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2.4.1 An approximate radicand Ñi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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Chapter 1

Introduction

1.1 Literature Review

In the literature, the SRT square root seems to be mostly seen as an extension

of SRT division, which gets most of the emphasis. This trend is encouraged by the

instruction-count statistics which show that the performance of systems is not affected

by the performance of the square-root unit to the extent it is affected by the performance

of division, suggesting that the least-performing square-rooting technology (a radix-2

unit) would usually be sufficient [19]. This leads to most of the reviewed material here

discussing SRT division, not the square root, but with the discussions often being equally-

applicable to the case of the square root.

For example, a paper discussing on-the-fly conversion of the quotient digits would

be equally-applicable to the case of the root digits, since both algorithms produce the

result digits in a redundant form. Having said that, even though the review will often

be referring to SRT division, it must be understood that in many cases, the discussions

would also apply to the case of the square root.

The SRT division was given this name by Freiman [12], by combining the initials of

the three people who seemed to discover it independently at about the same time, which

are D. Sweeney of IBM, J. E. Robertson of the University of Illinois, and T. D. Tocher.

Since the introduction of the use of redundant representations for the remainders
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by D. E. Atkins [3], the SRT method has been studied extensively and implemented in

processors. A survey shows that out of 13 recent processors, 11 use SRT division for

performing floating-point division [18].

Unlike the restoring and the non-restoring methods [4], the SRT method is charac-

terized by the nature of the quotient digits as produced during division, and by the way

in which such digits are chosen [23].

Because of the redundant nature of the chosen digits, conversion of the quotient to

the conventional representation is required for this class of division methods, which is

usually done serially [9] (thus avoiding an expensive carry-propagate operation at the

end of division).

Unlike the restoring and the non-restoring methods, where the selection of the next

result digit is guided by the sign of the previous remainder, the SRT method is distin-

guished by its ability to select the next result digit based on the value of the remainder.

Robertson [24] suggested that the mechanism for selecting the next result digit be viewed

as a “limited-precision model” of the full-precision division (i.e. a minute division step).

Atkins [3], on the other hand, contemplates the nature of such mechanism, suggesting

that it can fall in one of two broad categories:

• Either be arithmetic (i.e. the “arithmetic models”): which refer to the use of arith-

metic operations to obtain the correct quotient digit from the value of the current

remainder.

• Or be static (i.e. the “table look-up models”): which refer to the use of the logical

equivalent of a look-up table, to obtain the correct quotient digit from the value of

the current remainder.

In the overwhelming majority of designs, this mechanisms is implemented as a lookup

table, which is known as the SRT table.

Note that a relatively-recent PhD thesis [18] from the University of Adelaide suggests

that the arithmetic model be reconsidered for implementing the digit-selection function

(in Chapter 4: Comparison Multiples, a Different Approach to Quotient Digit Selection).
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In this approach, called the comparison multiples, limited-precision multiples of the

divisor are calculated prior to division, then a carry-free subtraction is used along with

sign detectors to compare the current remainder against each one of these multiples,

with the signals passed through a priority encoder to find a correct choice of the next

quotient digit.

Unlike this atypical approach, this thesis assumes that the digit-selection function is

to be implemented using a PLA (a two-level logical implementation, signifying a look-

up function). The reason behind this choice is that this is the most common way of

implementing the digit-selection function today, and the one that results in the minimum

delay for the digit-selection step (allowing for a shorter cycle time).

In fact, much of the research in SRT algorithms has been dedicated to reducing the

complexity of this table, using a variety of techniques that reduce the size of the table

at the cost of adding some external logic [5][15][8][26].

To design the contents of the table, we need to find a set of truncation parameters

nP and nD (also called the truncation pair) that allows a correct selection of the next

quotient digit. Robertson, in his paper back in 1985 [24], carried out a simple theoretical

analysis assuming that nP = nD (which is not usually the case), which resulted in trunca-

tion values higher (i.e. worse) than what is actually necessary. Atkins, in his 1968 paper

[3], attempted a theoretical analysis based on extrapolating the required precision from

the height of the overlap region at the minimum value of the divisor (assuming that the

required precision is a linear function of the divisor value). His results, however, predict

less precision than what is actually needed for the partial reminder and the divisor [25].

