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With the increasing popularity of XML and database applications, the demand for 

efficient query processing is becoming very essential. The performance of XML query 

optimizers depend heavily on selectivity count estimation to choose the best query 

execution plan. Most of the existing estimators address the problem of linear path and 

existential twig query selectivity count estimation while very few address the problem of 

regular twig query selectivity count estimation. In this work, we propose and evaluate a 

general selectivity count estimator based on a structural synopsis called, SynopTech, that 

can estimate the selectivity counts for the three query types. We also propose two novel 

approaches to generate structural summaries of XML data trees which can be used by 

SynopTech for selectivity count estimation. The main idea of the first summarization 

approach is to use a fingerprinting function to label nodes in the data tree and cluster 

similar sub-trees to generate a summary tree. The second approach is based on clustering 

the nodes using the prime-number labeling scheme to generate the summary tree .The 

experimental results showed very low error rates by the proposed approach for XML 

documents in four benchmark datasets with different structural characteristics including 

non-uniform documents and multi-level queries. Comparing with the Sampling algorithm 

and TreeSketch, two state-of-the-art algorithms for selectivity count estimation, 
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SynopTech achieved lower selectivity count estimation error rates on most datasets, yet 

with very low memory budget. For example, for linear and existential queries, SynopTech 

had perfect estimations whereas the Sampling algorithm had an overall error rate of more 

than 85%. For regular twig queries, SynopTech had a maximum error rate of 0.8% 

whereas the TreeSketch algorithm had more than 15% on some datasets. Moreover, we 

present a scalable hybrid approach for selectivity count estimation by combining a 

statistical technique with SynopTech. This hybrid approach can work under limited 

storage budget but at the expense of lowering its estimation accuracy. 
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 ملخص الرسالة

 
 أحمد فيصل براده :الاسم الكامل

 
 الاستعلامات نتقائيةبنيويا وتطبيقاته في تقدير ا XMLشجرات  تقسيم :عنوان الرسالة

 
 علوم الحاسب التخصص:

 
 3102ديسمبر  :تاريخ الدرجة العلمية

 
 

أداء  . ويعتمدبكفاءة ضرورية جدا ، أصبحت معالجة الاستعلاماتوقواعد البيانات XML مع ازدياد شعبية تطبيقات

معظم   .تنفيذ الاستعلاملبشكل كبير على تقدير الانتقائية لاختيار أفضل خطة    XMLشجراتل اتالاستعلام معالجات

تقدير الانتقائية للاستعلام عن المسارات الخطية والاستعلام عن المسارات الغصينية الوجودية  تعالج الموجودة  الحلول

يمكنه تقدير   مقدر انتقائية عام في هذه الدراسة  نقترح  .للمسارات الغصينية العادية يتطرق عدد قليل منها بينما

 بصمةباستخدام دالة  XMLلشجرة  لبنيويا لتلخيصالانتقائية لأنواع الاستعلامات الثلاث ويعتمد على ا

(fingerprint) ماثلة لتوليد شجرة تتجميع الأشجار الفرعية المأو الأعداد الأولية لترقيم أوراق شجرة البيانات و

مع خوارزميات أخرى على قواعد بيانات ذات خصائص مختلفة  وتم تقيم الطريقة المقترحة ومقارنتها التلخيص.

تجريبية معدلات خطأ منخفضة جدا أظهرت النتائج الوقد  ومجموعات مختلفة من الاستعلامات متعددة المستويات.

على ة مقارنة بالطرق الأخرى. ولزيادة مرونة الطريقة المقترحة للتعامل مع الحالات التي فيها قيود المقترح للطريقة

ذاكرة التخزين تم اختصار شجرة التلخيص مما أدى إلى انخفاض دقة التقدير، ولتعويض بعض الفقد الناتج تم دمجها 

 لوب إحصائي لتحسين الأداء نسبيا.مع أس
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1. CHAPTER 1 

INTRODUCTION 

The eXtensible Markup Language (XML) [1] is becoming increasingly popular as a 

document formatting standard in various applications especially in the World-Wide Web 

(WWW). It is also a de facto format for data exchange among heterogeneous systems. As 

a result, vast amount of XML data is available and the demand for an efficient online 

query processing is growing by the day. Abundant research has recently been directed 

towards building query optimizers for XML database management systems as [2 – 8, 54]. 

Choosing the best possible query execution plan is what database query optimizers 

attempt to achieve. Like relational query optimizers, XML query optimizers use 

selectivity count estimators to estimate the size of the intermediate results to be generated 

by a query execution plan. An efficient selectivity count estimator must have low CPU 

cost, low memory cost, and low estimation error rate. To achieve that, a selectivity count 

estimator often doesn't run against the source document, but it uses a summary structure 

of the source document or some statistics generated from it.  

XML queries are classified into linear (path) queries and twig queries. Twig queries are 

classified further into regular and existential since their selectivity count estimations are 

computed differently [9]. A number of query estimators have been proposed in the 

literature but they mostly focus on path queries and/or existential twig queries. Existing 

linear query selectivity count estimators can have acceptable results. However, the 
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selectivity count estimation techniques of twig queries, especially regular twig queries, 

are few and can suffer from high error rate especially for extended queries with multiple 

levels or when the source XML document is non-uniform [10]. 

The main goal of this thesis is to develop a synopsis-based technique for XML query 

estimation that can work well under various structural characteristics of XML documents 

even with complicated queries. Our approach is based on summarizing the XML data tree 

by grouping similar structures. We propose two summarization techniques: the first one 

is based on the prime-number labeling scheme and the second is inspired by the work 

conducted on string pattern matching using fingerprinting. The generated summary tree 

by either technique is then used for query estimation. We also propose a hybrid approach 

that extends the proposed summarization technique with a statistical method to manage 

the size of the generated summary tree. 

1.1. Motivation & Problem Definition 

Selectivity count estimation plays a major role in any query optimization model. It is an 

essential component that enables the optimizer to find the best possible execution plan 

that reduces the query execution time. In addition, a vast amount of XML data is 

available in the web and the demand is rising for efficient online query processing such 

as the Niagara system presented in [11]. For this kind of applications, the selectivity 

count estimation might be of great interest to the user because it shows whether the query 

needs refining before returning the full set of results matching his query.  

XML query selectivity count estimation is the process of computing the expected 

intermediate number of nodes in an XML document that match the given query. This 
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problem is challenging and demands an efficient solution methodology. Figure 1 is an 

example where selecting an efficient query plan is crucial and may save a great deal of 

the execution time. The XML document in Figure 1(a) has a single type C node which 

has more than 100,001 children of type B and only one of them has a child of type A. 

Assume we want to estimate the number of type A nodes that have types B and C as their 

ancestors as shown in the query in Figure 1(b). If B is joined with A first, one node will 

be retrieved as an intermediate result before it is joined with C. On the other hand, if C is 

joined with B first, then 100,001 nodes will be produced and joined with type A nodes. 

Also, consider the twig query in Figure 1(c). If this is a regular twig query, then the query 

processor has to retrieve all D and F combinations that have types B and E as their 

ancestors. If the processor tries to retrieve the twig part of the query first (i.e. B[/D][/F]), 

more than 10
10

 nodes will be retrieved as intermediate results. This is because the type C 

node has 100,000 twigs rooted at type B and each twig has 100,000 combinations of node 

types D and F. In addition the type E node has a single twig rooted at type B which has 

2000 combinations of types D and F. On the other hand, if the processor tries to retrieve 

the linear part of the query first (i.e. E/B), a single B node will be retrieved as an 

intermediate result before the 2000 combinations of D and F are retrieved. The job of the 

selectivity count estimator in that case is to provide the query optimizer with enough 

information about the counts of both the linear and the twig parts of the query in order to 

choose the optimum query plan (the plan with the lowest storage and/or CPU cost). In 

other words, all node statistics and estimates should be efficiently maintained and made 

available for the query optimizer for the purpose of making accurate decisions when 

selecting a query plan. From the above example, we can see that estimating the selectivity  
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Figure 1: Query estimation importance: a) XML tree, b) Path query, and c) Twig query 

counts of regular twig queries can save a great deal of execution time and storage 

requirements. Since a few estimators in the literature are capable of estimating the counts 

of regular twig queries, we conducted our research to develop a general estimator that can 

provide more accurate estimates for regular twig queries in addition to existential twig 

and linear queries. 

That being said, the following are some of the important qualities and characteristics that 

need to be preserved and addressed when implementing a selectivity count estimation 

model [9]: 

  Space efficiency: the algorithm should use minimal storage for the model and its 

data. 

  Generality: it can be defined as the capability of the algorithm to handle different 

types of queries and provide estimates for them. This is indicated by supporting both 
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path and twig queries that target the most common structures or XML axes (e.g. 

parent/child, ancestor//decedent..., etc.).  

  Estimation accuracy: which is normally measured by calculating the error rate 

produced by the estimator. 

 Time Efficiency: this can include the summary generation time, the estimation time, 

and the overall time. 

1.2. Thesis Objectives 

In this thesis, we propose a model for selectivity count estimation that efficiently 

addresses the characteristics mentioned in the previous section. The main objective of our 

research is to provide a framework for more efficient and accurate selectivity count 

estimation of XML queries including linear, existential and regular twig queries. To 

achieve this objective, we will proceed as follows: 

1) Survey of the literature: an extensive review of the existing techniques on XML 

selectivity count estimation in order to identify their strengths and shortcomings. 

2) Design & implementation of new algorithms: design new algorithms to summarize 

XML trees and estimate the selectivity counts of various types of queries using the 

summary structure. Also, implement a scalable hybrid approach for selectivity count 

estimation to handle the memory budget constraints.  

3) Performance study: carefully study the performance of the implemented algorithms 

using real and synthetic data. Also, the algorithms and the overall framework will be 

evaluated against some evaluation criteria such as storage requirements and 

estimation accuracy. 
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4) Comparison: compare the performance of the proposed model with existing state-of-

the-art selectivity count estimation techniques. 

1.3. Thesis Outline 

The rest of this thesis is as follows: Chapter 2 gives a general background of the XML 

model and the XML query processing. The related work is reviewed in Chapter 3. The 

proposed summarization techniques and the selectivity count estimation algorithm are 

explained in details in chapters 4 and 5, respectively. Chapter 6 includes the performance 

study of our approach and the comparisons with other approaches. Chapter 7 introduces a 

hybrid approach for selectivity count estimation with experimental results. Finally, 

Chapter 8 concludes the thesis and outlines the future work. 
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2. CHAPTER 2 

BACKGROUND 

XML stands for eXtensible Markup Language [1]. It has the ability to represent 

structured, semi-structured, and completely unstructured data. Figure 2 presents an 

example of an XML document which is a sample taken from the Ssplays dataset [52]. 

The main components of an XML document are: 

 Elements: An element in the XML document is represented by a start tag 

“<element>” and an end tag “</element>”. An element can contain other elements, 

text, or attributes. For instance, in Figure 2, every instance of the TITLE element is 

enclosed between the start tag <TITLE> and the end tag </TITLE>. Also, each 

instance of the TITLE element contains text such as “The Tragedy of Antony and 

Cleopatra”. The instances of the PGROUP element contain two other element types, 

namely PERSONA and GRPDESCR. 

 Attributes: These are included in the element’s start tag and they provide additional 

information about the element. For example, the PGROUP element instances have an 

attribute called “id” in their start tags : <PGROUP  id=”001”> and 

<PGROUP id=”002”>. 

 Values: They represent the data enclosed by the start and end tags of the element and 

that are not other elements. For example, the value of the first PERSONAE instance 

is the text “MARK ANTONY”. Attributes also have values, e.g. the value of the first  
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Figure 2: Example of an XML document 

 

“id” attribute is “001”. The types of the values as well as the structure of the XML 

document can be described using data definition languages such as the DTD [12] or XML 

Schema [13]. 

2.1. XML Model 

The XML document is usually modeled with a labeled tree structure where every node is 

associated with a type or a value and a label. An edge between two nodes in the tree 

<SSPLAYS> 

<PLAY> 

<TITLE>The Tragedy of Antony and Cleopatra</TITLE> 

<PERSONAE> 

<TITLE>Dramatis PERSONAE</TITLE> 

<PGROUP     id=”001”> 

<PERSONA>MARK ANTONY</PERSONA> 

<PERSONA>OCTAVIUS CAESAR</PERSONA> 

<PERSONA>M.AEMILIUS LEPIDUS</PERSONA> 

<PERSONA>POMPEIUS</PERSONA> 

<GRPDESCR>triumvirs.</GRPDESCR> 

</PGROUP> 

<PGROUP     id=”002”> 

<PERSONA>DOMITIUS ENOBARBUS</PERSONA> 

<PERSONA> VENTIDIUS</PERSONA> 

<PERSONA>EROS</PERSONA> 

<PERSONA>SCARUS</PERSONA> 

<PERSONA>DERCETAS</PERSONA> 

<PERSONA>DEMETRIUS</PERSONA> 

<PERSONA>PHILO</PERSONA> 

<GRPDESCR>friends to Antony.</GRPDESCR> 

</PGROUP> 

</PERSONAE> 

</PLAY> 

</SSPLAYS> 
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represents a parent-child (P-C) relationship between the two nodes. The labels on the 

nodes normally describe the ordered position of the nodes in the data tree. Furthermore, 

the labels in some labeling schemes can be used to describe some structural relationships 

between arbitrary nodes in the tree, such as, parent-child (P-C), ancestor-descendant (A-

D), and so on. In what follows, we present some common labeling schemes. 

2.1.1. Range-Encoding Scheme 

This scheme is also known as containment or interval-based labeling scheme [14]. In the 

range encoding scheme, every node is labeled with a 3-tuple of integers (start, end, level). 

For any two nodes x and y in the tree, x is an ancestor of y iff x.start < y.start and x.end > 

y.end. Moreover, if x.level = y.level -1 then x is the parent of y. Also, for an inner node x, 

x.start < x.end and for a leaf node x, x.start = x.end. Figure 3(a) shows an XML tree 

labeled with the range encoding scheme. This approach can identify A-D relationships 

but it requires re-labeling the tree after any update (such as adding or deleting nodes). To 

avoid re-labeling, Amagasa et al. [55] proposed a technique using float-point values for 

start and end but it also has limitations due to the finite word length of the computer. 

2.1.2. Prime-Number Labeling Scheme 

The prime-number labeling scheme was first introduced by Wu et al. [15]. They proposed 

bottom-up and top-down approaches to label a given XML data tree. 

