

iii

© Abdullah Alfadhly

2013

iv

DEDICATION

This work is dedicated to my wife who supports me during my journey

v

ACKNOWLEDGMENTS

After my thanks to Allah, my first acknowledgment goes to my adviser Dr Uthman

Baroudi and my co-advisor Dr Mohamed Younis for their continuous help and support.

Without their guidance, I would not be able to get such achievement. My second

acknowledgment goes to my committee members: Dr. Shokri Selim, Dr. Radwan Abdel-

Aal, and Dr Ahmed Masoud for their guidance valuable time.

Finally, all my thanks and acknowledgments are given to KFUPM for providing me with

all needed resources and facilities. Without such support, I would not reach this very

important milestone in my life.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... V

TABLE OF CONTENTS ... VI

LIST OF TABLES ... X

LIST OF FIGURES .. XI

ABSTRACT ... XIII

الرسالة ملخص ... XV

CHAPTER 1 .. 1

INTRODUCTION .. 1

1.1. Background ... 1

1.1.1. Wireless Sensor Networks (WSNs) ... 1

1.1.2. Wireless Sensor and Actor Networks (WSANs) ... 4

1.2. Research Motivation ... 5

1.3. Contributions .. 8

1.4. Thesis Organization ... 11

CHAPTER 2 .. 13

LITERATURE REVIEW ... 13

2.1. Overview ... 13

2.2. Single Failure Approaches ... 14

2.3. Simultaneous Multiple Failures Approaches.. 20

vii

CHAPTER 3 .. 22

CENTRALIZED RECOVERY THROUGH NETWORK RECONFIGURATION 22

3.1. Problem Definition .. 22

3.2. Motivation .. 22

3.3. Modeling ... 23

3.3.1. Objective Function: .. 23

3.3.2. Constraints: .. 24

3.4. Detailed Example .. 26

CHAPTER 4 .. 28

DISTRIBUTED TOLERANCE OF SINGLE NODE FAILURE .. 28

4.1. Introduction .. 28

4.2. System Model and Problem statement ... 30

4.3. Least Distance Movement Recovery Approach (LDMR) ... 32

4.3.1. Recovery Steps ... 32

4.3.2. Detailed Example ... 34

4.3.3. Algorithms Analysis .. 37

4.3.4. Algorithm Complexity ... 39

4.4. An Adaptive Connectivity Restoration Algorithm (ACRA) .. 39

4.4.1. ACRA Algorithm .. 40

4.4.2. Cut-off and switch metric ... 41

4.4.3. Cascaded Movement .. 43

4.4.4. Detailed Steps .. 45

4.4.5. Pseudo code and detailed example .. 48

4.4.6. Algorithm Analysis ... 58

viii

CHAPTER 5 .. 67

DISTRIBUTED RECOVERY FROM SIMULTANEOUS MULTI-NODE FAILURE 67

5.1. Overview ... 67

5.2. System Assumptions ... 68

5.3. Notation .. 68

5.4. SFRA Algorithm ... 69

5.4.1. Rank Assignment .. 69

5.4.2. Weight Computing ... 70

5.4.3. Cluster Identification .. 74

5.4.4. State Diagram Description of SFRA ... 75

5.4.5. Detailed Example ... 78

5.4.6. Algorithm Analysis ... 82

CHAPTER 6 .. 90

SIMULATION RESULTS AND DISCUSSION ... 90

6.1. Simulation Setup ... 90

6.2. Performance Metrics ... 92

6.3. Simulation Results ... 93

6.3.1. Central Approach ... 93

6.3.2. LDMR Simulation Results.. 99

6.3.3. ACRA Simulation Results .. 101

6.3.4. SFRA Simulation Results ... 107

CHAPTER 7 ... 113

CONCLUSIONS AND FUTURE WORK .. 113

ix

REFERENCES.. 116

VITAE ... 118

x

LIST OF TABLES

Table 1: Simulation Tools .. 90

Table 2: Number of sent messages during rank, weight computing, and clustering phases

 of SFRA ... 112

xi

LIST OF FIGURES

Figure 1: A typical wireless sensor network node components (redrawn from [1]) 2

Figure 2: A typical WSAN ... 6

Figure 3: Dissertation Overview ... 10

Figure 4: A DARA example: (a) the original network (b) A8 is replacing A1 (c) A2

 is replacing A1 ... 15

Figure 5: Cut-vertex determination ... 19

Figure 6: RIM example redrawn from [15] .. 19

Figure 7: WSAN before recovery; the number above each link is the Euclidian distance.

... 25

Figure 8: WSAN after recovery; the number above each link is the Euclidian distance.25

Figure 9: Optimal Solution Distribution .. 29

Figure 10: An example WSAN topology... 31

Figure 11: LDRM steps (1) Node A10 fails and its direct neighbors begins the search

 process. (2) Direct neighbors send recovery requests, A3 send its second

 request to A4 since it does not receive ACK from A9 35

Figure 12: LDMR steps: (3) Nodes start moving (4) The final network 36

Figure 13: LDMR pseudo code.. 38

Figure 14: A WSAN example .. 42

Figure 15: Algorithm selection procedure ... 42

Figure 16: A detailed example of the proposed adaptive approach: Nodes A7, A38, A14,

 and A26 search for non-cut-vertices (1-2) ... 50

Figure 17: A detailed example of the proposed adaptive approach: Nodes A7, A38, A14,

 and A26 search for non-cut-vertices (3-4) ... 51

Figure 18: The searching nodes continue the recovery process ((1) and (2)) 53

Figure 19: The searching nodes continue the recovery process ((3) and (4)) 54

Figure 20: The adaptive approach pseudo code (searching nodes) 56

Figure 21: The adaptive approach pseudo code (other nodes) .. 57

Figure 22: (a) RIM and (b) LDRM restoration scenarios that reflects the worst case

 travel overhead .. 60

Figure 23: illustration of moving of node A is enough to maintain connectivity 62

Figure 24: Cascaded movement maximum movement ... 62

Figure 25: One point assumption to prove the maximum RIM movement 63

Figure 26: The moving node B is a shared node between A and C 66

Figure 27: illustration example for theorem 4 where the moving node is not shared 66

Figure 28: (a) Rank Assignment phase (b) Recovery tree .. 71

Figure 29: Illustrating weight computation for node i .. 71

Figure 30: Clustering phase and weight computing results .. 72

xii

Figure 31: SFRA UML based State Diagram Representation .. 76

Figure 32: Detailed example to illustrate how SFRA algorithm restores connectivity

 after multiple nodes fail .. 80

Figure 33: Illustrating the motion scenario to replace the failed node F. 83

Figure 34: The failure scenario that illustrates the most travel overhead during the

 recovery phase. ... 89

Figure 35: rm is the maximum distance a node can move .. 89

Figure 36: The best case of Clustering ... 89

Figure 37: Simulation tools for executing the optimization approach. 91

Figure 38: ILP average total travelled distance ... 95

Figure 39: ILP average travelled distance per moving node. ... 95

Figure 40: ILP coverage effects on the average total travelled distance. 97

Figure 41: ILP averaged total travelled distance versus the number of failed nodes. 97

Figure 42: ILP coverage effects on total travelled distance in case of multiple failures

 (Nodes = 60) .. 98

Figure 43: The total distance (LDMR vs. RIM) travelled by the involved nodes during

 the recovery (r=150). .. 100

Figure 44: The loss coverage rate (LDMR vs. RIM) during the recovery (r=150). 100

Figure 45: Total Travelled Distance (ACRA vs. RIM) (r=100) 102

Figure 46: Figure 46: Number of moving nodes (ACRA vs. RIM) (r=100) 102

Figure 47: Average Travelled Distance per node (ACRA vs. RIM) (r=100) 103

Figure 48: Number of communication messages (ACRA vs. RIM vs. 2-hop info

 (DARA)) .. 103

Figure 49: The effects of maximum hops on the total travelled distance using (ACRA)

 (r=150) .. 105

Figure 50: The effects of maximum hops on the total travelled distance of ACRA

 (r=150) .. 105

Figure 51: The effect of communication range on the average travelled distance for

 ACRA and RIM. .. 106

Figure 52: Coverage Loss Rate of ACRA compared to RIM and LDMR 108

Figure 53: Total travelled distance of SFRA for different probability failure (PF) 110

Figure 54: Avg. travelled distance per failed node of SFRA compared to single failure

 approaches... 110

Figure 55: Total traveled distance of SFRA for different cluster sizes (PF = 0.25) 111

xiii

ABSTRACT

Full Name : Abdullah Nasser Fahad Alfadhly

Thesis Title : Type Complete Thesis Title

Major Field : Computer Engineering

Date of Degree : May 2013

Wireless sensor and actor networks (WSANs) have emerged recently in many Mission

Critical Applications (MCA) such as military surveillance, research and rescue, and fire

extinguishing, etc. These types of applications need to be deployed on robust networks

that can handle node failures in real time manner. However, WSAN usually operate in

harsh environment and thus become susceptible to breakage in connectivity due to the

failure of one or multiple actor nodes. Given that WSANS are deployed in remote areas,

restoring connectivity through self-reconfiguring the network topology becomes the most

preferred solution. In this PhD dissertation, we investigate the requirements of Critical

Mission Wireless Sensor and Actor Networks in terms of robustness and connectivity and

provide analytically and by simulation central and distributed approaches to handle single

and multiple node failures. The central approach which serves as a lower bound to other

heuristics is based on Integer Linear Programming (ILP) formulation and uses traveled

distance as its objective function. While minimizing the total traveled distance is the main

goal of the ILP approach, other performance metrics are considered such as the loss of

coverage and the maximum traveled distance by a node. Since applying a central

approach is not feasible in WSAN, we developed distributed approaches that depend on

local information, and provide a restoration mechanism that can handle single and

multiple node failures with minimized cost. Our first distributed approach is called Least

xiv

Distance Movement Recovery approach (LDMR) which exploits non-critical nodes in the

network in order to replace failed nodes. It has been enhanced to behave adaptively based

on the network topology in order to achieve better performance in sparse and dense

networks. The new adaptive approach which is based on LDMR is called Adaptive

Connectivity Restoration Algorithm (ACRA).

To restore network connectivity in case of multiple simultaneous failures, we developed a

new approach called Simultaneous Failures Recovery Approach (SFRA). SFRA depends

on constructing a recovery tree from the original network starting from a pre-assigned

root. Unlike other solutions, SFRA can handle completely partitioned networks based on

the current state of the network topology. We show the effectiveness and correctness of

our approaches analytically and by simulations.

xv

 ملخص الرسالة

 عبد الله ناصر فهد الفضلي :الاسم الكامل

 الحرجة التطبيقاتللعيوب ذات القابلةشبكات الاستشعار التفاعلية :عنوان الرسالة

 هندسة الحاسب الآلي التخصص:

 م 3102مايو :تاريخ الدرجة العلمية

مثل المراقبة ظهرت شبكات الاستشعار التفاعلية في الآونة الأخيرة في كثير من التطبيقات الحرجة والهامة

قات تحتاج إلى نشرها على شبكات قوية تستطيع العسكرية، والبحث والإنقاذ، والإطفاء، الخ. هذه الأنواع من التطبي

التعامل مع حالات الفشل آنيا . تعمل شبكات الاستشعار التفاعلية في بيئة قاسية ولذلك تصبح عرضة لانقطاع الاتصال

وبالنظر إلى أن هذه الشبكات تنشر في أماكن نائية ، فإن إعادة الاتصال عن جهاز تفاعلي واحد أو أكثر. بسبب تعطل

تحقننا من ريق إعادة التكوين الذاتي لطوبولوجيا الشبكة هو الحل الأكثر تفضيلا. في أطروحة الدكتوراه هذه ، ط

 ومتطلبات شبكات الاستشعار التفاعلية ذات التطبيقات الحرجة من حيث المتانة والاتصال ، وقمنا من الناحية التحليلية

الحل ل مع فشل جهاز تفاعلي واحد أو أكثر من أجهزة هذه الشبكات. المحاكاتية بتوفير حلول مركزية و موزعة للتعام

المركزي والذي يمكن أن يمثل الحد الادني للحلول الأخرى قائم على البرمجة الخطية ذات العددية الصحيحة من حيث

 الأساسي الهدف ل من المسافة الإجمالية للتحرك هومع أن التقليالصياغة ويستخدم مسافة التحرك كهدف وظيفي.

والمسافة القصوى التي يمكن أن يقطعها أي ، إلا أننا اعتبرنا مقاييس الأداء الأخرى مثل فقدان التغطية للحل المركزي

وبسبب ان الحلول المركزية ليست مجدية في شبكات الاستشعار جهاز تفاعلي أثناء عملية إعادة الاتصال للشبكة.

لى المعلومات المحلية لكل جهاز تفاعلي ، وتوفر آلية للترميم تستطيع التفاعلية ، وضعنا حلول موزعة تعتمد ع

لحركة لفشل جهاز تفاعلي واحد أو أكثر بحدود أدنى للكلفة. حلنا الأول هو حل الاستعادة ذو المسافة الاقل التعامل مع

(Least Distance Movement Recovery Approachوالذي يستغل الأجهزة التفاعلية ذات الم) واضع غير

الحرجة)المهمة(في الشبكة من أجل استبدال الأجهزة التفاعلية المتعطلة ، وقد تم تعزيز هذا الحل بجعله متكيفا حسب

طوبولوجيا الشبكة من أجل تحقيق أداء أفضل في الشبكات الكثيفة و المتفرقة. وقد أسمينا هذا الحل الجديد والذي يقوم

 (.Adaptive Connectivity Restoration Algorithmة الاتصال المتكيفة)بخوارزمية إعادعلى حلنا الأول

الاستعادة حل ولاستعادة اتصال الشبكة في حالة الفشل المتزامنة لأكثر من جهاز تفاعلي، وضعنا حلا جديدا يسمى

رة (. يعتمد هذا الحل على بناء شجSimultaneous Failures Recovery Approachفشل الآني)لا بسبب

عامل من الشبكة الأصلية بدءا من جذر محدد مسبقا. وخلافا لغيره من الحلول الأخرى ، يمكن لهذا الحل الت الاستعادة

وقد وضحنا صحة وفعالية هذه الحلول بالتحليل مع الشبكات المنقسمة تماما استنادا للحالة الراهنة لطوبولوجيا الشبكة.

 والمحاكاة.

1

CHAPTER 1

INTRODUCTION

1.1. Background

In this section, we will give an introduction to Wireless Sensor and Actor Networks

(WSANs) and its underlying technology: Wireless Sensor Networks (WSNs) since they

share many features, challenges, and applications. We will first give an overview of

WSN, and then we give an overview of WSAN.

1.1.1. Wireless Sensor Networks (WSNs)

Advances in electronic design and wireless communication have enabled the

development of low power devices which have the capabilities of sensing, processing,

and communicating. Those small devices can then be used to deploy a self-organized

network whose function is to sense the surroundings in order to detect a certain condition

or event, process the data, and send information to a management station or control an

actuator. Therefore, the choice of sensors is obviously controlled by the type of the

deployed application. Figure 1 shows the typical components of a wireless sensor

network device.

Wireless sensor networks can be used in many applications such as military,

environmental, health, home, and other commercial applications. In military, they can be

used in battlefield surveillance, reconnaissance of opposing forces and terrain, targeting,

2

Power Unit

Sensor ADC

Processor

Storage

Transciever

Location Finding System Mobilizer

Power

Generator

Sensing Unit
Processing

Unit

Figure 1: A typical wireless sensor network node components (redrawn from [1])

3

battle damage assessment, and nuclear, biological and chemical attack detection and

reconnaissance. Some examples of environmental applications include tracking the

movements of birds, small animals, and insects, forest fire detection, bio-complexity

mapping of the environment, Flood detection, and precision agriculture. Health

application include patient monitoring, drug administration in hospitals, monitoring the

movements and internal processes of insects or other small animals; tele-monitoring of

human physiological data, and tracking and monitoring doctors and patients inside a

hospital. Home automation and smart environment are examples of Home applications.

