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Wireless sensor and actor networks (WSANs) have emerged recently in many Mission 

Critical Applications (MCA) such as military surveillance, research and rescue, and fire 

extinguishing, etc. These types of applications need to be deployed on robust networks 

that can handle node failures in real time manner.  However, WSAN usually operate in 

harsh environment and thus become susceptible to breakage in connectivity due to the 

failure of one or multiple actor nodes. Given that WSANS are deployed in remote areas, 

restoring connectivity through self-reconfiguring the network topology becomes the most 

preferred solution. In this PhD dissertation, we investigate the requirements of Critical 

Mission Wireless Sensor and Actor Networks in terms of robustness and connectivity and 

provide analytically and by simulation central and distributed approaches to handle single 

and multiple node failures.  The central approach which serves as a lower bound to other 

heuristics is based on Integer Linear Programming (ILP) formulation and uses traveled 

distance as its objective function. While minimizing the total traveled distance is the main 

goal of the ILP approach, other performance metrics are considered such as the loss of 

coverage and the maximum traveled distance by a node. Since applying a central 

approach is not feasible in WSAN, we developed distributed approaches that depend on 

local information, and provide a restoration mechanism that can handle single and 

multiple node failures with minimized cost. Our first distributed approach is called Least 
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Distance Movement Recovery approach (LDMR) which exploits non-critical nodes in the 

network in order to replace failed nodes. It has been enhanced to behave adaptively based 

on the network topology in order to achieve better performance in sparse and dense 

networks. The new adaptive approach which is based on LDMR is called Adaptive 

Connectivity Restoration Algorithm (ACRA).  

To restore network connectivity in case of multiple simultaneous failures, we developed a 

new approach called Simultaneous Failures Recovery Approach (SFRA). SFRA depends 

on constructing a recovery tree from the original network starting from a pre-assigned 

root. Unlike other solutions, SFRA can handle completely partitioned networks based on 

the current state of the network topology. We show the effectiveness and correctness of 

our approaches analytically and by simulations. 
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مثل المراقبة ظهرت شبكات الاستشعار التفاعلية في الآونة الأخيرة في كثير من التطبيقات الحرجة والهامة 

قات تحتاج إلى نشرها على شبكات قوية تستطيع العسكرية، والبحث والإنقاذ، والإطفاء، الخ. هذه الأنواع من التطبي

التعامل مع حالات الفشل آنيا . تعمل شبكات الاستشعار التفاعلية في بيئة قاسية ولذلك تصبح عرضة لانقطاع الاتصال 

وبالنظر إلى أن هذه الشبكات تنشر في أماكن نائية ، فإن إعادة الاتصال عن جهاز تفاعلي واحد أو أكثر. بسبب تعطل 

تحقننا من ريق إعادة التكوين الذاتي لطوبولوجيا الشبكة هو الحل الأكثر تفضيلا. في أطروحة الدكتوراه هذه ، ط

 ومتطلبات شبكات الاستشعار التفاعلية ذات التطبيقات الحرجة من حيث المتانة والاتصال ، وقمنا من الناحية التحليلية 

الحل ل مع فشل جهاز تفاعلي واحد أو أكثر من أجهزة هذه الشبكات. المحاكاتية بتوفير حلول مركزية و موزعة للتعام

المركزي والذي يمكن أن يمثل الحد الادني للحلول الأخرى قائم على البرمجة الخطية ذات العددية الصحيحة من حيث 

 الأساسي الهدف ل من المسافة الإجمالية للتحرك هومع أن التقليالصياغة ويستخدم مسافة التحرك كهدف وظيفي. 

والمسافة القصوى التي يمكن أن يقطعها أي ، إلا أننا اعتبرنا مقاييس الأداء الأخرى مثل فقدان التغطية  للحل المركزي

وبسبب ان الحلول المركزية ليست مجدية في شبكات الاستشعار جهاز تفاعلي أثناء عملية إعادة الاتصال للشبكة. 

لى المعلومات المحلية لكل جهاز تفاعلي ، وتوفر آلية للترميم تستطيع التفاعلية ، وضعنا حلول موزعة تعتمد ع

لحركة لفشل جهاز تفاعلي واحد أو أكثر بحدود أدنى للكلفة. حلنا الأول هو حل الاستعادة ذو المسافة الاقل  التعامل مع

(Least Distance Movement Recovery Approachوالذي يستغل الأجهزة التفاعلية ذات الم ) واضع غير

الحرجة )المهمة( في الشبكة من أجل استبدال الأجهزة التفاعلية المتعطلة ، وقد تم تعزيز هذا الحل بجعله متكيفا حسب 

طوبولوجيا الشبكة من أجل تحقيق أداء أفضل في الشبكات الكثيفة و المتفرقة. وقد أسمينا هذا الحل الجديد والذي يقوم 

 (.Adaptive Connectivity Restoration Algorithmة الاتصال المتكيفة )بخوارزمية إعادعلى حلنا الأول 

الاستعادة حل ولاستعادة اتصال الشبكة في حالة الفشل المتزامنة لأكثر من جهاز تفاعلي، وضعنا حلا جديدا يسمى 

رة ( . يعتمد هذا الحل على بناء شجSimultaneous Failures Recovery Approachفشل الآني )لا بسبب

عامل من الشبكة الأصلية بدءا من جذر محدد مسبقا. وخلافا لغيره من الحلول الأخرى ، يمكن لهذا الحل الت الاستعادة

وقد وضحنا صحة وفعالية هذه الحلول بالتحليل مع الشبكات المنقسمة تماما استنادا للحالة الراهنة لطوبولوجيا الشبكة. 

 والمحاكاة.
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CHAPTER 1 

INTRODUCTION 

 

1.1. Background 

In this section, we will give an introduction to Wireless Sensor and Actor Networks 

(WSANs) and its underlying technology: Wireless Sensor Networks (WSNs) since they 

share many features, challenges, and applications. We will first give an overview of 

WSN, and then we give an overview of WSAN. 

1.1.1. Wireless Sensor Networks (WSNs) 

Advances in electronic design and wireless communication have enabled the 

development of low power devices which have the capabilities of sensing, processing, 

and communicating. Those small devices can then be used to deploy a self-organized 

network whose function is to sense the surroundings in order to detect a certain condition 

or event, process the data, and send information to a management station or control an 

actuator. Therefore, the choice of sensors is obviously controlled by the type of the 

deployed application. Figure 1 shows the typical components of a wireless sensor 

network device.  

Wireless sensor networks can be used in many applications such as military, 

environmental, health, home, and other commercial applications. In military, they can be 

used in battlefield surveillance, reconnaissance of opposing forces and terrain, targeting, 
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Figure 1: A typical wireless sensor network node components (redrawn from [1]) 
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battle damage assessment, and nuclear, biological and chemical attack detection and 

reconnaissance. Some examples of environmental applications include tracking the 

movements of birds, small animals, and insects, forest fire detection, bio-complexity 

mapping of the environment, Flood detection, and precision agriculture. Health 

application include patient monitoring, drug administration in hospitals, monitoring the 

movements and internal processes of insects or other small animals; tele-monitoring of 

human physiological data, and tracking and monitoring doctors and patients inside a 

hospital. Home automation and smart environment are examples of Home applications. 

Other applications may include interactive museums, detecting and monitoring car thefts, 

and managing inventory control [1]. 

Several factors make the design of WSN protocols a challenging task. First, Sensors are 

constrained in energy supply, processing capability, and bandwidth capacity. Second, 

they are deployed in very large quantities, therefore they usually do not use global 

addressing because it is difficult to maintain, although there are some efforts to overcome 

this issue [2]–[4]. Third, in most scenarios, the flow of data in WSN is from multi-nodes 

(network devices) to a single node (the sink). Fourth, sensors produce redundant data 

which has to be aggregated so that more energy can be preserved by cutting the number 

of transmissions [5], [6].  Therefore, most researchers have worked to address these 

requirements when they designed their protocols and algorithms.  

Energy efficiency, scalability, and adaptability to changes are very important features in 

order to design a good MAC protocol for Wireless Sensor Networks [7]. Although, there 

are many proposed MACs for WSNs, there is no single protocol accepted as a standard 

for all types of applications. The rational is that WSNs are application specific which 



4 

 

means different network design objectives are needed for different applications.  On the 

other hand, routing techniques are classified into three categories based on the underlying 

network structure: flat, hierarchical, and location-based routing. Furthermore, these 

protocols can be classified into multipath-based, query-based, negotiation-based, QoS-

based, and coherent based depending on the protocol operation [6].  

Another influencing factor when designing a wireless sensor network is fault tolerance 

[1]. Fault tolerance is the ability to sustain sensor network functionalities without any 

interruption due to sensor node failures [8]–[10]. However, fault tolerance requirements 

can be relaxed if the application mission of WSN is not critical. On the other hand, On 

the other hand, if sensor nodes are being deployed in a battlefield for surveillance and 

detection, then the fault tolerance has to be high because the sensed data are critical and 

sensor nodes can be destroyed by hostile actions. 

1.1.2. Wireless Sensor and Actor Networks (WSANs) 

Wireless Sensor and actor networks have in addition to sensors more capable devices 

called actors. Actors are equipped with more energy and processing capability and they 

can communicate through longer distances. When a sensor detects an event, it first 

notifies a nearby actor which analyzes the data and coordinates with other actors for the 

required action. For example, in a forest fire detection application, sensors detect the fire 

and send this event to actors where they can coordinate among them and extinguish the 

fire before spreading to other parts of the forest.  Figure 2 shows a typical articulation of 

a WSAN.   
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In order for a WSAN to carry out its application successfully, it has to satisfy two 

requirements [11]: 

Coordination: Unlike WSN where there is a single entity (i.e. the sink) which receives 

all sensed information and deliver it to a central monitoring system, WSAN needs a 

coordination mechanism among actors to carry out the required task. The event can be 

detected by multiple sensors and therefore multiple actors can be notified. Reconstruction 

of the event and determining its characteristics is also part of actor-actor coordination 

[11]. 

Real time action: sensors have to propagate the data to actors in real time and actors 

have to act promptly. For example, in fire detection application, any delay yields the 

action later useless or impossible.  

The above two requirements impose difficult challenges in order to develop and design 

WSAN protocols and algorithms. 

WSANs are deployed usually in a hostile and harsh environment. Therefore, they are 

prone to frequent failures that could render the network useless if there is no self-

mitigation to such failures. Moreover, these nodes are battery operated, and therefore, 

they may exhaust their energies any time.  

1.2. Research Motivation 

Wireless Sensor and Actor Networks (WSAN) have attracted a lot of interest in recent 

years. Their potential applications include search-and-rescue, forest fire detection and
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containment, battlefield reconnaissance, under-water surveillance, etc. Many of those 

applications are mission critical where robustness is very important. Given the 

collaborative nature of the WSAN operation and the criticality of the deployed 

applications, inter-actor connectivity is essential. Obviously, coordination among actors 

cannot be performed in a disconnected network topology. Therefore, actors strive to 

sustain communication links among themselves when they move. However, the failure of 

one or multiple actors may partition the network into disjoint sub-networks. This may 

happen while responding to a harsh event, e.g., a fire, and would require a rapid recovery 

so that the event would not get out of hand and lead to disastrous consequences. Since 

WSAN operate unattended and the deployment of spare actors may take time, the 

recovery should be performed through network self-reconfiguration using existing 

resources. Not only an actor failure may lead to a loss of inter-actor connectivity, but it 

also causes degradation in coverage in the vicinity the failed node. Having good actor 

coverage is very important in WSAN in order to make sure that a sensor can report its 

finding to an actor and the actor responds in a timely manner. Therefore, recovery from 

actor failure should not only restore severed connectivity but also should strive to limit 

the loss in actor coverage. 

Although, there is some research in this area, more research is needed to model the dis-

connectivity problem, develop new approaches that can recover single and multiple node 

failures. 



8 

 

1.3. Contributions 

 We studied how a failure of an actor or multiple actors can be tolerated in 

mission-critical WSANs by maintaining the inter-actors connectivity. Unlike 

other costly solutions which depend on the increasing of a connectivity factor 

(number of connections) between actors [12], we proposed a distributed solution 

that can operate in real time and restore connectivity to the network with a 

minimized cost.  

 We first modeled the problem mathematically and came up with an optimal 

solution. In this step, we assumed a central entity that has all information needed 

to reach the optimal decision. In our analysis, we considered the following 

metrics: 

Total Traveled Distance: This metric gives the total distance traveled by all nodes in 

the network during the recovery restoration. This metric indicates how much energy 

will be consumed by the whole network due to the mechanical movements of the 

network actors. 

Average Traveled Distance: this metric computes the average traveled distance for a 

node that got engaged in the recovery operation. This metric can be used to know 

how much energy loss is shared among nodes during the lifetime of the network. 

Coverage: this metric captures the loss of coverage resulted from the node 

movements.  
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 After analyzing results from the central approach, we developed distributed 

approaches that achieve low distance cost, low communication messages, and 

can handle single and multiple node failures.  

 We developed a distributed approach that takes advantage of non-critical nodes 

in the network in order to restore connectivity among network nodes. The 

approach strives to lower the total movement distance caused by the process of 

the recovery. Therefore, we call it Least Distance Movement Recovery Approach 

(LDMR). LDMR provides a detailed mechanism on searching for non-critical 

nodes and avoiding conflicts or network dis-connectivity during recovery. 

 We enhanced LDMR by making the approach behaving adaptively based on the 

network topology. The new adaptive approach which is called Adaptive 

Connectivity Restoration Algorithm (ACRA) achieves low cost in case of sparse 

and dense networks. It also achieves better coverage compared to other 

approaches that depends on shrinking network nodes in case of failures. 

 Restoring a connective to the network in a distributed manner in case of 

simultaneous nodes failures is very challenging. Therefore we developed an 

efficient and robust approach that handles multiple simultaneous failures and 

achieve low cost. The new approach is explained in detail and verified by an 

extensive simulation. 

Figure 3 shows the main steps that describe our work. The mathematical 

representation is based on Integer Linear Programming (ILP) formulation. While 

message complexity is not an issue in the central approach, it is a performance metric 
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in developing distributed approaches.  In addition, multiple failures bring complexity to 

the distributed approaches because of the locality of information. A node or a group of 

nodes cannot be aware of all failures in the network in order to do the right action in a 

self-healing process.  

