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This thesis is structured to develop four different economic production quantity (EPQ) 

models with stock level dependent demand rate, variable holding cost and quantity 

discount with total profit per unit time maximization objective function rather than 

minimizing total cost per unit time and allowing non-zero end inventory for each cycle.  

Two types of holding cost are considered during the modeling of the four models: 

incremental and retroactive holding cost. Furthermore, the first two EPQ models are 

developed without quantity discount and the remaining two models are developed with 

the assumption of having all unit discounts to maximize the total profit.  

Finally, four mathematical models with optimum solution procedures, including 

nonlinear programming, and sensitivity analysis are carried out in this thesis work. 
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 ملخص الرسالة

 
 

 أحمد عبدالكريم عبدالعزيز الشاعر  :الاسم الكامل
 
تكلفة  و،على مستوى المخزون المعتمدمع الطلب  متغيره إنتاجكمية مع الأمثل   نظام الإنتاج :وان الرسالةعن

 .ديناميكية التخزين

 
 هندسة النظم الصناعية التخصص:

 
 3102ديسمبر كانون الاول  :تاريخ الدرجة العلمية

 

مع فرضية الطلب ( EPQ) الاقتصاديةنتاج من كميات الا نماذجأربعة تطوير و ايجاد الرسالة حول  تتمحور هذة

, حيث يكون الهدف زيادة الربح الاجمالي المعتمد علي مستوى المخزون و تكلفة التخزين المتغيرة و خصم للكميات

 .للوحدة الزمنيه بدلا من تقليل التكلفة الاجمالية للوحدة الزمنية

بعة و هما تكلفة التخزين الاضافية و الرجعية. علاوة تم اعتبار نوعين من تكلفة التخزين خلال وضع النماذج الار

خاصية  بإضافةالاخريين  النموذجينبدون خاصية الخصم و من ثم تم تطوير  النموذجين الأوليين  تم وضععلى ذلك 

 الخصم للكميات و ذلك للحصول علي أعلى مستوى من الارباح الاجمالية.

 مع طريقة حلها و البرمجة الغير خطيه و تحليل الحساسية رياضيةذج نماهو ايجاد  الرسالة ههذالهدف الرئيسي من 

 .لنماذج الانتاج الاربعة

 

 الكلمات الرئيسية: نماذج الانتاج و التخزين الطلب المعتمد علي مستوي التخزين, تكلفة التخزين المتغيرة, الحل 

 الأمثل خصم للكميات. 
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1 CHAPTER 1 

INTRODUCTION 

1.1 Introduction and Background 

Traditional EPQ models are based on the assumptions of constant demand rate, constant 

inventory carrying cost, and instantaneous order arrival. This thesis work presents a more 

realistic production-inventory model in which all these assumptions are relaxed. The 

economic production quantity (EPQ) model relaxes the assumption of instantaneous 

order arrival by incorporating a gradual order receipt, i.e. a finite production rate. This 

thesis presents a production-inventory control system with finite production rate, stock-

dependent demand rate and variable holding cost. 

Demand variability with item availability and price is a frequently observed phenomenon. 

In stock-dependent demand models, the demand for a given item increases with higher 

item availability. A bigger item display tends to attract the attention of more customers, 

leading to increased sales. Moreover, customers may view larger item stock as an 

indication of the item’s popularity and also as a sign of reliable, continuing supply. Since 

higher sales are made on the expense of carrying more stock, firms need to find the 

optimum balance between the extra holding cost and the additional profit resulting from 

the induced sales. According to Sarkar (2012), “In general, sugar, spices, clothes, gift 
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cards are the real-life examples of the stock-dependent demand”. Moreover, Yang et. al. 

(2013) stated that “The manufacturer should often strike the balance between the 

production efficiency and market demand rate due to the stock-dependent demand”. 

In inventory models with variable holding costs, the holding cost is a function of either 

the storage level or the storage time. Holding cost time variability is used to reflect the 

fact that longer storage times frequently require higher holding costs. Longer storage 

periods, especially for perishable products, usually require more expensive specialized 

storage facilities. Time-dependent holding cost models represent holding cost either as a 

continuous nonlinear function or as a discontinuous step function of storage time.  

The unit cost is usually assumed to be fixed and independent of the order size. Whereas, 

it is more realistic to consider the case where the unit cost is dependent of order size since 

the vendor is willing to charge less per unit for large orders. The purpose of the discount 

is to encourage the customer to buy material in big batches. There are two main type of 

price discount that are all-units discounts and incremental quantity discounts. 

The aim of this thesis is to present a production-inventory model with finite production 

rate, stock-level dependent demand rate and variable holding cost. In this model, the 

demand rate is an increasing power function of the instantaneous inventory level, and the 

holding cost is an increasing step function of the time spent in storage. Two types of 

holding cost step functions are considered: retroactive holding cost, and incremental 

holding cost. Whereas quantity discount is considered to the model “all-units discounts” 

for the two types of holding cost “retroactive holding cost, and incremental holding cost”. 
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1.2 Stock Dependent Demand 

The presence of retail inventory is assumed to have an encouraging effect on the 

customer. Traders usual tend to have mass displays of items inside the stores that are used 

as ‘‘psychic stock’’ to stimulate sales of some retail items. This phenomenon may also be 

experienced with products that are generically the same, but are individually slightly 

different (such as greeting cards); thus, increased inventory levels give the customer a 

wider selection and increase the probability of making a sale. In these situations, the 

demand of a given item is not assumed to be an exogenous variable, as with the classical 

inventory models; instead, it is assumed that the demand rate is endogenous to the firm 

and is a function of the inventory level. The effect of this dependency is that the retailer 

has incentive to keep higher levels of inventory–– despite increased holding costs––as 

long as the item is profitable and the demand is an increasing function of the inventory 

level. This results in additional sales, higher fill rates, and potentially greater profits. The 

operations management literature has recognized this motivating effect of inventory on 

demand, and models have been developed that incorporate this relationship.  

