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ABSTRACT 
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In recent years, we have witness a remarkable progress in the field of digital information 

processing. The digital images/videos are rapidly proliferating. Despite the advancements 

in digital communications, the images/videos persist to suffer from major impairments 

that degrade the visual quality of the signal.  Thus, some objective quality measures are 

needed to monitor these impairments, and optimize the control parameters for quality 

improvement. However, the formulation of the objective image quality measures is very 

challenging, especially in the absence of the original medium. In this thesis, we propose a 

learning-based No-Reference Image Quality Assessment (NR-IQA) system using 

Artificial Neural Networks (ANN). The aim is to develop a computational model for the 

quality assessment of the images degraded by following distortions: blur, noise, JPEG 

compression, JPEG2000 compression, and across all distortions. The major artifacts 

observed in these distortions are quantified by a set of characterizing features extracted 

from the distorted medium. These active features are then used as an input to the neural 

network for quality prediction. The adaptive neural network learns the highly non-linear 

relationship between the statistical features and the overall quality rating, and 

approximates the quality score close to human perception. The experiments are performed 

on the images taken from the standard LIVE database. The performance of the proposed 
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algorithm is evaluated using the criteria recommended by the Video Quality Expert 

Group (VQEG). The experimental results show that the proposed quality measure 

outperforms the traditional logistic regression models, with an excellent correlation 

between the predicted and the subjective quality scores. The proposed machine learning 

approach is a powerful technique, and can be implemented for images/videos suffering 

from any kind of distortion. 
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 ملخص الرسالة
 

 عامر بن زياد   الاسم الكامل: 
 ودة الصور باستخدام شبكة الأعصابالتقييم بلا مرجع لج  عنوان الرسالة:
 هندسة اتصالات   التخصص:

 3102 فبراير  تاريخ الدرجة العلمية:
 

في السنوات الأخيرة، شهدنا تقدما ملحوظا في مجال معالجة المعلومات الرقمية. الصور والفيديو الرقمية تنتشر 
ور / الفيديو مازالت تعاني من عاهات بسرعة. وعلى الرغم من التقدم في مجال الاتصالات الرقمية، فإن الص

رئيسية والتي تؤدي إلى تدهور جودة الصورة. وبالتالي، هناك حاجة إلى بعض التدابير النوعية الموضوعية لرصد 
هذه العاهات، وتحسين المعاملات المسيطرة لتحسين الجودة. ومع ذلك، فإن الهدف من صياغة تدابير جودة 

 غياب الصورة الأصلية. في هذه الأرروحة، نقرح  صورة ذات نوعية التقييم الصورة  صعب للغاية، خاصة في
نظام )لا مرجع تعلم ( قائم على استخدام الشبكات العصبية الاصطناعية. والهدف هو تطوير حسابي نموذج 

، ضغط  JPEGلقييم جودة الصور التي تدهورت بفعل التشوهات التالية: الطمس، الضوضاء، ضغط 
JPEG2000 ،  وعبر كل التشوهات. إن الملاحظة الرئيسية الاصطناعية التي في هذه التشوهات من

 سببها مجموعة من الميزات التي تميز المستخرجة من الوسيط الناقل مشوهة. 
يتم استخدام هذه الميزات بالموقع كمدخل إلى الشبكة العصبية للتنبؤ بالجودة. تتعلم الشبكة العصبية 

الغير الخطية بين الميزات الإحصائية وتصنيف الجودة الشاملة، والتي تقارب درجة جودة قريبة التأقلمية العلاقة 
من الإدراك البشري. تجرى التجارب على الصور المأخوذة من قاعدة بيانات حية قياسية. يتم تقييم أداء 

 يو. الخوارزمية المقرححة باستخدام المعايير التي أوصى بها فريق الخبراء لجودة الفيد
تظهر النتائج التجريبية أن التدبير المقرح  للجودة يتفوق على نماذج الانحدار اللوجستي التقليدية، مع 
وجود علاقة ممتازة بين المتوقعة ونقاط الجودة الشخصية. إن نهج التعلم الآلي المقرح  هو تقنية قوية، ويمكن 

 التشويه.تطبيقها على الصور / الفيديو التي تعاني من أي نوع من 
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1 CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Human beings rely highly on visual information to perceive the world. The advancements 

in multimedia technologies had made it possible to capture, compress, send, and display 

various kinds of visual information. A great deal of effort has been made by  experts in 

the 2D image/video transmission industry, to guarantee a satisfactory quality of the signal 

to the end user [1]. In current bandwidth famine era, coupled with increasing multimedia 

traffic, perceptual optimization of the multimedia services is promising to provide 

similar/improved quality of service to the consumer. The produced visual content is 

transmitted to the consumer through the communication channels, by the network 

provider. Various impairments due to compression, channel noise, packet loss etc. are 

introduced in the signal from the chain of operations from the signal acquisition till its 

transmission. These impairments mar the viewing experience, and thus, degrade the 

visual quality of the signal. It is very important to recognize and quantify the quality 

degradation of these images and improve visual content. The compression techniques 

used for the signal bandwidth reduction is one of the important sources of image 

degradation. For instance, images which are compressed by lossy compression techniques 

experience different artifacts upon reconstruction. Thus, it is essential to evaluate the 

visibility of compression artifacts, so as to optimize the parameter settings of the related 
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system. Moreover, images are subjected to various losses, errors, or decays during 

transmission through communication networks. All these transmission impairments can 

lead to poor quality of received images. It is important for the network server to identify 

the image degradation and control the streaming resources in transmission. The reduced 

visual quality of the signal due to coding and transmission is represented in Figure  1.1.  

 

Figure  1.1: Degradation of visual quality 

 

Humans are the ultimate receivers of most of the visual information; hence, the Human 

Visual System (HVS) is the system we rely on for image quality assessment. The 

techniques involving the use of human observers for quality assessment are known as 

subjective quality measures. However, such subjective quality assessment is not suitable 

for real time-applications due to the huge implementation cost and time consumption. It 

is desirable to develop computational models, which could automatically estimate the 

quality of perceived image. This is the basic motivation behind developing objective 

quality measures whose, ultimate aim is to estimate the quality of the received image the 

way HVS does.  
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In objective quality assessment, it is required to have information about three important 

aspects: information of the original image, information about the distortion process, and 

information about the HVS. There are many real-time applications wherein the 

information about the original image is not always available. Under such scenarios, the 

quality of the distorted images is to be estimated only by analyzing the distorted medium 

itself. The ability of HVS to perceive image quality without any reference motivates the 

kind of image quality assessment, without referring to distortion-free image. Thus, both 

the practical requirement and the working mechanism of the HVS inspired to develop 

quality assessment models using only the distorted medium; these are referred to as No-

Reference Image Quality Assessment (NR-IQA) techniques. 

 

1.2 Image Quality Measures 

In any digital imaging system, it is very important to analyze the quality of the image it 

receives before any processing. This is needed to control, retain or improve the quality 

before processing, storage or transmission. Thus, Image Quality Measures (IQM) is 

important as a first processing stage. The IQMs are highly reliable and commonly used in 

the development of image and video processing systems. In general, Image Quality 

Assessment (IQA) measures are classified into two types: subjective quality measures 

and objective quality measures. The subjective measures involve the use of human 

observers for image quality evaluation. However, this method has many inherent 

drawbacks, due to which, the objective quality measures are preferred over the subjective 

quality measures. The ultimate aim of objective image quality assessment techniques is to 
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analyze the perceived image and approximate its quality close to subjective scores [2]. 

The hierarchy of different image quality metrics is shown in Figure  1.2. 

 

 

 

 

 

 

 

Figure  1.2: Hierarchy of IQMs 

 

1.2.1 Subjective Image Quality Measures 

The concept of subjective quality measurement was originally introduced in the area of 

signal compression mainly for image and speech signals. Traditionally, the value which 

specifies the signal quality after processing is the Mean Opinion Score (MOS). It is a 

numerical indication specifying the quality of perceived multimedia signal after 

compression/decompression. The MOS is a single numerical value on a scale of a 

predefined range given by the observer upon observing the image. For instance, a five 

level scale representing 1 as the lowest quality and 5 as the excellent quality of an image. 

The in-between values represent 2-poor, 3-acceptable, and 4-good. The grading scale of 

MOS is given in Table 1.1. 

 

IMAGE QUALITY 

ASSESSMENT

SUBJECTIVE QUALITY 

ASSESSMENT

OBJECTIVE QUALITY 

ASSESSMENT

FULL REFERENCE

REDUCE REFERENCE

NO REFERENCE
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Table 1.1: Mean Opinion Score 

Score Quality Impairment 

5 Excellent Imperceptible 

4 Good Perceptible/not annoying 

3 Fair Slight annoying 

2 Poor Annoying 

1 Bad Very annoying 

 

The MOS value is an average of quality scores given by a group of observers for a given 

image and is expressed as: 

  
1

N

i i

i

MOS X P X


  ( 1.1) 

In the above equation, 
iX  is the quality score of thi  image,  iP X  is the image score 

probability and N  is the total number of observers. An equi-probable score is considered 

by all observers. The quality comparison of the images is shown in Figure  1.3 

The main advantages of subjective quality measures include: 

 Reliable results are obtained for both conventional and compressed television 

systems. 

 Scalar Mean Opinion Score (MOS) is produced, which works effectively for a 

wide range of still and motion picture applications. 

The disadvantages of subjective testing on the other hand include: 

 Large range of possible factors and test parameters need to be considered. 
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 Scrupulous setup and mechanism is needed. 

 Good number of observers must be employed and screened. 

 Complex and time consuming process. 

However, the subjective tests are used only for the purpose of development, not for 

operational monitoring, production line testing, or trouble shooting. 
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Figure  1.3: Quality Comparison of the images 

 

1.2.2 Objective Image Quality Measures 

Objective IQMs have been developed to quantitatively estimate perceived image and 

video quality. They are classified based on the availability of the reference data at the 

quality assessment system. The different classifications are shown in Figure  1.4. The 

HVS doesn’t experience any difficulty in quality assessment of distorted image/video 

signals, even in the absence of the reference medium. However, the task which HVS can 
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do with such an ease seems to be very complex for a machine to perform. The metrics 

which follow the quality prediction of the perceived image without the prior knowledge 

of reference data are referred to as No-Reference (NR) or “blind” methods. These 

methods are heavily used in communication systems as quality estimators. On other hand, 

metrics involving the use of some degree of knowledge about the reference medium are 

known as Reduce-Reference (RR) methods. Such information is provided to the receiver 

along with the transmitted signal for quality prediction of the received image. This makes 

the task of RR methods easier compared to the NR methods. A set of distinct features are 

extracted from the original image and transmitted to the receiver through an auxiliary 

channel. At the receiver end, the features are retrieved and utilized as a base for quality 

estimation. In applications where the complete reference medium is available at the 

evaluation system, the Full-Reference (FR) methods are used. These methods utilize the 

entire original image as a reference for quality prediction. The availability of the 

reference image facilitates the task of quality prediction and provides a higher degree of 

reliability. Most of the proposed metrics are based on FR methods [2]. The major 

drawback of the FR/RR methods is the unavailability of the reference signal at the 

receiver at all times. Therefore, NR methods are preferred over FR/RR methods in 

communication systems. The field of NR-IQA remains largely unexplored and is still far 

from being a mature research area. The intrinsic complexity and limited knowledge of the 

human visual perception pose major difficulty in the development of robust NR-IQMs. 

Despite such substantial challenges, the field of NR-IQM is rapidly evolving and is 

presently an active and rapid emergent area. 
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Distorted Image Quality Assessment Quality Measure

 

(a) 

Reference Image

Quality Assessment Quality Measure

Distorted Image Feature Extraction

Feature Extraction

 

(b) 

Distorted Image

Quality Assessment Quality Measure
Reference Image

 

(c) 

Figure  1.4: Objective IQMs 

(a) No-reference methods, (b) Reduced reference methods, and (c) Full-reference methods 

 

1.3 Thesis Objectives 

The task of no-reference image quality assessment is very challenging due to its intrinsic 

complexity and the unavailability of the reference signal.  NR-IQMs depend solely on the 

robustness of the features used from the distorted medium.  These features must correlate 

well with the perceived image quality for the development of the robust model.  
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The main objectives of the thesis are as follows: 

 Extraction of robust features from the distorted images for the no-reference image 

quality assessment. 

 Development of an algorithm based on these features and an ANN regressor for 

quality prediction. 

 Intensive testing of the algorithm on the standard LIVE database. 

 Comparison with different existing techniques. 

 

1.4 Contributions 

Major contributions achieved in thesis are as follows: 

 An artificial neural network based no-reference quality assessment algorithm, 

applicable for JPEG compression, JPEG2000 compression, blur and noise is 

developed.   

 Neural networks with different activation functions were studied, which 

approximate the image quality by quality-score prediction.  

 Several networks are trained and tested for each distortion individually, and also 

across all the distortions.  

 The formulation of the problem of IQA as a classification problem. 
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1.5 Thesis Outline 

The rest of the thesis is organized as follows: 

Chapter 2 gives an overview of the anatomical structure and the perceptual behavior of 

the HVS.  

Chapter 3 reviews some representative work reported in the fields of the FR, RR, and NR 

image quality assessment. It also discusses the performance evaluation criteria used to 

evaluate the performance of the objective quality measures. 

Chapter 4 discusses the proposed NR image quality assessment algorithm using ANN. 

Under this, we discuss the extraction stage of the features from different distortions; also, 

the neural network’s training stage for quality prediction. 

Chapter 5 discusses the performance evaluation of the proposed method on the standard 

LIVE database, and its comparison with existing objective models. 

Chapter 6 gives a summary of the thesis, and some potential future research directions.   
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2 CHAPTER 2 

HUMAN VISUAL SYSTEM 

2.1 Human Visual System 

The concept of Human Visual System (HVS) continues to be an inspiration for the 

development of the majority of the perception based approaches in computer graphics. In 

this chapter, some of the important properties of the HVS are discussed. The physical 

structure of the HVS is first discussed, which is well established. It forms the foundation 

to understand the complex characteristics of the perceptual behavior [3]. 

 

2.2 Physical Structure of Human Visual System 

In this section, the basic visual anatomy and physiology is discussed. This would help in 

understanding the kind of information that can be coded by human visual mechanisms. 