In [26], Harris, Oberman and Horowitz analyze, based on the use of Taylor diagrams, the

relationship between the required precision in the partial reminder nP and in the divisor

nD. They also consider the case of a reminder in the the carry-save form in which the

truncation precision of the carry component nPC need not be the same as that of the

sum component nPS .

To ease looking for a valid truncation pair (values for nP and nD), Parhami reduces

the search space to four truncation pairs in [21], while using an exhaustive test (a nested
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program loop that goes through all the overlap regions) to check the feasibility of each one

of the four truncation pairs. In the conclusion section of his paper, Parhami comments

that it is of interest to come up with simple analytical tests (as opposed to exhaustive

search) to check the feasibility of each one of the four truncation pairs, however, he

comments that it’s only of theoretical interest to do so as the algorithm provided for

exhaustive testing is simple enough for practical purposes.

Kornerup, in his paper in 2003 [15], proposes a refined method for finding the trunca-

tion parameters, which further optimizes the exhaustive testing step of Parhami’s scheme.

Further, he generalizes the method to the case of the SRT square root in his other, 2005

paper [16].

For the reason mentioned in Parhami’s paper, coupled with the abundance of compu-

tational power today, this thesis shows little interest (if any) in the analytical approaches

to finding good values of nP and nD/nS , which is the trend signified by the SRT-table

software tools developed as part of this thesis.

In the same paper, Kornerup points out the symmetry in the P-D diagram of SRT

division, and proposes a scheme for exploiting this symmetry, thus cutting down the

size of the SRT table in half, at the cost of adding some logic external to the table.

Note that an earlier attempt to exploit the same size-reducing possibility is found in

the US Patent entitled “Simplification of Lookup Table” [5]. In this patent, a carry-save

representation of the remainder is assumed, and a negative-to-positive mapping based on

the 2’s-complement is suggested. However, since the 2’s complement is a carry-propagate

operation, this solution is inferior to Kornerup’s proposal in his 2003 paper [15].

Kornerup, on the other hand, suggests a smart workaround by negating the truncated

carry and sum components prior to adding them up to form the estimate, which results

in the −2ulp translation shift needed to ensure a proper negative-to-positive mapping of

the “uncertainty rectangle” in the case of a carry-save remainder. Note that in this case,

the sign of the resulting digit will be determined by the sign of the remainder, since the

SRT table will not store any negative digit values.

In the case of the SRT square root, the symmetry does not hold in early iterations of
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the algorithm. This iteration dependence in the case of the square root has traditionally

pushed the designers to use an initial PLA, which adds to the hardware complexity of

the algorithm. To avoid this, Ercegovac [8] shows that by placing well-designed logical

transformations at the entry of the SRT table, we might be able to lessen the affect of

this dependence on the selection ranges, which results in an iteration-independent look-

up table in the radix-4 case. Note that some other ideas and theoretical refinements also

play a role in enabling the design of this iteration-independent look-up table, which has

greatly inspired the development of the selection function designer tool in the section

3.5.

In [14], an algorithm for division with both an on-line dividend and an on-line divisor

is developed, with ideas very similar to the ones used in the theoretical development of

this thesis, leading to the multiplication-enhanced algorithms.

In [20], a methodology and tools similar to the ones presented here are developed

and used to measure the complexity of the SRT table in SRT division, by counting the

number of product terms in the minimized logic of the table.

Unlike those undisclosed tools, the tools of this thesis are well-documented and fully

disclosed, with features permitting the design of higher-radix systems.

To combine the digit selection of SRT division and the square root, some original

research has been conducted by the student as part of the COE606 Independent Research

course in 2009, which is also utilized in this research [7, 6].
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Chapter 2

Theory of Digit-Recurrence

Multiplication/Square Root

2.1 Iterative Square Root

Finding the square root is the inverse of computing the square:

A
compute squareÐÐÐÐÐÐÐÐ→
←ÐÐÐÐÐÐÐÐ
find square root

A2

Hence, to compute the square root we assume that the number in hand (equal to A2

above, called the radicand), is already the result of squaring some other quantity, which

we refer to as the square root A.

Throughout this thesis, we will be using the letters N and S, respectively, to denote

the radicand and the square root of an arbitrary square-root problem:

S =
√
N

where: N = S2

Unfortunately, there aren’t many ways to describe S beside being the amount whose

square is equal to the radicand N . The fact S is specified indirectly (as the number
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meeting the criterion above) implies that it has to be approached through search (or

developed in steps), suggesting an iterative algorithm.