1.3 Holding Cost  

The associated price of storing inventory or assets that remains unsold. Holding costs are 

a major component of supply chain management, since businesses must determine how 

much of a product to keep in stock. This represents an opportunity cost, as the presence 

of the goods means that they are not being sold while that money could be deployed 

elsewhere. In addition, holding costs include the costs of goods being damaged or spoiled 
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over time and the general costs, such as space, labor and other direct expenses. Inventory 

is measured by in units rather than dollars; it is more convenient to express the holding 

cost in terms of dollars per unit per unit time than dollars per unit time. Holding cost h is 

equal the multiplication of c “the dollar value of one unit of inventory” by I “the annual 

interest rate”. 

There are two main types of holding cost; incremental and retroactive holding cost.  

1.4 Quantity Discount  

The unit cost c is dependent of the size of the order, so as the size of the order goes up the 

unit cost will be less as the supplier is willing to charge less for bulk orders. The main 

goal of the discount is that encouragement of buying larger batches. There are many 

types of discount exist, but the most popular types are: all unit discount and incremental 

discount. In each case, we assume there are one or more breakpoints defining changes in 

the unit cost.  

 

 

 

 

 

C(Q) 

Q 
Q1 Q2 

Figure 1: Incremental Discount Model 



5 

 

There are two possibilities: either the discount is applied to all units in an order (all unit), 

or it is applied only the additional units beyond the break points (incremental). The all-

unit case is the more common and it the type that is used for our model here.  

 

 

 

 

 

 

 

1.5 Thesis Organization 

The economic production models and problems are of importance on both practical and 

theoretical. In this thesis, we will focus on modeling four different types of EPQ models 

to maximize the total profit and finding the optimal solution with the maximum inventory 

level (Q) and the maximum ending inventory (L).  In chapter 2, full literature review 

along with several categories of recent production-inventory models with variable 

holding costs and stock-dependent demand rates are presented. Chapter 3 covers the 

modeling and mathematical formulation of EPQ model with retroactive holding cost and 

with no quantity discount.  Chapter 4 is about EPQ model with incremental holding cost 

and no discount as well. Chapter 5 is about EPQ model with retroactive holding cost and 

C(Q) 

Q 
Q1 Q2 

Figure 2: All-Unit Discount Model 
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all unit discounts. In chapter 6, the EPQ model with incremental holding cost and all unit 

discounts is presented as well. The following figure summarizes the difference between 

the four models.  

 

Figure 3: Different attributes used for the four models 
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CHAPTER 2 

LITERATURE REVIEW 

In this chapter, we review several categories of recent production-inventory models with 

variable holding costs and stock-dependent demand rates. Urban (2005) provides a 

comprehensive review of inventory models with stock-dependent demand rates published 

up to 2004, classifying work in this area into two main types. In the first type, pioneered 

by Gupta and Vrat (1986), the demand rate is a function of the initial inventory. In the 

second type, pioneered by Baker and Urban (1988a, 1988b), the demand rate is a function 

of the instantaneous inventory. A third type could be considered as models in which the 

demand has two stages, an initial period of level-dependent demand followed by a period 

of constant demand.   

2.1  EOQ Models with Stock-Dependent Demand 

In inventory models with variable demand rate, the demand is either a function of time or 

a function of the stock level. According to Urban (2005), demand dependence on the 

stock level has several functional forms, including: linear, power, and posynomial. 

Several models have been proposed for deteriorating items with stock-level dependent 

demand rates. Min and Zhou (2009) develop an EOQ model for perishable items with 

stock-dependent demand rate, where unsatisfied demand is partially backlogged. Sana et 

al. (2009) present EOQ and EPQ inventory models in which the demand rate depends on 

three factors: stock level, selling price, and advertising. Both deteriorating and 
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ameliorating items are considered under budget and storage capacity constraints. Yang et 

al. (2010) propose an EOQ model for deteriorating items with stock-dependent demand 

rate, partial backlogging, inflation, varying replenishment cycles, and varying shortage 

intervals. Roy et al. (2009), developed an EOQ model for a deteriorating item with 

linearly displayed stock dependent demand in imprecise environment, involving both 

fuzzy and random parameters, under inflation and time value of money. Hsieh and Dye 

(2010), developed a deterministic EOQ model for deteriorating items with stock-

dependent demand and finite shelf/display space, where the shortages are allowed and the 

unsatisfied demand is partially backlogged at the exponential rate with respect to the 

waiting time. Das et al. (2010), presented production lot size inventory model in which 

the production rate constitutes of productions during both regular time and overtime, the 

demand rate is assumed as stock-dependent. The formulation leads to a single objective 

optimization problem for maximum average profit evaluation through a real-coded 

genetic algorithm (GA). Duan et al. (2012), presented inventory models for perishable 

items with inventory level dependent demand rate where the models with and without 

backlogging were studied. Recently, Sarkar (2012) considered finite replenishment rate 

under progressive payment scheme with the production of defective items within the 

cycle time.  

2.2 EOQ Models with Variable Holding Cost 

An increasing number of EOQ-type inventory models assume variable and nonlinear 

holding cost. Muhlemann and Valtis-Spanopoulos (1980) are the first to introduce 

variable holding costs into the EOQ model. In their EOQ-type model, the holding cost is 
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assumed to be a function of the average inventory value. Their justification is that the 

cost of financing increases as the amount of investment (value of the inventory) 

increases. Weiss (1982) develops deterministic and stochastic EOQ models in which the 

per-unit holding cost is a non-linear function of storage duration. According to Weiss 

(1982), this assumption is applicable to inventory systems where the value of stored items 

decreases non-linearly with storage length. Ferguson et al. (2007) present another EOQ-

type model in which the holding cost is a nonlinear function of time. Given historical 

data, regression is used to estimate the parameters of this function for perishable grocery 

items.  

