( , ) (2sinh ) ( )x x

 


       

108 (5) The continuous dual Hahn polynomials ( ; , )nS x a b , where 2 0x   and , a, b are 

positive except for a pair of complex conjugates with positive real parts: 
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122 APPENDIX C 

123 COMPUTATION OF INPUT PARAMETERS  

124 The analytical result for bound states of Kratzer potential as evident in literature has 

been given in chapter 4, which is written below. 

125                                 

2
2 2 2

2

2 2

2 21

2

e e e e
n

D r D r
E n

 


  
      

    

                       (1) 

126 The computed bound states in literatures were given in electron-volts (eV), as 

opposed to the J-matrix formalism used in this work, where we have used atomic 

mass units (a.m.u) with the assumption that  = M = µ=1. To check with analytical 

results obtained in the literature, we have computed our results in eV. 

127 For the purpose of computation, (1) can be re-written as  

128                               

22
21

2
2 2

n

B
E n A


   

       
  

                                               (2) 

129                      Where  
2

2

e eD r
A


    and  

2 e eD r
B


  

130 Using the constants ( 01973.29 .c eV A , and 21 . . 931.5 06 /a mu E eV c ) and Table  

131  

132  

133  

134  

135  

136  

137  
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138 4.1, the computed value of the input parameters in the calculation is summarized in 

the table below               

139  

Molecules A (eV) B 

I2 170143.0935 1037.5567 

LIH 1348.27946 116.4698303 

HCL 1759.445775 180.299614 

O2 14396.4751 544.9319609 

NO 19032.3294 782.5392501 

CO 22655.3469 991.3637385 

140  

141  

142  

143  

144  

145  

146  

147  

148  

149  

150  

151  
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