Furthermore, due to the nature of modern numbers, radicands with limited or few

digits are often blessed with a square root that has an unlimited number of digits:

√
◻ ◻ ◻⋅⋅◻
few digits

= ◻ ◻ ◻ ◻ ◻ ◻⋅⋅ ⋅
endless digits

This has an important impact on a computational unit for calculating the square root,

as the exact (i.e. endless) square root is not a feasible outcome of such unit. Rather,

there exists an inherent compromise where:

calculation

time/effort
∝ precision

of the result

This, along with the previous suggestion that a machine implementation of the square

root would be iterative, explains why all the digital methods for finding the square root

rely on the principle of repeatedly correcting/enhancing an approximation Si, until an

exact or a sufficiently-accurate result Sn is obtained:

initial
approximation

↓

S0∶ S1, S2, S3, S4, . . . Sn−1,

the
result
↓

Sn
n iterations

In such a digital unit, the calculation effort is interpreted as the number of iterations,

which is also proportional to the latency of the unit.

2.1.1 Convergence inequality (theoretical)

For a meaningful iteration, the approximate square roots Si must be increasing in

accuracy, or in a mathematical language, must be converging to the true square root S:

∣S − S0∣ > ∣S − S1∣ > ∣S − S2∣ > ∣S − S3∣ > ⋯ > ∣S − Sn∣

Unfortunately, this test cannot be implemented in practice, since the value of S is

unknown. Hence, a guiding metric other than the direct error is required.
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2.1.2 Implied radicand function

To create practical means of guiding the convergence of the result, we modify the

definition criterion in a simple, but significant way:

N = S2 becomesÐÐÐÐÐÐÐÐ→

(2) radicand

implied by S
↓

N = S
(1) an arbitrary
approximation

2

Our goal is to use this implied-radicand function N (x) = x2 to guide the convergence

of the result. To do this, we pass an approximation of the square root S as well as the

true square root S to this function:

N (S) = S × S

N (S) = S2 = N

Since both values are either directly given (N) or can be digitally computed (S ×S),

the difference can be obtained digitally (called the error in the implied radicand):

error(N ) = N (S) −N (S) = S2 − S2

Now remembering that

error(S) = S − S

it is natural to ask whether the error in the implied radicand can be used as an indirect

measure of the error in S, which requires the following:

• That both errors have the same polarity (to drive the sign of the next adjustment).

• That both errors be correlated (to drive the magnitude of the next adjustment).
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Figure 2.1: Error in the implied radicand/dividend versus error in the square root/quotient

To see if the new error value answers those demands, we express the error in N as

a function of the error in S, to plot one against the other. Unfortunately, the resulting

expression is not only a function of the error in S, but also a function of S (i.e. problem-

dependent), and hence cannot be translated to a simple 2-dimensional plot (i.e. a plot

of error(N ) vs. error(S)).

To overcome this technical difficulty, we express the relative indirect error
error(N )

N as

a function of the relative direct error
error(S)

S , which results in a single-variable expression

that can be easily plotted (Fig. 2.1).

Looking at the figure, not only that the polarities of the two errors are matched,

it also shows that the error in the implied radicand responds with higher sensitivity to

the deviation of S from S, if compared to the error in the implied dividend in the case

of division (which, on the other hand, responds to the deviation of the approximate

quotient Q from the true quotient Q —more on this in Appendix A).

Hence, the error in the implied radicand seems to be just as good of an indicator of

the actual error as the error in the implied dividend (in the case of division), implying

that the error in the implied radicand N can be successfully used as the basis of an

iterative scheme for finding the square root.
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2.1.3 Convergence inequality (practical)

In a practical implementation of the square root, error in the implied radicand

error(N ) = N − S2

can be used both to guide and to supervise the development of the result, through

enforcing the following inequality:

∣N − S0
2∣ > ∣N − S1

2∣ > ∣N − S2
2∣ > ∣N − S3

2∣ > ⋯ > ∣N − Sn2∣

The same inequality can be concisely written as:

∣R0∣ > ∣R1∣ > ∣R2∣ > ∣R3∣ > ⋯ > ∣Rn∣

where each one of the error values is called the remainder, and is maintained throughout

the algorithm(1).

2.1.4 The resulting scheme

S0 = initial approx.