2.3 EOQ Models with Variable Demand and Variable Holding Cost 

Goh (1994) presents the first inventory model in which the demand is stock dependent 

and the holding cost varies with storage duration. Goh considers two types of holding 

cost variation: (a) a nonlinear function of storage time, and (b) a nonlinear function of 

storage level. Giri at al. (1996) present a generalized EOQ-type model for deteriorating 

items, in which the demand rate, the deterioration rate, the ordering cost, and the holding 

cost are continuous functions of time. Giri and Chaudhuri (1998) develop another EOQ-

type model for deteriorating items in which the demand rate is a function of the stock 

level. Keeping all other costs and parameters constant, the holding cost is assumed a 

nonlinear function of either the stock level or the storage duration.  

Teng and Yang (2007) generalize the EOQ model to consider a time-varying demand 

rate, assuming that the holding cost includes both size-related and value-related 

components. Roy (2008) formulates an EOQ model for deteriorating items in which 
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shortages are allowed, where the demand rate is a function of the selling price and the 

holding cost is a continuous function of time. Gayen and Pal (2009) analyze a two-

warehouse inventory model for a deteriorating product where both the demand rate and 

the holding cost are assumed to be continuous power functions of the current inventory 

level. Mahata and Goswami (2009) investigate an EOQ model for deteriorating items 

with stock dependent demand rate, variable holding cost, and fuzzy deterioration rate. 

The holding cost is considered as a non-linear function of either the length of storage 

time or the current inventory level.  

Alfares (2007) presents a stock-dependent EOQ-type model with two types of holding 

cost discontinuous step functions. As the storage time extends to the next time period, the 

new (higher) holding cost can be applied either retroactively to all storage periods, or 

incrementally to the new period only. Urban (2008) extends Alfares (2007) work by 

allowing non-zero end inventory for each cycle, and shifting to a maximum-profit 

objective. Singh, Kumar, and Gaur (2009) present an EOQ model with stock-dependent 

demand and partial backlogging of unsatisfied demand. They also consider deteriorating 

items, inflation, and an incremental holding cost function.  Pando et al. (2012), studied an 

EOQ inventory model with demand rate and holding cost rate per unit time, both 

potentially dependent on the stock level, where the objective is to maximize the average 

profit per unit time. 
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2.4 EPQ Models with Variable Demand and/or Variable Holding 

Cost 

Goh (1992) presents three models of stock-dependent demands inventory systems 

including an EPQ-type model with non-instantaneous receipt of orders. Sarfaraz (2009) 

develops a modified EPQ model in which the holding cost is composed of two 

components: an investment cost proportional to the dollar value of inventory, and a 

capacity cost proportional to the maximum inventory level. As stated earlier, Sana et al. 

(2009) analyze an EPQ model with stock-dependent demand rate and storage capacity 

limitations. Tripathy et al. (2010) formulate an EPQ model for deteriorating items, 

assuming the demand rate is constant and the holding cost is a nonlinear continuous 

function of storage time. Singh, Singh, and Vaish (2009) develop an EPQ inventory 

model where demand is a linear function of time, and two cases of holding costs are 

considered: (i) holding cost is constant, and (ii) holding cost is a continuous function of 

time. Yang et. al. (2013) consider EOQ modeling for a single-manufacturer and single-

retailer where the demand rate at the retailer’s end is dependent on the instantaneous 

stock level.  

2.5 EPQ/ EPQ-Type Models with Quantity Discounts 

Regarding inventory models with quantity discounts, most research work has focused on 

all-units and incremental quantity discounts. An overview of the quantity discounts 

research is presented by Benton and Park (1996). Munson and Rosenblatt (1998) 

presented an exploratory study of 39 companies and their different discount strategies in 
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practice. They found that 95% of the companies they studied either offer or receive some 

type of all-units quantity discounts. In addition, 37% of these firms offer or receive 

incremental quantity discounts. Hu and Munson (2002) presented a heuristic for 

incremental quantity discounts with constant demand over a finite horizon. Hu et al. 

(2004) suggested a modification of the classical Silver-Meal heuristic under the 

incremental quantity discount case to improve the results presented by Hu and Munson 

(2002). Mendoza, Ventura (2008) developed an Economic Order Quantity (EOQ) model 

with two modes of transportation, namely truckload and less than truckload carriers, by 

introducing all-units and incremental quantity discount structures into the analysis. 
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CHAPTER 3 

OPTIMAL EPQ MODEL FOR STOCK-DEPENDENT 

DEMAND, VARIABLE HOLDING COST AND 

RETROACTIVE HOLDING COST 

The objective of this chapter is to develop mathematical models and find the optimal 

solution procedures that maximize the total profit of production-inventory systems (EPQ) 

with stock-dependent demand rate, finite production rate and retroactive holding cost. 

The demand rate for stock-level dependent demand is affected by the inventory decision 

made, unlike the traditional inventory models with constant demand. Maximizing profits 

will lead to a higher demand rate by keeping higher inventory levels. It is more realistic 

to allow inventory-production system to have positive inventory at the end of the order 

cycle that will incur higher holding cost but will allow us to have more inventory level, 

realize a higher subsequent demand rate and potentially receive a greater profit.   

3.1 Assumptions and Notations 

These are the general assumptions for this problem and the subsequent three models: 
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1. A single item with an infinite planning horizon is considered. 

2. The holding cost is an increasing step function of storage duration (h1 < h2 < … < 

hn). 