Other applications may include interactive museums, detecting and monitoring car thefts,

and managing inventory control [1].

Several factors make the design of WSN protocols a challenging task. First, Sensors are

constrained in energy supply, processing capability, and bandwidth capacity. Second,

they are deployed in very large quantities, therefore they usually do not use global

addressing because it is difficult to maintain, although there are some efforts to overcome

this issue [2]–[4]. Third, in most scenarios, the flow of data in WSN is from multi-nodes

(network devices) to a single node (the sink). Fourth, sensors produce redundant data

which has to be aggregated so that more energy can be preserved by cutting the number

of transmissions [5], [6]. Therefore, most researchers have worked to address these

requirements when they designed their protocols and algorithms.

Energy efficiency, scalability, and adaptability to changes are very important features in

order to design a good MAC protocol for Wireless Sensor Networks [7]. Although, there

are many proposed MACs for WSNs, there is no single protocol accepted as a standard

for all types of applications. The rational is that WSNs are application specific which

4

means different network design objectives are needed for different applications. On the

other hand, routing techniques are classified into three categories based on the underlying

network structure: flat, hierarchical, and location-based routing. Furthermore, these

protocols can be classified into multipath-based, query-based, negotiation-based, QoS-

based, and coherent based depending on the protocol operation [6].

Another influencing factor when designing a wireless sensor network is fault tolerance

[1]. Fault tolerance is the ability to sustain sensor network functionalities without any

interruption due to sensor node failures [8]–[10]. However, fault tolerance requirements

can be relaxed if the application mission of WSN is not critical. On the other hand, On

the other hand, if sensor nodes are being deployed in a battlefield for surveillance and

detection, then the fault tolerance has to be high because the sensed data are critical and

sensor nodes can be destroyed by hostile actions.

1.1.2. Wireless Sensor and Actor Networks (WSANs)

Wireless Sensor and actor networks have in addition to sensors more capable devices

called actors. Actors are equipped with more energy and processing capability and they

can communicate through longer distances. When a sensor detects an event, it first

notifies a nearby actor which analyzes the data and coordinates with other actors for the

required action. For example, in a forest fire detection application, sensors detect the fire

and send this event to actors where they can coordinate among them and extinguish the

fire before spreading to other parts of the forest. Figure 2 shows a typical articulation of

a WSAN.

5

In order for a WSAN to carry out its application successfully, it has to satisfy two

requirements [11]:

Coordination: Unlike WSN where there is a single entity (i.e. the sink) which receives

all sensed information and deliver it to a central monitoring system, WSAN needs a

coordination mechanism among actors to carry out the required task. The event can be

detected by multiple sensors and therefore multiple actors can be notified. Reconstruction

of the event and determining its characteristics is also part of actor-actor coordination

[11].

Real time action: sensors have to propagate the data to actors in real time and actors

have to act promptly. For example, in fire detection application, any delay yields the

action later useless or impossible.

The above two requirements impose difficult challenges in order to develop and design

WSAN protocols and algorithms.

WSANs are deployed usually in a hostile and harsh environment. Therefore, they are

prone to frequent failures that could render the network useless if there is no self-

mitigation to such failures. Moreover, these nodes are battery operated, and therefore,

they may exhaust their energies any time.

1.2. Research Motivation

Wireless Sensor and Actor Networks (WSAN) have attracted a lot of interest in recent

years. Their potential applications include search-and-rescue, forest fire detection and

6

Sensor Actor Command Center

Figure 2: A typical WSAN

7

containment, battlefield reconnaissance, under-water surveillance, etc. Many of those

applications are mission critical where robustness is very important. Given the

collaborative nature of the WSAN operation and the criticality of the deployed

applications, inter-actor connectivity is essential. Obviously, coordination among actors

cannot be performed in a disconnected network topology. Therefore, actors strive to

sustain communication links among themselves when they move. However, the failure of

one or multiple actors may partition the network into disjoint sub-networks. This may

happen while responding to a harsh event, e.g., a fire, and would require a rapid recovery

so that the event would not get out of hand and lead to disastrous consequences. Since

WSAN operate unattended and the deployment of spare actors may take time, the

recovery should be performed through network self-reconfiguration using existing

resources. Not only an actor failure may lead to a loss of inter-actor connectivity, but it

also causes degradation in coverage in the vicinity the failed node. Having good actor

coverage is very important in WSAN in order to make sure that a sensor can report its

finding to an actor and the actor responds in a timely manner. Therefore, recovery from

actor failure should not only restore severed connectivity but also should strive to limit

the loss in actor coverage.

Although, there is some research in this area, more research is needed to model the dis-

connectivity problem, develop new approaches that can recover single and multiple node

failures.

8

1.3. Contributions

 We studied how a failure of an actor or multiple actors can be tolerated in

mission-critical WSANs by maintaining the inter-actors connectivity. Unlike

other costly solutions which depend on the increasing of a connectivity factor

(number of connections) between actors [12], we proposed a distributed solution

that can operate in real time and restore connectivity to the network with a

minimized cost.

 We first modeled the problem mathematically and came up with an optimal

solution. In this step, we assumed a central entity that has all information needed

to reach the optimal decision. In our analysis, we considered the following

metrics:

Total Traveled Distance: This metric gives the total distance traveled by all nodes in

the network during the recovery restoration. This metric indicates how much energy

will be consumed by the whole network due to the mechanical movements of the

network actors.

Average Traveled Distance: this metric computes the average traveled distance for a

node that got engaged in the recovery operation. This metric can be used to know

how much energy loss is shared among nodes during the lifetime of the network.

Coverage: this metric captures the loss of coverage resulted from the node

movements.

9

 After analyzing results from the central approach, we developed distributed

approaches that achieve low distance cost, low communication messages, and

can handle single and multiple node failures.

 We developed a distributed approach that takes advantage of non-critical nodes

in the network in order to restore connectivity among network nodes. The

approach strives to lower the total movement distance caused by the process of

the recovery. Therefore, we call it Least Distance Movement Recovery Approach

(LDMR). LDMR provides a detailed mechanism on searching for non-critical

nodes and avoiding conflicts or network dis-connectivity during recovery.

 We enhanced LDMR by making the approach behaving adaptively based on the

network topology. The new adaptive approach which is called Adaptive

Connectivity Restoration Algorithm (ACRA) achieves low cost in case of sparse

and dense networks. It also achieves better coverage compared to other

approaches that depends on shrinking network nodes in case of failures.

 Restoring a connective to the network in a distributed manner in case of

simultaneous nodes failures is very challenging. Therefore we developed an

efficient and robust approach that handles multiple simultaneous failures and

achieve low cost. The new approach is explained in detail and verified by an

extensive simulation.

Figure 3 shows the main steps that describe our work. The mathematical

representation is based on Integer Linear Programming (ILP) formulation. While

message complexity is not an issue in the central approach, it is a performance metric

10

Connectivity Fault

Tolerant WSAN

Mathematical

Representation

(Central

Approach)

Distributed

approaches

Connectivity

Recovery Cost

Coverage

Messaging Complexity

Recovery Cost

Figure 3: Dissertation Overview

11

in developing distributed approaches. In addition, multiple failures bring complexity to

the distributed approaches because of the locality of information. A node or a group of

nodes cannot be aware of all failures in the network in order to do the right action in a

self-healing process.

1.4. Thesis Organization

The next chapters are organized as the followings:

Chapter 2: it provides detailed literature review on the subject of connectivity fault

tolerance in WSAN. In our review, we focused on the real time approaches that use

mobility as a primitive to restore connectivity to the partitioned networks.

Chapter 3: we explained our central approach which is based on ILP formulation. We

showed the objective functions, the problem constraints, and provided a detailed

example. Our work in this chapter and its simulation results is published under the

following publication:

Alfadhly, A., U. Baroudi, and M. Younis. "Optimal node repositioning for tolerating

node failure in wireless sensor actor network." Communications (QBSC), 2010 25th

Biennial Symposium on. IEEE, 2010.

Chapter 4: we discussed our distributed solution for a single node failure. The solution

is called Least Distance Movement Recovery Approach (LDMR). LDMR was also

extended to enhance its performance. The enhanced approached is called an Adaptive

Connectivity Restoration Approach (ACRA). Our work in this chapter and its simulation

results is published under the following publications:

12

Alfadhly, Abdullah, Uthman Baroudi, and Mohamed Younis. "Least distance movement

recovery approach for large scale wireless sensor and actor networks." Wireless

Communications and Mobile Computing Conference (IWCMC), 2011 7th International.

IEEE, 2011.

Alfadhly, Abdullah, Uthman Baroudi, and Mohamed Younis. "An adaptive connectivity

restoration algorithm for wireless sensor and actor networks." International Journal of

Autonomous and Adaptive Communications Systems 6.2 (2013): 167-190.

Chapter 5: we discussed our distribution approach for multiple node failures. The

approach is called Simultaneous Failures Recovery Approach (SFRA). Our work in this

chapter and its simulation results is published under the following publications:

Alfadhly, Abdullah, Uthman Baroudi, and Mohamed Younis. "An effective approach for

tolerating simultaneous failures in wireless sensor and actor networks." Proceedings of

the first ACM international workshop on Mission-oriented wireless sensor networking,

2012.

A journal version of the above publication with extra analysis and more details is also in

the process of submitting.

Chapter 6: in this chapter, we presented the simulation setup, and discussed and

compared the simulation results of all approaches: Central Approach, LDMR, ACRA,

and SFRA.

Chapter 7: we provided our conclusions and directions for future works.

13

CHAPTER 2

LITERATURE REVIEW

2.1. Overview

Motion capability of nodes has been utilized in wireless sensor networks and wireless

sensor and actor networks in order to enhance the performance metrics of these networks.

In wireless sensor networks, movable sensors are proposed to patch coverage holes,

prolong network lifetime, and restore connectivity. For example, unbalanced coverage

among different regions of the deployment area can happen in cases where random

deployment is used because of the hostile and harsh environments. To solve such

problem, a relocation of sensors has been proposed in [13] to solve such problem or to

respond to sensor failures. Redundant sensors are detected first through a Grid-Quorum

search, and directed to other locations where a problem exists. A cascaded movement is

used by moving sensors to balance loss of energy among sensors. For extending network

lifetime, relay nodes that can move has been proposed to collect data from sensors and

send it to the base station [14]. While these mobile nodes can reach isolated sensors, its

movement causes latency and may not be suitable for WSAN real time applications.

Most of the published schemes on tolerating node failure in WSAN can be classified into

two categories:

 Provisioned solutions which rely on the availability of redundant resources that

can make up for the lost node(s). However, provisioned solutions for restoring

connectivity are not suitable for WSAN since actors are typically more expensive

14

and hard to deploy compared to sensors and thus assuming the presence of many

actors is not practical.

 Real-time solutions which rely on repositioning the healthy actors so that a

strongly connected inter-actor network topology can be established.

Since our proposed approaches fall into the second category, we will focus on this

category explaining approaches proposed in the literature. We shall begin with

approaches that tried to tackle the single node failure at a time and then we present the

existing approaches that tried to solve the simultaneous multi-failure nodes problem.

2.2. Single Failure Approaches

These approaches are based on algorithms that are designed to handle one failure at a

time. If there is more than one node failing at the same time, these algorithms may not

work properly. For example, DARA [15] replaces the failed node with one of its

neighbors. The approach requires every node to maintain 2-hop neighbor information so

that the effect of the loss of a node can be assessed, i.e., whether the failed node is highly

probable a cut-vertex or not. The candidate among the neighbors of the failed node is

picked based on the node degree, distance from the failed node and the node’s ID

respectively. The effect of moving a node triggers a cascaded relocation that ripples

throughout the network to avoid breaking connectivity in another part in the network.

Figure 4 shows an example illustrating how DARA works. In this example, A1 which is

the failed node has four neighbors: A2, A7, A8, and A9. A8 and A2 have a degree of two

where A7 has a degree of three and A9 has a degree of four. According to DARA, the

node with the least degree is the winner node which is replacing the failed node.

15

A9

A11

A10

A15

A14

A13A12

A1

A8
A7

A2

A3

A6

A5

A4

(a)

A9

A11

A10

A15

A13A12

A8

A7

A2

A3

A6

A5

A4

(b)

A9

A11

A10

A15

A14

A13A12

A2

A8
A7

A3

A6

A5

A4

(c)

A14

Figure 4: A DARA example: (a) the original network (b) A8 is replacing A1 (c) A2 is replacing A1

16

Therefore, since all nodes know the degrees of all nodes 2-hop away from them, A9 and

A7 stops proceeding in the algorithm because their degrees are greater than those of A8

and A2. A2 and A8 then compare their distances to A1. If A8 has a less distance, A8

replaces A1 as shown in Figure 4-(b). Figure 4-(c) shows the network after A2 replacing

A1 assuming A2 has a less distance to A1. In the latter case, A3 moves to the old position

of A2 in order to connect to the rest of the network.

Another single failure approach called PADRA was proposed in [16]. It is a proactive

scheme where each node assigns a fault handler (FH) for itself and sends a notification of

assignment to this node. If a node fails, its fault handler starts the recovery process.

The work in [15], [16] rely on the fact that cut vertex nodes are known. Cut vertex

determination can be done using a Connected Dominating sets (CDS) algorithm [17]. A

set of nodes is dominating if it contains all nodes in the system or all nodes can be

reached through the nodes in the set. A node is dominator if it is in the dominating set

and dominatee otherwise. For example, in Figure 5, nodes 4, 8, and 7 are dominatees

while nodes 1, 2,3,5,6 are dominators. Based on CDS knowledge, cut-vertex

determination can be achieved as the following:

• If a node is a dominatee, it is not a cut vertex node.

• If a node is a dominator, then we have two cases:

• If the node has a dominatee neighbor which does not have any neighbor,

the node in this case is a cut vertex since it is the only source that connects the

dominatee node to other parts of the network.

17

• If the node has dominator neighbors or dominatees with neighbors, the node in

this case can be either a cut vertex or not. To be certain, the node is a cut vertex,

one of the node’s neighbors has to do a local Depth first Search (DFS) to look for

the other neighbors of the node. If they can be found using another way, the node

is not a cut vertex.

To clarify this by the example in Figure 5, nodes 4, 7, 8 are not cut-vertices since they are

dominatees. Nodes 2 and 6 are cut-vertices since they are dominators which have

dominatee neighbors. Nodes 1 and 5 are dominators and their neighbors are dominators

also. However, if a DFS is done in node 6, there is no other way to reach node 1.

Therefore, node 5 is a cut-vertex. If another DFS is done in nodes 2 or 3, there is no other

way to reach node 5. Therefore, node 1 is a cut-vertex. Node 3 is a dominator but it is not

a cut-vertex since we can reach 2 or 1 without passing through 3.

While [15], [16] need the detection of cut-vertices, Recovery through Inward Motion

(RIM) approach [18] avoids doing this to simplify the recovery process. RIM needs only

1-hop neighbor information to function properly. After a node detects a failure of one its

neighbors, it moves toward (i.e. in the direction of) the position of the failed node until it

becomes r/2 away where r is the transmission range. This first movement ensures that all

neighbors of the failed node are connected. However, they may lose their connections

with their neighbors. Therefore, their neighbors need to do cascaded movement but this

time until they r away. This later process is repeated until all nodes are connected. In

RIM, if a node is a neighbor of two moving nodes, it follows the node which has the

highest rank (fewer hops to the failed node). If both nodes have the same rank, it moves

to the closest intersection point of the two circles centered by it is two neighbors. Figure

18

6 is an example showing the operation of RIM. At first, nodes 2, 3, 4, and 5 detect the

failure of node 1. They send notification to their neighbors and move to the position of

node 1 until they are r/2 away. In the third step, although node 7 receives notifications

from 5 and 4, but it moves to the node with highest rank which is 5 until it is r away from

it. Node 6 receives notifications from two nodes with similar rank (5 and 4). Therefore, it

moves to the closest intersection point of the two circles centered by 4 and 5. In the last

step, node 8 moves to the position of node 7.

