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ABSTRACT (ENGLISH) 

 

Full Name : Nasiru Ishaq Ibrahim 

Thesis Title : Performance Improvement of a Vapor Compression Air Conditioning 

System by Condensate and Fresh Water Source. 

Major Field : Mechanical Engineering 

Date of Degree : Safar, 1435, December, 2013 

 

Considerable amount of electrical energy produced in the Kingdom of Saudi Arabia is 

consumed by air conditioning systems. In addition, water scarcity still exists in most of 

the arid and semi-arid countries. This thesis presents the outcome of a study conducted to 

bring down energy consumption and improve the performance of a vapor compression air 

conditioning system using condensate that is generated by the system. The base system 

used in the study is a 1.5 ton split type air conditioner. Three different options of system 

modifications are adopted to improve its performance. The three options are: option ‘A’- 

air precooling before entering the evaporator using condensate, option ‘B’- precooling the 

air entering the condenser by condensate and option ‘C’- subcooling the refrigerant 

exiting the condenser using the condensate. Comparative study of the base system and the 

modified system is carried out. The results show that precooling the air entering the 

evaporator and condenser using condensate lowers the compressor discharge pressure. 
The discharge pressure also decreased significantly when subcooling is applied. The 

decrease in the discharge pressure resulted in the decrease in compressor power 

consumption to about 5% for option ‘A’, 4.8 % for option ‘B’ and 3.7% for option ‘C’ 

from experiments conducted for severest weather conditions. The severest weather 

conditions are 36 
o
C dry bulb temperature and 80% relative humidity obtained from the 

climate data of four major cities of Saudi Arabia. By decreasing the discharge pressure, 

the compressor’s life expectancy can be improved. The coefficient of performance, COP 

is increased by about 30 %, 21% and 30% for options ‘A’, ‘B’ and ‘C’, respectively. The 

increase in the second law efficiencies obtained for options ‘A’, ‘B’, and ‘C’ are 24.85, 

23.51 and 21.53%, respectively. The overall assessment of the three options is that option 

‘A’ gives better system performance improvement followed by option ‘B’, then option 



xxiii 

 

‘C’. The rate of condensate extraction from the air conditioning system is studied and 

chemical analysis is carried out on the condensate sample to determine its quality. The 

amounts of condensate collected in Dhahran from the base system during the humid and 

hottest months of June, July, August and September are 1036, 1181, 2173 and 1781 kg, 

respectively, and these amounts are obtained experimentally on hourly basis. Analytical 

results of condensate extraction obtained by using hourly actual climate data are in good 

agreement with the experimental results. Condensate chemical analysis is conducted and 

the results are compared with the recommended guideline values of drinking water by 

World Health Organization. The Chemical analysis reveals that the condensate can be 

used as drinking water after undergoing simple bacterial removal process. It can also be 

used to improve the performance air conditioning systems and other applications such as 

cooling tower make up water and irrigation. 
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ABSTRACT (ARABIC) 
 

 
 

 ناسيرو اسحاق ابراهيم :الكاملالاسم 
 

   ه عذبف ومصدر ميايباالتكث العاملة بضغط البخار تحسين أداء أنظمة التكييف  :عنوان الرسالة
 

 هندسة ميكانيكية :التخصص
 

3154ديسيمبر  . 5341سفر:تاريخ الدرجة العلمية  

 

من جهة و. تكييفالالمنتجة في المملكة العربية السعودية من قبل أنظمة الكهربية  الطاقة كبيرة من  اتكمييتم إستهلاك 

تقدم هذه الأطروحة نتائج دراسة أجريت لتقليل . ، لا تزال ندرة المياه موجودة في معظم البلدان القاحلة وشبه القاحلةأخرى

البخار المكثفَ الناتج من قبل نظام  استهلاك الطاقة وتحسين أداء أنظمة التكييف التي تعمل بطريقة ضغط الغاز باستخدام

تم اعتماد ثلاثة خيارات مختلفة . . طن 5.1بسعة  مشقوق والنظام الأساسي المستخدم في هذه الدراسة هو مكيف هواء  .التكييف

. استخدام مكثفب ، تبريد الهواء قبل دخوله المبخر"أ"الخيار : الخيارات الثلاثة هي. لتحسين أداء النظام و تقليل استهلاك الطاقة

الهواء قبل دخوله المبخر    تبريد الغاز المبرِد الخارج من المكثف "ج "التكثيف ز الخيار   .مكثفباستخدام ، تبريد "ب"الخيار 

اظهرت النتائج ان عملية التبريد المسبق للهواء قبل .تم عمل دراسة مقارنة للنظام الاساسى وانظام المعدل  . باستخدام التكثيف

وقللت عملية التبريد المسبقة للهواء الداخل للمبخر والمكثف باستخدام الماء المكثفَ من ضغط . المبخر والمكثف باستخدام مكثف

وأدى إنخفاض ضغط التصريف . درجة الغليان تم تبريد الغاز المبرِد لأقل من أيضاً بشكل ملحوظ عندما. للضاغط  التصريف

 "ث" ٪ للخيار 7.3، و "ب"٪ للخيار  8.4، و" أ"٪ للخيار 1للمضخة إلى إنخفاض استهلاك الطاقة في المضخة إلى حوالي 

س للاربع مدن الرئيسية فى المملكة رطوبة نسبية ماخوذة من بيانات الطق% 48درجة مئوية و  73الظروف المناخية الحادة هى 

معامل الأداء  وتم زيادة. العمر المتوقع للمضخةومن خلال خفض ضغط التصريف، يمكن تحسين متوسط . العربية السعودية

(COP)  وكانت الزيادة في الكفاءة للقانون الثاني . على التوالي" ث"و" ب"و" أ"٪ للخيارات  78٪ و  15٪ ،  75بنحو

 وتبين من التقييم العام للخيارات الثلاثة أن الخيار. ٪ على التوالي 15.17، و17.15، 18.41هي " ث"و" ب"و" أ"للخيارات 

وتم دراسة معدل استخراج الماء المكثف من نظام  ."ث"ثم الخيار " ب"يعطي أفضل تحسين لأداء النظام، يليها الخيار " أ"

وكانت كمية الماء المكثف من . بالإضافة إلى تحليله كيميائياً لتحديد درجة نقائه تكييف الهواء الذي يعتبر مصدرا إضافياً للماء

 5345، و3153، 5545،  5833 ,5873 خلال النظام في منطقة الظهران خلال الأشهر يونيو ويوليو وأغسطس وسبتمبر هي

يلية لعملية التكثيف والتي تم حسابها لكل وكانت النتائج التحل. كجم على التوالي، وتم جمع هذه الكميات في التجربة كل ساعة

تم اجراء التحاليل الكيميائية والتى تمت مقارنة . ساعة باستخدام البيانات المناخية الفعلية في إتفاق جيد مع النتائج التجريبية

على أنه  استخدامهيمكن أظهرت التحاليل الكيميائية الماء المكثف أنه . نتائجها مع الموصى بها للماء المقطر من منظمة الصحة 

مياه  كما فىتعويض وايضا يمكن استخدامه لتحسين اداء انظمة  وتطبيقات تكييف الهواء ، بعد عملية ازالة البكتيريا  ماء مقطر

 .أبراج التبريد،والري
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

Air conditioning can be described as a process of controlling temperature, moisture 

content, cleanliness, quality and circulation of air current in accordance with the 

requirement of thermal comfort. The rapid growth in population and industrialization has 

resulted in a greater demand of using air conditioning systems and consequently energy 

consumption across the globe.  The global climate change also makes air conditioning 

systems design a necessary integral part to maintain suitable indoor conditions in modern 

buildings [1]. For  example, air conditioning systems consumes up to 52 % of the electric 

energy in the Kingdom of Saudi Arabia (KSA) where summer seasons are generally hot 

and humid [2]. The energy consumption in other countries of similar climate conditions is 

expected to be in the same range.  

Thermodynamic cycles such as vapor compression, vapor absorption and gas cycles are 

used in refrigeration and air conditioning applications. But vapor compression cycle is 

most widely used in residential air conditioning applications and is considered in this 

thesis. Typical application of a vapor compression air conditioning (VCAC) system is 

removing thermal energy from the interior of a building and rejecting it outside the 

building. This thermal energy is sometimes called the “space cooling load” and it can be 
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either sensible or a combination of sensible and latent components depending on the level 

of humidity in the air. The removal and rejection of the load from the interior to the 

exterior of a building is governed by heat exchangers generally known as evaporators and 

condensers, respectively. Majority of VCAC systems operate with air-cooled condensers. 

Under extreme climate conditions, the VCAC systems suffered the problems of over-

heating, and reduced system performance. This eventually leads to increase in the 

pressure ratio across the compressor thereby increasing the power consumption. Local 

and international building codes require the new institutional, commercial and industrial 

buildings to have high volumes of outdoor ventilation air without compromising comfort 

and indoor air quality. This high demand of outside air requirement creates another 

energy penalty for air conditioning systems.  

Developing the existing air conditioning systems and reducing energy consumption 

requires consideration of the seasonal variation of climates, in addition to the building 

energy loads. The primary factors that affect air conditioning systems performance are 

the air humidity and temperature. One aspect of achieving energy efficiency in buildings 

must be through the improvement of the existing air conditioning systems and equipment 

and it is obvious that the improvement will come as research is done.  

Shortage of fresh water supply still exists in many developing and arid countries across 

the globe. Therefore, new techniques of supplementing fresh water supply at low cost are 

needed and one such techniques is the use of air conditioners condensate as additional 

source of water. Atmospheric air is a mixture of water vapor and many other gases. 

Considerable amount of water is contained in the atmosphere and this amount becomes 

high in hot and humid climates [3, 4]. The water vapor normally condenses over the 
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evaporator coil surface when the surface temperature becomes lower than the dew point 

temperature of the air. In hot and humid climates, huge amount of condensate usually 

flows-out of the evaporator and in most cases it is considered as a waste. In regions 

where climate conditions with high humidity prevail like those in some parts of Saudi 

Arabia, the cooling process can result in appreciable amount of water. If the condensed 

water is not properly handled, it can cause damage to building walls and wets the ground 

surface. The condensate can be utilized to improve the performance of air conditioning 

system and serve as an additional source of water.  

1.2.  Principle of Operation of a Vapor Compression Air Conditioning 

System 

The conventional VCAC system comprises of four basic components: evaporator, 

compressor, condenser and expansion valve as shown in Fig. 1.1. In a typical vapor 

compression cycle, low temperature and pressure mixture of vapor and liquid refrigerant 

enters the evaporator at state 4. The refrigerant mixture absorbs heat from the warmed air 

that is passing through the evaporator and exit as a saturated vapor, state 1. The 

compressor is used to compress the refrigerant vapor to higher pressure and temperature. 

The high pressure superheated vapor then enters an air cooled-condenser at state 2 where 

it is cooled by flowing air stream and exit as a liquid, state 3. The liquid refrigerant 

passes through an expansion valve where it is expanded at constant enthalpy and the 

pressure suddenly decreased, becoming a saturated mixture of liquid and vapor and the 

cycle continues. Figures 1.2 and 1.3 show the corresponding P-h and T-s diagrams of the 

simple VCAC. 
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Figure 1.1 Basic components of conventional vapor compression system. 
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Figure 1.2 Schematic of pressure versus enthalpy diagram of conventional simple vapor compression cycle. 
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Figure 1.3 Schematic of temperature versus entropy diagram of conventional vapor compression cycle. 
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1.3. Objectives of the Thesis 

The main objectives of the thesis research are: 

1. To improve the performance of a vapor compression air conditioning system using 

condensate. 

2. To use the condensate as additional water source and to test its quality. 

The above objectives will be achieved by incorporating the following options: 

 Option ‘A’:  Precooling the air stream entering the evaporator using condensate. 

 Option ‘B’:  Precooling the air before entering the condenser using condensate. 

 Option ‘C’: Subcooling the liquid refrigerant exiting the condenser using the 

condensate. 

The thesis research is accomplished through the following steps: 

i. Literature review will be carried out regarding the performance enhancement 

techniques of vapor compression systems and water vapor extraction from air 

conditioners. 

ii. Climate data (temperature and relative humidity) for Dhahran, Saudi Arabia will 

be collected and used in the study. 

iii. Analytical investigation will be carried out using some of the available climate 

data to estimate the rate of condensate extraction from an air conditioning system 

and the results will be validated with experiment. Analytical study and validation 

will also be carried out for option ‘A’ to evaluate the system performance.  
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iv. Experiments will be conducted in Dhahran by using a 1.5-ton capacity base 

VCAC system. The performance of the base VCAC system will be compared 

with the performance of the system after modifications. Modifications on the 

system involves the following: 

a) Addition of a precooler suitable for precooling the air entering the 

evaporator, using the air conditioner condensate. 

b)  Addition of a precooler for precooling the air stream before entering the 

condenser using the condensate. 

c) Incorporation of a subcooler suitable for subcooling the liquid refrigerant 

exiting the condenser using the condensate.  

v. Overall performance evaluation of the modified air conditioning system will then 

be carried out. 

Finally, chemical analysis of the condensate will be performed and the results will be 

compared with international standard guideline for water quality.   
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CHAPTER 2 

LITERATURE REVIEW 

2.1. Introduction  

This chapter begins with literature survey on atmospheric water vapor condensation, 

followed by survey on various performance improvement techniques of VCAC systems. 

Studies related to the second law analysis applied to vapor compression systems are also 

reviewed.  

2.2. Atmospheric Water Vapor Condensation as a Water Source 

Condensation of water vapor occurs in different ways as reported in [3, 4]. One of the 

common ways is by surface cooling such as evaporator coils in air conditioning systems. 

Khalil [5] presented a theoretical study on cooling and dehumidification process where 

the controlling parameters of heat and mass transfer rate are optimized for the climate 

conditions of United Arab Emirates (UAE).  An experimental study was carried out to 

obtain water for irrigation in Bahrain where three condensation surfaces are tested: 

aluminum, glass and polyethylene foil, [6]. The authors show that the hourly average 

quantities of condensate collected on these surfaces are 1.3, 0.8 and 0.3 kg/m
2
, 

respectively. Habeebullah [7, 8] investigated theoretically the limits of water production 

from evaporator coil using summer climate data of Jeddah, KSA. He indicated that the 

daily variation of condensate yield follows similar pattern to relative humidity where the 
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minimum occurs during midday hours. Another study was carried out on a combined heat 

pump-dehumidification system in Jeddah, KSA for water production [8]. The water yield 

from the combined system is 0.618 m
3
/day in January and 2.23 m

3
/day in September. 

Elsarrag and Al Horr [9] studied experimentally water recovery from atmospheric air 

using a packaged unit air conditioner and tilted solar absorption/desorption system. They 

found that the average rate of condensed water from the air conditioning system is about 

7.2 l/day per kW of cooling. Brayant and Ahmad [10] reported that over 660,000 gallons 

of water was captured within 140 days from condensate drains of 600 tons air 

conditioning unit in a commercial building in Doha, Qatar.  

Large capacity air conditioning systems operating in hot and humid areas generates huge 

quantities of condensate. Guz [11] reported an hourly condensate production rate from a 

typical building in San Antonio as between 0.1 and 0.3 gallons of water per ton of 

cooling. Khan and Al-Zubaidy [12] presented a theoretical study on condensate recovery 

from cooling coil using Dubai weather conditions. They reported that about 2600 liters of 

condensate is produced from a HVAC system consisting of fresh air handling units. Their 

calculation is carried out by fixing cooling coil exit air temperature (12.77
o
C). It is to be 

noted that cooling coil exit air temperature and humidity ratio depends on the capacity of 

the cooling coil and the coil inlet air temperature and humidity which affects the rate of 

condensate extraction. Therefore, a more general model that considers the variation of the 

coil exit air temperature as a result of the variation of inlet air conditions and coil 

capacity is thought in the present study. The inlet air conditions are the temperature and 

humidity.  
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Recently, Mahvi et al. [13] studied quantity and chemical quality of condensate obtained 

from different air conditioners operating in Bandar Abbas, Iran during the months of 

March to December. They reported that each air conditioner produced about 36 liters of 

water per day on average and split types generated more water than window air 

conditioners. The authors concluded that after undergoing a simple disinfection on the 

condensate sample, it will have no adverse effect on consumer health, adding that the 

water has suitable quality for many industrial uses.  

Loveless et al. [14] identified areas in the world with the greatest condensate collection 

potential, given special consideration to areas having water scarcity. They tested few 

samples of condensate collected from different locations in Saudi Arabia. The authors 

stated that the quality of the collected condensate is close to that of distilled water, and 

after low-cost polishing treatments, the condensate quality may reach that of the portable 

water. 

Domestic water demands in the Kingdom have increased from 502 million m
3
 (MCM) in 

1980 to about 2350 MCM in 2000 and is expected to be about 6450 MCM in 2025 [15]. 

Air conditioners condensate can be used to supplement the domestic water demand. 

The above studies revealed that considerable amount of condensate can be extracted from 

the air conditioning systems. However, the purpose of which the condensate is extracted 

is solely to serve as an alternative water source for domestic uses. In order to have the 

maximum benefit of this technology, the present research focuses on utilizing the 

condensate to boost the performance of air conditioning systems. US patents [16-19] 

proposed the ideas of collecting condensate and circulating it through liquid-line and 
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super-heated vapor line to subcool the refrigerant. Although different approaches, all the 

above patents focuses on subcooling the refrigerant only. This thesis goes beyond that to 

include precooling the air before entering the evaporator and condenser.  

2.3. Evaporative Cooling to Enhance Condenser Performance 

One of the methods of performance improvement and energy saving techniques in VCAC 

systems is evaporative cooling to augment condenser performance. Evaporative cooling 

in this kind of application can be achieved in two ways; the first is by direct injection of 

water over the condenser coil. This method is associated with the problem of scaling and 

corrosion potential on the condenser coil and hence it is not widely accepted. The second 

method is by injecting water into evaporative media pad located in front of the condenser 

to precool the incoming air stream or by mist precooling. The second method is also 

divided into two, direct and indirect evaporative precooling. Chodak and Murphy [20] 

presented an experimental study to improve the efficiency of condensing unit of an air 

conditioner using a direct evaporative precooler. They concluded that a significant 

reduction in power is realized. Hajidavalloo and Eghtedari [21, 22] in their experimental 

study also indicated that using evaporatively-cooled air condenser in hot weather 

conditions, reduction in power consumption can be achieved up to 20% and the 

coefficient of performance can be improved to about 50%.  Delfani et al. [23] in their 

study used indirect evaporative cooler as a precooling unit for conventional packaged unit 

air conditioner. Their results show that indirect evaporative cooler can reduce electrical 

energy consumption by about 55% during cooling season.  

Waly et al. [24] carried out experimental investigation on the effect of precooling inlet air 

to condensers of air-conditioning units. Three different methods of precooling the 
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condenser air are considered; the cooling pads (CP) setup, the cooling mesh (CM) setup 

and the shading setup. All the three setup were applied to split air-conditioning units 

during the peak summer period in Kuwait. The results showed significant drop in power 

consumption ranging from 8.1 to 20.5% and an increase in cooling capacity ranging from 

6.4 to 7.8% by using the CP and CM setups, respectively, which in turn, resulted in an 

increase in the coefficient of performance (COP) of the units by 36–59%.  