 

2.2.1 The Human Eye 

The shape of the human eye is almost spherical, except for a bulge at the front [3]. Eyes 

are placed in almost hemispherical holes in the skull, known as the eye sockets, which are 

positioned at the horizontal midline of the head. The eye movement is possible by the 

coordinate use of six small, but strong muscles, called the extraocular muscles, which are 
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controlled by specific areas in the brain. The eye movement is used for scanning various 

sections of the visual field, or to focus on the objects located at various distances, without 

even turning the entire head. The basic function of the eye is to gather light, reflected 

from objects in the world, and focus it in a clear image on the back of the eye. Various 

optical functions [3], accomplished by different parts of eye are shown in Figure  2.1. For 

a human to see an object, the reflected light first enters the cornea, a transparent bulging 

structure in the front part of an eye, in arrears to which lies a cavity filled with a clear 

liquid known as the aqueous humor. The light then propagates through the pupil, a 

variably sized opening in the opaque iris, which gives an eye its external color. Just in 

arrears to iris lies the lens. The light then passes through the lens, whose shape is 

controlled by ciliary muscles. By changing the shape of the lens, its optical properties can 

be altered. This process is known as accommodation. The central chamber of the eye is 

filled by the clear vitreous humor.  The photon then travels through the vitreous humor, 

and finally, it reaches the retina, a curved surface at the back of an eye. The retina is 

compactly covered with around 100 million light-sensitive photoreceptors, which convert 

light into neural activity [3].  

When light strikes the retina, the information about striking is transmitted to the primary 

visual cortex, available in the occipital lobe, located at the back of the head, shown in 

Figure  2.2. Most of the brain, as well as the eyes, include the complete visual system. 

Thus, for an organism to reliably extract the information in the environment, the whole 

eye-brain system must function properly. 
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2.2.2 The Retina 

Once the optical processing is performed, the eye converts the light into a neural activity, 

to makes it compatible for the brain to perform further processing. This conversion is 

carried by photoreceptors available in the retina. These photoreceptors are specialized 

retinal cells, which get stimulated by the light energy.  In general, photoreceptor cells are 

classified into two types [3], rods and cones. The rods are highly abundant (about 120 

million), very sensitive to light, and are positioned all over the retina, except at its very 

center. The main purpose of the rods is to provide vision at very low light levels, known 

as scotopic conditions. On other hand, the cones are less copious (about 8 million), much 

less sensitive to light. They are totally concentrated at the center of the retina, with a few 

dispersed through the periphery. The main purpose of the cones is to provide vision under 

normal lighting conditions, known as photopic conditions. Cones are even responsible for 

all the colors we experience. There is a small region at the center of retina, called the 

fovea, which contains nothing but heavily stacked cones. The fovea can cover only about 

2 degrees of visual angle. Another region, known as the optic disk (or the blind spot), 

exists where the axons of the ganglion cells leave the eye at the optic nerve. This region 

contains no receptor cells at all. Blindness though, is not experienced there, but only 

under very special circumstances. 

After the optical information is coded into neural responses, some preliminary processing 

is carried inside the retina itself. This processing is done by various other types of 

neurons, which include horizontal, bipolar, amacrine, and ganglion cells [3]. All these 

neurons integrate the responses from nearby cells, shown in Figure  2.3. The inputs are 
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received by the retinal ganglion cells, organized antagonistically, and are concentric 

pattern composed of a center and a surround region. The region of the retina, from which 

the ganglion cell receives the input, is known as the receptive field. The background 

signal is constantly emitted from the ganglion cell.   

 

Figure  2.1: A cross section of the human eye  [4] 

 

The response from the retinal ganglion cell is drastically increased when the light strikes 

the photoreceptors in one region (on-response), while on the other hand, it generates the 

reduce response (off-response) when light falls on the other regions. In general, the 

ganglion cells are classified into two types, namely, the on-center cells and the off-center 

cells. The former are the cells where the center region is stimulated by an on-response, 

and the later are the cells where the center region is stimulated by an off-response (see 

Figure  2.4). 
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Figure  2.2: The human visual system [3] 

 

The ganglion cells are provided with the axons, which convey information out of the eye, 

through the optic nerve, and into the optic chiasm [3]. In the optic chiasm, the fibers in 

each eye, positioned at the nasal side of the fovea, cross over to the opposite side of the 

brain, while the other fibers remain on the same side. This leads to the complete 

swapping from external visual fields to the cortex; i.e., the information from the left half 

of the visual field goes to the right half of the brain, whereas the entire information from 

the right visual field goes to the left half of the brain. There are two discrete passage ways 

from the optic chiasm into the brain, on either side. The smaller one leads towards the 

superior colliculus, a nucleus in the brain stem. This visual center is basically involved in 
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the control of eye movements, and also appears to process information about where 

things are in the world. The larger pathway leads initially to the Lateral Geniculate 

Nucleus (LGN) of the thalamus, and then to the occipital cortex (or primary visual 

cortex). 

 

Figure  2.3: The human retina [3] 

 

2.2.3 The Visual Cortex 

The human cortex is separated into two halves, known as cerebral hemispheres, which 

are nearly symmetrical. Numerous neuropsychological studies [3] state that for the visual 

information, the occipital lobe is the chief cortical receiving area. It would be pure 

speculation to say that vision scientists understand all about how the visual cortex works. 

They are in fact starting to get some glimmerings of what the assorted pieces might be 
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and how they might fit together. Striate cortex, which is sometimes known as primary 

visual cortex or area V1, is the section, where the first steps in cortical processing of 

visual information takes place [3]. It covers the larger section of the occipital lobe, and 

even handles the most complex visual processing tasks. The input to striate cortex is from 

the LGN on the same side of the brain. Just like that of LGN, the visual input of striate 

cortex is completely crossed. Both sides are triggered by the thin central vertical strip, 

which measures about 1 degree of visual field. The cells on one side of the brain, which 

are sensitive to this strip, are connected to the corresponding cells on the other side of the 

brain, through the large fiber tract known as corpus callosum. The function of corpus 

callosum is to allow communication between the two cerebral hemispheres. The nearby 

regions on the retina, project to nearby regions in striate cortex. This makes the mapping 

from the retina to the striate cortex, topological in nature. The cortical magnification 

factor is the process in which central area of the visual field receives a much greater 

proportion in the cortex than the periphery. This area of the visual field falls on or near 

the fovea. 

There are two pathways which are often referred as the “what” system and the “where” 

system. The “what” system represents the lower (ventral) system, wherein the inferior 

temporal centers seem to be involved in identifying objects, whereas the “where” system  

represents the upper (dorsal) system, wherein the parietal centers seem to be involved in 

locating objects [3]. It appears almost inevitable that these two diverse classes of 

information must get together at some place in the brain, so that the “what-where” 

connection can be established, but where this happens is not known yet. 
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It is clear that a good amount of visual processing is performed across different areas in 

parallel. Every section is projecting fibers to various other sections, but by no means to 

all of them. There is a bidirectional communication among these, that is, if area A 

projects to area B, then area B also projects back to A. 

 

2.2.4 The Physiological Pathways Hypothesis 

In recent years, the connection between anatomical structure and physiological function 

has started to unveil. Hypothesis is made, that, there are discrete neural pathways to 

process information regarding distinct visual properties which includes shape, color, 

motion and depth. Livingstone and Hubel [5] proposed that from the retina onwards 

itself, the afore mentioned four different types of information are processed in different 

neural pathways. The reports and evidences show that color, form, motion, and 

stereoscopic depth information are processed in separate sub-regions of visual cortical 

areas V1 and V2 as shown in Figure  2.5. These areas are further projected to different 

higher-level areas of cortex; i.e., color projected to area V4, movement and stereoscopic 

depth information to area V5 (also referred as MT, Medial Temporal cortex), and form to 

area IT (Infero-Temporal cortex) via various intermediary centers (including V4) [3]. The 

depth and motion pathways from these areas projects to the dorsal “where” system for 

object localization, whereas the form and color pathways to the ventral “what” system for 

object identification. 
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A. On-center, Off-surround                     B. Off-center, On-surround 

Figure  2.4: Receptive field structure of ganglion cells 

On-center, off-surround cells (A) fire to light onset, and stop at offset in their excitatory 

center. But they stop firing to light onset, and begin firing at offset in their inhibitory 

surround. Off-center, on-surround cells (B) exhibit the opposite characteristics [3] 

 

2.3 Visual Perception 

Visual perception is defined as the process of extracting knowledge about the events 

happening in the environment and its objects. This is achieved by extracting information 

from the light they emit or reflect. Visual perception cares only about acquiring 

knowledge. This implies that, vision is fundamentally a cognitive activity [3], which is 

different from pure optical processes like photographic ones. When the eye is compared 

with a camera, significant similarities are found between these in terms of optical 

phenomena, but no similarities whatsoever in terms of perceptual phenomena. For 

instance, perceptual capabilities are totally absent in camera. Perception is not just about 

subjective visual experiences of the observer. The knowledge obtained through visual 
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perception specifies about the objects and events in the environment. Optical information 

is the basis of all vision. It is the information that is processed in visual perception 

coming from the light emitted or reflected by different objects. 

 

2.3.1 Adaptation of Visual Perception 

Visual perception adapts to certain conditions, and hence, changes over time. For 

instance, upon entering a very dark room during an afternoon daylight, we don’t have a 

good vision. But after we spend some time in that ambience, say around 20 minutes, we 

can see very well inside. This attribute of sensitivity to light is known as dark adaptation 

[3]. In visual perception, adaptation is considered to be a very general phenomenon, and 

due to the protracted exposure of visual experience to varied range of stimulation: color, 

orientation, size, motion, etc., it may become less intense. The visual perception is not 

always a clear window onto reality. It is evident from the above mentioned changes in 

visual experience, that, for same physical environment, we have distinct visual 

experiences at different stages of adaptation. 

 

2.3.2 Ambiguous Perception of Objects 

Vision is an interpretive process, which provides us the information [3]. It somehow 

transforms the moving two-dimensional patterns of light, into stable perceptions of three-

dimensional space, moving at the back of the eyes. The objects we perceive are not in 

fact the direct registrations of physical reality, but the interpretations based on the 
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structure of images. This aspect of vision exhibiting the interpretive nature comes from 

ambiguous figures. Ambiguous figures are single images, but can exhibit two or more 

distinct perceptions (for example, observe Figure  2.6). The interpretations out of such 

ambiguous figures are mutually exclusive; i.e., there can be only one perception at a time: 

a duck or a rabbit, not both. This is logical with the idea that perception leads to the 

formation of an interpretive model, because out of all models, only one such can be fit to 

the sensory data at one time. There would be no ambiguous figures, if perception was 

absolutely determined by the light stimulating the eye. This is because each pattern of 

stimulation would map onto a unique percept. 
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Figure  2.5:  Schematic diagram of the visual pathways hypothesis [3] 
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Figure  2.6:  Ambiguous figures. 

Figure on the left can be seen as a duck (facing left) or a rabbit (facing right). 

 

2.3.3 Visual Completion of the Environment 

Perceptions of the people do not correspond to the sensory stimulation on which the 

models are based, but correspond to the models that their visual systems have constructed 

[3]. As a result, perceptions can sometimes be ambiguous and illusory, in spite of the 

non-illusory and unambiguous status of the raw optical images on which they are based. 

Perceptual models should be coupled to the information in the projected image of the 

world, and should be able to deliver fairly precise interpretations of the information. 

 Our perceptions contain portions of surfaces that we actually cannot see. This is the most 

substantial evidence that, visual perception involves the construction of environmental 

models. This perceptual filling-in, of parts of objects, concealed from our vision, is 

known as visual completion. It takes place automatically and smoothly every time we 

perceive the environment. Visual perception also fills in the information about the 
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surfaces of an object that is entirely hidden from view by its own visible surfaces. Such 

surfaces are referred to as self-occluded surfaces. 

 

2.3.4 Perception of Impossible Objects 

A two-dimensional line depiction in the beginning, gives a clear perception of coherent 

three-dimensional object, but can physically be impossible, as shown in Figure  2.7. This 

is a clear demonstration which backs the idea that, vision actively constructs 

environmental models instead of merely registering what is present. The physically 

impossible objects merely could not be perceived, if visual perceptions were simply a 

reliable reflection of the world. This indicates that, some visual processes work initially 

at a local level, and only later fit the results into a global framework.  

 

Figure  2.7: An impossible object. 

 

The figure above gives the perception of coherent three-dimensional object, but it is 

impossible to achieve physically. 
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2.3.5 Classification of Objects 

Our perceptual constructions go beyond filling-in the unseen surfaces [3]. They can even 

encompass information regarding the functional significance or the meaning of objects 

and situations. Once we are able to classify objects as members of known classes, we can 

reply to them in appropriate ways, based on the information collected from past 

experiences with similar objects. The past experience with members of a given class 

helps us in predicting what new members of the same class will do or will look like, with 

reasonable certainty. In a nutshell, we are able the address most new objects at a more 

abstract level of their class, even if we have never seen these particular objects before. 

 

2.3.6 Attention and Consciousness 

The information present in the visible environment is much more than what one can fully 

perceive [3]. Therefore, we must be careful in what we attend to, because, what we opt 

will greatly depend on our plans, desires, goals, and needs. Perceptions are not driven 

merely by the nature of the optical information present in the sensory stimulation. Our 

perceptions are also influenced by higher-level goals, expectations, and plans, known as 

cognitive constraints.  Based on what we are trying to achieve, we look at different things 

in our environs, as a result, we perceive them differently. 

One of the functions of attention is to bring visual information to consciousness. Some 

attributes of objects are not experienced consciously, but they are attended. On the other 

hand, objects which are not attended are often processed completely out of 
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consciousness, to attract our attention. We become conscious of the detailed properties of 

the object as soon as it is attended. We can also identify it and distinguish its meaning in 

the present situation. Unlike lower levels of perception, the higher levels seem to be 

accessible to, or can be modified, by conscious knowledge and expectations. However, 

there is not much information about the role of consciousness in perception.  

 

2.4 Summary 

In this chapter, some basic properties of HVS are discussed. This chapter gave an insight 

of the anatomical and the physiological properties of the visual system. We focused 

mainly on those aspects of the physiology, on which most of the vision quality models 

are based. An overview of the physical structure and several vital parts of the eyes, and 

their functioning in the visual system was given. The various aspects of the visual 

perception were also discussed. Such understanding is fundamental in linking the 

concepts of objective and subjective image quality assessment. 
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3 CHAPTER 3 

LITERATURE REVIEW 

 

In last few years, a great deal of research has been performed in the field of quality 

assessment, to develop effective objective quality metrics for both image and video. This 

chapter gives an overview of various algorithms proposed for image quality evaluation.  