The approach of [19] strives to limit the scope of cascaded relocation through the

identification of dominators. Basically, the dominating set is determined and only

cascaded relocation is pursued when a dominator moves. Meanwhile, Basu and J. Redi

[12] assume the network is bi-connected prior to the failure and propose an algorithm that

moves nodes in groups in order to restore the lost bi-connectivity when a node fails.

However, deploying more actors to have a bi-connected network increases the cost of the

application. In addition, having this feature cannot be guaranteed for random deployment.

Unlike our approach, the focus of [12], [16], [19] has been on connectivity restoration

without considering coverage. Most of published schemes that consider connectivity and

coverage are geared for network planning and not to tolerate a node failure [20]. The only

prior effort that factors in both connectivity and coverage, to the best of our knowledge,

is reported in [21]. However, the approach is based on moving the neighbors of a failed

node back and forth in order to minimize the effect of a node loss. In other words,

connectivity cannot be guaranteed at all times.

19

Figure 5: Cut-vertex determination

Figure 6: RIM example redrawn from [18]

20

2.3. Simultaneous Multiple Failures Approaches

The above approaches solved the problem of a single failed node exploiting the fact that

other nodes are residing in their current positions and they are working normally. In

many circumstances, such as earthquake multiple nodes will fail simultaneously that

cause the network to be partitioned into multiple disconnected segments. Therefore, the

single node failure approaches cannot resolve this problem and a new paradigm is needed

to reestablish the network connectivity.

In [22], it was proposed to use the underlying sensors to detect other network partitions.

After partitions have been detected, the closest node from each partition starts moving to

each other. To maintain the connectivity in each partition, a cascaded movement is

suggested

The same assumption is targeted in [23]. However, their suggested solution was to let

nodes move to the center of the deployed area. An optimization based on Minimum

Steiner Tree (MST) is done to minimize the number of relay nodes needed to restore the

connectivity.

MPADRA was proposed in [7] as an extension to PADRA [6] to support multiple node

failures. The problem of PADRA algorithm is the existence of a situation where one node

is assigned to recover for two different nodes. If these two nodes fail at the same time, a

race condition problem occurs and PADRA approach will not work. This problem is

applicable for other proactive approach like DARA [5]. Although this problem was

solved in MPADRA,

21

On the other hand, the idea of constructing a tree which we proposed in our simultaneous

recovery approach was previously used for multicast routing in MANET [24]–[26].

However, the focus was only overcoming broken links. The loss of multiple nodes is

significantly more challenging since the network gets partitioned and alternate routes will

not be available between the affected nodes. Clustering is also used widely in MANET

mainly for scalability reasons [27]. To the best of our knowledge the use of clustering as

means for mitigating the simultaneous failure of multiple nodes has not been pursued in

the literature.

22

CHAPTER 3

CENTRALIZED RECOVERY THROUGH NETWORK

RECONFIGURATION

3.1. Problem Definition

Interconnectivity among actors in WSAN is a very important requirement for a successful

deployed application. Therefore, an urgent real time restoration has to be done after a

node failure. However, only cut-vertices and not all nodes in the network are essential to

maintain connectivity. A failure of a cut-vertex node partitions the network into two or

more disjoint segments. In Figure 7, nodes 1 and 5 are cut-vertices. To restore

connectivity in this case, the failed node should be replaced by another (e.g., 6 in this

example). The objective of the proposed approach is to have one or orchestrate a

sequence of node movements with the least total travelled distance while not exceeding a

pre-determined rate of coverage loss. We modeled the problem as an integer linear

program as explained next.

3.2. Motivation

The recovery problem is modeled as Integer Linear Program (ILP) with an objective of

forming a strongly connected inter-actor topology while minimizing the distance that the

individual actors have to travel and minimizing the loss in coverage caused by the failure

of some actors. The proposed solution handles the failure of one or multiple nodes and

fits architectures in which the command center can develop the recovery plan. In

addition, the proposed formulation provides a performance bound for existing schemes in

23

the literature, e.g. [5] which tolerates a single node failure. We also can build on this

approach to develop a distributed approach that can provide a comparable performance.

3.3. Modeling

We model a WSAN as a graph G(V,E). A node ni in the network is represented with a

vertex vi in G. An edge between vi and vj exists if there is a communication link between

the corresponding two nodes ni and nj in the WSAN. Let xij be a binary variable that

equals one if a node j is located in position i. Before failure, xii = 1 and xij = 0. After a

failure, this condition does not hold since a node j has to move to position i where ni has

failed. The recovery process that governs node motion is controlled by a cost function. In

our approach, we tried to minimize this cost function while not violating any constraints

imposed by the application. The model we used here to solve our problem is closely

related to the permutation in integer programming formulation often used to solve graph

related problems [28].

3.3.1. Objective Function:

If N, V, and F are three sets representing the network, cut-vertices, and failed nodes

respectively, and , our ILP objective function is :

 ∑∑

 (3.1)

The objective function defines the total travelled distance resulted from the recovery

operation. Our goal is to minimize this value subject to the problem constraints.

24

3.3.2. Constraints:

Using the N, V, and F sets define above, the following are the constraints of the

optimizing the objective function:

 ∑

 (3.2)

 ∑

 (3.3)

 ∑ ∑

 (3.4)

Equation (3.2) ensures that a position i is not to be taken by more than one node at the

same time while equation (3.3) ensures that node j can recover only one node at the same

time. Assuming that there are M cut-vertices in the network, equation (3.4) guarantees

that M nodes will be positioned there. Moreover, equation (3.4) ensures that the topology

formed after recovery is strongly connected. To meet the coverage requirement, we added

the following constraint:

 ∑∑

 (3.5)

where cj, cov, and l are the area exclusively covered by node j, the total area covered by

all nodes, and maximum tolerable rate of coverage loss, respectively. This constraint

ensures that after concluding the recovery efforts, the relative coverage loss resulting

from node moving will not exceed l. To cap the distance that a node travels, we use the

25

Figure 7: WSAN before recovery; the number above each link is the Euclidian distance.

Figure 8: WSAN after recovery; the number above each link is the Euclidian distance.

3

2

4

1

5

6

7

8

70

55

40

60

40

45

50

60

45

Failed Node Active Node

3

2

4

6

5

7

8

70

55

40

60

45

50

45

26

following constraint:

 (3.6)

where dmax is the farthest distance that a node is allowed to move during the recovery. If

the distance between any two nodes is larger than this value, none of the two nodes will

move to the position of the other node during the recovery operation. It should be noted

that the above formulation is able to handle the recovery of one or multiple node failures.

3.4. Detailed Example

Figure 8 shows how to apply our approach to the WSAN topology of Figure 7. Let us

assume that node 1 has failed. The sets the network nodes N, cut-vertices V, and failed

nodes F are as follows:

• N=1, 2,3,4,5,6,7,8,

• V=1,5, and

• F=1

Since node 1 is in the set of the failed nodes, it is considered as if it is not in its position

anymore and the variable
 is ignored as a valid solution by equation (3.4). Since node 1

is a cut vertex, any valid solution to the problem has to have
 where .

This implies that one of
 ,

 ,
 ,

 ,
 ,

 , or
 has to be in the output solution. The

goal of the objective function is to minimize the distance, and hence the node which has

the least distance to the failed node, i.e., node 6, will be chosen. The same condition

above is applied to node 5 because it is a cut vertex as well. However, because node 5 is

27

not in the failed set,
 is chosen as a valid solution since

 . This means that node 5

is in its place and active. The solution to this example is to set
 ,

 ,
 ,

 ,
 ,

 , and

 to 1 and set the rest variables to 0.

28

CHAPTER 4

DISTRIBUTED TOLERANCE OF SINGLE NODE

FAILURE

4.1. Introduction

In the previous chapter, we have developed a centralized scheme which assumes a global

knowledge about the network topology. The cost resulting from using this approach is

optimum. When validating our centralized approach, we found that many of the failures

are optimally restored by nearby non cut-vertices which can move directly to replace of

the failed nodes without breaking the network connectivity (see Figure 9). These results

have motivated us to develop heuristics approaches that can operate similarly in a

distributed manner.

In this chapter, we present LDMR which is a distributed recovery algorithm that exploits

non cut-vertex nodes in order to require the least travel distance from the engaged nodes.

In LDMR, the neighbors of the failed node F move toward the position of F while they

get replaced by their nearest non cut-vertex actors. The recovery process starts with the

search phase where each neighbor broadcasts a message containing several entries such

as failed node ID, neighbor node ID and, Time-To-Live (TTL). Each neighbor chooses

the best candidate among the set of received responses based on a certain criteria (e.g.

distance). The selected candidates replace the moved nodes without additional node

relocation overhead. We compared our approach with RIM which depends only on

cascaded movements. Extensive simulation experiments were carried out to validate the

performance of LMDR. We showed that our approach outperforms RIM for larger and

29

Figure 9: Optimal Solution Distribution

30

sparse networks. While the improvement in total travelled distance is achieved in these

cases, loss of coverage after recovery operation is also comparable.

4.2. System Model and Problem statement

The WSAN network is composed of actors and sensors that are randomly deployed in an

area. Actors are movable and have the capability to respond based on data collected by

the sensors. All actors are assumed to have the same communication range. Since actors

are more powerful than sensors, they typically have a longer communication range. After

network deployment, a self-initialized phase is carried out by the whole nodes in the

network. In this phase, each actor broadcasts a hello message with its identity and

location. To cope with dynamic changes in the network, a heartbeat message is sent

periodically by all actors. If an actor does not hear from its neighbor, a failure of that

actor is assumed and the active actor has to take an immediate action.

The inter-actor topology can be modeled as a graph G (N, E), where N is the number of

actors and E is the number of edges. The actor’s position plays a key role in the stability

of the network connectivity. Actors can be classified into two types: cut-vertex and non-

cut-vertex. The failure of a cut-vertex actor partitions the network into isolated islands,

while when a non-cut-vertex actor fails; strong network connectivity is still maintained.

For example, in Figure 10, A21, A7 and A6 are non-cut-vertices while A0 and A14 are

cut-vertices. Therefore, to maintain the connectivity of the network, cut-vertex

determination is important to react for node failures. Determining whether a node is a

cut-vertex or not can be easily done by using depth first search trees (DFS). However,

31

A18

A9

A16

A21A8

A12

A20

A2

A15

A17

A14

A7

A1

A10

A19

A11

A13

A3A0

A4

A5

A6

Figure 10: An example WSAN topology

32

this approach requires flooding the whole network and can be costly in terms of the

message overhead.

Thus, LDMR uses a distributed approach for such a purpose. Our LDMR approach

employs the concept of connected dominating set (CDS). As every node can reach the

nodes in a CDS, the connectivity of the network can be maintained as long as CDS is

connected.

We use the distributed algorithm of [17] in order to determine the CDS of a given

network G. This identification is done only after detecting a failure.

4.3. Least Distance Movement Recovery Approach (LDMR)

LDMR exploits node mobility and the availability of non-cut-vertices in the network in

order to minimize the distance that nodes collectively traveled during the recovery

process. The idea is to use connectivity-uncritical nodes in restoring connectivity. The

distinct feature of LDMR is the avoidance of the cascaded movement spread throughout

the whole network.

4.3.1. Recovery Steps

The LDMR approach performs the recovery according to the following steps:

1. If an actor AF is damaged or stops functioning, e.g. due to battery exhaustion, for

example, this failure is detected by its neighbors due to the absence of the heartbeat

messages which should have been sent by AF periodically.

33

2. Each neighbor in step 1 and not within r/2 distance from AF starts a search process

looking for the nearest non cut-vertex node, where r is the communication range. This

non cut-vertex is called a candidate node Cij. The neighboring node ANi broadcasts a

search message containing several entries such as failed node ID, neighbor node ID and,

Time-To-Live (TTL). Then, the nearest non-cut-vertex node replies to this message with

its distance to ANi. Each neighbor chooses the best candidate among received responses

based on the distance Dij.

3. Then, ANi sends a request message commanding Cij to move to its position. Upon

receiving this message, the commanded node acknowledges this message and starts

moving to the specified position. This acknowledgment is necessary to avoid choosing

the same non cut-vertex node by more than one neighboring node. Therefore, the

commanding node ANi should wait for the acknowledgment before moving. If a node

does not receive an acknowledgment, it should select the next nearest candidate and so

on. It is worth mentioning that the potential candidates, including Cij, will query its 1-hop

and 2-hop neighbors and apply the CDS algorithm in order to know whether is not a cut-

vertex, and is able to declare its candidacy and respond positively to the request.

4. Each neighbor node ANi moves toward the position of AF until it becomes r/2 away of

it. If one of the neighbors is within this distance, no need to move further as proven in

[18]. Each candidate node Cij sends movement notification message to its neighbors

before sending the acknowledgment to the direct neighbor requestor ANi. This notification

is essential to avoid network partitioning that may occur when multiple non cut-vertices

neighbors move simultaneously. Then, if other neighbors receive similar requests to

move, the nodes that believe that this movement may partition the network send panic

34

messages to prevent this movement. The next section will clarify this point more with a

detailed example.

5. After the movements in step 3 and 4, the network connectivity should have been re-

established.

4.3.2. Detailed Example

Figure 11 and Figure 12 illustrate how the LDMR works to restore the network

connectivity. Consider the network topology shown in Figure 10. As marked in Figure

11-(1), after the failure of node A10, its direct neighbors {A3, A9, A11, A14} detect the

failure and start the recovery process by searching for the nearest non cut-vertex nodes.

The search process may consume a lot of communication messages which is not desirable

in a constrained environment such as WSAN.

Therefore, each node broadcasts a search request message and includes a Time-To-Live

(TTL) parameter. In this example, we assume nodes {A3, A9, A11, A14} start with TTL

equals 3 as shown in Figure 11-(1). Each receiving node of this message decrement the

TTL value and forwards the message if the TTL is still greater than zero. If the receiving

node is a non-cut-vertex, it will discard the request unless it comes from another initiator,

i.e., neighbor of A10. In this example, nodes {A1, A4, A6, and A13} respond to the

request of node A3, while nodes A15 and A16 respond to the request of A14. In addition,

nodes A8 and A21 respond to the request of A9, and node A12 responds to the request of

A11. Based on the distance between the potential candidate and the neighbor node that

initiates the request, the closest candidate is picked and notified. Each candidate sends an

35

A18

A9

A16

A21A8

A12

A20

A2

A15

A17

A14

A7

A1

A10

A19

A11

A13

A3A0

A4

A5

A6

3
3

3

2

1

2

2
2

3

3

D
21

D
8

D
1

D
6

D
4

D
1
3 D
1
2

D15D
16

(1)

A18

A9

A16

A21A8

A12

A20

A2

A15

A17

A14

A7

A1

A10

A19

A11

A13

A3A0

A4

A5

A6

R
1
1

R
3
(1

)

R
9

R
1
4

(2)

A
C

K

A
C

K

A
C

K

R
3(

2)
A

C
K

Figure 11: LDRM steps (1) Node A10 fails and its direct neighbors begins the search process. (2) Direct

neighbors send recovery requests, A3 send its second request to A4 since it does not receive ACK from A9

36

A18

A9

A16

A21A8

A12

A20

A2

A15

A17

A14

A7

A1

A10

A19

A11

A13

A3A0

A4

A5

A6

A14

A11

A3

A9

(3)

A4

A12

A16

A8

A18

A8

A21

A20

A2

A15

A17

A16

A19

A12

A13

A4A0A5

A6

A14

A11

A3

A9

(4)

A7

A1

Figure 12: LDMR steps: (3) Nodes start moving (4) The final network

37

acknowledgment to the corresponding node and starts moving. After receiving the

acknowledgments, nodes A3, A9, A11, and A14 move toward the position of the failed

node A10 until they are r/2 away from A10. These movements ensure all nodes are

connected to each other as shown in Figure 12.