1.4. Thesis Organization  

The next chapters are organized as the followings: 

Chapter 2:  it provides detailed literature review on the subject of connectivity fault 

tolerance in WSAN. In our review, we focused on the real time approaches that use 

mobility as a primitive to restore connectivity to the partitioned networks. 

Chapter 3: we explained our central approach which is based on ILP formulation. We 

showed the objective functions, the problem constraints, and provided a detailed 

example. Our work in this chapter and its simulation results is published under the 

following publication: 

Alfadhly, A., U. Baroudi, and M. Younis. "Optimal node repositioning for tolerating 

node failure in wireless sensor actor network." Communications (QBSC), 2010 25th 

Biennial Symposium on. IEEE, 2010. 

Chapter 4:  we discussed our distributed solution for a single node failure. The solution 

is called Least Distance Movement Recovery Approach (LDMR). LDMR was also 

extended to enhance its performance. The enhanced approached is called an Adaptive 

Connectivity Restoration Approach (ACRA). Our work in this chapter and its simulation 

results is published under the following publications: 
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Alfadhly, Abdullah, Uthman Baroudi, and Mohamed Younis. "Least distance movement 

recovery approach for large scale wireless sensor and actor networks." Wireless 

Communications and Mobile Computing Conference (IWCMC), 2011 7th International. 

IEEE, 2011. 

Alfadhly, Abdullah, Uthman Baroudi, and Mohamed Younis. "An adaptive connectivity 

restoration algorithm for wireless sensor and actor networks." International Journal of 

Autonomous and Adaptive Communications Systems 6.2 (2013): 167-190. 

Chapter 5:  we discussed our distribution approach for multiple node failures. The 

approach is called Simultaneous Failures Recovery Approach (SFRA). Our work in this 

chapter and its simulation results is published under the following publications: 

Alfadhly, Abdullah, Uthman Baroudi, and Mohamed Younis. "An effective approach for 

tolerating simultaneous failures in wireless sensor and actor networks." Proceedings of 

the first ACM international workshop on Mission-oriented wireless sensor networking, 

2012. 

A journal version of the above publication with extra analysis and more details is also in 

the process of submitting.  

Chapter 6: in this chapter, we presented the simulation setup, and discussed and 

compared the simulation results of all approaches: Central Approach, LDMR, ACRA, 

and SFRA.  

Chapter 7: we provided our conclusions and directions for future works. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1. Overview 

Motion capability of nodes has been utilized in wireless sensor networks and wireless 

sensor and actor networks in order to enhance the performance metrics of these networks. 

In wireless sensor networks, movable sensors are proposed to patch coverage holes, 

prolong network lifetime, and restore connectivity. For example, unbalanced coverage 

among different regions of the deployment area can happen in cases where random 

deployment is used because of the hostile and harsh environments. To solve such 

problem, a relocation of sensors has been proposed in [13] to solve such problem or to 

respond to sensor failures. Redundant sensors are detected first through a Grid-Quorum 

search, and directed to other locations where a problem exists. A cascaded movement is 

used by moving sensors to balance loss of energy among sensors. For extending network 

lifetime, relay nodes that can move has been proposed to collect data from sensors and 

send it to the base station [14]. While these mobile nodes can reach isolated sensors, its 

movement causes latency and may not be suitable for WSAN real time applications.  

Most of the published schemes on tolerating node failure in WSAN can be classified into 

two categories:  

 Provisioned solutions which rely on the availability of redundant resources that 

can make up for the lost node(s). However, provisioned solutions for restoring 

connectivity are not suitable for WSAN since actors are typically more expensive 



14 

 

and hard to deploy compared to sensors and thus assuming the presence of many 

actors is not practical. 

  Real-time solutions which rely on repositioning the healthy actors so that a 

strongly connected inter-actor network topology can be established.  

Since our proposed approaches fall into the second category, we will focus on this 

category explaining approaches proposed in the literature. We shall begin with 

approaches that tried to tackle the single node failure at a time and then we present the 

existing approaches that tried to solve the simultaneous multi-failure nodes problem. 

2.2. Single Failure Approaches 

These approaches are based on algorithms that are designed to handle one failure at a 

time. If there is more than one node failing at the same time, these algorithms may not 

work properly. For example, DARA [15] replaces the failed node with one of its 

neighbors. The approach requires every node to maintain 2-hop neighbor information so 

that the effect of the loss of a node can be assessed, i.e., whether the failed node is highly 

probable a cut-vertex or not. The candidate among the neighbors of the failed node is 

picked based on the node degree, distance from the failed node and the node’s ID 

respectively. The effect of moving a node triggers a cascaded relocation that ripples 

throughout the network to avoid breaking connectivity in another part in the network. 

Figure 4 shows an example illustrating how DARA works.  In this example, A1 which is 

the failed node has four neighbors: A2, A7, A8, and A9. A8 and A2 have a degree of two 

where A7 has a degree of three and A9 has a degree of four. According to DARA, the 

node with the least degree is the winner node which is replacing the failed node.  
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Figure 4: A DARA example: (a) the original network    (b) A8 is replacing A1   (c) A2 is replacing A1 
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Therefore, since all nodes know the degrees of all nodes 2-hop away from them, A9 and 

A7 stops proceeding in the algorithm because their degrees are greater than those of A8 

and A2. A2 and A8 then compare their distances to A1. If A8 has a less distance, A8 

replaces A1 as shown in Figure 4-(b). Figure 4-(c) shows the network after A2 replacing 

A1 assuming A2 has a less distance to A1. In the latter case, A3 moves to the old position 

of A2 in order to connect to the rest of the network.  

Another single failure approach called PADRA was proposed in [16]. It is a proactive 

scheme where each node assigns a fault handler (FH) for itself and sends a notification of 

assignment to this node. If a node fails, its fault handler starts the recovery process.  

The work in [15], [16] rely on the fact that cut vertex nodes are known. Cut vertex 

determination can be done using a Connected Dominating sets (CDS) algorithm [17]. A 

set of nodes is dominating if it contains all nodes in the system or all nodes can be 

reached through the nodes in the set. A node is dominator if it is in the dominating set 

and dominatee otherwise. For example, in Figure 5, nodes 4, 8, and 7 are dominatees 

while nodes 1, 2,3,5,6 are dominators. Based on CDS knowledge, cut-vertex 

determination can be achieved as the following: 

• If a node is a dominatee, it is not a cut vertex node.  

• If a node is a dominator, then we have two cases:  

• If the node has a dominatee neighbor which does not have any neighbor, 

the node in this case is a cut vertex since it is the only source that connects the 

dominatee node to other parts of the network.  
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• If the node has dominator neighbors or dominatees with neighbors, the node in 

this case can be either a cut vertex or not. To be certain, the node is a cut vertex, 

one of the node’s neighbors has to do a local Depth first Search (DFS) to look for 

the other neighbors of the node. If they can be found using another way, the node 

is not a cut vertex.  

To clarify this by the example in Figure 5, nodes 4, 7, 8 are not cut-vertices since they are 

dominatees. Nodes 2 and 6 are cut-vertices since they are dominators which have 

dominatee neighbors. Nodes 1 and 5 are dominators and their neighbors are dominators 

also. However, if a DFS is done in node 6, there is no other way to reach node 1. 

Therefore, node 5 is a cut-vertex. If another DFS is done in nodes 2 or 3, there is no other 

way to reach node 5. Therefore, node 1 is a cut-vertex. Node 3 is a dominator but it is not 

a cut-vertex since we can reach 2 or 1 without passing through 3. 

While [15], [16] need the detection of cut-vertices, Recovery through Inward Motion 

(RIM) approach [18] avoids doing this to simplify the recovery process. RIM needs only 

1-hop neighbor information to function properly. After a node detects a failure of one its 

neighbors, it moves toward (i.e. in the direction of) the position of the failed node until it 

becomes r/2 away where r is the transmission range. This first movement ensures that all 

neighbors of the failed node are connected. However, they may lose their connections 

with their neighbors. Therefore, their neighbors need to do cascaded movement but this 

time until they r away. This later process is repeated until all nodes are connected. In 

RIM, if a node is a neighbor of two moving nodes, it follows the node which has the 

highest rank (fewer hops to the failed node). If both nodes have the same rank, it moves 

to the closest intersection point of the two circles centered by it is two neighbors. Figure 
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6 is an example showing the operation of RIM. At first, nodes 2, 3, 4, and 5 detect the 

failure of node 1. They send notification to their neighbors and move to the position of 

node 1 until they are r/2 away. In the third step, although node 7 receives notifications 

from 5 and 4, but it moves to the node with highest rank which is 5 until it is r away from 

it. Node 6 receives notifications from two nodes with similar rank (5 and 4). Therefore, it 

moves to the closest intersection point of the two circles centered by 4 and 5. In the last 

step, node 8 moves to the position of node 7.  

The approach of [19] strives to limit the scope of cascaded relocation through the 

identification of dominators. Basically, the dominating set is determined and only 

cascaded relocation is pursued when a dominator moves. Meanwhile, Basu and J. Redi 

[12] assume the network is bi-connected prior to the failure and propose an algorithm that 

moves nodes in groups in order to restore the lost bi-connectivity when a node fails. 

However, deploying more actors to have a bi-connected network increases the cost of the 

application. In addition, having this feature cannot be guaranteed for random deployment. 

Unlike our approach, the focus of [12], [16], [19] has been on connectivity restoration 

without considering coverage. Most of published schemes that consider connectivity and 

coverage are geared for network planning and not to tolerate a node failure [20]. The only 

prior effort that factors in both connectivity and coverage, to the best of our knowledge, 

is reported in [21]. However, the approach is based on moving the neighbors of a failed 

node back and forth in order to minimize the effect of a node loss. In other words, 

connectivity cannot be guaranteed at all times.  
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Figure 5:  Cut-vertex determination 

 

 

Figure 6:  RIM example redrawn from [18] 
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2.3. Simultaneous Multiple Failures Approaches 

The above approaches solved the problem of a single failed node exploiting the fact that 

other nodes are residing in their current positions and they are working normally. In 

many circumstances, such as earthquake multiple nodes will fail simultaneously that 

cause the network to be partitioned into multiple disconnected segments. Therefore, the 

single node failure approaches cannot resolve this problem and a new paradigm is needed 

to reestablish the network connectivity. 

In [22], it was proposed to use the underlying sensors to detect other network partitions. 

After partitions have been detected, the closest node from each partition starts moving to 

each other. To maintain the connectivity in each partition, a cascaded movement is 

suggested 

The same assumption is targeted in [23]. However, their suggested solution was to let 

nodes move to the center of the deployed area. An optimization based on Minimum 

Steiner Tree (MST) is done to minimize the number of relay nodes needed to restore the 

connectivity. 

MPADRA was proposed in [7] as an extension to PADRA [6] to support multiple node 

failures. The problem of PADRA algorithm is the existence of a situation where one node 

is assigned to recover for two different nodes. If these two nodes fail at the same time, a 

race condition problem occurs and PADRA approach will not work. This problem is 

applicable for other proactive approach like DARA [5].  Although this problem was 

solved in MPADRA,  
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On the other hand, the idea of constructing a tree which we proposed in our simultaneous 

recovery approach was previously used for multicast routing in MANET [24]–[26]. 

However, the focus was only overcoming broken links. The loss of multiple nodes is 

significantly more challenging since the network gets partitioned and alternate routes will 

not be available between the affected nodes.  Clustering is also used widely in MANET 

mainly for scalability reasons [27]. To the best of our knowledge the use of clustering as 

means for mitigating the simultaneous failure of multiple nodes has not been pursued in 

the literature. 
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CHAPTER 3 

CENTRALIZED RECOVERY THROUGH NETWORK 

RECONFIGURATION 

3.1. Problem Definition 

Interconnectivity among actors in WSAN is a very important requirement for a successful 

deployed application. Therefore, an urgent real time restoration has to be done after a 

node failure. However, only cut-vertices and not all nodes in the network are essential to 

maintain connectivity. A failure of a cut-vertex node partitions the network into two or 

more disjoint segments. In Figure 7, nodes 1 and 5 are cut-vertices. To restore 

connectivity in this case, the failed node should be replaced by another (e.g., 6 in this 

example). The objective of the proposed approach is to have one or orchestrate a 

sequence of node movements with the least total travelled distance while not exceeding a 

pre-determined rate of coverage loss. We modeled the problem as an integer linear 

program as explained next. 

3.2. Motivation 

The recovery problem is modeled as Integer Linear Program (ILP) with an objective of 

forming a strongly connected inter-actor topology while minimizing the distance that the 

individual actors have to travel and minimizing the loss in coverage caused by the failure 

of some actors. The proposed solution handles the failure of one or multiple nodes and 

fits architectures in which the command center can develop the recovery plan. In 

addition, the proposed formulation provides a performance bound for existing schemes in 
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the literature, e.g. [5] which tolerates a single node failure. We also can build on this 

approach to develop a distributed approach that can provide a comparable performance. 

3.3. Modeling 

We model a WSAN as a graph G(V,E). A node ni in the network is represented with a 

vertex vi in G. An edge between vi and vj exists if there is a communication link between 

the corresponding two nodes ni and nj in the WSAN. Let xij be a binary variable that 

equals one if a node j is located in position i. Before failure, xii = 1 and xij = 0. After a 

failure, this condition does not hold since a node j has to move to position i where ni has 

failed. The recovery process that governs node motion is controlled by a cost function. In 

our approach, we tried to minimize this cost function while not violating any constraints 

imposed by the application. The model we used here to solve our problem is closely 

related to the permutation in integer programming formulation often used to solve graph 

related problems [28]. 

3.3.1. Objective Function:   

If N, V, and F are three sets representing the network, cut-vertices, and failed nodes 

respectively,     and    , our ILP objective function is : 

    ∑∑  
 

   

  
 

   

 (3.1) 

The objective function defines the total travelled distance resulted from the recovery 

operation. Our goal is to minimize this value subject to the problem constraints. 
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3.3.2. Constraints:  

Using the N, V, and F sets define above, the following are the constraints of the 

optimizing the objective function: 

 

 ∑  
 

   

            (3.2) 

 ∑   
 

       

        (3.3) 

 ∑ ∑   
 

          

   (3.4) 

Equation (3.2) ensures that a position i is not to be taken by more than one node at the 

same time while equation (3.3) ensures that node j can recover only one node at the same 

time. Assuming that there are M cut-vertices in the network, equation (3.4) guarantees 

that M nodes will be positioned there. Moreover, equation (3.4) ensures that the topology 

formed after recovery is strongly connected. To meet the coverage requirement, we added 

the following constraint: 

 ∑∑
  

   

   
      

       (3.5) 

where cj, cov, and l are the area exclusively covered by node j, the total area covered by 

all nodes, and maximum tolerable rate of coverage loss, respectively. This constraint 

ensures that after concluding the recovery efforts, the relative coverage loss resulting 

from node moving will not exceed l. To cap the distance that a node travels, we use the
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Figure 7:  WSAN before recovery; the number above each link is the Euclidian distance. 