The FR-IQA algorithms are discussed in section  3.1, followed by RR-IQA measures in 

Section  3.2, and NR image quality measures in Section  3.3. Various validation measures 

recommended by the Video Quality Experts  Group (VQEG) [6], for the performance 

evaluations will be reviewed in Section  3.4. 

 

3.1 Full-Reference Image Quality Measures 

FR-IQA algorithms take both the reference and the distorted image as input, and yield an 

estimate of the quality of the distorted image as an output. The reference image is 

assumed to be a perfect image/distortion-free image. In the last decade, the classical 

approaches of FR-IQM received a lot of attention, due to their practical applications in 

the multimedia and communication area. A significant part of the literature discusses the 

development of FR image quality measures and various efforts and contributions made in 

this field. The major challenge is to develop “simple” but robust quality metrics which 
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can estimate visual quality of images with high reliability and high correlation with 

human observers. 

The conventional FR image quality measures like the Mean Square Error (MSE) and the 

Peak Signal to Noise Ratio (PSNR) have found widespread use, given their simple 

mathematical foundations. These measures were among the very first FR-IQMs used in 

the literature.  

Let an image I  represent the original image, and Î  be its distorted version under 

evaluation. Both the images are assumed to be 8 bits/pixel images. The concept has also 

been extended to color images [7]. The error between images I  and Î  is given by, 

ˆE I I   . The MSE is simply expressed as: 
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( 3.1) 

The PSNR on the other hand is expressed as: 
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( 3.2) 

Here, .   represents the 
2L -norm,

iE  is the distortion value corresponding to pixel i , 

and N  is the total number of pixels. The PSNR is effective, when the images being 

compared have different range of pixel values, but contains no new information regarding 

the MSE. Equations ( 3.1) and ( 3.2) show that, both the MSE and the PSNR are functions 

of the energy of the pixel-wise distortions E . Though, the MSE and the PSNR has been 
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widely used for a long time, they are considered ineffective and unreliable measures for 

visual quality estimation as they don’t correlate well the human perceptual visual quality 

[8–11]. 

To develop visual models comparable to the HVS, intense efforts have been made to 

mathematically model the functional components of the HVS, related to the visual quality 

assessment. The HVS is a very complex system, and most of its functional properties are 

still not well understood. In the past few decades, serious research has been carried to 

understand the functioning of the HVS, and its other abilities related to vision [12], [13]. 

Some of the traditional image quality measures based on the HVS are discussed below. 

The Lubin’s model [14], [15] predicts image quality by estimating the probability of the 

difference between the images being compared.  In order to estimate the probability map, 

a group of filters used to resample the image. This is done to simulate the functioning of 

eye optics and photoreceptor sampling process of the retina. The image is decomposed 

using a Laplacian pyramid [16], followed by band-limited contrast calculations [17]. The 

processing image is further decomposed by a set of steerable filters [18] to mimic the 

orientation selection of the HVS. The results are then normalized using the contrast 

sensitivity function. Finally, the convolution of normalized error signal and disk-shaped 

kernels is performed using a Minkowski pooling across scales. The error signal obtained 

after the pooling stage across the spatial space is represented as the probability of 

detection map. 

Teo-Heeger et al. [19][20] proposed a model based on two components: a steerable 

pyramid transform [21] and a contrast normalization. Usually, the decomposition using a 
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steerable pyramid is done to mimic the channel decomposition in the HVS.  The large 

number of neurons in the primary visual cortex is tuned to visual stimuli, with specific 

orientation, frequency, and orientation. The normalization scheme is inspired by the 

models that have widely been used to explain the physiology data in early visual systems. 

The detection method is a simple squared-error norm given by: 

 
2
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( 3.3) 

Here, refR  and 
distR  are the vectors of normalized responses from the corresponding 

regions in the reference and distorted images respectively. 

Watson et al. [22] developed a Discrete Cosine Transform (DCT) model, which was first 

designed to optimize JPEG compression. In this, the image is divided into a number of 

non-overlapping blocks. For every block, a visibility threshold is calculated for each DCT 

coefficients. The visibility threshold is calculated using three factors, which include 

baseline contrast sensitivity, masking of contrast/texture, and masking of luminance. This 

is done to simulate the properties of the HVS. The purpose of determining the visibility 

threshold is to normalize the error between the reference and the distorted image signals. 

Finally, the error is pooled spatially and across frequency to estimate image quality. 

These threshold units are commonly referred as ‘Just Noticeable Differences’ (JND), 

represented by ijkd . In spatial error pooling, the JNDs for a specific frequency  ,i j over 

entire blocks k  are pooled to give a perceptual error metric.  
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Here, 
s  is the exponent in the Minkowski metric. 

In frequency error pooling, the perceptual error metric is optimized by Minkowski metric 

of different exponent f   and is given by: 
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Karunasekera et al. [23] proposed a model, based on the HVS sensitivity to horizontal 

and vertical edge artifacts due to DCT-based compression. The edge error is calculated 

by averaging the absolute transform error over the entire image and is given by: 

  vedge tE mean e
 

( 3.6) 

In the above equation, 
te  is the non-linearly transformed masked error and vedgeE is the 

vertical edge error. 

Miyahara et al. [24] developed a picture quality scale, which combines a group of 

properties associated to the HVS, for both global features and localized distortions. This 

includes the adaptation to light, contrast sensitivity, and visual masking of the HVS. For 

color images, Winkler et al. [25] proposed a distortion metric based on the following 

properties of visual perception: the theory of opponent colors and color perception, the 

response properties of neurons in   primary visual cortex, the contrast masking, and the 

contrast sensitivity of HVS. The distortion measure was given by: 
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Here, 
0s  and 

1s  are the sensor outputs from the reference and processed image 

respectively. The amount of perceptual distortion measure s is transformed using 

equation ( 3.8), to quantify the measure of perceptual distortion on a scale of 0 to 5 (low 

to high quality) 
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Here, K  is a model parameter, which is properly chosen to ensure proper mapping [25]. 

Damera-Venkata et al. [26] developed an algorithm which models degradation as a linear 

frequency distortion and additive noise. Thus, two distinct measures were developed to 

compute both the distortions separately. Frequency distortion is calculated based on the 

model of frequency response of the HVS over visible frequencies. The additive noise 

distortion is calculated using the following properties of the HVS: the variation in the 

contrast sensitivity, variations in the mean of local luminance, contrast interactions 

between spatial frequencies, and the contrast masking effect of the HVS. The frequency 

distortion measure is given by: 
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( 3.9) 

In the above equation, rf  and maxf  are the radial frequency and the maximum radial 

frequency respectively, and Nf  is the Nyquist frequency. The terms DTF and CSF are the 

Distortion Transfer Function and the Contrast Sensitivity Function respectively. 
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Wang et al.[27] developed an image quality metric in the wavelet domain, known as the 

foveated wavelet image quality index. The metric is based on certain functional 

properties of the HVS; i.e, the space variance of contrast sensitivity function, space 

variance of local visual cut-off frequency, variance of human visual sensitivity in 

different wavelet sub-bands, and the influence of the viewing distance on display 

resolution. The Foveated Wavelet image Quality Index (FWQI) is represented as a 

function of Foveated Wavelet image Distortion (FWD) and is given by: 
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( 3.10) 

In the above equation, M  represents the number of wavelet coefficients, ( )nc x  and 

( )nc x  are the  
thn  wavelet coefficients of the reference and the compressed images at 

position 
nx  in the wavelet domain respectively. The foveated wavelet image quality 

index is given by: 

 exp( )FWQI FWD   ( 3.11) 

Lin et al. [28] presented a distortion metric, based on the noticeable local contrast 

changes as perceived by the HVS. It is achieved by discriminately analyzing the 

influence of the pixel difference on visual quality. A novel formula for the adjustment to 

luminance adaptation is proposed, which uses a block classification for contrast masking 

of the HVS. The proposed bottom-up visual distortion metric is given by: 
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Here, 
ec   , 

ec   are the averages of local contrast decrease and increase of edge pixels 

respectively and nec   is the average of local contrast change of non-edge pixels. 

Chandler et al. [29][30] developed a metric which quantifies visual fidelity of natural 

images based on the near-threshold and the supra-threshold properties of the HVS. The 

metric is known as the Visual Signal to Noise Ratio (VSNR). First, the metric identifies 

whether the distortion is visible by comparing it with a contrast threshold. The contrast 

threshold is computed via wavelet based models of visual masking and visual summation. 

On the other hand, if the distortions are less than the threshold values of visual detection, 

the distorted image is considered to be of good visual fidelity. If the distortions are 

observed to be supra-threshold, the distortions are quantified by the low-level visual 

properties of observed contrast and the mid-level visual properties of global preference. 

The VSNR is given by: 
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( 3.13) 

Here, pcd  is the perceived contrast of the distortion, gpd   is the measure of extent of 

global precedence that is disrupted and ( )C I  is the RMS contrast of the original image I .  

In contrast to the approaches based on “bottom-up” HVS, the “top-down” image quality 

measures assume the HVS as a black box. For some input to the black box, some output 

response is produced. So, the only concern is the input-output relationship of the HVS. It 

is based on the postulates related to the functionality of the HVS. The computational 
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models of top-down approaches are much simpler that bottom-up models for image 

quality assessment. 

Sheikh et al. [31–34] developed a visual information fidelity approach based on the 

statistical source modeling, channel distortion, and a receiver. The model relates the 

quality of an image to the amount of information that is shared between the reference and 

the distorted image. A reference image (the source) is modeled by a Gaussian scale 

mixture in the wavelet-domain [35]. The degradation between a reference and a distorted 

image (the channel distortion) is modeled as the amalgamation of uniform energy 

attenuation in wavelet-domain with the additive noise. Finally, the visual distortion 

process (the receiver) is modeled as a stationary, zero-mean, additive white Gaussian 

noise process in the wavelet domain. The image quality is predicted by quantifying the 

information shared between the reference and the distorted mediums.  

Weken et al. [36] developed an algorithm based on the concept of fuzzy logic. The model 

resort to similarity measures using fuzzy set theory. For image quality prediction, the 

disjoint patches between the reference and the distorted images are compared. The 

weighted average of the local similarities between the patches gives an approximation to 

image quality. Thirteen fuzzy similarity measures were discussed in [36], and were then 

used to measure local similarities. The weight is defined as a similarity between the 

homogeneities of corresponding patches of the image. The homogeneity is calculated as 

the similarity between the maximum and minimum intensities of an image patch. The 

weighted average of the similarities between the disjoint parts of an image is given by: 
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In the above equation, ( , )i iS A B  represents the similarity between the image parts
iA  and

iB  of the images A and B  respectively. 

Shnayderman et al. [37] developed an image quality measure based on the Singular 

Value Decomposition (SVD) of the image. The SVD of an image can either be used as a 

scalar or a graphical measure. In [38], Han et al. used the LU factorization to represent 

the structural information of an image. A two- dimensional distortion map is obtained 

using LU factorization of the reference and the distorted images. This map forms the 

basis for quality prediction. The resulting image quality measure is given by: 
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Here, W and H represents the image size, and N represents the size of image block. 
U

jD

is the distortion map of thj  block and 
U

medD   is just its median. 

Bouzerdoum et al. [39] presented a neural network-based IQA algorithm for 

JPEG/JPEG2000 compression distortions. In this, a set of key features are extracted from 

the reference and test images to train neural network for image quality prediction. The 

image is first divided into blocks of size 16 16 , and six statistical features are extracted 

from each block as an input to the network. The network is trained to estimate the image 

quality of corresponding block, and the average of estimated qualities of all individual 

blocks gives the overall quality of an image. The six statistical features extracted from the 
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original and images include: the two means, the two standard deviations, the covariance, 

and the mean-squared error between the reference and the test blocks. 

 

3.2 Reduced-Reference Image Quality Measures 

Reduced-Reference IQA methods are preferred in applications where the reference image 

is not fully accessible. Instead of the entire reference image, a fractional part of some 

features are used for quality prediction. The partial information is the set of parameters 

extracted from the reference image. The RR measures provide a compromise between FR 

and NR quality measures. They are easier than NR measures at the trade-off of 

transmitting additional information. In conventional RR image quality measures, the side 

information is transmitted through a separate data channel, which makes it cost 

ineffective in real time applications. An alternative solution is to transmit the side 

information through the same channel, along with the image being transmitted. The 

parameters being extracted from the reference image are selected based on certain 

specific criteria. The features must provide enough information about the reference 

medium, they should be sensitive to image distortions, and should even provide good 

perceptual relevance. At the receiver, the quality score is predicted based on the features 

extracted from both the reference and the distorted images.  

Based on the natural image statistics in the wavelet transform domain, Wang et al. [40] 

developed a robust algorithm for RR image quality assessment. The concept of the 

Kullback-Leibler distance [41]  was applied between the marginal distributions of the 

wavelet coefficients of a reference and a distorted image. The marginal distribution was 
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represented by the Generalized Gaussian Density (GGD) model [42]. The quality 

measure is obtained by fitting the error between the wavelet coefficients of the distorted 

image and the Gaussian distribution of the reference image. This quality model motivated 

to develop a subsequent quality-aware model in [43], which combines the techniques of 

information data hiding, robust image communication, information data decoding, and 

RR quality measures. The basic idea of such a quality-aware image system is to implant 

the features extracted from an original image into the image data as a hidden message. At 

the reception end, the received distorted image is decoded to extract the hidden message, 

and then predict image quality using different RR quality measures. The distortion 

between the original and the distorted image is quantified using following equation: 
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( 3.16) 

In the above equation, 
0D  is the constant used to control the scale of distortion measure, 

k is the total number of sub-bands, kp and kq  are the probability density functions of the 

sub-band k  of the original and the distorted image, and kd is the KLD’s estimation 

between kp and kq  

Chetouani et al. [44] proposed a RR image quality assessment algorithm based on feature 

extraction and neural networks training. In the first stage, an original image and its 

degraded version are decomposed using 3-level wavelet decomposition, and an edge map 

is derived at each decomposition level. The mean and the standard deviation are extracted 

as the statistical features from each decomposition level, giving a total of 6 features from 

each image. Overall, 12 features (6 from original and 6 from distorted image) are 
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extracted for image quality assessment. In the second stage, the neural network is trained 

using these extracted features against their human observer scores for quality prediction. 