3. Orders of lot size S are produced gradually in t1 periods at a constant rate P. 

4. The units do not lose value during storage (no item deterioration).  

5. Shortages are not allowed.  

6. The quality of the prodcution is perferct. 

7. The demand rate R is an increasing power function of the inventory level q, given 

as: 

R(q) = Dq

,   D > 0,  0 <  < 1, q  0                          (1) 

The used notations to develop the all the four models in this thesis are identified as 

follows: 

D = constant (base) demand rate 

P = production rate during the first phase of the cycle (0  t  t1) 

             
 ⁄  

n = number of distinct time periods with different holding cost rates 

t = time from the start of the cycle at t = 0 

t1 = end time of the first (uptime) phase of the cycle 
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i = end time of holding-cost interval i, where i = 1, 2, … n, 0 = 0, and n =  

K = ordering cost per order 

h(t) =holding cost of the item at time t, h(t) = hi  if i – 1  t  i= (ic)   

T = cycle time, i.e. time between producing two consecutive orders of size S 

 = demand elasticity rate in relation to the inventory level 

Q = maximum inventory level, corresponding to time t = t1 

L = ending inventory level, corresponding to time t = 0 and T 

S = production lot size = Pt1 

              = gross profit per unit of fresh item  

           = gross profit per unit of item remaining at the end of the order cycle 

q(t) = quantity on-hand (inventory level) at time t 

δ            = sales prince 

                  = gross profit per unit = (sales prince – purchase cost)= (δ-c)  

 

3.2 The Production-Inventory Model: 

The inventory level variation over time q(t) during a typical cycle is divided into two 

phases: uptime phase and downtime phase. During the first (uptime) phase of the cycle, a 

new order is produced at a constant rate P while the inventory is consumed at the stock-
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dependent demand rate of Dq

. Hence, the rate of change in the inventory level is 

expressed as follows: 

 
     

  
    [    ]   0  t  t1,  P > D     (2) 

 

Figure 4: General EPQ model with stock-dependent demand 

During the second (downtime) phase of the cycle, the rate of change (decrease) in the 

inventory level is equal to the demand rate, which is given by: 

  )]([ tqD
dt

tdq
  ,  t1  t  T,        (3) 

 

 

During Uptime: 

 
 

,)( tDqP
dt

tdq
   0  t  t1,  P > D 
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 Since 

Q

 < 1 

 Where 

 = D/P 

  Q = max{q(t)} 

 Then 

  1)( tq
P

D

 

 or

 

0)(  tDqP  

 Therefore, considering 
 
2

2

dt

tqd
 during the uptime phase: 

   
 

0
2

2


dt

tqd
  so, q(t) is concave for 0  t  t1 

During downtime: 

  )]([ tqD
dt

tdq
  ,  t1  t  T,   

 

 
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
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 Therefore, 

   
 

0
2

2


dt

tqd
  so, q(t) is convex for t1  t  T, 

The net profit per unit time consists of three components: gross profit for the fresh and 

older product less the ordering cost and the holding cost. Since one order at a cost K is 

made in each cycle, the ordering cost per cycle is simply K. The holding cost per cycle is 
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obtained by integrating the product of the holding cost h(t) and the inventory level q(t) 

for the whole cycle. However, the true objective is to maximize the total profit per unit 

time π, which is obtained by dividing the total profit per cycle by the cycle time T. 

Therefore, the total profit per unit time π is given by: 

   
 [   ]

 
 

 

 
 

∫           
  
 

 
 

∫           
 
  

 
      (4) 

During the uptime phase of the cycle (0  t  t1), rearranging the ordinary differential 

equation (2) results in the following: 

      

  
          

          [  
 

 
     ], let  = D/P  

          [        ] 

 

         
       

 After integrating the ordinary differential equation we get: 

 


tt

dtPdq
tq

00
)(1

1
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         (5) 

The left-hand side of (5) can be integrated to yield the hyper-geometric function 2F1.  
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Then, the right hand side of (5), can be writen as: 
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Therefore, (5) can be written as follows: 
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Since q(0) = q(T)= L while q(t1) = Q,  integrating over the range [0, t1] gives: 

     ∑
       

      
 
    ∑

       

      
 
    ∑

               

      
 
   ,   

      ∑
               

       
 
                                                    (7) 

In order to obtain an expression for q(t) during the uptime phase, (2) is rearranged 

differently from (5) and integrated as follows: 
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The right-hand side of (8) again integrates to the hyper-geometric function 2F1.  
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After simplification, “uptime phase”(8) can be written as: 
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During the downtime phase of the cycle (t1  t  T): 
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To add a constraint that governs the relation between Q and L from (7): 
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   , after simplification: 
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From the optimum values of Q and L, the following quantities can be calculated: 
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3.3 Solution Algorithm of Retroactive Holding Cost 

Assuming a retroactive holding cost, only the holding cost of the last storage interval is 

used retroactively for all earlier intervals. Assuming that the cycle ends in interval e, (e –

1  T  e), then the rate he is applied to holding cost intervals 1, 2, ..., e. Therefore, the 

total profit per unit time π is given by: 

 

T

i dttq
T

h

T

K

T

Pt

0

1 )(
)(

    i –1  T   i  (16) 

The optimum solution can be determined by using the following steps:  

1. Starting with the lowest holding cost h1, solve NLP1 (with equation (16) as 

objective function, (12- 13) as constraints) with Q and L as decision variable, and 

then solve equation (7) to determine the value of t1, and finally solve equation 

(11) to find the value of T for each hi until Q and L are realizable (i.e., i –1  T   

i). Call these values TR , LR and QR. 

2. Calculate all break-point values of Qi and Li, by adding “T = I “that is in (11) to 

NLP1 as an additional constraint and then solve for Q and L. 

3. For all QR, Qi , LR and Li , use (14) to calculate 
T

dttq
0

,)(  and then substitute the 

result using the appropriate hi into (16) to calculate the total profit π.  

4. Choose the value of Q that gives the maximum total profit, and then use (15) to 

calculate the corresponding production lot size S. 
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3.4 Numeric Example  

Given the following parameters: 

D = 400 units per year,  P = 1,000 units per year,  K = $300 per order 

 = 0.1,  h1 = $6/unit/year,  h2 = $8/unit/year, h3 = $10/unit/year 

1 = 0.3 years,  2 = 0.6 years, 3 = ,            ,            

The solution algorithm is implemented in the following steps. 

Step 1 

Substituting h1 = 6 (for 0 < T ≤ 0.3), solving (NLP1) gives:  

Q = 425.321 and L = 103.567, t1 = 0.545162, T= 1.00925, π= 12,102  (not 

realizable). 

Substituting  h2 = 8 (for 0.3  T   0.6), solving (NLP1) gives:  

Q = 332.684 and L = 66.1937, t1=0.8238, T = 1.21996, with π= 11,637.1 (not 

realizable). 