A technique of using condensate drain to precool inlet air to the condenser of a 1.5 ton 

split air conditioner has been investigated using mathematical model [25]. For typical 

weather conditions of Beirut, the simulation results have shown that the drained 

condensate would be sufficient for air precooling in October only, resulting in 5.3% 

energy saving and the synchronized spray of condensate is found to last for six operating 

hours in a particular day in June and eight hours in August. This resulted in a total daily 

reduction in the consumed energy of 5% in June and 4.5% in August. It is to be noted that 

evaporative cooler is used in the above study using the condensate to precool the air 

entering the condenser. In the present study, a cross flow fin-tube heat exchanger is used 

for the same purpose which allows re-circulation of the condensate; hence the problem of 

condensate lost due to evaporation when using evaporative cooling is eliminated. 

Mist precooling as a technique of improving the performance of air-cooled chillers has 

been reported by many researchers. Cansevdi et al. [26] indicated that using water spray 

mist precooling under ambient temperatures ranging from 20
o
C to 39

o
C, the energy 

efficiency rating (EER) is increased from 2.96 to 3.36, corresponding to a rise of 3.5% in 

the EER, while an increase of 5.9 % in the cooling capacity is achieved. Yu and Chan, 

Tissot et al. [27, 28] indicated that effective cooling of air before the condenser through 
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mist precooling greatly influence the performance of the conventional system and 

reduction in power consumption. It is to be noted that these evaporative cooling 

techniques require additional source of water. In the present work, condensate is used as 

the coolant using a precooler that is placed upstream the condenser. 

2.4. Refrigerant Subcooling     

Subcooling is a process of further cooling refrigerant after exiting the condenser to a 

temperature below the saturation temperature of the refrigerant. Refrigerant subcooling 

modifies a conventional vapor compression system through the addition of heat 

exchanger downstream of the condenser. Subcooling increases the system’s cooling 

effect and reduces the amount of energy required to run the system by reducing 

compressor power.  

U.S. department of energy [29] reported three types of subcooling, (a) suction-liquid line 

subcooling (b) using small secondary vapor-compression system for subcooling the main 

system (this type is generally referred to as “mechanical subcooling”), and (c) using 

external heat sink. 

2.4.1. Suction-liquid Line Subcooling 

Suction-liquid line heat exchangers are used to subcool the refrigerant exiting the 

condenser by suction of cold refrigerant vapor from the evaporator. A suction-liquid line 

system has more cooling effect than a conventional vapor-compression system of the 

same condenser and compressor size, but the power consumption of the compressor may 

increases due to the additional super heat to the suction-line refrigerant by the heat 
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exchanger, where the compressor must work harder than when it is closed to the 

saturated-vapor line [30]. The overall effect of using a suction-liquid line heat exchanger 

in terms of thermodynamic efficiency depends on the type of refrigerant and operating 

conditions. Experimental investigation of the effects of subcooling using suction-liquid 

line heat exchanger on the performance of a domestic refrigeration system for different 

refrigerants is in [31]. The author stated that the compressor work input for all the 

investigated refrigerants decreases as the subcooling effectiveness increases. 

2.4.2. Mechanical Subcooling 

In mechanical subcooling, two refrigeration cycles are coupled together with a 

subcooling heat exchanger located downstream of the condenser. Mechanical subcooling 

is applicable to both low and medium temperature applications. Miller [32] noted that 

deep mechanical subcooling can results in 20% to 30% savings in input energy to 

compressors, capital saving through reduction in equipment size, and reduction in 

maintenance cost by as much as 60%. Different techniques are used in achieving 

mechanical subcooling.  

Khan and Zubair [33] presented numerical simulation on the improvement of 

performance of refrigeration cycle by integrated mechanical subcooling. The simulation 

shows that performance improvement of air conditioning system can be as much as 20% 

during peak periods of high condensing temperatures, while high-temperature and low-

temperature refrigeration systems will achieve energy saving up to 20 and 40%, 

respectively under the same conditions. Design and system analysis of dedicated 

mechanical subcooling of vapor compression refrigeration system has been carried out 
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and reported in [34]. They demonstrated that the performance of the overall cycle is 

improved over the conventional cycle. Qureshi et al. [35] carried out experimental study 

to improve the performance of a vapor compression system using dedicated mechanical 

subcooling. They reported about 21 % increase in second law efficiency of the system 

with subcooling.  

2.4.3. External Heat Sink Subcooling 

External heat sink subcooling technology is applicable to high temperature refrigeration 

and air conditioning applications. This system consists of a heat exchanger placed 

downstream the condenser. Liquid refrigerant is circulated through the heat exchanger, 

where it is further subcooled by counter flow water coming from a mini-cooling tower 

via a pump. After absorbing heat from the refrigerant due to subcooling, the warmed 

water is circulated back to the cooling tower where it is cool again by evaporation and the 

cycle continues [29].   

There are limited studies in the literature with regards to external heat subcooling both 

numerical and experimental. In areas where there is water scarcity, this method may not 

be applicable. It can be noted that all the previous studies of subcooling techniques uses 

either a separate water source as the subcooling medium or employed dual-systems which 

in turn needs additional cost. 

Although all the above mentioned techniques have been demonstrated and explained in a 

number of publications, the idea of using condensate to accomplish such techniques is 

quite new and at initial stage. 
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2.5. Hybrid Cooling 

Hybrid cooling is one of the new cooling processes that received significant attention by 

different research institutes and universities. The basic concept of hybrid cooling involves 

the combination or integration of two or more cooling systems to improve the overall 

system performance. Hybrid cooling system directly combines vapor-compression 

system (VCS) or vapor-absorption system (VAS) with a desiccant dehumidification 

system. The desiccant section handles the latent heat load and dehumidifies the air, and 

the VCS or VAS handle the sensible heat load and provide the cooling. Using a desiccant 

to carry the latent load leaves only the sensible load for the cooling coil, resulting in 

operating the cooling coil at a lower load; hence, less input energy into the vapor 

compression refrigeration system is required [36]. Incorporating desiccant system to the 

conventional vapor-compression system reduces cooling loads and allows air 

conditioning systems to operate more efficiently.  

Two types of desiccant are commonly used in cooling applications; solid and liquid 

desiccants. When solid desiccant is employed, the heat rejected from the condenser in the 

vapor-compression system is used to activate the solid desiccant, which is integrated 

directly into the condenser. Experimental investigation on a hybrid solid desiccant-

R407C vapor compression air conditioner is presented in [37]. The authors reported that 

solid desiccant-based hybrid air conditioning system reduces the compressor electric 

power and the number of electric unit (kW-h) by 10.2%.  

Mei and Dai [38] presented a comprehensive review on liquid-desiccant dehumidification 

for air conditioning application. Dai et al. [39] performed experimental study on hybrid 

cooling system. The system comprises of sections of desiccant dehumidification, 
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evaporative cooling and vapor compression air conditioning. They concluded that the 

new system can have more cooling production than the simple vapor compression system 

alone by 20-30%, and significant reduction in electric power consumption. Other studies 

have also shown that hybrid vapor compression system is more promising under high 

ambient conditions and significant performance improvement as well as energy saving 

can be achieved over conventional VCAC systems [40, 41]. 

The main disadvantage of liquid desiccant systems is the corrosive nature of the desiccant 

solution and the components of the system are greatly affected with time. Solid desiccant 

systems on the other hand require large volumes of desiccant and with time, efficiency of 

the desiccant bed can be reduced due to dust and foreign matter deposited in the pore. 

This problem can be addressed by additional air filtering, which may necessitate 

additional cost as a result of increased pressure drop through the system. In addition, 

maintenance cost will be escalated because filters need periodic cleaning and 

replacement. Therefore cost remains the prohibiting factor for desiccant systems. 

 

2.6. Thermal Energy Storage Systems 

Thermal energy storage technology integrated with conventional VCAC system is found 

to be one of the important technologies for energy management. Thermal storage systems 

are used to preserve energy in thermal reservoirs for later usage. For cooling applications, 

the cool energy is usually stored in form of sensible heat (chilled water storage) or latent 

heat (ice storage) [42]. Cool thermal storage systems are used to shift the power 

consumption from the peak to the off-peak periods. Due to the lower temperature during 
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night, thermal storage systems would consume less operating energy compare to the 

conventional air conditioning systems [42].  

Chilled water thermal storage system consists of a storage tank, a packaged chiller or 

built-up refrigeration system, interconnecting piping, pumps and controls. Chilled water 

is produced by the chiller during the off-peak period at night and stored in the tank. The 

chilled water is then circulated through the cooling coil to achieve the required comfort 

during the peak period. Ice storage system is similar to water storage system with some 

additional components.  

Different methods and application as well as assessment of thermal energy storage 

system have been studied by Dincer [43].  Study on the use of ice and chilled water cool 

thermal storage in Kuwait is also reported in [44, 45] and different operating strategies 

such as full and partial storage have been addressed by the authors. They found that ice 

cool thermal storage can reduce the electrical energy consumption during the peak 

periods of cooling demand. Yau and Behzad [46] presented a comprehensive review on 

cool thermal storage technologies and operating strategies for building applications. They 

concluded that localized parameters such as electricity demand trend, the peak and off-

peak hours, electricity tariff rate, the system initial cost and the energy policy have to be 

considered through various case studies in different countries with different climates. It is 

to be noted that cool thermal storage technology may not be feasible in areas where there 

is no availability of water.  
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2.7. Second Law Analysis 

Actual vapor compression systems are associated with various irreversible processes as a 

result of heat transfer between the system and the surrounding at a finite temperature 

difference. Exergy analysis which is based on the second law of thermodynamics 

provides an important criterion for evaluating the performance of such systems.  

There has been substantial number of studies on the second law/exergy analysis of 

refrigeration and heat pump systems. Leidenfrost et al. [47] investigated the performance 

of a refrigeration system using R12 as the refrigerant based on exergy analysis. In this 

study, refrigeration load was kept constant while removing heat from a cold storage 

medium. Three different condensers – air, water and evaporative-cooled condensers are 

evaluated as functions of relative humidity of the ambient air through the determination 

of exergetic losses and the needed power for the thermodynamic cycle. It was found that 

wetting the condenser with water requires only 1% of the overall power consumption but 

reduces the consumption by 30% as compared with the air-cooled condenser. It is also 

stated that precooling the air by a water spray before it enters an air-cooled condenser is 

of benefit only at relative humidity 65% or less. 

Bejan [48] presented second law analysis for a refrigeration system in which he refuted 

the conventional view expressed by Strobridge [49] that the second law efficiency of 

actual refrigeration cycle does not depend on the evaporator temperature by offering two 

models to explain the claim. He shows that the exergetic efficiency decreases as the 

evaporating temperature decreases.  
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Akau and Schoenhals [50] studied a heat pump system experimentally using water as the 

heat source and heat sink. They concluded that the computed values of the second law 

efficiency for heat pump operating under a well defined set of conditions depends upon 

the task performed on the ideal system used as the reference. 

Yumrutas et al. [51] presented a computational model based on the exergy analysis to 

investigate the effects of evaporating and condensing temperatures on the pressure losses, 

exergy losses, second law efficiency and COP of a vapor compression refrigeration cycle. 

They stated that evaporating and condensing temperatures have strong effects on the 

exergy losses in the evaporator and condenser, second law efficiency and COP of the 

cycle but little effects on the other components of the cycle. They also found that the total 

exergy loss decreases with decreasing temperature difference between the evaporator and 

refrigerated space and between the condenser and the outside air. 

Bilgen et al. [52] studied heat pump–air conditioner systems theoretically and 

experimentally using first and second law of thermodynamics. They found that the 

exergy efficiency is a decreasing function of load, varying from 0.35 to 0.22. The authors 

recommended that to improve the performance of the heat pump system, each component 

may be further study from exergy usage and economic point of view. 

Arora and Kaushik [53] carried out detailed theoretical exergy analysis of an actual vapor 

compression refrigeration cycle where a model is developed for computing COP, exergy 

destruction, exergy efficiency and efficiency defects considering three different 

refrigerant; R502, R404A and R507A. They concluded that the worst component in terms 

of exergy destruction is the condenser followed by the compressor, the throttling valve 
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and the evaporator, respectively. They also found that increase in dead state temperature 

has a positive effect on exergy efficiency while COP of both R404A and 507A is 

improved by subcooling of the condensed liquid refrigerant. 

An exergy analysis of multistage cascade low temperature refrigeration system used in 

olefin plants is presented in [54]. In this study, expressions for exergy efficiency and 

exergy destruction for each component of the refrigeration system and the relations for 

the total exergy destruction and overall exergetic efficiency are developed. They found 

that the major irreversibilities on the refrigeration system are due to losses within 

compression component and driving forces across the heat exchangers. 

Venkataramanamurthy and Kumar [55] carried out comparative energy and second law 

analysis of R22, R436b vapor compression refrigeration system experimentally. A vapor 

compression cycle initially designed to operate with R-22 is used in their study. They 

examined the effect of evaporating temperature on the exergy losses, the second law 

efficiency and the COP of the refrigeration cycle. They found that the second law 

efficiency is very low, although the first law efficiency was within a normal range. The 

author mentioned that the reasons for such low efficiency are due to large exergy 

destructions in the compressor and the condenser. 

Several researchers [56-58] used exergy concept for comparative performance evaluation 

of refrigeration systems with alternative refrigerants. Ahamed et al. [59] presented a 

comprehensive review on exergy analysis of vapor compression refrigeration system. The 

author pointed out that exergy depends on the evaporating temperature, condensing 

temperature, subcooling and compressor pressure as well as environmental temperature.   
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CHAPTER 3 

THEORETICAL STUDY OF A VAPOR 

COMPRESSION AIR CONDITIONING SYSTEM 

3.1. Introduction  

This chapter gives the detailed theoretical framework of the VCAC system under study. 

The modified system under study consists of three additional heat exchangers 

incorporated to the conventional system together with a condensate tank as shown in Fig 

3.1. Two heat exchangers are used for air precooling at the evaporator and the condenser 

inlets while the other heat exchanger is used for refrigerant subcooling downstream of the 

condenser. The conventional VCAC system is analyzed considering the four basic 

components of the system.  Using the three additional heat exchangers, the three options 

of performance improvement as mentioned in the objectives are studied. 

3.2. Thermodynamic Performance of VCAC System and Condensate 

Extraction 

The thermodynamic performance analysis of conventional VCAC system from energy 

point of view and the rate of condensate extraction from the system are studied and 

presented in this section. 
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Figure 3.1 Schematic of the modified air conditioning system. 
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In order to determine the heat transfer and thermodynamics properties of the refrigerant, 

each component of the system is taken as a single unit. The following assumptions are 

made in the analytical aspect of the study: 

1. Steady state condition of the whole VCAC system. 

2. Pressure losses in the refrigerant lines are neglected. 

3. Heat gains and heat loses from the system or to the system are neglected. 

4. Adiabatic compressor and expansion valve. 

5. Saturated states at the evaporator and condenser outlets.  

Heat transfer rate to and from the cycle heat exchangers occurs by convection of flowing 

fluid streams with finite mass flow rates and specific heats. Therefore, the rate of heat 

transfer in the evaporator can be written as: 

                                                                                                   (3.1) 

Similarly, the rate of heat transfer from the condenser to the sink is written as:  

                                                                                                  (3.2) 

Isentropic compressor work is expressed as: 

                                                                                                                    (3.3) 

And the actual compressor work input as:  

                                                                                                                   (3.4a) 

or  

                                                        
        

  
                                                            (3.4b) 
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Using the first law of thermodynamics and considering the fact that change in internal 

energy is zero for a cyclic process, the overall energy balance of the cycle can be written 

as:  

                                                                                                                    (3.5) 

The measure of performance of refrigeration cycle is the coefficient of performance 

(COP) and is expressed as the cooling effect produced per unit work input.  

                                                                                                                        (3.6) 

The second law efficiency of the system is defined as: 

                                                       
   

      
                                                                (3.7) 

where   

                                                          
  

     
                                                          (3.8) 

and    is the mean temperature during the transfer of heat in the evaporator and is defined 

as[60]:  

                                                        
               

   
       
       

 
                                                        (3.9) 

The ambient air temperature, which is the temperature of the air entering the condenser, 

       is considered as the high temperature    throughout the analysis. 

3.2.1. Condensate Extraction Considering the Complete VCAC System  

In order to achieve the objectives of this study, it is necessary to first examine the 

quantity of condensate that can be obtained from the air conditioning system. Cooling 

with dehumidification is one of the applications of air conditioning systems where moist 
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air is processed to suit human comfort. This process is carried out in a heat exchanger 

containing a refrigerant or a secondary coolant such as chilled water or brine solution. In 

a cooling with dehumidification process, both humidity ratio and temperature of the air 

entering the evaporator decreases. When there is no moisture removal in the process, but 

only temperature decrease, the energy transfer is called ‘sensible cooling’. When there is 

decrease in both temperature and humidity ratio as the air passes over the cooling coil, 

then the energy transferred is ‘latent cooling’. In this case, moisture is removed in the 

form of liquid water, called condensate.  

Consider a cooling section of a VCAC system in Fig. 3.2 where moist air passes over the 

cooling coil of an evaporator. When the evaporator coil surface temperature becomes 

lower than the dew point temperature of the entering air stream, the water vapor 

condenses over the coils. Psychrometric representation of the cooling/dehumidification 

process is shown in Fig. 3.3. As the air enters the coil at state (i), part of the air stream 

will come into direct contact with the coil surface and will be cooled to temperature 

almost equal to Ts, where Ts is the coil surface temperature. 

Point‘s’ is termed as the apparatus dew point (ADP). The cold air in contact with the 

cooling coil is then mixed with the remaining air stream that is not in direct contact with 

the surface and exit at state (e) as shown in the Figure. The actual air exit at state (e) is 

located somewhere between point s and dp and may not necessarily be on the saturation 

curve [7, 61]. 

The temperature of the resulting mixture of the two air streams at the evaporator exit is 

expected to be greater than the coil surface temperature. The air properties (temperature 

and humidity ratio) at the exit of the evaporator are not known in the analytical study.  
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Figure 3.2 Schematic of a cooling with dehumidification process. 
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Figure 3.3 Psychrometric representation of cooling and dehumidification process. 
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The temperature and humidity ratio of the air stream leaving the evaporator at state (e) 

depends on the temperature of the refrigerant circulating in the evaporator, the evaporator 

thermal capacity, the inlet air humidity ratio and its flow rate. The rate of condensate 

extraction can be determined for any given air conditioning system of known nominal 

capacity and air flow rate across the evaporator. If the properties of the air at the 

evaporator inlet are known, the outlet air enthalpy can be determined using Eq. (3.1).  

Evaporator effectiveness is defined as the ratio of actual heat transfer to the maximum 

possible heat transfer. In this case, the effectiveness is expressed in terms of the enthalpy 

of air-water mixture in order to take into account the effect of both heat and mass transfer 

occurring simultaneously at the coil surface [61]:  

                                                
               

              
 

           

             
                                    (3.10) 

The minimum enthalpy         and minimum humidity ratio          of the air are 

determined at the evaporating temperature. The evaporating temperature usually ranges 

from -1.1 
o
C to above for high temperature applications such as air conditioning [29]. The 

effectiveness of the evaporator is computed in the analytical study by assuming an initial 

guess value of the evaporating temperature from the above range after which the 

humidity ratio of the exit air,       is determined. Applying mass balance across the 

evaporator coil, the rate of condensate extraction from the coil is calculated as: 

                                                                                                                 (3.11) 

The daily condensate production is obtained by integrating the average value of 

condensate extracted per hour over the day as: 
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                                              (3.12) 

The above property-dependent equations for system performance analysis and condensate 

extraction are coded in Engineering Equations Solver (EES) software [62] during the 

analytical studies. Applying the first law of thermodynamics to all components of the 

VCAC system, the assumed evaporating temperature is commented out after which the 

guessed value is updated. 