The edge map of an image at each decomposition level is given by: 

        
2 2 2

apEM k CH k CV k CD k    ( 3.17) 

 Here, ,CH CV , and CD  are the horizontal, vertical, and diagonal details of an image 

respectively. 

Gao et al. [45] presented a RR framework which incorporates various concepts like 

multi-scale geometric analysis, the contrast sensitivity function, and the Weber-Fechner 

law of Just Noticeable Difference (JND). The multi-scale geometric analysis is used to 

decompose the image for feature extraction, and to mimic the multichannel structure of 

the HVS. The multi-scale geometric analysis offers a series of transforms, to extract 

different types of image geometric information.  The contrast sensitivity function is used 

to apply weights to the coefficients obtained by the multi-scale geometric analysis. This 

is performed to simulate the nonlinearities observed in the HVS. Finally, the JND is used 

to produce a noticeable variation in sensory experience. The quality metric of the 

distorted image is given by: 
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( 3.18) 

Here, 0Q is a constant, which controls the distortion measure scale, and S  represents the 

city block distance given by: 
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( 3.19) 

Here, ( ), ( )R DP n P n  are the normalized histograms of the reference and distorted image 

respectively. 

 

3.3 No-Reference Image Quality Measures 

Unlike FR and RR image quality measures, NR algorithms attempt to evaluate quality 

without the use of any information from reference image. The absence of any information 

about the reference image makes the task of the NR-IQA very challenging. Despite such 

a complex task, NR quality measures are widely preferred for real time applications.  

In the last few decades, the field of NR-IQA has rapidly emerged. A large number of 

algorithms have been proposed that widely vary in performance. Most of the existing 

NR-IQA models are provided with the prior knowledge of the distortion type. 

Fortunately, in many multimedia applications the distortion process is known, thus, the 

task of modeling a distortion-specific NR quality measures becomes feasible.  

The most commonly observed distortions in multimedia applications are blur and noise. 

These distortions are generated during image acquisition and in display systems. Thus, 

the conventional NR quality measures were designed to quantify blur and noise 

distortions in visual signals. The use of compression techniques (lossy/lossless), for 

bandwidth reduction too, resulted in reduced visual quality of reconstructed images. In 

lossy compression techniques, the lost data during coding cannot be recovered. Due to 
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which, some unwanted artifacts are observed in the retrieved image after reconstruction. 

In fact, the compression artifacts and the errors during transmission are the two major 

degradations observed in the experiments conducted by the Video Quality Experts Group 

(VQEG) [6]. This group focuses on providing industrial standards to the video quality 

assessment community. The remaining part of this section gives an in-depth analysis of 

some traditional NR image quality measures.  

 

3.3.1 Measures used for distortion due to JPEG compression 

In block DCT-based JPEG compression [46], the image is divided into 8 × 8 non-

overlapping blocks. The discrete cosine transform is applied to every block, and the DCT 

coefficients in each block are quantized independently. Finally, the quantized coefficients 

are coded using entropy coding. The coarse quantization of the block-based DCT 

coefficients, especially at low bit rates, leads to the occurrence of unwanted artifacts in 

the reconstructed image. These artifacts are the blurriness within blocks and the 

appearance  of the blockiness at the block boundaries [47]. The blurriness is due to the 

loss of high frequency components during quantization within each block. The 

independent quantization within each coding block, leads to the formation of periodic 

horizontal and vertical discontinuities at block boundaries. The blocking artifact is 

considered to be the most bothersome distortion in JPEG compression [48]. Thus, most 

of the NR quality measures are modeled based on the quantification of blocking artifacts, 

either in the spatial domain [49–53] or in the frequency domain [54–56]. Besides this, 

some other NR quality assessment measures of JPEG compressed images use machine 
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learning techniques to model the relationship between image features and subjective 

quality ratings using a training process [57]. 

Wu et al. [53] developed an algorithm based on the luminance masking effect, and 

designed a quality metric known as the generalized impairment metric. The quality 

metric quantifies the blocking artifacts observed at the block boundaries. Based on the 

subjective experiments performed in [49], it was stated that this single distortion is 

sufficient to access the quality of the JPEG compression images. Based on this notion, 

Meesters et al. [49] proposed a new image quality metric based on the blocking artifact 

itself. The Hermite transform [58] is a signal decomposition technique, which 

approximate the signals by polynomials within a Gaussian window. The Hermite 

transform was used to measure the low-amplitude edges due to blocking artifacts, and the 

edge amplitudes were estimated as the representative of blockiness. 

Wang et al. [51] proposed a model based on some distinct features from the distorted 

medium. These features include: the average luminance differences across block 

boundaries, and the measure of the activity within each block. The activity of an image is 

measured using the average absolute difference between in-block pixels and by the zero-

crossing rate. All these factors are polled to approximate a quality score for JPEG 

compressed images. The non-linear equation used to predict quality is given by: 

 31 2S B A Z
     ( 3.20) 

In the above expression, , ,B A Z  are the blocking factor, activity and zero-crossing rate, 

and ,  and   represent the model parameters that are estimated through a simple 

regression technique. 
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In [52], the authors claimed that only the edge detection around block boundaries is 

sufficient to quantify blocking artifacts. This is based on the assumption that occurrence 

of the horizontal or vertical edge exactly at the block boundary is less in natural images. 

Thus, Li [52] proposed to use the Prewitt operator for the detection of horizontal and 

vertical edges across the image. The edges due to the blocking artifacts are usually weak 

edges, and thus, all the gradients below a pre-defined threshold are selected to quantify 

the blocking effect.  

The quality metric based on both blockiness and blurriness was discussed in [50]. The 

blockiness was evaluated based on inter-pixel differences at and near the block 

boundaries, while, the blurriness/flatness was measured using the zero-crossing rate 

within each 8× 8 regions. The contrast and spatial masking effects were also incorporated 

for quality assessment. The quality map obtained was a function of inter-block difference 

BLKB and inter-block flatness measure 
BLKZ across the blocks of the test image and was 

given by: 
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( 3.21) 

Here, 
JNDT is the threshold of local pixel activity based on average local Just Noticeable 

Distortion (JND).  The mean of BLKQ for all the blocks over an entire image gives the 

overall quality measure given by: 

  image BLKQ average Q
 

( 3.22) 
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Wang et al. [54] proposed a model to assess the blocking effect by evaluating the energy 

of the blocky signal in the frequency domain. Since, the analysis is carried in the 

frequency domain, the Fast Fourier Transform (FFT) was used to evaluate the power 

spectra of the absolute difference signals, in either horizontal or vertical direction. The 

blockiness was represented as the power of blocky signal, which was computed after the 

smoothing the power spectrum using median filter. The luminance and texture masking 

effects were also incorporated in the model design. The blockiness of an image given by: 
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( 3.23) 

In the above equation, N represents the column size of an image and P denotes the 

power spectrum. The blockiness over the entire image is given by: 
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( 3.24) 

Here, 
BvM and 

BhM represent the vertical and horizontal blockiness measure of an image. 

Liu et al. [55] also developed a DCT based algorithm to quantify the blocking artifact. 

The blocking effect is represented as a 2-D step function within the shifted blocks, 

constructed across two adjacent coding blocks. The amplitude to the 2-D step function 

represents the strength of the blockiness.  It also takes into account the luminance and 
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texture masking effects for quality measurement. The locally measured blockiness is 

pooled to provide the overall quality measure given by: 
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( 3.25) 

Here,  is the overall blocking artifact measure of the test image, N is the total inter-

block boundaries, and   represents the perceptibility of blocking artifact across blocks. 

Brandão et al. [56] proposed a IQA model using the Natural Scene Statistics (NSS) of the 

DCT coefficients. The distribution of the DCT coefficients is modeled by the Laplace 

probability density function. The resulting coefficients distribution is used to estimate the 

local error due to JPEG encoding. Watson’s model [22] is used to quantify these local 

errors, which are finally pooled to give an image quality score. The distortion measure 

over the entire image is given by: 
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( 3.26) 

In the above expression, 
wD is the global metric, N represents the number of coefficients, 

and M represents the total number of coefficients under analysis 

Venkatesh et al. [57] developed an image quality measure based on learning algorithms. 

The algorithm uses the Growing And Pruning Radial Basis Function (GAP-RBF) 

network for quality prediction. Like any other learning networks, this network is also 

trained to approximate the functional relationship between the extracted features and the 

subjective quality scores. The features extracted were edge map, background activity 
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mask, and background luminance weight. The score predicted by the quality model is 

given by, 

 2
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( 3.27) 

In the above expression, U is the feature set extracted from the test image, K is the 

number of Gaussian neurons, 
i is the center vector of thi

 
Gaussian neuron, 

i represents 

the width of the neuron, and
i  represents the weight of the thi

 
Gaussian neuron 

connecting the hidden layer and the output neuron. 

 

3.3.2 Measures used for distortion due to JPEG2000 compression 

In the wavelet-based JPEG2000 compression algorithm [59], the blurring and the ringing 

artifacts are introduced due to coarse quantization of the Discrete Wavelet Transform 

(DWT) coefficients. These artifacts are considered to be highly substantial in JPEG2000 

compressed images. The coarse quantization truncates the high frequency DWT 

coefficients, which leads to the visible discrepancies across the edges in spatial domain. 

These discrepancies are referred as ringing artifacts due to their natural appearance. The 

ringing artifact results in appearance of ripples and oscillations across contours and sharp 

edges in an image. These artifacts can go from an imperceptible range to the extremely 

annoying level depending on the compression rate. In contrast to blocking artifacts, the 

ringing artifacts significantly depend on the content of image and degree of compression, 
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and follow no regularity. Some NR image quality measures for JPEG2000 compressed 

images are discussed in the following section. 

In [60], the authors proposed to isolate those regions of an image where the ringing 

artifacts are visually prominent, while  preserving the genuine edge information and fine 

details. The traditional binary morphological operators were used for this purpose. The 

image intensity variance was computed to evaluate the effects of ringing artifacts around 

the vicinity of the edges. 

Li et al. [52] proposed an algorithm  to measure the ringing effect by evaluating the noise 

spectrum filtered out by anisotropic diffusion [61].  The ringing artifacts are commonly 

integrated into the noise spectrum, and the noise spectrum can be colored when the image 

contains ringing artifacts. The percentage of energy across high frequencies gives the 

strength of the ringing effect.  

Tong et al. [62] proposed an algorithm based on the concept of Principal Component 

Analysis (PCA). The local features of the compressed image are extracted using PCA, by 

assuming that all the edge points are either “distorted” or “un-distorted”. The relationship 

between the local features and the local distortion metric is modeled based on the 

probability of an edge point being “distorted” or “un-distorted”. The overall distortion 

metric of the test image is given as a function of local distortion metric: 
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( 3.28) 

In the above equation, edgeN is the total number of edge points in the test image, and

,Ld Dm  represent the local and overall distortion metric of the image under analysis. The 
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quality metric is modeled to represents the quality score on an image, and is given by the 

equation ( 3.37), where s  is replaced by Dm . 

 In [63], the blurring measure is modeled as the ratio of edge activity weighted by the 

probability of edge occurrence in the middle/low frequencies, while the ringing measure 

is modeled as the ratio of the activity in the middle low over middle high frequencies in 

the ringing regions around high strong edges. Finally, all the measures: the ringing 

measure, blurring measure and the percentage of strong edges, are combined to give an 

image quality score given by: 

 1 2 3 4. . .PQ a a BM a RM BM a EM   
 ( 3.29) 

Here, , ,BM RM EM  represent the blurring, ringing and image features respectively, and 

weights , 1 4ia i to  are estimated from training set using minimum MSE estimate 

between predicted and subjective scores. 

Sheikh et al. [64][65] proposed a model for quality assessment of JPEG2000 compressed 

images. The model operates in the wavelet domain, and incorporates the natural image 

scene statistics model and an image distortion model for the quality prediction. The idea 

was to analyze how the quantization process of JPEG2000 compression influences the 

statistics of the wavelet coefficients. The distribution of the wavelet coefficients is 

described by using NNS model [66]. A distortion model related to quantization is 

incorporated to quantify the departure from the natural image statistic model. The sub-

band probabilities of all the bands are calculated to give an image quality metric. The 

quality metric is modeled to approximate the quality score, and is given by: 
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Here, 
iq is the predicted quality score and ,ss ip is the 

ssp probability of thi sub-band, 
iu iT

iK  are the model parameters obtained after curve-fitting. The predicted quality score of 

all the sub-bands,  1...6iq q i  , are pooled to approximate the quality score of entire 

image, and is given by: 

 TQ q w  ( 3.31) 

where 
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 and  w  is the learned weights to reduce prediction error. 

Sazzad et al. [67] proposed a quality assessment model based on the pixel distortions and  

edge information. The pixel distortions are estimated using the local standard deviation    

( S ) and the absolute difference measure ( A ) of a central pixel from the second closest 

neighborhood pixels. The edge information is estimated using the zero-crossing rate         

( Z ) and a histogram measure, with and without edge preserving filters. Finally, both the 

measures are pooled to assess the image quality. The model used to pool all the features 

is given by: 
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( 3.32) 

In the above equation, , , ,f fH V H V  are horizontal and vertical histogram measures with 

and without edge preserving filters, and 1 to 9  are model parameters estimated using 

test data and optimization algorithm. The quality metric is modeled to approximate the 

quality score, and is given by: 
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 ( 3.33) 

Here, 
1 4,b b  are the model parameters of the logistic function obtained through simple 

curve fitting. 

The algorithm proposed in [68], used the ringing artifacts to assess the quality of 

JPEG2000 compressed images. To quantify the ringing effect, the ringing region 

detection method [69] was used to identify those regions that are likely to be affected by 

the ringing artifacts. A Ringing Annoyance Score (RAS) is assigned to every detected 

ringing region, which is calculated by estimating the local visibility of ringing artifacts 

and comparing it with local background activity. The RAS over the entire image is 

pooled to give an overall quality metric. The ringing region detection model [69] consists 

of two steps: extraction of edges related to the ringing artifacts, and detection of possible 

ringing regions. For edge extraction, a bilateral filter-based advance edge detector [70] is 

used to extract the possible edges related to ringing regions. The Canny edge detector 
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[71] is applied on the filtered image to obtain the most relevant edges. The mean of the

RAS  is given by: 
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( 3.34) 

Here, 'RO s  represent the ringing objects, N is the total number of 'RO s and T is the 

total number of pixels in each of the N 'RO s .  