Candidate nodes also inform their neighbors before sending the acknowledgment

messages and then wait for some time to check the response of its neighbors. If no panic

message is received, the candidate node Cij sends the acknowledgement message to the

requester. In certain scenarios, more than one neighboring non cut-vertex nodes may

move simultaneously as A8 and A1 in this example. This situation may lead to

partitioning the network again (A7 is disconnected). Let us assume A8 sends the

notification message first, A7 still is connected to the whole network via A1. Now, if A1

sends it notification message, A7 will send a panic message which prevents A1 from

sending the acknowledgment message. Consequently, if ANi did not receive an

acknowledgment message from the nearest candidate, it picks the next nearest. In our

example, it picks A4 instead of A1.

Figure 13 shows the pseudo code of the LDMR approach. The recovery procedure is

triggered by the missing heartbeat signal of the node neighbor. Lines 18-29 are not

executed by direct neighbors since they are the ones who send search request for non-cut-

vertices.

4.3.3. Algorithms Analysis

LDMR’s functionality is similar to RIM [18]. Therefore, we shall compare LDMR

performance to RIM. In RIM, if an actor fails (whether it is a cut-vertex or not), it's entire

38

1. IF a node detects a failure of one of its neighbors

2. RecovNodes=SearchNonCutVertex()

3. While RecovNodes != Null

4. C =min(RecovNodes)

5. Send a Recovery command to C

6. IF ACK is received from C

7. Move to the position of the failed node until

8. a distance of r/2

9. ELSE

10. delete C from RecovNodes

11. END While

12. IF RecoveNodes == Null

13. Send a Recovery command to the closest neighbor

14. Move to the position of the failed node until

15. a distance of r/2

16. ENDIF

17 ENDIF

18. IF NonCutVertexRequest(ID,TTL) is received

19. IF I am a non-cutvertex

20. Send NonCutVertexRespnse(ID,cost)

21. ELSE

22. TTL = TTL – 1

23. IF TTL != 0

24. Forward NonCutVertexRequest(ID,TTL)

25. ELSE

26. Discard NonCutVertexRequest(ID,TTL)

27. ENDIF

28. ENDIF

29 ENDIF

30. SearchNonCutVertex()

31. While do

32. Send NonCutVertexRequest(ID,TTLMAX) to each neighbor

33. IF a Response from a NODE is received before TIMEOUT

34. RecovNodes = NODE(S)

35. BREAK

36. ELSE

37. RecovNodes = NULL

38. BREAK

39. END WHILE

40. RETURN RecovNodes

Figure 13: LDMR pseudo code

39

neighbors move towards its position until they are r/2 away of each other, where r is the

communication range which is assumed to be equal for all actors. This movement ensures

that all neighbors are connected after they reach the new positions. Moreover, before

these nodes move, they send their ranks and new positions to their neighbors. The rank of

a node is the distance in hops to the failed node. For example, the direct neighbors have a

rank of one. The neighbors of the direct nodes move until they are r away from those

nodes. If a node is a neighbor to more than one moving node, it follows the node with

higher rank, which has fewer hops to the failed node. If a node has two neighbors which

have the same rank, it moves to a position where it can hear both neighbors (the

intersection of two circles cantered by the two nodes and have radius of r).

4.3.4. Algorithm Complexity

Examining the pseudo-code shown in Figure 13, most of the running time will be spent

searching for the closest non cut-vertices. The search process is O(N.E) where N is the

number of nodes and E is the number of edges. However, because of the node failure,

this space is divided among neighbors since each neighbor will search in its partition. We

also propose the use of TTL to limit the search process running time.

4.4. An Adaptive Connectivity Restoration Algorithm (ACRA)

The simulation results of LDMR have indicated its suitability for dense networks. For

sparse networks, the performance advantage seems to degrade significantly. Therefore,

we present an extended algorithm which is based on LDMR and performs well in both

sparse and dense networks. The proposed ACRA approach is adaptive in nature. In sparse

networks, ACRA simply shrinks the network inward towards the position of failed node,

40

similar to RIM [18], while it exploits non-cut-vertices when the network is dense. ACRA

is a reactive recovery scheme that does not require any pre-failure provisioning. This

eliminates the communication messages overhead when the network is healthy. The

proposed approach converges faster than comparable approaches, especially for large

networks.

4.4.1. ACRA Algorithm

ACRA employs node mobility to restructure the network topology and restore

connectivity. To sustain network connectivity, ACRA exploits the availability of

connectivity-uncritical nodes, i.e., non-cut-vertices, in the network and/or cascaded

movement in order to minimize the distance that nodes collectively travel during the

recovery process. The essence of the algorithm is to use connectivity-uncritical nodes in

restoring connectivity if a network is dense since the node degree is high on average and

some nodes can be relocated without affecting the connectivity of its neighbor nodes. If

the network is sparse, most nodes become critical for strong connectivity and cascaded

movement is pursued instead. In cascaded movement, each node follows its neighbor to

sustain connectivity.

Upon the detection of node failure by its neighbors, each of these neighbors starts a

search process to find a nearby non cut-vertex. Each neighbor then moves to the position

of the failed node and commands its corresponding non-cut-vertex candidate to replace it.

If a neighbor does not have a nearby non-cut-vertex, it executes cascaded movement. To

simplify the presentation of ACRA, we will refer to each of these neighbors as a

searching node and the corresponding non-cut-vertex as a candidate node. For example,

41

if node F fails in Figure 14, the neighbors of F (A1, A2, and A3) move towards the position

of F until they are r/2 away from F where r is the communication range. This movement

ensures the connectivity among these nodes. To sustain connectivity, node A5 moves to

the new position of node A1 while nodes A4 and A7 move to the new position of node A3.

A candidate node will stop moving when it reconnects with the corresponding searching

nodes. The existence of a non-cut-vertex close to node A3 (i.e., A6) will spare the branch

of node A8 from moving. After moving node A2 to F, node A6 will replace A3 and

therefore sustain connectivity to node A8. In this example, cascaded movement is applied

by nodes A1and A3while for node A2 a non-cut-vertex is utilized.

Obviously, adjusting the recovery procedure based on the node density can be very

subjective and cannot thus be generally applied. Therefore, we use the recovery overhead

as a criterion for judging how the failure will be mitigated, as we explain next.

4.4.2. Cut-off and switch metric

As pointed out above, ACRA uses the cost of the recovery as a criterion for selecting the

connectivity restoration scheme. The total traveled distance is used as a cost metric for

the recovery. The cost of moving a candidate node increases when it needs to travel a

long distance in order to replace the searching node. Therefore, for a certain deployment

area, the number of hops between the searching node and the nearest non-cut-vertex can

be used to measure the cost. For example, if A6 does not exist in Figure 14, the nearest

non-cut-vertex that will replace A2 is A12. However, since A12 is three hops away from A2,

the cost of moving A12 is high. On the other hand, as a network gets denser, it is most

42

F

A1

A5

A3

A7

A4

A2

A6
A8

A10

A11

A12

Figure 14: A WSAN example

hmin<H

Cascaded

Movement is

applied

No

A non cut-vertex is

used

Yes

Rs=0
Y

e
s

N
o

Figure 15: Algorithm selection procedure

43

likely that a non-cut-vertex is located in fewer numbers of hops. Therefore, the number of

hops can also be used as a measure of the density and scale of the network. When the

number of hops needed to find a non-cut-vertex is high, the network is likely to have few

nodes, and when the number of hops is small, the network is likely to be dense. When the

candidate node is far, it is better to pursue cascaded relocation in order to balance the

recovery overhead cost among multiple nodes and speed up the recovery since the motion

of nodes can overlap in time.

The number of hops h to the non-cut-vertex node is used to choose which approach is

executed. The searching node puts out a call for help by sending a broadcast message

with certain time-to-live attribute “TTL” to limit the number of hops that the message

reaches. If a searching node does not receive any response from potential candidates

within a predetermined time duration (Rs=0), cascaded movement is applied directly. If it

receives multiple responses, it chooses the node with minimum hops (hmin). If two nodes

have the same hmin, the node that has a shorter distance is chosen. If hmin> H, a cascaded

movement is applied, where H is a predetermined threshold used to limit the number of

hops. Otherwise, the node with hmin to the searching node and has a shorter distance is

picked. Figure 15 illustrates the algorithm selection procedure.

4.4.3. Cascaded Movement

ACRA employs a variant of the cascaded movement procedure used in [18] in order to

enhance the performance and speed up the convergence of the recovery process. If a node

moves, it sends a movement notification with its new position information to its

neighbors. If a node receives a movement notification, it relocates to the new position of

44

the notifying neighbor until both nodes are connected. If a node receives a movement

notification from two moving nodes, it checks the searching nodes that initiate the

movement in the two requests. This information is included in the notification message.

If both requests come from the same searching node, the receiving node moves to a

location where it can hears both moving nodes. The new position in this case is the

intersection of the two circles cantered at the two new positions of the moving nodes.

However, if two notifying messages come from two different searching nodes, the

receiving node will follow the node that has the closer new position. A detailed example

will be given later to illustrate how this movement is performed.

As we will explain later in the detailed steps of ACRA, each searching node needs to

estimate its recovery cost. In the case of cascaded movement, it is difficult for the

searching node to precisely determine the exact cost of cascaded movement from local

information. Therefore, in ACRA each node can estimate the cost by applying equation

(4.3), where Rs is the number of responses received by the searching node and TTL is the

initial time to live value that was used by the searching nodes. TTL also represents the

maximum hops among all responses. is the distance that a searching node needs to

move in order to be r/2 away from F

 (4.3)

The resulting value by the above equation gives an estimate to the distance that may be

travelled by other network nodes that follow the searching nodes in order to sustain

network connectivity. If Rs is high, this indicates that the network is dense and therefore

cascaded movement is not a preferred choice.

45

4.4.4. Detailed Steps

The following are the detailed steps that describe how ACRA restores the connectivity of

a partitioned network:

1- Failure Detection: If an actor AF is damaged or stops functioning, e.g., due to battery

exhaustion, the transmission of heartbeat messages, which should have been sent by AF

periodically, will cease. The absence of the heartbeat messages will be is interpreted by

each of AF’s neighbors, ANi, as an indication of its failure. The recovery procedure will

be executed regardless whether AF is a critical node, i.e., a cut-vertex or not. In fact,

ACRA does not assume that a node collects state information to assess the criticality of

another node in the network until a failure takes place.

2- Searching for non-cut-vertices: Each neighbor in step 1 and not within r/2 distance

from AF starts a search process looking for the nearest non-cut-vertex node, where r is the

communication range. Each searching node broadcasts a search request containing

several entities such as its own ID, the failed node ID, Time-To-Live (TTL) which

denotes the maximum number of hops the search spans. Each node receives such request

sends a feedback if it is a non-cut-vertex node. It also decrements the TTL value and

forward the request if it does not reach zero.

If two searching nodes are neighbors, they will receive requests from each other. In this

case, we can let each node discard the searching request from the other node or accept

and forward the request. The advantage of the first choice is to have less communication

messages. However, a nearby non-cut-vertex that can be reached by other neighbors can

be missed. Therefore, we apply the second option in ACRA.

46

It is worth mentioning that potential candidates will query their 1-hop neighbors and

apply the CDS algorithm of [17] in order to know whether it is a cut-vertex, and it is able

to declare its candidacy and respond positively to the request.

3- Receiving search responses: After a searching node ANi receives a response from a

nearby non-cut-vertex node, it stores this information to compare it with other responses.

Each response is associated with a cost Dij. The cost is the distance between the

searching node ANi and the non-cut-vertex node j. The number of hops (hij) between ANi

and j is noted in the response packet. If the searching node ANi does not receive any

response within a pre-configured time period, it goes forward to cascade relocation by

sending a recovery request to the nearest neighbor and moving to the position of the

failed node AF.

4- Choosing the recovery procedure and Broadcasting its Cost: Upon receiving the

responses in the last step, each searching node decides to choose between cascaded

movement and utilizing a nearby non-cut-vertex based on the criteria earlier and depicted

in Figure 15. After a searching node estimates its recovery cost, it broadcasts such a cost

to its neighbors. The cost of cascaded movement is estimated based on equation (4.3). If a

node receives a cost that is lower than its own cost, it stops executing ACRA. If a node

does not receive such message or it receives messages that carry a higher cost, it proceeds

to the next step. We will prove later that such behavior will not affect the connectivity of

the resulting network.

47

When the network is dense, it is expected that the average number of neighbors of each

node in the network is high. Therefore, this step is very essential to lower the cost of

ACRA in large networks.

5- Starting the recovery process: If utilizing a non-cut-vertex, steps 6 and 7 are

executed. Otherwise, the searching node ANi sends a notifying message to its neighbors

and moves to the position of AF until it is r/2 away. The neighbors of the ANi will

perform a cascaded movement as explained above.

6- If utilizing a non-cut-vertex is chosen in step 4, ANi sends a request message

commanding Cij (the best candidate selected in step 4) to move to its position. Upon

receiving this message, the commanded node acknowledges this message and starts

moving to the specified position. This acknowledgment is necessary to avoid choosing

the same non cut-vertex node by two searching nodes. Therefore, the commanding node

ANi should wait for the acknowledgment before moving. If a node does not receive an

acknowledgment, it should select the next nearest candidate and so on).

7- Best Candidate Movement: The best candidate node Cij sends a movement

notification message to its neighbors before sending the acknowledgment to the direct

neighbor ANi. This notification is essential to avoid network partioning that may occur

when multiple connectivity-uncritical neighbors move simultaneously. Then, if other

neighbors receive similar requests to move, the nodes that believe this movement may

partition the network, they send panic messages to prevent this movement. This will be

illustrated with a detailed example in Section 4.4.5.1. If no panic messages are received,

Cij sends an acknowledgment message and starts moving to replace ANi. After receiving

48

the acknowledgment, ANi moves toward the position of the failed node AF until it

becomes r/2 units away. After these movements the network connectivity should have

been re-established. If a searching node does not receive an acknowledgment, it should

select the next nearest candidate in it responses list that has a number of hops less than H.

If it does not have such a node or does not have more responses, the searching node

executes the cascaded movement procedure.

4.4.5. Pseudo code and detailed example

In this section, we will explain how ACRA works through an example topology of 40

nodes. We will also summarize the algorithm using a high level pseudo code.

4.4.5.1. Detailed Example

Let us assume that node A4 fails in the example depicted in Figure 16. The failure will be

detected by the direct neighbors A26, A38, A7, and A14, which become searching nodes.

Each searching node looks for a nearby non-cut-vertex. As shown in the same figure,

nodes A26, A38, A7, and A14 start searching by sending requests to their neighbors. To

localize the search process, each request sets its time-to-live to two, meaning the request

will not go beyond 2-hops. Each searching node gets a set of responses. Node A26

receives responses from nodes A15 and A24, node A38 gets responses from nodes A37 and

A23, node A7 hears back from nodes A8 and A37, and node A14 receives responses from

nodes A17, A23 and A30 . Figure 16 and Figure 17 show the search process hop by hop. In

these figures, S(A26, 2) indicates a Search request from A26 and the current value of TTL

is 2. R(A15, A26) indicates a response to the search request sent from A15 to A26.

49

Let us assume in this example that each searching node orders a non-cut-vertex node if it

1-hop away. Otherwise, the searching node will pursue cascaded movement. According

to the cut-off criterion for ACRA, nodes A26, A38, and A14 will utilize a nearby non-cut-

vertex node while node A7 executes cascaded movement as a next step in the recovery

process. Although node A7 receives two responses from A8 and A37, both nodes are two

hops away. Both responses that have been received by node A38 are coming from 1-hop

nodes. In this example, A38 will choose the nearest node which is node A23.

Now, all searching nodes will broadcast their estimated moving costs to their neighbors.