The input parameters to the above model equations are the evaporator inlet air 

temperature and relative humidity, atmospheric pressure, flow rate of air entering the 

evaporator and condenser, temperature of air entering the condenser and condenser 

effectiveness. The rate of heat transfer at the evaporator and the evaporating temperature 

values are assumed at the beginning and then commented out once the program is 

completely coded.  

3.2.2 Condensate Extraction Considering Only the Evaporator  

Another approach of estimating the rate of condensate extraction is by considering only 

the evaporator as a heat exchanger in which both heat and mass transfer occurs 

concurrently. Evaporators used in air conditioning systems are mostly finned-tube cross-

flow heat exchangers. In cooling applications, these heat exchangers may be treated as 

dry or wet depending on whether condensation occurs or not. There are two approaches 

in which these heat exchangers can be analyzed:  (a) design-based analysis and (b) 

performance-based analysis [63]. The design-based analysis involves calculation of the 

necessary surface area and the number of rows and columns of tube where operating 

conditions are specified. The operating conditions are the air and refrigerant flow rates 
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and air inlet and exit temperatures and humidity. The performance-based analysis is the 

one in which the coil surface area is known so that the final air exit states can be 

determined for various operating conditions. The performance-based analysis can be 

carried out by one of the following methods: the dry coil/wet coil analysis which is based 

on NTU-effectiveness method, the enthalpy-based effectiveness [61], the total enthalpy 

method [64, 65] or the fin efficiency weighing method [7]. Details of all the various 

approaches of analyzing evaporators is beyond the scope of this study and only the 

enthalpy effectiveness approach [61] will be discussed further. 

The flow rates and inlet temperatures of air and refrigerant, pressures and coil geometry 

information are required when applying the enthalpy-based effectiveness method of 

evaporator analysis. The heat transfer rate at the evaporator is the rate at which heat is 

removed from the space by the cooling system [66]. The heat transfer rate is already 

given as Eq. (3.1). The rate of condensate extraction can be computed once the 

evaporator exit air humidity ratio is determined. The evaporator thermal capacity is a 

function of its geometrical dimensions. Evaporator geometric information can be used to 

calculate various thermal resistances which affect the total coil conductance.  The coil 

conductance can be written as [61]: 

             
   

      
 
   
  
  
  

      
 

 

         
  
    

        
  

 

         
 

  

       (3.13) 

In order to calculate the coil conductance, it is necessary to determine the convective heat 

transfer coefficients on the refrigerant and air sides, ( ). Different correlations are 

available in literature for determining the convective heat transfer coefficients. Some of 
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the correlations are built-in in EES software and they can be accessed easily. The 

software implements Shah’s correlations for obtaining    , while Kays and London’s 

procedure for finned circular tube heat exchanger is implemented for the air-side heat 

transfer coefficient      [67, 68]. 

The outer surface efficiency is related to the fin efficiency and the heat exchanger 

geometry given as: 

                                       
   

    
                                                         (3.14)                                      

and          is the saturation specific heat capacity of the humid air defined as: 

                    
  

  
 
     

 
                                                   

                  
             (3.15) 

The ratio of saturation specific heat capacity of the humid air to the normal specific heat 

capacity,                 given in Eq. (3.13) which is always greater than unity, 

represents the effect of mass transfer as an augmentation to convective heat transfer 

coefficient on the air side. The evaporator exit air temperature          is required in 

solving Eq. (3.15). Therefore, the solution starts with an initial guess value for         

after which the value is updated as the calculation proceeds. 

The number of transfer unit, NTU can be determined from the coil conductance. Knowing 

the NTU, the effectiveness of the coil can be computed using the  -NTU solution for 

cross-flow heat exchanger from which the actual exit air properties can be determined 

using enthalpy-effectiveness relation given as Eq. (3.10). Finally, the rate of condensate 

extraction can be calculated from the mass balance across the cooling coil as given in Eq. 

(3.11). 
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3.3 Performance Study of the Modified VCAC System 

The equations for analyzing the performance of conventional VCAC system and 

evaluating the rate of condensate extraction from the evaporator coil have been presented 

in section 3.2. Equations used in evaluating the performance of the modified system by 

considering the three different performance improvement options of the VCAC system 

are presented in this section.  

3.3.1 Option ‘A’: Evaporator Inlet Air Precooling  

The purpose of precooling the air stream before entering the evaporator is to increase the 

system performance and reduce power consumption. In order to achieve the precooling, a 

precooler is placed across the air path, allowing heat transfer between the air and the cold 

fluid as shown in Fig 3.4. The cold fluid in this case is the condensate that is generated by 

the VCAC system. The air is precooled sensibly as it passes through the precooler by 

circulating the collected condensate. The air then enters the evaporator where it is further 

cooled and dehumidified. The information presented here together with that in section 3.2 

are used in the analytical study and some of the equations are used in analyzing the 

experimental data for this option. 

The heat transfer rate on the condensate side of the precooler is written as: 

                                                                                                               (3.16) 

It is assumed that no heat loss or gain on the water pipelines. The heat transfer rate on the 

air side of the precooler is given as: 

                                                                                                                (3.17) 
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Figure 3.4 Schematic of the modified system integrated with air precooler - Option ‘A’. 
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and the heat transfer rate in the precooler between the two fluids as: 

                                                                                                                (3.18) 

3.3.2 Option ‘B’: Condenser Inlet Air Precooling  

The purpose of precooling the air stream before entering the condenser is to improve the 

rate of heat rejection from the hot refrigerant to the surrounding, thus increasing the COP 

of the system and reducing the compressor power consumption. Schematic of the VCAC 

system integrated with condenser air precooler is shown in Fig. 3.5. The information 

presented here together with that in section 3.2 are used in analyzing the experimental 

data for this option. 

The rate of heat transfer in the precooler at the condensate side is given as: 

                                                                                                               (3.19) 

and at the air side as: 

                                                                                                                  (3.20)  

The heat transfer rate between the two fluids is also written as: 

                                                                                                                (3.21) 

3.3.3 Option ‘C’: Refrigerant Subcooling Downstream of the Condenser 

The conventional VCAC system presented in the previous section is also integrated with 

subcooler to lower the temperature of the refrigerant exiting the condenser using 

condensate. Schematic of the system with subcooler and the corresponding P-h diagrams 

are shown in Fig. 3.6 and 3.7 respectively. 
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Figure 3.5 Schematic of the modified system integrated with condenser air precooler - Option ‘B’. 
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Figure 3.6 Schematic of the modified system integrated with subcooler - Option ‘C’. 
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Figure 3.7 Pressure-enthalpy diagram of the modified system - Option ‘C’. 
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The detailed heat transfer equations of the four components of simple VCAC system are 

given in section 3.2 and the heat transfer equations across the subcooler are added here 

for the analysis of the modified system with option ‘C’. The rate of heat transfer between 

the refrigerant flowing through the subcooler and the condensate is given as: 

                                                                                                 (3.22) 

The rate of heat transfer in the subcooler from the water side can is written as: 

                                                                                                                      (3.23) 

3.3.4 Condensate Temperature Change During Air Precooling: Analytical 

Study 

After precooling the air in the precoolers or subcooling the refrigerant, the condensate is 

circulated back to the condensate tank. The condensate temperature in the tank may rise 

to an extent that it may no longer provide the required precooling or subcooling. It is 

therefore imperative to estimate the condensate temperature rise in the tank for a 

particular period of operation. Equations governing the accumulation of condensate and 

changes in condensate temperature within the tank are obtained by applying mass and 

energy balance. Note that this procedure is used in the analytical study only because the 

condensate temperature in the tank is measured directly during the experiment. The 

following assumptions are used in the formulation of the mathematical equation 

governing the change in condensate temperature in the storage tank. 

1. The volume of the tank remains fixed relative to the coordinate frame. 

2. The tank is well insulated so that heat gain from surrounding to the condensate is 

neglected. 
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3. The state of mass of condensate within the tank may change with time, and at any 

instant of time, the state is assumed uniform throughout the entire volume. 

4. Specific heat capacity of condensate is constant. 

5. The mass flow rates of condensate leaving and entering the tank are equal.  

Schematic of the control volume of condensate tank is shown in Fig. 3.8.  At the 

beginning of the precooling operation, the tank is initially filled with cold condensate of 

mass Mi and at a temperature, Ti which is collected earlier from the air conditioning 

system.  

The parameters M(t) and T(t) represent the mass and the temperature of condensate in the 

tank at any time.  

The mass balance for the condensate tank can be written as:  

                                                  
  

  
                                                                         (3.24) 

where     is the mass flow rate of fresh condensate from the evaporator coil. 

By integrating the above equation, the expression for mass of condensate accumulated in 

the tank at any given time is obtained as: 

                                                                                                                      (3.25) 

The energy balance on the condensate tank provides: 

                                       
     

  
                                                       (3.26) 
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Eq. (3.26) can be re-arranged as: 

                                         
  

  
  

  

  
                                                   (3.27) 

Substituting Eq. (3.24) and (3.25) into Eq. (3.27) gives the rate of change of condensate 

temperature inside the tank which is a first-order linear differential equation. 

                                             
  

  
  

   

       
   

                  

         
                             (3.28) 

Applying the initial conditions, initial condensate temperature in the tank T = Ti at time t 

= 0, the condensate temperature in the tank as a function of time is found: 

                                                  
                     

       
 

    

       
                             (3.29) 

The instantaneous condensate temperature in the tank when the system is subjected to 

precooling during the day time can be calculated using Eq. (3.29). During the night time, 

the condensate temperature in the tank at any time can be determined by considering  

to be zero in Eq. (3.29).                                                                      



40 

 

CHAPTER 4 

CLIMATE DATA 

4.1.  Overview of the Kingdom of Saudi Arabia  

The Kingdom of Saudi Arabia is the world’s largest oil producing country and holds 

about 25% of the world’s crude oil reserves. The kingdom’s 2011 population is estimated 

to be about 26 million and the annual population growth rate as of 2011 is 1.5%. The 

rapid growth in population created higher demand of energy in the Kingdom. As 

mentioned in the literature survey, considerable amount of electrical energy is consumed 

by air conditioning systems due to severe weather conditions. The weather conditions in 

Saudi Arabia are drastically changing from one region to another.  

Riyadh is the largest city with a population of about 5.2 million, lies in the central region 

and is the capital of the Kingdom and is characterized as hot and dry due to extreme 

temperature and low humidity in summer. Jeddah is the second largest city with a 

population of about 3.4 million. Jeddah is located on the Tihamah coastal plain in the 

western region. It is characterized with a high humidity most of the year, very hot in the 

summer and cooler in the winter. Western Saudi Arabia is dominated by the mountain 

chain running the entire length of the country parallel to the Red Sea. These western 

mountains induce convective cloudiness by causing the moist air to rise which resulted in 

greater rainfall. Rain usually falls in small amount in December. Dammam city lies in 
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eastern region on the Arabian Gulf coast with a population of about 0.9 million. Dhahran 

is closer to Dammam and the distance between them is about 20 km.  The weather 

conditions of Dhahran and Jeddah are similar. 

Jazan lies in the southwest corner of Saudi Arabia and is situated on the coast of the Red 

Sea and serves a large agricultural heartland that has a population of 1.5 million. Asir is 

a province located also in the southwest of the country, with an area of about 81,000 km² 

and an estimated population of 1,563,000, its capital is Abha. The southwest region 

experiences high humidity but not as hot as the western and eastern regions. Actual 

climate data is used in this study with emphases on Dhahran climate. 

4.2. Dhahran Climate Data 

The use of condensate to improve the performance of air conditioning systems can only 

be applicable to areas where high relative humidity and temperature prevails. In this 

thesis, the study of the climate data is restricted only to Dhahran area where the 

experimental work is carried out.  

Dhahran, Saudi Arabia is located at 26.3
o
 N, 50.2

o
 E. Dhahran’s climate is characterized 

by extremely hot, humid summers, and cool winters. Temperatures can rise up to about 

50 °C in the summer, coupled with extreme humidity, 70-100%. In winter, the 

temperature rarely falls below 3 °C with rain falling mostly between the months of 

November and May.  

The climate data used in this study is obtained from Jeddah Regional Climate Center 

(JRCC) under the patronage of the Presidency of Meteorology and Environment (PME). 

The data is presented on the basis of hourly average, daily average and monthly average. 

http://en.wikipedia.org/wiki/Saudi_Arabia
http://en.wikipedia.org/wiki/Red_Sea
http://en.wikipedia.org/wiki/Red_Sea
http://en.wikipedia.org/wiki/Provinces_of_Saudi_Arabia
http://en.wikipedia.org/wiki/Abha
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The recorded hourly weather data is used in the study in estimating the rate of condensate 

extraction and served as a guide in the performance study of the VCAC system. Due to 

the bulkiness of the climate data, only that of monthly average and few hourly data of 

some selected days are presented.  

Monthly maximum and mean temperatures of the years 2009 to 2012 are compared in 

Figs. 4.1 and 4.2, respectively. It can be observed that there is slight variation in the 

annual temperatures of the area. Maximum temperature during the summer months of 

March to November ranges from 30 to 48 
o
C. Peak values of temperature are found in the 

months of June, July and August while the mean temperatures are in the range of 25 to 38 

o
C. Similarly, the maximum relative humidity for the whole year ranges from 75 to 100 

% while the mean values ranges from 30 to nearly 70 % as shown in Figs. 4.3 and 4.4. 

The high mean relative humidity of the ambient air that prevails for long period indicates 

that appreciable amount of condensate can be captured from the cooling devices. The 

climate date is also presented in Table 4.1.  

In order to have a closer view in to the climatic conditions, hourly climate data of typical 

summer days of Dhahran is presented in Figs. 4.5 - 4.26 and Table 4.2. The climate data 

presented is of the average day of each month [69]. These figures indicate that there is an 

inverse trend between the ambient air temperature and relative humidity.  The humidity 

increases when the air temperature decreases and vice-versa. During the midnight, down 

to early morning hours, the relative humidity is high, which then decreases during the 

day hours. This is a clear indication that more condensate will be extracted during night 

hours. 
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Figure 4.1 Comparison of monthly maximum temperature of the years 2009 to 2012 in Dhahran. 

 

 

Figure 4.2 Comparison of monthly mean temperature of the years 2009 to 2012 in Dhahran. 
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Figure 4.3 Comparison of monthly maximum relative humidity of the years 2009 to 2012 in Dhahran. 

 

 

 

Figure 4.4 Comparison of monthly mean relative humidity of the years 2009 to 2012 in Dhahran. 
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Table 4.1 Summary of Dhahran maximum and minimum temperature and relative humidity: 2009 – 2012. 

    
T_max (oC) 

       
 T_mean (oC) 

     

Month 2009 2010 2011 2012 2009 2010 2011 2012 

January 22 24.3 26 27 14.8 17.2 16.3 15.7 

February 26.3 26.6 26 27 19.4 19.7 16.6 16.9 

March 33.9 31.6 37 36 21.5 23.5 21.5 19.8 

April 34.2 34 38 41 26.6 27.1 26.8 26.4 

May 42.3 39.4 46 45 34 32 33.2 33.7 

June 45.9 44.1 48 48 37.1 35.9 36.3 36.3 

July 45.4 45.2 47 49 37.5 37.3 36.7 38.0 

August 45.2 43.6 48 49 37.1 36.2 36.5 37.2 

September 42.6 41.9 44 45 33.9 34.1 33.7 33.4 

October 38 37.7 41 42 29.6 30 28.5 29.9 

November 31.7 30.6 33 37 25 22.9 21.1 23.5 

December 23.5 26.1 24 32 18.3 18.1 15.5 18.6 

  
       

  

    
 _max (%) 

       
  _mean (%) 

     

Month 2009 2010 2011 2012 2009 2010 2011 2012 

January 100 100 100 100 65 66 73.0 64.0 

February 100 100 100 100 64 59 73.8 60.0 

March 100 89 88 94 57 44 44.3 50.8 

April 95 95 94 90 56 40 43.1 41.4 

May 89 93 83 79 36 32 34.7 32.7 

June 87 92 84 84 28 32 28.3 30.9 

July 79 100 94 100 26 34 46.3 41.2 

August 97 91 100 100 43 54 47.6 48.8 

September 100 93 94 100 49 51 40.6 50.2 

October 100 100 100 100 64 54 55.5 63.0 

November 100 96 100 100 70 53 62.2 68.8 

December 100 97 100 100 70 59 61.0 67.7 
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Figure 4.5 Variations of Ambient dry bulb temperature of typical days in June through September, Dhahran. 

 

 

Figure 4.6 Variations of Ambient relative humidity of typical days in June through September, Dhahran. 
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Table 4.2 Hourly variations of ambient temperature and relative humidity of typical days in June through 

September, Dhahran. 

  June  July  August September  

Time T   T   T   T   

  (oC)   (oC)   (oC)   (oC)   

1:00 AM 30 0.48 32 0.52 35 0.59 30 0.35 

2:00 AM 29 0.58 32 0.36 34 0.59 28 0.3 

3:00 AM 29 0.58 34 0.28 34 0.59 29 0.35 

4:00 AM 27 0.65 36 0.25 33 0.63 27 0.39 

5:00 AM 27 0.65 37 0.25 32 0.66 28 0.37 

6:00 AM 28 0.66 37 0.25 31 0.7 29 0.35 

7:00 AM 32 0.4 39 0.24 31 0.7 30 0.29 

8:00 AM 35 0.3 41 0.23 33 0.66 34 0.2 

9:00 AM 37 0.25 42 0.18 35 0.63 36 0.18 

10:00 AM 40 0.19 44 0.15 36 0.63 39 0.15 

11:00 AM 43 0.11 44 0.15 38 0.56 42 0.13 

Noon 45 0.13 45 0.13 39 0.5 43 0.11 

1:00 PM 44 0.12 45 0.13 39 0.5 45 0.11 

2:00 PM 44 0.12 44 0.15 40 0.45 44 0.12 

3:00 PM 41 0.26 43 0.14 41 0.26 43 0.17 

4:00 PM 39 0.33 42 0.16 39 0.37 39 0.42 

5:00 PM 36 0.44 42 0.16 38 0.37 37 0.5 

6:00 PM 34 0.56 41 0.18 37 0.56 36 0.53 

7:00 PM 34 0.67 39 0.2 35 0.71 35 0.59 

8:00 PM 32 0.75 38 0.24 34 0.75 34 0.67 

9:00 PM 32 0.75 38 0.27 34 0.75 34 0.75 

10:00 PM 32 0.75 37 0.29 34 0.75 33 0.75 

11:00 PM 31 0.75 37 0.29 33 0.79 32 0.75 

12:00 AM 32 0.76 32 0.49 33 0.8 31 0.75 
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4.3. Air Conditioners Usage in Saudi Arabia 

Saudi air conditioning market is the biggest market in the Middle East and North Africa 

regions. A recently published report by TechSci Research [70] reported that air 

conditioners market in Saudi Arabia is expected to grow at the annual rate of 8.7% during 

the period from 2012 to 2017. Saudi Arabia remains a very promising market for air-

conditioning products, due to its hot climate, high per capita income and rapid population 

growth and it is expected that Saudi air conditioners market will reach about SR 7.5 

billion revenues by 2017. The domestic production of air conditioners has gradually 

increased in the Kingdom due to the high demand of air conditioners. It is estimated that 

due to increasing demand of split air conditioners the market share of window air 

conditioners is expected to witness almost 10% drop in next five years. It is interesting to 

note that the present study is highly suitable for split air conditioners. 