 

3.3.3 Measures used for distortions due to blur and noise 

Wu et al. [72] presented a quality metric for out-of-focus blurred images. For the quality 

assessment, the idea was to extract a point spread function (PSF) from the line spread 

function (LSF) of the blurred image. The sharp edges in the image are identified and the 

LSF is extracted from these edges. The radius of the PSF parameters is evaluated from 

the LSF, which can be used as a criterion to measure degree of blur. The radius of the 

PSF is given by: 
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( 3.35) 

Here,  ld x is the LSF distribution and R is the radius of the PSF function. 

The blur measures reported in [73], [74] are based on the measurement of edge spread. 

Edge spread is defined as “the number of pixels with monotonically changing intensities 

along the gradient orientation at an extracted edge pixel”. Both blur measures differ in 

one simple way. In [73], the edges are detected using the Sobel operator, while in [74], 
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the Canny operator [71] is used. In [73], the edge spread is measured along the horizontal 

direction of the vertical edge, while in [74], it is measured along the gradient orientation 

at a general pixel. Finally, the edge spread over entire image is given by, 

 
sumof all edgewidths
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( 3.36) 

The quality of an image is approximated using a non-linear equation given by: 

 Q s    ( 3.37) 

Here, , and    are the model parameters obtained using simple regression techniques.  

Chong el at. [75] developed an eigenvalues-based image sharpness metric. In this 

approach, the effect of image contrast is first minimized by normalizing the image with 

its energy.  The covariance matrix is then obtained from the normalized image, which is 

analyzed using SVD to obtain its eigenvalues. The first six largest eigenvalues are 

computed to get the sharpness score of an image. 

  E kM trace 
 

( 3.38) 

Here, 
EM  is the sharpness metric and 

k represents the k -dimension eigenvalue matrix. 

Vu and Chandler [76] proposed a sharpness metric based on the spectral and spatial 

properties of the image. The image is first divided into blocks, and the slope of the 

magnitude spectrum and the total spatial variance, for each block are measured. These 

measures are tuned to account for visual perception. The tuned measures are then 

combined to yield an overall perceived sharpness map given by: 
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( 3.39) 

Here,  1S X and  2S X are the spectral and spatial- based sharpness maps, and  3S X

is the overall sharpness map of the test image. 

Chen and Bovik [77] developed an IQA model for blurred images based on the Natural 

Scene Statistics (NNS) and a multi-level wavelet decomposition. A probabilistic SVM 

classifier was used to classify the image as either “blurred” or “sharp”.  The image is then 

decomposed to obtain the detail map, which is a combination of horizontal and vertical 

responses in high frequency band. The detail map improves the quality assessment 

process. The sharpness score of the blurred image is given by: 
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( 3.40) 

In the above equation, 
iDS is the detail score evaluated from the detail map and

QS SVM is the score from probabilistic SVM . 

Vu and Chandler [78] also proposed a wavelet-based quality model to estimate the global 

and local sharpness in an image. The image was first decomposed using the three-level 

DWT and the log-energies of each sub-band are measured.  The weighted average of all 

the log-energies is measured to give an overall sharpness metric of the image. The 

resulting Fast Image SHarpness (FISH) index is given by: 
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Here, n  is the number of levels in the wavelet decomposition and E is the log-energy of 

the image. 

Hassen el at. [79] presented another wavelet transform-based image sharpness metric. 

The image sharpness is represented as the Local Phase Coherence (LPC), which is 

measured in the complex wavelet transform domain. The image being processed is first 

decomposed using the 3-level complex wavelet transform, then, LPC is used to measure 

the sharpness index ( SI ), given by: 
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( 3.42) 

Here,  iP are the LPC values and 
iW  are the weights assigned to the LPC values. 

Choi el at. [80] developed an algorithm for IQA based on the blur and noise in the image. 

The distorted image is first analyzed to evaluate following parameters: the blur mean, 

blur ratio, noise mean, and the noise ratio.  These parameters are modeled using 

regression technique to approximate a quality score, represented by: 

  1 2 3 41 mean ratio mean ratioQM w Blur w Blur w Noise w Noise    
 

( 3.43) 

Here, 
iw is the parameters determined using simple regression. 

Narvekar and Karam [81][82] proposed a probabilistic model-based image blur metric. 

The test image is computed to obtain an edge map, and the probabilistic model estimates 
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the probability of blur detection at every edge pixel. The overall sharpness metric is 

obtained by computing the Cumulative Probability of Blur Detection (CPBD), given by:  
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( 3.44) 

Here, 
JNBP is the probability of the Just Noticeable Blur (JNB), and 

blurP is the probability 

of blur detection given by: 
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( 3.45) 

In the above equation,  iw e is the measured width of edge 
ie  and  JNB iw e is the JNB 

width depending on the local contrast in neighborhood of edge 
ie . At JNB,               

 iw e =  JNB iw e , which corresponds to
blurP =63%=

JNBP . It implies that blur is not 

detected at an edge when 
blur JNBP P . Thus, CPBD represents the percentage of edges at 

which probability of blur detection is below JNB. The lower metric value represents a 

blurred image. 

 

3.3.4 Non-Distortion-Specific Quality Measures 

Most of the existing NR-IQA measures are distortion specific. The models are provided 

with the prior knowledge of the type of distortion in an image. There are few algorithms 

which don’t require the knowledge of the distortion type and operates on the images 

directly. These are briefly discussed below. 
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Chetouani et al. [83] proposed a novel NR image quality metric using neural networks. 

This approach aimed at estimating the most annoying distortions such as, blocking, 

ringing, and blurring effect observed in an image. The first stage of this framework is to 

quantify the following artifacts: blocking effect [84], blurring effect [85], and ringing 

effect [64]. These extracted features are provided as an input to the artificial neural 

network to estimate these distortions. The output on a trained network is a single value 

corresponding to the quality level of the test image.      

Moorthy  el at. [86][87] developed a framework, which doesn’t require the knowledge of 

distortion type for quality assessment. The algorithm is based on the NNS [88] of an 

image. The framework is a combination of two systems: a Support Vector Machine 

(SVM) based classifier [87] and a quality estimator. The classifier analyzes the test 

image, and gauges the probability of being each distortion from predefined distortions 

set. The quality estimator estimates the quality index for every distortion within the 

distortion set. Finally, a probability-weighted summation of measured probabilities and 

the quality indexes are pooled to give an overall image quality score. The framework 

incorporates the following distortions: JPEG compressions, JPEG2000 compression, 

Gaussian blur white noise and fast fading. A Support Vector Regression (SVR) approach 

was used in [89] to estimate the quality index of distorted images. The model didn’t 

perform well for JPEG compressed images, thus, the algorithm proposed in [51] is 

employed for JPEG compression. The image is first transformed using Daubechies  9/7 

wavelet basis over three scales and three orientations. Then each sub-band coefficients 

are parameterized using Generalized Gaussian Distribution (GGD). The two parameters 

of the distribution; namely, the variance ( 2 ) and the shape parameter ( ) are extracted 
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at 3 scales and 3 orientations in each scale. This makes the feature set an 18-D vector       

( if ). The predicted quality score is given by: 
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( 3.46) 

Here, 
ip  is the probability of each distortion and 

iq  is the quality scores measured by all 

the five models, each trained for a specific type of distortion. 

Saad el at. [90][87] developed a probabilistic prediction model. Based on the statistics of 

the DCT coefficients, the model extract certain distinct features from the distorted image 

to form the feature vector. The feature vector comprises of following constraints: kurtosis 

of DCT coefficients histogram, DCT based contrast, and anisotropy in DCT domain. 

Then, a probabilistic prediction model, following the multivariate Gaussian distribution 

and the multivariate Laplacian distribution, used to predict quality. The performance of 

the model is tested on the following distortions: white noise, Gaussian blur, fast fading 

channel distortions, and JPEG and JPEG2000 compression. The probabilistic model is 

given by: 

      ,i i i i iP X DMOS P DMOS X P X
 

( 3.47) 

In the above equation, iX represents the feature set extracted from the image i and 

iDMOS is the subjective score. 
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3.4 Performance of Objective Quality Measures 

Validation is necessary for the successful development of the objective image quality 

measure. The main aim of any objective quality measure is to estimate the perceived 

visual quality by human observers. The standard approach of validation, is to compare 

the model output (objective quality score) with the subjective quality scores from the 

human observers. This section discusses the most commonly used validation approaches 

for subjective quality evaluation, and also the evaluation criteria recommended by VQEG 

[6] for objective quality evaluation. 

 

3.4.1 Subjective Quality Evaluation 

Subjective quality evaluation is determined by complicated experiments. It involves 

many aspects of human psychology and viewing conditions, such as vision ability of the 

observer, translation of the perceptual quality into a score, stimulus content, surrounding 

light, display devices, etc.  The two widely used approaches for subjective quality 

evaluation are: single-stimulus method (single-stimulus continuous quality evaluation) 

and double-stimulus method (double-stimulus continuous quality scale). These methods 

have been standardized by the International Telecommunications Union.   

In single-stimulus method, the observers express their impression of quality on a linear 

quality scale, divided into equally spaces sections. These segments are labeled as “Bad”, 

“Poor”, “Fair”, “Good”, and “Excellent”.  When the image is exposed to the observers, 

they move the slider and place it at a point that best reflects the subject’s impression of 
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quality. The position of the slider is later converted to a numerical score known as Mean 

Opinion Score (MOS).  

The double-stimulus method is a discrimination-based method, in which the subjects are 

exposed to both distortion-free and distorted image, one after the other within a small 

time gap of few seconds. Subjects evaluate the quality of both the images by moving the 

slider as discussed in the single-stimulus approach. The difference between the scores of 

the reference and the distorted image gives the subjective distortion score known as 

Difference Mean Opinion Score (DMOS).  

Sheikh et al. [91] conducted an intense subjective image quality assessment study and 

developed an image database, widely known as LIVE database. This database has 

commonly been preferred as a benchmark in the literature to evaluate the performance of 

image quality measures.  

The LIVE image database has 779 distorted images, which are evaluated by more than 12 

observers in a row. The subjective scores are in terms of DMOS that are obtained from 

about 25000 individual human quality judgments. There are 29 color reference images 

(768 × 512 pixels size), with diverse image contents including human faces, natural 

sceneries, animals, monuments, statues, flowers, etc. The reference images are exposed to 

various distortions of different levels, to generate a group of distorted images. Some 

reference images are shown in Figure  3.5. The images were subjected to following 

distortions: JPEG compression, JPEG2000 compressions, Gaussian blur, and white noise. 

Each of these distortions is briefly discussed below: 
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 White noise: An additive white Gaussian noise is added to the RGB components 

of an image with a standard deviation (
N ) ranging from 0.012 to 2.0 as shown in 

Figure  3.1. This gives a total of 145 distorted images. 

(a) (b)

(c) (d)
 

Figure  3.1: White noise contaminated images 

(a) Reference image; (b), (c), (d) noisy images with varied Gaussian noise levels 
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 Gaussian blur:  Every image is passed through a filter having a circular-

symmetric 2D Gaussian kernel, with a standard deviation ( B ) ranging from 0.42 

to 15 pixels as shown in Figure  3.2. This gives a total of 145 distorted images. 

 

 

Figure  3.2: Blurred images 

(b) Reference image; (b), (c), (d) blurred images with varied blur levels 

 

 

(a) (b)

(c) (d)



61 

 

 JPEG compression: The images are exposed to JPEG compression technique at 

bit rates ranging from 0.15 bits per pixel (bpp) to 3.34 bpp as shown in Figure  3.3. 

This gives a total of 175 distorted images. 

(a) (b)

(c) (d)
 

Figure  3.3: JPEG compressed images 

(a) Reference image; (b), (c), (d) JPEG compressed images coded with varied bit 

rates 
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 JPEG2000 compression: The images are exposed to JPEG2000 compression 

technique at bit rates ranging from 0.028 bpp to 3.150 bpp as shown in Figure  3.4. 

This gives a total of 169 distorted images. 

(a) (b)

(c) (d)
 

Figure  3.4: JPEG2000 compressed images 

(c) Reference image; (b), (c), (d) JPEG2000 compressed images coded with varied 

bit rates 

 

Further details about the LIVE image database can obtained from [92]. 
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Figure  3.5: Reference images used in LIVE database 
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3.4.2 Performance Evaluation Criteria 

According to the VQEG group formed in 1997, the performance of objective quality 

measures can be evaluated using the following evaluation criteria [6]: 

a.  Pearson’s Correlation Coefficient (PCC) is employed to evaluate the accuracy 

of the prediction score on a scale of -1 to 1: 

 

  

   

1

2 2

1 1

( ) ( )

( ) ( )

N
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N N

pp

i i

DMOS i DMOS DMOS i DMOS

PCC

DMOS i DMOS DMOS i DMOS



 

 



 



 

 ( 3.48) 

In the above equation, i  denotes the index of image/video samples ( )DMOS i  is 

the subjective quality score, ( )pDMOS i  is the predicted subjective quality score. 

DMOS  and pDMOS  are the average of ( )DMOS i  and ( )pDMOS i  respectively, 

and N denotes the total number of images/video samples.  

b. Spearman’s Rank-Order Correlation Coefficient (SROCC) is used as a measure 

for the prediction monotonicity criterion. To compute SROCC, DMOS  and 

pDMOS  are represented into the ranks, and the SROCC is calculated with the 

data of ranks using the equation ( 3.48). The computation of SROCC can be 

independent of the compensation by a mapping function, as it is calculated based 

on the ranks of quality data. 

c. Outlier Ratio (OR) is a measure to evaluate the consistency of the prediction, and 

is defined as the ratio of outlier points to the total points given by: 
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total number of outliers

OR
N


 

( 3.49) 

The point is said to be an outlier, if the prediction error in equation ( 3.50) crosses 

the threshold. Normally, the value of the threshold is twice the standard deviation 

of individual subjective quality scores assigned to an image/video sample. The 

prediction error and the condition for the outlier are given by: 

 

   ( ) ( )error pP i DMOS i DMOS i 
 

( 3.50) 

 

    2error DMOSP i i
 

( 3.51) 

d. Root Mean Square Error (RMSE) also provides an informative performance 

measure, to judge the relative performance between the quality measures under 

comparison. Based on the prediction error in the equation ( 3.50), the RMSE is 

measured using: 

   
2

1

1 N

error

i

RMSE P i
N 

 
 

( 3.52) 

Here, N is the total number of image/video samples. 

e. Mean Absolute Error (MAE) is a measure, which specifies how close the 

predictions are to the ultimate outcomes. It is defined as the average of the 

absolute errors given by: 
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( 3.53) 

f. Coefficient of determination (R
2
) is a measure of accuracy of the regression models. It 

indicates how well the regression line fits the data set. Its value lies between 0 and 1. 