The moving costs in case of A38, A26, and A14 are the distance between the searching

node and its selected non cut-vertex node. In case of cascaded movement, the moving

cost is calculated as in (equation 4.3). If a searching node receives a message that carries

less that its own cost, it will stop the process leaving the recovery to other neighbors.

Based on our example, A7 has a higher cost than A38. Both A26 and A14 do not have

any searching nodes which are neighbors. This step is very essential in a dense and large

network to lower the cost of the adaptive approach.

The next step in the recovery is to notify the selected non-cut-vertices if any. Otherwise,

the first step in cascaded motion will be executed. According to ACRA, nodes A38, A14,

and A26 will send recovery requests to nodes A37, A17, and A24, respectively. Upon

receiving these requests, each non-cut-vertex node will send a movement notification to

its neighbors. If no panic messages are received, each node will send an acknowledgment

50

A4

A38

A17

A14

A26

A7

A37

A24

A12

A15

A19

A30

A3

A28

A5

S(A
14,2)

S
(A

38,2)

S(A38,2)

S
(A

3
8
,2

)

S(A7,2)

S(A26,2)

S(A26,2)

S(A14,2)

S
(A

7
,2

)

 (1)

A8

A23

A4

A38

A17

A14

A26

A7

A37

A24

A12

A15

A19

A30

A3

A28

A5

A8

S(A7,1)

S(A7,1)

S
(A

14,1)

S
(A

7,1) S(A
38,1)

S(A
14,1)

S(A14,1)

S(A26,1)

S
(A

2
6
,1

)

(2)

A23

S
(A

3
8
,1

)

S(A
14,1)

S(A
38,1)

R(A24,A26)

R(A
17,A

14)
R
(A

17,A
14)

S(A38,1)

Figure 16: A detailed example of the proposed adaptive approach: Nodes A7, A38, A14, and A26 search for non-

cut-vertices (1-2)

51

A4

A38

A17

A14

A26

A7

A37

A12

A15

A19

A30

A3

A28

A5

A8

R
(A

1
5
,A

2
6
)

 (3)

A23

R
(A

2
3
,A

3
8
)

R
(A

30,A
14)

R(A
8,A

7)

A4

A38

A17

A14

A26

A7

A37

A12

A15

A19

A30

A3

A28

A5

A8

R(A15,A26)
 (4)

A23

R(A23,A38)

R
(A

30,A
14)

R(A8,A7)

Figure 17: A detailed example of the proposed adaptive approach: Nodes A7, A38, A14, and A26 search for non-

cut-vertices (3-4)

52

message to the corresponding searching node. A node sends a panic message if it is likely

to be disconnected from the rest of the network. In this example, node A23 will receive

two movement notifications from nodes A17 and A37. Assume that it receives the

notification first from node A37. Since node A23 is still connected to the rest of the

network through node A17, it will not send a panic message to node A37. However, node

A23 will send a panic message to node A17. Since node A37 does not receive a panic

message, it will send acknowledgement to the searching node A38 informing it is ready.

Since node A17 will not send an acknowledgment,A14 will select the next nearest non-cut-

vertex that has two responses from node A23 and A30. However, both nodes are two hops

away; therefore A14 will execute cascaded movement instead. Node A7 is also receiving

two responses from 2-hops non-cut-vertices neighbors, namely,A8 and A37. Therefore A7

will also employ cascaded movement.

To restore the connectivity of the network, nodes A38, A26, and A14 move toward the

position of the failed node A4 until they are r/2 units away. A24 will replace A26 and A37

will replace A38. Since A14 will apply cascaded movement, A19 moves toward the new

position of A14 until it is r units away. Both nodes A30 and A3 will follow A19 until they are

connected with it (r units away from the position of node A19). Finally, node A28 will

move to the new position of A3. These recovery steps are shown in Figure 18 and Figure

19. In these figures, Re(A26, A24) indicates a recovery request sent by A26 to A24 where

A(A24,A26) indicates an acknowledgment sent by A24 to A26.

53

A4

A38

A17

A14

A26

A7

A37

A12

A15

A19

A30

A3

A5

A8

A23

Re(A
14,A

17)

Re(A38,A37)

Re(A26,A24)
A24

A28

 (1)

A4

A38

A17

A14

A26

A7

A37

A12

A15

A19

A30

A3

A5

A8

A23

A(A37,A38)

Panic

A(A24,A26)

A24

A28

Panic

 (2)

Figure 18: The searching nodes continue the recovery process ((1) and (2))

54

A4

A38

A17

A14

A26

A7

A37

A12

A15

A19

A30

A3

A5

A8

A23

A24

A28

(3)

A4

A38

A17

A14

A26
A7

A37

A12

A15

A19

A30

A3

A5
A8

A23

A24

A28

2

r

2

r

2

r

r

r

r

(4)

Figure 19: The searching nodes continue the recovery process ((3) and (4))

55

4.4.5.2. Pseudo Code

For the sake of clarity, we split the code into two figures: Figure 20 shows the steps that

will be made on the searching nodes and Figure 21 shows the code that will be executed

on other nodes.

Searching nodes: After detecting the failure (line 1), the searching nodes execute

SearchNonCutVertex (line 2) to look for the nearest non-cut-vertices. The details of this

function are listed on lines 31-42. The search process is primly configured to the

maximum time-to-live value which prevents propagating of search messages through the

whole network. After receiving all responses, EstimateCost is executed to determine the

recovery scheme, cost of the movement, and the candidate node in case of choosing a

non-cut-vertex node for recovery. Lines 44-60 list the steps for this function. A searching

node broadcasts its estimated cost to its neighbors (line 4). Any searching node that

receives an estimated cost that is less than its own, it abandons the recovery process (lines

5-7). Otherwise, it executes the selected approach based on the output of EstimateCost.

If the chosen candidate node does not send an acknowledgment, the searching node

deletes such candidate from eligible list (RecovNodes) and re-computes the cost (lines 9-

22). If the acknowledgment is received, the searching node moves to the position of the

failed node until it is r/2 away. The same movement is applied in case of cascaded

movement and the searching node notifies its neighbors before the movement about its

new position (lines 24-28).

Other nodes: Figure 21 shows the part of the algorithm that will be executed by other

nodes. If a node in the network receives a request from a searching node

56

. IF a node N detects a failure of one of its neighbors F

2. RecovNodes=SearchNonCutVertex()

3. (A,Cost,C) = EstimateCost(RecovNodes)

4. Node N Broadcasts Cost to its neighbors

5. IF N receives a broadcast that has a cost that

6. less than COST

7. Done

8. ELSE

9. While RecovNodes != Null

10. IF A = 'NonCut'

11. SendRecovery(C)

12. IF Ack(C) is received before TIMEOUT

13. Move to the position of the failed node F until

14. a distance of r/2

15. DONE

16. ELSE

17. delete C from RecovNodes

18. (A,Cost,C) = EstimateCost(RecovNodes)

19. ENDIF

20. ELSE

21. Break

22. ENDF

23. END While

24. IF A = ‘Cascade'

25. Notify neighbors of the new position and move to the

26. position of the failed node F until a distance of r/2

27. Done

28. ENDIF

29. ENDIF

30.

31. SearchNonCutVertex()

32. While do

33. Send NonCutVertexRequest(ID,TTL) to each neighbor

34. IF a Response from a NODE is received before TIMEOUT

35. RecovNodes = NODE(S)

36. BREAK

37. ELSE

38. RecovNodes = NULL

39. BREAK

40. ENDIF

41. END WHILE

42. RETURN RecovNodes

43.

44. EstimateCost(RecovNodes)

45. IF RecoveNode == NULL

46. A = 'Cascade'

47. D = distance(F,N)

48. Cost = D * TTL

49. ELSE

50. C = min(RecovNodes);

51. IF hops(N,C) < MaxHops

52. A = 'NonCut'

53. Cost = Distance(N,C)

54. Else

55. A = 'Cascade'

56. D = Distance(F,N) - r

57. Cost = D * TTL * Length(RecovNodes)

58. C = NULL

59. ENDIF

60. Return A,Cost,C

Figure 20: The adaptive approach pseudo code (searching nodes)

57

1. IF C receives NonCutVertexRequest(ID,TTL)

2. Do NonCutVertexCheck

3. IF I am a non-cutvertex

4. Send NonCutVertexRespnse(ID,cost)

5. ELSE

6. TTL = TTL – 1

7. IF TTL != 0

8. Forward NonCutVertexRequest(ID,TTL)

9. ELSE

10. Discard NonCutVertexRequest(ID,TTL)

11. ENDIF

12. ENDIF

13. ELSEIF C receives SendRecovery(N,C)

14. Send NonCutRecoveryMove to its neighbors

15. IF C do not receives a Panic message before TIMEOUT

16. Send Ack(C,N)

17. ENDIF

18. ELSEIF C receives NonCutRecoveryMove and its not

19. connected to other nodes

20. Send Panic to the moving node

21. ELSEIF C receives CascadeRecoveryMove(N,L)

22. Add (N,L) entry to the received notifications NotifyCascade

23. IF notifications are received from all neighbors

24. MinLevels = Nodes that has minimum L

25. Determin the node J in MinLevels that

26. gives the shoterst distance to

27. its new location

28. MinNodes = All nodes in MinLevels

29. that has the same target of J

30. IF length(MinNodes) == 1

31. Send CascadeRecoveryMove(C,L+1) to all neighbors

32. ollow MinNodes until r away from it

33. ELSEIF length(MinNodes) = 2

34. Move to the intersection point of

35. Circle(MinNodes(1),r) and

36. Circle(MinNodes(2),r)

37. ELSE

38. Move to a point where can hear all MinNodes

39. ENDIF

40. ENDIF

41. ENDIF

Figure 21: The adaptive approach pseudo code (other nodes)

58

 (SearchNonCutVertex), it first checks whether it is a non-cut-vertex. If it is, it will send a

response to the searching node and forward the request to its neighbors. If it is a cut-

vertex, it will only forward the search request. The forwarding to other nodes is done

after checking the time-to-live value (line 1-12). If a non-cut-vertex node receives a

recovery request from a searching node (SendRecovery), it sends a movement notification

(NonCutRecoveryMove) to its neighbors. If the node does not receive a panic message, it

will send an acknowledgment to the requested searching node (lines 13-17). A node that

receives a movement notification from a non-cut-vertex neighbor will not respond if it is

still connected to the network by other nodes. Otherwise, it sends a panic message to the

moving node (lines 18-20). Lines (21-39) detail how a node is moving if it receives a

cascaded movement notification (CascadeRecovMove). If the node receives one

notification, it will directly move to the position of the notifying neighbor until it is r

units away. If the node receives two or more notifications, it checks the searching node

(N) that initiates the movement in each notification request. If both have the same

initiator, it will follow both by moving to the intersection point of the two circles centered

by the new positions of the two moving neighbors. If two requests come from different

searching nodes, the node will follow the nearest neighbor. In all cases, the node notifies

its neighbors about its new position before it moves.

4.4.6. Algorithm Analysis

In this section, we shall present several theorems to analyze the proposed adaptive

algorithm.

59

Theorem 4.1: the total travelled distance for the associated movement algorithms is

bounded by

For cascaded movement

∑

 (4.2)

For non-cut-vertex movement

 (

) ∑

 (4.3)

Where r, N, hi, dij, are the communication range, number of nodes in the network, number

of hops from each neighbor to the leaf node (network diameter) assuming all neighbors

have disjoint paths to leaf nodes, and the distance between the corresponding non-cut-

vertex node and the position of the nominating neighbor node, respectively.

Proof: For the cascaded movement approach considers the one-dimension actor network

depicted in Figure 22-a. The worst-case scenario for cascaded movement occurs when all

nodes are r away from each other. Therefore, if A3 (red circle) fails, all neighbors and

their children move towards A5. The total distance travelled by each node is the number

of hope (hi) multiplies by r/2. Hence, the total travelled distance will not exceed

∑

and its complexity is O(N.E), where E is the number of edges in the network. The number

of hops to leaf nodes increases as the number of nodes increases. Therefore, as the

network size grows, the performance of cascaded movement is expected to degrade.

60

A5A2 A4A1 A3

A5A1 A4A2
A5A2 A4A1 A3

(a)

A4A2

A5A2 A4A1 A3

(b)

A5A1

Figure 22: (a) RIM and (b) LDRM restoration scenarios that reflects the worst case travel overhead

61

For the non-cut-vertex based procedure, the worst-case scenario occurs when all non-cut-

vertices that may replace the neighbor of the failed node are leaf nodes as illustrated in

Figure 22-b. Therefore, the total travelled distance is composed of two parts: the travelled

distance by the neighbors (ANi), and the travelled distance by the leaf node (Cij).

Theorem 4.2: If two or more searching nodes are neighbors, the movement of one

searching node to replace the failed node is sufficient for restoring the network

connectivity.

Proof: Let us take the worst-case where the distance between the two searching nodes

and between each of them and the failed node is r as shown in Figure 23. After the

movement of node A, the new distance between A and B is calculated as follows:

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ √

√ (4.4)

Therefore, the two nodes are still connected. If there are more than two nodes, by

definition the extra nodes have to be inside the triangle Aold-F-Bolds o that they are

connected to F.

Theorem 4.3: The maximum distance that can be travelled by a node in cascaded

movement is
√

r.

62

r

r

2

r

2

r

F

oldA

newA

oldB

Figure 23: illustration of moving of node A is enough to maintain connectivity

oldAoldB

newAnewB

F

newRangeAnewRangeB

oldRangeA
oldRangeB

newD

1oldD

2oldD

r r

Figure 24: Cascaded movement maximum movement

63

F

newP

oldP

newRangeP

oldRangePnewD

2

r

2

r

2

r

r
2oldD

1oldD

Figure 25: One point assumption to prove the maximum RIM movement

64

Proof: it has been proven in [18] that the maximum distance a node may travel in

cascaded movement is r/2. This is obvious for the neighbors of the failed node (searching

nodes) since the maximum distance between the failed node and any of its neighbors is r

before the failure. After the failure, each neighbor moves to the direction of the failed

node and stops at a point that r/2 away from the position of the failed node. Therefore,

the distance between the furthest point and the stopping point is r/2. For other nodes, the

stopping point of a node is determined based on how many nodes a node will follow. If a

node will follow one node, it is obvious that the maximum distance is r/2 since this case

is similar to the neighbors of the failed node.

However, if a node will follow two nodes and more, careful consideration is needed to

find out what is the maximum distance a node will move. In [18], the authors consider the

case shown in Figure 24 to prove that the maximum distance is r/2 if a node follows two

nodes. However, the chosen old position of node D (Dold1) is not the worst possible case

scenario. As A and B become closer, the distance between Dold2 and Dnewis increased

while the distance between Dnew and Dold1 does not change. The worst-case scenario is

when A and B are collocated.

Since the distance between both nodes is very small, we ignore this distance in our

calculation and consider both nodes as one point as shown in Figure 25. It has been

proven in [18] that the distance between Dnew and Dold1when A and B are collocated is r/2.

Since the distance between Pold and Dold1 is r, the distance between Dnew and Pold is r/2 as

shown in Figure 25. The maximum movement based on the worst possible location is

calculated as the following

65

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ √

√

 (4.5)

Theorem 4.4: If the failed node has one or multiple groups of searching nodes

(neighbors), the movement of only one node from each group will maintain connectivity.

Proof: We have two cases here. Case-I is where all searching nodes are neighbors.

According to theorem 4.2, the movement of one node is enough to maintain connectivity.

Case-II is where there is more than one group of nodes. In such a case, we have two

scenarios depending on the moving node and whether it is a shared neighbor among all

groups or not. For the first scenario (i.e. the moving node is shared among the groups),

the node will be connected to all nodes in different groups as shown in Figure 26. For the

second scenario, each node will be connected to its own group and it will be connected

also to the other moving node since each of them will move until they are r/2 from the

failed node. In Figure 27, node A is the moving node from group (A,B) nodes, and node C

is the moving node from group (B,C) nodes. According to theorem 1, both A and C are

connected to B. For the other group of searching nodes (D,E) which do not have any

shared nodes), it will be connected to other nodes through its moving node (D in this

case) Therefore, the overall topology is connected after all movements.