Air-conditioning products are considered a necessity and are installed in almost all 

buildings throughout the country. It is to be noted that the central region, Riyadh has the 

largest sales, accounting for about 35%, followed by the western region, around Jeddah 

which accounts for around 25%. A further 15% of sales are in the east of the country, 

Dammam, with the other 25% shared between all other regions.  

Conventional VCAC systems are popular in the Kingdom and absorption chillers are not 

popular due to their high price. Currently all packaged products sold in Saudi Arabia are 

fitted with the refrigerant R-22 and hence, in this thesis, R-22 is used. 
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CHAPTER 5 

EXPERIMENTAL SET-UP  

5.1.   The Experimentation Room 

The experimental phase begins with the experimentation room design and its 

construction. A site close to the entrance of heat engines lab, located in building 26, 

KFUPM is dedicated for the experiment. With the site selected, the general specifications 

of the room suitable for operating a 1.5 ton capacity air conditioner are set up. To ensure 

reliability and durability, joist of 50 mm x 100 mm s4s kiln dried wood is used as the 

structural frame of the room which is strong enough to serve the purpose. The joist is 

bolted on a steel frame with lag bolts and common nails with steel cleats and 18mm thick 

 1.2 m  2.4 m plywood is laid on top of the floor deck. A 50 mm x 100 mm s4s kiln 

dried wood vertical studs are used for the exterior and interior walls which are nailed to 

top and bottom wood runner. In order to minimize heat gain or loss through the walls, a 

50 mm thick fiberglass is used in the interior walls; 18mm polyester laminated plywood 

is used in the exterior walls. 

The roof frame is made from fabricated wood structures trusses 50 mm  100 mm s4s 

kiln dried wood complete with bracing and purlins, a 50 mm thick fiberglass insulation 

one side with aluminum face vapor barrier fill the void of roof and a 0.35 mm pre-
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finished corrugated ridge/side trims. Access door is tightly sealed against air and mixture 

leakages.   

A climate chamber has been fabricated for generating various climate conditions ranging 

from 25 to 45
o
C temperature and 10 to 95% relative humidity and the schematic of the 

experimentation room with the climate chamber is shown in Fig 5.1. This chamber is able 

to generate actual climate conditions for estimating the amount of condensate that can be 

extracted from the system. The casing of the chamber is made up of Plexiglass of 10 mm 

thickness, 2.48 m length, 0.38 m width and 0.35 m height. A heater capacity of 6 kW 

connected to a temperature controller is placed at one end of the climate chamber. The 

heater is used to warm up the air that is forced in to the climate chamber by a blower in 

order to get the required air temperature at the exit of the chamber. 

Three humidifying pads each of 10 cm thickness are placed inside the climate chamber 

next to the heater and are located 10 cm apart from each other. A tank of size 47 x 47 x 

45 cm
3
 is filled with water and connected to a pump which circulates the water through 

the humidifying pads to humidify the air until the required humidity is achieved. 

Humidification of the air can results in cooling the air evaporatively, which consequently 

will make it difficult to generate high temperatures (say 45
o
C) at the exit of the climate 

chamber. For this reason, four heaters each of 1 kW are installed inside the water tank for 

heating the water in order to avoid undesirable cooling of the air at this stage as a result 

of humidification and to have control of both temperature and humidity of the air at the 

same time. The air heater and the water heaters are connected to different temperature 

controllers using thermocouple. The temperature controllers are digital switch setting 

type, model: T4L-B3RK4C. 



51 

 

 

 

 

 

Figure 5.1 Schematic of the experimentation room with climate chamber inside. 
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One thermocouple is placed closed to the heater element and another inside the water. 

The temperature controllers are adjusted based on the required climate conditions to be 

generated in the chamber. Regulator valves are fitted along the water line for regulating 

the flow of water manually in order to get the required relative humidity. Photograph of 

the climate chamber is shown in Appendix A, Fig. A-1. 

5.2.  The Base System 

The base system is a stand-alone 1.5 ton split type VCAC system manufactured by 

Zamil, model: MWZ18CHIXFTQ &KZC18CSPHIQ without the additional heat 

exchangers. The specifications of the base system are listed in Table 5.1.  

Table 5.1 Characteristics of the base air conditioning system. 

Parameter Value 

Cooling capacity @ 27 
o
C DB/19 

o
C WB and 35 

o
C DB outdoor 4.747 kW 

Power input 2.075 kW 

Current input 9.7 Amps 

EER 7.81 

Refrigerant 22 charge 1.3 kg 

Compressor type – Rotary -   

Evaporator face area  0.259 m
2
 

Volume flow rate of air at evaporator side, measured  0.135 m
3
/s 

Condenser face area  0.548 m
2
 

Volume flow rate of air at condenser side, measured  0.73 m
3
/s 

 

5.3. Installation of Air Precooler for Option ‘A’ 

A suitable heat exchanger or precooler is designed and installed on the base system to 

lower the air before entering the evaporator. The precooler is placed in the climate 

chamber after the humidifying pads and before the evaporator. Based on the present 
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application where the requirement is to lower the temperature of air entering the 

evaporator, the size of the precooler is 0.118 m
2
 face area. The condensate temperature at 

the inlet and outlet of the precooler is recorded using thermocouples. The air 

temperatures and the relative humidity before and after the precooler are also recorded. 

Schematic of the experimental rig of this option is shown in Fig. 5.2. The upper part of 

the evaporator which is the air inlet is inserted inside the climate chamber at one end and 

the air that is at controlled temperature and relative humidity is directed to the evaporator 

which is serving as the load to the VCAC system. Photographs of the precooler and the 

experimental rig are shown in Appendix A, Figs. A-2 and A-3. 

5.4. Installation of Air Precooler for Option ‘B’ 

The precooler of option ‘B’ is a finned-tube cross flow heat exchanger designed for 

precooling the air entering the condenser. The precooler consists of copper tube and 

aluminum fins and is having one column, twenty numbers of tube rows and face area of 

0.79 m
2
. The precooler is curved so that it covers the entire L-shaped condenser face. The 

gap between the condenser and precooler is covered at the top by an insulation material 

so that the air stream that may likely by-pass the precooler is prevented from escaping. 

Photographs of the precooler before and after installation are also shown in Appendix A. 

The two ends of the precooler tube are connected to the pipe in which condensate is 

circulating, entering from one side and exiting through the other side. The condensate 

temperatures at the inlet and exit of the precooler are measured as well as the air 

temperature before and after the precooler using thermocouples. Schematic of the 

experimental rig with option B is shown in Fig. 5.3 and the photographs of the precooler 

before and after installation are shown in Appendix A, Figs. A-4 to A-6. 
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Figure 5.2 Schematic of experimental rig for option ‘A’. 
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Figure 5.3 Schematic of experimental rig with option ‘B’. 
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5.5. Installation of Refrigerant Subcooler for Option ‘C’ 

The refrigerant subcooler used in the experiment is also finned-tube type heat exchanger 

having copper tube and aluminum fins. Schematic of the experimental rig with option ‘C’ 

is shown in Fig. 5.4. The face area of the heat exchanger is 0.0644 m
2
 and consists of two 

columns and nine tube rows. This small size heat exchanger is designed so as to keep the 

pressure drop of the refrigerant minimum. The subcooler is enclosed inside a special 

casing of galvanized iron. The galvanized iron casing is made in such a way that it allows 

the passage of condensate across the subcooler while refrigerant is circulating through the 

subcooler tube. Photographs of the subcooler with casing before and after installation on 

the base air conditioning system are shown in Appendix A, Figs. A-7 to A-10.  

5.6.  The Complete Experimental Set-up and Instrumentation 

The complete experimental set-up comprises the experimentation room, the base air 

conditioning system, the climate chamber and the additional heat exchangers for the three 

options.  

The climate chamber which also contains the evaporator of the air conditioning unit is 

placed inside the room. An air blower located outside the experimentation room is ducted 

to the climate chamber in order to compensate the drop in air flow to the evaporator as a 

result of the precoolers and humidifying pads that are placed along the air path inside the 

chamber. The blower is used to supply air into the chamber. 

Condensate dripping from the evaporator is collected directly using a small rectangular 

Plexiglass tray and is directed to a collection tank of 250 L capacity which is kept inside 



57 

 

 

 

 

 

Figure 5.4 Schematic of experimental rig with option ‘C’. 
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the room.  The condensate-collection tank is connected to the condensate storage tank of 

1000 L capacity located outside the room. The storage tank is connected to a centrifugal 

pump which delivers the condensate to the various additional heat exchangers.  

The outdoor unit which comprises the condenser and compressor of the air conditioning 

system is also located outside the room. The precooler for option ‘B’ is installed just 

behind the condenser as seen before. The subcooler is installed after the condenser tube 

and before the expansion valve. Schematic of the complete experimental set-up is shown 

in Fig. 5.5. The mass flow rates of condensate circulating through the precoolers and 

subcooler are measured using special type flow transmitters of accuracy ±2 % full scale. 

The transmitter displays the measured flow rate digitally and transmits the flow signal to 

a computer at a time. The temperatures of air, condensate and refrigerant are measured 

using type-T thermocouples at the various locations shown in Figs. 5.5 and 5.6. Surface 

type thermocouples are used to measure the temperature of condensate and refrigerants at 

various locations. The thermocouples are placed over the surfaces of the pipes while 

isolated from the surrounding using insulation. The mass flow rate of air is measured 

indirectly by measuring the speed of the air using a hydro-thermo anemometer of 

accuracy ±2%.  

The refrigerant pressures at locations indicated in Fig. 5.6 are measured using pressure 

transducers PX309 series, Omega each of accuracy 0.25%. The compressor power 

consumption is measured by the use of current transmitter; model number PM – H721LC 

with an accuracy of ±2 %. The relative humidity of the air is measured using relative 

humidity transmitters capable of measuring from 3 to 95%. The accuracy of the humidity 
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Figure 5.5 Schematic of the complete experimental set-up. 
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transmitter is ±2.5 % for the range of 20 – 80% relative humidity and ±3.1% below 20% 

and above 80% relative humidity. All the sensors are connected to a central data 

acquisition (DAQ) system from National Instruments that collects, display and stores the 

various measurements in a data file.  
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Figure 5.6 Schematic of the air conditioning system showing the temperature and pressure measurement 

locations. 
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CHAPTER 6 

RESULTS AND DISCUSSIONS 

This chapter presents the experimental results of the modified VCAC system for options 

‘A’, ‘B’ and ‘C’. Comparison of experimental and analytical results for option ‘A’ and 

condensate extraction from the air conditioning system are also discussed. The 

performance of the modified system and power consumption are compared with base 

system results. The base system results are the results obtained without the use of the 

three options. Engineering Equation Solver (EES) software is used in solving the various 

equations and obtaining thermo-physical properties of the fluid involved. 

6.1.    Condensate Extraction from the Air Conditioning System 

Extraction of condensate from the air conditioning system is strongly influenced by the 

climate conditions. The climate data of Dhahran, Saudi Arabia has been presented in 

chapter four and the data for several years show similar characteristics. The recorded 

climate data consists of temperature and relative humidity of the air which ranges 

between 27 - 47 
o
C and the relative humidity reaching up to about 90 % and rarely to 100 

% during the summer periods. In the this study, only the summer months of June, July, 

August and September are considered for condensate collection from the VCAC system 

experimentally and analytically using the hourly climate data. The hourly climate data is 

chosen in order to get the best estimate of condensate extraction rate because there are 
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limited cases in the literature where hourly climate data is used experimentally for the 

prediction or estimation of condensate production except for a few days. The hourly 

climate data is used in its original form in the analytical calculations while in the 

experimental aspect; the data is broken down into 32 sets for simplicity. The algorithms 

used in breaking the temperature and relative humidity are shown in Appendix B. 

Experiments are performed for the 32 sets of data to estimate the rate of condensate 

extraction from the base VCAC system. The corresponding rates of condensate extraction 

obtained for each group are shown in Table 6.1. The first two columns represent the 32 

sets of temperature and relative humidity, respectively while the last column is the 

corresponding hourly extracted condensate. In these experiments, each data set is 

considered separate and the temperature and relative humidity of the air are generated in 

the climate chamber while the VCAC system is running. The temperature and humidity 

of the air in the climate chamber are measured using thermocouples and humidity 

sensors, respectively. The thermocouples and humidity sensors are connected to a data 

acquisition system which records and displays the data. Collection of condensate began 

by the use of stop watch after the temperature and humidity of the air in the climate 

chamber reached steady state. The volumetric flow rate of air through the evaporator is 

0.135m
3
/s which is also used in the analytical calculations. 

After completing the experiments for the 32 groups, a computer code is written in Matlab 

which is used to pick the experimental condensate given in Table 6.1 and match it with 

the corresponding hourly climate data stored in excel sheets using the algorithms shown 

in Appendix B and the code is also presented in the same Appendix. 
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Table 6.1 The 32 sets of experimental data and the corresponding amount of condensate extracted from the 

VCAC system. 

T  
(oC) 

   
(%) 

Condensate extraction rate 
(kg/h) 

25 40 1.1 

25 50 1.4 

25 60 2.0 

25 70 2.8 

25 80 3.16 

25 90 3.48 

30 20 0.6 

30 30 0.8 

30 40 1.6 

30 50 2.5 

30 60 2.8 

30 70 3.2 

30 80 3.9 

30 90 4.4 

30 95 5.7 

35 20 0.8 

35 30 1 

35 40 2.2 

35 50 2.68 

35 60 3.48 

35 70 4.24 

35 80 5.1 

35 90 5.4 

40 10 0.36 

40 20 0.9 

40 30 1.52 

40 40 2.4 

40 50 3.42 

40 60 3.7 

45 10 0.4 

45 20 0.9 

45 40 3.3 
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These results represent the experimental condensate that can be extracted in Dhahran 

considering 100 % outdoor air goes to the evaporator. The program reads-in the hourly 

experimental condensate values and assigns each value to the appropriate temperature 

and humidity combinations that are arranged in two columns in excel sheets. The 

experimental condensate is obtained for each hour of the summer months; from June to 

September. The cumulative sum of the hourly values of the extracted condensate gives 

the corresponding amount of daily condensate while the cumulative daily condensate 

gives the corresponding monthly extracted condensate. 

Analytical study is also carried out to estimate the rate of condensate extraction from the 

VCAC system using the model equations presented in chapter 3 without the precooling 

options and the results of condensate extracted are compared with the experimental 

results. The model equations presented in chapter 3 are coded in EES which relates the 

cooling capacity of the air conditioning system, flow rate of air and the thermo-physical 

properties of the fluid involved; namely air and R-22. The nominal cooling capacity of 

the base system given in Table 5.1 is used in the model as the initial guest value and the 

flow rates of air across the evaporator and the condenser given in the table are also used. 

The isentropic efficiency of the compressor is taken as 0.65 [33]. 

Analytical results given in Fig. 6.1 show the effect of relative humidity on the rate of 

condensate extraction using the climate data for the average day of the month of August. 

It is noted that the variation of condensate extraction followed the variation pattern of 

relative humidity. This means that the rate of condensate extraction mainly depends on 

the relative humidity. The effect of evaporator inlet air temperature on the rate of 

condensate 
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Figure 6.1 Hourly variations of condensate extraction rate and relative humidity for a typical day of August, 

Dhahran. 
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extraction as a function of relative humidity is shown in Fig 6.2 of the analytical results. 

It is clear that the rate of condensate extraction increases sharply with increase in the 

relative humidity due to higher water vapor content in the air. It is also observed that the 

rate of condensate extraction is higher at higher air temperatures.  

Before presenting the monthly extracted condensate, hourly rate of condensate extraction 

of typical summer days are presented both experimental and analytical using the climate 

data given in Table 4.2. The sample results are summarized in Table 6.2. Observing the 

trend of the hourly climate data in Table 4.2 and the corresponding hourly condensate 

extraction rate, it can be concluded that the extracted condensate is high at higher 

humidity. Experimental and analytical daily condensate extraction in Dhahran for the 

months of June through September are summarized in Table 6.3 and presented in Figs. 

6.3 – 6.6. It is observed that the comparison of analytical results is in good agreement 

with the experimental results. Monthly amounts of condensate extraction are obtained 

from the daily condensate and the results are also shown in Table 6.3. It is noted that the 

quantity of condensate is highest in August and this is as a result of high humidity in 

August compared to the other months. 

6.1.1. Condensate Chemical Analysis  

A sample of condensate is collected from the VCAC system under study when 100 % 

outdoor air is sent to the evaporator of the system. The sample is collected directly into 

sterilized bottles. Chemical analysis is then carried out on the collected sample at the 

Center for Environment and Water, Research Institute, KFUPM. The tests conducted on  
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Figure 6.2 Variation of condensate extraction rate with relative humidity at different dry bulb temperatures. 
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Table 6.2 Comparison of condensate extraction rate for typical days in June through September, Dhahran. 

 

 

 

 

 

 

Time Experimental Analytical Experimental Analytical Experimental Analytical Experimental Analytical

1:00 AM 2.5 2.5 2.5 2.7 3.5 3.5 1.6 1.6

2:00 AM 2.8 2.9 1.6 1.8 3.5 3.4 0.8 0.9

3:00 AM 2.8 2.9 1.0 1.3 3.5 3.4 1.6 1.6

4:00 AM 2.8 3.3 1.0 1.2 2.8 3.6 1.1 1.7

5:00 AM 2.8 3.3 1.0 1.3 3.2 3.6 1.6 1.6

6:00 AM 3.2 3.3 1.0 1.3 3.2 3.8 1.6 1.6

7:00 AM 1.6 2.3 0.9 1.4 3.2 4.0 0.8 1.1

8:00 AM 1.0 1.6 0.9 1.5 3.2 3.9 0.8 0.5

9:00 AM 1.0 1.3 0.9 1.0 3.5 3.8 0.8 0.5

10:00 AM 0.9 1.1 0.9 0.8 3.5 3.8 0.9 0.4

11:00 AM 0.4 0.2 0.9 0.8 3.7 3.1 0.4 0.4

Noon 0.4 0.7 0.4 0.5 3.3 3.0 0.4 0.2

1:00 PM 0.4 0.5 0.4 0.5 3.3 3.0 0.4 0.3

2:00 PM 0.4 0.5 0.9 0.7 3.3 2.9 0.4 0.4

3:00 PM 1.5 2.2 0.4 0.5 1.5 1.8 0.9 1.0

4:00 PM 1.5 2.5 0.9 0.7 2.4 2.4 2.4 2.6

5:00 PM 2.2 2.9 0.9 0.7 2.4 2.5 2.7 3.4

6:00 PM 3.5 3.3 0.9 1.2 3.5 3.3 2.7 3.6

7:00 PM 4.2 3.7 0.9 0.9 4.2 3.4 3.5 2.9

8:00 PM 3.9 3.8 0.9 1.2 5.1 3.6 4.2 3.1

9:00 PM 3.9 3.8 1.5 1.5 5.1 3.6 5.1 3.3

10:00 PM 3.9 3.8 1.0 1.5 5.1 3.6 3.9 3.7

11:00 PM 3.9 3.6 1.0 1.5 3.9 3.5 3.9 3.6

12:00 AM 3.9 3.9 2.5 2.7 3.9 3.5 0.8 1.4

Yield/day (kg) 55.5 59.8 25.2 29.5 83.7 80.1 43.2 41.3

Condensate (kg/h) Condensate (kg/h) Condensate (kg/h) Condensate (kg/h)

June July August September
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Table 6.3 Experimental and analytical daily condensate extraction for the months of June through September. 