 

 

 

Figure 8:  WSAN after recovery; the number above each link is the Euclidian distance. 
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following constraint: 

   
   

              (3.6) 

where dmax is the farthest distance that a node is allowed to move during the recovery. If 

the distance between any two nodes is larger than this value, none of the two nodes will 

move to the position of the other node during the recovery operation. It should be noted 

that the above formulation is able to handle the recovery of one or multiple node failures. 

3.4. Detailed Example 

Figure 8 shows how to apply our approach to the WSAN topology of Figure 7. Let us 

assume that node 1 has failed. The sets the network nodes N, cut-vertices V, and failed 

nodes F are as follows: 

• N=1, 2,3,4,5,6,7,8,  

• V=1,5, and  

• F=1 

Since node 1 is in the set of the failed nodes, it is considered as if it is not in its position 

anymore and the variable   
  is ignored as a valid solution by equation (3.4). Since node 1 

is a cut vertex, any valid solution to the problem has to have   
    where        . 

This implies that one of   
 ,   

 ,   
 ,   

 ,   
 ,   

 , or   
  has to be  in the output solution. The 

goal of the objective function is to minimize the distance, and hence the node which has 

the least distance to the failed node, i.e., node 6, will be chosen. The same condition 

above is applied to node 5 because it is a cut vertex as well. However, because node 5 is 



27 

 

not in the failed set,    
 is chosen as a valid solution since   

   . This means that node 5 

is in its place and active. The solution to this example is to set   
 ,   

 ,   
 ,   

 ,   
 ,   

 , and 

  
  to 1 and set the rest variables to 0. 
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CHAPTER 4 

DISTRIBUTED TOLERANCE OF SINGLE NODE 

FAILURE 

4.1. Introduction 

In the previous chapter, we have developed a centralized scheme which assumes a global 

knowledge about the network topology.  The cost resulting from using this approach is 

optimum. When validating our centralized approach, we found that many of the failures 

are optimally restored by nearby non cut-vertices which can move directly to replace of 

the failed nodes without breaking the network connectivity (see Figure 9). These results 

have motivated us to develop heuristics approaches that can operate similarly in a 

distributed manner. 

In this chapter, we present LDMR which is a distributed recovery algorithm that exploits 

non cut-vertex nodes in order to require the least travel distance from the engaged nodes. 

In LDMR, the neighbors of the failed node F move toward the position of F while they 

get replaced by their nearest non cut-vertex actors. The recovery process starts with the 

search phase where each neighbor broadcasts a message containing several entries such 

as failed node ID, neighbor node ID and, Time-To-Live (TTL). Each neighbor chooses 

the best candidate among the set of received responses based on a certain criteria (e.g. 

distance). The selected candidates replace the moved nodes without additional node 

relocation overhead. We compared our approach with RIM which depends only on 

cascaded movements. Extensive simulation experiments were carried out to validate the 

performance of LMDR. We showed that our approach outperforms RIM for larger and
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Figure 9: Optimal Solution Distribution 
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sparse networks. While the improvement in total travelled distance is achieved in these 

cases, loss of coverage after recovery operation is also comparable.  

4.2. System Model and Problem statement 

The WSAN network is composed of actors and sensors that are randomly deployed in an 

area. Actors are movable and have the capability to respond based on data collected by 

the sensors. All actors are assumed to have the same communication range. Since actors 

are more powerful than sensors, they typically have a longer communication range. After 

network deployment, a self-initialized phase is carried out by the whole nodes in the 

network. In this phase, each actor broadcasts a hello message with its identity and 

location. To cope with dynamic changes in the network, a heartbeat message is sent 

periodically by all actors. If an actor does not hear from its neighbor, a failure of that 

actor is assumed and the active actor has to take an immediate action.   

The inter-actor topology can be modeled as a graph G (N, E), where N is the number of 

actors and E is the number of edges. The actor’s position plays a key role in the stability 

of the network connectivity. Actors can be classified into two types: cut-vertex and non-

cut-vertex. The failure of a cut-vertex actor partitions the network into isolated islands, 

while when a non-cut-vertex actor fails; strong network connectivity is still maintained. 

For example, in Figure 10, A21, A7 and A6 are non-cut-vertices while A0 and A14 are 

cut-vertices. Therefore, to maintain the connectivity of the network, cut-vertex 

determination is important to react for node failures. Determining whether a node is a 

cut-vertex or not can be easily done by using depth first search trees (DFS). However,
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Figure 10: An example WSAN topology 
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this approach requires flooding the whole network and can be costly in terms of the 

message overhead.  

Thus, LDMR uses a distributed approach for such a purpose. Our LDMR approach 

employs the concept of connected dominating set (CDS). As every node can reach the 

nodes in a CDS, the connectivity of the network can be maintained as long as CDS is 

connected. 

We use the distributed algorithm of [17] in order to determine the CDS of a given 

network G. This identification is done only after detecting a failure. 

4.3. Least Distance Movement Recovery Approach (LDMR) 

LDMR exploits node mobility and the availability of non-cut-vertices in the network in 

order to minimize the distance that nodes collectively traveled during the recovery 

process. The idea is to use connectivity-uncritical nodes in restoring connectivity. The 

distinct feature of LDMR is the avoidance of the cascaded movement spread throughout 

the whole network. 

4.3.1. Recovery Steps 

The LDMR approach performs the recovery according to the following steps: 

1. If an actor AF is damaged or stops functioning, e.g. due to battery exhaustion, for 

example, this failure is detected by its neighbors due to the absence of the heartbeat 

messages which should have been sent by AF periodically.  
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2. Each neighbor in step 1 and not within r/2 distance from AF starts a search process 

looking for the nearest non cut-vertex node, where r is the communication range. This 

non cut-vertex is called a candidate node Cij. The neighboring node ANi broadcasts a 

search message containing several entries such as failed node ID, neighbor node ID and, 

Time-To-Live (TTL). Then, the nearest non-cut-vertex node replies to this message with 

its distance to ANi. Each neighbor chooses the best candidate among received responses 

based on the distance Dij.    

3. Then, ANi sends a request message commanding Cij to move to its position. Upon 

receiving this message, the commanded node acknowledges this message and starts 

moving to the specified position. This acknowledgment is necessary to avoid choosing 

the same non cut-vertex node by more than one neighboring node.  Therefore, the 

commanding node ANi should wait for the acknowledgment before moving. If a node 

does not receive an acknowledgment, it should select the next nearest candidate and so 

on. It is worth mentioning that the potential candidates, including Cij, will query its 1-hop 

and 2-hop neighbors and apply the CDS algorithm in order to know whether is not a cut-

vertex, and is able to declare its candidacy and respond positively to the request. 

4. Each neighbor node ANi moves toward the position of AF until it becomes r/2 away of 

it. If one of the neighbors is within this distance, no need to move further as proven in 

[18]. Each candidate node Cij sends movement notification message to its neighbors 

before sending the acknowledgment to the direct neighbor requestor ANi. This notification 

is essential to avoid network partitioning that may occur when multiple non cut-vertices 

neighbors move simultaneously. Then, if other neighbors receive similar requests to 

move, the nodes that believe that this movement may partition the network send panic 
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messages to prevent this movement. The next section will clarify this point more with a 

detailed example. 

5. After the movements in step 3 and 4, the network connectivity should have been re-

established.  

4.3.2. Detailed Example 

Figure 11 and Figure 12 illustrate how the LDMR works to restore the network 

connectivity. Consider the network topology shown in Figure 10. As marked in Figure 

11-(1), after the failure of node A10, its direct neighbors  {A3, A9, A11, A14} detect the 

failure and start the recovery process by searching for the nearest non cut-vertex nodes. 

The search process may consume a lot of communication messages which is not desirable 

in a constrained environment such as WSAN.  

Therefore, each node broadcasts a search request message and includes a Time-To-Live 

(TTL) parameter. In this example, we assume nodes {A3, A9, A11, A14} start with TTL 

equals 3 as shown in Figure 11-(1). Each receiving node of this message decrement the 

TTL value and forwards the message if the TTL is still greater than zero. If the receiving 

node is a non-cut-vertex, it will discard the request unless it comes from another initiator, 

i.e., neighbor of A10. In this example, nodes {A1, A4, A6, and A13} respond to the 

request of node A3, while nodes A15 and A16 respond to the request of A14. In addition, 

nodes A8 and A21 respond to the request of A9, and node A12 responds to the request of 

A11. Based on the distance between the potential candidate and the neighbor node that 

initiates the request, the closest candidate is picked and notified.  Each candidate sends an 
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Figure 11: LDRM steps   (1) Node A10 fails and its direct neighbors  begins the search process. (2) Direct 

neighbors  send recovery requests, A3 send its second request to A4 since it does not receive ACK from A9 
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Figure 12: LDMR steps:  (3) Nodes start moving  (4) The final network 
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acknowledgment to the corresponding node and starts moving. After receiving the 

acknowledgments, nodes A3, A9, A11, and A14 move toward the position of the failed 

node A10 until they are r/2 away from A10. These movements ensure all nodes are 

connected to each other as shown in Figure 12.  

Candidate nodes also inform their neighbors before sending the acknowledgment 

messages and then wait for some time to check the response of its neighbors. If no panic 

message is received, the candidate node Cij sends the acknowledgement message to the 

requester. In certain scenarios, more than one neighboring non cut-vertex nodes may 

move simultaneously as A8 and A1 in this example. This situation may lead to 

partitioning the network again (A7 is disconnected). Let us assume A8 sends the 

notification message first, A7 still is connected to the whole network via A1. Now, if A1 

sends it notification message, A7 will send a panic message which prevents A1 from 

sending the acknowledgment message. Consequently, if ANi did not receive an 

acknowledgment message from the nearest candidate, it picks the next nearest. In our 

example, it picks A4 instead of A1.  

Figure 13 shows the pseudo code of the LDMR approach. The recovery procedure is 

triggered by the missing heartbeat signal of the node neighbor. Lines 18-29 are not 

executed by direct neighbors since they are the ones who send search request for non-cut-

vertices. 

4.3.3. Algorithms Analysis 

LDMR’s functionality is similar to RIM [18]. Therefore, we shall compare LDMR 

performance to RIM. In RIM, if an actor fails (whether it is a cut-vertex or not), it's entire  
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1. IF a node detects a failure of one of its neighbors

2.    RecovNodes=SearchNonCutVertex()

3.    While RecovNodes != Null

4.                    C =min(RecovNodes)

5.           Send a Recovery command to C

6.                    IF ACK is received from C

7.               Move to the position of the failed node until 

8.               a distance of r/2

9.                   ELSE

10.                      delete C from RecovNodes

11.     END While

12.            IF RecoveNodes == Null

13.         Send a Recovery command to the closest neighbor

14.         Move to the position of the failed node until 

15.         a distance of r/2

16.     ENDIF

17          ENDIF

18.    IF NonCutVertexRequest(ID,TTL) is received

19.        IF I am a non-cutvertex 

20.            Send NonCutVertexRespnse(ID,cost)

21.        ELSE

22.            TTL = TTL – 1

23.            IF TTL != 0

24.               Forward NonCutVertexRequest(ID,TTL)

25.            ELSE

26.                Discard NonCutVertexRequest(ID,TTL)

27.            ENDIF

28.        ENDIF

29             ENDIF            

30. SearchNonCutVertex()

31.       While do

32.       Send NonCutVertexRequest(ID,TTLMAX) to each neighbor

33.       IF a Response from a NODE is received before TIMEOUT

34.          RecovNodes = NODE(S)

35.          BREAK

36.       ELSE

37.          RecovNodes = NULL

38.          BREAK

39.      END WHILE

40. RETURN RecovNodes
 

Figure 13: LDMR pseudo code 
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neighbors move towards its position until they are r/2 away of each other, where r is the 

communication range which is assumed to be equal for all actors. This movement ensures  

that all neighbors are connected after they reach the new positions. Moreover, before 

these nodes move, they send their ranks and new positions to their neighbors. The rank of 

a node is the distance in hops to the failed node. For example, the direct neighbors have a 

rank of one.  The neighbors of the direct nodes move until they are r away from those 

nodes. If a node is a neighbor to more than one moving node, it follows the node with 

higher rank, which has fewer hops to the failed node.  If a node has two neighbors which 

have the same rank, it moves to a position where it can hear both neighbors (the 

intersection of two circles cantered by the two nodes and have radius of r).  

4.3.4. Algorithm Complexity 

Examining the pseudo-code shown in Figure 13, most of the running time will be spent 

searching for the closest non cut-vertices. The search process is O(N.E) where N is the 

number of nodes and E is the number of edges.  However, because of the node failure, 

this space is divided among neighbors since each neighbor will search in its partition. We 

also propose the use of TTL to limit the search process running time.  

4.4. An Adaptive Connectivity Restoration Algorithm (ACRA) 

The simulation results of LDMR have indicated its suitability for dense networks. For 

sparse networks, the performance advantage seems to degrade significantly. Therefore, 

we present an extended algorithm which is based on LDMR and performs well in both 

sparse and dense networks. The proposed ACRA approach is adaptive in nature. In sparse 

networks, ACRA simply shrinks the network inward towards the position of failed node, 
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similar to RIM [18], while it exploits non-cut-vertices when the network is dense. ACRA 

is a reactive recovery scheme that does not require any pre-failure provisioning. This 

eliminates the communication messages overhead when the network is healthy. The 

proposed approach converges faster than comparable approaches, especially for large 

networks.  

4.4.1. ACRA Algorithm 

ACRA employs node mobility to restructure the network topology and restore 

connectivity. To sustain network connectivity, ACRA exploits the availability of 

connectivity-uncritical nodes, i.e., non-cut-vertices, in the network and/or cascaded 

movement in order to minimize the distance that nodes collectively travel during the 

recovery process. The essence of the algorithm is to use connectivity-uncritical nodes in 

restoring connectivity if a network is dense since the node degree is high on average and 

some nodes can be relocated without affecting the connectivity of its neighbor nodes. If 

the network is sparse, most nodes become critical for strong connectivity and cascaded 

movement is pursued instead. In cascaded movement, each node follows its neighbor to 

sustain connectivity.  