66

oldD

newD

F

A

oldB

newB

C

2

r

2

r

E

Figure 26: The moving node B is a shared node between A and C

oldD

newD

F

oldA

B

oldC

2

r

2

r

newA

newC

r

r

2

r

E

Figure 27: illustration example for theorem 4 where the moving node is not shared

67

CHAPTER 5

DISTRIBUTED RECOVERY FROM SIMULTANEOUS

MULTI-NODE FAILURE

5.1. Overview

LDMR and ACRA are designed to restore the network connectivity for a single failure at

a time and are not proven to handle simultaneous failures. Therefore, we developed a new

recovery distributed scheme called Simultaneous Failures Recovery Approach (SFRA).

SFRA pursues combined proactive and reactive strategies by creating a recovery tree

from the original network. SFRA assumes a node is pre-assigned as a root at the time of

the network deployment. A breadth first search tree is constructed and the level of the

individual nodes is used for defining their role in the recovery. After a failure, one of the

children of the failed parent in the recovery tree moves to the position of its parent and

becomes a leader of other nodes in the sub-network in order to establish its connectivity

with the rest of the network. To lower the travel overhead, each node is assigned a

recovery weight based on the number of hops to its closest leaf node in the recovery tree.

Moreover, to enable the connectivity of the network, some nodes are chosen to be

clusters during the ranking phase. These nodes serve as gateways to nearby nodes. The

leader of a disconnected sub-network moves to its cluster if it is still not connected after

recovering its parent.

68

5.2. System Assumptions

 The network nodes are randomly deployed and we assume that nodes are

connected to each other after deployment to form a connected network.

 One of the deployed nodes has to be configured as root.

 After the deployment and during the operation of the network, we assumed a

major event causes multiple nodes to fail simultaneously. However, we assumed

that only a small percentage of the node population fails and it makes sense to

restore the network operation at a degraded level.

 All nodes have the same communication range.

5.3. Notation

 A, B, C, D, etc., are network active actors.

 NA, CA and SA are A’s neighbors in the original network, and A’s children and A’s

sub-tree in the recovery tree, respectively.

 Fi is failed #i.

 KA, RA and RWA denote the rank, the ranker (i.e., parent in the recovery tree) and

the recovery weight of A, respectively.

 ARN is the node with minimum recovery weight in CA.

 Mid(̅̅ ̅̅) is the point on ̅̅ ̅̅ and has a distance of ½ r from Fi where r is the

communication range.

69

 DA,B denotes the Euclidian distance between A and B.

 RC(Fi) denotes a Replacement Candidate for Fi.

5.4. SFRA Algorithm

After deployment, nodes collect the information needed to work in a coordinated manner

for restoring connectivity after a failure. In SFRA, we assume that one of the nodes is

pre-assigned as a root of the network. Immediately after the deployment, the root initiates

a rank assignment phase. The purpose of this phase is to assign a rank to each node and

construct a recovery tree. The recovery tree is used to coordinate connectivity restoration

as we will be explained later. The rank assignment is used to calculate the weight that

determines the scope of node’s participation in the recovery. The following subsections

explain each phase in detail.

5.4.1. Rank Assignment

The rank of a node is the number of shortest hops to the root (R) of the network. In case

of R, KR = 0 and RR = R. Once the network nodes are deployed and the network is ready

for operation, the root of the network “R” runs breadth first search to assign ranks to the

individual nodes, by sending a message to its neighbors which forward their reachable

nodes and so on. The rank assignment message contains its ID, its rank, and the ID of the

ranker (i, Ki, Ri). Let us assume that a node j receives this message from a node i. The

following is executed by j in order to compute Kj and Rj:

IF Kj > Ki + 1

Kj = Ki + 1;

70

Rj = i;

ELSEIF rankerID = j

Add i to Cj

ENDIF

Since there are probably multiple paths between the root and node j. Node j may receive

multiple rank assignment messages from nodes other than i, but it will not update its

current rank unless the above condition is satisfied. If it is not satisfied and Ri is j itself, j

adds the sender node i to the list of ranked nodes (Cj). For example, in Figure 28-(a),

assuming Kh>Ki, j is ranked by i. Node j will send a rank assignment message to its

neighbors. If node i receives this message from j, it adds j to Ci. Nodes k and h will

ignore the rank assignment message from j. Node m updates its rank and sets Rm= j. A

recovery tree is constructed at the end of this phase as shown in Figure 28-(b). The tree is

used in the recovery algorithm as discussed later.

5.4.2. Weight Computing

We consider two types of weight to be computed: clustering weight (cw) and recovery

weight (rw). The clustering weight is used to decide which nodes are chosen to be cluster

heads while the recovery weight determines which nodes are to move for restoring

connectivity. The clustering weight of a node v is defined as the number of its children

down in the recovery tree until the next cluster. On the other hand, the recovery weight

represents the least number of hops from node v to any node that has a clustering weight

of zero (i.e., leaf nodes in the recovery tree).

71

Figure 28: (a) Rank Assignment phase (b) Recovery tree

cw(i) = 3

rw(i) = 1

cw(k) = 0

rw(k) = 0

cw(m) = 0

rw(m) = 0

h
k

R

j

i

m

cw(j) = 1

rw(j) = 1

cw(h) = 0

rw(h) = 0

Figure 29: Illustrating weight computation for node i

h
k

R

j

i

(a)

m

h
k

R

j

i

m

(b)

72

h

k

R

j

i

m

g

c

e

f

Cluster Identification Message

Weight Computing Message

Node cw rw Cluster

c
e

f
g
i
j
k

m

3
0

0
0
3
1
0

0

1
0

0
2
1
1
0

0

c
c

c
c
i
i
i

i

Figure 30: Clustering phase and weight computing results

73

This phase is initiated by the nodes that are not nominated as rankers by any of their

neighbors during the rank assignment phase. Those nodes represent leaf nodes in the

recovery tree. For example, in Figure 28, nodes m, k, and h will start the weight

computation phase.

All initial weights are set to zero. Each node sends the computed weight to its ranker. The

message contains the sender ID and the clustering and recovery weights incremented by

one, i.e., (i, CWi+1, RWi+1). For example in Figure 29, k shares its weights with its

ranker i. Node m sends a similar message to j and j send its own to i. When node i

receives these messages, it updates CWi and RWi as follows:

 CWi = CWi + CWj (5.1)

 RWi = RWj (5.2)

However, RWi is not updated by i unless the received recovery weight is smaller than the

current recovery weight RWi. It is obvious that the first message that is received by i (i.e.,

when RWi is zero) is an exception for this rule. After receiving the two weight messages

from j and k, CWi = 3 and RWi = 1.

One important step in the weight computation phase is to check the clustering weight

(cw) against a predefine cluster size. If that weight exceeds this value, the node identifies

itself as a cluster head and sends cluster identification to its neighbors. Otherwise, it

sends a compute weight message to its ranker.

74

5.4.3. Cluster Identification

Let us assume for simplicity a cluster size equals three in Figure 29. After nodes j and k

send compute weight messages to i, it updates CWi to three. Since CWi equals the pre-

defined cluster size, node i identifies itself as a cluster head and it sends a cluster

identification message to its neighbors. This message contains the sender ID, its cluster,

cluster location, and recovery weight of that node (i, CHi, loc(CHi), RWi). To show how

other nodes act upon receiving this message, let us assume there is a node g up in the

hierarchy of the recovery tree to R, where Kg = Ki-1 and Ri=g , as shown in Figure 30.

The message will be received by all neighbors of i (i.e. j, k, and g). The nodes that are

ranked by i (i.e. j and k) will see the message coming from their ranker and therefore they

set their cluster to i, save its location, and forward the message to their neighbors (if any).

Node m will receive the message from j and do the same. Node g also will hear this

message from i but it will act differently since the message is coming from one of its

ranked nodes. Node g updates its recovery weight RWg according to equation 5.1, sets its

clustering weight CWg to zero, and sends a compute weight message to Rg=c. When c

receives the weight computing message from g, it updates CWc. RWc may not be updated

by c since it achieves lower recovery weight through nodes e or f. Figure 30 shows the

clustering weights, recovery weights, and cluster assignments for all nodes. To avoid

confusion, a node does not send its compute message to its ranker until it computes its

correct clustering weight by waiting for all children messages. For example, if node i

receives a weight message from k before j, it waits until hearing from j. If for any reason,

node i does not hear from j, it can send its current weight and update its ranker g. While,

75

if that happens, more clustering messages are needed, the process will yield correct

clustering assignments.

5.4.4. State Diagram Description of SFRA

Figure 31 is a UML (Unified Modeling Language) behavioral state diagram showing the

different states of an actor “A” when executing SFRA after the failure of its neighbor F1.

In addition to A, other healthy nodes such as B, C, D, and E are also engaged in the

recovery. These nodes may be at the same time working on restoring connectivity after

the failure of another node F2, for example, that is not neighbor of A. The following is

an explanation of the various states:

 Normal: After node A is deployed, it performs its tasks normally. The node also

returns to this state when it thinks that its role in the recovery phase ends.

 Finding RC(F1): When node A detects the failure of a neighboring node F1, it

transits to this state in order to find RC(Fi). However, the transition is guarded by

the condition [F1=RA], which means that node A will not start the recovery

procedure unless F1 is its ranker. All nodes that are ranked by F1 will exchange

their recovery weights. Therefore, node A starts this state by sending

SENDRW(RWA, RA) message and waits. While waiting, if “A” receives another

SENDRW message from another node, e.g. B, node A checks if “B” is ranked by

the same node (i.e. RA=RB). If this is the case, “A” stores (B, RWB). Before “A”

leaves this state, it computes RC(F1) by finding the node which has the minimum

recovery weight based on the SENDRW that it has received. If two nodes have

76

Normal OP

Detection of a neighbor

failure /[RA=F]

TimeOUT/[DFA>r/2 AND A is RC(F1)]

TimeOUT/[A is not RC(F1)]

TimeOUT/[DFA<=r/2 AND A is RC(F1)]

Replacing F1

Do/Moving

Receive SENDRW(WRD,RD)/Send

STOP

Finding RC(F1)

Entry/Send SENDRW(WRA,RA)

Do/Waiting

Exit/Find RC(F1)

Receive(WRB,RB)/Add WRB to

RWTA if RA=RB

Failed

Failure

Reach

Recovered

Entry/Send RECOVERED(RE,F1)

Do/Waiting

Exit/KA = Min(KTA)

Receive SendRK(RE)/Store if RE > RA

Reach

Connected

Entry/Send RANKUPD(root)

Exit

Moving to CHA

Do/Moving

Reach/[Not Connected]
Connected

Moving to root

Do/Moving

Replacing

Do/Moving

ReplaceME
Reach

TimeOut/[old KA = new KA]

TimeOut/[new KA < old KA]

Actor A

Moving to Mid

Do/Moving

)(AF

Figure 31: SFRA UML based State Diagram Representation

77

 the same minimum weight, “A” breaks the tie by choosing the node with smaller

ID.

 Replacing F1: A transits to this state from the previous state if the following two

conditions are satisfied:

o A = RC(F1), in the previous state, and

o DA,F1 ≤ ½ r , where r is the communication range.

Since the movement of A may break its connectivity with its neighbors, as soon as “A”

transits to this state, it sends ReplaceMe request to ARN to replace it. In this state, “A” is

continuously moving to the position of F1. While in motion, if “A” receives a SendRW

request from another node “B”, it notifies “B” that F1 is already handled. This state is

also reached by Finding RC(F1) state as explained later.

 Moving to Mid
̅̅ ̅̅ ̅̅ : A transits to this state from “Finding RC(F1)”if the following

two conditions are satisfied:

o A = RC(F1)

o DA,F1 > ½ r

In this state, A is continuously moving to Mid
̅̅ ̅̅ ̅ position. It leaves the state when it

reaches that position and returns back to Finding RC(F1).

 Recovered: let us assume A= RC(F1) for now. When “A” reaches the position of F1,

it enters the recovered state by sending Recovered(A,F1) and waits. Other nodes

78

receiving this message respond by sending their ranks to “A”. While waiting, “A”

stores all ranks that are smaller than KA (i.e. have fewer hops to root). Before “A”

leaves this state, it identifies the node(s) with the smallest rank among the nodes it

heard from.

 Moving to CH: Node “A” transits to this state if it could not find another node, say E,

for which KE < KA. In this state, “A” moves to the position of CHA. While moving,

“A” is continuously trying to establish a communication link to another node that has

fewer hops to the root (i.e. has a lower rank).

 Moving to root: If “A” could not find CHA or a node with a lower rank, it moves

towards the root of the network. Again, while moving, “A” will try to establish a

communication link with a node with a lower rank.

 Connected: A is connected after finding a node with a lower rank. This could happen

immediately after replacing F1 or during its movement to CHA or root. Node A exits

this state and return to normal operation by sending a ranking update request to the

root.

 Replacing: While being in the normal state, if “A” receives a ReplaceMe request

from RA, node A transits to this state and move to the position of RA, and switches

back to the normal state upon reaching the target position.

5.4.5. Detailed Example

Figure 32 shows a part of a topology which has 40 nodes. In this example, we assume

that nodes 4, 15, and 7 fail. Although all neighbors of the failed nodes will detect their

79

failures, only nodes which are in their children sets are responsible for recovery. For

example, the failure of node 7 is detected by both nodes 3 and 2. However, node 3 will

simply ignore the failure since it is not in C7. The first step in the recovery process is to

replace each failed node with the child that has the smallest weight. To accomplish that

goal, node 9, 13, and 2 send SendWeight request and wait. If they receive a similar

request with smaller weight, they will stop leaving other nodes to participate in the

recovery process. However, since node 2 is the only node in C7, it starts moving to

recover the failure of 7. Before node 2 moves, it sends a ReplaceMe request to the node

with the smallest weight among C2 which is node 14 in our example. In response node 14

moves and requests node 20 to replace it (Figure 32-b). When node 2 reaches the position

that is r/2 to node 7, it sends a RequestWeight request to reach other possible nodes that

are in C7 and not heard by 2 in its original location. Node 2 will continue moving to the

position of F when it does not hear any other nodes.

Node 15 has two children, 13 and 9 which are not connected to each other. Therefore,

when they first detect the failure and send SendWeigth requests, they would not hear each

other. Both nodes will move first to the position where they are r/2 from the position of

the failed node 15. We assume that node 9 is closer to 15 and reaches that position first. It

sends RequestWeight and waits. When node 13 receives the request, it compares the

received weight with its own weight and send another request if it has a lower weight.

80

Cluster

Failed Node

Root
(a) (b)

r

(c) (d)

13

9

15

4

1

2 14

20

7

3 5

30

6
11

10

13

9

4

1

2

7

3
5 6 11

30

10

14
20

13

9

4

1

2

14
20

3
5 6 11

30

10

13

9

1

14

20

2

3
5 6 11

30

10

Node Rank Weight Cluster

1
2

3
4
5
6
7

9
10
11

13
14

20
30

7
6

4
8
3
2
5

10
0
1

10
7

8
2

3
2

4
2
5
6
3

0
0
1

0
1

0

2
2

3
2
10
10
3

2
2

10

2
2

2
0 10

15

9

13

15

9

13

2

r

9

13

15

9

13

2

r

b-1 b-2

b-3 b-4

Figure 32: Detailed example to illustrate how SFRA algorithm restores connectivity after multiple nodes fail

81

Since node 13 has the same weight of one, it will not send any response letting node 9

handle the recovery (see b-1 to b-4 in Figure 32).

After node 9 reaches the position of node 15, it sends a Recovered message informing

other possible nodes in C15. When node 13 receives that message, it changes its ranker to

node 9. If a node that has a higher rank receives the recovered message, it sends a

ResponseRecovered message allowing the sender node (i.e. 9) to join its children and

connect to the network. In this example, there is no such node with a higher rank since

the parent of node 15 (node 14) has failed. After a certain waiting time, node 9 starts

moving to the position of the head of its cluster (node 2) hoping to find some nodes along

the way or ultimately connect to node 2. It also sends a ReplaceMe message to node 13.