 

 

 

 

 

 

Days

Experimental Aanalytical Experimental Aanalytical Experimental Aanalytical Experimental Aanalytical

1 15.6 8.5 15.0 15.0 86.9 79.4 71.6 70.1

2 24.9 22.2 13.4 11.5 85.0 76.0 74.9 73.7

3 66.4 69.8 17.0 19.5 76.2 70.8 45.0 50.4

4 64.8 67.3 31.9 33.6 63.3 64.9 63.7 62.5

5 43.5 51.4 46.0 49.8 59.4 59.0 56.0 62.0

6 45.1 50.0 14.7 14.7 58.3 63.4 61.8 67.7

7 16.7 14.7 22.1 31.4 31.7 33.0 83.2 81.2

8 18.8 18.9 50.8 54.2 31.8 41.9 54.0 60.0

9 13.8 6.5 86.4 77.1 70.5 68.1 53.9 55.4

10 14.8 13.8 64.8 71.7 69.2 70.6 60.7 65.8

11 55.5 56.6 66.9 67.5 62.3 70.1 36.9 42.5

12 64.6 68.7 63.5 73.8 62.0 66.7 31.9 37.2

13 35.4 38.3 58.7 57.5 58.3 61.7 56.1 63.9

14 50.8 58.4 52.7 56.1 64.0 71.6 40.1 49.0

15 34.7 39.4 51.0 60.5 63.2 71.1 43.2 41.0

16 56.3 56.5 37.3 50.4 83.7 80.1 51.5 56.7

17 60.1 62.7 25.2 33.2 85.6 85.4 54.1 62.3

18 65.4 68.4 24.5 33.3 71.0 71.9 60.2 67.8

19 47.2 55.5 26.9 32.2 77.7 70.3 67.5 69.3

20 44.0 48.5 18.2 14.5 64.8 68.2 79.0 80.9

21 27.0 29.9 35.5 38.1 81.7 89.9 71.2 73.7

22 16.2 15.3 53.5 55.8 87.9 84.4 73.0 75.8

23 13.6 9.4 24.8 28.7 80.2 81.9 66.4 70.6

24 13.0 5.4 15.7 19.7 70.5 70.8 61.2 75.1

25 19.8 26.2 24.6 32.7 74.9 72.3 69.2 77.2

26 24.2 32.5 20.3 30.9 85.4 76.0 76.4 79.5

27 19.9 25.0 19.5 28.6 84.2 80.6 60.0 63.2

28 25.7 30.5 21.4 29.6 99.1 82.9 40.8 45.5

29 19.8 25.9 40.4 52.7 79.7 72.9 52.2 63.3

30 18.5 28.1 65.8 70.5 55.2 56.8 65.7 76.4

31 72.6 70.5 49.2 53.7

Daily Average Condensate 34.5 36.8 38.1 42.4 70.1 69.9 59.4 64.0

Monthly Condensate (kg) 1036.4 1104.5 1181.0 1315.4 2172.7 2166.2 1781.4 1919.6

Condensate (kg/day)

June July August September
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Figure 6.3 Comparison of analytical with experimental rate of condensate extraction for the month of June. 
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Figure 6.4 Comparison of analytical with experimental rate of condensate extraction for the month of July. 
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Figure 6.5 Comparison of analytical with experimental rate of condensate extraction for the month of August. 
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Figure 6.6 Comparison of analytical with experimental rate of condensate extraction for the month of 

September. 
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the sample includes: Total dissolved solids (TDS), turbidity, Electrical Conductivity 

(EC), pH, carbonates and metals. 

Table 6.4 shows the results from the chemical analysis compared with KSA and World 

Health Organization, (WHO)’s maximum accepted values as reference. The findings in 

this table show that all the obtained results are within the limit of recommended values by 

WHO and KSA. It is reported that portable water produced by multi-stage flash and 

reverse osmoses seawater desalination processes have TDS of about 50 mg/l after post-

treatment processes [14]. By comparison, condensate of this quality can be used for non-

drinking applications as well, such as irrigation, cooling towers make-up water, 

municipal uses and above all, improving the a performance of air conditioning systems. 

Looking at the chlorine content found in the condensate sample, it is concluded that the 

condensate can be classified as distilled water and this is what make the condensate 

suitable for the above mentioned applications due to its less corrosion potential. 

The present results also show that the quality of the tested condensate is very close to that 

of the drinking water. By undergoing simple bacterial removal and post-treatment 

processes, the condensate may be fit for drinking. 

6.2. System Performance Analysis 

The experimental results of the three performance improvement options mentioned 

earlier in the previous chapter are discussed in this section. A program is written in 

Engineering Equation Solver (EES) to determine the properties of the fluids such as 

enthalpy using the experimental data.  
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Table 6.4 Chemical concentrations in condensate sample compared with WHO acceptable limits. 

 

Property  

 

Condensate 

Value 

 

KSA 

Guideline 

Value 

 

WHO 

Guideline 

Value 

 

Conclusion 

pH 6.52 6.5 – 8 6.5 – 8.5 Within the limit 

Turbidity 2.01 NTU 5 NTU < 5 NTU Within KSA limit 

TDS 27 mg/l 1500 mg/l < 600 mg/l Within KSA limit 

Cu  0.019 mg/l 2 mg/l 1 mg/l Within the limit 

Fe N/A 0.3 mg/l 0.3 mg/l Not available 

Mn 0.007 mg/l 0.4 mg/l 0.1 mg/l Within the limit 

Mg 0.933 mg/l N/A N/A Not compared 

Na 0.428 mg/l 200 mg/l N/A Within the limit 

Zn 0.02 mg/l 3 mg/l 5 mg/l Within the limit 

Hg N/A 0.001 mg/l 0.001 mg/l Not available 

Ca 5.08 mg/l N/A N/A Not compared 

Cd N/A 0.003 mg/l N/A Not available 

Chloride  0.7 mg/l 250 mg/l 250 mg/l Within the limit 

Fluoride  N/A 1.5 mg/l 1.5 mg/l Not available 

Nitrate 1.71 mg/l 50 mg/l 10 mg/l Within the limit 

Sulphate  5.38 mg/l 500 mg/l 400 mg/l Within the limit 

Ba 0.01 mg/l 0.7 mg/l N/A Within the limit 

Sr 0.023 mg/l N/A N/A Not compared 
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The fluids in this case are the air and refrigerant (R-22). The following assumptions are 

made in the analysis of the experimental data: 

 Pressure losses and heat gains or losses in the refrigerant lines are neglected. 

 Heat gain across the boundaries of the precoolers and subcooler is neglected. 

 Pressure of air entering the evaporator is assumed atmospheric. 

The actual compressor power consumption is measured using a current transmitter while 

the rate of heat transfer in the evaporator is obtained by using the measured inlet and exit 

temperature and relative humidity of the air and its flow rate. 

6.2.1. Results for Evaporator Air Precooling: Option ‘A’ 

Experimental and analytical results for evaporator air precooling are presented in this 

section.  Before the commencement of the experiment, a start-up amount of condensate 

was collected within several days and stored in the condensate-storage tank of 1m
3
 

capacity for conducting the experiments with the air precooling options. In this option, 

two categories of experiments are carried out. In the first category, experiments are 

conducted at the severest weather conditions of Saudi Arabia while in the second 

category, other intermediate conditions are used. The severest weather conditions are 36 

o
C dry-bulb temperature and 80% relative humidity and are obtained from the climate 

data and the details are presented in the next section. 
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6.2.1.a    Experimental and Analytical Results for Severest Weather 

Conditions: Option ‘A’ 

Air conditioning systems are used for providing comfort in buildings. Some buildings 

such as hospitals require high volume of air. This is the main reason why in this kind of 

building, 100 % outdoor air is taken and cooled by the cooling system and then the cold 

air is blown into the building interior. In this part of the study, the air conditioning system 

is tested considering 100% outdoor air entering into the evaporator. The severest weather 

conditions are used as the testing conditions. The severest conditions are determined by 

finding the maximum enthalpy of the air considering the air as a mixture of dry air and 

water vapor. Therefore, the maximum enthalpy is determined at the severest combination 

of the air temperature and relative humidity of four different cities of Saudi Arabia as 

shown in Table 6.5. The maximum enthalpy is found at Dhahran and Jeddah climate 

conditions and the corresponding temperature and relative humidity at which the 

maximum enthalpy is obtained are the severest conditions (36 
o
C and 80%). The reason 

for using the maximum enthalpy in determining the severest conditions is because the 

humid air consists of the sensible and latent heat components which formed the load that 

must be remove by the cooling section of the VCAC system.  

In this category, two sets of experiments are carried out for comparison. The first is the 

base system experiment, without operating the air precooler while the second experiment 

includes the precooler. During the two experiments, the information given in Table 6.6 is 

used. The results of the two experiments are compared in order to evaluate the advantage 

of the modified system with option ‘A’ over the base VCAC system. About two hours 

experiments are performed for the baseline and the modified system under the same  
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Table 6.5 Enthalpies of severest weather conditions in major cities of Saudi Arabia. 

T (
o
C)   h (kJ/kg) City 

34 0.89 112.5 Dhahran 

36 0.8 114.9 

 
30 0.89 91.82 Jazan 

38 0.6 103.6 

 
31 0.94 100.5 Jeddah 

36 0.8 114.9 

 
32 0.46 67.4 Riyadh 

31 0.38 58.5 

  

 

Table 6.6 Experimental conditions of options ‘A’, ‘B’ and ‘C’ for severest weather conditions. 

Parameter     Value 

Evaporator entering air temperature  36 
o
C 

Evaporator entering air relative humidity   80% 

Volumetric flow rate of air to the evaporator  0.146 m
3
/s 

Ambient air temperature  35-38 
o
C 

Initial condensate water temperature at the precooler inlet  24.9 
o
C 

Mass flow rate of condensate through the precooler  0.16 kg/s 

Volume of condensate-tank 1 m
3
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experimental conditions highlighted previously. Experimental data was recorded in every 

minute and then the averages of every 12 readings are used in plotting the results. 

Analytical results are also obtained using the model equations presented in chapter 3. The 

values of the volumetric flow rate of air to the evaporator, the temperature and relative 

humidity of the air at the evaporator inlet that are used during the experiments are also 

used in the analytical computation as input parameters. Parameters computed by the 

analytical model includes evaporating and condensing temperatures, evaporator exit air 

temperature, cooling effect, coefficient of performance, compressor power and the 

second law efficiency. 

Variation of precooler inlet and exit air temperatures are shown in Fig. 6.7 and the 

precooler effectiveness in Fig 6.8. About 5.7 
o
C air temperature drop ‘∆T’ is achieved by 

the precooler as indicated in the figures. Lowering the air temperature before entering the 

evaporator reduces the sensible heat load to the evaporator. The positive effect of 

reducing the sensible heat load is lower pressure difference across the compressor as 

shown in Fig. 6.9. The decrease in pressure difference across the compressor resulted in 

the decrease in compressor power consumption as shown in Fig. 6.10. The compressor 

power obtained from the base system and the modified system both experimental and 

analytical are also compared. About 5% reduction in compressor power consumption is 

realized from the experimental results. Comparison of COP obtained from the base 

system with that of the modified system is shown in Fig. 6.11. It is noted that there is 

significant increase in COP of about 31% when option ‘A’ is applied. The increase in 

COP as a result of air precooling before entering the evaporator is due to decrease in 

compressor power. Evaporator exit air temperature also decreased as a result of lowering  
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Figure 6.7 Air temperatures across precooler of option ‘A’ for severest weather conditions.  
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Figure 6.8 Variation of ∆T and precooler effectiveness of option ‘A’ for severest weather conditions. 
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Figure 6.9 Comparison of compressor pressures of base system with option ‘A’ for severest weather conditions. 
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Figure 6.10 Comparison of compressor power of base system with option ‘A’ for severest weather conditions. 
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Figure 6.11 Comparison of COP of base system with option ‘A’ for severest weather conditions. 
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the air temperature before entering the evaporator using condensate as depicted in Fig. 

6.12. The decrease in evaporator exit air temperature means that a better cooling is 

achieved due to air precooling at the evaporator inlet. Comparison of the second law 

efficiency obtained from the base system with the modified system is shown in Fig. 6.13. 

The second law efficiency is increased to about 25% when the air entering the evaporator 

is lowered. The increase in the second law efficiency is due to the combined effect of the 

decrease in evaporator exit air temperature and the increase in COP.  

Variation of condensate temperature in the tank with time is shown in Fig. 6.14. The 

condensate temperature increases because after exiting the precooler, it is re-circulated 

back to the tank. Only about 2.3 
o
C increase in the condensate temperature is noticed 

during the two hours experiment.  This is a clear indication that the precooling technique 

will last long even if the condensate is re-circulated back to the tank provided the tank is 

large (     ). Using the analytical model and assuming the air precooling is maintained 

for eight hours during the day time (on-precooling) and then stopped at night when the air 

temperature is relatively low (off-precooling), then the variation of condensate 

temperature inside the tank during these periods is presented in Fig. 6.15. The initial 

amount of condensate before the precooling is 1000 kg and at the end of the precooling, 

the amount is increased to 1054 kg due to continuous collection of fresh condensate at the 

rate of 6.8 kg/h. During the off-precooling period, the 54 kg of condensate is removed 

from the tank so that the condensate temperature within the tank can be reduced more 

while continuously collecting fresh condensate as preparation for the following day. The 

54 kg of condensate that is removed from the tank can be used for other purposes such as 

washing and cleaning. 
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Figure 6.12 Comparison of evaporator exit air temperature of base system with option ‘A’ for severest weather 

conditions. 
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Figure 6.13 Comparison of second law efficiency of base system with option ‘A’ for severest weather conditions. 
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Figure 6.14 Variation of condensate temperature the tank with time for severest weather conditions- Option ‘A’. 
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Figure 6.15 Variation of condensate temperature inside tank for complete day during on and off- periods: 

analytical study. 
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The average values of the performance parameters and comparison of analytical with the 

experimental results are presented in Table 6.7. It is clear that the modified system has 

significant advantage over the base system. It can be observed from the table that the 

analytical results are in good agreement with the experimental results with minimum and 

maximum errors of 0.12% and 5.12% respectively which are within reasonable level. 

 

Table 6.7 Summary of results for evaporator air precooling for severest weather conditions – Option ‘A’ 

Quantity 

Comparison of analytical with experimental results for option ‘A’ 

Base system Modified system- option ‘A’ 

Experimental 
 

Analytical 
 

Difference 
(%) 

Experimental 
 

Analytical 
 

Difference 
(%) 

COP 3.06 3.09 -0.88 4.01 3.80 5.12 

Ẇc (kW) 2.56 2.54 0.94 2.43 2.43 0.12 

 II 0.09 0.10 -3.20 0.12 0.11 4.22 

Ta,ev,e(
oC) 22.7 22.4 1.40 20.1 20.0 0.71 

 

 

6.2.1.b Experimental Results for Intermediate Evaporator Inlet Air 

Conditions: Effects of Air Mass Flow Rate – Option ‘A’ 

In most of residential air conditioning applications, the room air is usually circulated 

continuously through the cooling system while maintaining the room to the desired 

comfort level. In this kind of application, the room air absorbed heat energy in the form 

of sensible and latent from the occupants. After the air is circulated through the 

evaporator, the heat energy is removed and the cycle continues. In this application, the 

evaporator inlet air temperature is usually lower than the outdoor air temperature. The 

second category of experiment in this study is basically conducted at typical evaporator 
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inlet air conditions similar to the re-circulated air type as described above. Experiments 

are performed at different mass flow rates of air entering the evaporator. The mass flow 

rates of air are obtained from the measured air velocities, humidity and temperature 

across the evaporator using the cross-sectional area of the evaporator exit. For each air 

flow rate, the system is run for several minutes without the air precooling to get a 

baseline data and the data was saved at every second. The evaporator inlet air conditions 

are set at 30.5 – 31.5
o
C temperature and 39 – 41% relative humidity in the climate 

chamber. These values are chosen based on ARI standard rating conditions of a forced-

circulation air cooling coil [71]. The ARI rating conditions are: evaporator entering air 

dry-bulb temperature 18 – 38
o
C, entering air wet-bulb temperature 16 – 29

o
C and air face 

velocity in the range of 1 – 4 m/s.  Immediately after the baseline readings are obtained, 

experiments are repeated for each air mass flow rate at three sets of ∆T in order to 

investigate the effect of decreasing the air temperature before entering the evaporator 

coil. The parameter ∆T is the air temperature difference across the precooler. The reason 

for the immediate start of the second experiment is in order to minimize the effect of 

ambient air temperature variation on the system which is out of control during the 

experiments.  

Variation of cooling effect of the system as a function of air mass flow rate at different 

∆T is shown in Fig. 6.16. The cooling effect increases with increase in the mass flow rate 

of air. This increase is expected because the cooling effect is proportional to the air flow 

rate as indicated from the energy balance across the evaporator, Eq. (3.1). The figure also 

illustrates the fact that as the air temperature before entering the evaporator is lowered, 

the cooling effect increases. It is to be noted that the air temperature and humidity 
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Figure 6.16 Variation of cooling effect with air mass flow rate at different ∆T - Option ‘A’. 
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before the precooler are used in obtaining the cooling effect. Variation of compressor 

power with mass flow rate of air at different ∆T is presented in Fig. 6.17. As expected, 

the compressor power increases as the air flow rate increases because increasing the air 

flow rate means more load on the system as mentioned earlier. However, air precooling 

before the evaporator lowers the compressor power requirement as shown in the figure at 

different ∆T. By comparing Fig. 6.16 and 6.17, it can be observed that the increase in 

cooling effect with air mass flow rate is more significant than the corresponding increase 

in compressor power requirement. This behaviour leads to significant increase in COP as 

shown in Fig. 6.18. Variation of the second law efficiency with air mass flow rate is 

presented in Fig. 6.19. The second law efficiency is nearly constant between the mass 

flow rates of 0.13 and 0.19 kg/s. It is observed that the variation pattern of the second law 

efficiency is some how different from the other parameters. This is because of the 

dependency of the second law efficiency on many parameters. Higher efficiency is also 

noted at higher ∆T. 

The average values of the performance parameters over the period of experiments for 

each set of air mass flow rate and ∆T are summarized in Table 6.8. The data presented in 

the table are the average values taken over the period of each experiment.  Average 

percentage increase/decrease of performance parameters for air flow rate of 0.13 kg/s are 

shown in Table 6.9.  

The overall benefits achieved by precooling the air before entering the evaporator using 

condensate are the reduction in power consumption, the increase in cooling effect, COP, 

and second law efficiency of the system. 
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Figure 6.17 Variation of compressor power with air mass flow rate at different ∆T - Option ‘A’. 
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Figure 6.18 Variation of COP with air mass flow rate at different ∆T - Option ‘A’. 
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Figure 6.19 Variation of second law efficiency with air mass flow rate at different ∆T - Option ‘A’. 
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Table 6.8 Summary of experimental results for evaporator air precooling for intermediate evaporator inlet air 

conditions– Option ‘A’. 