Substituting  h3 = 10 (for T >  0.6), solving (NLP1) gives:  

Q = 276.12 and L = 46.100, t1=0.679742, T = 1.002964, with π= 11,273.4 (realizable) 

Step 2  

Setting T = 1 = 0.3 with h=6, solving the NLP1 model gives: Q1 = 12.231 and L1=0, 

π=3,228.21. 
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Setting T = 2 = 0.6 with h=8, solving the NLP1 model gives: Q2 = 17.2986 and L2= 0.02, 

π= 5,291.36. 

Step 3 

QR = 276.12, LR=46.1 and h3 = 10:   π= $ 11,273.4 

Q1 = 12.231, L1=0 and h1 = 6:   π=3,228.21 

Q2 = 17.298, L2= 0.02 and h2 = 8:  π= 5,291.36 

Step 4 

The maximum profit (π= 11,273.4/year) is obtained with Q = 276.12. Using (15), the 

corresponding lot size is calculated as: S = 338. Therefore, the optimum inventory policy 

is obtained with cycle time T = 1.002964 year and lot size S = 679.742. 

3.5 Sensitivity Analysis 

The sensitivity analysis is carried out for this model by increasing the value of each 

parameter by 20% and resolving the model and then decreasing the value by 20%.  

Table 1 Sensitivity Analysis Results of Model 1 

Parameter Original 

Value 

New 

Values 

Q* L* T t1 Π 

 

D 

 

400 

480 291.150 73.584 1.571 1.130 14,019.5 

320 247.605 27.062 0.8862 0.45830 8,629.9 

  1200 293.748 40.816 0.85456 0.47056 11,184.2 
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P 1,000 800 242.55 58.13 1.603 1.3215 11,428.3 

 

K 

 

300 

360 287.38 42.65 1.09778 0.7260 11,217 

240 263.54 50.28 0.9524 0.6276 11,333.9 

 

β 

 

0.1 

0.12 323.97 83.39 1.3075 0.9869 12,768.8 

0.08 233.28 22.64 0.8695 0.5076 10,041.46 

 

γ 

 

20 

24 310.04 66.13 0.7289 0.3645 13,937.3 

16 242.47 28.32 0.9429 0.6103 8,658 

 

h1,2 and 3 

 

6,8 and 

10 

7.2, 9.6 

& 12 

237.78 33.93 0.898 0.5822 10,972.95 

4.8, 6.4 

& 8 

332.68 66.19 1.2199 0.82382 11,637.1 

 

From the above table, we can observe the effect of the demand while the remaining 

parameters have less effect to the overall total profit.   
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CHAPTER 4 

OPTIMAL EPQ MODEL FOR STOCK-DEPENDENT 

DEMAND, VARIABLE HOLDING COST AND 

INCREMENTAL HOLDING COST 

In this chapter,  a mathematical models is developed to find the optimal solution that 

maximize the total profit of production-inventory systems (EPQ) with stock-dependent 

demand rate, finite production rate with incremental holding cost. The main difference 

between this model and the pervious one is the nature of holding cost as there different 

holding cost used for each storage interval un-like the retroactive holding cost. 

4.1 Production-Inventory Model 

An incrementally increasing holding cost means that a different holding cost hi applies to 

each storage interval i (i– 1   t    i). The objective, which is to maximize the total profit 

per unit time, is expressed as follows: 

Max   
      

 
 

 

 
 

 

 
∑   ∫       

  
    

 
      (17) 
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A given interval [i – 1, i] may fall entirely in the first phase (before t1), entirely in the 

second phase(after t1), or straddle both phases. Therefore, depending on the relationship 

between end point [i – 1, i] and t1, there are three possibile procedures for calculating the 

integrals in (17). If the interval falls entirely in the first phase (i – 1 < i  t1), then we use 

(9), replacing a and b by i – 1 and i. If it falls entirely in the second phase (t1  i – 1 < i), 

then we use (10), replacing a and b by i – 1 and i. However, if the interval straddles both 

phases (i – 1   t1 < i), then we have to evaluate the integral over [i – 1, i] using a 

combination of (9) and (10) as follows: 
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The inventory level q(t) is determined from (2) during the uptime phase and from (3) 

during the downtime phase. Therefore, the functions q(i) and q(i – 1) are determined 

from two different expressions in the two phases. 

0  t  t1 

  )]([ tqDP
dt

tdq
  , D > 0,  0  t  t1, 0 <  < 1   

Therefore, after integraing the above equation and simplyfied , it can be written as 

follows: 
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t1  t  T 

The on-hand inventory level at time t, q(t), can be evaluated by solving (3): 

 q
– 

dq = – D dt     

by integrating both sides: 
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(t) – q
1– 

(t1) = – D(1–)(t – t1) 

 q
1– 

(t)    =  q
1– 

(t1) – D(1–)(t – t1)  

However, since q(t1) = Q, then 

q
1– 

(t1) = Q
1– 

 

Thus;  

 q
1– 

(t)  =   Q
1–

 – D(1–)(t – t1)  

 q(t)   = [Q
1–

 – D(1–)(t – t1)]
1/(1–)

   t1  i  T  (20) 

If the current interval i is the last interval in the cycle (i.e. i = e), then the interval’s end 

point i = e has to be replaced by the cycle time T. Therefore, it should be assumed thati 
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= T and q(i) = L for the last interval i in (17). Furthermore, the cycle time T must fall in 

the last interval e. 

 e – 1   T   e  

4.2 Solution Algorithm  

Since the objective function (17) is constrained, direct optimization by differential 

calculus is not feasible. For the incremental holding cost case, the optimum solution is 

obtained by nonlinear programming according to the following steps:  

1. Substitute the minimum and maximum values of hi into NLP1 to determine the 

range of values for Q and L, and then use (7) and (11) to determine the 

corresponding range of t1 and T. 

2. For each possible combination of t1 and T, formulate a nonlinear programming 

(NLP2) model whose objective function is (17), decision variable is Q, L and T, 

and constraints are (7), (11), and (19)-(20). In each NLP model, use the applicable 

terms for each interval [i – 1 , i] in the objective and constraints. 