A) Bottom-up Scheme: In the bottom-up approach, the XML data tree is scanned using 

post-order traversal and the leaf nodes are labeled with prime numbers while the inner 

nodes are labeled with the products of their children’s labels. The main characteristic 

of this approach is that it facilitates the identification of the ancestor-descendant  
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Figure 3: Example of range encoding scheme a) XML tree with the range encoding, b) 

Simple path parent-child query, and c) Simple path ancestor-descendant query 

relationships between any two nodes with a single comparison given their labels using 

the divisibility property of prime numbers. In other words, for any two nodes x and y, x is 

an ancestor of y if and only if label(x) mod label(y)) = 0 [15]. Figure 4 shows an example 

of a tree labeled with the bottom-up prime-number labeling scheme. The problem with 

this approach is that it can result in very large labels for big XML documents. 

B) Top-down Scheme: In order to reduce the size of the labels, Wu et al. [15] also 

introduced the top down approach where the label of a node is the product of its self-

label (the next available prime number) and its ancestors’ labels in the pre-order 

traversal. Figure 5 shows an example of the top-down approach. 
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Figure 4: A tree labeled with the bottom-up prime-number labeling scheme 

 
Figure 5: A tree labeled with the top-down prime-number labeling scheme 
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2.2. XML Query & Query Selectivity Count 

The XML query is usually represented using a tree. The set of nodes in the query tree is a 

subset of the set of nodes in the data tree. Furthermore, the edges in the query tree are 

represented by either double forward slashes “//” between node types to reflect the 

ancestor-descendant relationship between the nodes, or a single forward slash “/” 

between node types to reflect the parent-child relationship between the nodes. 

Several query languages exist in the literature such as XPath [16], XQuery [17], Lorel 

[18] and Quilt [19]. The main purpose of the query languages is to find and retrieve the 

matches of the query tree in the source XML data tree. Perhaps the most common query 

languages are the XPath and XQuery and in what follows we give a brief description of 

each. 

2.2.1. XPath 

XPath is an XML query language [16]. Its syntax is similar to the syntax used in the 

UNIX operating system to access files and  directories. A simple XPath expression can 

be of the form //n1/n2../ni where n is a node type and the forward slashes are used to 

describe the structural relationships between the node types (i.e. “/” for  parent-child and 

“//” for ancestor-descendant relationships). For instance, the simple path expression 

(//book/title) will return all the “title” elements that have a parent of type “book”. The 

wildcard “*” can also be used in the XPath expressions to indicate any node type. Also, 

XPath allows both structural conditions and value predicates using brackets. Structural 

conditions can represent branching paths. For example, the path expression 



 

 

13 

 

//book[author]/title involves two paths, //book/author and //book/title, and will retrieve all 

the title elements that have an author element as their sibling and the element book as 

their parent.  

2.2.2. XQuery 

The XQuery is a functional language used to query XML documents. The XQuery 

expressions usually have the FLWOR  (For, Let, Where, Order, Return) form [17]. The 

FLWOR expression allows the user to manipulate the result of the query. The “For” 

clause is composed of one or more path expressions where each expression is bound to a 

variable. Each variable iterates through the nodes returned by the expression it is bound 

to. The “Let” clause is used to create variables and bind them to the results from the 

“For” clause. The “Where” clause is used to specify conditions over the variables in the 

“Let” and “For” clauses in order to filter the results. The “Order” clause is used to sort 

the results based on a variable defined in the “For” or “Let” clauses. Finally, the “Return” 

clause is used to manipulate the structure of the results and is the only mandatory clause.  

The following is an example of an XQuery expression: 

For $x IN document(“SSplays.xml”)//PLAY 

Let $title := $x/TITLE 

Where  count($x/ACT) > 3 

Order by $title 

Return $title 

 

The above query returns all the titles for the plays that have more than 3 acts ordered by 

the title. 
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2.2.3. Types of XML Queries 

There are several types of XML queries. In what follows, we provide a classification of 

XML queries similar to the one presented in [9]. 

 Linear Path Queries (LP): These are single path queries or queries that do not 

contain branching paths. Both queries depicted in Figure 3(b) and Figure 3(c) are 

linear path queries.  

 Twig queries: These are queries that contain branching paths. The twig queries can 

be further broken down into two categories: 

o Existential Twig Queries (ET): Such queries are similar to the simple path 

queries in the sense that they contain a single target node but they contain 

some branching conditions.  

o Regular Twig Queries (RT): Unlike existential twig queries, regular twig 

queries involve finding and retrieving all combinations of multiple target nodes 

from the XML data tree.   

Note that all of the above queries can involve parent-child (P-C) or ancestor-descendant 

(A-D) relationships. 

2.2.4. Query Selectivity Count 

Query selectivity count is the number of matches of a given query in the source XML 

data tree. Chen et al. [20] definition of a twig match can be slightly modified to formally 

define the selectivity count as follows:  
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Definition 1.1 (selectivity count):  

Given a labeled XML data Tree Td = (Vd, Ed) and a query (twig or path) Tq = (Vq, Eq, 

{/,//}), the selectivity count of Tq is the approximate number of matches c(Tq) that satisfy 

the following mapping : f: Vq  Vd  such that if f (u) = v for u ϵ Vq and v ϵ Vd, then  

1- Label(u) = Label(v) 

2- If (u, u`, /) ϵ Eq, then (f (u), f (u`)) ϵ Ed. 

3- If (u, u`, // ) ϵ Eq, then there is at least one linear path p in Td rooted at f(u) and reaches 

f(u`) where all the edges in p ϵ Ed 

The selectivity count of a simple path query is simply the count of the nodes in the data 

tree matching the type of the query-target node (i.e. the node at the end of the expression) 

and satisfying the structural conditions represented by the edges in the query tree. 

Consider the XML queries in Figure 3(b) and Figure 3(c). Both queries have the 

selectivity count of 1. This is because the element A in the data tree has a single B child 

satisfying the query in Figure 3(b) and a single D descendant satisfying the query in 

Figure 3(c). 

For existential twig queries, only the count of the target node contributes to the query 

selectivity count while the branching paths present structural conditions indicating that at 

least a single occurrence of each branch should exist in the source tree. Figure 6(b) shows 

an example of a twig query over the source tree in Figure 6(a). If this is an existential 

twig query and D is the single target node, then the selectivity count of the query in this 

case is 1 since there is only one D element whose parent has a sibling of type C. 
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Figure 6: a) XML tree, and b) Twig query and its corresponding XPath expression 

Unlike existential twig queries, the counts of all branching paths contribute to the overall 

query selectivity count in regular twig queries. Consider the XML query in Figure 6(b). If 

it is a regular twig query, then its selectivity count is 2 since there are two C elements in 

Figure 6(a) that can be matched with the single D element satisfying the structure 

described by the query.  
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3. CHAPTER 3 

RELATED WORK 

In the past decade, a number of selectivity count estimation techniques have been 

proposed in the literature by the XML database research community. The general idea of 

most of the techniques in the literature is to summarize the XML document in a way that 

preserves the structural relationships between the elements and can reflect the actual or 

approximate counts of those elements in the source document. Such summary structures 

or synopses can be in the form of graphs or trees. Examples of these techniques can be 

found in [21-26,57]. While graphs have the advantage of modeling more types of 

elements such as the IDREF/ID (i.e. attributes that refer to another element’s ID value), 

trees can be traversed more efficiently than graphs. In contrast, histogram-based 

techniques depend on the use of statistical histograms to capture the structural and 

content distributions of the source XML documents [27 - 29, 31,58]. One important 

feature of histograms is that they can capture more accurate statistics when the 

distribution of the XML data is not uniform [31]. Moreover, they are usually simpler 

structures and easier to build than trees and graphs. Finally, statistics-based techniques 

build highly summarized statistical models to represent the structure of the source XML 

documents [21, 30]. Although statistical approaches are usually more storage efficient 

than synopses approaches, they tend to show higher error rates with non-uniform XML 

documents. In [31], the authors augmented a statistical model with histograms based on 
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an interval-based numbering scheme to reduce estimation errors when the underlying 

data is skewed. Table 1 summarizes the techniques in the literature. 

One thing to note is that very few techniques address the selectivity count estimation of 

regular twig queries. This is also shown in the survey conducted by Sakr [10]. Also, 

several techniques are proposed for XML selectivity count estimation for queries with 

value predicates like [24, 32 - 36]. Since this work focuses on structural selectivity count 

estimation, we only discuss [24, 33] as examples for those techniques. In what follows 

we present some of the techniques in the literature. 

3.1. Synopsis-Based Approaches  

XSketch: Polyzotis et al. [26] proposed the XSketch technique which is based on a 

generic graph synopsis model. In this model, each node corresponds to a set of identically 

labeled node types in the source XML document. The synopsis graph is augmented with 

edge labels that represent the backward and forward stability properties. This way, the 

counts of paths that consist of backward stable edges will depend on the count of the last 

node in the path expression only. This reduces the computational complexity and also 

improves the estimation accuracy. In addition, a multidimensional histogram is associated 

with each node type to capture the distribution of the values associated with that node 

type. Consequently, the estimate is computed by combining the stability information of 

the structural part of a given twig pattern and the distribution of the values which are in 

the value predicates part of the same twig pattern. This technique works well with the 

uniformity assumption and simple path expressions but can produce a high error rate with 

twig queries [25]. A generalization of the XSketch called the fXSketch has been proposed  
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Table 1 Selectivity count estimation techniques 

Reference Approach Category Supported Queries Year 

Polyzotis et 

al. [26] 
Xsketch synopsis Linear, existential 2002 

Polyzotis et 

al. [25] 
Twig-Xsketch synopsis 

Linear, existential, and 

regular 2004 

Polyzotis et 

al.[38] 
TreeSketch synopsis 

Linear, existential, and 

regular 2004 

Aboulnaga et 

al. [21] 
Path-Tree 1 synopsis Linear 

2001 

Alrammal et 

al. [39] 
Path-Tree 2 synopsis Linear, existential 

2011 

Li et al.[40] Path-Encoding:  synopsis linear, existential 2006 

Lim et 

al.[59] 
XPath-Learner synopsis linear, existential 

2002 

Zhang et 

al.[41] 
Xseed synopsis linear, existential 

2006 

Luo et al. [9] Sampling synopsis 
Linear, existential, and 

regular 2009 

Chen et al. 

[56] 

Correlated Subpath 

Tree 
Synopsis 

Linear, existential, and 

regular 2001 

Wu et al. 

[28]  
Position-Histogram histograms linear, existential 

2002 

Wang et 

al.[29] 
Bloom-Histogram histograms linear 

2004 

Lim et 

al.[33] 
CXHist histograms linear 

2005 

Li et al.[40] Path-order histograms linear,existential 2006 

Freire et 

al.[57] 
StatiX histograms linear, existintial 

2002 

Aboulnaga et 

al. [21] 
markov Table statistical linear 

2001 

Lee et al.[30] 
NodeRatio-Node-

Factor 
statistical linear,existential 

2004 

Wang et al. 

[42] 

Probabilistic-

Decomposition 
statistical linear,existential 

2004 
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to improve the accuracy of the estimates and handle other types of queries. fXSketch is 

proposed to cope with fractional stabilities by recording more details about 

path/branching distributions [37]. 

Twig-XSketch: In order to improve the accuracy of the estimate for twig queries, 

Polyzotis et al. in their later work [25] extended the XSketch synopsis to capture the path 

distribution information at a finer level of detail. The idea is to store a multidimensional 

histogram per synopsis node (a node in the XSketch graph) that represents the localized 

edge distribution. For example, if a node n in the synopsis has two outgoing edges (n, t) 

and (n, q), then the histogram Hn(c1,c2) would represent the fraction of n nodes in the data 

tree that have exactly c1 children of type t and c2 children of type q. This introduces the 

requirement for extra storage space to maintain the histograms along with the XSketch 

graph. Figure 7(b) shows a sample XSketch graph of the tree in Figure 7(a) and Figure 

7(c) shows XSketch extension to include the edge distribution histograms. For example, 

the selectivity count of the query C[/G]/H can be calculated using the graph in Figure 

7(b) and the histogram in Figure 7(c) as follows: 

 ∑g,h |C| HC(g,h) g.h (1) 

One problem with the XSketch synopses is that they are complex to construct and also 

the edge histograms are kept for only a subset of the paths which leads to poor estimates 

for twig queries whose paths distribution information is not stored. 

TreeSketch: Polyzotis et al. [38] proposed the TreeSketch synopsis to summarize the 

XML documents for the purpose of selectivity count estimation. The TreeSketch is a 

summary graph that clusters the elements in the XML tree based on the count stability  
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Figure 7: a) XML tree with the counts of nodes at the edges, b) XSketch graph for the 

tree in a, and c) edge distribution histograms 

concept and the space budget. Nodes in the XML tree that have the same substructure and 

the same count for each child and descendant belong to the same graph node. Figure 8 

shows the TreeSketch graph for the XML tree in Figure 7. The main advantage of the 

TreeSketch approach is that in addition to estimating the selectivities, it facilitates the 

generation of the query results. One issue with this approach is that it can be very time 

consuming to generate the Treesketch synopsis according to a certain space budget. Also, 

the synopsis size can become large if the XML source tree exhibits any type of 

irregularity in terms of elements’ structures or counts. 

Path-Tree-1: Aboulnaga et al. [21] proposed two techniques to estimate the selectivity 

counts of path expressions. Their first technique is based on capturing the structure of the 

XML data on a path-tree. The aim is to represent the structure of the source XML tree in 

a more succinct manner using the path tree. This tree contains the nodes frequencies  
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Figure 8: Count stable TreeSketch graph for the XML tree in Figure 7(a) 

 
through all paths. A node in the path tree represents a path string from the root, and there 

is a child node for every distinct element reachable by that path. Each node is labeled 

with the type of the element reachable by that path along with the frequency of the node. 

Figure 9(a) is an example of a path tree representation of an XML document. The authors 

also suggested four techniques to summarize the path-tree itself in case it was larger than 

the available memory. For instance, one of the methods they used to summarize the path-

tree was called the Sibling-*. The basic idea of this method is to repeatedly merge 

siblings with the lowest frequencies into one node called the * node until the tree can fit 

in the memory. The *-node then has the average frequencies of the merged nodes. 

Moreover, all children of the merged nodes become the children of the newly created *-

node and the children with the same tag name are merged and their frequencies are added 

rather than averaged as shown in Figure 9(b). In this work the authors did not address the 

selectivity count estimation for twig queries. 
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Figure 9: Path tree example: a) Sample path tree, and b) Sibling* summarization. 