Upon the detection of node failure by its neighbors, each of these neighbors starts a 

search process to find a nearby non cut-vertex. Each neighbor then moves to the position 

of the failed node and commands its corresponding non-cut-vertex candidate to replace it. 

If a neighbor does not have a nearby non-cut-vertex, it executes cascaded movement. To 

simplify the presentation of ACRA, we will refer to each of these neighbors as a 

searching node and the corresponding non-cut-vertex as a candidate node. For example, 
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if node F fails in Figure 14, the neighbors of F (A1, A2, and A3) move towards the position 

of F until they are r/2 away from F where r is the communication range. This movement 

ensures the connectivity among these nodes. To sustain connectivity, node A5 moves to 

the new position of node A1 while nodes A4 and A7 move to the new position of node A3. 

A candidate node will stop moving when it reconnects with the corresponding searching 

nodes. The existence of a non-cut-vertex close to node A3 (i.e., A6) will spare the branch 

of node A8 from moving. After moving node A2 to F, node A6 will replace A3 and 

therefore sustain connectivity to node A8. In this example, cascaded movement is applied 

by nodes A1and A3while for node A2 a non-cut-vertex is utilized.   

Obviously, adjusting the recovery procedure based on the node density can be very 

subjective and cannot thus be generally applied. Therefore, we use the recovery overhead 

as a criterion for judging how the failure will be mitigated, as we explain next. 

4.4.2. Cut-off and switch metric 

As pointed out above, ACRA uses the cost of the recovery as a criterion for selecting the 

connectivity restoration scheme. The total traveled distance is used as a cost metric for 

the recovery. The cost of moving a candidate node increases when it needs to travel a 

long distance in order to replace the searching node. Therefore, for a certain deployment 

area, the number of hops between the searching node and the nearest non-cut-vertex can 

be used to measure the cost. For example, if A6 does not exist in Figure 14, the nearest 

non-cut-vertex that will replace A2 is A12. However, since A12 is three hops away from A2, 

the cost of moving A12 is high. On the other hand, as a network gets denser, it is most
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likely that a non-cut-vertex is located in fewer numbers of hops. Therefore, the number of 

hops can also be used as a measure of the density and scale of the network. When the 

number of hops needed to find a non-cut-vertex is high, the network is likely to have few 

nodes, and when the number of hops is small, the network is likely to be dense. When the 

candidate node is far, it is better to pursue cascaded relocation in order to balance the 

recovery overhead cost among multiple nodes and speed up the recovery since the motion 

of nodes can overlap in time. 

The number of hops h to the non-cut-vertex node is used to choose which approach is 

executed. The searching node puts out a call for help by sending a broadcast message 

with certain time-to-live attribute “TTL” to limit the number of hops that the message 

reaches. If a searching node does not receive any response from potential candidates 

within a predetermined time duration (Rs=0), cascaded movement is applied directly. If it 

receives multiple responses, it chooses the node with minimum hops (hmin). If two nodes 

have the same hmin, the node that has a shorter distance is chosen. If hmin> H, a cascaded 

movement is applied, where H is a predetermined threshold used to limit the number of 

hops. Otherwise, the node with hmin to the searching node and has a shorter distance is 

picked.  Figure 15 illustrates the algorithm selection procedure. 

4.4.3. Cascaded Movement 

ACRA employs a variant of the cascaded movement procedure used in [18] in order to 

enhance the performance and speed up the convergence of the recovery process. If a node 

moves, it sends a movement notification with its new position information to its 

neighbors. If a node receives a movement notification, it relocates to the new position of 
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the notifying neighbor until both nodes are connected. If a node receives a movement 

notification from two moving nodes, it checks the searching nodes that initiate the 

movement in the two requests. This information is included in the notification message. 

If both requests come from the same searching node, the receiving node moves to a 

location where it can hears both moving nodes. The new position in this case is the 

intersection of the two circles cantered at the two new positions of the moving nodes. 

However, if two notifying messages come from two different searching nodes, the 

receiving node will follow the node that has the closer new position.  A detailed example 

will be given later to illustrate how this movement is performed.  

As we will explain later in the detailed steps of ACRA, each searching node needs to 

estimate its recovery cost. In the case of cascaded movement, it is difficult for the 

searching node to precisely determine the exact cost of cascaded movement from local 

information. Therefore, in ACRA each node can estimate the cost by applying equation 

(4.3), where Rs is the number of responses received by the searching node and TTL is the 

initial time to live value that was used by the searching nodes. TTL also represents the 

maximum hops among all responses.    is the distance that a searching node needs to 

move in order to be r/2 away from F 

                    (4.3) 

The resulting value by the above equation gives an estimate to the distance that may be 

travelled by other network nodes that follow the searching nodes in order to sustain 

network connectivity. If Rs is high, this indicates that the network is dense and therefore 

cascaded movement is not a preferred choice. 
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4.4.4. Detailed Steps 

The following are the detailed steps that describe how ACRA restores the connectivity of 

a partitioned network:  

1- Failure Detection: If an actor AF is damaged or stops functioning, e.g., due to battery 

exhaustion, the transmission of heartbeat messages, which should have been sent by AF 

periodically, will cease. The absence of the heartbeat messages will be is interpreted by 

each of AF’s neighbors, ANi, as an indication of its failure. The recovery procedure will 

be executed regardless whether AF is a critical node, i.e., a cut-vertex or not. In fact, 

ACRA does not assume that a node collects state information to assess the criticality of 

another node in the network until a failure takes place.  

2- Searching for non-cut-vertices: Each neighbor in step 1 and not within r/2 distance 

from AF starts a search process looking for the nearest non-cut-vertex node, where r is the 

communication range. Each searching node broadcasts a search request containing 

several entities such as its own ID, the failed node ID, Time-To-Live (TTL) which 

denotes the maximum number of hops the search spans. Each node receives such request 

sends a feedback if it is a non-cut-vertex node. It also decrements the TTL value and 

forward the request if it does not reach zero.  

If two searching nodes are neighbors, they will receive requests from each other. In this 

case, we can let each node discard the searching request from the other node or accept 

and forward the request. The advantage of the first choice is to have less communication 

messages. However, a nearby non-cut-vertex that can be reached by other neighbors can 

be missed. Therefore, we apply the second option in ACRA.  
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It is worth mentioning that potential candidates will query their 1-hop neighbors  and 

apply the CDS algorithm of [17] in order to know whether it is a cut-vertex, and it is able 

to declare its candidacy and respond positively to the request.  

3- Receiving search responses: After a searching node ANi receives a response from a 

nearby non-cut-vertex node, it stores this information to compare it with other responses. 

Each response is associated with a cost Dij. The cost is the distance between the 

searching node ANi and the non-cut-vertex node j. The number of hops (hij) between ANi 

and j is noted in the response packet. If the searching node ANi does not receive any 

response within a pre-configured time period, it goes forward to cascade relocation by 

sending a recovery request to the nearest neighbor and moving to the position of the 

failed node AF. 

4- Choosing the recovery procedure and Broadcasting its Cost: Upon receiving the 

responses in the last step, each searching node decides to choose between cascaded 

movement and utilizing a nearby non-cut-vertex based on the criteria earlier and depicted 

in Figure 15. After a searching node estimates its recovery cost, it broadcasts such a cost 

to its neighbors. The cost of cascaded movement is estimated based on equation (4.3). If a 

node receives a cost that is lower than its own cost, it stops executing ACRA. If a node 

does not receive such message or it receives messages that carry a higher cost, it proceeds 

to the next step. We will prove later that such behavior will not affect the connectivity of 

the resulting network. 
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When the network is dense, it is expected that the average number of neighbors of each 

node in the network is high. Therefore, this step is very essential to lower the cost of 

ACRA in large networks. 

5- Starting the recovery process: If utilizing a non-cut-vertex, steps 6 and 7 are 

executed. Otherwise, the searching node ANi sends a notifying message to its neighbors 

and moves to the position of AF until it is r/2 away. The neighbors of the ANi will 

perform a cascaded movement as explained above. 

6- If utilizing a non-cut-vertex is chosen in step 4, ANi sends a request message 

commanding Cij (the best candidate selected in step 4) to move to its position. Upon 

receiving this message, the commanded node acknowledges this message and starts 

moving to the specified position. This acknowledgment is necessary to avoid choosing 

the same non cut-vertex node by two searching nodes.  Therefore, the commanding node 

ANi should wait for the acknowledgment before moving. If a node does not receive an 

acknowledgment, it should select the next nearest candidate and so on). 

7- Best Candidate Movement: The best candidate node Cij sends a movement 

notification message to its neighbors before sending the acknowledgment to the direct 

neighbor ANi. This notification is essential to avoid network partioning that may occur 

when multiple connectivity-uncritical neighbors move simultaneously. Then, if other 

neighbors receive similar requests to move, the nodes that believe this movement may 

partition the network, they send panic messages to prevent this movement. This will be 

illustrated with a detailed example in Section 4.4.5.1. If no panic messages are received, 

Cij sends an acknowledgment message and starts moving to replace ANi. After receiving 
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the acknowledgment, ANi moves toward the position of the failed node AF until it 

becomes r/2 units away. After these movements the network connectivity should have 

been re-established. If a searching node does not receive an acknowledgment, it should 

select the next nearest candidate in it responses list that has a number of hops less than H.  

If it does not have such a node or does not have more responses, the searching node 

executes the cascaded movement procedure. 

4.4.5. Pseudo code and detailed example 

In this section, we will explain how ACRA works through an example topology of 40 

nodes. We will also summarize the algorithm using a high level pseudo code. 

4.4.5.1. Detailed Example 

Let us assume that node A4 fails in the example depicted in Figure 16. The failure will be 

detected by the direct neighbors  A26, A38, A7, and A14, which become searching nodes. 

Each searching node looks for a nearby non-cut-vertex. As shown in the same figure, 

nodes A26, A38, A7, and A14 start searching by sending requests to their neighbors. To 

localize the search process, each request sets its time-to-live to two, meaning the request 

will not go beyond 2-hops. Each searching node gets a set of responses. Node A26 

receives responses from nodes A15 and A24, node A38 gets responses from nodes A37 and 

A23, node A7 hears back from nodes A8 and A37, and node A14 receives responses from 

nodes A17, A23 and A30 . Figure 16 and Figure 17 show the search process hop by hop. In 

these figures, S(A26, 2) indicates a Search request from A26 and the current value of TTL 

is 2. R(A15, A26) indicates a response to the search request sent from A15 to A26. 
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Let us assume in this example that each searching node orders a non-cut-vertex node if it 

1-hop away. Otherwise, the searching node will pursue cascaded movement. According 

to the cut-off criterion for ACRA, nodes A26, A38, and A14 will utilize a nearby non-cut-

vertex node while node A7 executes cascaded movement as a next step in the recovery 

process. Although node A7 receives two responses from A8 and A37, both nodes are two 

hops away.  Both responses that have been received by node A38 are coming from 1-hop 

nodes. In this example, A38 will choose the nearest node which is node A23. 

Now, all searching nodes will broadcast their estimated moving costs to their neighbors.  

The moving costs in case of A38, A26, and A14 are the distance between the searching 

node and its selected non cut-vertex node. In case of cascaded movement, the moving 

cost is calculated as in (equation 4.3). If a searching node receives a message that carries 

less that its own cost, it will stop the process leaving the recovery to other neighbors. 

Based on our example, A7 has a higher cost than A38. Both A26 and A14 do not have 

any searching nodes which are neighbors. This step is very essential in a dense and large 

network to lower the cost of the adaptive approach.  

The next step in the recovery is to notify the selected non-cut-vertices if any.  Otherwise, 

the first step in cascaded motion will be executed. According to ACRA, nodes A38, A14, 

and A26 will send recovery requests to nodes A37, A17, and A24, respectively. Upon 

receiving these requests, each non-cut-vertex node will send a movement notification to 

its neighbors. If no panic messages are received, each node will send an acknowledgment 
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Figure 16: A detailed example of the proposed adaptive approach: Nodes A7, A38, A14, and A26 search for non-

cut-vertices (1-2) 
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Figure 17: A detailed example of the proposed adaptive approach: Nodes A7, A38, A14, and A26 search for non-

cut-vertices (3-4) 
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message to the corresponding searching node. A node sends a panic message if it is likely 

to be disconnected from the rest of the network.  In this example, node A23 will receive 

two movement notifications from nodes A17 and A37. Assume that it receives the 

notification first from node A37. Since node A23 is still connected to the rest of the 

network through node A17, it will not send a panic message to node A37. However, node 

A23 will send a panic message to node A17. Since node A37 does not receive a panic 

message, it will send acknowledgement to the searching node A38 informing it is ready.  

Since node A17 will not send an acknowledgment,A14 will select the next nearest non-cut-

vertex that has two responses from node A23 and A30. However, both nodes are two hops 

away; therefore A14 will execute cascaded movement instead. Node A7 is also receiving 

two responses from 2-hops non-cut-vertices neighbors, namely,A8 and A37. Therefore A7 

will also employ cascaded movement.  

To restore the connectivity of the network, nodes A38, A26, and A14 move toward the 

position of the failed node A4 until they are r/2 units away. A24 will replace A26 and A37 

will replace A38. Since A14 will apply cascaded movement, A19 moves toward the new 

position of A14 until it is r units away. Both nodes A30 and A3 will follow A19 until they are 

connected with it (r units away from the position of node A19).  Finally, node A28 will 

move to the new position of A3. These recovery steps are shown in Figure 18 and Figure 

19. In these figures, Re(A26, A24) indicates a recovery request sent by A26 to A24 where 

A(A24,A26) indicates an acknowledgment sent by A24 to A26. 
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Figure 18:  The searching nodes continue the recovery process ((1) and (2)) 
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Figure 19: The searching nodes continue the recovery process ((3) and (4)) 
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4.4.5.2. Pseudo Code 

For the sake of clarity, we split the code into two figures:  Figure 20 shows the steps that 

will be made on the searching nodes and Figure 21 shows the code that will be executed 

on other nodes.  