3. For each combination of t1 and T, solve the corresponding NLP model to find the 

optimum solution. 

4. Choose the feasible solution with the maximum total profit π. 

4.3 Numeric Example                       

Resolve Example 1 assuming the holding cost increases incrementally. The solution 

algorithm is implemented in the following steps. 
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Step 1 

For h1 = 6 (0 < T ≤ 0.3), (12), (7), and (11) give Q = 425.321, L= 103.567, t1 = 0.545162, 

and T = 1.00925. 

For h3 = 10 (T > 0.6), (12), (7), and (11) give Q = 276.12, L= 46.100, t1 = 0.679742, and 

T = 1.002964. 

Clearly T falls in the third interval. However, the results indicate that t1 may fall either in 

the second or the third interval. 

Step 2 (a) 

Assuming t1 is located in the second interval while T is located in the third interval, then 

e =3. The NLP model is formulated as follows: 
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Step 2 (b) 

Assuming both t1 and T is in the third interval, then e = 3. The NLP model is formulated 

as follows: 

 



























































)2(

)()(

)2(

])6.0()([

)2(

])3.0()6.0([
                          

)2(

)0()3.0()(

22

1

0

22

13

0

22

2

0

2

11

2
















 

D

Tqtq

nP

qtq

T

h

nP

qq

T

h

nP

qq

T

h

T

K

T

Pt
Max

n

nnn

n

nnn

n

nn n

  

 

This objective is maximized subject to constraints: 
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Step 3 

The optimum solution of the NLP in step 2(a) is:  
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Q = 243.482, L= 86.4519, t1 = 0.468867, T = 0.70513,  π = $11,277.9  

The optimum solution of the NLP in step 2(b) is: 

Q = 286.174, L= 90.3833, t1 = 0.6, T = 0.890842, π = $11,586.0*.  

Step 4 

The optimum solution of Example 2 for incremental holding cost is: 

Q = 286.174, L= 90.3833, t1 = 0.6, T = 0.890842, π = $11,586.0*.  

4.4 Sensitivity Analysis                           

The same concept that was carried out to make the sensitivity analysis is used for this model by 

increasing and decreasing the parameters by 20% and then re-solving the model. 

Table 2 Sensitivity Analysis Results of Model 2 

Parameter Original 

Value 

New 

Values 

Q* L* T t1 π 

 

D 

 

400 

480 268.14 158.74 0.733 0.6 14,308.29 

320 314.126 32.712 1.133 0.6 8,829.41 

 

P 

 

1,000 

1200 366.42 53.168 1.0645 0.6 11,455.87 

800 Not feasible 

 

K 

 

300 

360 285.416 89.429 0.89 0.6 11,518.61 

240 286.93 91.3399 0.890 0.6 11,653.32 

  0.12 Not feasible 
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β 0.1 0.08 Not feasible 

 

γ 

 

20 

24 Not feasible 

16 258.2899 54.38 0.9 0.6 8,919.76 

 

h1,2 and 3 

 

6,8 and 

10 

7.2, 9.6 

& 12 

208.362 67.167 0.623 0.41 10,988.11 

4.8, 6.4 

& 8 

326.096 139.389 0.87 0.6 11,926.57 

 

We can observe the scenarios where there is no feasible solution as the constraints are not 

met and the total profit per unit time function is not continuous as the holding cost is 

incremental.   
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CHAPTER 5 

OPTIMAL EPQ MODEL FOR STOCK-DEPENDENT 

DEMAND, VARIABLE HOLDING COST, 

RETROACTIVE HOLDING COST AND ALL UNIT 

DISCOUNT 

In this chapter, we introduce the concept of all unit discounts where the sellers tend to 

give to encourage buying in big batches. The main objective of this chapter is to develop 

a mathematical model with optimization solution procedure of EPQ with stock-dependent 

demand rate, finite production rate and variable holding cost retroactive holding cost with 

all-units discounts. 

5.1 Production-inventory Model 

The inventory level variation over time q(t) during a typical cycle is divided into two 

phases as well: uptime and downtime. During the first (uptime) phase of the cycle, a new 

order is produced at a constant rate P while the inventory is consumed at the stock-

dependent demand rate of Dq

.  During the second (downtime) phase of the cycle, the 

rate of change (decrease) in the inventory level is equal to the demand rate.  
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The net profit per unit time consists of four components: gross profit for the fresh product 

less the procurement cost, ordering cost and the holding cost. In this model, the holding 

cost is defined as the production of interest rate by the purchase cost (i*c) and the gross 

profit per unit   equals to (δ-c) which is (sales prince – purchase cost).  

The total profit per unit time is as follows: 
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From the optimum value of Q, the following quantities can be calculated: 
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The relationship between Q and L is described in the following constraint:  

∑   (     )  ∑   (     ) 
   

 
                                                                             (28) 

5.2 Solution Algorithm of Retroactive Holding Cost with All Unit 

Discount 

Assuming a retroactive holding cost, only the holding cost of the last storage interval is 

used retroactively for all earlier intervals. Assuming that the cycle ends in interval e, (e –

1  T  e), then the rate he is applied to holding cost intervals 1, 2, ..., e. Furthermore, the 

discount is applied to all units in an order (all unit discounts). The optimum solution is 

obtained by nonlinear programming according to the following steps:  

1. Starting with the lowest holding cost; (i*c), use NLP3 (with equation (21) as 

objective function, (28 and non-negativity) as constraints) to determine Q and L, 

and use (25) to determine T for each possible combination of ij and cj until Q and 

T are realizable (i.e., j –1  T   j) and (i.e., j –1  Q   j). Call these values QR , 

LR and TR. 

2. Staring with the realizable points from step 1, calculate all break-point values of 

Q and L, by setting Qi = Q(i)   and solve NLP3 for L and then find the value of T 

from (25). Then, set the border value of T and then re-solve NLP3 for Q and L. 