If the regression line fits the data well, the R
2 

is close to 1; otherwise, it
 
is close to 0 

for poor fitting. The value of R
2 

is given by:       
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 ( 3.54) 

Here, 
errSS is the sum of square of residual and 

totSS is the total sum of squares. 

 

3.5 Summary 

In this chapter, several image quality measures developed for quality assessment, under 

three scenarios were discussed. The vast majority of the image quality algorithms are 

based on FR quality assessment. The conventional FR image quality measures like MSE 

and PSNR, gained popularity because of their simple mathematical formulation. The 

traditional FR image quality algorithms are based on a variety of approaches, such as 

quality estimation based on HVS, based on image structure, etc. The RR image quality 

measures were also discussed; these are preferred in cases where the reference image is 

not fully accessible. Several NR-IQMs were also discussed; these are preferred over FR 

and RR quality measures in real-time applications. We have shown that most NR 

algorithms are developed for specific types of distortions like blocking, blurring, noise, 
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etc. for quality prediction. Some of these models are specifically designed for 

compression artifacts. The performance of most image quality measures is evaluated 

using images from LIVE database, which contained various distortions each with 

different levels. Finally, the five evaluation criteria recommended by the VQEG for 

validation of the objective measures are discussed at the end.  
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4 CHAPTER 4 

THE PROPOSED NO-REFERENCE IMAGE QUALITY 

ASSESSMENT ALGORITHM USING ARTIFICIAL 

NEURAL NETWORKS 

4.1 Introduction 

In this chapter, the neural network-based no-reference image quality assessment 

algorithm is proposed, which attempts to estimate the quality through machine learning. 

In literature survey, it is found that most of the models developed for NR-IQA are 

distortion specific. For the known distortion, some distinct parameters from the distorted 

medium are extracted, and then modeled using curve fitting technique for the quality 

prediction. In this research, we aimed to develop a general-purpose NR-IQA learning 

algorithm that is not limited to some specific distortion. Thus, the framework of neural 

network-based pattern classification is utilized to develop such learning model. The ANN 

is used as a regressor in this approach for quality estimation. The idea is to extract the 

significant features from the distorted image, and train the neural networks for quality 

prediction. 
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 In brief, the proposed algorithm involves two steps: 

 Feature Extraction. 

 ANN Learning. 

The block diagram of the proposed model is given in Figure  4.1 

Image 

Processing

Feature 

Extraction

Artificial Neural

 Network Learning

Quality 

Prediction

 

Figure  4.1: Block diagram of the proposed algorithm 

 

This chapter is organized as follows:  few important concepts of the ANNs related to the 

proposed algorithm is discussed in section 4.2, and the proposed framework is discussed 

in detail in section 4.3. 

 

4.2 Artificial Neural Networks 

In present era, computers play an important role in handling complex computational 

tasks. They are highly fast and execute sequence of instructions, designed for a specific 

task [93], [94]. On the other hand, humans can perform more complex tasks like object 

and speech recognition, more precisely and efficiently, better than any other manmade 

model. Various efforts have been made by the scientists and the engineers, to understand 

the functioning of the human brain, and mathematically model it. These models attempt 

to simulate certain properties of the HVS, and thus, known as Artificial Neural Networks 

(ANN). They often handle complex tasks involving large amount of experimental data 
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and observations. The ANN is an adaptive system, which is first trained to learn the task 

at hand, and then trained system is used to handle similar tasks. Such trained systems are 

able to execute similar tasks, not necessary the same. The ANN is widely used in various 

applications like, pattern and speech recognition, classification, image processing, etc. In 

the proposed approach, the artificial neural network is employed as a class of 

mathematical algorithms for the quality estimation. 

The mathematical model of a biological neuron proposed by McCulloch and Pitts [95] 

became predominant. It inspired the research on parallel distributed  processing systems, 

commonly known as artificial neural systems [96–98]. The researchers attempted to 

model the human abilities like speech recognition, classification, etc., using this artificial 

neural system. Various practical problems like pattern recognition [99], modeling [100] , 

and prediction [101] can be solved using ANN. The ANN is an interconnection of the 

processing units between the input and the output layers. These processing units are 

known as “cells or neurons”.  

 

4.2.1 Artificial Neuron 

In ANN, the neuron is a processing unit, which processes the data or information it 

receives. The processed output from the neuron in the previous layer is given as in input 

to the next layer or represents the network’s output. The neural network comprises of 

three layers: input layer, hidden layer and output layer. The neurons of the input layer 

accept data provided by users and forward it to the hidden layer. The neurons in the 

hidden layer communicate only with neurons within the system, and propagate the 
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processed data to the output layer. Finally, the output layer neurons provide the final 

output of the system. The design structure of the network allows the neurons to perform 

many computational tasks concurrently.  The basic model of the artificial neuron is given 

below: 

 ..

1jw

2jw

jnw

j
 ju

ju
jy

1x

2x

nx

Inputs Output

Synapses
Cell Body

 

Figure  4.2: Artificial Neuron Model 

 

The neuron model comprises of four elementary modules: input vector ( 1 nx to x ), 

summing junction   , threshold ( ), and activation function (cell body), as shown in  

Figure  4.2. 

 Input vector is the experimental data provided to the network by the outside 

source. It is a vector X of size 1n , where X belongs to  . Every element of 

the vector 
ix , i  = 1… n  is connected to the thj neuron through the synaptic 

weights jiw   
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  The summing junction ( ) takes the weighted input product, which is the 

product of input signals and the synaptic weights, and summed to give a net input

jnet . 

 The activation function (.)f  processes this net input and produces the final output 

of the neuron jy . Generally, activation function can be linear or non-linear 

function depending on the characteristics of observed data. 

 The threshold/ bias ( ) term is added to control the cumulative input to the 

activation function. It takes a value either ‘-1’ or ‘+1’ given to the summing unit.  

The mathematical representation of a simple neuron is given by: 

  
1

n

j ji i j

i

net X w x 


   ( 4.1) 

Here,   is the bias and jiw  is the synaptic weight. 

 

4.2.2 Activation Function 

There are various types of activation functions available and the selection of a proper 

function depends on the problem. A network with proper activation function produces 

efficient results. The activation functions used in our approach are discussed below: 

 

 



73 

 

 Linear function 

It is a continuous valued function shown in Figure  4.3. It is like an identity function used 

in regression problems. The output of neuron j  is given by: 

  j j jy f net net 
 

( 4.2) 

  

Figure  4.3: Linear activation function 

 

 Sigmoid function 

It is a non-linear activation function, used in a wide range of applications. The various 

characteristics of sigmoid function like non-linearity, monotonicity, differentiability, etc. 

makes it a suitable activation function for many non-linear problems. It has saturating 

limits at binary range (0 or 1). 

 The mathematical representation of binary sigmoid function for neuron j   is given by: 
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( 4.3) 

Here,   is a parameter that controls the slope of the signal.  

The graphical representation explaining the variation in shape of the sigmoidal signal 

with different values of    is shown in Figure  4.4 

 Hyperbolic tangent sigmoid function  

This function exhibits similar properties like sigmoidal function, except with saturating 

limits at bipolar range (1 or -1). The mathematical representation of the output of  thj  

neuron is given by: 

  
2

2
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net

j j net
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e
f net
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( 4.4) 

Here,    is a parameter controlling the slope of the signal. 

 

Figure  4.4: Sigmoid Transfer Function 
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Both functions, sigmoid and hyperbolic tangent functions are equivalent, and it is 

possible to transfer one function to the other with some linear transformation. The 

equations ( 4.5) and ( 4.6) represent the derivatives of both the functions with respect to 

net input. Differentiability is one of the important characteristics of both sigmoidal and 

hyperbolic tangent functions, used in the training algorithms. 

      1j j j jg net f net f net   
   

( 4.5) 

      1 1j j j jg net f net f net      
     

( 4.6) 

The graphical representation of the hyperbolic tangent sigmoidal function is shown in 

Figure  4.5 

 

Figure  4.5: Hyperbolic Tangent Sigmoid Function 
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Figure  4.6: Derivative of binary sigmoid and hyperbolic tangent function 

 

 Elliot symmetric sigmoid function  

This function is similar to hyperbolic tangent sigmoid, except with no exponential term in 

the expression.   It is faster than other sigmoid functions, as it doesn’t include any 

exponential function. The mathematical representation of the output of  thj  neuron is 

given by: 

  
1 j

j

j jy
net

net
f net 


 ( 4.7) 
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Figure  4.7:  Elliot Symmetric Sigmoid Function 

 

The graphical representation of the hyperbolic tangent sigmoidal function is shown in 

Figure  4.7 

 

4.2.3 Back-Propagation Algorithm/ Delta Rule 

The network’s learning refers to the configuration of the synaptic weights between the 

consecutive nodes, to minimize the overall error of the network. This can be achieved by 

the backward propagation of the error (difference between target and obtained response) 

from the output to the previous layers as shown in Figure  4.8. Hence, this algorithm is 

termed as Back-Propagation (BP) algorithm/ Delta rule [98], [102], [103]. The aim of the 

learning algorithm is to tune the weights, and fit the hyper-plane to the input distribution 
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with respect to the target.  The BP algorithm uses the error between the network’s output 

po  and the target pt for the weights’ tuning.   

Input 1

Input 2

Input 3

Output

Input Layer

Hidden Layer
Output Layer

Direction of error 

propagation

 

Figure  4.8: Back-Propagation of network’s error 

 

The overall error of the network is based on the summed squared error given by:  

  
21

2

p p p

p P

E E t y   
 

( 4.8) 

Here, index p  represents the input patterns and 
pE  is the error for pattern p . The delta 

rule incorporates the concept of gradient descent, and search for the weights that 

minimizes the error function. According to gradient descent rule, “the weight change is 

proportional to the negative derivative of the error, measured on current training pattern, 

with respect to each weight” given by: 
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( 4.9) 

Here,   is a positive constant known as the learning rate.  

The error derivative can be represented as:  
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( 4.10) 

The output of a neuron is represented by a linear equation given by: 

  
1

n

p j ji i j

i

y net X w x 


    
( 4.11) 

The derivative of the linear equation ( 4.11) given by: 

 

p

j

j

y
x

w





 

( 4.12) 

And 
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p p

p

E
t y

y


  

  

( 4.13) 

By substituting equations ( 4.12) and ( 4.13) in equation ( 4.9), we have  

 
p

p j jw x 
 

( 4.14) 

Here, p p pt y    is the error between the neuron’s output and the target for the     

pattern p . 
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This rule can be generalized for the neurons with non-linear activation function. Let’s 

consider a function given by: 

  p p

k ky f s
 

( 4.15) 

Here, p

ks is evaluated using ( 4.11). The delta rule is generalized using following steps: 

 

p

p jk

jk

E
w

w



  


 

( 4.16) 

The error measured 
pE is given by: 
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( 4.17) 

The derivative of equation ( 4.17) is given by: 
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( 4.18) 

From equation ( 4.11), the second term in equation ( 4.18) is given by: 
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( 4.19) 

Consider an equation  
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( 4.20) 
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We get an update rule, equivalent to the delta rule as defined in equation ( 4.14) . On the 

error surface, update rule performs the gradient descent by altering the weights using the 

rule given by: 

 
p p

p jk k jw y 
 

( 4.21) 

The p

k  in equation ( 4.20) can be expressed as: 
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( 4.22) 

On observing the equation ( 4.15), we notice that 
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( 4.23) 

Let’s assume that the neuron k  is an output neuron, and the error between target and the 

measured output is given by: 
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( 4.24) 

This is similar to the result obtained by standard delta rule. Substitute equations       

( 4.23) and ( 4.24) in ( 4.22) to obtain the neuron’s output given by: 

    p p p p

k k k kt y f s  
 ( 4.25) 

This representation works well for the output neurons.  
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Now, let’s see the weight change of hidden neurons. The error in the output layer is 

represented as a function of the net inputs js  from hidden to output layer, 

 1 2, ,....., ,......p p p p p

jE E s s s , and this chain rule can be used to represent: 
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( 4.26) 

Substitute equation ( 4.26) in equation ( 4.22), we get  

  
1

K
p p p

h h o ho

o

f s w 


 
 

( 4.27) 

All 's of the network’s neurons can be computed using a recursive method provided by 

equations ( 4.25) and ( 4.27). This can further be used to calculate the change in weight 

according to equation ( 4.21). Thus, this approach allows in developing the generalized 

delta rule for the non-linear networks, by error propagation from the output layer to the 

neurons in the hidden layer. 

The speed of the network convergence depends on the optimum value of learning rate. 

The change in the gradient is directly proportional to the learning rate. The weight is 

updated by combing the current error gradient, with the one in the preceding training 

step.  
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The updated weight is given by: 
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( 4.28) 

In the above equation, old jkw  represent the latest weight change.  

 

4.3 The Proposed Methodology 

In this research, we focused on developing a learning-based NR-IQA algorithm, which is 

not restricted to only specific type of distortion.  Thus, the ANN is employed as a 

learning-machine in our approach for quality estimation. The idea is to extract certain 

significant features from the distorted image, and use them to train neural networks for 

quality prediction. Hence, the proposed algorithm is a combination of two steps: feature 

extraction and ANN training. 