ṁa (kg/s) Parameter Base system 
Modified system: option ‘A’ 

∆T = 3 oC ∆T = 5 oC ∆T = 6 oC 

    ev (kW) 4.74 5.10 5.19 5.22 

  COP 2.10 2.30 2.38 2.43 

0.13 EER 7.17 7.84 8.13 8.27 

  Ẇc (kW) 2.25 2.22 2.18 2.15 

   II 0.16 0.18 0.20 0.21 

  
    

  

    ev 5.08 6.27 7.23 7.37 

  COP 2.18 2.77 3.27 3.34 

0.19 EER 7.43 9.45 11.15 11.41 

  Ẇc (kW) 2.33 2.26 2.21 2.20 

   II 0.13 0.18 0.22 0.22 

  
    

  

    ev 5.69 6.94 8.17 8.09 

  COP 2.45 3.02 3.65 3.63 

0.22 EER 8.36 10.31 12.46 12.40 

  Ẇc (kW) 2.32 2.30 2.24 2.23 

   II 0.16 0.21 0.25 0.26 

 

 

Table 6.9 Average percentage reduction/increase of performance parameters for air mass flow rate of 0.13 kg/s - 

Option ‘A’. 

  Increase in 
  ev/EER (%)  

Reduction in 
Ẇc (%)  

Increase in 
COP (%) 

Increase in  II 

∆T (oC) (%)  

3 7.7 1.5 9.4 12.8 

5 9.7 3.3 13.4 22.1 

6 10.2 4.6 15.4 27.0 
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6.2.2. Experimental Results for Condenser Air Precooling - Option ‘B’ 

Two sets of experiments are performed in this option. The first experiment is conducted 

at the severest weather conditions like in the case of option ‘A’. The second experiment is 

carried out at intermediate conditions of the air entering the evaporator for several hours. 

6.2.2.a    Experimental Results for Severest Weather Conditions – Option ‘B’ 

Experimental results for condenser air precooling option are presented in this section. 

The experimental conditions and procedure presented in section 6.2.1.a are also used in 

this option. The first experiment is the baseline, without operating the air precooler and 

the second experiment includes the precooler and comparative analysis between the two 

data is performed.  

Variations of precooler inlet condensate temperature and the amount of precooling, ∆T 

with experimental time are shown in Fig. 6.20. It is observed that the precooler inlet 

condensate temperature increases over time and this is because the condensate is re-

circulated back to the tank during the experiment. The increase in the precooler inlet 

condensate temperature causes ∆T to decrease over time, but the decrease is not that 

significant at the end of the experiment as shown in the figure.  

Comparisons of the suction and discharge pressures obtained for the base system and the 

modified system are shown in Fig. 6.21. It is observed that the suction pressures from the 

two experiments are almost the same, but the real effect of air precooling before entering 

the condenser is noticed at the discharger pressures. The reduction in condenser inlet air 

temperature by condensate causes the compressor discharge pressure to decrease by 

about 5.2 % on average. 
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Figure 6.20 Variation of condensate inlet temperature and ∆T for severest weather conditions - Option ‘B’. 
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Figure 6.21 Comparison of suction and discharge pressures of the base system with option ‘B’ for severest 

weather conditions.  
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The decrease in compressor discharge pressure consequently leads to decrease in 

compressor power consumption by 4.8% on average as indicated in Fig 6.22. The 

compressor power of the modified system with option ‘B’ slightly increases over time. 

This increase is due to the increase in precooler inlet condensate temperature as indicated 

in Fig. 6.20. By lowering the discharge pressure, the compressor’s life expectancy can be 

improved.  It is noticed from Fig. 6.23 that the evaporator exit air temperature of the 

modified system is decreased by about 10% and this is due to lower evaporating 

temperature during the precooling option. Due to lower evaporator exit air temperature, 

the cooling effect is increased to about 15.2% as shown in Fig. 6.24. Reduction in power 

consumption and the corresponding increase in cooling effect resulted in significant 

increase in COP of about 21% as depicted in Fig. 6.25. Comparison of the second law 

efficiency obtained for the base system with the modified system is presented in Fig 6.26. 

A significant increase of about 24% in the second law efficiency is observed when the air 

entering the condenser is lowered. The increase in the second law efficiency is due to the 

decrease in evaporator exit air temperature and the corresponding increase in COP. The 

average value of precooler effectiveness obtained from the results is 0.41. Summary of 

the experimental results is presented in Table 6.10.  

6.2.2.b Experimental Results for Intermediate Evaporator Inlet Air 

Conditions – Option ‘B’. 

Experiments are also conducted for option ‘B’ at other conditions of air rather than the 

severest weather conditions. Two sets of experiments are conducted for the duration of 

about six hours in order to know how long the air precooling will last before the  

 



102 

 

 

 

 

 

Figure 6.22 Comparison of compressor power of base system with option ‘B’ for severest weather conditions. 
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Figure 6.23 Comparison of evaporator exit air temperature of base system with option ‘B’ for severest weather 

conditions. 
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Figure 6.24 Comparison of cooling effect of base system with option ‘B’ for severest weather conditions. 
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Figure 6.25 Comparison of COP of base system with option ‘B’ for severest weather conditions. 
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Figure 6.26 Comparison of second law efficiency of base system with option ‘B’ for severest weather conditions. 
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circulated condensate become heated so as to justify the feasibility of the precooling 

technique using condensate. For this reason, the two experiments are conducted during 

high ambient temperatures between 41 and 45 
o
C. The first experiment is carried out as 

the baseline, without operating the precooler and the second experiment includes the 

precooler. During the two experiments, the data was recorded at every minute. Using the 

available weather forecast, two consecutive days of similar climate conditions are 

selected for running the experiments. The performance parameters obtained from the base 

system and those from modified system with option ‘B’ are then compared. The 

experimental conditions used during the two experiments are given in Table 6.11.  

Variations of air and condensate temperatures across the precooler with experimental 

time are shown in Fig. 6.27. The difference of precooler inlet and outlet air temperature 

represents the amount of air precooling achieved. It is observed from Fig. 6.27 that the air 

temperature difference across the precooler decreases with increase in condensate inlet 

temperature.  

 

Table 6.11 Experimental conditions for intermediate evaporator inlet air conditions - Option ‘B’. 

Parameter          Values 

Evaporator entering air temperature 27 - 29 
o
C 

Evaporator entering air relative humidity  40 – 43 % 

Volumetric flow rate of air to the evaporator 0.14 m
3
/s 

Ambient air temperature 40 - 46
 o
C 

Initial condensate temperature at the precooler inlet 25
 o
C 

Mass flow rate of condensate through the precooler 0.18 kg/s 

Volume of condensate in the tank 0.9 m
3
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Figure 6.27 Temperature variations across precooler - Option ‘B’. 
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It is interesting to note that the condensate temperature remained effective for air 

precooling before the condenser until about six hours when the air temperatures at the 

precooler inlet and exit coincide. The precooler effectiveness in this application is found 

to be about 0.59. The six hours precooling of condenser inlet air using condensate is quite 

great in minimizing energy consumption by the VCAC systems and hence the technique 

can be applied during the peak period of high ambient temperatures.  

The change in condenser inlet air temperature had a direct effect on the compressor 

discharge pressure. Comparison of compressor discharge pressure between the base 

system and the modified system is shown in Fig 6.28. A significant decrease in discharge 

pressure is observed for the modified system with option ‘B’. The decrease in the 

discharge pressure is as a result of lowering the condenser inlet air temperature by 

condensate. It is noted that the discharge pressure of option ‘B’ increases with time and 

this is due to the increase in condensate temperature. The decrease in the discharge 

pressure for the modified system with option ‘B’ resulted in the decrease in discharge 

temperature as shown in Fig. 6.29. The resulting advantage of lower discharge pressure 

and temperature due to decrease in condenser air temperature is decrease in compressor 

power consumption. Fig. 6.30 shows the comparison of compressor power obtained from 

the base system and the modified system with option ‘B’. The percentage decrease in the 

compressor power is about 10% at the beginning of the precooling operation and then 

gradually decreases due to increase in condensate temperature. The average percentage 

decrease in compressor power during the period of experiment is about 6.7%.  

Comparison of COP of the base system with the modified system of option ‘B’ is shown 

in Fig. 6.31. It is observed that the COP has increased by about 40% at the beginning of  
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Figure 6.28 Comparison of compressor discharge pressure of base system with modified system - Option ‘B’. 
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Figure 6.29 Comparison of compressor discharge temperature of base system with modified system - Option ‘B’. 
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Figure 6.30 Comparison of compressor power consumption of base system with modified system - Option ‘B’. 
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Figure 6.31 Comparison of COP of base system with modified system - Option ‘B’. 
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the air precooling. The average percentage increase in COP during the experimental 

period is 27.7% when the air entering the condenser is precooled. The increase in COP is 

as a result of the decrease in compressor power consumption. Fig 6.32 shows the 

comparison of second law efficiency of the base system and the modified system with 

option ‘B’. It can be observed that the efficiency is improved by about 27.2% on average 

when the condenser inlet air temperature is lowered by the condensate. 

 

Figure 6.32 Comparison of second law efficiency of base system with modified system - Option ‘B’. 
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6.2.3. Experimental Results for Refrigerant Subcooling – Option ‘C’ 

The purpose of subcooling is to lower the temperature of the high pressure refrigerant 

after exiting the condenser in order to improve the system performance. This technique is 

essential in providing enough cooling to the refrigerant so that it becomes completely 

liquid before entering the expansion valve which provides smooth expansion of the 

refrigerant at the expansion valve. It is expected that the efficiency of the system will be 

improved by subcooling the refrigerant.  Experimental results for refrigerant subcooling 

option are presented in this section. The same experimental conditions and procedure 

presented in section 6.2.1.a are used in this option. The first experiment is the baseline, 

without operating the subcooler and the second experiment includes the subcooling.  

Variations of refrigerant temperatures at the inlet and exit of the subcooler as well as the 

subcooler effectiveness are shown in Fig. 6.33. It is noted that about 14 
o
C subcooling is 

achieved on average and this is due to the high effectiveness of the subcooler which is 

around 0.7. The reduction in refrigerant temperature before expansion by subcooling had 

a direct effect on the system’s operating temperature and pressures, and hence the power 

consumption and cooling effect.  Comparison of compressor discharge pressure of the 

base system with the modified system of option ‘C’ is shown in Fig. 6.34. An appreciable 

decrease in the discharge pressure is observed during the subcooling experiment. Since 

the discharge pressure for option ‘C’ is decreased, the corresponding discharge 

temperature is expected to decrease. The corresponding compressor discharge 

temperature drop can be seen from the comparison of the discharge temperature for the 

base system with the modified system of option ‘C’ presented in Fig. 6.35. About 23% 

reduction in the discharge pressure is noted by subcooling. The advantage of lower  
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Figure 6.33 Variations of refrigerant temperatures across subcooler and subcooler effectiveness for severest 

weather conditions – Option ‘C’. 

 

 

 

 

 

 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

0 1000 2000 3000 4000 5000 6000 7000 

Su
b

co
o

le
r 

ef
fe

ct
iv

e
n

e
ss

 

R
ef

ri
ge

ra
n

t 
te

m
p

e
ra

tu
re

 (
o
C

) 

Time (s) 

Subcooler inlet refrigerant temperature 

Subcooler exit refrigerant temperature 

Subcooler effectiveness 



117 

 

 

 

 

 

 

Figure 6.34 Comparison of compressor discharge pressure of the base system with option ‘C’ for severest 

weather conditions. 
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Figure 6.35 Comparison of compressor discharge temperature of base system with option ‘C’ for severest 

weather conditions. 
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discharge temperature is that there will be less strain on the compressor and hence a 

longer compressor’s life expectancy is possible. Fig. 6.36 shows the decrease in 

compressor power consumption of about 3.7% and this is as a result of lower compressor 

discharge pressure and temperature due to refrigerant subcooling. It is observed from the 

figure that the compressor power for the modified system with option ‘C’ increase 

sharply. This increase in compressor power is due to the increase in subcooler inlet 

condensate temperature with time which reduces the amount of subcooling as seen in Fig. 

6.37. The evaporator exit air temperature is also decreased as a result of lower 

evaporating temperature due to subcooling as depicted in Figs. 6.38 and Fig. 6.39. 

Comparison of cooling effect of base system with option ‘C’ is shown in Fig. 6.40 and 

about 25.6% increase in the cooling effect due to subcooling is observed. The increase in 

the cooling effect is attributed to the lower evaporating temperature and hence the 

evaporator exit air temperature. The improvement of cooling effect due to subcooling and 

the corresponding decrease in compressor power consumption resulted in significant 

increase in COP, and hence an increase in second law efficiency as noted in Figs. 6.41 

and 6.42. 

6.3. Comparison of Experimental Results for Options ‘A’, ‘B’ and ‘C’ 

Experiments conducted at the severest weather conditions for the three options are carried 

out at the same experimental conditions and for this reason the results are compared. 

Significant reduction in compressor power consumption is noted for all the three options 

as shown in Table 6.12. But the reduction in power is higher for option ‘A’, followed by  
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Figure 6.36 Comparison of compressor power consumption of base system with option ‘C’ for severest weather 

conditions. 
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Figure 6.37 Variation of subcooler inlet condensate temperature and amount of subcooling for severest weather 

conditions - Option ‘C’. 
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Figure 6.38 Comparison of evaporator exit air temperature of base system with option ‘C’ for severest weather 

conditions.  
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Figure 6.39 Comparison of evaporating temperature of base system with option ‘C’ for severest weather 

conditions. 
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Figure 6.40 Comparison of cooling effect of base system with option ‘C’ for severest weather conditions. 
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Figure 6.41 Comparison of COP of base system with option ‘C’ for severest weather conditions. 
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Figure 6.42 Comparison of second law efficiency of base system with option ‘C’ for severest weather conditions. 
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Table 6.12 Comparison of experimental results of base system with the modified system for severest weather 

conditions. 

 

Quantity  Average Values 

  

Modified system 

   Base system Option ‘A’ Option ‘B’ Option ‘C’ 

COP  3.06 4.01 3.71 4.00 

Q ev  (kW) 7.84 9.74 9.05 9.85 

Ẇc (kW)  2.56 2.43 2.44 2.47 

 II  0.095 0.118 0.117 0.115 

Ta,ev,e (
o
C)  22.7 20.1 20.3 19.9 

ṁc (kg/h)  7.2 6.9 7.4 7.6 

 

 

Table 6.13 Improvement of the modified system over the base system. 

   

Coefficient of 

performance, COP 

Second law 

efficiency,  II  

Compressor power, 

Ẇc 

Option ‘A’  30.94 % increase 24.84 % increase 5.08 % decrease 

Option ‘B’  21.11 % increase 23.51 % increase 4.82 % decrease 

Option ‘C’  30.42 % increase 21.53 % increase 3.70 % decrease 
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option ‘B’, then option ‘C’. Comparing the COP for the base system with the modified 

system, it can be noted that the COP of the modified system with option ‘A’ is higher. 

The second law efficiency which describes the actual performance of the system is found 

to be highest for option ‘A’, followed by option ‘B’ then option ‘C’. This means that the 

thermodynamics imperfections are more in option ‘C’ set-up. However, the efficiency of 

the system with option ‘C’ is still better than that for the base system.  

The rate of condensate extraction from the system during the four experiments is also 

compared as shown in the table. The rate of condensate extraction for experiment with 

option ‘A’ is found to be almost the same with that obtained from the base system 

experiment. The rates of condensate extraction for the system with options ‘B’ and ‘C’ 

are also almost the same with that for the base system with 3% and 5% higher, 

respectively. The overall assessment of the three options is that option ‘A’ gives better 

system performance improvement followed by option ‘B’, then option ‘C’.   

It is to be noted that the power consumed by the condensate pump is not considered in all 

the analyses since the power input of auxiliary equipment per ton of cooling is generally 

low for large air conditioning systems [72]. 
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CHAPTER 7 

UNCERTAINTY AND ERROR ANALYSES 

No physical quantity can be measured with perfect certainty. There are always errors in 

measurements. A method of estimating uncertainty in experimental results is presented in 

[73] and the method is applied in this thesis. In the present study, the temperatures, 

pressures, relative humidity, mass flow rate of air and compressor current are measured 

using the instruments mentioned in section 5.6 with respective instruments errors.  

Uncertainties of calculated parameters such as cooling effect, COP, and second law 

efficiency are calculated on the basis of the uncertainties in the measured parameters. 

Uncertainties due to instrument errors are already given in section 5.6 and the uncertainty 

due to random error      of any quantity is determined using the standard deviation of the 

mean as: 

                                     
        

  
   

      
 
   

                                                                      (7.1) 

Where N is the number of measurements and    is the arithmetic mean of each reading 

which is given as:  

                                    
 

 
   
 
                                                                                    (7.2) 

The coefficient of determination that correlates analytical results with experimental data 
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is expressed as: 

                           
                   

 

     
       

       
       

  
                                                          (7.3) 

For any result R given as a function of independent variables   ,   ,    ……..   . Thus, 

                                                                                                           (7.4) 

Consider    to be the uncertainty in the calculated result, and   ,      ……..    be the 

uncertainties in the independent variables, then the uncertainty in the calculated result is 

given as: 

                             
  

   
   

 

  
  

   
   

 

      
  

    
   

 

 
   

                            (7.5) 

7.1.  Uncertainty Analysis of the Experimental Results 

The cooling effect of the system      is a function of air mass flow rate and enthalpy 

difference across the evaporator as shown in chapter 3. Reference to Eq. (7.5), 

uncertainty in the cooling effect is determined as:  

                               
     

   
    

 

  
     

        
         

 

  
     

        
         

 

 

   

           (7.6) 

The enthalpy of the air is a function of temperature and humidity and is given as: 

                             
        

     
                                                                   (7.7) 

where   is the saturated vapor pressure determined at T. 

From Eq. (7.7), 
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                                                                               (7.8) 

                           
  

  
 
                              

       
                                                       (7.9) 

and therefore, 

                                  
  

  
   

 

  
  

  
   

 

 
   

                                                       (7.10) 

The compressor power consumption is obtained from the measured current with voltage 

source of 220 V. In this case, the compressor power is a function of current only and the 

uncertainty in the power is: 

                                   
   

  
                                                                                  (7.11) 

Uncertainties in COP and COPmax are calculated, respectively, as: 
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                       (7.13) 

where                          
   

        
         

 

  
   

        
         

 

 

   

                            (7.14) 

The second law efficiency uncertainty is calculated as: 

                                      
    

    
     

 

  
    

       
        

 

 
   

                          (7.15) 
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The uncertainty values of the experimental data for the base system and options ‘A’, ‘B’ 

and ‘C’ at severest weather conditions are calculated using the above procedure and is 

given in Tables 7.1 to 7.4. 

7.2.  Error Analysis of Analytical Results 

In order to investigate how well the predicted condensate obtained by the analytical 

model fits the experimental extracted condensate, the two data sets are compared using 

the statistical relations presented earlier. The analytical and experimental results of daily 

condensate extraction rates are plotted against each other and the coefficients of 

determination, r
2
 are displayed for the month of June through September in Figs. 7.1 - 

7.4, respectively. The correlation equations are also shown in the figure. The figures 

indicate that there is good agreement between the analytical and experimental results.  

Table 7.1 Uncertainty values of experimental results: Base system. 