3. For all QR and Qi, use (26) to calculate 
T

dttq
0

,)(  and then substitute the result 

using the appropriate ij and cj into (21) to calculate the total profit π.  
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4. Choose the value of Q that gives the maximum total profit, and then use (27) to 

calculate the corresponding production lot size S. 

5.3 Numeric Example  

Given the following parameters: 

D = 400 units per year, P = 1,000 units per year,  K = $300 per order 

 = 0.1, i1 = 12%, i2 = 16%, i3 = 20%, c1 = 50, c2 = 45, c3 = 40 

h1 = 0.12(50) = $6/unit/year,  h2 =0.16(45) = $8/unit/year,  h3 = 0.20(40) = $10/unit/year 

1 = 0.3 years,  2 = 0.6 years, 3 =  

1 = 300, 2 = 500 and           ,            

The solution procedure is implemented in the following steps. 

Step 1 

 c1=50  (0<=Q<300) c2=45  

(300<=Q<500) 

c3=40  (Q>=500) 

i1= 0.12  

(0<=T<0.3) 

Q=424.134, 

L=103.2, 

T=1.52015 

t1=1.0571  

(not realizable) 

Q=544.754, 

L=177.112,  

T=1.82335 

t1=1.31063  

(not realizable) 

Q=695.79, 

L=278.215,  

T=2.18229 

t1=1.61803 

(not realizable) 

i2= 0.16  

(0.3<=T<0.6) 

Q=332.151, 

L=66.0562, 

T=1.2179  

t1=0.822303 

(not realizable) 

Q=422.611, 

L=116.908,  

T= 1.4528 

t1=1.01332 

(not realizable) 

Q=536.212, 

L=187.607, 

T=1.73003 

t1=1.24428 

(not realizable) 

i3= 0.20  (T>=0.6) Q=275.833, 

L=46.0374, 

T=1.02853  

t1=0.678933 

Q=348.165, 

L=83.7566, 

T=1.22194  

t1=0.832718  

Q=439.118, 

L=136.912, 

T=1.44951 

t1=1.01828 
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 π= $ 11,272.3 

(realizable) 

π= $ 14,816.4 

(realizable) 

(not realizable) 

 

Step 2  

Break points: 

 c1=50  (0<=Q<300) c2=45  (300<=Q<500) c3=40  

(Q>=500) 

i1= 0.12  

(0<=T<0.3) 

T=0.3 “as constraint” 

π=11,395.6,  

Q=262.901, L=  198.557 

T=0.3“as constraint” 

π=15,071.8, 

 Q=361.213, L= 299.863 

 

i2= 0.16  

(0.3<=T<0.6) 

T=0.6 “as constraint” 

π=11,477.9,  

Q=241.305, L=108.525, 

T=0.6 “as constraint” 

π=15,050.7, 

 Q= 308.961,   

L =181.172,  

 

i3= 0.20  , (T>=0.6) Q=300, C=45, i=0.2 “as 

constraint” 

π=14,795.65 

       , T=0.995 

Q=500, C=40,i=0.2, “as 

constraint”,  

π=18,511.96, 

         , T=1.776 

 

 

Step 3 

QR = 275.833, LR=46.0374 , i = 0.2, c=50 with πR= $ 11,272.3 

QR = 348.165, LR=83.7566 , i = 0.2, c=45 with  πR= $ 14,816.4 

Q1=262.901, L1= 198.557, π1=11,395.6 

Q2=361.213, L2= 299.863, π2=15,071.8 

Q3=241.305, L3=108.525, π3=11,477.9 

Q4= 308.961, L4 =181.172, π4=15,050.7 

Q5=300.000, L5=81.64, π5=14,795.65 

Q6=500.000,L6=134.193, π6= 18,511.96 
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Step 4 

The maximum profit (π= 18,511.96/year) is obtained with Q = 500. Therefore, the 

optimum inventory policy is: 

  Cycle time T = 1.776 year 

5.4 Sensitivity Analysis 

The same concept that was carried out to make the sensitivity analysis in the previous models, is 

used for this model by increasing and decreasing the parameters by 20% and then re-solving the 

model. 

Table 3 Sensitivity Analysis Results of Model 3 

Parameter Original 

Value 

New Values Q* L* T π 

 

D 

 

400 

480 500 176.25 2.696 22,693.2 

320 500 82.748 1.697 14,267.6 

 

P 

 

1,000 

1200 500 125.54 1.291 18,452.0 

800 500 119.29 4.908 18,361.5 

 

K 

 

300 

360 500 129.27 1.799 18,478.4 

240 500 139.56 1.754 18,546.0 

 

β 

 

0.1 

0.12 500 220.25 1.826 21,145.1 

0.08 500 66.055 1.853 16,250.8 

δ  

70 

84 589.83 250.564 1.726 28,568.7 

56 500 28.433 2.226 8,717.16 
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i1,2 and 3 

 

12, 16 and 

20 

14.4, 19.2 

and 24 

500 95.253 1.947 18,011.6 

9.6, 12.8 and 

16 

536.21 187.607 1.730 19,051.4 

c1,2 and 3 50, 45 and 

40 

60, 54 and 48 500 43.995 2.163 12,425.2 

40, 36 and 32 644.45 270.688 1.931 24,875.9 

 

 

Most of the optimal cases reported in this table are located at the break-points. If we 

compare the results in this model and the one reported in section 3.5 where there is no 

quantity discount, we will find that quantity discount will have positive impact to the 

total profile and will almost double the profit as that will encourage the buyer to raise the 

demand.  
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CHAPTER 6 

OPTIMAL EPQ MODEL FOR STOCK-DEPENDENT 

DEMAND, VARIABLE HOLDING COST, 

INCREMENTAL HOLDING COST AND ALL UNIT 

DISCOUNT 

In this chapter, all unit discounts along with incremental holding cost is introduced in 

developing the mathematical model that maximize the total profit of EPQ. The main 

difference between this model and the pervious one is the nature of holding cost as there 

different holding cost used for each storage interval un-like the retroactive holding cost. 