Searching nodes: After detecting the failure (line 1), the searching nodes execute 

SearchNonCutVertex (line 2) to look for the nearest non-cut-vertices. The details of this 

function are listed on lines 31-42. The search process is primly configured to the 

maximum time-to-live value which prevents propagating of search messages through the 

whole network. After receiving all responses, EstimateCost is executed to determine the 

recovery scheme, cost of the movement, and the candidate node in case of choosing a 

non-cut-vertex node for recovery. Lines 44-60 list the steps for this function. A searching 

node broadcasts its estimated cost to its neighbors (line 4). Any searching node that 

receives an estimated cost that is less than its own, it abandons the recovery process (lines 

5-7).  Otherwise, it executes the selected approach based on the output of EstimateCost. 

If the chosen candidate node does not send an acknowledgment, the searching node 

deletes such candidate from eligible list (RecovNodes) and re-computes the cost (lines 9-

22). If the acknowledgment is received, the searching node moves to the position of the 

failed node until it is r/2 away. The same movement is applied in case of cascaded 

movement and the searching node notifies its neighbors before the movement about its 

new position (lines 24-28). 

Other nodes:  Figure 21 shows the part of the algorithm that will be executed by other 

nodes. If a node in the network receives a request from a searching node
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. IF a node N detects a failure of one of its neighbors F

2. RecovNodes=SearchNonCutVertex()

3. (A,Cost,C) = EstimateCost(RecovNodes)

4. Node N Broadcasts Cost to its neighbors

5. IF N receives a broadcast that has a cost that

6. less than COST

7. Done

8. ELSE

9. While RecovNodes != Null

10. IF A = 'NonCut'

11. SendRecovery(C)

12. IF Ack(C) is received before TIMEOUT

13. Move to the position of the failed node F until

14. a distance of r/2

15. DONE

16. ELSE

17. delete C from RecovNodes

18. (A,Cost,C) = EstimateCost(RecovNodes)

19. ENDIF

20. ELSE

21. Break

22. ENDF

23. END While

24. IF A = ‘Cascade'

25. Notify neighbors of the new position and move to the

26. position of the failed node F until a distance of r/2

27. Done

28. ENDIF

29. ENDIF

30. 

31. SearchNonCutVertex()

32. While do

33. Send NonCutVertexRequest(ID,TTL) to each neighbor

34. IF a Response from a NODE is received before TIMEOUT

35. RecovNodes = NODE(S)

36. BREAK

37. ELSE

38. RecovNodes = NULL

39. BREAK

40. ENDIF

41. END WHILE

42. RETURN RecovNodes

43. 

44. EstimateCost(RecovNodes)

45. IF RecoveNode == NULL

46. A = 'Cascade'

47. D = distance(F,N)

48. Cost = D * TTL

49. ELSE

50. C = min(RecovNodes);

51. IF hops(N,C) < MaxHops

52. A = 'NonCut'

53. Cost = Distance(N,C)

54. Else

55. A = 'Cascade'

56. D = Distance(F,N) - r

57. Cost = D * TTL * Length(RecovNodes)

58. C = NULL

59. ENDIF

60. Return A,Cost,C

 

Figure 20: The adaptive approach pseudo code (searching nodes) 
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1. IF C receives NonCutVertexRequest(ID,TTL)

2. Do NonCutVertexCheck

3. IF I am a non-cutvertex

4. Send NonCutVertexRespnse(ID,cost)

5. ELSE

6. TTL = TTL – 1

7. IF TTL != 0

8. Forward NonCutVertexRequest(ID,TTL)

9. ELSE

10. Discard NonCutVertexRequest(ID,TTL)

11. ENDIF

12. ENDIF

13. ELSEIF C receives SendRecovery(N,C)

14. Send NonCutRecoveryMove to its neighbors

15. IF C do not receives a Panic message before TIMEOUT

16. Send Ack(C,N)

17. ENDIF

18. ELSEIF C receives NonCutRecoveryMove and its not

19. connected to other nodes

20. Send Panic to the moving node

21. ELSEIF C receives CascadeRecoveryMove(N,L)

22. Add (N,L) entry to the received notifications NotifyCascade

23. IF notifications are received from all neighbors

24. MinLevels = Nodes that has minimum L

25. Determin the node J in MinLevels that

26. gives the shoterst distance to

27. its new location

28. MinNodes = All nodes in MinLevels

29. that has the same target of J

30. IF length(MinNodes) == 1

31. Send CascadeRecoveryMove(C,L+1) to all neighbors

32. ollow MinNodes until r away from it

33. ELSEIF length(MinNodes) = 2

34. Move to the intersection point of

35. Circle(MinNodes(1),r) and

36. Circle(MinNodes(2),r)

37. ELSE

38. Move to a point where can hear all MinNodes

39. ENDIF

40. ENDIF

41. ENDIF

 

Figure 21: The adaptive approach pseudo code (other nodes) 
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 (SearchNonCutVertex), it first checks whether it is a non-cut-vertex. If it is, it will send a 

response to the searching node and forward the request to its neighbors. If it is a cut-

vertex, it will only forward the search request. The forwarding to other nodes is done 

after checking the time-to-live value (line 1-12). If a non-cut-vertex node receives a 

recovery request from a searching node (SendRecovery), it sends a movement notification 

(NonCutRecoveryMove) to its neighbors. If the node does not receive a panic message, it 

will send an acknowledgment to the requested searching node (lines 13-17). A node that 

receives a movement notification from a non-cut-vertex neighbor will not respond if it is 

still connected to the network by other nodes. Otherwise, it sends a panic message to the 

moving node (lines 18-20). Lines (21-39) detail how a node is moving if it receives a 

cascaded movement notification (CascadeRecovMove). If the node receives one 

notification, it will directly move to the position of the notifying neighbor until it is r 

units away. If the node receives two or more notifications, it checks the searching node 

(N) that initiates the movement in each notification request. If both have the same 

initiator, it will follow both by moving to the intersection point of the two circles centered 

by the new positions of the two moving neighbors.  If two requests come from different 

searching nodes, the node will follow the nearest neighbor. In all cases, the node notifies 

its neighbors about its new position before it moves. 

4.4.6. Algorithm Analysis 

In this section, we shall present several theorems to analyze the proposed adaptive 

algorithm. 
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Theorem 4.1: the total travelled distance for the associated movement algorithms is 

bounded by 

For cascaded movement 

      
 

 
∑   

 
      (4.2) 

For non-cut-vertex movement 

       (
 

 
  )  ∑    

 
      (4.3) 

 

Where r, N, hi, dij, are the communication range, number of nodes in the network, number 

of hops from each neighbor to the leaf node (network diameter) assuming all neighbors  

have disjoint paths to leaf nodes, and the distance between the corresponding non-cut-

vertex node and the position of the nominating neighbor node, respectively. 

Proof: For the cascaded movement approach considers the one-dimension actor network 

depicted in Figure 22-a. The worst-case scenario for cascaded movement occurs when all 

nodes are r away from each other. Therefore, if A3 (red circle) fails, all neighbors and 

their children move towards A5. The total distance travelled by each node is the number 

of hope (hi) multiplies by r/2. Hence, the total travelled distance will not exceed 
 

 
∑   

 
     

and its complexity is O(N.E), where E is the number of edges in the network. The number 

of hops to leaf nodes increases as the number of nodes increases. Therefore, as the 

network size grows, the performance of cascaded movement is expected to degrade. 
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Figure 22:   (a) RIM  and (b) LDRM restoration scenarios that reflects the worst case travel overhead 
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For the non-cut-vertex based procedure, the worst-case scenario occurs when all non-cut-

vertices that may replace the neighbor of the failed node are leaf nodes as illustrated in 

Figure 22-b. Therefore, the total travelled distance is composed of two parts: the travelled 

distance by the neighbors (ANi), and the travelled distance by the leaf node (Cij).  

Theorem 4.2:  If two or more searching nodes are neighbors, the movement of one 

searching node to replace the failed node is sufficient for restoring the network 

connectivity. 

Proof: Let us take the worst-case where the distance between the two searching nodes 

and between each of them and the failed node is r as shown in Figure 23. After the 

movement of node A, the new distance between A and B is calculated as follows: 

 

 

        
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  √   

  

 
 

 

 
√     (4.4) 

Therefore, the two nodes are still connected. If there are more than two nodes, by 

definition the extra nodes have to be inside the triangle Aold-F-Bolds o that they are 

connected to F.  

Theorem 4.3: The maximum distance that can be travelled by a node in cascaded 

movement is 
√ 

 
r. 
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Figure 23: illustration of moving of node A is enough to maintain connectivity 
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Figure 24: Cascaded movement maximum movement 
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Figure 25: One point assumption to prove the maximum RIM movement 
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Proof: it has been proven in [18] that the maximum distance a node may travel in 

cascaded movement is r/2. This is obvious for the neighbors of the failed node (searching 

nodes) since the maximum distance between the failed node and any of its neighbors is r 

before the failure. After the failure, each neighbor moves to the direction of the failed 

node and stops at a point that r/2 away from the position of the failed node. Therefore, 

the distance between the furthest point and the stopping point is r/2.  For other nodes, the 

stopping point of a node is determined based on how many nodes a node will follow.  If a 

node will follow one node, it is obvious that the maximum distance is r/2 since this case 

is similar to the neighbors of the failed node.  

However, if a node will follow two nodes and more, careful consideration is needed to 

find out what is the maximum distance a node will move. In [18], the authors consider the 

case shown in Figure 24 to prove that the maximum distance is r/2 if a node follows two 

nodes.  However, the chosen old position of node D (Dold1) is not the worst possible case 

scenario. As A and B become closer, the distance between Dold2 and Dnewis increased 

while the distance between Dnew and Dold1 does not change. The worst-case scenario is 

when A and B are collocated. 

Since the distance between both nodes is very small, we ignore this distance in our 

calculation and consider both nodes as one point as shown in Figure 25. It has been 

proven in [18] that the distance between Dnew and Dold1when A and B are collocated is r/2. 

Since the distance between Pold and Dold1 is r, the distance between Dnew and Pold is r/2 as 

shown in Figure 25. The maximum movement based on the worst possible location is 

calculated as the following 
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̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  √   

  

 
 

√  

 
    (4.5) 

Theorem 4.4: If the failed node has one or multiple groups of searching nodes 

(neighbors), the movement of only one node from each group will maintain connectivity. 

Proof: We have two cases here. Case-I is where all searching nodes are neighbors. 

According to theorem 4.2, the movement of one node is enough to maintain connectivity. 

Case-II is where there is more than one group of nodes. In such a case, we have two 

scenarios depending on the moving node and whether it is a shared neighbor among all 

groups or not. For the first scenario (i.e. the moving node is shared among the groups), 

the node will be connected to all nodes in different groups as shown in Figure 26. For the 

second scenario, each node will be connected to its own group and it will be connected 

also to the other moving node since each of them will move until they are r/2 from the 

failed node. In Figure 27, node A is the moving node from group (A,B) nodes, and node C 

is the moving node from group (B,C) nodes. According to theorem 1, both A and C are 

connected to B. For the other group of searching nodes (D,E) which do not have any 

shared nodes), it will be connected to other nodes through its  moving node (D in this 

case) Therefore, the overall topology is connected after all movements.  
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Figure 26: The moving node B is a shared node between A and C 
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Figure 27: illustration example for theorem 4 where the moving node is not shared 
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CHAPTER 5 

DISTRIBUTED RECOVERY FROM SIMULTANEOUS 

MULTI-NODE FAILURE 

5.1. Overview 

LDMR and ACRA are designed to restore the network connectivity for a single failure at 

a time and are not proven to handle simultaneous failures. Therefore, we developed a new 

recovery distributed scheme called Simultaneous Failures Recovery Approach (SFRA). 

SFRA pursues combined proactive and reactive strategies by creating a recovery tree 

from the original network. SFRA assumes a node is pre-assigned as a root at the time of 

the network deployment. A breadth first search tree is constructed and the level of the 

individual nodes is used for defining their role in the recovery. After a failure, one of the 

children of the failed parent in the recovery tree moves to the position of its parent and 

becomes a leader of other nodes in the sub-network in order to establish its connectivity 

with the rest of the network. To lower the travel overhead, each node is assigned a 

recovery weight based on the number of hops to its closest leaf node in the recovery tree. 

Moreover, to enable the connectivity of the network, some nodes are chosen to be 

clusters during the ranking phase. These nodes serve as gateways to nearby nodes. The 

leader of a disconnected sub-network moves to its cluster if it is still not connected after 

recovering its parent.  
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5.2. System Assumptions 

 The network nodes are randomly deployed and we assume that nodes are 

connected to each other after deployment to form a connected network.  

 One of the deployed nodes has to be configured as root. 

 After the deployment and during the operation of the network, we assumed a 

major event causes multiple nodes to fail simultaneously. However, we assumed 

that only a small percentage of the node population fails and it makes sense to 

restore the network operation at a degraded level.    

 All nodes have the same communication range. 

5.3. Notation 

 A, B, C, D, etc., are network active actors.  

 NA, CA and SA are A’s neighbors in the original network, and A’s children and A’s 

sub-tree in the recovery tree, respectively. 

 Fi is failed #i. 

 KA, RA and RWA denote the rank, the ranker (i.e., parent in the recovery tree) and 

the recovery weight of A, respectively. 

 ARN is the node with minimum recovery weight in CA. 

 Mid(   ̅̅ ̅̅ ) is the point on    ̅̅ ̅̅  and has a distance of ½ r from Fi where r is the 

communication range. 
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 DA,B denotes the Euclidian distance between A and B. 

 RC(Fi) denotes a Replacement Candidate for Fi. 

5.4. SFRA Algorithm 

After deployment, nodes collect the information needed to work in a coordinated manner 

for restoring connectivity after a failure. In SFRA, we assume that one of the nodes is 

pre-assigned as a root of the network. Immediately after the deployment, the root initiates 

a rank assignment phase. The purpose of this phase is to assign a rank to each node and 

construct a recovery tree. The recovery tree is used to coordinate connectivity restoration 

as we will be explained later.  The rank assignment is used to calculate the weight that 

determines the scope of node’s participation in the recovery. The following subsections 

explain each phase in detail. 