Path-Tree-2: Alrammal et al. [39] also used the path-tree model, Figure 9(a), as the basis 

for selectivity count estimation. Furthermore, in their estimation system the path-trees are 

generated incrementally from the source document therefore partial query selectivity 

count estimates can be retrieved using the partial path-trees. Like the path-tree technique 

proposed in [21], their work does not address the selectivity count estimation for regular 

twig queries. 

XPath-Learner: Alrammal et al. [59] proposed the XPath-learner system to estimate the 

selectivity counts of XPath expressions. The XPath-Learner is similar to their earlier 

work in [39] with a few modifications. The XPath-Learner is an on-line system and it 

does not scan the XML document directly to collect the required statistical information 

but instead it uses query feedbacks and therefore the collected statistics about the source 

XML document depend on the query workload. This allows the XPath-Learner to 

efficiently allocate more storage for the statistical information about more frequent 
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queries in the workload to achieve a higher estimation accuracy. Although, XPath-

Learner can support value predicates in path expressions, it does not support regular twig 

queries. 

Path-Encoding: Li et al. [40] proposed a path-based encoding model for XML 

selectivity count estimation. Here every distinct root-leaf path is represented by a binary 

integer with length k bits where k is the total number of distinct root-leaf paths. The inner 

nodes are labeled by performing the binary “or” operator on their children and all IDs are 

saved in an encoding table. The frequency of each path is then saved in a PthID-

frequency table which is used to estimate the selectivity count of a given query. Figure 10 

shows an XML tree and its corresponding encoding table and PathID-frequency table. 

They also build another table for each element tag to capture the element order 

information. This table is used to estimate the selectivity counts of queries with order 

axes. Moreover, they generate p-histograms and o-histograms to summarize the PathID-

frequency and element order tables respectively. To the best of our knowledge, this 

technique is the first to address the selectivity counts of order-sensitive queries but the 

selectivity count estimation problem for regular twig queries is not addressed in their 

work. 

XSeed: Zhang et al. [41] proposed the XSeed selectivity count estimation system. The 

XSeed synopsis is a label-split graph called the kernel. The XSeed kernel edges are 

labeled with vectors of integer pairs (p0:c0,p1:c1…pn:cn) where the i-th pair pi:ci shows 

that at recursion level i there are pi elements in the XML tree that have ci children.  Figure 

11 shows a sample XML tree and its corresponding XSeed kernel. One of the main 

contributions of their work is that they explicitly address the recursion (i.e. elements that  
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Figure 10: a) XML tree, b) Encoding table, c) Bit-Seq table, and d) PathID-freq table 

share the same type with one or more child or descendant nodes) in the XML document. 

They also complement the XSeed kernel with a hyper-edge table (HET) which contains 

the cardinalities of some queries that are known to produce a high error rate under the 

path independence assumption. Unfortunately, their work does not address the regular 

twig queries. 

Sampling: Luo et al. [9] proposed a sub-tree sampling approach to estimate the 

selectivity counts of regular twig queries. The idea is to examine the number of nodes of 

each element type starting from the first level. If the number of nodes is sufficiently 
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Figure 11: XSeed example a) XML tree, and b) XSeed kernel 

 
large, they randomly sample a certain fraction of the nodes and their sub-trees. They also 

save the root-to-sub-tree paths in the sample.  On the other hand, If the number of nodes 

is not large then the next level is examined for sampling. The generated sample XML tree 

is then used  to retrieve the selectivity count of twig queries. The main advantage of this 

technique is its simplicity. In other words, samples can be generated quickly for a given 

storage budget. Unfortunately, the sample tree is not always a good representation of the 

source XML document especially for irregular XML data, where elements of the same 

type tend to have different structures (sub-trees), and when the memory budget is limited. 

Correlated Subpath Tree: Chen et al. [56] proposed a selectivity count estimation 

technique for XML queries. In their work, they maintained the count statistics of the 

subpaths in the XML document up to a certain length in a tree structure. Then they 

captured the correlations between the subpaths with the same root using a set hashing 

signature. In order to estimate the selectivity counts of twig queries, they decomposed the 
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query into a set of paths stored in the CST and then combined the retrieved paths and 

used their stored statistical counts to estimate the overall query selectivity count. The 

CST was among the first techniques for XML query selectivity count estimation 

especially for twig queries. Also, the CST can handle substring queries at the leaves. One 

issue is that the CST normally consumes a large storage to achieve a reasonable 

estimation accuracy. However, it is shown in [38] that the TreeSketch outperformed this 

technique in terms of estimation accuracy. 

3.2. Histogram-Based Approaches 

Position-Histogram: Wu et al. [28] used two dimensional position-histograms to capture 

the structural information of XML documents. First, they merged all XML documents 

into a single root document and then they labeled the nodes using the range encoding 

labeling scheme [14]. After that, they generated a 2-dimensional histogram for the nodes 

that satisfy a certain predicate P of the form “element = <element name>”. In other 

words, they generated a histogram for every distinct element. The x-axis of the histogram 

represents the start position of the node while the y-axis represents the end position 

according to the range encoding scheme. Consequently, every cell in this histogram 

represents a range of start and end positions and it contains the count of the nodes 

satisfying the predicate P and falling in the range [start, end]. This histogram is called the 

position histogram. The ancestor descendant relationship between any two nodes can be 

then identified by combining their histograms and using the fact that the start and end 

ranges of any two nodes can either have no overlaps or one range is totally contained in 

the other. The main issue with this approach is that it only addresses the ancestor-
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descendant axis. 

Bloom-Histogram: Wang et al. [29] proposed a selectivity count estimation technique 

based on bloom-histograms. The bloom histogram is generated using a path-table that 

contains all paths in the XML document and their frequencies. Unlike the path-table the 

bloom histogram contains a fixed number of buckets and each bucket contains paths with 

similar counts or frequencies. Thus, the bloom histogram has two columns, namely the 

bloom filter which represents the set of paths in each bucket, and the count which reflects 

the frequencies of the paths represented by the bloom filter. More specifically, the bloom 

filter is a bit array of a fixed length m with k hash functions h1 h2 … hk. To add a new 

element x, all k hash functions are applied and every bit hi(x) is turned to 1 where 1≤ i ≤ 

k. To query an element q, all hi(q) of a bloom filter must be 1 if q belongs to the set 

represented by the filter. In this work, the authors sort the path table based on the 

frequencies and then group paths with similar frequencies into buckets and the selectivity 

count of a given path can be retrieved by testing the membership of the path using the 

bloom filter at each bucket. Figure 12 shows an example of a path table and its 

corresponding bloom-histogram. One thing to note here is that the accuracy of the 

estimation is highly dependent on the selection of parameters, namely k , the number of 

hash functions, and also m which is the size of the bit array. Moreover, the number of 

buckets has to be chosen carefully because if the number of buckets is too small then 

each bucket will contain a wider range of frequencies and the error rate will increase. On 

the other hand, a large number of buckets will increase the storage requirement. Another 

thing that needs careful attention is the selection of the hash functions which might  
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Figure 12: Example of a path count table and its corresponding bloom histogram 

 
produce false positives (i.e. more than one bloom filter can test positive for the 

membership of a given path). Also, the authors address only the linear path expressions in 

their work. 

CXHist: Lim et al. [33] proposed a machine learning technique for XML selectivity 

count estimation. Their technique is based on building a query model using the PathID 

and n-grams for string and substring predicates as features. Each <path, string> query is 

mapped to a bucket representing the query selectivity count using the Bayesian classifier. 

This is an online technique and the histogram is tuned depending on the workload and 

query feedbacks. One problem with online techniques is that the estimation accuracy can 

be very low for new queries. This is because they use the results (feedback) after 

executing the query to tune the histograms and therefore the accuracy is improved only 

for the queries that are seen (executed) earlier. 

StatiX: Freire et al. [57] proposed the StatiX system for XML selectivity count 

estimation. The StatiX system uses the XML Schema to capture statistics about the 

source XML structure and values and then stores these statistics on histograms. This 

system is composed of two main components: the XML Schema Validator and the XML 

Schema Transformer. The XML Schema validator validates the XML documents against 
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the schema and simultaneously collects elements statistics for the given schema. The 

XML Schema Transformer ,the second component of StatiX, collects more detailed 

statistics about the elements distribution to capture skewedness in the data. StatiX system 

is used in the context of LegoDB system [59] and their experiments show highly accurate 

results but for limited types of queries. For instance, StatiX does not support query 

estimation for regular XML queries. Also, StatiX cannot by applied on Schema-less 

XML documents. 

3.3. Statistical Approaches 

Markov Table: Aboulnaga et al. [21] presented a technique that is based on storing all 

paths in the XML data tree on a Markov table. The purpose of this table is to summarize 

the structure of the XML tree. This is done by saving all distinct paths in the data tree up 

to a fixed number m ≥ 2 and their frequencies in a table structure. The selectivity counts 

of paths of length ≤ 2 is directly retrieved from the table while the selectivity counts of 

paths of length > 2 is estimated using the following formula: 

                                ∏     
   

                   

                     
  (2) 

The fraction 
                   

                     
 is interpreted as the average number of      elements 

contained in all                    elements. They also present several techniques to 

summarize the Markov tables. This approach provides accurate estimates for linear path 

queries but it cannot estimate the selectivity counts of twig queries. 

NR-NF: Lee et al. [30] proposed a statistical approach for selectivity count estimation. 

Their work is based on collecting all parent-child paths in the XML data tree along with 
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the node counts and then generating two types of statistics about the nodes, namely the 

node ratio NR and the node factor NF. For every parent/child path PC = P/C the node 

ratio is defined as the ratio of the frequency of P in PC to the frequency of P in the data 

tree (i.e. P node count). Moreover, the node factor is defined as the ratio of the frequency 

of C in PC to the frequency of P in PC.  The selectivity count of node C in PC becomes: 

                       |       |   (3) 

Figure 13 shows an XML tree with the corresponding node statistics. For existential twig 

and path queries with more than one parent-child path, they recursively decompose the 

given query into multiple simple parent-child queries and then aggregate the NR and NF 

statistics to estimate the size of the original query. Also, the ancestor-descendant queries 

are converted into twig queries with parent-child axes. Every branch in the generated 

twig query is a possible query-root to query-target node full path in the data tree. While 

their approach is very efficient in terms of storage utilization, it performs poorly on 

skewed (non-uniform) XML data trees. In their later work [31] they proposed the use of 

histograms based on the range encoding scheme on selected basic parent/child paths in 

order to improve the estimation accuracy. Both approaches do not address the regular 

twig queries. 

Probabilistic-Decomposition: Wang et al. [42] proposed a statistical approach for XML 

selectivity count estimation. Their approach is based on saving the counts of the twigs in 

the XML tree of a selected size k. The selectivity count of a given query is then 

calculated by decomposing the query into smaller twigs of size k then estimating the 
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Figure 13: XML tree with the corresponding statistics 

count of the query using the counts of the smaller twigs. For example, given two twigs T1 

with selectivity count       and T2 with selectivity count       that differ only by one 

edge, the selectivity count of       is given by  

 
            

           
 (4) 

One issue with their approach is that it does not support ancestor-descendant queries. 

Also, generating all twigs of a certain size can be time consuming. 
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4. CHAPTER 4 

XML STRUCTURE-BASED SUMMERIZATION 

Our proposed approach, which we called SynopTech, consists of two main modules: 1) 

the tree summarizer, and 2) the selectivity count estimator. In this chapter, we discuss the 

first module (tree summarizer) and propose two different algorithms to implement this 

module, namely SynopGenPrime and SynopGen. SynopGenPrime is based on the prime-

number labeling scheme [15] while SynopGen is based on a fingerprint hash function 

used in the string pattern matching domain. The second module of SynopTech is called 

SynopCalc and is discussed in the next chapter. 

4.1. Summarization Based on Prime-Number Labeling  

In what follows, we present some useful definitions before we discuss the details of 

SynopGenPrime. 

4.1.1. SynopGenPrime Preliminaries 

Definition 4.1: (Leaf node label) 

Every distinct path from root to leaf is assigned a prime number which is used to label the 

leaf in that path. Identical paths share the same prime number. 

  



 

 

34 

 

Definition 4.2: (Inner node label) 

Given a node n with a set of unique children C{c1, c2,…cm}; Label(n) is defined as 

follows: 

 1

2

( ), | | 1
( )

( ), | | 1

m

i

i

i

Label c if C
Label n

Label c if C






 
 


 (5) 

If n is the root node, Label(n) = 0. 

Definition 4.3 (Summary node) 

Given an XML tree T(V,E) where V is the set of edges and E is the set of nodes (vertices), 

a summary node N represents a set of nodes {n1, n2…nm}, which is a subset of V, such 

that Label(ni) = Label(ni+1) and sub-tree S(ni) is equivalent to sub-tree S(ni+1) for all 1 ≤ i 

< m. 

Observation 4.1: 

Given an XML tree T(V,E), for any two nodes n1 and n2 ∈  V, the following holds: 

 If the sub-trees rooted at n1 and n2 are identical , i.e. S(n1) = S(n2), then Label (n1) = 

Label (n2). 

This is because if S(n1) = S(n2) then S(n1) and S(n2)  have the same set of root-leaf paths 

and since every distinct root-leaf path is labeled with a prime number, the product of all 

root-leaf path labels in S(n1) will produce the same composite number as the product of 

all root-leaf path labels in S(n2) and thus Label (n1) = Label (n2). 

Example: Figure 14 shows an XML data tree. Figure 15 shows the tree after 

summarization with a tuple (ID,count) on each node. The table in Figure 15(b) shows the  
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Figure 14: A sample data tree for an XML document 

distinct root-leaf paths and their labels while the table in Figure 15(c) shows all the inner 

nodes and their labels. Note that the tables in Figure 15(b) and Figure 15(c) are only 

maintained during the construction of the summary tree and they are discarded after the 

summary is generated. 

4.1.2. Construction 

The idea of SynopGenPrime is to use a node labeling scheme and merge nodes with 

identical labels to generate a summary tree. The main steps of SynopGenPrime are 

outlined in Algorithm 1. It takes as input the XML data tree, Td , and returns a summary 

tree, Ts , as output. SynopGenPrime traverses the data tree in post-order style starting at 

the root node (level 0), line 2, and tags each unique root-to-leaf path of the XML data tree 

with a unique prime number. Leaf nodes are labeled by their corresponding root-to-leaf  
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Figure 15: a) XML summary tree of the document, b) Leaf nodes and their prime-number 

labels, and c) Inner nodes and their labels 

path tags, line 5, whereas the inner nodes are labeled using Definition 4.2 by calling the 

computeLabel() function, line 17. 