 

4.3.1 Feature Extraction 

The selection of the appropriate features depends on the artifacts observed in the 

distortions. The proposed algorithm is tested on for the distortions: JPEG compression, 

JPEG2000 compression, blur and noise. The most common artifacts observed in these 

distortions are blocking, blurring, and noise. Various features quantifying these artifacts, 

and also their extraction details are given in this section. 
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The following are the features extracted for the quality assessment: 

1. Blocking Factor [51]: 

The blocking factor quantifies the blockiness observed in the compressed images. The 

blocking artifact refers to the noticeable artificial discontinuities, observed at regular 

interval in the DCT-based JPEG compressed images. Since the image is represented into 

8x8 pixel blocks, the independent quantization of each coding block results in the 

appearance of the horizontal and vertical discontinuities at the block boundaries as shown 

in Figure  4.9. The overall blockiness is measured as the average differences across block 

boundaries given by: 
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( 4.29) 

Here, 
hB  is the blocking factor around horizontal direction, and ( ,8 )hd i j is the 

horizontal gradient across the block boundary of an image ( , )x i j  given by: 

 ( ,8 ) ( ,8 1) ( ,8 ), [1, 1]hd i j x i j x i j j N       ( 4.30) 

 

The activity of an image is the measure of blurriness. It is defined as the “measure of 

existence of fine surfaces in the picture” [104]. The image with high spectral activity 

exhibits many fine structures, and hence, considered to be rich in detail. On the other 

hand, the unstructured monochrome image exhibits zero spatial activity. The image with 

poor spatial activity experiences blurring artifact as shown in Figure  4.10.The activity of 



85 

 

an image is measured using two factors: the average absolute difference and the zero-

crossing rate. 

 

Figure  4.9: Blocking artifact 
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2. Average absolute difference [51]: 

Unlike blocking factor, the gradient is measured across the entire image to obtain 

horizontal and vertical details of the image. The average absolute difference between in-

block image samples is given by: 
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( 4.31) 

Here, 
hA   is the average absolute difference along horizontal direction, and i, jhd   is the 

horizontal gradient given by: 

 ( , ) ( , 1) ( , ), [1, 1]hd i j x i j x i j j N      ( 4.32) 

3. Zero-Crossing rate  [51]: 

The Zero-Crossing (ZC) rate is defined as “the rate at which the signal changes from 

positive to negative or back” [105]. The ZC is said to occur, if the consecutive pixels 

have different signs. The image with high spatial activity exhibits high ZC rate, given by: 
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( 4.34) 

Here, hz   is the map of the horizontal ZC, and hZ is the overall ZC rate of the image 

along horizontal direction. 
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Figure  4.10: Blurring artifact due to poor spatial activity 
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4. Standard deviation of difference image: 

The standard deviation is a measure of variation or deviation from the expected value. 

The smaller the standard deviation, the closer the data point to its mean. 

 The standard deviation of the difference image 
hd  along the horizontal direction is given 

by: 
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  ( 4.35) 

Here, hd  is the mean of the difference image. 

5. Standard deviation of zero-crossing rate: 

 The standard deviation of the zero-crossing rate along horizontal direction is given by: 
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( 4.36) 

Similarly, these measures along vertical direction are given by , , , ,v v v z v d vB A Z   
 

The mean of horizontal and vertical measures gives the overall value of the features, 

given by: 
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6. Noise Mean [80]: 

Image noise is defined as the “random variation in the brightness or color information of 

the image” [106]. Edge detection becomes difficult by the presence of noise. Thus, it is 

important to filter out the noise before edge detection. This is done using the average 

filter, and the filtered image is given by: 
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( 4.42) 

The candidates for the noisy pixels from the filtered image in equation ( 4.42) are given 

by: 

 ( , ) ( , 1) ( , 1)hD x y g x y g x y   
 

( 4.43) 
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Here, 
h meanD 

 is the mean of noise candidates along horizontal direction ( , )hD x y . 

Similarly, ( , )vD x y is the noise candidates along vertical direction and 
v meanD 

is its mean. 

Then, 

max ( ( , ), ( , )) ( , ) ( , )
( , )

0

h v h h mean v v mean

cand

D x y D x y if D x y D and D x y D
N x y

otherwise

  
 


 

( 4.45) 
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( 4.46) 

In the above equation, ( , )candN x y  is the noise candidate, which is zero along the edges, 

and ( , )cand meanN x y
 is its mean. 

Finally, the noisy pixels detected using: 

 
( , ) ( , )

( , )
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otherwise


 


 ( 4.47) 

The noise mean is given by: 

 
noise

mean

cnt

Sum
Noise

Noise


 

( 4.48) 

Here, 
noiseSum  is the sum of the pixels ( , )N x y  and cntNoise  is the total number of noisy 

pixels. 
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Figure  4.11: Image contaminated with Gaussian noise 

 

4.3.2 Neural Network Training 

This section illustrates the training of the neural networks, using the statistical features 

extracted from the distorted images.  The idea is to train the network with features from 

the distorted medium, against their subjective scores (MOS/DMOS), for quality 
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estimation. In our framework, the neural network with feedforward architecture is 

incorporated. This network structure allows propagation of data from input to output 

layer in forward direction, and doesn’t facilitate the data flow within the same layer or to 

the preceding layer as shown in Figure  4.12. Three activation functions; namely, sigmoid 

function, hyperbolic tangent sigmoid function, and Elliot symmetric sigmoid function are 

used in hidden layer, and network’s performance using each activation function is 

evaluated and compared. While, the linear activation function is employed in the output 

layer. The backpropation algorithm/delta rule is adopted for network’s training, discussed 

in the section  4.2.3.  

Input 1

Input 2

Input 3

Output

Input Layer

Hidden Layer
Output Layer

 

Figure  4.12: Feedforward Network 

 

 



93 

 

The aim of this research is to develop the NR-IQA algorithm for the following five 

distortion cases: 

1. Blur. 

2. Noise. 

3. JPEG compression. 

4. JPEG2000 compression. 

5. Across all distortions. 

There are certain issues to be looked at while training the network, as follows: 

a. Optimum feature set: 

The selection of the proper feature set plays a vital role in neural network’s learning. 

The statistical features must correlate well the perceived image quality, for better 

training of the network. To select AN optimum feature set for each of the distortion 

case, forward-selection rule is employed. “Forward-selection involves starting with 

no variables in the model, testing the addition of each variable, adding the variable 

that improves the model most, and repeating this process until none improves the 

model” [107]. Thus, this rule provides the optimum features for each distortion case. 

 

b. Optimum network size: 

The network size represents the number of neurons in the hidden layer, and the 

complexity of the network depends on the number of hidden layer nodes. Besides 

complexity, accuracy and generalization capabilities of the network depends upon its 

size too. Generally, the number of hidden layer nodes must be large enough to 

represent the problem correctly, but at the same time small enough to maintain the 



94 

 

network’s generality. The effect of underfitting is observed in very small networks,   

wherein the network fails to identify the internal structure of the data. On the other 

hand, very large networks exhibit the overfitting effect, in which they are more likely 

to become over specific to the training data.  Such over specific networks performs 

well on training set, but fails for newer data outside the training set. The under-

specificity and the over-specificity of the networks lead to poor accuracy in quality 

prediction. Thus, identifying the optimum number of hidden neurons is an important 

issue in network design. Several researchers like Lippmann, Cybenko [108], [109] 

has  reported that single hidden layer is sufficient to model most problems. In this 

approach, a suitable network size is obtained by training the network with different 

hidden neurons, and evaluating their performance based on the Mean Square Error 

(MSE). The network with minimum prediction error provides the optimum hidden 

neurons.  

The learning of artificial neural network involves the following steps: 

1. Three network topologies, each with different activation functions are selected. 

The activation functions include the sigmoid function, hyperbolic tangent and 

Elliot symmetric sigmoid function. 

2. To speed up the training time, extracted features are first normalized to same 

range of values. This minimizes the bias within the neural network for one feature 

over another. 

3. For all considered distortion cases, the optimum statistical features are selected 

using the forward selection rule. 
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4. Networks with varied number of hidden nodes are trained to find the optimum 

number of hidden neurons for each distortion case. 

5. The network with optimum feature set and the optimum hidden neurons is trained 

for quality prediction. For network’s training, it is provided with the selected 

feature set and the desired subjective scores (MOS/DMOS) from the training 

samples and is trained using BP algorithm, discussed in section  4.2.3.  

6. Performance of the trained network is evaluated using the features extracted from 

the test samples. When the trained network is provided with the test features, it 

outputs the estimate of the quality score for the given feature set.  

7. The predicted quality scores are compared with the actual subjective scores of the 

test samples, and the performance is evaluated based on the criteria, discussed in 

section  3.4.2. 

8. The steps 3-7 are repeated for all three network topologies with different 

activation functions. 

 

4.4 Summary 

The framework of the proposed algorithm for the neural network-based NR-IQA is 

explained in this chapter. Certain important concepts of the ANN related to the proposed 

framework are discussed, which are incorporated in the neural network design. Both steps 

of the algorithm: feature extraction and ANN learning, are discussed in detail. The 

extraction of the six statistical features quantifying diverse artifacts is discussed under 

feature extraction, along with their mathematical representations. For ANN training, few 
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important issues that influence the performance the neural network are also reported. 

Finally, all steps involved in neural network training for quality predictions are 

enumerated. 
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5 CHAPTER 5 

PERFORMANCE EVALUATION AND COMPARISON 

5.1 Introduction 

In this chapter, the performance of the proposed algorithm is evaluated and compared 

with the traditional models. The database employed for this purpose is the standard LIVE 

image database [91][92], which has been widely used in performance evaluation of many 

image quality measures. It comprises of the following datasets: white noise contaminated 

images, Gaussian blurred images, JPEG and JPEG2000 compressed images, and also 

their corresponding subjective scores (DMOS). The information about the number of 

images in each dataset and their distortion parameters is given in Table  5.1. The DMOS 

value varies on a scale ranging from 0 to 100, where 0 represents an excellent and 100 

represents a bad visual quality. More details of the LIVE image database are given in 

Section  3.4.1. 

Table  5.1: LIVE database 

Dataset 

Number of 

images Distortion Parameter 

Parameter 

Range 

Subjective 

Scores 

White noise 145 

Standard deviation of 

white Gaussian noise 0.012-2.00 

Realigned 

DMOS 

(exclude the 

reference 

images) 

Gaussian blur 145 

Standard deviation of  

Gaussian filter 0.42-15.00 

JPEG 175 Bit rate  (bits / pixel) 0.15-3.34 

JPEG2000 169 Bit rate  (bits / pixel) 0.028-3.15 
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5.2 Performance evaluation  

To evaluate the performance of the proposed approach, the following distortion sets are 

considered from the LIVE database: blur, noise, JPEG and JPEG2000 compression. Each 

distortion set is divided into two sets: a training set of size 60% and a testing set of size 

40%. The objective is to develop the model for five distortion cases; namely, blur, noise, 

JPEG compression, JPEG2000 compression, and across all distortions.  Thus, the six 

statistical features are extracted from the training samples using the procedure discussed 

in section  4.3.1, and are normalized to same range of values. These features form the 

basis for the ANN training. 

It is to be noted that three network topologies, each with different activation function are 

selected. The activation functions employed are sigmoid function, hyperbolic tangent 

sigmoid function, and Elliot sigmoid function. For a better learning of the network, it 

should be provided with the optimum feature set, and also should have the optimum 

number of hidden neurons. The extraction of both parameters is discussed in the 

following sections. 

 

5.2.1  Optimum feature set 

The optimum feature set for all distortion cases are obtained through forward selection 

rule. The networks with different combinations of feature sets are trained against the 

desired subjective scores, and the performance is then evaluated based on the MSE. The 

details of the optimum feature sets for the different distortions cases are shown in the 
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tables, Table  5.3 to Table  5.7. The results are shown for the considered five distortions 

cases. 

Table  5.2: Symbolic representation of the features 

Feature Number Feature Symbol 

1 Blocking factor B  

2 Average Absolute Difference A  

3 Zero-Crossing rate ZC  

4 Standard deviation of diff. image d  

5 Standard deviation of ZC zc  

6 Noise Mean N  

 

In Table  5.2, the symbolic representation used for different statistical extracted features 

are shown.  

Table  5.3: Optimum features selection for JPEG compression  

JPEG Compression 

Sigmoid MSE Hyperbolic 

Tangent Sigmoid 

MSE Elliot Sigmoid MSE 

zc  97.38 zc  103 zc  107 

zc - B  47.54 zc - B  50.84 zc - B  33.9 

zc - B - A  41.78 zc - B - A  44.46 zc - B - A  29.24 

zc - B - A - ZC  37.13 zc - B - A - ZC  39.90 zc - B - A - ZC  25.17 

zc - B - A - ZC - d  40.08 zc - B - A ZC - d  40.01 zc - B - A - ZC - d  26.12 

zc - B - A - ZC - d -

N  42.1 
zc - B - A - ZC - d -

N  44.85 
zc - B - A - ZC - d -

N  27.69 
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In Table  5.3, the performance of the networks in terms on the MSE for JPEG 

compression is shown. The results are shown for three networks each with the following 

activation function: sigmoid, hyperbolic tangent sigmoid and Elliot symmetric sigmoid. 

All three networks are trained with different combinations of feature set as per the 

forward selection rule. The results show that for all three activation functions, the 

following four features; namely, standard deviation of ZC rate, blocking factor, average 

absolute difference, and ZC rate improved the network’s performance to its maximum. 

There is no further improvement with addition of other features. Thus, these four features 

are considered to be the optimum feature set for JPEG compressed distortion. 

Table  5.4: Optimum features selection for JPEG2000 compression 

JPEG2000 Compression 

Sigmoid MSE Hyperbolic 

Tangent Sigmoid 

MSE Elliot Sigmoid MSE 

zc  106.2 zc  106.9 zc  110 

zc - A  65.36 zc - A  68.01 zc - A  50.04 

zc - A - B  44.87 zc - A - B  43.9 zc - A - B  42.9 

zc - A - B - ZC  39.9 zc - A - B - ZC  42.33 zc - A - B - ZC  39.01 

zc - A - B - ZC - d  40.59 zc - A - B - ZC - N  48.59 zc - A - B - ZC - N  39.9 

zc - A - B - ZC - d -

N  41.8 
zc - A - B - ZC - N -

d  47.02 
zc - A - B - ZC - N -

d  40.21 

 

The networks’ performance for JPEG2000 compression is shown in Table  5.4. An 

optimum feature set for each network with different activation function is selected as per 

the forward selection rule. The following four features; namely, standard deviation of ZC 
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rate, average absolute difference, blocking factor, and ZC rate improved the network’s 

performance for all three activation functions. There is no further improvement with 

addition of other features. Hence, these four features are considered to be an optimum 

feature set for JPEG2000 compressed distortion. 