5.4.1. Rank Assignment 

The rank of a node is the number of shortest hops to the root (R) of the network. In case 

of R, KR = 0 and RR = R. Once the network nodes are deployed and the network is ready 

for operation, the root of the network “R” runs breadth first search to assign ranks to the 

individual nodes, by sending a message to its neighbors which forward their reachable 

nodes and so on. The rank assignment message contains its ID, its rank, and the ID of the 

ranker (i, Ki, Ri). Let us assume that a node j receives this message from a node i. The 

following is executed by j in order to compute Kj and Rj: 

IF Kj > Ki + 1 

Kj = Ki + 1; 
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Rj = i; 

ELSEIF rankerID = j 

Add i to Cj 

ENDIF 

Since there are probably multiple paths between the root and node j. Node j may receive 

multiple rank assignment messages from nodes other than i, but it will not update its 

current rank unless the above condition is satisfied.  If it is not satisfied and Ri is j itself,  j 

adds the sender node i to the list of ranked nodes (Cj). For example, in Figure 28-(a), 

assuming Kh>Ki, j is ranked by i. Node j will send a rank assignment message to its 

neighbors. If node i receives this message from j, it adds j to Ci. Nodes k and h will 

ignore the rank assignment message from j. Node m updates its rank and sets Rm= j. A 

recovery tree is constructed at the end of this phase as shown in Figure 28-(b). The tree is 

used in the recovery algorithm as discussed later. 

5.4.2. Weight Computing 

We consider two types of weight to be computed: clustering weight (cw) and recovery 

weight (rw). The clustering weight is used to decide which nodes are chosen to be cluster 

heads while the recovery weight determines which nodes are to move for restoring 

connectivity. The clustering weight of a node v is defined as the number of its children 

down in the recovery tree until the next cluster. On the other hand, the recovery weight 

represents the least number of hops from node v to any node that has a clustering weight 

of zero (i.e., leaf nodes in the recovery tree). 
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Figure 28: (a) Rank Assignment phase (b) Recovery tree 
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Figure 29: Illustrating weight computation for node i 
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Figure 30: Clustering phase and weight computing results 
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This phase is initiated by the nodes that are not nominated as rankers by any of their 

neighbors during the rank assignment phase. Those nodes represent leaf nodes in the 

recovery tree. For example, in Figure 28, nodes m, k, and h will start the weight 

computation phase.  

All initial weights are set to zero. Each node sends the computed weight to its ranker. The 

message contains the sender ID and the clustering and recovery weights incremented by 

one, i.e., (i, CWi+1, RWi+1). For example in Figure 29, k shares its weights with its 

ranker i. Node m sends a similar message to j and j send its own to i. When node i 

receives these messages, it updates CWi and RWi as follows:  

 CWi = CWi + CWj (5.1) 

 RWi = RWj (5.2) 

However, RWi is not updated by i unless the received recovery weight is smaller than the 

current recovery weight RWi. It is obvious that the first message that is received by i (i.e., 

when RWi is zero) is an exception for this rule. After receiving the two weight messages 

from j and k, CWi = 3 and RWi = 1. 

One important step in the weight computation phase is to check the clustering weight 

(cw) against a predefine cluster size. If that weight exceeds this value, the node identifies 

itself as a cluster head and sends cluster identification to its neighbors. Otherwise, it 

sends a compute weight message to its ranker. 
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5.4.3. Cluster Identification 

Let us assume for simplicity a cluster size equals three in Figure 29. After nodes j and k 

send compute weight messages to i, it updates CWi to three. Since CWi equals the pre-

defined cluster size, node i identifies itself as a cluster head and it sends a cluster 

identification message to its neighbors. This message contains the sender ID, its cluster, 

cluster location, and recovery weight of that node (i, CHi, loc(CHi), RWi). To show how 

other nodes act upon receiving this message, let us assume there is a node g up in the 

hierarchy of the recovery tree to R, where Kg = Ki-1 and Ri=g , as shown in Figure 30. 

The message will be received by all neighbors of i (i.e. j, k, and g). The nodes that are 

ranked by i (i.e. j and k) will see the message coming from their ranker and therefore they 

set their cluster to i, save its location, and forward the message to their neighbors (if any). 

Node m will receive the message from j and do the same. Node g also will hear this 

message from i but it will act differently since the message is coming from one of its 

ranked nodes. Node g updates its recovery weight RWg according to equation 5.1, sets its 

clustering weight CWg to zero, and sends a compute weight message to Rg=c. When c 

receives the weight computing message from g, it updates CWc.  RWc may not be updated 

by c since it achieves lower recovery weight through nodes e or f. Figure 30 shows the 

clustering weights, recovery weights, and cluster assignments for all nodes. To avoid 

confusion, a node does not send its compute message to its ranker until it computes its 

correct clustering weight by waiting for all children messages. For example, if node i 

receives a weight message from k before j, it waits until hearing from j. If for any reason, 

node i does not hear from j, it can send its current weight and update its ranker g. While, 
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if that happens, more clustering messages are needed, the process will yield correct 

clustering assignments. 

5.4.4. State Diagram Description of SFRA 

Figure 31 is a UML (Unified Modeling Language) behavioral state diagram showing the 

different states of an actor “A” when executing SFRA after the failure of its neighbor F1. 

In addition to A, other healthy nodes such as B, C, D, and E are also engaged in the 

recovery. These nodes may be at the same time working on restoring connectivity after 

the failure of another node F2, for example, that is not neighbor of A.    The following is 

an explanation of the various states: 

 Normal: After node A is deployed, it performs its tasks normally. The node also 

returns to this state when it thinks that its role in the recovery phase ends. 

 Finding RC(F1): When node A detects the failure of a neighboring node F1, it 

transits to this state in order to find RC(Fi). However, the transition is guarded by 

the condition [F1=RA], which means that node A will not start the recovery 

procedure unless F1 is its ranker. All nodes that are ranked by F1 will exchange 

their recovery weights.  Therefore, node A starts this state by sending 

SENDRW(RWA, RA) message and waits. While waiting, if “A” receives another 

SENDRW message from another node, e.g. B, node A checks if “B” is ranked by 

the same node (i.e. RA=RB). If this is the case, “A” stores (B, RWB). Before “A” 

leaves this state, it computes RC(F1) by finding the node which has the minimum 

recovery weight  based on the SENDRW that it has received. If two nodes have  
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Figure 31: SFRA UML based State Diagram Representation 
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 the same minimum weight, “A” breaks the tie by choosing the node with smaller 

ID. 

 Replacing F1: A transits to this state from the previous state if the following two 

conditions are satisfied: 

o A = RC(F1), in the previous state, and 

o DA,F1 ≤ ½ r , where r is the communication range.   

Since the movement of A may break its connectivity with its neighbors, as soon as “A” 

transits to this state, it sends ReplaceMe request to ARN to replace it. In this state, “A” is 

continuously moving to the position of F1. While in motion, if “A” receives a SendRW 

request from another node “B”, it notifies “B” that F1 is already handled. This state is 

also reached by Finding RC(F1) state as explained later.   

 Moving to Mid    
̅̅ ̅̅ ̅̅  :  A transits to this state from “Finding RC(F1)”if the following 

two conditions are satisfied: 

o A = RC(F1) 

o DA,F1 > ½ r 

In this state, A is continuously moving to Mid    
̅̅ ̅̅ ̅  position. It leaves the state when it 

reaches that position and returns back to Finding RC(F1). 

 Recovered: let us assume A= RC(F1) for now. When “A” reaches the position of F1, 

it enters the recovered state by sending Recovered(A,F1) and waits. Other nodes 
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receiving this message respond by sending their ranks to “A”. While waiting, “A” 

stores all ranks that are smaller than KA (i.e. have fewer hops to root).  Before “A” 

leaves this state, it identifies the node(s) with the smallest rank among the nodes it 

heard from. 

 Moving to CH: Node “A” transits to this state if it could not find another node, say E,  

for which KE < KA. In this state, “A” moves to the position of CHA. While moving, 

“A” is continuously trying to establish a communication link to another node that has 

fewer hops to the root (i.e. has a lower rank). 

 Moving to root: If “A” could not find CHA or a node with a lower rank, it moves 

towards the root of the network. Again, while moving, “A” will try to establish a 

communication link with a node with a lower rank. 

 Connected: A is connected after finding a node with a lower rank. This could happen 

immediately after replacing F1 or during its movement to CHA or root. Node A exits 

this state and return to normal operation by sending a ranking update request to the 

root. 

 Replacing: While being in the normal state, if “A” receives a ReplaceMe request 

from RA, node A transits to this state and move to the position of RA, and switches 

back to the normal state upon reaching the target position.  

5.4.5. Detailed Example 

Figure 32 shows a part of a topology which has 40 nodes. In this example, we assume 

that nodes 4, 15, and 7 fail. Although all neighbors of the failed nodes will detect their 
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failures, only nodes which are in their children sets are responsible for recovery. For 

example, the failure of node 7 is detected by both nodes 3 and 2. However, node 3 will 

simply ignore the failure since it is not in C7. The first step in the recovery process is to 

replace each failed node with the child that has the smallest weight. To accomplish that 

goal, node 9, 13, and 2 send SendWeight request and wait. If they receive a similar 

request with smaller weight, they will stop leaving other nodes to participate in the 

recovery process. However, since node 2 is the only node in C7, it starts moving to 

recover the failure of 7. Before node 2 moves, it sends a ReplaceMe request to the node 

with the smallest weight among C2 which is node 14 in our example. In response node 14 

moves and requests node 20 to replace it (Figure 32-b). When node 2 reaches the position 

that is r/2 to node 7, it sends a RequestWeight request to reach other possible nodes that 

are in C7 and not heard by 2 in its original location. Node 2 will continue moving to the 

position of F when it does not hear any other nodes.  

Node 15 has two children, 13 and 9 which are not connected to each other.  Therefore, 

when they first detect the failure and send SendWeigth requests, they would not hear each 

other. Both nodes will move first to the position where they are r/2 from the position of 

the failed node 15. We assume that node 9 is closer to 15 and reaches that position first. It 

sends RequestWeight and waits. When node 13 receives the request, it compares the 

received weight with its own weight and send another request if it has a lower weight.  
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Figure 32: Detailed example to illustrate how SFRA algorithm restores connectivity after multiple nodes fail 
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Since node 13 has the same weight of one, it will not send any response letting node 9 

handle the recovery (see b-1 to b-4 in Figure 32).  

After node 9 reaches the position of node 15, it sends a Recovered message informing 

other possible nodes in C15. When node 13 receives that message, it changes its ranker to 

node 9. If a node that has a higher rank receives the recovered message, it sends a 

ResponseRecovered message allowing the sender node (i.e. 9) to join its children and 

connect to the network. In this example, there is no such node with a higher rank since 

the parent of node 15 (node 14) has failed. After a certain waiting time, node 9 starts 

moving to the position of the head of its cluster (node 2) hoping to find some nodes along 

the way or ultimately connect to node 2. It also sends a ReplaceMe message to node 13. 

Before reaching the position of node 2, node 9 establishes a connection with node 20 and 

sends a StopRequest message to node 13. Figure 32-(d) shows the final network topology 

after all recovery operations end. The network now needs to be updated for the latest rank 

information. Since node 9 and 2 have changed their position, they will send update 

request to the root of the network. Other moving nodes 13, 14, and 20 will not send such 

update request because they are connected to nodes with higher ranks. When Node 20 

receives a request sent by 9, it will ignore it in order to prevent duplicated update 

requests. When the root (node 10) receives the update request from node 11, it sends 

RankAssignment message only to the requested node (node 11). The rationale of this is to 

limit the extent of the rank update based on the scope of the failure in order to lower the 

messaging overhead cost. 
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5.4.6. Algorithm Analysis 

5.4.6.1. Basic Analysis 

Lemma 5.1: Considering the recovery tree, if there are L leaf nodes (i.e., have no 

children), the following equation is true for a network of N nodes, where |Ci| is the 

number of nodes in Ci  (i.e., children of node i)  

 

∑|  | 

   

   

     (5.3) 

Proof: This is easily proven by noting that from the graph properties of a tree, each node 

in the recovery tree has only one parent except the root of the tree which has no parent. 

Therefore, the left hand side provides the summation of all nodes in all children sets 

minus one node which is the root. 

Lemma-5.2: For a failed node F1, the number of nodes that transit from the “Finding 

RC(F1)” to “Moving to Mid    
̅̅ ̅̅ ̅ ”  is less than six. 

Proof: Since nodes in CF exchange their recovery weights, only nodes with minimum 

recovery weights move in order to compete for replacing the failed node. Let us assume 

there are X nodes in CF1, we can show that the maximum number of nodes that can move 

is constant regardless of X. If we assume there are two nodes A and B where DA,F1, DB,F1, 

and DA,B are all equal r, we will have an equilateral triangle (A,B,F1) as shown in Figure 

33. The maximum number of nodes that can be located on the boarder of the circle 

centered at F1 without hearing each other is less than 360/60 = 6.  This is true regardless 

of the number of nodes surrounding F1. Now if we put additional node in any point inside  
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Figure 33: Illustrating the motion scenario to replace the failed node F. 
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the circle of F1, it has to be neighbor to one of these six nodes and therefore only the 

node with minimum recovery weight will move, not both ■. 

Theorem 5.1: For a failed node F1, only one node replaces F1 (i.e. the number of nodes 

that transit from the “Finding RC(F1)” to the “Replacing F1” state is one) 

Proof:  Let us assume that a failed node F1 has two neighbors A and B where RWA < 

RWB. Now, if B is a neighbor of A, B will receive a SendRW message from A, and since 

RWA < RWB , B returns to normal operation . If B is not a neighbor of A, then, we have 

three scenarios:  

 DA,F1 < r/2 and DB,F1 > r/2,  then, A transits to the “replacing F1” state first and 

sends STOP message to B when receiving SendRW from B. 

 DA,F1 < r/2 and DB,F1 < r/2, then, B replaces F1 and sends STOP message to A in 

the second scenario or  

 DA,F1 > r/2 and DB,F1 > r/2, then the node which is closer to F1 will replace F1. 

The other node will stop  ■ 

5.4.6.2. Complexity Analysis 

Theorem 5.2:  The messaging cost of clustering a network of size N is O(N). 

Proof:  During clustering, an actor A sends two or three messages depending on its 

computed clustering weight CWA. If CWA > cluster size, “A” sends only two messages: 

one message for ranking and another message for clustering identification. If CWA < 

cluster size, “A” sends additional message for weight computing. Therefore, “A” sends 
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two messages if it is assigned as a cluster-head and three messages if it is not. The 

maximum cost of clustering occurs in the extreme case when only one cluster is formed, 

i.e., all N nodes become part of one cluster, making the worst case number of sent 

messages to be: 

                    (5.4) 

The first part is sent by the root where the second part is sent by the other nodes. The 

least cost corresponds to having all nodes as cluster-heads, making the number of 

messages to be   , which is also       ■.  

Theorem 5.3: The messaging cost of applying SFRA to restore the network connectivity 

after the failure of m nodes is O(mN), i.e., linear in the number of failure incidents. 