SynopGenPrime merges sibling nodes with identical labels by the function 

mergeSibilings(), line 16 (defined in Algorithm 2). This function associates with each 

node a count, which represents the number of nodes merged. When two nodes are 

merged, their sub-trees will be also merged. This is because when two nodes, say x and y, 

are merged, they become one node, say w. Consequently, the child nodes of x and the 

child nodes of y become child nodes of w. In other words, they become siblings. Then,  
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Algorithm 1: SynopGenPrime 
 
Input:    Td 

Output: Ts 

1:     init(Stack S, Ts, dataGuide,level) 

2:     while (v ←Td.nextPreorderNode()) ≠ NULL do 

3:         Ts.add(v); dataGuide.add(v); 

4:         if   isLeaf(v)   then 

5:             v.label ← dataGuide.getLabel(v); S.push(v); 

6:         else  if  v.level ≥ level  then 

7:                v.label  ←  -1; S.push(v); 

8:         else 

9:                i   ←  0; done ← FALSE 

10:         end if 

11:         while !done && !S.empty() do 

12:            u  ←  S.pop() 

13:            if   u.label ≠ -1   then 

14:                 sibling[i]  ←  u; i++ 

15:            else 

16:                i ←  mergeSiblings(sibling, i) 

17:                u.label ←  computeLabel(sibling, i) 

18:                if   u.level == v.level   then 

19:                     v.label  ←  -1; S.push(u); S.push(v); done ←   TRUE; 

20:                else 

21:                    sibling[0] ←   u; i ←   1 

22:                end if 

23:            end if 

24:          end while 

25:          level ←   v.level 

26:     end while 

27:     i←  0 

28:    while   !S.empty() do 

29:        u ←  S.pop() 

30:        if   u.label ≠ -1   then 

31:             sibling[i] ←  u; i++ 

32:        else 

33:            i ←  mergeSiblings(sibling, i) 

34:           u.label ←  computeLabel(sibling, i,) 

35:           sibling[0] ←   u; i ←   1 

36:       end if 

37:    end while 

38:    return Ts 
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siblings with identical labels are merged. The process of creating new siblings and then 

merging is recursively repeated until all the siblings in the sub-trees are merged. 

Note that the time complexity of Algorithm 1 mainly depends on the complexity of the 

merge function in line 16 whose complexity depends on the height and the maximum 

number of children per node in the data tree. For instance, if the input data tree is a fully 

populated K-ary tree, where K is the maximum number of children per parent, then at the 

first level there are    nodes and therefore the number of merges cannot exceed (K – 1). 

Each node in level one has exactly K children and at most (K-1) possible child node 

merges therefore the number of node merges in level 2 is at most              . 

Thus the number of node merges at the leaf level cannot exceed             , where 

h is the height of the tree, and the  summation of  the number of node-merges in all levels 

will yield       which indicates that the number of node merges cannot exceed O(  ). 

Moreover, every node-merge operation involves merging the sub-trees of the nodes being 

merged. For example, every node in the first level is the root for            

       ∑      
    sub-tree-nodes which represents the maximum number of sub-tree-

node merges involved in every node-merge in level one. Similarly, in level 2 we have 

                  ∑      
    sub-tree-node merges per node-merge and so on. As 

a result summing up the number of sub-tree-node merges per node-merge in all levels 

yields ∑        
    which is in the order of O(     ). Consequently, the overall 

complexity of Algorithm 1 is in the order of O(   ).  
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Algorithm 2: MergeSibilings 

Input: siblings, siblingCount 

Output: distinctSiblingCount, updated sibling 

1: i  ←  1;  

2: while i < siblingCount –1  && sibling[i].label > 0 do 

3:     j ←   i + 1; 

4:    while j ≤ siblingCount && sibling[i].label > 0 do 

5:        if sibling[i].label == sibling[j].label && identicalSub-

trees(sibling[i],sibling[j])  then 

6:          mergeSub-trees(sibling[i], sibling[j]); 

7:          sibling[j].label ←   –1 ; 

8:        end if 
9:        j++ 

10:    end while 
11:     i++; 

12: end 

13: distinctSiblingCount ←  removeDuplicateSiblings(sibling, siblingCount) 

14: return distinctSiblingCount 

 

Getting Next Prime: in order to get a new prime label for a unique root-leaf path, line 5 

of Algorithm 1, we use the deterministic variant of Miller-Rabin algorithm [43] to 

determine the next prime number which is denoted as PrimeIncrement. This algorithm is 

based on the following conditions: 

Let a be a positive integer and n be a prime. If n-1 = 2
q 

m (q ≥ 1 and m is odd), then at 

least one of following statements is true: 

            

   

  
                                    

Although there exists many composite numbers that satisfy the above conditions, 

fortunately Pomerance et al. [44] have verified that if n < = 1373653 it is sufficient to test  
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Algorithm 3: primeIncrement 

Input: positive integer n 

Output: primer 

1.  a[] = {2,3}; prime = n;  q =0;  m = n ; isPrime =False; 

2.  while !isPrime do 

3.   prime++ 

4.   foreach element in a[] do 

5.    isPrime = False 

6.    while(m mod 2 == 0) do 

7.     m = m /2; 

8.     q++; 

9.    end while 

10.    x = a
m
  mod  prime 

11.     if x ==1 then 

12.      isPrime = True 

13.     end if 

14.     if isPrime == False then 

15.      for j =0; j ≤ q-1 

16.       if m == -1 mod prime then 

17.        IsPrime = True 

18.        exit for 

19.       end if 

20.       x = x
2
 mod prime 

21.      end for 

22.     end if 

23.    end foreach 

24.  return prime 

 

with a = 2 and 3 to ensure that the number being tested is definitely prime. Also, 

Jaeschke [45] provided similar verifications for greater n. For instance, if n ≤ 

341550071728321 it is sufficient to test with a= 2, 3, 5, 7, 11, 13, and 17. This leads to 

the PrimeIncremet algorithm presented in Algorithm 3. 

Note that for efficiency purposes the array a[], line 1, only contains the basis 2 and 3. 

This can be easily modified to cater for n greater than 1373653. Also, if the data tree has 

N distinct root-to-leaf paths, then N prime numbers , P1,P2…PN-1,PN, are required to label 

these paths. In the first call to Algorithm 3 the input integer n is 0 and P1 is given the 
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label 1 which is the first prime after 0. The next prime after 1 is 3 and so in the second 

call Algorithm 3 will require P2 –P1, 3-1, comparisons to find the next prime. Similarly, 

to label the last root-to-leaf path Algorithm 3 needs to perform at least PN –PN-1 

comparisons and consequently the total number of comparisons required to label all root-

to-leaf paths is linear and cannot exceed PN – 1 which is of O(PN), where PN is the 

highest prime label.  

4.2. Summarization Using Fingerprinting (SynopGen) 

The problem with the prime-based summarization is that the node IDs can become 

extremely large for big non-uniform data trees. For example, the XMark data tree 

requires primeIDs that are larger than 64 bits and sometimes larger than 128 bits. 

Moreover, the reverse of Observation 4.1, i.e., if two nodes share the same labels they 

share the same structures, is not necessarily true which indicates that two summary nodes 

can share the same ID while having different sub-tree structures. This can be proven 

using the simple example depicted in Figure 16. The Figure shows a part of an XML data 

tree labeled using SynopGenPrime algorithm right before the merge operation. Note that 

both “A” nodes have the same ID while having different structures. Therefore, we  

propose an alternative tree summarization technique that is based on the fingerprint 

function used in Karp-Rabin string search function [46]. This will drastically reduce the 

size of node IDs during the construction of the summary tree. 
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Figure 16: Two siblings with the same IDs and different structures 

4.2.1. Construction 

Like SynopGenPrime, SynopGen uses a node labeling scheme and merges nodes with 

identical labels to generate a summary tree. The main difference between the two 

algorithms is that the inner nodes are labeled using a fingerprint hash function and the 

root-leaf paths are labeled with a unique integer that is not necessarily prime. The main 

steps of SynopGen are outlined in Algorithm 4. It takes as input the XML data tree, Td 

and returns a summary tree Ts as output. SynopGen traverses the data tree in post-order 

style starting at the root node (level 0), line 2, and tags each unique root-to-leaf path of 

the XML data tree with a unique number using the dataGuide object initialized by the 

init() function at line 1. Leaf nodes are labeled by their corresponding root-to-leaf path 

tags, line 5, whereas the inner nodes are labeled using a fingerprint hash function by 

calling the ComputeLabel() function at line 17. The fingerprint function needs the 

parameters K, B, and M to compute the inner node labels. These three parameters are 

generated by the function getKBM() at Line 1. The fingerprint hash function and the 

generation of K, B, and M will be explained in subsequent subsections. 
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SynopGen merges sibling nodes with identical labels by the function mergeSibilings(), 

line 16, presented in Algorithm 2 as explained in the previous subsection. The final tree 

generated after considering all nodes in the data tree is the summary tree, Ts. Since the 

fingerprint node labeling scheme cannot handle queries with ancestor-descendent (A-D) 

axis, a range node labeling scheme is executed by the function rangeLabel(), line 38. In 

this node labeling scheme, each node n is labeled by a tuple consisting of two numbers, 

namely, n.start and n.end. These numbers are constrained such that if a node x is an 

ancestor of a node y, then x.start < y.start and x.end > y.end. This can be performed by 

traversing Ts in a preorder and labeling all its nodes in an increasing order starting from 

any number. The first time a node n is visited, it is assigned a unique n.start label, then 

when all its children are labeled, it is assigned a unique n.end label in a post-order 

fashion. 

Note that Algorithm 4 is similar to Algorithm 1 in terms of complexity which is O(   ) 

as explained in section 4.1.2. The difference between the two algorithms is the inner node 

labeling mechanism. Also Algorithm 4 performs an additional scan of the tree in line 1 by 

invoking getKBM() to compute the labeling parameters. In the next chapter we will show 

how we can eliminate this scan by randomizing the selection of K.  

4.2.2. Inner Node Labeling Scheme 

Let F(C) denote the label of a node C. If C is a leaf node, then F(C) will be the label of 

the corresponding root-to-leaf path. Otherwise, C is an inner node and it will be assigned 

a label using a fingerprint function. Assume C is an inner node which has |C| distinct 

children denoted as c0, c1,…,c|C|-1. Then, F(C) is calculated by the following equation: 

      ∑  (        | | )    
        

           (6) 

where K represents the maximum number of distinct siblings in the data tree, and B is the 

size of the adopted alphabet. The computation of the values of K and B will be discussed  
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Algorithm 4: SynopGen 

 
Input:    Td 

Output: Ts 

1:     getKBM(), init(Stack S, Ts, dataGuide,level) 

2:     while (v ←Td.nextPreorderNode()) ≠ NULL do 

3:         Ts.add(v); dataGuide.add(v); 

4:         if   isLeaf(v)   then 

5:             v.label ← dataGuide.getLabel(v); S.push(v); 

6:         else  if  v.level ≥ level  then 

7:                v.label  ← -1; S.push(v); 

8:         else 

9:                i   ← 0; done ←  FALSE 

10:         end if 

11:         while !done && !S.empty() do 

12:            u  ← S.pop() 

13:            if   u.label ≠ -1   then 

14:               sibling[i]  ← u; i++ 

15:            else 

16:                i ← mergeSiblings(sibling, i) 

17:                u.label ← computeLabel(sibling, i,K, B, M) 

18:                if   u.level == v.level   then 

19:                     v.label  ← -1; S.push(u); S.push(v); done ←  TRUE; 

20:                else 

21:                    sibling[0] ←  u; i ←  1 

22:                end if 

23:            end if 

24:          end while 

25:          level ←  v.level 

26:     end while 

27:     i← 0 

28:    while   !S.empty() do 

29:        u ← S.pop() 

30:        if   u.label ≠ -1   then 

31:             sibling[i] ← u; i++ 

32:        else 

33:            i ← mergeSiblings(sibling, i) 

34:           u.label ← computeLabel(sibling, i,) 

35:           sibling[0] ←  u; i ←  1 

36:       end if 

37:    end while 

38: rangeLabel(Ts) 

39:    return Ts 
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shortly. If F(C) is very large, Eq. 6 can be modified to limit F(C) and         by using the 

modulo operator. Thus, the new equation will be as follows: 

       (∑    (        | | )     
        

          )                (7) 

where M is a prime number. Because of the modulo operator, Eq. 7 can result in 

collisions (i.e. dissimilar nodes can have identical labels). Colliding nodes must not be 

merged if their sub-trees are different which requires additional processing time. Hence, 

it is required to minimize collision by choosing appropriate values for K, B, and M. 

4.2.3. Selection of the Parameters K, B and M 

Algorithm 5 shows how these parameters are determined. But since the appropriate value 

of M depends on the values of B and K, and the appropriate value of B depends on the 

value of K; let us first discuss how to find K followed by the determination of B and M. 

A) Finding K: Earlier we defined K to be the maximum number of distinct siblings in 

the data-tree. Having K less than the maximum number of siblings results in 

considering two inner nodes with different sub-tree structures to be identical. Hence, 

the probability of collision will increase and so will the CPU cost of SynopGen. As 

shown in Algorithm 5, K is generated by first initializing K, line 1. It then traverses 

the data tree in post-order, line 2. Each time it encounters a unique root-to-leaf 

labeled path it assigns it a unique prime number as its label, line 8. It also labels each 

leaf node with the label of its corresponding path, line 5. After labeling all the 

siblings of a node it finds the number of distinct siblings, line 16. It labels each inner 

node using definition 4.1, line 17. If the number of distinct children is higher than the 

current value of K, it changes K to the number of the current siblings, line 16. At the 
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end of the algorithm K will be equal to the highest number of distinct siblings in the 

data-tree. 

B) Computing B: B in the fingerprint hash function represents the size of the alphabet. 