  

Base system 

Description  

Average 

Value 

Total Uncertainty 

Value 

Total 

Uncertainty (%) 

Measured parameters 

   Evaporator inlet air temperature, 
o
C 36.06 ±0.20 ±0.55 

Evaporator exit air temperature, 
o
C 22.67 ±0.21 ±0.93 

Evaporator inlet air relative humidity 0.78 ±0.0263 ±3.37 

Evaporator exit air relative humidity 0.94 ±0.0256 ±2.72 

Condenser inlet air temperature, 
o
C 38.18 ±0.23 ±0.60 

Compressor electric current, A 11.64 ±0.24 ±2.04 

Suction pressure, kPa 578.9 ±4.16 ±0.72 

Discharge pressure, kPa 2416 ±7.18 ±0.30 

Calculated parameters 

   Mass flow rate of air, kg/s 0.159 ±0.00318 ±2 

Cooling effect, kW 7.84 ±0.49 ±6.25 

Compressor power, kW 2.56 ±0.052 ±2.03 

Coefficient of performance COP 3.064 ±0.2 ±6.56 

Second law efficiency 0.0946 ±0.0068 ±7.2 
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Table 7.2 Uncertainty values of experimental results: Option ‘A’. 

  

Option ‘A’  

Description  

Average 

Value 

Total Uncertainty 

Value 

Total 

Uncertainty (%) 

Measured parameters 

   Evaporator inlet air temperature, 
o
C 36.12 ±0.22 ±0.61 

Evaporator exit air temperature, 
o
C 20.1 ±0.22 ±1.09 

Evaporator inlet air relative humidity 0.81 ±0.0261 ±3.21 

Evaporator exit air relative humidity 0.94 ±0.0262 ±2.79 

Condenser inlet air temperature, 
o
C 36.16 ±0.24 ±0.94 

Compressor electric current, A 11.04 ±0.23 ±2.08 

Suction pressure, kPa 521.5 ±4.23 ±0.81 

Discharge pressure, kPa 2240 ±7.85 ±0.35 

Calculated parameters 

   Mass flow rate of air, kg/s 0.159 ±0.00318 ±2 

Cooling effect, kW 9.74 ±0.49 ±5.03 

Compressor power, kW 2.43 ±0.0504 ±2.07 

Coefficient of performance COP 4.01 ±0.2 ±4.98 

Second law efficiency 0.118 ±0.007 ±5.94 

 

Table 7.3 Uncertainty values of experimental results: Option ‘B’. 

  

Option ‘B’  

Description  

Average 

Value 

Total Uncertainty 

Value 

Total 

Uncertainty (%) 

Measured parameters 

   Evaporator inlet air temperature, 
o
C 36.02 ±0.24 ±0.67 

Evaporator exit air temperature, 
o
C 20.34 ±0.24 ±1.18 

Evaporator inlet air relative humidity 0.79 ±0.0263 ±3.33 

Evaporator exit air relative humidity 0.95 ±0.0259 ±2.73 

Condenser inlet air temperature, 
o
C 36.9 ±0.24 ±0.65 

Compressor electric current 11.07 ±0.23 ±2.08 

Suction pressure, kPa 540.2 ±3.92 ±0.73 

Discharge pressure kPa 2261 ±8.13 ±0.34 

Calculated parameters 

   Mass flow rate of air, kg/s 0.159 ±0.00318 ±2 

Cooling effect, kW 9.04 ±0.48 ±5.31 

Compressor power, kW 2.44 ±0.0513 ±2.1 

Coefficient of performance COP 3.71 ±0.21 ±5.66 

Second law efficiency 0.117 ±0.0075 ±6.41 
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Table 7.4 Uncertainty values of experimental results: Option ‘C’. 

  

Option ‘C’ 

Description  

Average 

Value 

Total Uncertainty 

Value 

Total 

Uncertainty (%) 

Measured parameters 

   Evaporator inlet air temperature, 
o
C 36.24 ±0.208 ±0.57 

Evaporator exit air temperature, 
o
C 19.85 ±0.21 ±1.06 

Evaporator inlet air relative humidity 0.79 ±0.0261 ±3.30 

Evaporator exit air relative humidity 0.91 ±0.0257 ±2.82 

Condenser inlet air temperature, 
o
C 35.86 ±0.23 ±0.64 

Compressor electric current 11.2 ±0.23 ±2.05 

Suction pressure, kPa 554.1 ±4.45 ±0.80 

Discharge pressure, kPa 2266 ±8.27 ±0.36 

Calculated parameters 

   Mass flow rate of air, kg/s 0.159 ±0.00318 ±2 

Cooling effect, kW 9.85 ±0.49 ±4.97 

Compressor power, kW 2.47 ±0.0512 ±2.1 

Coefficient of performance COP 3.99 ±0.2 ±5.01 

Second law efficiency 0.115 ±0.0068 ±5.91 
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Figure 7.1 Polynomial curve fitting of the analytical versus experimental condensate extracted in June. 
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Figure 7.2 Polynomial curve fitting of the analytical versus experimental condensate extracted in July. 
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Figure 7.3 Polynomial curve fitting of the analytical versus experimental condensate extracted in August. 
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Figure 7.4 Polynomial curve fitting of the analytical versus experimental condensate extracted in September. 

 

 

 

 

 

 

mc,analytical  = -0.0077mc*
2 + 1.7878mc*  - 13.656 
 

r² = 0.9189 

0.0 

10.0 

20.0 

30.0 

40.0 

50.0 

60.0 

70.0 

80.0 

90.0 

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 

Ex
tr

ac
te

d
 c

o
n

d
en

sa
te

: 
an

al
yt

ic
al

 (
kg

/d
ay

) 

Extracted condensate: experimental, mc*  (kg/day) 



139 

 

CHAPTER 8 

CONCLUSIONS  

Performance evaluation of a vapor compression air conditioning (VCAC) system and 

condensate extraction from the system has been carried out successfully in this thesis. 

The rate of condensate extraction from the VCAC system is evaluated experimentally and 

analytically using actual climate data of Dhahran, Saudi Arabia and substantial amount is 

obtained. Chemical analysis on the collected condensate is also carried out to determine 

its quality. Also, experimental and analytical studies are carried out to evaluate the 

performance of the base VCAC system and the results are compared with the 

performance after the system modification. Modification on the system involves: option 

‘A’ – a precooler is added for precooling air stream before entering the evaporator, option 

‘B’- another precooler is incorporated in the system for precooling the air entering the 

condenser; and option ‘C’ - a subcooler is added for refrigerant subcooling after exiting 

the condenser. All the three options are studied using the collected condensate from the 

system.  

Experiments are conducted at severest weather conditions for Dhahran area on the base 

system and the modified system and at some other conditions for verification. The 

severest weather conditions are 36
o
C dry-bulb temperature and 80% relative humidity 

determined from the climate data using the maximum enthalpy condition of the air. 

Comparative analyses between the base system and modified system with the three 



140 

 

different options are presented. The derived conclusions on the overall study are 

discussed in the following sections: 

8.1.  Condensate Extraction from the VCAC System 

The following conclusions are derived for condensate collection from the base air 

conditioning system: 

i. The rate of condensate extraction from the VCAC system is influenced mainly by the 

air relative humidity and dry-bulb temperature, but the humidity influence is more 

significant. 

ii. The amount of condensate captured in Dhahran from the 1.5 ton VCAC system for 

the months of June, July, August and September are 1036, 1181, 2173 and 1781 kg, 

respectively, and these amounts are obtained experimentally on hourly basis. 

Analytical results of condensate extraction obtained from hourly calculations using 

the actual climate data of Dhahran are found to be in good agreement with the 

experimental results with correlation coefficient of the results above 90%. 

iii. The large amount of condensate obtained in Dhahran during the summer months 

signifies that the condensate is enough for the air precooling and subcooling. In 

general, regions with similar climate conditions can use this concept. 

iv. Condensate chemical analysis reveals that the condensate can be used as drinking 

water after undergoing the required microbial processes.  

v. It can also be used to improve the performance of air conditioning systems and other 

applications such as cooling tower make up water and irrigation.  In addition, the air 
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conditioners condensate can be used to supplement the domestic water supply and 

reduce the harmful environmental effect caused by condensate spillage. 

8.2. Evaporator Inlet Air Precooling - Option ‘A’ 

The following conclusions are derived from the comparative study between the base 

system and the modified system with air precooling before entering the evaporator: 

i. The compressor power consumption is decreased by about 5% on average as a result 

of the decrease in discharge pressure when the air temperature entering the evaporator 

is lowered by about 5.7
o
C through the precooler for experiments conducted at 

severest weather conditions.  

ii. The coefficient of performance, COP is increased by about 31% and the second law 

efficiency by 24.85% on average. The condensate temperature inside the tank during 

the experiment is raised approximately by 3
o
C. This is a clear indication that the 

precooling technique will last long before the condensate that is passing from the tank 

through the precooler is warmed.  

iii. Analytical results are compared with the experimental results for severest weather 

conditions and they are in good agreement with maximum error of about 5%. 

iv. The rate of condensate extraction for experiment with option ‘A’ is found to be 

almost the same with that obtained from the base system experiment.  

v. The effect of air mass flow rate through the evaporator is also investigated for 

different temperature difference (∆T) cross the precooler of option ‘A’. The increase 

in air flow rate increases the cooling effect, COP and the compressor power 

consumption. The average increase in COP and second law efficiency at ∆T = 3
o
C are 

9.4 and 12.8% respectively, and the corresponding reduction in compressor power is 
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1.5% when compared with base system, at air mass flow rate of 0.13kg/s. The 

increase in COP and second law efficiency are 15.4 and 27% respectively while the 

corresponding reduction in compressor power is about 4.6% at ∆T = 6
o
C.  

8.3. Condenser Inlet Air Precooling - Option ‘B’ 

The following conclusions are derived from the comparative study between the base 

system and the modified system with air precooling before entering the condenser. 

i. Lowering the air temperature before entering the condenser by about 3.5
 o

C resulted 

in lower compressor discharge pressure, hence lower compressor power during the 

experiments conducted for severest weather conditions. The average decrease in 

compressor power is about 4.82% on average.  

ii. Due to condenser air precooling, the cooling effect is also increased and the combined 

effect of the increase in cooling effect and decrease in compressor power resulted in 

increase in the COP of about 21.11% and second law efficiency of 23.51% on 

average. The rate of condensate extraction during option ‘B’ experiment is almost the 

same with that obtained from the base system with about 3% higher.  

iii. Other Experiments are also carried out for option ‘B’ for several hours in order to 

justify the feasibility of applying the air precooling technique using condensate. The 

volume of condensate used during the precooling and the initial condensate 

temperature before the precooling are 0.9 m
3
 and 25

o
C, respectively.  

iv. During the precooling of condenser inlet air by the condensate, the temperature of the 

condensate remained effective in lowering the air temperature until about six hours 

when the air temperatures at the precooler inlet and exit coincide. The average 
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percentage decrease in compressor power as a result of the air precooling before the 

condenser is found to be 6.7%, increase in COP and second law efficiency of 27.7 

and 27.2% respectively.  

v. The six hours precooling of condenser inlet air using condensate is quite great in 

minimizing the energy consumption by VCAC systems and improving their 

performance. Hence, the technique can be applied to the existing VCAC systems 

during the period of high ambient temperatures.  

8.4. Refrigerant Subcooling - Option ‘C’ 

The following conclusions are derived from the comparative study between the base 

system and the modified system with refrigerant subcooling downstream of the 

condenser. 

i. The compressor discharge pressure and temperature are reduced significantly as a 

result of subcooling the refrigerant before expansion and this lead to the decrease in 

compressor power consumption by about 3.7% on average. 

ii. The positive effects of refrigerant subcooling to the system performance are the 

increase in COP by about 30.4% and second law efficiency by 21.5% on average.  

iii. The rate of condensate extraction of condensate extraction during option ‘C’ 

experiment is about 5% higher than that obtained from the base system. 

8.5. Overall Conclusions for the Three Options 

The following overall conclusions are derived from the comparative study between the 

base system and the modified system with the three individual options.  
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i. The performance of the modified VCAC system has advantages over the base system. 

Compressor discharge pressure is found to be decreased for all the three options.   

ii. The technical advantage of the decrease in the discharge pressure beside lower 

compressor power consumption is the tendency of the compressor to have longer life 

due to reduced stresses on the compressor parts.  

iii. The overall performance assessment of the three options is that option ‘A’ gives 

better system performance improvement followed by option ‘B’, then option ‘C’.   

8.6. Recommendations 

The following are recommended for future work: 

a. Insulation of the condensate-storage tank should be optimized to keep the temperature 

of the fresh condensate as low as possible for better use of it in this kind of 

application. The temperature of the fresh condensate from the evaporator is generally 

as low as 5
o
C.  

b. Some means of cooling down the condensate after circulating it through the 

precoolers or subcooler should be considered so that the technique can be applied 

continuously during the hot-humid summer seasons. 

c. For large buildings applications, the condensate storage tank should be located inside 

the building to minimize the heat gain from the ambient outside air. 

d. Possibility of using condensate to cool the high pressure superheated refrigerant 

vapor after compressor and before entering the condenser should be explored in 

future.  
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e. Another study is recommended on a vapor compression chiller which is used in large 

buildings and produces more condensate. Thereafter, overall economic analysis of the 

modified system should be carried out in order to have a clear vision of adopting the 

concept to the existing air conditioners by manufacturers.  
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APPENDICES 

 

APPENDIX A: PHOTOGRAPHS OF EXPERIMENTAL SET-UP 

 

 

 

 

 

Figure A-1 Experimental set-up: the climate chamber. 
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Figure A-2 Photograph of the precooler for option ‘A’ before installation. 
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Figure A-3 Picture of experimental rig for option ‘A’. 
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Figure A-4 Picture of precooler for condenser air precooling: option ‘B’. 

 

 

Figure A-5 Installation of precooler for option ‘B’ behind the condenser. 
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Figure A-6 Precooler for option ‘B’ after installation. 

 

 

Figure A-7 Picture of subcooler for option ‘C’ before installation. 
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Figure A-8 Glassed-face picture of subcooler showing water inlet before installation. 

 

 

Figure A-9 Three-D picture of subcooler showing the refrigerant inlet and outlet connections. 

 



152 

 

 

 

 

 

Figure A-10 Picture of the subcooler after installation. 
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Figure A-11 Front-face of the completed experimental set-up showing the outdoor unit and subcooler. 
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Figure A-12 Photograph of the experimental set-up outside the room showing the outdoor unit and condensate-

storage tank. 
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Figure A-13 Data acquisition system that is used during the experiments. 
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APPENDIX B: NUMERICAL CODES 
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Figure B-1 Flow chart for the ambient temperature data sets. 
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Figure B-2 Flow chart for the relative humidity data sets. 
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1. A Matlab code that approximate the climate data according to (Figs. B-1, B-2) and 

Table 6.1 and assign the amount of condensate obtained from experiment to the 

marching combination of the actual hourly temperature and relative humidity of 

several months. 

clc 
clear all 
% A = importdata('mydata.txt', ' ', 1); 

  
% This reads in data from the excel sheet containing Temperature and 
% Relative humidity in two columns 
[A, headertext1] = xlsread('Augusst2013.xlsx', 'Sheet1'); 

  
n = length(A); % This returns the number of rows of data 

  
% Creating an empty array to store the results 
data = zeros ( n, 3); 
data1 = zeros ( n, 3); % This array contains the conditioned data 
data(:,1) = A(:,1); % storing the temperature in the first column 
data(:,2) = A(:,2); % storing the relative humidity in the second 

column 

  

  
% This loop conditions the temperature data to the pilot values by 
% approximation 
for i = 1:1:n 

     
    if abs(data(i,1) - 25)<= 2             
        data1(i,1) = 25; 
    elseif abs(data(i,1) - 30)<= 2 
        data1(i,1) = 30; 
    elseif abs(data(i,1) - 35)<= 2 
        data1(i,1) = 35; 
    elseif abs(data(i,1) - 40)<= 2 
        data1(i,1) = 40; 
    elseif abs(data(i,1) - 45)<= 3 
        data1(i,1) = 45; 
    else  
        text1 = 'Temperature is out of range'; 
        disp (text1) 
    end 
end 

  

  
% This loop conditions the Relative humidity data to the pilot values 

by 
% approximation 
for i = 1:1:n 
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    if (data(i,2) - 10)>= -5 && (data(i,2) - 10)<= 4 
        data1(i,2) = 10; 
    elseif (data(i,2) - 20)>= -5 && (data(i,2) - 20)<= 4 
        data1(i,2) = 20; 
    elseif (data(i,2) - 30)>= -5 && (data(i,2) - 30)<= 4 
        data1(i,2) = 30; 
    elseif (data(i,2) - 40)>= -5 && (data(i,2) - 40)<= 4 
        data1(i,2) = 40; 
    elseif (data(i,2) - 50)>= -5 && (data(i,2) - 50)<= 4 
        data1(i,2) = 50; 
    elseif (data(i,2) - 60)>= -5 && (data(i,2) - 60)<= 4 
        data1(i,2) = 60; 
    elseif (data(i,2) - 70)>= -5 && (data(i,2) - 70)<= 4 
        data1(i,2) = 70; 
    elseif (data(i,2) - 80)>= -5 && (data(i,2) - 80)<= 4 
        data1(i,2) = 80; 
    elseif (data(i,2) - 90)>= -5 && (data(i,2) - 90)<= 4 
        data1(i,2) = 90; 
    elseif (data(i,2) - 95)>= -5 && (data(i,2) - 95)<= 5 
        data1(i,2) = 95; 
    else 
        text2 = 'Relative humidity is out of range'; 
        disp (text2) 
    end 
end 

  