Proof: In the proof of Lemma-2, we have shown that for a failed node F, less than 6 

nodes will reach the second phase of finding the replacing node candidate. Each one of 

these nodes needs to send one message in that phase before the node with the highest 

weight relocates to the position of “F”. If we assume that the number of failed nodes is m, 

then the messaging complexity is: 

 

 
∑  

 

   

                        (5.5) 

The first part represents SendRW messages sent by all children of the m failed nodes. The 

number of SendRW messages sent in the “Finding RC(F)” state is 6m assuming there are 
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maximum of 6 nodes neighbors for each failed node . The nodes that move to the position 

of the failure send m recovered messages. A maximum of N-m messages will be 

transmitted in response to the Recovered message. Using Lemma-5.1, the first part is less 

than (N-1). Therefore, the most messaging cost comes from the last part which is       

■.  

5.4.6.3. Cost Analysis  

Theorem 5.4: The total travel distance by the nodes participating in restoring 

connectivity using SFRA is limited by (N-m-1)r, where m is the number of failed nodes 

and r is the communication range. 

Proof: the worst case scenario occurs when all network nodes are connected as a linear 

chain and each node is r from its neighbors and the root is on the edge of the network as 

shown in Figure 34. Since SFRA depends on restoring connectivity towards the root of 

the network, all healthy nodes shall move to the position of the root in a cascaded 

manner. In this particular case, each of these nodes travels a distance of r m. Therefore, 

the total distance resulted from the movement of all nodes is (N-m-1)r, where (N-m-1) 

represents the number of healthy nodes other than the root which sticks to its position ■. 

Collary 5.1: During the recovery, the maximum distance a node can move is rm, where m 

is the number of failed nodes and r is the communication range. 

Proof: This is can be observed from the worst case scenario shown in Figure 34. If we 

assume there is one node connected to the last failed node (i.e. Fm), while the other N-m-3 
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active nodes are connected to root. Therefore, they do not move during the recovery. This 

case is shown in Figure 35■. 

Theorem 5.5:  In large networks, a node can shorten its travel distance up to (0.75N-2)r 

by moving first to the position of the head of its cluster. 

Proof: Let us consider the case shown in Figure 36(a). After the failures of F1 and F2, A 

will move 2r in order to connect with CHA. Now, let us assume that A moves directly to 

root as shown in Figure 36(b). In this case, the distance is maximized when no nodes with 

smaller ranks are located at a distance less than r while “A” is moving to the root. 

Therefore, we need to calculate the distance between “A” and the root. In this particular 

figure, there are two similar triangles (A,C,CHA) and (A,B,root). Therefore, for large N:  

   

 
 

   

      
 (5.6) 

 
            

 

 
   

 

(5.7) 

Since     ̂  is a right angle: 

 

 

       √ 
 

 
      

 

 
     

√ 

 
          (5.8) 
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0.75Nr represents the distance that A needs to travel to connect to the root of the network 

assuming that “A” does not move to CHA first. If “A” moves to CHA, it needs a distance 

of 2r in order to connect. Therefore, moving to CHA first saves a distance of 0.75Nr-2r in 

the best case■. 

  



89 

 

 

 

root F1 F2 Fm

r r r

m nodes (N-m-1) nodes

r

 

Figure 34: The failure scenario that illustrates the most travel overhead during the recovery phase. 
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Figure 35: rm is the maximum distance a node can move 
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Figure 36: The best case of Clustering 
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CHAPTER 6 

SIMULATION RESULTS AND DISCUSSION 

6.1. Simulation Setup 

Table 1 shows the simulation tools that we have used. 

Table 1: Simulation Tools 

Software Platform Tasks 

GNU GLPK Linux Formulate and Solve the 

ILP problem 

MATLAB  Windows, Linux -Create Topologies, data, 

and module files for GNU 

GLPK 

- Simulate DARA, RIM, 

LDMR, ACRA, SFRA, and 

produce numerical results 

MS EXCEL Windows -Plotting  

 

For solving the ILP model, we used the GNU Linear Programming Kit (GLPK) under 

Linux [24]. Parameters needed for ILP computation are computed by MATLAB and are 

fed to the GLPK solver as shown in Figure 37. 
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Figure 37: Simulation tools for executing the optimization approach. 
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The deployment area is 1000x1000 m
2
 and the node’s transmission range is set to 100m. 

To obtain statistically significant results, we have generated 20 random topologies for 

each set of actor nodes. For each topology, we let each cut vertex node to fail and 

performance metrics are computed accordingly. Finally, the results are averaged over all 

randomly generated topologies. These averaged samples ensure that all results are 

subjected to 90% confidence interval analysis and stays within 10% of the sample mean. 

6.2. Performance Metrics 

To evaluate the proposed approaches, we have computed the following performance 

metrics: 

 Total Travelled Distance: This metric gives the total distance travelled by all 

nodes in the network during the recovery restoration. This metric indicates how 

much energy will be consumed by the whole network due to the mechanical 

movements of the network actors. 

 Average Travelled Distance: This metric computes the average travelled 

distance for a node that got engaged in the recovery operation. This metric can be 

used to know how much energy loss is shared among nodes during the lifetime of 

the network. 

 Coverage loss rate: This metric captures the loss of coverage resulted from the 

node movements. 

 Coverage Loss: The area covered by a node is a circle with a radius of the acting 

range of the actor. If two or more nodes overlap, they share an area that can be 
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covered by any of them. Overlapping among nodes decreases the total area 

covered by a network. 

 
1 2LossCov Cov Cov   (6.1) 

 

 
2

1

1LossRate

Cov
Cov

Cov
   (6.2) 

Where 1Cov and 2Cov are the total area covered by network actors before and after the 

failure, respectively.  

 Number of Relocated Nodes: This metric shows also how many nodes in the 

network had to move to restore the network connectivity. This metric is important 

for mission-critical applications that strive to move the least number of actors. 

 Number of messages: This metric captures the number of communication 

messages that are sent by all nodes to perform the connectivity restoration 

process.  

6.3. Simulation Results 

6.3.1. Central Approach 

We compared our Central approach (ILP approach) to DARA [18] based on the total 

travelled distance and the average travelled distance metrics. DARA – as explained in 

chapter 2- is a distributed approach and therefore is different from ILP which solves the 

problem based on a central point of knowledge. Each node in DARA keeps a table of its 
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1 and 2-hop. If a node does not hear from its 1-hop neighbor for a certain amount of time, 

it assumes that neighbor has failed and a selection scheme is executed on each of the 

failed node’s direct neighbors. Since each node has 2-hop information, all nodes 

executing DARA have all the information needed to reach a decision. The best candidate 

for moving is the one which has the least degree. If more than one node is having the 

same degree, the best candidate is the one with the shortest distance. The final criterion 

used to choose the best candidate in case of having two candidates is the node id.  

To investigate the effect of maximum allowed travelled distance on the above metrics, we 

compared the ILP model with the ILP model constrained with dmax. If dmax=100m, the 

maximum allowed travelled distance equals to the actor communication range (i.e. 100m) 

and it is called optimal cascading approach. Also, we compare ILP with dmax=200m and it 

is called ILP-200. 

Figure 38 compares ILP approach with DARA and optimal cascading. As expected, the 

central approach based on ILP has the least travelled distance since it has global 

information compared to DARA which is based on 2-hop information. The actors 

following DARA are expected to consume twice the energy consumed by ILP approach. 

Furthermore, ILP provides a lower bound to other heuristic approaches. However, 

considering the averaged travelled distance per node, we can observe that DARA shows 

the least consumed energy per moving actor as shown in Figure 39. This implies that 

DARA involves more nodes in the recovery process compared with other approaches. 

This finding shows that DARA is better than ILP approach in collaboratively recovering 

the failed node. 
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Figure 38:  ILP average total travelled distance 

 

 

Figure 39: ILP average travelled distance per moving node. 
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A long travelled distance leads to excessive loss in the energy due to mechanical 

movements of the actor during the recovery process. The ILP-200 curve show the total 

travelled distance after putting a constraint of 200m on the maximum travelled distance 

during recovery. Based on our simulation, a constraint of 200m which is double the 

transmission range has a very comparable result to the general case where no restriction 

is imposed. 

One of the additional features that our approach is taking into account during recovery is 

the coverage loss. For this purpose, we constrained the maximum coverage loss due to 

node movement after the failure. As shown in Figure 40, the higher the accepted 

coverage loss gets, the lower the travelled distance becomes. In fact, when we restrict the 

coverage loss, more nodes need to move during the recovery and hence the total travelled 

distance increases.  

Now, let’s examine the case of multiple failures. Our ILP approach formulation is able to 

handle multiple node failures at the same time. Figure 41 illustrates the effects of number 

of failed nodes on the total travelled distance for different network sizes. Small networks 

incur the most relocation overhead when many nodes fail simultaneously, because the 

node density is low and the actor nodes need to move long distances to re-establish the 

connectivity. Figure 42 shows a linear relation between the total travelled distance and 

the number of failed nodes for different values of coverage loss thresholds. The 

relationship is leaner since the recovery of every additional failed node adds a relatively 

similar cost for the same network size.  
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Figure 40: ILP coverage effects on the average total travelled distance. 

 

 

Figure 41: ILP averaged total travelled distance versus the number of failed nodes. 
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Figure 42: ILP coverage effects on total travelled distance in case of multiple failures (Nodes = 60) 
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6.3.2. LDMR Simulation Results 

In this section, we compare LDMR to RIM approach which is based on shrinking 

network topology toward the failed node in order to restore connectivity of the network 

as explained in chapter 2. The transmission range used in our simulation is set to 150m.  

Figure 43 shows the total travelled distance for the two approaches.  RIM performs better 

when the number of nodes is small.  As the number of nodes increases, LDMR 

outperforms RIM. In our simulation, this happened when the number of nodes exceeds 70 

nodes. In the case of RIM approach, the number of moving nodes increases as the 

network becomes larger. The total travelled distance resulted using RIM is almost 

doubled (N>100) compared to LDMR. Furthermore, in LDMR, the probability of finding 

a closer non cut-vertex node increases when the number of nodes increases. Therefore, 

when the network becomes larger, the total distance travelled under RIM increases while 

it decreases in the case of the LDMR. 

Figure 44 shows the average coverage loss rate resulting after applying each approach.   

RIM also shows a better result when the number of nodes are small. However, when the 

number of nodes increases, the network starts to lose coverage because more overlapping 

is resulted due to larger number of nodes movement. In the case of the LDMR,  the nodes 

which replace the positions of the direct neighbors of the failed node become very close 

to each other and therefore more overlapping is resulted which degrades the total
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Figure 43: The total distance (LDMR vs. RIM) travelled by the involved nodes during the recovery (r=150). 

 

 

Figure 44: The loss coverage rate (LDMR vs. RIM) during the recovery (r=150). 
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coverage compared to RIM. However, as the network becomes larger the total coverage 

for the two approaches becomes comparable.  As clearly indicated in Figure 44, the loss 

coverage rate becomes relatively very small as the number of nodes increases. When the 

network is large, this value becomes very small compared to the total covered area. 

6.3.3. ACRA Simulation Results 

In the section, we compare ACRA to RIM which depends only on cascaded movement. 

We described how the movement used in ACRA is different from RIM in section 4.4.1. 

We also compared ACRA to approaches that depend on 2-hop information such as 

DARA [18] in terms of communication messages.  

Total Travelled Distance: Figure 45 illustrates the robustness of the adaptive approach 

where the total travelled distance is lower than RIM for the whole range of network sizes. 

According to the simulation results, ACRA has a very comparable cost for networks with 

less than 40 nodes. As networks become larger than 40 nodes, ACRA starts 

outperforming RIM because it avoids cascaded movement when nearby non-cut-vertices 

can be used to bring back the connectivity to the network with lower cost.  

Number of relocated nodes: The Results depicted in Figure 46 show that ACRA tries to 

move fewer nodes than RIM. This is a very interesting and desirable feature for mission-

critical networks. Furthermore, the results show that ACRA is less sensitive to the 

network size which means the proposed approach is capable of selecting the right node 

and move it to the right location. This feature can also be observed in Figure 45 and 

Figure 51. 
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Figure 45: Total Travelled Distance (ACRA vs. RIM) (r=100) 

 

 

Figure 46: Figure 46: Number of moving nodes (ACRA vs. RIM) (r=100) 
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Figure 47:  Average Travelled Distance per node (ACRA vs. RIM) (r=100) 

 

 

Figure 48: Number of communication messages (ACRA vs. RIM vs. 2-hop info (DARA)) 
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Average Travelled Distance per node: RIM has a lower average travelled distance per 

node than ACRA because RIM moves larger number of nodes. However, since RIM 

starts to perform very bad in large networks, the gap becomes smaller in large networks 

(see Figure 47). 

Communication Messages: Approaches that need 2hop information such as DARA 

show more overhead and communication messages than RIM and ACRA. RIM shows the 

least message overhead compared with ACRA and DARA. This result is expected as 

ACRA involves search requests, responses, and other type of messages needed to 

properly execute the recovery process as we explained in section 4.4 (see Figure 48). 

Maximum number of hops: Figure 49 shows that when the maximum number of hops 

(i.e., H) increases, we can see a small enhancement in the performance if repositioning 

non-cut-vertices is the only option. This is because moving a node that is two hops away 

from the searching node is better than commanding the closest node to recover and do the 

search again. However, the enhancement is minimal and demands extra overhead. To 

include the nodes that are two hops away, the time-to-live has to be at least two hops. The 

effect of the maximum number of hops on ACRA is shown in Figure 50. As the number 

of hops increases, the total travelled distance increases in smaller networks. However, 

this effect starts to diminish as the network size increases. Such a trend is expected since 

using a non-cut-vertex is more frequently executed if we increase the cut-off threshold 

(number of maximum hops). Non cut-vertex utilization has a lower cost in larger 

networks. By comparing Figure 49 and Figure 50, ACRA shows a better performance for 

small networks (less than 100) since ACRA executes RIM in case of not finding a non-

cut-vertex candidate. RIM has a better performance than LDMR in small networks. 
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Figure 49:  The effects of maximum hops on the total travelled distance using (ACRA) (r=150) 

 

 

Figure 50: The effects of maximum hops on the total travelled distance of ACRA (r=150) 
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Figure 51: The effect of communication range on the average travelled distance for ACRA and RIM. 
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Communication range: Both approaches (RIM and ACRA) are affected by increasing 

the communication range. However, RIM is the most affected approach since its cost 

increases rapidly when the network size grows. ACRA is still proving to be the best by 

having the least travelled distance cost for all range of network sizes as shown in Figure 

51. 