For example, if the function were matching bit sequences then B would be 2 and if it 

were matching English characters then B would be 26. In case of SynopGen, B 

represents the approximate number of distinct node labels in the data tree. When 

computing B, we assume that each node in the data-tree has K distinct children. In a 

full K-ary tree of height h, there are at most      distinct labels at level h - 1 and 

     at level h – 2 and so on. Thus B is computed from: 

    ∑      
     

     

   
             (8) 

C) Computing M: Consider the problem of matching bit sequences where it is required 

to find a match for a given pattern V of length |V| bits in a sequence S = s0, s2,…,s|S|-1 

of length |S| bits with |S| ≥ |V|. This can be achieved by comparing the fingerprint 

FM(V) with every FM(S(j)), where S(j) = sj, sj+1,…,sj+|V-1| and j = 0, 1, …|S|-|V|. If 

FM(V ) ≠ FM(S(j)) then V ≠ S(j). However, if FM(V ) = FM(S(j)), there is no guarantee 

that V = S(j). A collision occurs if there exists j such that FM(V ) = FM(S(j)) and V ≠  

S(j), which means, |F(V) - F(S(j))| is a multiple of M. In other words, to have a 

collision, ∏ |             |{ |        must be a multiple of M. It has been proven 

by Rabin and Karp in [46] that the probability of collision, Prob(collision), is 
 

| |
 if M 

is the highest prime less than 2|V||S|
2
.To apply this to our problem, let us assume a 

full K-ary tree. Since we start labeling from the leaf level upwards towards the root. 
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Algorithm 5: getKBM 

 

Input: Td 

Output: K, B, and M 

1:    init(Stack S, dataGuide, level, K); 

2:    while (v ←  Td.nextPreorderNode()) ≠ NULL do 

3:        dataGuide.add(v) 

4:        if isLeaf(v) then 

5:           v.label ← dataGuide.getLabel(v); S.push(v); 

6:        else  if v.level ≥ level then 

7:                    v.label  ← -1; S.push(v); 

8:        else 

9:                    i   ← 0; done ←  FALSE; 

10:         end if 

11:         while !done && !S.empty() do 

12:             u  ← S.pop(); 

13:             if   u.label ≠ -1 then 

14:                   sibling[i]  ← u; i++; 

15:             else 

16:                  i  ←  distinctSiblings(sibling, i); K ←   max(K, i); 

17:                  u.label = computeLabel(sibling, i,); 

18:                  if   u.level == v.level then 

19:                        v.label  ← -1; S.push(u); S.push(v); done ←  TRUE; 

20:                   else 

21:                        sibling[0] ←  u; i ←  1; 

22:                   end if 

23:             end if 

24:         end while 

25:         level ←  n.level; 

26:    end while 

27:    i← 0 

28:    while   !S.empty() do 

29:        u ← S.pop() 

30:        if   u.label ≠ -1   then 

31:             sibling[i] ← u; i++ 

32:        else 

33:             i  ←  distinctSiblings(sibling, i); K ←   max(K, i); 

34:           u.label ← computeLabel(sibling, i,) 

35:           sibling[0] ←  u; i ←  1 

36:        end if 

37:    end while 

38:     B ← 
            

   
 ; 

39:     m  ←       ( 
            (

    

   
)
           

) 

40:     n ← m * K 

41:     M ← HighestPrime(2 * m * n
2 
); 

42:     return [K, B, M] ; 
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the highest value for the fingerprint will be at the root. The fingerprint label of a node 

corresponds to the V pattern and the space of search, S, corresponds to all K fingerprints 

of the node and its siblings. To find these values roughly, we should find the highest 

value at the leaf level (level h-1) and from which we find the highest value at level h - 2 

and so on until we reach the root. The number of nodes at the leaf level, level h - 1, is K
h-1
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Let m be the minimum number of bits in the highest node label and n be the number of 

bits in K labels; thus, m = log2     
  and n ≤  m * K. After finding n and m, we choose M 

to be the highest prime number less than 2mn
2
 to get a Prob(collision) ≤ 
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Note that Algorithm 5 does not actually perform any merge operation and every node is 

visited only once, therefore the post-order scan is done in O(n) time where n is the 

number of nodes in the data tree. 

4.2.4. Implementation of the Summary-Tree 

SynopGen stores the summary-tree in a set of summary-tables T = {   ,    , …,   | | |}, 

where |T| is the number of distinct types in the XML data tree. A summary-table named 

    corresponds to the type ti. Each summary-table     has 4 columns, namely, Start, End, 

Level, and count; and is populated with the Start, End, Level, and count values of type ti 

nodes in the XML data tree. The records in each summary-table are sorted in ascending 

order of the Start column. The maximum size of the count field is less than or equal to 

log N bits where N is the number of elements in the original data tree. The Level  field is 

fixed at 4-bits as the depth of XML documents rarely exceeds 64. Also we allocate 8-

bytes for each distinct element name. The total storage requirement cannot exceed the 

following: 

storage =(# distinct elements in data tree * 64)+(2n * log2 n)+ 4n + n log2 N      (9) 

Example: Figure 17(b) shows the pathIDs and Figure 17(a) shows the summary tree of 

the sample XML tree shown in Figure 14. Table 2 shows the summary tables of the 

summary-tree shown in Figure 17. As can be seen in the table, each summary table 

corresponds to a type in the summary-tree. The records in each summary table are sorted 

in ascending order of Start. 
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Figure 17: The summary tree of the XML data tree in Figure 14 

Table 2: Summary-tables implementation of the summary-tree in Figure 17 

Table Start End Level Count 

 
Table Start End Level Count 

TA 0 27 0 1 

 
TB 

1 15 1 2 

TC 

6 12 2 2 

 
16 26 1 1 

8 8 4 5 

 TD 

2 4 2 2 

13 13 2 8 

 
5 5 2 2 

18 24 2 1 

 
17 17 2 1 

20 20 4 2 

 
TF 

3 3 3 2 

25 25 2 2 

 
7 11 3 2 

TE 

9 9 4 2 

 
10 10 4 2 

14 14 2 1 

 
19 23 3 1 

21 21 4 1 

 
22 22 4 1 
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/A/B/D/F 1 

/A/B/D 2 

/A/B/C/F/C 3 
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/A/B/C 6 

/A/B/E 7 

 

a) 

b) 

(211,1) F 

(15614,1) 



 

 

51 

 

5. CHAPTER 5 

SELECTIVITY COUNT ESTIMATION 

In this chapter we present the proposed selectivity count estimation algorithm, SynopCalc 

which takes as input a query and a summary-tree and returns as output the selectivity 

count estimate of the query. SynopCalc can find the selectivity count estimation for all 

types of queries, namely, linear, existential, and regular. But before we explain how 

SynopCalc computes the selectivity count estimation of the three types of queries, let us 

define some notations used in the rest of the chapter. 

Let: 

 Ts(Vs, Es) be a summary-tree where Vs and Es are the set of nodes and the set of 

edges in the summary-tree respectively. 

 Tq(Vq, Eq) denotes a query where Vq and Eq are the set of nodes and the set of 

edges in the query respectively. 

 S = {Si(Vi, Ei ) : 1 ≤ i ≤ |S|} represents the set of sub-trees in Ts that match Tq  

where |S| is the number of all sub-trees in S. 

 Target(Si) ϵ Vi refers to the target node in Si which contains the count of matches 

in Si. 

The pseudo code of SynopCalc is shown in Algorithm 6. It takes as input Ts and Tq  and 

computes the selectivity count of Tq  from Ts. It first checks what type of query Tq  is and 

calls either FindPathMatches function or FindTwigMatches function accordingly to find 

matches in Ts and computes the selectivity count estimates, as explained in the following 
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subsections. Note that the complexity of Algorithm 6 depends on the complexity of the 

selected query processing algorithm that is used to retrieve the matches from the 

summary tree in lines 2 and 5. After that every match is scanned once to calculate its 

selectivity count before summing up the selectivity counts of all matches to estimate the 

overall query selectivity count as we will show in the following subsections. Therefore, if 

the number of matches is c and the number of nodes in the query tree is M, then there are 

at most cM scans which indicates that the complexity of the selectivity count estimation 

part, lines 7 to 15, of Algorithm 6 is O(cM).  

5.1. Selectivity Count of Linear Queries 

To find the paths that match a linear query Tq in Ts, SynopCalc uses the FindPathMatches 

function, line 3 in Algorithm 6. The FindPathMatches function can use any of the 

existing tag-based query evaluation algorithms, such as PathStack [47,49]. For each 

query match, Si, SynopCalc adds the Count of the Target(Si), to the selectivity count of 

Tq, which is denoted as || ̂q||. Eq. 10 shows the equation that is used by SynopCalc, line 9 

in Algorithm 6, to compute the selectivity counts of linear queries. 

 || ̂ ||    ∑                  
| |
      (10) 

where Count(Target(Si)) is the Count of the target node in Si. 

Example: Consider the summary tables shown in Table 2 and a linear query /A/B//C 

shown in Figure 18(a) where the target (output) node is C. To find the paths that match 

the query the FindPathMatches() function in SynopCalc searches the summary tables A, 

B, and C and returns the two paths that match the query. Figure 18(b) shows the matching 

paths. SynopCalc then computes the selectivity count of the query from these two paths  
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Algorithm 6: SynopCalc 

 

Input: Ts, Tq 

Output: SelectivityCount 

1: SelectivityCount ←0;  

2: if  Tq  == “Linear” then 

3:     S ← FindPathMatches(Tq, Ts ) 

4: else 

5:     S ← FindTwigMatches(Tq, Ts ) 

6: end if 
7: if  Tq == “Linear” || Tq == “Existential” then 

8:      for all Si ϵ S do 

9:         SelectivityCount  ← SelectivityCount + Count(Target(Si)); 

10:      end for 

11: else 
12:      for all Si ϵ S do 

13:                SelectivityCount  ← SelectivityCount + twigCount(Target(Si)); 

14:      end for 

15: end 
16: return SelectivityCount; 

 

 

Figure 18: Selectivity count of a linear query 

  

a) A linear  query 

B 

C 
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using Eq. 10 as follows:     (          )                 (          )  

       ,   || ̂ ||             

5.2. Selectivity Count of Existential Twig Queries 

To estimate the number of matches of an existential twig query, Tq, in Ts, SynopCalc uses 

the FindTwigMatches function, line 5 in Algorithm 6, which can use any of the existing 

tag-based twig pattern matching algorithms such as the TwigStack algorithm [48]. For 

each query match in Ts, SynopCalc adds the Count of the target node, Target(Si), to || ̂ || 

similar to Eq. 10. 

Example: Consider the summary tables shown in Table 2 and an existential twig query 

/A/B[/C//E]/E shown in Figure 19(a). Records from the summary tables A, B, C, and E 

that satisfy the query are returned by the selected twig matching algorithm, line 5, and are 

depicted in Figure 19(b). The selectivity count is computed using Eq. 10 and is the sum 

of the Count of the target node, E, which is 5. 

5.3. Selectivity Count of Regular Twig Queries  

To estimate the number of matches of a regular twig query in Ts, SynopCalc uses the 

FindTwigMatches function, line 5 in Algorithm 6, which can use any of the existing tag-

based twig pattern matching algorithms such as the TwigStack algorithm [48]. For each 

query match in Ts, denoted as Si, SynopCalc estimates the number of matches in Td, from: 

                              ∏
        

             ∈ {            
 (11) 

where      is the node directly connected to n as its parent or ancestor.  
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Figure 19: Selectivity count of an existential twig query 

Subsequently, SynopCalc estimates the overall selectivity count of Tq as: 

 || ̂ ||    ∑              
| |
                     (12) 

Example: Consider the summary tables shown in Table 2 and a regular twig query 

/A/B[/D]/C//E shown in Figure 20(a). To compute the selectivity count of the query, the 

FindTwigMatches function in SynopCalc will use a twig matching algorithm to search the 

summary tables TA, TB, TD, and TE to return the sub-trees that match the query. These sub-

trees are depicted in Figure 20(b) and are denoted as S1, S2, and S3. Then it will compute 

the selectivity count of the query from these sub-trees using Eq. 12 as follows: 

twigCount(S1) = (
 

 
)  (
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Figure 20: a) A twig query, and b) Sub-trees that match the twig query 
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6. CHAPTER 6 

PERFORMANCE STUDY 

In this chapter, we describe the conducted experiments to evaluate the performance of the 

proposed technique, SynopTech. We used the three common evaluation measures, 

namely, the summary-tree generation time, the estimation error rate, and the size of the 

summary tree. We also compared its performance with that of state-of-the-art techniques 

from the literature, namely, the Sampling algorithm; using the code provided to us by its 

proposers [9], and the TreeSketch using our implementation of that technique as 

presented in [38]. 

6.1. Experimental Settings 

All the experiments were conducted on an Intel 2.8 GHz machine with 2GB RAM 

running Windows 7 operating system and all our programs were written in C#. In our 

experiments, we adopted four datasets, namely, DBLP [50], XMark [51], Ssplays [52], 

and Uniprot [56]. Table 3 shows some characteristics of these datasets. These datasets 

were chosen because they span a different range of structural characteristics and they are 

commonly used in related work in the literature. The DBLP dataset is an example of a 

real-world XML database containing publication information in the Digital Bibliography 

and Library Project (DBLP) website. In this dataset, the structural difference between 

elements with identical types at the same level is small. The XMark dataset is an example 

of an XML synthetic database where most of its elements of the same type and which are 
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at the same level have different sets of descendent elements and consequently different 

sub-tree structures. The Ssplays is another example of a real-world database containing 

Shakespeare’s plays. In this dataset, most of the elements of the same type and which are 

at the same level have the same set of descendent elements but with different counts. The 

Uniprot dataset is also a real world database that acts as a comprehensive and freely 

accessible knowledgebase of protein sequence and functional information. This dataset 

shows more irregularities in elements structures than the DBLP and the Ssplays. The 

queries were generated randomly by a random query generator that we implemented. For 

each dataset, we generated 100 random queries of each query type as follows: 100 twig 

queries consisting of only parent-child (P-C) axis, 100 twig queries consisting of only 

ancestor-descendent (A-D) axis, 100 P-C linear queries, and 100 A-D linear queries. 

Table 3: Some characteristics of the adopted datasets 

Dataset 
Size 

(MB) 

 Total 

Elements  

Unique 

Elements 

Max 

Depth 

DBLP 153 3567298 33 6 

XMark 112 1666315 74 12 

Ssplays 7.52 179690 22 7 

Uniprot 136 2541733 70 6 

6.2. Summary-Tree Generation Time 

The summary-tree generation time is affected by the selected value for the parameter K. 

As it can be seen from Eq. 7, the number of multiplication and addition operations in the 

fingerprint function is proportional to K. In our experiments, the maximum value for K 

was found to be 11 for both the DBLP and Ssplays datasets; and the corresponding 

elapsed times for the generation of the summary trees were 50 seconds and 1.6 seconds, 
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respectively. The Uniprot on the other hand, had a maximum K of 28 and the elapsed 

time for summary generation was 31 seconds. For the XMark dataset, the maximum 

value for K was found to be 3420, which is very large, and the elapsed time for the 

generation of the summary tree was around 960 seconds. In order to reduce the elapsed 

time for the XMark dataset, we should use a smaller value for K; but a very small K also 

increases the computation of the proposed approach because it results in more collisions, 

and consequently more time will be needed to check the sub-trees of colliding nodes to 

see if they can be merged or not. Therefore, we started by examining the number of nodes 

with K distinct siblings for various values of K in the range 1 to 3420 (which is the 

maximum). The results are as shown in Figure 21. This figure shows that there is a very 

small number of nodes having 12 or more distinct siblings. So, by ignoring these nodes 

and setting K to the maximum value for the remaining nodes, the generation time is 

reduced significantly to less than 46 sec. We also tried other approaches for setting the 

value of K, e.g., taking the average value and taking the average value after ignoring 

nodes that have low counts. Although the generation time was better than the maximum 

but still it was much higher than the maximum after ignoring the low-count nodes. Table 

4 shows the summary-tree generation times for different values of K for various datasets. 