Table  5.5: Optimum features selection for blur distortion 

Blur 

Sigmoid MSE Hyperbolic Tangent 

Sigmoid 

MSE Elliot Sigmoid MSE 

zc  52.82 ZC  51.60 ZC  53.95 

zc - A  42.55 ZC - A  43.1 ZC - A  48.02 

zc - A - d  30.51 ZC - A - d  38.32 ZC - A - d  39.79 

zc - A - d - B  27.63 ZC - A - d - B  31.53 ZC - A - d - B  36.80 

zc - A - d - B - ZC  35.52 ZC - A - d - B - ZC  37.22 ZC - A - d - B - ZC  36.12 

zc - A - d - B - ZC -

N  38.79 

ZC - A - d - B - ZC -

N  35.74 

ZC - A - d - B - ZC

- N  37.28 

 

The results in Table  5.5 show the selection of suitable features for blur distortion. The 

networks with following activation functions: sigmoid, hyperbolic tangent sigmoid and 

Elliot symmetric sigmoid, are evaluated based on MSE. The selection of an optimum 

feature set is done using forward-selection rule. Simulation results show that following 

four features: standard deviation of ZC rate, average absolute difference, standard 

deviation of difference image, and blocking factor, improved the network’s performance 

for sigmoid function. Whereas, ZC rate, average absolute difference, standard deviation 

of difference image, and blocking factor improved the network’s performance for the 
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hyperbolic tangent sigmoid and Elliot symmetric sigmoid functions, to its maximum. The 

addition of any other feature didn’t improve the networks’ performance. 

Table  5.6: Optimum features selection for noise distortion 

Noise 

Sigmoid MSE Hyperbolic Tangent 

Sigmoid 

MSE Elliot Sigmoid MSE 

B  17.1 B  18.7 B  17.7 

B - ZC  5.96 B - ZC  5.96 B - ZC  6.96 

B - ZC - N  5.02 B - ZC - N  5.17 B - ZC - N  5.64 

B - ZC - N - zc  5.16 B - ZC - N - zc  6.56 B - ZC - N - zc  5.82 

B - ZC - N - zc - d  5.4 B - ZC - N - zc - d  6.18 B - ZC - N - zc - d  5.91 

B - ZC - N - zc - d

- A  5.23 B - ZC - N - zc - d - A  6.96 

B - ZC - N - zc - d

- A  5.76 

 

The performance of the networks in terms on the MSE for noise distortion is shown in 

Table  5.6. The following three features; namely, blocking factor, ZC rate, and noise mean 

improved the network’s performance for all three activation functions. The forward-

selection rule is employed for feature selection. The addition of any other feature resulted 

in no improvement in network’s performance. Thus, these three features are selected for 

network’s training for noise distortion. 
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Table  5.7: Optimum features selection across all distortions 

Across All Distortions 

Sigmoid MSE Hyperbolic Tangent 

Sigmoid 

MSE Elliot Sigmoid MSE 

ZC  165.9 zc  167.7 zc  167.9 

ZC - zc  99.93 zc - ZC  111.3 zc - ZC  95.5 

ZC - zc - B  67.96 zc - ZC - B  88.61 zc - ZC - B  57.04 

ZC - zc - B - N  62.27 zc - ZC - B - d  83.15 zc - ZC - B - N  52.07 

ZC - zc - B - N -

d  58.18 zc - ZC - B - d - N  71.02 zc - ZC - B - N - d  51.5 

ZC - zc - B - N -

d - A  59.85 zc - ZC - B - d - N - A  67.58 

zc - ZC - B - N - d -

A  53.16 

 

The networks’ performance across all distortions is shown in Table  5.7. The performance 

is evaluated based on MSE between predicted and desired scores. The simulation results 

show that for sigmoid and Elliot symmetric sigmoid functions, following five features: 

ZC rate, blocking factor, noise mean, standard deviation of ZC rate, and standard 

deviation of difference image improved the network’s performance. While, all six 

features are considered in network’s training for the hyperbolic tangent function. The 

order of the selected features is decided using forward-selection rule. 

. 
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5.2.2 Optimum number of hidden neurons 

After the selection of the optimum feature set, the next task is to find the optimum 

number of neurons in the network’s hidden layer. This is obtained by the neural networks 

with varied number of hidden neurons, and evaluating their performance using the MSE. 

The network with the lowest MSE gives the minimum number of hidden neurons 

required for successful learning of the neural network besides maintaining its 

generalization capability. The optimum number of hidden nodes obtained for the different 

distortion cases are shown in Table  5.8. 

Table  5.8: Selection of optimum number of hidden neurons 

 

Distortion 

Type 

Sigmoid Hyperbolic Tangent 

Sigmoid 

Elliot Sigmoid 

Number of 

neurons 

MSE Number of 

neurons 

MSE Number of 

neurons 

MSE 

JPEG 16 25.88 21 25.92 12 27.25 

JPEG2000 21 38.59 23 42.46 23 39.02 

Blur 11 28.23 12 35.72 16 38.64 

Noise 14 4.92 12 5.2 10 6.16 

Across all 34 49.45 50 67.59 37 52.07 
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Figure  5.1: MSE vs. varied number of hidden neurons for JPEG compression 

 

In Figure  5.1, the error rates of the networks with sigmoid, hyperbolic tangent, and Elliot 

sigmoid functions for JPEG compression are shown. The performance graph shows that 

the lowest MSE is obtained at HN=16 for the neural network with sigmoid function, 

HN=21 for hyperbolic tangent, and HN=12 for Elliot sigmoid function, where HN 

indicated the number of neurons in hidden layer. These HN values are considered to be 

the optimum number of hidden neurons required for the effective training of the neural 

network for the JPEG compression distortion. 
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Figure  5.2: MSE vs. varied number of hidden neurons for JPEG2000 compression 

 

The results in Figure  5.2 show the error rates of the networks trained with varied number 

of hidden neurons (HN) for JPEG2000 compression. For neural network with sigmoid 

function, the lowest MSE is obtained at HN=21, whereas, HN=23 gave the lowest value 

of MSE for hyperbolic tangent and Elliot sigmoid functions. These HN values are 

considered to be the optimum number of hidden neurons for effective network’s training 

for JPEG2000 compression distortion. 
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Figure  5.3: MSE vs. varied number of hidden neurons for blur distortion 

 

The error rates of the networks for blur distortion are shown in Figure  5.3. The network 

with sigmoid function showed lowest MSE at hidden neurons HN=11. While, hyperbolic 

tangent and Elliot sigmoid functions showed minimum MSE at HN=12 and HN=16 

respectively. These HN values are chosen for effective training of the neural network for 

the blur distortion. 
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Figure  5.4: MSE vs. varied number of hidden neurons for noise distortion 

 

The error rates of the networks for noise distortion are shown in Figure  5.4. For hidden 

neurons HN=14, the network showed minimum MSE for sigmoid function, whereas, 

HN=12 and HN=10 provided minimum MSE for hyperbolic tangent and Elliot sigmoid 

functions respectively. The networks with these HN values are designed for quality 

prediction of noise distortion. 

 

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Number of hidden neuron----->

M
S

E
--

--
>

Noise

 

 

Sigmoid

Hyperbolic Tangent Sigmoid

Elliot Symmetric Sigmoid

Min MSE



109 

 

 

Figure  5.5: MSE vs. varied number of hidden neurons across all distortions 

 

In Figure  5.5, the error rates of the networks with sigmoid, hyperbolic tangent and Elliot 

sigmoid functions across all distortions are shown. The lowest MSE is observed at hidden 

neurons HN=34, HN=50, and HN=37 for the networks with sigmoid, hyperbolic tangent, 

and Elliot sigmoid functions respectively. For the better training of the neural network, 

these HN values are considered across all distortions. 
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Figure  5.6: Scatter plot of Subjective scores vs. Objective scores for JPEG compression 

 

 

 

 

Figure  5.7: Scatter plot of Subjective scores vs. Objective scores for JPEG2000 compression 
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Figure  5.8: Scatter plot of Subjective scores vs. Objective scores for blur distortion 

 

 

 

 

Figure  5.9: Scatter plot of Subjective scores vs. Objective scores for noise distortion 
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Figure  5.10: Scatter plot of Subjective scores vs. Objective scores across all distortions 

 

The scatter plots in Figures 5.6 – 5.10 show the correlation between the subjective scores 

from the LIVE database and the scores predicted by the model. The linearity of the 

scatter points depends on the prediction accuracy. The results show that the network 

performed significantly well, and predicts the quality score the correlates well with the 

human observers’ evaluations. 
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Table  5.9: Performance evaluation and comparison of the proposed model 

 
Performance 

Evaluation 
PCC SROCC R

2
 RMSE MAE OR 

JPEG 

 P
ro

p
o
se

d
 Sigmoid 0.94 0.92 0.86 5.09 3.86 0.21 

Hyp. Tan. 0.93 0.91 0.86 5.36 4.21 0.25 

Elliot Sig. 0.94 0.92 0.87 5.22 3.97 0.23 

Bovik’s 0.91 0.90 0.81 7.02 5.35 0.40 

JPEG2000 

P
ro

p
o
se

d
 Sigmoid 0.92 0.92 0.84 6.45 5 0.46 

Hyp. Tan. 0.92 0.92 0.84 6.52 5.18 0.51 

Elliot Sig. 0.93 0.93 0.86 6.25 4.99 0.42 

Bovik’s 0.88 0.88 0.79 7.67 6.21 0.56 

BLUR P
ro

p
o
se

d
 Sigmoid 0.95 0.91 0.87 5.31 4.05 0.47 

Hyp. Tan. 0.94 0.91 0.85 5.62 4.52 0.5 

Elliot Sig. 0.93 0.9 0.86 6.22 4.75 0.4 

Bovik’s 0.91 0.89 0.83 6.81 5.53 0.59 

CPBD 0.89 0.90 0.73 7.33 5.17 0.55 

NOISE 

P
ro

p
o
se

d
 Sigmoid 0.99 0.99 0.98 2.22 1.73 0.03 

Hyp. Tan. 0.99 0.99 0.98 2.28 1.74 0.06 

Elliot Sig. 0.99 0.99 0.98 2.48 1.96 0.05 

Bovik’s 0.97 0.96 0.96 3.34 2.64 0.15 

ALL 

P
ro

p
o
se

d
 Sigmoid 0.90 0.90 0.74 7.23 5.34 0.41 

Hyp. Tan. 0.89 0.90 0.7 7.72 5.58 0.42 

Elliot Sig. 0.90 0.90 0.75 7.19 5.33 0.42 

Bovik’s 0.80 0.84 0.64 9.60 7.66 0.62 
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(R
2
), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Outlier Ratio 

(OR). The details of these evaluation criteria are given in section  3.4.2. 

Table  5.9, the performance evaluation of the proposed ANN based NR image quality 

assessment model is shown.  The performance of the neural networks using sigmoid, 

hyperbolic tangent and Elliot sigmoid activation functions is evaluated with the six 

evaluation criteria (PCC, SROCC, R
2
, RMSE, MAE, and OR) discussed in section  3.4.2 . 

The results show that all three neural networks demonstrate similar performance for all 

the considered distortion cases.  Furthermore,  the proposed image quality measure is 

compared to the existing models in [51] and [82]. In [51], Bovik proposed a non-linear 

fitting technique to predict quality of JPEG compressed images. His framework is 

extended for other 4 distortion cases (JPEG2000 compression, blur, noise, and across all 

distortions), and used as a benchmark to study the performance of the proposed NR IQM. 

The model based on Cumulative Probability of Blur Distortion (CPBD) for blurred image 

is also employed for comparison [82].  From the results in Table  5.9, it is observed that 

there is a substantial improvement in all the evaluation criteria for the five distortion 

cases. There is a significant improvement in prediction accuracy (PCC) by 3% for JPEG, 

4% for JPEG2000, 4% blur, and 10% across all distortions.  The results show that the 

proposed NR IQM outperforms the traditional models in  [51] and [82] by a very good 

margin. 
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5.3 Summary  

A machine learning-based NR-IQA algorithm using neural network is developed.  The 

proposed approach is modeled for five distortion cases; namely, blur, noise, JPEG 

compression, JPEG2000 compression, and across all distortions. The performance of the 

proposed algorithm is evaluated using six evaluation criteria recommended by VQEG. 

The performance of the three network topologies with different activation functions is 

evaluated for all distortion cases, and even compared with the traditional algorithm. 

Simulation results show that there exist an excellent correlation between the subjective 

and the predicted quality scores. The proposed algorithm showed excellent results in 

terms of prediction consistency (low OR), prediction accuracy (high PCC), prediction 

monotonicity (high SROCC), with low prediction error (RMSE and MAE). The 

simulation results also showed that neural network-based NR-IQA outperforms the 

traditional algorithm. 
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6 CHAPTER 6 

CONCLUSTION AND FUTURE WORKS 

6.1 Conclusion 

This research focuses on the development of a NR image quality measure.  The field of 

NR image quality assessment is still in its beginning. The intrinsic complexity and 

limited knowledge of the human visual perception, makes the task of NR-IQM very 

challenging. In this thesis, we addressed the problem of visual quality assessment in the 

absence of reference image.  We proposed an algorithm for the NR image quality 

assessment based on Artificial Neural Networks. The proposed framework involves the 

combination of two steps: feature extraction and neural network training. The ANN is 

used as a regressor to formulate the IQA problem, by training with the selected statistical 

features. The proposed algorithm is designed for five distortion cases: blur, noise, JPEG 

compression, JPEG2000 compression, and across all distortions. Depending on the 

distortions, six statistical features are extracted that correlated well with the perceived 

quality. These features include: blocking factor, average absolute difference, zero-

crossing rate, standard deviations of the difference image, standard deviation of the zero-

crossing rate and noise mean.  

An intense training of the neural network is performed using different combination of 

extracted features and varied number of hidden neurons, to obtain the optimum network. 

The performance of the propose algorithm is evaluated based on the standard evaluation 
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criteria, recommend by the VQEG. The proposed algorithm is also compared with 

existing quality measures presented by Bovik [51] and Karam [82]. The simulation 

results showed that the proposed algorithm outperforms existing models, with excellent 

correlation with human observer evaluation. The performance of the algorithm affirms 

that the machine-learning approach is a powerful technique, and can be implemented for 

any type of distortion. 

 

6.2 Future Works 

 To further enhance the neural network-based approach for no-reference image quality 

assessment, we list a number of ideas below: 

 Other architectures of ANNs can be designed and compared with the network 

topologies incorporated in this research. 

 Other statistical features can be investigated for machine learning, and compared 

to those employed in this research. 

 The scope of neural network-based NR-IQM can be extended to other single-

distortion types and to multiple-distortions as well. 
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