Coverage Loss Rate: Results shown in Figure 52 are based on equation (6.2). Since 

ACRA behaves adaptively, the coverage loss rate is between RIM and LDMR 

approaches. It achieves better coverage in small networks than LDMR because it execute 

cascaded movement (RIM) in small networks more often than exploiting non-cut-vertices 

which cause more overlapping with neighbors after moving. On the other hand, ACRA 

achieves the same performance as LDMR in large networks. 

6.3.4. SFRA Simulation Results 

In this section, we studied SFRA via simulation. We used a uniform random probability 

of failure (PF) to pick the failed nodes among the cut-vertices. For each network size, we 

compute the average number of failed nodes based on this probability. It is worth to 

mention that non cut-vertices are leaf nodes in the recovery tree and do not partition the 

network if they fail. 

Figure 53 shows the total travelled distance cost of SFRA for different probabilities of 

failure for each multiple network sizes. It is obvious from the plot that for a certain 

network size, the recovery cost grows when with the increase in the failed node count 

(higher PF). Having many failed nodes in the recovery tree means more children need to 

move and therefore a longer distance to be travelled. For a fixed probability of failure, the  
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Figure 52:  Coverage Loss Rate of ACRA compared to RIM and LDMR 
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cost of recovery increases when the network size (number of nodes) increases. This is 

because the increased node count implies the involvement of more nodes in the recovery 

process and thus the total and average distance grows.  

To assess the overhead imposed by the recovery process executed by SFRA, we first 

examine SFRA for a single node failure and hence, we compared the total travelled 

distance per failed node to RIM and LDMR. RIM is a recovery approach that moves 

healthy nodes inward toward the failed node and achieves good results in small networks. 

On the other hand, LDMR depends on non-critical nodes to recover from a node failure 

and performs well in large and dense networks. Figure 54 shows that SFRA yields the 

smallest travelled distance per failed node compared to RIM and LDMR. This indicates 

the robustness and efficiency of SFRA for various network sizes. 

SFRA operation depends on the per-defined cluster size. To explore the impact of cluster 

size on the performance of SFRA, we fixed the failure probability and compared the total 

travelled distance for different cluster sizes and different network sizes. We observed that 

assigning each node to a nearby cluster head really helps in lowering the travel overhead. 

Figure 55 shows that for networks with 40 and 60 nodes, the recovery cost grows slightly 

when the cluster size increases. This is very much intuitive since the relocating nodes 

have to travel further to the position of their cluster heads, when deemed necessary. 

However, for a network of 100 nodes, clustering does not show significant improvement 

since the number of healthy nodes is large, and many leader nodes can be identified to 

replace their parents without the need to reach the cluster heads. This result shows that 

clustering always improve the performance compared to the case of letting leader nodes 

go to the root directly (cluster size equals one). In addition, using a smaller cluster size 
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Figure 53: Total travelled distance of SFRA for different probability failure (PF) 

 

 

Figure 54: Avg. travelled distance per failed node of SFRA compared to single failure approaches 
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Figure 55: Total traveled distance of SFRA  for different cluster sizes (PF = 0.25) 
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achieves a slightly fewer number of communication messages during weight computing 

and clustering phases. Non cluster nodes will send three different messages: rank 

assignment, weight computing, and clustering messages. Cluster nodes will send only 

rank assignment and clustering messages. Increasing the cluster size will increase non 

cluster nodes and decreases cluster count for the same network size which lead to a 

slightly more communication messages. Table 2 shows that there is a about %4.5 

increase in number of sent messages when the cluster size is increased from 5 to 15. The 

percentage of increase stays almost unchanged for different network sizes. 

 

Table 2:  Number of sent messages during rank, weight computing, and clustering phases of SFRA 

 

 

 

 

  

# 

nodes 

Cluster size = 5 Cluster size = 15 % 

increase 

40 4647 4853 %4.43 

60 7847 8201 %4.51 

100 1602 1674 %4.49 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 

In conclusion, we provided the followings through our work: 

 The problem of optimal self-healing of a partitioned wireless sensor and actor 

network is formulated as an Integer Linear Program (ILP). The total distance 

travelled by relocating nodes is minimized while not exceeding a predefined 

coverage loss rate. Extensive simulation experiments have been conducted to 

validate our approach. We have used DARA, a distributed connectivity 

restoration heuristic, as a baseline for performance comparison. The simulation 

results have confirmed the superiority of our approach. Our ILP formulation can 

be viewed as providing a lower bound on achievable total travel distance for 

node-relocation-based connectivity restoration schemes.  

 A distributed approach that restores the connectivity of WSAN has been 

presented. The Least distance Movement Recovery (LDMR) exploits non cut-

vertices actors to replace other nodes in the recovery process. We have compared 

LDMR approach to RIM and shown via extensive simulation experiments and 

analysis that LDMR imposes less travelled distance overhead in larger networks.  

 An enhancement to LDMR is given by presenting an adaptive connectivity 

restoration approach (ACRA) for efficient and autonomous repair of partitioned 

wireless sensor and actor networks that is caused by the failure of a critical (cut-

vertex) actor. ACRA replaces the failed actor with one of the existing nodes and 
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adaptively selects the failure recovery strategy in order to minimize the overhead. 

Non cut-vertices are preferred if they are available in the vicinity of the failed 

node, otherwise multiple nodes are sequentially moved in a cascaded manner. 

Due to the adaptive nature of ACRA, it can be implemented over a wide range of 

network sizes. ACRA is validated analytically and via simulation. Extensive 

simulation experiments have confirmed the effectiveness and correctness of 

ACRA and demonstrated that it imposes less motion overhead and engages fewer 

nodes than contemporary recovery schemes found in the literature.  

 A new approach for recovery from multiple simultaneous node failures in 

wireless sensor and actor networks (SFRA) has been presented. In SFRA, each 

node has a rank based on the number of hops to a pre-designated root node in the 

network. Some nodes are identified as cluster heads based on the number of their 

children in the recovery tree.  Each node is assigned a recovery weight and a 

nearby cluster node which serves as a gateway to other nodes that belong to that 

cluster. The recovery weight is used to decide which node is better to move in 

order to achieve lower recovery cost. The simulation results have demonstrated 

that SFRA can achieve low recovery cost per failed node in small and large 

networks. The results have also shown that clustering leads to lower recovery cost 

if the sub-network needs to re-establish links with the rest of the network. 

For future work, we could do the followings:  
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 Improving our centralized scheme by adding new constraints representing 

additional factors to the problem such type of task, status of the node, and 

other QoS metrics.  

 Since our distributed schemes depend on searching, we could extend the 

search to support different node capabilities. For example, the searching nodes 

in LDMR and ACRA look for a node having the same capability of the failed 

node. 

 Integrating ACRA and SFRA in one unified approach.  

 

  



116 

 

REFERENCES 

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor 

networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393–422, Mar. 2002. 

[2] E. Ould-Ahmed-Vall, D. M. Blough, B. H. Ferri, and G. F. Riley, “Distributed global 

ID assignment for wireless sensor networks,” Ad Hoc Networks, vol. 7, no. 6, pp. 

1194–1216, Aug. 2009. 

[3] H. Zhou, M. W. Mutka, and L. M. Ni, “Reactive ID Assignment for Wireless Sensor 

Networks,” Int J Wireless Inf Networks, vol. 13, no. 4, pp. 317–328, Oct. 2006. 

[4] Z.-G. Du, D.-P. Qian, and Y. Liu, “Addressing Protocols for Wireless Sensor 

Networks,” Journal of Software, vol. 20, no. 10, pp. 2787–2798, Nov. 2009. 

[5] K. Akkaya and M. Younis, “A survey on routing protocols for wireless sensor 

networks,” Ad Hoc Networks, vol. 3, no. 3, pp. 325–349, May 2005. 

[6] J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wireless sensor networks: a 

survey,” IEEE Wireless Communications, vol. 11, no. 6, pp. 6 – 28, Dec. 2004. 

[7] I. Demirkol, C. Ersoy, and F. Alagoz, “MAC protocols for wireless sensor networks: 

a survey,” IEEE Communications Magazine, vol. 44, no. 4, pp. 115 – 121, Apr. 2006. 

[8] G. Hoblos, M. Staroswiecki, and A. Aitouche, “Optimal design of fault tolerant 

sensor networks,” in Proceedings of the 2000 IEEE International Conference on 

Control Applications, 2000, 2000, pp. 467–472. 

[9] D. Nadig, S. S. Iyengar, and D. N. Jayasimha, “A new architecture for distributed 

sensor integration,” in , IEEE Southeastcon  ’93, Proceedings, 1993, p. 8 p.–. 

[10] C.-C. Shen, C. Srisathapornphat, and C. Jaikaeo, “Sensor information networking 

architecture and applications,” IEEE Personal Communications, vol. 8, no. 4, pp. 52–

59, 2001. 

[11] T. Melodia, D. Pompili, V. C. Gungor, and I. F. Akyildiz, “Communication and 

Coordination in Wireless Sensor and Actor Networks,” IEEE Transactions on Mobile 

Computing, vol. 6, no. 10, pp. 1116 –1129, Oct. 2007. 

[12] P. Basu and J. Redi, “Movement control algorithms for realization of fault-

tolerant ad hoc robot networks,” IEEE Network, vol. 18, no. 4, pp. 36 – 44, Aug. 

2004. 

[13] G. Wang, G. Cao, T. La Porta, and W. Zhang, “Sensor relocation in mobile sensor 

networks,” in Proceedings IEEE INFOCOM 2005. 24th Annual Joint Conference of 

the IEEE Computer and Communications Societies, 2005, vol. 4, pp. 2302–2312 vol. 

4. 

[14] W. Wang, V. Srinivasan, and K.-C. Chua, “Using mobile relays to prolong the 

lifetime of wireless sensor networks,” in Proceedings of the Annual International 

Conference on Mobile Computing and Networking, MOBICOM, 2005, pp. 270–283. 

[15] A. A. Abbasi, M. Younis, and K. Akkaya, “Movement-Assisted Connectivity 

Restoration in Wireless Sensor and Actor Networks,” IEEE Transactions on Parallel 

and Distributed Systems, vol. 20, no. 9, pp. 1366–1379, 2009. 

[16] K. Akkaya, F. Senel, A. Thimmapuram, and S. Uludag, “Distributed Recovery 

from Network Partitioning in Movable Sensor/Actor Networks via Controlled 

Mobility,” IEEE Transactions on Computers, vol. 59, no. 2, pp. 258–271, 2010. 



117 

 

[17] F. Dai and J. Wu, “An extended localized algorithm for connected dominating set 

formation in ad hoc wireless networks,” IEEE Transactions on Parallel and 

Distributed Systems, vol. 15, no. 10, pp. 908–920, 2004. 

[18] M. Younis, S. Lee, and A. A. Abbasi, “A Localized Algorithm for Restoring 

Internode Connectivity in Networks of Moveable Sensors,” IEEE Transactions on 

Computers, vol. 59, no. 12, pp. 1669–1682, 2010. 

[19] K. Akkaya and M. Younis, “C2AP: Coverage-aware and Connectivity-

constrained Actor Positioning in Wireless Sensor and Actor Networks,” in 

Performance, Computing, and Communications Conference, 2007. IPCCC 2007. 

IEEE Internationa, 2007, pp. 281–288. 

[20] M. Younis and K. Akkaya, “Strategies and techniques for node placement in 

wireless sensor networks: A survey,” Ad Hoc Networks, vol. 6, no. 4, pp. 621–655, 

Jun. 2008. 

[21] N. Tamboli and M. Younis, “Coverage-aware connectivity restoration in mobile 

sensor networks,” Journal of Network and Computer Applications, vol. 33, no. 4, pp. 

363–374, Jul. 2010. 

[22] K. Akkaya and F. Senel, “Detecting and connecting disjoint sub-networks in 

wireless sensor and actor networks,” Ad Hoc Networks, vol. 7, no. 7, pp. 1330–1346, 

Sep. 2009. 

[23] S. Lee and M. Younis, “Recovery from multiple simultaneous failures in wireless 

sensor networks using minimum Steiner tree,” Journal of Parallel and Distributed 

Computing, vol. 70, no. 5, pp. 525–536, May 2010. 

[24] P. Sinha, R. Sivakumar, and V. Bharghavan, “MCEDAR: multicast core-

extraction distributed ad hoc routing,” in 1999 IEEE Wireless Communications and 

Networking Conference, 1999. WCNC, 1999, pp. 1313–1317 vol.3. 

[25] S. K. Das, B. S. Manoj, and C. S. R. Murthy, “Weight based multicast routing 

protocol for ad hoc wireless networks,” in IEEE Global Telecommunications 

Conference, 2002. GLOBECOM  ’02, 2002, vol. 1, pp. 117–121 vol.1. 

[26] R. S. Sisodia, I. Karthigeyan, B. S. Manoj, and C. S. R. Murthy, “A preferred link 

based multicast protocol for wireless mobile ad hoc networks,” in IEEE International 

Conference on Communications, 2003. ICC  ’03, 2003, vol. 3, pp. 2213–2217 vol.3. 

[27] A. A. Abbasi and M. Younis, “A survey on clustering algorithms for wireless 

sensor networks,” Computer Communications, vol. 30, no. 14–15, pp. 2826–2841, 

Oct. 2007. 

[28] J. Luttamaguzi, M. Pelsmajer, Z. Shen, and B. Yang, “Integer programming 

solutions for several optimization problems in graph theory,” in 20th International 

Conference on Computers and Their Applications (CATA 2005). Also as a DIMACS 

technical report, 2005. 

 

 

 

 



118 

 

Vitae 

 

Name    :Abdullah Alfadhly 

Nationality   :Saudi 

Date of Birth   :1/11/1970 

 Email    :ab.fadhly@gmail.com 

Address   :P.O Box 6086. Riyadh 11442 

Academic Background :I received the B.S degree in Computer Science and 

Engineering from King Saud University, Riyadh, Saudi Arabia in 1994. In 1995, I 

joined King Abdulaziz City for Science and Technology (KACST). I received the 

M.S degree in Computer Engineering from Case Western Reserve University 

(CWRU), Cleveland, US in 2001. My research interests include Wireless Sensor 

Networks, Cognitive Radio, and 4G networks. 

 

 

 

 

 

 

 

 