In this table, Max and Avg represent the highest and average values for K whereas Max* 

and Avg* refer to the cases with the highest and average values after ignoring the nodes 

with the low counts. Table 4 also shows the number of collisions in each case. For very 

small values of K, such as in Avg and Avg*, the numbers of collisions were 2172 and 

14314 respectively. The number of collisions was drastically reduced when K was set to 

Max, and slightly increased when K was set to Max*. 
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Figure 21: Count of elements having a given number of distinct children 

Table 4: Summary-tree generation times and number of collisions for different datasets 

and various approaches of selecting K 

Dataset K Type collisions  Elapsed Time (sec) 

XMark 3420 Max 84 960 

XMark 11 Max* 86 21 

XMark 3 Avg 21712 359 

XMark 6 Avg* 14314 322 

DBLP 11 Max 0 50 

Ssplays 11 Max 0 1.6 

Uniprot 28 Max 111 31 

 

To avoid the cost incurred to find the value of K, we removed the call of the getKBM 

function from SynopGen and we set K to a random number between 3 and 50; and we set 

the height of the data-tree to 8. Mlynkova et al. [53] in their work analyzed more than 

200,000 XML documents and found that the average depth in more than 99% of them is 

8. They also found that the average fan-out (children) of an element is 9. Therefore, we 

believe that the numbers we chose for K and the height are reasonable according to their 

findings. Figure 22 shows the elapsed time of SynopGen for different values of K  
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Figure 22: Impact of randomly selecting K in range 3 to 50 on the summary-tree 

generation time for the proposed approach 

between 3 and 50. As shown in the graph, when K is less than 11 the generation time 

increases. This is because the number of collisions increases when K is less than the Max 

or Max*, as shown in Table 34, and consequently the number of merge operations that 

SynopGen needs to perform increases as well. On the other hand, as the value of K 

reaches 11 (Max*) the number of collisions decreases and so does the generation time. 

Moreover, as K grows larger than the Max* the generation time slightly increases. This is 

because the computation time of Eq. 7 increases with the value of K. 

6.3. Estimation Error Rate and Storage Size 

For each of the above-mentioned datasets and the generated queries, we compared the 

performance of our proposed approach with that of the Sampling and TreeSketch 

approaches in terms of the percentage estimation error rate (ER) and the storage size ratio 

(SSR). The (ER) measure is defined by the mean absolute relative error as: 
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where   is the number of queries, and ||  ||  and || ̂ ||  are the actual and estimated 

numbers of matches for the i
th

 query. On the other hand, SSR is given by: 

       
        

        
      (14) 

where          and          are the sizes of the XML data tree and the corresponding 

summary tree, respectively.  

The ER values of the proposed technique, the Sampling algorithm, and the TreeSketch 

technique are depicted in Figure 23 to Figure 25 for linear, existential, and regular twig 

queries, respectively. Figure 26(a) shows the SSRs used in the experiments by the three 

algorithms. SynopTech algorithm achieved smaller SSR values than the TreeSketch 

except for the Uniprot dataset where the TreeSketch has a slightly smaller SSR. This is 

because in the other datasets elements with identical tags and sub-tree-structures tend to 

have different sub-tree counts. Therefore, the TreeSketch would consider these elements 

as non-identical and add additional nodes to the summary. On the other hand, elements 

with identical tags and sub-tree-structures in the Uniprot dataset tend to have identical 

sub-tree counts as well, and since the TreeSketch uses a graph to store the summary, 

which is normally more succinct than a tree structure, it requires less number of nodes to 

store the summary and consequently less storage for this dataset. In our experiments we 

kept the SSR of all algorithms for each dataset the same except for the Uniprot dataset 

where we set the SSR value for the sampling algorithm to that of the proposed algorithm 

(0.07%) while keeping the TreeSketch at (0.05%) as shown in Figure 26(a).  
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As can be seen from the figures, the SynopTech approach outperformed the Sampling 

approach in all types of queries and datasets. This is because at low SSR values, the size 

of the sample tree was too small to capture enough structural information of the original 

data tree. Also, since samples are collected randomly, the error rate on a specific query 

set depends on whether the randomly selected sample tree contains the structural 

information needed to satisfy the queries on that specific query set. This indicates that the 

error rate on a specific query set might change every time a new sample tree is generated. 

On the other hand, our approach consistently showed a very low error rate on all types of 

queries and datasets especially with the DBLP and Ssplays datasets (uniform datasets), 

the proposed algorithm used a memory budget of 0.005 SSR and 0.3 respectively. These 

values of memory budget were too small for the Sampling approach to capture 

considerable amount of representative samples from the data tree. That is why its error 

rate reached around 98% whereas the worst error rate of the proposed approach was only 

0.8% on the Ssplays dataset. For instance, Table 5 and Table 6 show some sample twig 

queries and their regular estimates. As can be seen in Table 6 the Sampling algorithm 

could not produce any estimates for Q1, Q2, and Q3 resulting in an error rate of 100% for 

these queries. Also, the error rates for Q1 by the SynopTech and TreeSketch were greater 

than 4%. This is because the counts of the leaf nodes “LINE” and “STAGEDIR” in the 

source data tree have irregular distributions under the parent element “SPEECH” 

compared to the other elements in the source data tree (e.g. “TITLE” elements under 

“SCENE”). Therefore, during the summary generation both approaches could not 

accurately capture this irregularity resulting in relatively high error rates for this query 

compared to the overall low error rates both approaches achieved on the Ssplays dataset. 
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For Q2 on the other hand, SynopTech managed to capture the complete distribution of the 

elements in the query achieving a 0% error rate while the TreeSkech showed an error rate 

of 40%. This is because for the DBLP dataset the TreeSkech needed an SSR value of 0.03 

to capture the accurate distribution of elements and in our experiments this value was 

reduced 6 times to match the SynopTech SSR , 0.005, causing the TreeSketch to lose a 

great deal of the distribution information. Moreover, although the TreeSketch 

outperformed the sampling algorithm in some XMark queries, such as Q5 in Table 6, the 

Sampling algorithm showed a better overall accuracy on the XMark at SSR 1.7. This is 

also evident in Q4 in Table 6 where the TreeSketch error rate was 19.7% while the error 

rate for the Sampling approach was only 2.8%. This is because at the SSR value of 1.7 the 

sampling algorithm had enough storage space to store representative samples of the 

source data tree resulting in an improved estimation accuracy. For the Uniprot dataset, 

SynopeTech showed a slightly higher error rate than the TreeSketch. This is because the 

TreeSketch managed to capture the complete distribution of elements at a lower SSR 

value and therefore achieved an error rate of 0 % on all types of queries on that dataset. 

This can be seen also in Q6 and Q7 in Table 6 where the TreeSketch had a 0% error rate 

while SynopTech had a slightly higher error rate for these queries. Even though the 

TreeSketch had a perfect estimation for the Uniprot dataset, SynopeTech error rate 

remained below 1%. Moreover, SynopeTech managed to generate the Uniprot summary 

tree more than 5 times faster than the TreeSketch and therefore this slight improvement in 

the accuracy came at the expense of the summary generation time as shown in Table 7.  
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Table 5: Sample twig queries 

 ID Query Dataset 

Q1 //SCENE[/TITLE]/SPEECH[/LINE]/STAGEDIR Ssplays 

Q2 //proceedings[/volume]/series DBLP 

Q3 //PLAY[//SUBHEAD]//LINE Ssplays 

Q4 //text[/emph]/bold XMark 

Q5 //person[/homepage]/profile[/business]/gender XMark 

Q6 //reference/source[//tissue]/strain Uniprot 

Q7 //comment/subcellularLocation[//location]/topology Uniprot 

 

 

Table 6: Regular twig estimates for the queries in Table 5 

ID 

actual 

regular 

count 

SynopTech 

estimate 

SynopTech 

error(%) 

TreeSketch 

estimate 

TreeSketch 

error(%) 

Sampling 

estimate 

Sampling 

error(%) 

Q1 14273 13374.6 6.3 13656 4.3 0 100 

Q2 1478 1478 0 874.2 40.9 0 100 

Q3 47295 47295 0 48606.7 2.8 0 100 

Q4 66668 65906.2 1.1 53516.9 19.7 68509.4 2.8 

Q5 3189 3189 0 3212.3 0.7 3438 7.9 

Q6 1443 1438.7 0.3 1443 0 1253.8 13.1 

Q7 2985 2985.05 0.002 2985 0 2914 2.4 
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In summary, we showed that the SynopeTech algorithm had a high estimation accuracy 

for all datasets and its error rate did not exceed 1% in any of the datasets while the 

TreeSketch error rate exceeded 15% for the twig queries on the DPLP since it could not 

capture the accurate distribution of elements at the SSR value of 0.005%. Moreover, 

SynopeTech outperformed the other two approaches on all datasets and for all types of 

queries in terms of accuracy and storage requirement. The only exception was the 

Uniprot dataset where the SynopTech had a slightly higher error rate than the TreeSketch 

but a faster generation time. Also, even in generally uniform datasets such as the Ssplays 

and DBLP, some elements can exhibit a slight irregularity in terms of their count 

distribution which can deteriorate the estimation accuracy for regular twig queries 

involving such elements as shown in Table 6. One way to improve the estimation 

accuracy for regular twig queries is to complement the structural synopsis with 

histograms to capture irregularities in the source data trees without greatly impacting the 

storage which is something we aim to study in our future work. Also, note that 

SynopeTech needed more memory budget to summarize the XMark dataset than it 

required with the other datasets because of its irregular structure. However, as the size of 

the XMark source data tree increased the SSR needed was decreasing as depicted in 

Figure 26(b). In the following chapter, we propose several techniques to handle 

selectivity count estimation when the memory budget is small or limited. 
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Table 7: Summary generation time 

Dataset 

SynopTech 

gen time 

(sec) 

TreeSketch 

gen time 

(sec) 

Sampling 

gen time 

(sec) 

Ssplays 1.7 1.1 1 

DBLP 53 30.8 11.3 

XMark 53.8 455 7.2 

Uniprot 30.2 163 9.7 

 

 

 

Figure 23: ER for proposed, Sampling, & TreeSketch on linear queries 
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Figure 24: ER for  proposed, Sampling, & TreeSketch on existential twig queries 

 

 

Figure 25: ER for proposed,  Sampling, & Treesketch on regular twig queries 
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Figure 26: Required storage: a) Comparison of SSR for SynopTech, Sampling, and 

TreeSketch algorithms, and b) Effect of XMark dataset size on the SSR for SynopTech 

algorithm 
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7.  CHAPTER 7 

HANDELING STORAGE LIMITATION 

In this chapter we propose several techniques to handle selectivity count estimation when 

the storage budget is limited. First, we explain how the summary tree generated by the 

SynopGen algorithm can be reduced or pruned to fit the available storage budget. After 

that, we explain our first proposed technique, node-count ratio, to estimate the selectivity 

count using the pruned summary tree. Then, we  explain how the statistical approach 

Node-Ratio-Node-Factor (NR-NF) [30] can be extended to support regular twig queries. 

Next, we present a hybrid approach for selectivity count estimation using the extended 

statistical approach and our proposed structural approach, SynopTech. We also provide 

the results of our experiments after the discussion of each approach and compare our 

hybrid approach with the Sampling approach [9] and the TreeSketch approach [38] in 

terms of scalability (storage vs. accuracy). 

7.1. Pruning the Summary-Tree 

The main idea of the pruning method is to keep removing the elements with the lowest 

counts until the summary tree fits in the allocated storage. This is shown in Algorithm 7. 

It takes a summary tree and the desired size as inputs and it outputs a reduced summary 

tree. To reduce the summary tree, Algorithm 7  first generates a sorted list of all distinct 

counts in the summary tree, lines 1-3. After that, it visits the nodes at each level, starting 

at the lowest level moving upwards, deleting the nodes with the lowest counts until the 

summary tree fits in the available storage budget, lines 4-17. Also, for each node type it 
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stores the ratio of the node count in the original summary tree to the node count in the 

new summary tree, lines 18-23. For instance, if the original summary tree Ts has 50 

elements of type “b” and the reduced summary tree     has 25 elements of type “b” then 

the node-count ratio for element type “b” is rb = 2.  Note that this algorithm takes a linear 

time to visit the nodes in every level therefore its complexity cannot exceed O(nlogn) for 

the sort operation, line 3, where n is the number of distinct node frequency in the 

summary tree which is at most the number nodes in the summary tree. 

Definition 7.1 (Node-count ratio)  

Given two summary trees Ts and     where     is generated by reducing the element 

counts in Ts, the count ratio for element type n is given by: 

    
| | 

 | |  
   (15) 

where | |  refers to the count of n nodes in Ts and | |   refers to the count of n node in 

   . 

7.2. Selectivity Count Estimation With Node-Count Ratio 

To estimate the selectivity count || ̂ || of a given query Tq rooted at element type n, we 

first apply the SynopCalc algorithm explained in Chapter 5 using the reduced summary 

tree     to generate the initial estimate of the count of Tq in the data tree Td. We refer to 

the estimate generated using the reduced tree as || ̂ ||     After that we multiply the 

answer with the node ratio of the query root   . Therefore, the estimated selectivity count 

of Tq in Td is given by: 

 || ̂ ||   || ̂ ||        (16) 
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Algorithm 7: Pruning 

 

Input: Ts,  size 

Output: Tsr, countRatios 

1: frequencies← Ts.getUniqueFrequencies(), countRatios[,]← null 
2: TreeSize = Ts.size() 

3: frequencies.sort 

4: for all fr ϵ frequencies 

5:     for l = Ts.height; l < 0; l-- 

6:          for all ni ϵ Ts[l] 

7:                if ni.count == fr 

8:                    TreeSize = TreeSize - ni.size() 

9:                   Ts.Remove(ni) 

10:                end if 

11:                if TreeSize <= size 

12:                     Tsr = Ts 

13:                              return  Tsr 

14:                end if 

15:            end for 

16:        end for 

17: end for 

18: for all distinct nj ϵ Tsr 

19:      for all distinct ni ϵ Ts 

20:            countRatios.add(nj,
        

        
 ) 

21:       end for 

22: end for 

23: return countRatios 

 

Consider the example in Figure 19, the selectivity count is generated using the summary 

tree Ts and it indicates that there are 5 sub-trees rooted at “A” in the data tree Td that 

match the structure of the query in Figure 19(a). If this estimate is generated using the 

reduced summary tree,    , then Td could have more “A” nodes with the underlying 

substructure depicted in Figure 19(a). Since we know that the number of “A” elements in 

Ts is reduced by 
 

  
 during the generation of    , we multiply the selectivity count 

generated using      by    to estimate the number of matches in Td.  
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Figure 27: P-C & A-D error rates for the node-factor method on XMark with different 

summary sizes 

7.2.1. Experiments 

In order to test the performance of the above method, we used the same query sets 

discussed in Chapter 6 for the XMark dataset. The query sets include 100 P-C  path 

queries, 100 A-D path queries, 100 P-C twig queries, and 100 A-D twig queries. Figure 

27 shows the impact of the storage on the accuracy using the node-count ratio method on 

each query set and for all the three types of supported queries, namely linear path, 

existential twig, and regular twig queries on the XMark dataset. 