6.1 Production-Inventory Model 

The objective, which is to maximize the total profit per unit time, is expressed as follows: 

Max  

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calculating the integrals in (29) may have three possibile procedures for soltuion as an 

interval [i – 1, i] may fall entirely in the first phase (before t1), entirely in the second 
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phase(after t1), or straddle both phases. If the interval falls entirely in the first phase (i – 1 

< i  t1), then we use follwing equation:  
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If it falls entirely in the second phase (t1  i – 1 < i), then we use  the follwing equation: 
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However, if the interval straddles both phases (i – 1   t1 < i), then we have to evaluate 

the integral over [i – 1, i] using a combination of (30) and (31) as follows: 
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By using the same concept and mathematical derivation descripted in section (4.1), the 

following two equations are used to find the q at the break points: 
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Where, e – 1   T   e          (35) 

6.2 Solution Algorithm 

Direct optimization of the objective function (29) by differential calculus is not feasible. 

For this case, the optimum solution is obtained by nonlinear programming according to 

the following steps:  
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1. Substitute the minimum and maximum values of the product (i*c) into (NLP3) to 

determine the range of values for Q and L, and then use (22) and (25) to 

determine the corresponding range of t1 and T. 

2. For each possible combination of t1 and T, formulate a nonlinear programming 

(NLP4) model whose objective function is (29), decision variable is Q and L, and 

constraints are (22), (25), and (33)-(35). In each NLP model, use the applicable 

terms for each interval [i – 1 , i] in the objective and constraints. 

3. For each combination of t1 and T, solve the corresponding NLP model to find the 

optimum solution. 

4. Choose the feasible solution with the maximum total profit π. 

6.3 Numeric Example 

Resolve the same example in section (5.3) with the assumption that the holding cost 

increases incrementally. 

The solution procedure is implemented in the following steps. 

Step 1 

For i1=0.12, c3 = 40 and (0 < T ≤ 0.3), Q=695.79, L=278.215, T=2.18229, t1=1.61803 

For i3=0.20, c1 = 50 and (T > 0.6), Q=275.833, L=46.0374, T=1.02853, t1=0.678933 

Clearly T and t1 fall in the third interval. 

Step 2 
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When both t1 and T are in the third interval, then e = 3. The NLP model is formulated as 

follows:
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This objective is maximized and subject to the follwing constraints: 
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  T > 0.6                      

Step 3 

 The optimum solution of the NLP in step 2 is: 
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 Q = 447.794, L=280.305, t1 = 0.599998, T = 0.830678, π = $18,991.1.  

 

Step 4 

There is only one feasible solution and it is the optimum solution which is: 

Q = 447.794, L=280.305, t1 = 0.599998, T = 0.830678, π = $18,991.1.  

6.4 Sensitivity Analysis 

The sensitivity analysis is carried out by increasing and decreasing the parameters by 20% and 

then re-solving the model. 

Table 4 Sensitivity Analysis Results of Model 4 

Parameter Original 

Value 

New 

Values 

Q* L* T t1 π 

 

D 

 

400 

480 Not Feasible 

320 407.79 143.69 1.072 0.6 14,637.6 

 

P 

 

1,000 

1200 415.03 220.4 0.671 0.397 18,564.2 

800 339.45 280.61 0.682 0.6 18,807.8 

 

K 

 

300 

360 446.47 278.81 0.831 0.6 18,918.9 

240 449.12 281.79 0.830 0.6 19,063.4 

 

β 

 

0.1 

0.12 476.35 243.70 1.480 1.213 21,716.2 

0.08 361.772 134.07 0.967 0.6 16,652.4 



45 

 

 

δ 

 

70 

84 Not feasible 

56 285.22 89.190 0.891 0.6 9,201.43 

 

i1,2 and 3 

 

12, 16 

and 20 

14.4, 

19.2 

and 24 

385.06 208.77 0.848 0.6 18,571.8 

9.6, 

12.8 

and 16 

Not feasible 

 

c1,2 and 3 

 

50, 45 

and 40 

60, 54 

and 48 

267.93 109.82 0.720 0.486 12,685.4 

40, 36 

and 32 

705.19 562.19 0.783 0.6 25,548.9 

 

There are two observations with this table, as few scenarios with no feasible solution and 

the total profit function is not continues, and the second observation is that the quantity 

discount encourage the buyers raise the demand and increase the total profit. 
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CHAPTER 7 

CONCLUSION AND CONTRIBUTION 

In this thesis, four different economic production quantity (EPQ) models with stock level 

dependent demand rate, variable holding cost “the new (higher) holding cost can be 

applied either retroactively to all storage periods, or incrementally to the new period 

only.” and quantity discount “All-unit quantity dicount” were developed with 

mathematical formulation and NLP programming with the results of one example that is 

used in the literature. Furthermore, sensitivity analyses of all the parameters in the EPQ 

models were conducted for the four models and extensive study on the effect of 

increasing and decreasing the value of the parameters by 20 percent over the total profit 

per unit time were conducted.  

7.1 Major Contribution  

After completing this thesis work, the major contributions added to the literature are as 

follows: 

• Extended Al-Fares (2012) models “with single decision variable Q to multiple 

decision variables” with maximization objective function rather than minimizing 

total cost per unit time and allowing non-zero end inventory for each cycle.  

•  Introduced the “all unit quantity” discount to the last two EPQ models, and 

redeveloped the EPQ models with incremental and retroactive holding cost. 
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7.2 Further Extension and Research  

There are several directions for future research can be considered. Some of these are: 

 Assume the quality as not perfect, and introduce type I and II error. 

 Introducing the incremental discount rather than the all unit discount. 

 Introduce quality and inspection and figure out the effect of the overall supply 

chain. 

 Allow shortages, where all the above models assume shortages are not allowed. 

 Variable ordering cost 

 Variable production rate P. 
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Appendix  

The Mathimatica codes that have been used to find the solution of the NLP problem in 

example 1 are listed to this appendix. 

The first model: 
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The second model: 
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