Before reaching the position of node 2, node 9 establishes a connection with node 20 and

sends a StopRequest message to node 13. Figure 32-(d) shows the final network topology

after all recovery operations end. The network now needs to be updated for the latest rank

information. Since node 9 and 2 have changed their position, they will send update

request to the root of the network. Other moving nodes 13, 14, and 20 will not send such

update request because they are connected to nodes with higher ranks. When Node 20

receives a request sent by 9, it will ignore it in order to prevent duplicated update

requests. When the root (node 10) receives the update request from node 11, it sends

RankAssignment message only to the requested node (node 11). The rationale of this is to

limit the extent of the rank update based on the scope of the failure in order to lower the

messaging overhead cost.

82

5.4.6. Algorithm Analysis

5.4.6.1. Basic Analysis

Lemma 5.1: Considering the recovery tree, if there are L leaf nodes (i.e., have no

children), the following equation is true for a network of N nodes, where |Ci| is the

number of nodes in Ci (i.e., children of node i)

∑| |

 (5.3)

Proof: This is easily proven by noting that from the graph properties of a tree, each node

in the recovery tree has only one parent except the root of the tree which has no parent.

Therefore, the left hand side provides the summation of all nodes in all children sets

minus one node which is the root.

Lemma-5.2: For a failed node F1, the number of nodes that transit from the “Finding

RC(F1)” to “Moving to Mid
̅̅ ̅̅ ̅ ” is less than six.

Proof: Since nodes in CF exchange their recovery weights, only nodes with minimum

recovery weights move in order to compete for replacing the failed node. Let us assume

there are X nodes in CF1, we can show that the maximum number of nodes that can move

is constant regardless of X. If we assume there are two nodes A and B where DA,F1, DB,F1,

and DA,B are all equal r, we will have an equilateral triangle (A,B,F1) as shown in Figure

33. The maximum number of nodes that can be located on the boarder of the circle

centered at F1 without hearing each other is less than 360/60 = 6. This is true regardless

of the number of nodes surrounding F1. Now if we put additional node in any point inside

83

A

B

F1 r

r
r

60°

Figure 33: Illustrating the motion scenario to replace the failed node F.

84

the circle of F1, it has to be neighbor to one of these six nodes and therefore only the

node with minimum recovery weight will move, not both ■.

Theorem 5.1: For a failed node F1, only one node replaces F1 (i.e. the number of nodes

that transit from the “Finding RC(F1)” to the “Replacing F1” state is one)

Proof: Let us assume that a failed node F1 has two neighbors A and B where RWA <

RWB. Now, if B is a neighbor of A, B will receive a SendRW message from A, and since

RWA < RWB , B returns to normal operation . If B is not a neighbor of A, then, we have

three scenarios:

 DA,F1 < r/2 and DB,F1 > r/2, then, A transits to the “replacing F1” state first and

sends STOP message to B when receiving SendRW from B.

 DA,F1 < r/2 and DB,F1 < r/2, then, B replaces F1 and sends STOP message to A in

the second scenario or

 DA,F1 > r/2 and DB,F1 > r/2, then the node which is closer to F1 will replace F1.

The other node will stop ■

5.4.6.2. Complexity Analysis

Theorem 5.2: The messaging cost of clustering a network of size N is O(N).

Proof: During clustering, an actor A sends two or three messages depending on its

computed clustering weight CWA. If CWA > cluster size, “A” sends only two messages:

one message for ranking and another message for clustering identification. If CWA <

cluster size, “A” sends additional message for weight computing. Therefore, “A” sends

85

two messages if it is assigned as a cluster-head and three messages if it is not. The

maximum cost of clustering occurs in the extreme case when only one cluster is formed,

i.e., all N nodes become part of one cluster, making the worst case number of sent

messages to be:

 (5.4)

The first part is sent by the root where the second part is sent by the other nodes. The

least cost corresponds to having all nodes as cluster-heads, making the number of

messages to be , which is also ■.

Theorem 5.3: The messaging cost of applying SFRA to restore the network connectivity

after the failure of m nodes is O(mN), i.e., linear in the number of failure incidents.

Proof: In the proof of Lemma-2, we have shown that for a failed node F, less than 6

nodes will reach the second phase of finding the replacing node candidate. Each one of

these nodes needs to send one message in that phase before the node with the highest

weight relocates to the position of “F”. If we assume that the number of failed nodes is m,

then the messaging complexity is:

∑

 (5.5)

The first part represents SendRW messages sent by all children of the m failed nodes. The

number of SendRW messages sent in the “Finding RC(F)” state is 6m assuming there are

86

maximum of 6 nodes neighbors for each failed node . The nodes that move to the position

of the failure send m recovered messages. A maximum of N-m messages will be

transmitted in response to the Recovered message. Using Lemma-5.1, the first part is less

than (N-1). Therefore, the most messaging cost comes from the last part which is

■.

5.4.6.3. Cost Analysis

Theorem 5.4: The total travel distance by the nodes participating in restoring

connectivity using SFRA is limited by (N-m-1)r, where m is the number of failed nodes

and r is the communication range.

Proof: the worst case scenario occurs when all network nodes are connected as a linear

chain and each node is r from its neighbors and the root is on the edge of the network as

shown in Figure 34. Since SFRA depends on restoring connectivity towards the root of

the network, all healthy nodes shall move to the position of the root in a cascaded

manner. In this particular case, each of these nodes travels a distance of r m. Therefore,

the total distance resulted from the movement of all nodes is (N-m-1)r, where (N-m-1)

represents the number of healthy nodes other than the root which sticks to its position ■.

Collary 5.1: During the recovery, the maximum distance a node can move is rm, where m

is the number of failed nodes and r is the communication range.

Proof: This is can be observed from the worst case scenario shown in Figure 34. If we

assume there is one node connected to the last failed node (i.e. Fm), while the other N-m-3

87

active nodes are connected to root. Therefore, they do not move during the recovery. This

case is shown in Figure 35■.

Theorem 5.5: In large networks, a node can shorten its travel distance up to (0.75N-2)r

by moving first to the position of the head of its cluster.

Proof: Let us consider the case shown in Figure 36(a). After the failures of F1 and F2, A

will move 2r in order to connect with CHA. Now, let us assume that A moves directly to

root as shown in Figure 36(b). In this case, the distance is maximized when no nodes with

smaller ranks are located at a distance less than r while “A” is moving to the root.

Therefore, we need to calculate the distance between “A” and the root. In this particular

figure, there are two similar triangles (A,C,CHA) and (A,B,root). Therefore, for large N:

 (5.6)

(5.7)

Since ̂ is a right angle:

 √

√

 (5.8)

88

0.75Nr represents the distance that A needs to travel to connect to the root of the network

assuming that “A” does not move to CHA first. If “A” moves to CHA, it needs a distance

of 2r in order to connect. Therefore, moving to CHA first saves a distance of 0.75Nr-2r in

the best case■.

89

root F1 F2 Fm

r r r

m nodes (N-m-1) nodes

r

Figure 34: The failure scenario that illustrates the most travel overhead during the recovery phase.

root F1 F2 Fm

r r

m nodesN-m-3 nodes

r

Figure 35: rm is the maximum distance a node can move

root

F2 F1

r rr

ACHA

root

F2

r r

ACHA

r

B

C

B

(a)

(b)

Figure 36: The best case of Clustering

90

CHAPTER 6

SIMULATION RESULTS AND DISCUSSION

6.1. Simulation Setup

Table 1 shows the simulation tools that we have used.

Table 1: Simulation Tools

Software Platform Tasks

GNU GLPK Linux Formulate and Solve the

ILP problem

MATLAB Windows, Linux -Create Topologies, data,

and module files for GNU

GLPK

- Simulate DARA, RIM,

LDMR, ACRA, SFRA, and

produce numerical results

MS EXCEL Windows -Plotting

For solving the ILP model, we used the GNU Linear Programming Kit (GLPK) under

Linux [24]. Parameters needed for ILP computation are computed by MATLAB and are

fed to the GLPK solver as shown in Figure 37.

91

Figure 37: Simulation tools for executing the optimization approach.

92

The deployment area is 1000x1000 m
2
 and the node’s transmission range is set to 100m.

To obtain statistically significant results, we have generated 20 random topologies for

each set of actor nodes. For each topology, we let each cut vertex node to fail and

performance metrics are computed accordingly. Finally, the results are averaged over all

randomly generated topologies. These averaged samples ensure that all results are

subjected to 90% confidence interval analysis and stays within 10% of the sample mean.

6.2. Performance Metrics

To evaluate the proposed approaches, we have computed the following performance

metrics:

 Total Travelled Distance: This metric gives the total distance travelled by all

nodes in the network during the recovery restoration. This metric indicates how

much energy will be consumed by the whole network due to the mechanical

movements of the network actors.

 Average Travelled Distance: This metric computes the average travelled

distance for a node that got engaged in the recovery operation. This metric can be

used to know how much energy loss is shared among nodes during the lifetime of

the network.

 Coverage loss rate: This metric captures the loss of coverage resulted from the

node movements.

 Coverage Loss: The area covered by a node is a circle with a radius of the acting

range of the actor. If two or more nodes overlap, they share an area that can be

93

covered by any of them. Overlapping among nodes decreases the total area

covered by a network.

1 2LossCov Cov Cov (6.1)

2

1

1LossRate

Cov
Cov

Cov
 (6.2)

Where 1Cov and 2Cov are the total area covered by network actors before and after the

failure, respectively.

 Number of Relocated Nodes: This metric shows also how many nodes in the

network had to move to restore the network connectivity. This metric is important

for mission-critical applications that strive to move the least number of actors.

 Number of messages: This metric captures the number of communication

messages that are sent by all nodes to perform the connectivity restoration

process.

6.3. Simulation Results

6.3.1. Central Approach

We compared our Central approach (ILP approach) to DARA [18] based on the total

travelled distance and the average travelled distance metrics. DARA – as explained in

chapter 2- is a distributed approach and therefore is different from ILP which solves the

problem based on a central point of knowledge. Each node in DARA keeps a table of its

94

1 and 2-hop. If a node does not hear from its 1-hop neighbor for a certain amount of time,

it assumes that neighbor has failed and a selection scheme is executed on each of the

failed node’s direct neighbors. Since each node has 2-hop information, all nodes

executing DARA have all the information needed to reach a decision. The best candidate

for moving is the one which has the least degree. If more than one node is having the

same degree, the best candidate is the one with the shortest distance. The final criterion

used to choose the best candidate in case of having two candidates is the node id.

To investigate the effect of maximum allowed travelled distance on the above metrics, we

compared the ILP model with the ILP model constrained with dmax. If dmax=100m, the

maximum allowed travelled distance equals to the actor communication range (i.e. 100m)

and it is called optimal cascading approach. Also, we compare ILP with dmax=200m and it

is called ILP-200.

Figure 38 compares ILP approach with DARA and optimal cascading. As expected, the

central approach based on ILP has the least travelled distance since it has global

information compared to DARA which is based on 2-hop information. The actors

following DARA are expected to consume twice the energy consumed by ILP approach.

Furthermore, ILP provides a lower bound to other heuristic approaches. However,

considering the averaged travelled distance per node, we can observe that DARA shows

the least consumed energy per moving actor as shown in Figure 39. This implies that

DARA involves more nodes in the recovery process compared with other approaches.

This finding shows that DARA is better than ILP approach in collaboratively recovering

the failed node.

95

Figure 38: ILP average total travelled distance

Figure 39: ILP average travelled distance per moving node.

96

A long travelled distance leads to excessive loss in the energy due to mechanical

movements of the actor during the recovery process. The ILP-200 curve show the total

travelled distance after putting a constraint of 200m on the maximum travelled distance

during recovery. Based on our simulation, a constraint of 200m which is double the

transmission range has a very comparable result to the general case where no restriction

is imposed.

One of the additional features that our approach is taking into account during recovery is

the coverage loss. For this purpose, we constrained the maximum coverage loss due to

node movement after the failure. As shown in Figure 40, the higher the accepted

coverage loss gets, the lower the travelled distance becomes. In fact, when we restrict the

coverage loss, more nodes need to move during the recovery and hence the total travelled

distance increases.

Now, let’s examine the case of multiple failures. Our ILP approach formulation is able to

handle multiple node failures at the same time. Figure 41 illustrates the effects of number

of failed nodes on the total travelled distance for different network sizes. Small networks

incur the most relocation overhead when many nodes fail simultaneously, because the

node density is low and the actor nodes need to move long distances to re-establish the

connectivity. Figure 42 shows a linear relation between the total travelled distance and

the number of failed nodes for different values of coverage loss thresholds. The

relationship is leaner since the recovery of every additional failed node adds a relatively

similar cost for the same network size.

97

Figure 40: ILP coverage effects on the average total travelled distance.

Figure 41: ILP averaged total travelled distance versus the number of failed nodes.

98

Figure 42: ILP coverage effects on total travelled distance in case of multiple failures (Nodes = 60)

.

99

6.3.2. LDMR Simulation Results

In this section, we compare LDMR to RIM approach which is based on shrinking

network topology toward the failed node in order to restore connectivity of the network

as explained in chapter 2. The transmission range used in our simulation is set to 150m.

Figure 43 shows the total travelled distance for the two approaches. RIM performs better

when the number of nodes is small. As the number of nodes increases, LDMR

outperforms RIM. In our simulation, this happened when the number of nodes exceeds 70

nodes. In the case of RIM approach, the number of moving nodes increases as the

network becomes larger. The total travelled distance resulted using RIM is almost

doubled (N>100) compared to LDMR. Furthermore, in LDMR, the probability of finding

a closer non cut-vertex node increases when the number of nodes increases. Therefore,

when the network becomes larger, the total distance travelled under RIM increases while

it decreases in the case of the LDMR.

Figure 44 shows the average coverage loss rate resulting after applying each approach.

RIM also shows a better result when the number of nodes are small. However, when the

number of nodes increases, the network starts to lose coverage because more overlapping

is resulted due to larger number of nodes movement. In the case of the LDMR, the nodes

which replace the positions of the direct neighbors of the failed node become very close

to each other and therefore more overlapping is resulted which degrades the total

100

Figure 43: The total distance (LDMR vs. RIM) travelled by the involved nodes during the recovery (r=150).

Figure 44: The loss coverage rate (LDMR vs. RIM) during the recovery (r=150).

101

coverage compared to RIM. However, as the network becomes larger the total coverage

for the two approaches becomes comparable. As clearly indicated in Figure 44, the loss

coverage rate becomes relatively very small as the number of nodes increases. When the

network is large, this value becomes very small compared to the total covered area.

6.3.3. ACRA Simulation Results

In the section, we compare ACRA to RIM which depends only on cascaded movement.

We described how the movement used in ACRA is different from RIM in section 4.4.1.

We also compared ACRA to approaches that depend on 2-hop information such as

DARA [18] in terms of communication messages.

Total Travelled Distance: Figure 45 illustrates the robustness of the adaptive approach

where the total travelled distance is lower than RIM for the whole range of network sizes.

According to the simulation results, ACRA has a very comparable cost for networks with

less than 40 nodes. As networks become larger than 40 nodes, ACRA starts

outperforming RIM because it avoids cascaded movement when nearby non-cut-vertices

can be used to bring back the connectivity to the network with lower cost.

Number of relocated nodes: The Results depicted in Figure 46 show that ACRA tries to

move fewer nodes than RIM. This is a very interesting and desirable feature for mission-

critical networks. Furthermore, the results show that ACRA is less sensitive to the

network size which means the proposed approach is capable of selecting the right node

and move it to the right location. This feature can also be observed in Figure 45 and

Figure 51.