It can be seen that this approach produces a high error rate when the summary size is very 

small. This is because the summary is generated by removing elements with low counts 

from the tree and as the summary gets smaller, it fails to estimate the selectivity counts 

for element types with very low or close to zero counts. For this reason, we will present a 

hybrid approach that is capable of estimating the selectivity counts of element types with 
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very low counts in the summary tree. First, we will explain the statistical approach that is 

going to be used in our hybrid approach. 

7.3. Statistical Approach for Selectivity Count Estimation 

We implemented the technique that is based on the node ratios concept explained in [30]. 

Moreover, we extended this approach to make it applicable for regular twig queries since 

regular twig queries are not addressed in [30]. For this purpose we store all parent-child 

binary-paths along with the ratios of the parent and child nodes in the binary-path. For 

example, for a binary-path “p/c” we store the ratio of the parent node p, denoted  Ȑ(p, 

p/c), as:  

          
        

       
  (17) 

where          and          are the count of p nodes in “p/c” and the count of p nodes 

in the whole data tree respectively. Similarly, we store the ratio of the child node c, 

denoted         , as: 

          
        

       
  (18) 

7.3.1. Regular Twig and Linear Path Queries 

In order to estimate the selectivity count of a regular twig or a simple path query q with k 

nodes n1,n2,...nk, we use the following equation: 

 ||  ||  ∏ (
                       ∏                 

|  |

   

                      
) 

    (19) 
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where    represents the parent node of node   ;               |  | represent the child 

nodes of   ; and |  | represents their count. 

In Eq. 19, the ratio inside the first product will estimate the number of    elements under 

   elements in Tq.  Note that if    is the query root, then              and the 

denominator                        are set to 1 since the root node has no parent. Also, 

if    is a leaf node, then the product of ∏                 
| |
    is set to 1 since a leaf node 

has no children. Note that the ratios for A-D paths are calculated recursively from the 

stored ratios of the binary P-C paths. In the following subsection we explain how 

existential twig queries are estimated in [30] and we also explain how Eq. 19 can be used 

for the same purpose. 

7.3.2. Existential Twig Queries 

In [30], the node factor, F, of a target node is defined as the ratio of the frequency of the 

target node in a given path to the frequency of the root node in the same path. For 

example, the node factor of t in a binary-path P =”r/t” is: 

        
      

      
 (20) 

Which is equivalent to the ratio inside the outer product in Eq.19. In [30] the selectivity 

count of a binary-path P = “r/t” is: 

                         (21) 

where        refers to the node ratio of the root node r in P and        is the node 

factor of the target node t in P. 
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Two binary paths can be joined if the leaf node of one of them is of the same node type as 

the root node of the other.  For example, if   = “     ” and   = “     ”, and if    and    

have the same name, then   and    can be joined to form                  The node 

ratio and the node factor of a node in P =       are computed as follows.         

                     If         ≥ 1 then,         =          and         =         

         . If            then,                           and         

         . The selectivity count of        is then computed as:  

 ‖     ‖ =                           (21) 

For existential twig queries, the node ratio of the root node r is calculated by first 

calculating the node ratio for r in every outgoing path from r and then calculating their 

product.  

The general selectivity count equation in [30] for a given query Q with a root node    

and a target node    is given by: 

 ‖ ̂ ‖  =                       ∏         
|   |
    (22) 

where    is a path from the query root    to the target node   . From the above we can 

see that only node factors that are in the path to the target node    are involved in the 

selectivity count estimation. Moreover, from the multiple paths formula we can see that 

whenever the node factor is less than 1 it contributes to the new value of the node ratio 

for the query root. Therefore, to estimate the selectivity counts of existential twig queries 

using Eq. 19 for regular twigs and linear paths, we need to filter out the node factors that 

do not contribute to the answer which are the node factors that do not fall in the path to 

the target node T and at the same time larger than 1. This can be done by dividing ||  || 
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by  the product of the node factors meeting these conditions. Alternatively, to estimate 

the selectivity counts of existential twig queries we apply Eq. 19 only on the set of nodes 

M = n1, n2…nq such that for  0 < i ≤ q, ni belongs to M only if 

                       ∏                 
|  |
   

                      
   

OR 

ni is in the path from the query root R to the target node T. 

7.3.3. Experiments 

In order to test the performance of the above approach, we used the same query sets 

discussed in Chapter 6 for the XMark dataset in Table 3. The query sets include 100 P-C  

path queries, 100 A-D path queries, 100 P-C twig queries, and 100 A-D twig queries.  

Figure 28 shows the accuracy of the extended statistical approach on each query set and 

for all the three types of supported queries, namely linear, existential twig, and regular 

twig queries. Note that the statistics generated for the XMark dataset required only 1.7KB 

of storage which is equivalent to SSR of 0.0014%. The figure shows that the statistical 

approach gives an acceptable error rate given a very small storage budget (i.e. 1.7KB). In 

the following section we present a hybrid approach for selectivity count estimation based 

on the statistical approach and our proposed structural approach. 
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Figure 28: Error rates for the extended statistical approach 

7.4. Hybrid Approach for Selectivity Count Estimation 

We implemented a hybrid solution for selectivity count estimation using our summary 

approach and the statistical approach explained in the previous section. Both approaches 

are not scalable by themselves in terms of storage. In other words, although the statistical 

approach requires a very small memory budget, the error rate cannot be improved if 

additional space is available since this approach does not make use of this additional 

space. Similarly, our summary approach requires large space for irregular data trees such 

as the XMark and it cannot estimate the selectivity count if the available storage budget is 

not sufficient to store the summary tree. That being said, our proposed hybrid approach 

aims to take the advantage of both approaches and combine them to create a scalable 

selectivity count estimation system. We propose two methods to combine the two 

approaches, namely summary delta and query delta. In what follows we explain these two 

methods 
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Summary-delta: The basic idea is to calculate the selectivity count first using the 

reduced summary tree and then apply the statistical approach on the difference between 

the query-root node count in the original summary tree and the reduced summary tree. 

The count of the query-root node in the original summary tree is acquired using Eq. 16. 

For instance, if we have a query a/b/c  where the count of “a” in the original summary is 

50 and 10 in the reduced summary, then we apply our summary approach on the 10 “a” 

nodes existing in the reduced summary tree. After that, we apply the statistical approach 

on the 40 remaining “a” nodes. Finally, we add up the answers from both approaches to 

get the final selectivity count. 

Query-delta: Like the summary-delta method, we first use the reduced summary tree to 

generate the initial selectivity count and then compensate for the missing nodes by 

applying the statistical approach. The difference is that rather than using the delta 

between the reduced and actual summary trees we use the query delta. This means, after 

we apply the summary approach, we check how many query-root nodes in the reduced 

summary tree actually participated in producing the selectivity count estimate. After that, 

we use Eq. 19 to estimate the count of the query-root nodes participating in producing the 

selectivity count using the statistical approach. We then set the frequency of the query-

root in Eq. 19 to the difference between the two counts and then apply Eq. 19. Finally we 

sum up the selectivity counts generated by both approaches. For example, if we have a 

query a/b/c where the count of “a” in the original summary is 50 and 10 in the reduced 

summary. Say after applying our summary approach on the 10 “a” nodes we found that 

only 4 actually participated in generating the selectivity count. We then apply Eq. 19 on 

the 50 “a” nodes which , for example, estimated that the count of “a” in the query is only 

20. Then we reduce this estimate (20) by 4 since we already estimated the selectivity 
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count for these 4 nodes using  the structural approach and generate the selectivity count 

estimate for the 16 remaining nodes by setting the frequency of “a” to 16 in Eq. 19 and 

then applying Eq. 19 on the rest of the nodes. Finally, we add up the selectivity count 

generated by our summary approach on the 4 nodes with the selectivity count generated 

by the statistical approach on the 16 nodes to get the final estimate. This is explained by 

Algorithm 8, CalcSel, which takes as an input a reduced summary tree and a query and it 

outputs the selectivity count of the input query using the reduced summary tree. In lines 

2-6, CalcSel estimates the ratio of the query-root  node in the input query by multiplying 

the parent-child ratios of all the nodes in the query. In line 7, CalcSel estimates the count 

of query-root node satisfying the query by multiplying the query-root ratio by the query-

root count in the data tree. In lines 8-9, CalcSel calls the structural component of the 

hybrid system to get its estimate for the query-root elements satisfying the query and 

calculates the query delta, line 9. Finally, in lines 10-25, CalcSel applies the selectivity 

count estimation equation (Eq.19) on the query-delta taking into consideration the type of 

the query (i.e. existential, regular or linear) to calculate and then output the estimated 

query selectivity count. Note that Algorithm 8, performs two top-down linear scans of the 

input query. The first scan, lines 2-6, is performed to calculate the query-root ratio, and 

the second scan, lines 10-24, to estimate the selectivity count. In both scans every query 

node is visited at most twice, one as a parent and another as a child to calculate its ratio 

and count in the query which means that every scan requires at most 2M operations or 

O(M) where M is the number of nodes in the input query. Thus, the overall complexity of 

CalcSel depends on the complexity of the structural estimator SynopeCalc, line 8, and the 

query processor chosen as explained in Chapter 5. 
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Algorithm 8: CalcSel 

 

Input: Tsr, Tq,  

Output: SelectivityCount 

1: SelectivityCount ←1;  rootRatio =1; queryRootCount = 0;  

2: for all ni ϵ Tq.nodes 

3:       for all ni,j ϵ ni.children 

4:              rootRatio = rootRatio x                 

5:        end for 

6: end for  

7: queryRootCount = rootRatio    (          ) 
8: StructuralSelectivity = SynopCalc(Tsr, Tq) 

9: queryDelta = queryRootCount – StructuralSelectivity.rootCount 

10: for all ni ϵ Tq.nodes 

11:       childrenRatio = 1; 

12:       for all ni,j ϵ ni.children  

13:             childrenRatio = childrenRatio                   

14:       end for 

15:       if ni ==         

16:                   = queryDelta 

17:         SelectivityCount = SelectivityCount              childrenRatio 

18:       else 

19:          ratioVal = 
                                        

                      
 

20:        if Tq.isExestintial() && ratioVal >= 1 && ni ∉ Tq.criticalPath 

21:             continue  
22:         else 

23:             SelectivityCount = SelectivityCount x ratioVal 
24: end for 

25: SelectivityCount = SelectivityCount + StructuralSelectivity 

26: return SelectivityCount 
 

7.4.1. Experiments 

Summary-Delta Experiments: To test the performance of the summary-delta method, 

we used the XMark dataset and the same query sets discussed in Chapter 6 which include 

100 P-C path queries, 100 A-D path queries, 100 P-C twig queries, and 100 A-D twig  
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Figure 29: P-C & A-D error rates on XMark using summary-delta 

queries. Figure 29 shows the accuracy of the summary-delta method.  The figure shows 

that the summary-delta approach has a higher error rate than the statistical approach 

shown in Figure 28. This is because the summary-delta assumes that all missing query-

root node from the reduced summary tree can contribute to the query selectivity count 

estimate which often results in overestimates.  Unlike the summary delta, the query delta 

rarely suffers from this issue and, as will be shown below, has a better performance than 

the summary delta. Therefore, we continued our experiments with the query–delta 

approach and compared it with the Sampling and TreeSketch approaches. 

Query-Delta Experiments: In our experiments, we extensively tested and compared the 

query delta hybrid method with the same datasets, query sets, and experimental settings 

described earlier in Section 6.1. Figure 30 to Figure 33 show the summary generation 

times for the three approaches (Sampling, TreeSketch, and Hybrid) on the four datasets 

and for different SSR values. Note that the Sampling approach collects sample sub-trees  
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Figure 30: Gen time for Sampling, TreeSketch and Hybrid approaches on XMark 

 

Figure 31: Gen time for Sampling, TreeSketch and Hybrid approaches on Uniprot (** 

TreeSketch needed only SSR of 0.5 to store the summary) 
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Figure 32: Gen time for Sampling, TreeSketch & Hybrid on DBLP & Ssplays 

randomly and it does not perform any merge operations or structural comparisons to 

generate the summary tree and therefore it had the fastest generation time on all datasets. 

Also, it is noted that for the DBLP and Ssplays datasets (Uniform) the TreeSketch had a 

faster generation time than the Hybrid. The TreeSketch first generates the full summary 

tree which is called the original summary tree (stored as a graph). Then it reduces the 

summary by scanning the original summary graph level by level looking for nodes that 

are candidates for merge operations which are normally nodes with similar structures 

before applying the merges. During the original summary generation, the TreeSketch 

needed more summary nodes and storage, hence less merge operations, to capture the 

structure of the DBLP and Ssplays than what was needed by the Hybrid which managed 

to generate very small summary trees to capture almost the complete structures and 

distribution of elements in the source trees. This is why the TreeSketch had a faster 

generation time on those datasets. Moreover, the generated original summaries by the 

TreeSketch for the DBLP and Ssplays had to be reduced to match the SSR values of the 
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Hybrid (0.005 for DBLP and 0.3 for Ssplays) but since these datasets are relatively 

shallow (Table 3) compared to the XMark, and also the size reduction needed was not 

huge as in the cases of XMark and Uniprot, the overall generation time for the 

TreeSketch remained small. On the other hand, the XMark is a deeper dataset and 

therefore the process of generating merge candidates and applying merges greatly 

impacted the generation time for the TreeSketch especially for small SSR values such as 

0.08 and 0.02. This is also true for the Uniprot, although it is not as deep as the XMark, 

the required size reduction caused more candidates generation and merge operations and 

consequently a higher generation time. In fact in the XMark, the Hybrid managed to 

generate the summary around 54 times faster than the TreeSketch at SSR value 0.02 and 

22 times faster in the case of Uniprot at SSR value 0.01. 