  
% Supply the predicted volume (Liters) of condensate into the data 

array 

  
for i = 1:1:n 

     
    if data1(i,1)== 25 
        if data1(i,2) == 40 
            data(i,3)= 1.1; 
        elseif data1(i,2) == 50 
            data(i,3)= 1.4; 
        elseif data1(i,2) == 60 
            data(i,3)= 2; 
        elseif data1(i,2) == 70 
            data(i,3)= 2.8; 
        elseif data1(i,2) == 80 
            data(i,3)= 3.16; 
        elseif data1(i,2) == 90 
            data(i,3)= 3.48; 
        elseif data1(i,2) == 95 
            data(i,3)= 3.8; 
        else  
            data(i,3) = 0; % Zero in this case means out of range 
        end 

         
     elseif data1(i,1)== 30 
        if data1(i,2) == 20 
            data(i,3)= 0.6; 
        elseif data1(i,2) == 30 
            data(i,3)= 0.8; 
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        elseif data1(i,2) == 40 
            data(i,3)= 1.6; 
        elseif data1(i,2) == 50 
            data(i,3)= 2.5; 
        elseif data1(i,2) == 60 
            data(i,3)= 2.8; 
        elseif data1(i,2) == 70 
            data(i,3)= 3.2; 
        elseif data1(i,2) == 80 
            data(i,3)= 3.9; 
        elseif data1(i,2) == 90 
            data(i,3)= 4.4; 
        elseif data1(i,2) == 95 
            data(i,3)= 5.7; 
        else 
            data(i,3) = 0; % Zero in this case means out of range 
        end  

         
    elseif data1(i,1)== 35 
        if data1(i,2) == 20 
            data(i,3)= 0.8; 
        elseif data1(i,2) == 30 
            data(i,3)= 1; 
        elseif data1(i,2) == 40 
            data(i,3)= 2.2; 
        elseif data1(i,2) == 50 
            data(i,3)= 2.68; 
        elseif data1(i,2) == 60 
            data(i,3)= 3.48; 
        elseif data1(i,2) == 70 
            data(i,3)= 4.24; 
        elseif data1(i,2) == 80 
            data(i,3)= 5.1; 
        elseif data1(i,2) == 90 
            data(i,3)= 5.4; 
        else 
            data(i,3) = 0; % Zero in this case means out of range 
        end 

         
    elseif data1(i,1)== 40 
         if data1(i,2) == 10 
            data(i,3)= 0.36; 
        elseif data1(i,2) == 20 
            data(i,3)= 0.9; 
        elseif data1(i,2) == 30 
            data(i,3)= 1.52; 
        elseif data1(i,2) == 40 
            data(i,3)= 2.4; 
        elseif data1(i,2) == 50 
            data(i,3)= 3.42; 
        elseif data1(i,2) == 60 
            data(i,3)= 5.4; 
        else 
             data(i,3) = 0; % Zero in this case means out of range 
         end 
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    elseif data1(i,1)== 45 
         if data1(i,2) == 10 
            data(i,3)= 0.4; 
        elseif data1(i,2) == 20 
            data(i,3)= 0.9; 
        elseif data1(i,2) == 30 
            data(i,3)= 1.3; 
        elseif data1(i,2) == 40 
            data(i,3)= 3.3; 
        elseif data1(i,2) == 50 
            data(i,3)= 3.5; 
         else  
               data(i,3) = 0; % Zero in this case means out of range 
         end 
    else 
        text3 = 'the data is out of range'; 
        disp(text3) 
    end 
        xlswrite('Augusst2013results.xlsx', data,'Sheet1','B2'); 
        T = sum(data,1); 
        xlswrite('Augusst2013results.xlsx', T,'Sheet1','D32'); 
        xlswrite('Augusst2013results.xlsx', T,'Sheet1','B26'); 
        M = mean(data,1); 
        %xlswrite('yieldperday.xlsx', M,'1','C3'); 
end 

 

 

2. {EES code. This program calculates the rate of condensate extraction from a vapor 

compression cycle. It also calculate the system performance parameters} 
 
R$='R22'                                                         {specified type of refrigerant} 
T_ev_in=31[C]                                                {air temperature at the evaporator inlet} 
P_a=101.3[kPa]                                              {air pressure at the evaporator inlet (atmospheric)} 
R_ev_in=0.4                                                    {air relative humidity at the evaporator inlet} 
t=24[h]                                                            {time} 
V_dot_a=0.135[m^3/s]                                   {volumetric flow rate of air_ evaporator} 
omega_ev_in=humrat(AirH2O, T=T_ev_in, P=P_a,R=R_ev_in) {air humidity ratio at the  
evaporator inlet} 
T_ev_in_k=convertTemp(C,K,T_ev_in)                       { evaporator inlet air temperature in Kelvin} 
Cp_a=Cp(AirH2O, T=T_ev_in, P=P_a,R=R_ev_in)    {specific heat capacity of moist air at inlet 
conditions} 
rho_a_in=density(AirH2O, T=T_ev_in, P=P_a,R=R_ev_in)                      {density of moist air} 
m_dot_a=V_dot_a*rho_a_in                                      {mass flow rate of air at the evaporator side} 
h_ev_in=enthalpy(AirH2O, T=T_ev_in, P=P_a,R=R_ev_in)     {air enthalpy at  evaporator inlet} 
V_dot_a_cd=0.73[m^3/s]                                          {volumetric flow rate of air_ condenser} 
T_cd_in=T_ev_in                                                            {condenser inlet air temperature}                                                                                                         
R_cd_in=R_ev_in                                                           {condenser inlet air relative humidity} 
Cp_a_cd=Cp(AirH2O,P=P_a,T=T_cd_in,R=R_cd_in)  {specific heat capacity of moist air at inlet 
conditions} 
rho_a_cd_in=density(AirH2O,P=P_a,T=T_cd_in,R=R_cd_in)    {density of air at condenser side} 
m_dot_a_cd=V_dot_a_cd*rho_a_cd_in             {condenser side air mass flow rate} 
{T_4=5[C]}                                                            {initial guess of refrigerant temperature} 
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omega_ev_min=HumRat(AirH2O,P=P_a,T=T_4,R=1)              {minimum humidity ratio of air} 
h_ev_min=enthalpy(AirH2O,P=P_a,T=T_4,R=1)        {minimum enthalpy of outlet air} 
{Q_dot_ev=4.747[kW]}                            {initial guess value of evaporator cooling capacity/load} 
Q_dot_ev=m_dot_a*(h_ev_in-h_ev_out                            {evaporator air side heat transfer} 
epsilon_ev=(h_ev_in-h_ev_out)/(h_ev_in-h_ev_min)            {enthalpy effectiveness relation} 
epsilon_ev=(omega_ev_in-omega_ev_out)/(omega_ev_in-omega_ev_min)   {enthalpy 
effectiveness relation} 
T_ev_out=temperature(AirH2O,h=h_ev_out,w=omega_ev_out,P=P_a)    {evaporator outlet 
temperature} 
m_dot_c=m_dot_a*(omega_ev_in-omega_ev_out)            {rate of condensate removal from the 
evaporator} 
m_dot_c_kgph=m_dot_c*convert(kg/s,kg/h             {condensate yield in kg/h} 
m_dot_c_kgph_pkw=m_dot_c_kgph/Q_dot_ev               {condensate yield in kg/kW-h} 
T_c=T_ev_out     {assume condensate temperature equals evaporator outlet air temp} 
{x_4=0.65}                                             {initial guess value of vapor quality after expansion} 
eta_ID=0.65                                                             {assumed ideal efficiency of compressor} 
epsilon_cd=0.3[kW/K]         {assumed value of product of HX effectiveness and capacitance rate} 
h_4=Enthalpy(R$,T=T_4,x=x_4)             {refrigerant specific enthalpy at evaporator inlet} 
P_4=Pressure(R$,T=T_4,x=x_4)            {refrigerant low pressure of the conventional system} 
T_1=T_4                                            {assumed refrigerant evaporating at constant temperature} 
h_1=Enthalpy(R$,T=T_1,x=1)                              {enthalpy at compressor inlet} 
s_1=Entropy(R$,P=P_4,x=1)                   {refrigerant entropy at the compressor inlet} 
h_2_ID=enthalpy(R$,P=P_2,s=s_1)    {discharge specific enthalpy assuming isentropic 
compression} 
Q_dot_ev=m_dot_r*(h_1-h_4)                {refrigerant side heat transfer rate in the evaporator} 
W_c_ID=m_dot_r*(h_2_ID-h_1)                      {compressor isentropic work} 
{W_c=W_c_ID/eta_ID}                                {actual compressor  work} 
W_c=m_dot_r*(h_2-h_1)                                  {energy balance across compressor} 
Q_dot_cd=Q_dot_ev+W_c                                                                                                 {overall 
energy balance of the cycle} 
Q_dot_cd=m_dot_r*(h_2-h_3)                           {refrigerant side heat transfer rate in condenser} 
Q_dot_cd=epsilon_cd*m_dot_a_cd*Cp_a_cd*(T_2-T_cd_in)       {heat transfer rate in condenser} 
Q_dot_cd=m_dot_a_cd*Cp_a_cd*(T_out_cd-T_cd_in)    {air side heat transfer rate in condenser} 
x_4=Quality(R$,T=T_4,h=h_4)                         {vapor quality after expansion} 
P_2=Pressure(R$,h=h_3,T=T_3)                     {refrigerant high pressure}  
h_4=h_3                                                             {constant enthalpy across throttling valve} 
T_L=(T_ev_in-T_ev_out)/ln(T_ev_in/T_ev_out)      {definition of low temperature for calculating 
max. COP}    
T_L_k=convertTemp(C,K,T_L)                             {low temperature in Kelvin} 
T_cd_in_k=convertTemp(C,K,T_cd_in)             {condenser inlet air temperature in Kelvin} 
T_3=Temperature(R$,x=0,P=P_2) 
T_2=Temperature(R$,h=h_2,P=P_2)                        {compressor discharge temperature} 
T_1=Temperature(R$,h=h_1,x=1)                {compressor suction temperature} 
COP=Q_dot_ev/W_c                                     {definition of coefficient of performance}                                                                                                                            
P_r=P_2/P_4                                                      {compressor pressure ratio} 
COP_max=T_L_k/(T_cd_in_k-T_L_k)          {maximum/Carnot COP of the conventional system} 
eta_II=COP/COP_max                                                                                                          

3. Analytical code for option ‘A’: EES 
 
 
{Precooler} 
T_p_in=36[C]                                                     {air temperature at the precooler inlet} 
P_a=101.3[kPa]                                                 {air pressure at the precooler inlet} 
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R_p_in=0.8                                                         {air relative humidity at the precooler inlet} 
{t=24[h]}                                                                {time} 
V_dot_a=0.146[m^3/s]                                                                                                              
{volumetric flow rate of air_ evaporator} 
omega_p_in=humrat(AirH2O, T=T_p_in, P=P_a,R=R_p_in) {air humidity ratio at the precooler 
inlet} 
 
T_p_in_k=convertTemp(C,K,T_p_in)            {precooler inlet air temperature in kelvin} 
Cp_a=Cp(AirH2O,P=P_a,T=T_p_in,R=R_p_in)     {specific heat capacity of moist air at inlet 
conditions} 
rho_a_in=density(AirH2O,T=T_p_in,P=P_a,R=R_p_in)       {density of moist air} 
m_dot_a=V_dot_a*rho_a_in                                                {mass flow rate of air} 
h_p_in=enthalpy(AirH2O, T=T_p_in, P=P_a, R=R_p_in)     {enthalpy at precooler inlet} 
T_p_w_in=24[C]                                                               {inlet water temperature to precooler 1} 
P_w_in=115.8[kPa]                                                         {assumed water pressure in precooler 1} 
Cp_w=Cp(Water,T=T_p_w_in,P=P_w_in)                          {specific heat capacity of water} 
epsilon_p=0.6                                                                {precooler 1 effectiveness} 
m_dot_w=0[kg/s]                                             {water flow rate in the evaporator precooler 1} 
C_dot_p_a=m_dot_a*Cp_a              {air side capacitance in the evaporator precooler 1} 
C_dot_p_w=m_dot_w*Cp_w            {water side capacitance in the evaporator precooler 1} 
C_dot_min=MIN(C_dot_p_a,C_dot_p_w)        {minimum capacitance rate for precooler 1} 
Q_dot_p=m_dot_w*Cp_w*(T_p_w_out-T_p_w_in)   {cooling capacity of precooler 1} 
Q_dot_p=m_dot_a*Cp_a*(T_p_in-T_p_out)                {energy balance} 
Q_dot_p=epsilon_p*C_dot_min*(T_p_in-T_p_w_in)   {cooling capacity of precooler 1} 
omega_p_out=omega_p_in                            {constant humidity ratio: sensible cooling} 
T_p_out_k=convertTemp(C,K,T_p_out)                 {precooler outlet air temperature in K} 
T_dp=DewPoint(AirH2O,T=T_p_out,w=omega_p_out,P=P_a)      {dew point temperature of 
precooler outlet air} 
R_p_out=RelHum(AirH2O,T=T_p_out,D=T_dp,P=P_a)  {precooler outlet air relative humidity} 
h_p_out=enthalpy(AirH2O, T=T_p_out, P=P_a, w=omega_p_in) {air enthalpy at precooler outlet} 
DELTAT_p=(T_p_in-T_p_out)                      {air temperature difference across precooler 1} 
 
{T_cd_in=38[C]}                                                    {condenser inlet air temperature}                                                                                                                 
R_cd_in=R_p_in                                                        {condenser inlet air relative humidity} 
V_dot_a_cd=0.73[m^3/s]                                           {volumetric flow rate of air_ condenser} 
Cp_a_cd=Cp(AirH2O,P=P_a,T=T_cd_in,R=R_cd_in)   {specific heat capacity of moist air at inlet 
conditions} 
rho_a_cd_in=density(AirH2O,P=P_a,T=T_cd_in,R=R_cd_in) {density of air at condenser side} 
m_dot_a_cd=V_dot_a_cd*rho_a_cd_in                {condenser side air mass flow rate} 
 
{T_4=20[C]}                                                 {initial guess of refrigerant temperature} 
{Q_dot_ev=8[kW]}                                             {initial guess of evaporator cooling capacity/load} 
omega_ev_min=HumRat(AirH2O,P=P_a,T=T_4,R=1)    {minimum humidity ratio of air} 
h_ev_min=enthalpy(AirH2O,P=P_a,T=T_4,R=1)    {minimum enthalpy of outlet air} 
Q_dot_ev=m_dot_a*(h_p_out-h_ev_out)                     {evaporator air side heat transfer} 
epsilon_ev=(h_p_in-h_ev_out)/(h_p_in-h_ev_min)             {enthalpy effectiveness relation} 
epsilon_ev=(omega_p_out-omega_ev_out)/(omega_p_out-omega_ev_min)    {enthalpy 
effectiveness relation} 
T_ev_out=temperature(AirH2O,h=h_ev_out,w=omega_ev_out,P=P_a) {evaporator outlet 
temperature} 
Q_dot_ev_n=m_dot_a*(h_p_out-h_ev_out)        {new cooling load after  in precooler 1} 
m_dot_c=m_dot_a*(omega_p_out-omega_ev_out)    {rate of condensate removal from the 
evaporator} 
m_dot_c_kgph=m_dot_c*convert(kg/s,kg/hr)                    {condensate yield in kg/h} 
m_dot_c_kgph_pkw=m_dot_c_kgph/Q_dot_ev           {condensate yield in kg/kW-h} 
T_c=T_ev_out             {assume condensate temperature equals evaporator outlet air temp} 
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R$='R22'                                               {specified type of refrigerant} 
{x_4=0.43}                                           {initial guess value of vapor quality after expansion} 
eta_ID=0.65                                                         {assumed ideal efficiency of compressor} 
epsilon_cd=0.68[kW/K]       {assumed value of product of HX effectiveness and capacitance rate} 
h_4=Enthalpy(R$,T=T_4,x=x_4)                  {refrigerant specific enthalpy at evaporator inlet} 
P_4=Pressure(R$,h=h_4,x=x_4)                  {refrigerant low pressure} 
T_1=T_4                                 {assumed refrigerant evaporating at constant temperature} 
h_1=Enthalpy(R$,T=T_1,x=1)                                   {enthalpy at compressor inlet} 
Q_dot_ev=m_dot_r*(h_1-h_4)              {refrigerant side heat transfer rate in the evaporator} 
{s_1=Entropy(R$,P=P_4,x=1)}               {refrigerant entropy at the compressor inlet} 
h_2_ID=enthalpy(R$,P=P_2,s=s_1) {discharge specific enthalpy assuming isentropic 
compression} 
P_2=Pressure(R$,h=h_2,T=T_2)                            {refrigerant high pressure}  
T_2=Temperature(R$,h=h_2,P=P_2) 
h_3=h_4 
T_1=Temperature(R$,h=h_1,x=1)   
 
 
W_c_ID=m_dot_r*(h_2_ID-h_1)                        {compressor isentropic work} 
W_c=W_c_ID/eta_ID                                                    {actual compressor work} 
W_c=m_dot_r*(h_2-h_1)                                {energy balance across compressor} 
Q_dot_cd=Q_dot_ev+W_c                               {overall energy balance of the cycle} 
Q_dot_cd=m_dot_r*(h_2-h_3)                            {refrigerant side heat transfer rate in condenser} 
Q_dot_cd=epsilon_cd*m_dot_a_cd*(T_3-T_cd_in)            {heat transfer rate in condenser} 
Q_dot_cd=m_dot_a_cd*Cp_a_cd*(T_out_cd-T_cd_in)  {air side heat transfer rate in condenser } 
x_4=Quality(R$,T=T_4,h=h_4)                             {vapor quality after expansion} 
COP=(Q_dot_ev+Q_dot_p)/W_c 
T_L=(T_p_in-T_ev_out)/ln(T_p_in/T_ev_out) {defination of low temperature for calculating max. 
COP}          
T_L_k=convertTemp(C,K,T_L)                                {low temperature in Kelvin} 
T_cd_in_k=convertTemp(C,K,T_cd_in)            {condensaer inlet air temperature in Kelvin} 
P_r=P_2/P_4                                                {compressor pressure ratio} 
COP_max=T_L_k/(T_cd_in_k-T_L_k)          {maximum/Carnot COP of the conventional system} 
eta_II=COP/COP_max                          {second low efficiency of the conventional system} 
EER=3.412*Q_dot_ev/W_c 
 
s_1=Entropy(R$,P=P_4,X=1) 
s_2=Entropy(R$,P=P_2,h=h_2) 
s_3=Entropy(R$,h=h_3,T=T_3) 
s_4=Entropy(R$,h=h_4,x=x_4) 
 
Ex_com=m_dot_r*(T_cd_in_k*(s_2-s_1)) 
Ex_cd=m_dot_r*(h_2-h_3-T_cd_in_k*(s_2-s_3)) 
Ex_vlv=m_dot_r*T_cd_in_k*(s_4-s_3) 
Ex_ev=m_dot_r*(h_4-h_1-T_cd_in_k*(s_4-s_1))-(-Q_dot_ev*(1-T_cd_in_k/T_L_k)) 
W_min=-Q_dot_ev*(1-T_cd_in_k/T_L_k) 
Ex_tot=Ex_com+Ex_cd+Ex_vlv+Ex_ev 
eta_II_2=W_min/W_c 
 
DELTAT_w_t=1.3[C]                                                                                                           
{temperature change of water in the precooler} 
m_dot_w_t=9.6[kg/min]                                 {mass flow rate of precooler water} 
m_dot_c_fresh=0.113[kg/min]                  {mass flow rate of fresh condensate} 
M_i=1000[kg]     {initial mass of water in the tank before } 
T_i=24.8[C]                 {initial water temp. in the tank before } 
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T_c_fresh=22[C]         {temperature of fresh condensate} 
t_t=120[min]                                                   {operating time for } 
T_tank=(((m_dot_w_t*DELTAT_w_t)-
m_dot_c_fresh*T_c_fresh)*t_t)/(m_dot_c_fresh*t_t+M_i)+(T_i*M_i)/(m_dot_c_fresh*t_t+M_i)      
{current water temperature in the tank at any time} 
DELTAT_Tank=T_tank-T_i                 {change in water temperature at a time interval} 
T_tank_n=-
m_dot_c_fresh*T_c_fresh*t_t/(m_dot_c_fresh*t_t+M_i)+(T_i*M_i)/(m_dot_c_fresh*t_t+M_i)  
M_t=m_dot_c_fresh*t_t+M_i 
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APPENDIX C: SAMPLE CALCULATIONS OF EXPERIMENTAL 

UNCERTAINTIES 

 

The detail calculations of uncertainties the baseline results for severest conditions are 

given here. During this experiment, the data was saved at every minute for two hours. In 

this section, only the sample calculations for uncertainty values of the baseline 

experimental results conducted at severest weather conditions are given. From the 

experimental data and using Eq. (7.2), evaporator inlet air temperature               
o
C. 

                     

                             
o
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Using the same calculation procedure, the uncertainty values of the experimental data for 

options ‘A’, ‘B’ and ‘C’ ware calculated and given in Tables 7.1 to 7.4. 
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