102

Figure 45: Total Travelled Distance (ACRA vs. RIM) (r=100)

Figure 46: Figure 46: Number of moving nodes (ACRA vs. RIM) (r=100)

103

Figure 47: Average Travelled Distance per node (ACRA vs. RIM) (r=100)

Figure 48: Number of communication messages (ACRA vs. RIM vs. 2-hop info (DARA))

104

Average Travelled Distance per node: RIM has a lower average travelled distance per

node than ACRA because RIM moves larger number of nodes. However, since RIM

starts to perform very bad in large networks, the gap becomes smaller in large networks

(see Figure 47).

Communication Messages: Approaches that need 2hop information such as DARA

show more overhead and communication messages than RIM and ACRA. RIM shows the

least message overhead compared with ACRA and DARA. This result is expected as

ACRA involves search requests, responses, and other type of messages needed to

properly execute the recovery process as we explained in section 4.4 (see Figure 48).

Maximum number of hops: Figure 49 shows that when the maximum number of hops

(i.e., H) increases, we can see a small enhancement in the performance if repositioning

non-cut-vertices is the only option. This is because moving a node that is two hops away

from the searching node is better than commanding the closest node to recover and do the

search again. However, the enhancement is minimal and demands extra overhead. To

include the nodes that are two hops away, the time-to-live has to be at least two hops. The

effect of the maximum number of hops on ACRA is shown in Figure 50. As the number

of hops increases, the total travelled distance increases in smaller networks. However,

this effect starts to diminish as the network size increases. Such a trend is expected since

using a non-cut-vertex is more frequently executed if we increase the cut-off threshold

(number of maximum hops). Non cut-vertex utilization has a lower cost in larger

networks. By comparing Figure 49 and Figure 50, ACRA shows a better performance for

small networks (less than 100) since ACRA executes RIM in case of not finding a non-

cut-vertex candidate. RIM has a better performance than LDMR in small networks.

105

Figure 49: The effects of maximum hops on the total travelled distance using (ACRA) (r=150)

Figure 50: The effects of maximum hops on the total travelled distance of ACRA (r=150)

106

Figure 51: The effect of communication range on the average travelled distance for ACRA and RIM.

107

Communication range: Both approaches (RIM and ACRA) are affected by increasing

the communication range. However, RIM is the most affected approach since its cost

increases rapidly when the network size grows. ACRA is still proving to be the best by

having the least travelled distance cost for all range of network sizes as shown in Figure

51.

Coverage Loss Rate: Results shown in Figure 52 are based on equation (6.2). Since

ACRA behaves adaptively, the coverage loss rate is between RIM and LDMR

approaches. It achieves better coverage in small networks than LDMR because it execute

cascaded movement (RIM) in small networks more often than exploiting non-cut-vertices

which cause more overlapping with neighbors after moving. On the other hand, ACRA

achieves the same performance as LDMR in large networks.

6.3.4. SFRA Simulation Results

In this section, we studied SFRA via simulation. We used a uniform random probability

of failure (PF) to pick the failed nodes among the cut-vertices. For each network size, we

compute the average number of failed nodes based on this probability. It is worth to

mention that non cut-vertices are leaf nodes in the recovery tree and do not partition the

network if they fail.

Figure 53 shows the total travelled distance cost of SFRA for different probabilities of

failure for each multiple network sizes. It is obvious from the plot that for a certain

network size, the recovery cost grows when with the increase in the failed node count

(higher PF). Having many failed nodes in the recovery tree means more children need to

move and therefore a longer distance to be travelled. For a fixed probability of failure, the

108

Figure 52: Coverage Loss Rate of ACRA compared to RIM and LDMR

109

cost of recovery increases when the network size (number of nodes) increases. This is

because the increased node count implies the involvement of more nodes in the recovery

process and thus the total and average distance grows.

To assess the overhead imposed by the recovery process executed by SFRA, we first

examine SFRA for a single node failure and hence, we compared the total travelled

distance per failed node to RIM and LDMR. RIM is a recovery approach that moves

healthy nodes inward toward the failed node and achieves good results in small networks.

On the other hand, LDMR depends on non-critical nodes to recover from a node failure

and performs well in large and dense networks. Figure 54 shows that SFRA yields the

smallest travelled distance per failed node compared to RIM and LDMR. This indicates

the robustness and efficiency of SFRA for various network sizes.

SFRA operation depends on the per-defined cluster size. To explore the impact of cluster

size on the performance of SFRA, we fixed the failure probability and compared the total

travelled distance for different cluster sizes and different network sizes. We observed that

assigning each node to a nearby cluster head really helps in lowering the travel overhead.

Figure 55 shows that for networks with 40 and 60 nodes, the recovery cost grows slightly

when the cluster size increases. This is very much intuitive since the relocating nodes

have to travel further to the position of their cluster heads, when deemed necessary.

However, for a network of 100 nodes, clustering does not show significant improvement

since the number of healthy nodes is large, and many leader nodes can be identified to

replace their parents without the need to reach the cluster heads. This result shows that

clustering always improve the performance compared to the case of letting leader nodes

go to the root directly (cluster size equals one). In addition, using a smaller cluster size

110

Figure 53: Total travelled distance of SFRA for different probability failure (PF)

Figure 54: Avg. travelled distance per failed node of SFRA compared to single failure approaches

111

Figure 55: Total traveled distance of SFRA for different cluster sizes (PF = 0.25)

112

achieves a slightly fewer number of communication messages during weight computing

and clustering phases. Non cluster nodes will send three different messages: rank

assignment, weight computing, and clustering messages. Cluster nodes will send only

rank assignment and clustering messages. Increasing the cluster size will increase non

cluster nodes and decreases cluster count for the same network size which lead to a

slightly more communication messages. Table 2 shows that there is a about %4.5

increase in number of sent messages when the cluster size is increased from 5 to 15. The

percentage of increase stays almost unchanged for different network sizes.

Table 2: Number of sent messages during rank, weight computing, and clustering phases of SFRA

nodes

Cluster size = 5 Cluster size = 15 %

increase

40 4647 4853 %4.43

60 7847 8201 %4.51

100 1602 1674 %4.49

113

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In conclusion, we provided the followings through our work:

 The problem of optimal self-healing of a partitioned wireless sensor and actor

network is formulated as an Integer Linear Program (ILP). The total distance

travelled by relocating nodes is minimized while not exceeding a predefined

coverage loss rate. Extensive simulation experiments have been conducted to

validate our approach. We have used DARA, a distributed connectivity

restoration heuristic, as a baseline for performance comparison. The simulation

results have confirmed the superiority of our approach. Our ILP formulation can

be viewed as providing a lower bound on achievable total travel distance for

node-relocation-based connectivity restoration schemes.

 A distributed approach that restores the connectivity of WSAN has been

presented. The Least distance Movement Recovery (LDMR) exploits non cut-

vertices actors to replace other nodes in the recovery process. We have compared

LDMR approach to RIM and shown via extensive simulation experiments and

analysis that LDMR imposes less travelled distance overhead in larger networks.

 An enhancement to LDMR is given by presenting an adaptive connectivity

restoration approach (ACRA) for efficient and autonomous repair of partitioned

wireless sensor and actor networks that is caused by the failure of a critical (cut-

vertex) actor. ACRA replaces the failed actor with one of the existing nodes and

114

adaptively selects the failure recovery strategy in order to minimize the overhead.

Non cut-vertices are preferred if they are available in the vicinity of the failed

node, otherwise multiple nodes are sequentially moved in a cascaded manner.

Due to the adaptive nature of ACRA, it can be implemented over a wide range of

network sizes. ACRA is validated analytically and via simulation. Extensive

simulation experiments have confirmed the effectiveness and correctness of

ACRA and demonstrated that it imposes less motion overhead and engages fewer

nodes than contemporary recovery schemes found in the literature.

 A new approach for recovery from multiple simultaneous node failures in

wireless sensor and actor networks (SFRA) has been presented. In SFRA, each

node has a rank based on the number of hops to a pre-designated root node in the

network. Some nodes are identified as cluster heads based on the number of their

children in the recovery tree. Each node is assigned a recovery weight and a

nearby cluster node which serves as a gateway to other nodes that belong to that

cluster. The recovery weight is used to decide which node is better to move in

order to achieve lower recovery cost. The simulation results have demonstrated

that SFRA can achieve low recovery cost per failed node in small and large

networks. The results have also shown that clustering leads to lower recovery cost

if the sub-network needs to re-establish links with the rest of the network.

For future work, we could do the followings:

115

 Improving our centralized scheme by adding new constraints representing

additional factors to the problem such type of task, status of the node, and

other QoS metrics.

 Since our distributed schemes depend on searching, we could extend the

search to support different node capabilities. For example, the searching nodes

in LDMR and ACRA look for a node having the same capability of the failed

node.

 Integrating ACRA and SFRA in one unified approach.

116

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor

networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393–422, Mar. 2002.

[2] E. Ould-Ahmed-Vall, D. M. Blough, B. H. Ferri, and G. F. Riley, “Distributed global

ID assignment for wireless sensor networks,” Ad Hoc Networks, vol. 7, no. 6, pp.

1194–1216, Aug. 2009.

[3] H. Zhou, M. W. Mutka, and L. M. Ni, “Reactive ID Assignment for Wireless Sensor

Networks,” Int J Wireless Inf Networks, vol. 13, no. 4, pp. 317–328, Oct. 2006.

[4] Z.-G. Du, D.-P. Qian, and Y. Liu, “Addressing Protocols for Wireless Sensor

Networks,” Journal of Software, vol. 20, no. 10, pp. 2787–2798, Nov. 2009.

[5] K. Akkaya and M. Younis, “A survey on routing protocols for wireless sensor

networks,” Ad Hoc Networks, vol. 3, no. 3, pp. 325–349, May 2005.

[6] J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wireless sensor networks: a

survey,” IEEE Wireless Communications, vol. 11, no. 6, pp. 6 – 28, Dec. 2004.

[7] I. Demirkol, C. Ersoy, and F. Alagoz, “MAC protocols for wireless sensor networks:

a survey,” IEEE Communications Magazine, vol. 44, no. 4, pp. 115 – 121, Apr. 2006.

[8] G. Hoblos, M. Staroswiecki, and A. Aitouche, “Optimal design of fault tolerant

sensor networks,” in Proceedings of the 2000 IEEE International Conference on

Control Applications, 2000, 2000, pp. 467–472.

[9] D. Nadig, S. S. Iyengar, and D. N. Jayasimha, “A new architecture for distributed

sensor integration,” in , IEEE Southeastcon ’93, Proceedings, 1993, p. 8 p.–.

[10] C.-C. Shen, C. Srisathapornphat, and C. Jaikaeo, “Sensor information networking

architecture and applications,” IEEE Personal Communications, vol. 8, no. 4, pp. 52–

59, 2001.

[11] T. Melodia, D. Pompili, V. C. Gungor, and I. F. Akyildiz, “Communication and

Coordination in Wireless Sensor and Actor Networks,” IEEE Transactions on Mobile

Computing, vol. 6, no. 10, pp. 1116 –1129, Oct. 2007.

[12] P. Basu and J. Redi, “Movement control algorithms for realization of fault-

tolerant ad hoc robot networks,” IEEE Network, vol. 18, no. 4, pp. 36 – 44, Aug.

2004.

[13] G. Wang, G. Cao, T. La Porta, and W. Zhang, “Sensor relocation in mobile sensor

networks,” in Proceedings IEEE INFOCOM 2005. 24th Annual Joint Conference of

the IEEE Computer and Communications Societies, 2005, vol. 4, pp. 2302–2312 vol.

4.

[14] W. Wang, V. Srinivasan, and K.-C. Chua, “Using mobile relays to prolong the

lifetime of wireless sensor networks,” in Proceedings of the Annual International

Conference on Mobile Computing and Networking, MOBICOM, 2005, pp. 270–283.

[15] A. A. Abbasi, M. Younis, and K. Akkaya, “Movement-Assisted Connectivity

Restoration in Wireless Sensor and Actor Networks,” IEEE Transactions on Parallel

and Distributed Systems, vol. 20, no. 9, pp. 1366–1379, 2009.

[16] K. Akkaya, F. Senel, A. Thimmapuram, and S. Uludag, “Distributed Recovery

from Network Partitioning in Movable Sensor/Actor Networks via Controlled

Mobility,” IEEE Transactions on Computers, vol. 59, no. 2, pp. 258–271, 2010.

117

[17] F. Dai and J. Wu, “An extended localized algorithm for connected dominating set

formation in ad hoc wireless networks,” IEEE Transactions on Parallel and

Distributed Systems, vol. 15, no. 10, pp. 908–920, 2004.

[18] M. Younis, S. Lee, and A. A. Abbasi, “A Localized Algorithm for Restoring

Internode Connectivity in Networks of Moveable Sensors,” IEEE Transactions on

Computers, vol. 59, no. 12, pp. 1669–1682, 2010.

[19] K. Akkaya and M. Younis, “C2AP: Coverage-aware and Connectivity-

constrained Actor Positioning in Wireless Sensor and Actor Networks,” in

Performance, Computing, and Communications Conference, 2007. IPCCC 2007.

IEEE Internationa, 2007, pp. 281–288.

[20] M. Younis and K. Akkaya, “Strategies and techniques for node placement in

wireless sensor networks: A survey,” Ad Hoc Networks, vol. 6, no. 4, pp. 621–655,

Jun. 2008.

[21] N. Tamboli and M. Younis, “Coverage-aware connectivity restoration in mobile

sensor networks,” Journal of Network and Computer Applications, vol. 33, no. 4, pp.

363–374, Jul. 2010.

[22] K. Akkaya and F. Senel, “Detecting and connecting disjoint sub-networks in

wireless sensor and actor networks,” Ad Hoc Networks, vol. 7, no. 7, pp. 1330–1346,

Sep. 2009.

[23] S. Lee and M. Younis, “Recovery from multiple simultaneous failures in wireless

sensor networks using minimum Steiner tree,” Journal of Parallel and Distributed

Computing, vol. 70, no. 5, pp. 525–536, May 2010.

[24] P. Sinha, R. Sivakumar, and V. Bharghavan, “MCEDAR: multicast core-

extraction distributed ad hoc routing,” in 1999 IEEE Wireless Communications and

Networking Conference, 1999. WCNC, 1999, pp. 1313–1317 vol.3.

[25] S. K. Das, B. S. Manoj, and C. S. R. Murthy, “Weight based multicast routing

protocol for ad hoc wireless networks,” in IEEE Global Telecommunications

Conference, 2002. GLOBECOM ’02, 2002, vol. 1, pp. 117–121 vol.1.

[26] R. S. Sisodia, I. Karthigeyan, B. S. Manoj, and C. S. R. Murthy, “A preferred link

based multicast protocol for wireless mobile ad hoc networks,” in IEEE International

Conference on Communications, 2003. ICC ’03, 2003, vol. 3, pp. 2213–2217 vol.3.

[27] A. A. Abbasi and M. Younis, “A survey on clustering algorithms for wireless

sensor networks,” Computer Communications, vol. 30, no. 14–15, pp. 2826–2841,

Oct. 2007.

[28] J. Luttamaguzi, M. Pelsmajer, Z. Shen, and B. Yang, “Integer programming

solutions for several optimization problems in graph theory,” in 20th International

Conference on Computers and Their Applications (CATA 2005). Also as a DIMACS

technical report, 2005.

118

Vitae

Name :Abdullah Alfadhly

Nationality :Saudi

Date of Birth :1/11/1970

 Email :ab.fadhly@gmail.com

Address :P.O Box 6086. Riyadh 11442

Academic Background :I received the B.S degree in Computer Science and

Engineering from King Saud University, Riyadh, Saudi Arabia in 1994. In 1995, I

joined King Abdulaziz City for Science and Technology (KACST). I received the

M.S degree in Computer Engineering from Case Western Reserve University

(CWRU), Cleveland, US in 2001. My research interests include Wireless Sensor

Networks, Cognitive Radio, and 4G networks.