Uniform datasets (DBLP and Ssplays): The experiential results using the DBLP and 

Ssplays datasets are shown in Figure 23 to Figure 25 while Figure 33 shows the overall 

error rate on both datasets. The overall error rate represents the average error rate 

achieved by each approach on all types of queries. The Hybrid used a memory budget of 

0.005 SSR for the DBLP and 0.3 for the Ssplays dataset. These values of memory budget 

were too small for the Sampling approach to capture considerable amount of 

representative samples from the data tree. This is why its overall error rate reached 

around 85.8% , Figure  33, whereas the worst overall error rate for the proposed approach 

was only 0.2% on the Ssplays dataset. Also, since samples are collected randomly, the 

error rate on a specific query set depends on whether the randomly selected samples 

contain the structural information needed to satisfy the queries on that specific query set. 

This indicates that the error rate on a specific query set might change every time a new  
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Figure 33: Overall error rates for all queries on DBLP and Ssplays 

sample tree is generated. On the other hand, our approach consistently showed a very low 

error rate on all types of queries. In addition the TreeSketsh error rate exceeded 15%, 

Figure 25, for the twig queries on the DBLP since it could not capture the accurate 

distribution of elements at the SSR value of 0.005% on the DBLP. Even though the 

proposed approach outperformed the TreeSketsh on the Ssplays, the TreeSketsh accuracy 

improved with the Ssplays and this is because the TreeSketsh needed an SSR of 0.4 to 

capture the complete distribution of elements for the Ssplays which is a very close value 

to the one used in our experiments and therefore the loss of the elements distribution data 

was minimal. In the DBLP experiments on the other hand, the TreeSketsh needed an SSR 

of 0.03 to capture the complete distribution data which is 6 times greater than the SSR 

used by the Hybrid approach and hence, the TreeSketsh accuracy on the DBLP dataset 

was worse than its accuracy on the Ssplays. 
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Irregular datasets (XMark and Uniprot): Figure 34 to Figure 39 show the error rates for 

the Sampling, TreeSketch, and the Hybrid approaches on the Uniprot and XMark datasets 

while Figure 40 shows the overall error rates for the three approaches on both datasets. In 

this set of experiments we used different SSR values to test the scalability of the three 

approaches. For the XMark dataset, the Hybrid used an SSR value of 1.7 to capture 

almost the complete structure of the data tree so we set it as the maximum SSR value for 

the other two algorithms. We then reduced the SSR value to 0.08 which is equivalent to 

100k and then reduced it further to 0.02 which is equivalent to 20k. At the max SSR the 

Hybrid approach outperformed both the Sampling and the TreeSketch approaches with an 

overall error rate of 0.08%. As the storage was reduced the accuracy of the three 

approaches decreased as well. At the lowest SSR the sampling algorithm had the worst 

accuracy with an overall error rate of 10.4 % while the Hybrid and the TreeSketch error 

rates remained below 10% with the TreeSketsh having the lowest overall error rate of 

7.6%. Although, the Treesketch showed a slightly better accuracy, the Hybrid at the low 

SSR values, the summary generation time for the TreeSketch at these values was too high. 

In fact the Hybrid approach at the SSR value of 0.02 managed to generate the summary 

around 54 times faster than the TreeSketch. Also, note that the biggest deterioration of 

accuracy happened when we decreased the SSR from 1.7 to 0.08 and as we decreased the 

storage further both the TreeSketch and the Hybrid had a very slight deterioration in the 

error rate while the error rate for the sampling almost doubled. This is because as the 

storage decreases the sampling approach cannot keep a good amount of samples to 

represent the structure of the data tree while the TreeSketch and the Hybrid approaches 

try to store enough structural or statistical data to compensate for the data lost during the 
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summary generation at different sizes. Also, taking a closer look at the results for the 

Hybrid error rates we noticed that for some queries the error rate slightly improved as we 

reduced the SSR value from 0.08 to 0.02. For example, in Q1 and Q2 in Table 8 the 

statistical component of the Hybrid system had a high estimate for the query root 

elements “description” and “text” and therefore the query delta was large. At the same 

time the structural component of the hybrid system had a good amount of structural data 

about the elements in Q1 and Q2 and produced a high selectivity count estimate resulting 

in a slight overestimation for Q1 and Q2 selectivity counts by the combined Hybrid 

estimator as shown in the table. On the other hand, as we reduced the storage the 

structural estimator lost more structural data for the elements in Q1 and Q2  but the 

statistical data remained the same and hence the selectivity count estimates decreased and 

so did the error rate. This was apparent in the case of P-C linear queries where the Hybrid 

achieved an error rate of 3.2% at SSR 0.08 and a slightly lower error rate of 2.8% at SSR 

0.01 as shown in Figures 35(a) and 36(a). 

For the Uniprot dataset the TreeSketsh managed to capture the complete distribution of 

elements at an SSR value of 0.5 and therefore achieved an overall error rate of 0% at this 

SSR value. The Hybrid approach on the other hand needed an SSR value of 0.7 to capture 

almost the complete distribution of elements and achieved an overall error rate of 0.1% at 

this SSR value. This is because in the Uniprot elements with identical types and sub-tree-

structures tend to have identical sub-tree counts as well, and since the TreeSketch uses a 

graph to store the summary, which is normally more succinct than a tree structure, it 

requires less number of nodes to store the summary and consequently less storage for this 

dataset. In our experiments we set the maximum SSR to 0.7. The sampling overall error 

rate at the maximum SSR was 3.6% which is more than three times higher than that of the 
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Hybrid. Similar to the XMark results, at the lowest SSR value the sampling had the 

highest overall error rate of 22.4%, Figure 40, while both TreeSketch and Hybrid had an 

error rate below 15% with the TreeSketsh achieving the lowest error rate with 12.5%. 

Like in the XMark experiments, even though the TreeSketsh had a slightly lower error 

rate than the Hybrid at the lowest SSR value, this came at the expense of the summary 

generation time where the Hybrid managed to generate the summary 22 times faster than 

the TreeSketch at this SSR value. Also, as we decreased the SSR value from 0.07 to 0.01 

both the TreeSketsh and the Hybrid showed a slight deterioration on the error rate while 

the error rate for the sampling more than doubled. Taking a closer look at the results we 

noticed that, unlike the XMark experiments on the twig queries, the TreeSketch at the 

lower SSR values showed an error rate for the existential twig queries that was higher 

than that of the regular twig queries. For example, Table 9 shows two twig sample 

queries with their existential and regular estimates and error rates. The TreeSketch at SSR 

0.02 had a better distribution data for the elements in the non-critical paths in these 

queries, namely “//reference/scope” in Q1 and “//citation//dbReference”  in Q2, and since 

the selectivity count estimates for existential twigs, unlike regular twigs, depend mainly 

on the counts of the elements in the critical path the regular estimates for those queries 

were more accurate than the existential estimates. Another thing to be noted in the 

Uniprot results is that the three approaches had lower error rates on the A-D linear 

queries than the P-C linear queries at the different SSR values, Figure 37 to Figure 39. 

This is because it took the TreeSketch approach a long time to estimate the selectivity 

counts for deep ( i.e. height > 3) A-D queries at high SSR values and therefore we had to 

limit the depth for A-D queries to 3 resulting in simpler queries than the ones generated 

for the P-C experiments. 
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Figure 34: P-C & A-D queries error rates for Sampling, TreeSketch and Hybrid (query-

delta) on XMark at SSR 1.7 

 

 

Figure 35: P-C & A-D error rates for Sampling, TreeSketch and Hybrid (query-delta) on 

XMark at SSR 0.08  

Linear Existential Regular

TreeSketch 1.6 1.9 6.2

Sampling 0.7 5.6 3.3

Hybrid 0 0 0.3

0

1

2

3

4

5

6

7

E
rr

o
r 

ra
te

 (
%

) 

Linear Existential Regular

TreeSketch 1.7 2.4 12.9

Sampling 6.7 4.5 4

Hybrid 0 0 0.2

0

2

4

6

8

10

12

14

E
rr

o
r 

R
at

e 
(%

) 

a) P-C queries  b) A-D queries  

Linear Existential Regular

TreeSketch 1.7 2.4 12.9

Sampling 6.7 4.5 4

Hybrid 3.2 4.2 13.3

0

2

4

6

8

10

12

14

E
rr

o
r 

ra
te

 (
%

) 

Linear Existential Regular

TreeSketch 2.7 10.3 13

Sampling 4.3 4 11

Hybrid 8.8 12.9 15.8

0

2

4

6

8

10

12

14

16

18

E
rr

o
r 

R
at

e 
(%

) 

a) P-C queries  b) A-D queries  



 

 

91 

 

 

Figure 36: P-C & A-D error rates for Sampling, TreeSketch and Hybrid (query-delta) on 

XMark at SSR 0.02 

 

 

Figure 37: P-C & A-D error rates for Sampling, TreeSketch and Hybrid (query-delta) on 

Uniprot at SSR 0.7 
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Figure 38: P-C & A-D error rates for Sampling, TreeSketch and Hybrid (query-delta) on 

Uniprot at SSR 0.07 

 

 

Figure 39: P-C & A-D error rates for Sampling, TreeSketch and Hybrid (query-delta) on 

Uniprot at SSR 0.01 

a) P-C queries  b) A-D queries  

Linear Existential Regular

TreeSketch 9 12.5 9.3

Sampling 16.2 4.5 10.2

Hybrid 11.7 9.7 11.2

0

2

4

6

8

10

12

14

16

18

E
rr

o
r 

ra
te

 (
%

) 

Linear Existential Regular

TreeSketch 4.9 19.3 20.2

Sampling 9.6 8.4 15.2

Hybrid 9.6 17.1 17.7

0

5

10

15

20

25

E
rr

o
r 

ra
te

 (
%

) 

Linear Existential Regular

TreeSketch 9 12.3 9.3

Sampling 34 15.2 24.3

Hybrid 11.9 10.9 11.8

0

5

10

15

20

25

30

35

40

E
rr

o
r 

ra
te

 (
%

) 

Linear Existential Regular

TreeSketch 4.9 19.3 20.3

Sampling 17.3 11.9 31.5

Hybrid 9.6 21.3 22

0

5

10

15

20

25

30

35

E
rr

o
r 

ra
te

 (
%

) 

a) P-C queries  b) A-D queries  



 

 

93 

 

 

Figure 40: Overall error rates for all queries on XMark and Uniprot 

 

Table 8: Sample queries and the Hybrid results on the XMark 

Query actual 
SSR 0.08 

estimate 

error 

rate 

(%) 

SSR 0.02 

estimate 

error 

rate 

(%) 

Q1://description/text//keyword//emph 1150 1230.8 7 1214.3 5.6 

Q2://text//keyword/emph 3794 3804.6 0.3 3795.5 0.04 

 

Table 9: Sample twig queries and TreeSketch results on the Uniprot at SSR 0.01 

Query 
actual 

(reg) 

actual 

(exist) 

estimate 

(reg) 

error 

reg 

(%) 

estimate 

(exist) 

error 

(exist) 

(%) 

//reference[/scope]/source/strain 16259 14832 10362 36.3 8308.6 44 

//citation[//dbReference]//title 45362 19389 42204.2 7 23241 19.9 
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In summary, the experimental results showed that the Hybrid approach outperformed the 

other two approaches on the uniform datasets where it required very small SSR values to 

achieve an overall error rate that is close to 0% while in some cases the TreeSketch 

overall error rate was more than 11% and the Sampling 85%. For irregular datasets, 

although the sampling approach had a lower error rate at specific SSR values than the 

Hybrid and TreeSketch, both the Hybrid and TreeSketch showed better scalability than 

the sampling approach and achieved a higher accuracy at the lowest SSR values. 

Moreover, the TreeSketch accuracy was slightly higher than the Hybrid approach at the 

low SSR values but the summary generation time was significantly higher as we showed 

earlier. That being said, we plan to continue the research to find more accurate ways to 

capture the irregularities in XML data trees with minimal storage requirements. One 

possibility we plan to explore is the use of histograms to capture the irregular 

distributions of some or all elements in the data tree and complement the statistical and 

structural data of the Hybrid system with such histograms. In the following chapter we 

conclude this thesis and shed some light on the possible future extensions of this work. 
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8. CHAPTER 8 

CONCLUSION AND FUTURE WORK 

In this work, we proposed two summarization techniques for XML trees. The first is 

based on a bottom-up prime-number labeling scheme while the other is based on a 

fingerprint hash function. Based on the resulting summary tree, we developed a 

selectivity count estimation algorithm that can be used with different types of XML 

queries. We compared our approach with two other state-of-the-art approaches, namely, 

the Sampling and the TreeSketch. In all our experiments, the proposed approach 

outperformed the other two approaches in terms of estimation error rate on all datasets 

except with Uniprot in which the TreeSketch was marginally better only for regular twig 

queries. For instance, our technique had perfect estimation accuracy (0% error rate) for 

linear and existential twig queries on all datasets while the other two approaches showed 

higher error rates for these types of queries. Moreover, the worst error rate exhibited by 

our approach was only 0.8% on regular twig queries while the TreeSketch error rate 

reached 18.8% and the Sampling error rate reached 98% for some types of queries. 

Additionally, to extend our approach for environments with memory constraints, we 

proposed a hybrid approach that combines a statistical technique with our summarization 

technique. We showed that in our experiments our hybrid approach always outperformed 

the Sampling in terms of error rate when the storage budget is very small while the error 

rate for the TreeSketch was slightly lower on irregular datasets at the expense of 

significantly higher summary generation time. In fact, our approach was more than 54 



 

 

96 

 

times faster than the TreeSketch in generating the XMark summary tree and around 24 

times faster in the case of the Uniprot. On the other hand, the improvement in the 

TreeSketch error rate over our approach on these datasets did not exceed 2%. 

As future work, we intend to continue the research in this area in order to provide a 

selectivity count estimation framework for more XPath axes such as the 

following/preceding axis. We also intend to examine the possibility of adding  value 

predicates to our selectivity count estimation framework. Moreover, we plan to explore 

the use of histograms to capture the irregularities of some or all elements in the source 

XML data tree with minimal storage requirement and complement the statistical and 

structural data of the Hybrid system with such histograms to improve the estimation 

accuracy when the storage budget is extremely limited. 
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