1 ⩽ i ⩽ n ∶ Si = enhance(Si−1,Ri−1) such that ∣Ri∣ < ∣Ri−1∣ (2.1)

(Rj
def= N − Sj2)

In this scheme for finding the square root, an initial approximation of the square root

is repeatedly adjusted, guided by the amplitude and the sign of the current remainder

Ri−1, through the repeated application of the function enhance.

The objective of the enhance function is thus to produce better approximation of the

square root in every iteration, which is guaranteed by the practical condition ∣Ri∣ < ∣Ri−1∣.
(1) This is the parallel amount of the division remainder, which is different from what will be referred

to later as the residual.
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2.1.5 Meaning of the remainder Rj

The remainder Rj contains what remains of the radicand N = S2 after extracting the

square of the corresponding root Sj2 from it, hence the name “remainder”. The name

also signifies the desire to reduce this amount without limit, which corresponds to Sj

indefinitely approaching S (the true square root).

2.2 Subtractive Square Root

In this section, we’ll define a variant of the iterative square root where additions and

subtractions are the only mathematical operations allowed as part of the execution of

the algorithm. This means that only these two operations are allowed to:

1. Maintain the remainder Ri−1 (needed for determining the next adjustment).

2. Adjust the square root Si−1.

Note that determining the next adjustment is not discussed as part of the subtractive

square root. This makes the subtractive square root an incomplete algorithm, or a class

of algorithms from which a practical algorithm can be derived.

2.2.1 Adjusting the square root Si−1

To meet the criterion of the subtractive square root, we have no other option but to

enhance the square root through discrete, additive adjustments ∆Si:

Si = Si−1 +∆Si

2.2.2 Maintaining the remainder Ri−1

To maintain the remainder in an iterative machine implementation, it has to be up-

dated in every iteration to ensure that the residual Ri−1 of next iteration (i.e. Ri) will

have the correct relationship with the enhanced square root Si. As mentioned earlier,

this has to be done additively, as follows:
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Ri = Ri−1 +∆Ri

where:

∆Ri
def= Ri −Ri−1

= (N − Si2) − (N − Si−1
2)

= −(Si2 − Si−1
2)

= −((Si−1 +∆Si)2 − Si−1
2)

= −((Si−1
2 + 2Si−1∆Si +∆Si2) − Si−1

2)

= −2Si−1∆Si −∆Si2

The resulting expression for ∆Ri represents the difference in the square between Si−1

and Si due to an additive adjustment of ∆Si. (Fig 2.2)

Already subtracted.

To be subtracted in the   'th

iteration (this iteration).

To be subtracted in following

iterations. 

(equal to new remainder      )

The whole area represents 

Figure 2.2: A depiction of the terms involved in updating the remainder

To ease referring to each one of these two terms, we choose to name 2Si−1∆Si the

linear term, and to name ∆Si2 the quadratic term.
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2.2.3 Initializing the remainder R0

In the subtractive square root method, the square root is enhanced from iteration to

iteration, while the remainder Ri is also being incrementally maintained, as follows:

Si = Si−1 +∆Si

Ri = Ri−1 − 2Si−1∆Si −∆Si2

Clearly, this scheme only works if the remainder is initialized correctly, meaning that

both S0 and R0 be correctly related as follows:

R0 = N − S0
2

A natural choice of the initial square root S0, which also results in a computation-less

initialization of the remainder, is zero:

S0 → 0 ⇒ R0 → N

2.2.4 The resulting method

S0 =0

R0 =N

1 ⩽ i ⩽ n ∶ Si =Si−1 +∆Si (2.2)

Ri =Ri−1 − 2Si−1∆Si −∆Si2

Note that without a useful scheme for finding the adjustments ∆Si, this description

cannot be used as a practical algorithm for the square root.

In this light, the subtractive square root serves the role of an intermediate algorithm

in the gradual development of the digit-recurrence algorithm.
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2.3 Long Square Root

By looking at (2.2), we can see that the final result Sn is developed, through the

course of n iterations, by accumulating n discrete adjustments:

Sn =
n

∑
j=1

∆Sj

This format for the final output is too general and hence impractical for a digital

implementation, as it implies full-length summation. A natural upgrade of the method,

hence, would be to substitute more intuitive components of the result for each one of

these adjustments.

In a digital computer, binary words similar to the decimal numbers we use everyday

are used to convey numbers. This means that in a machine implementation of the square

root, the result Sn is expected to be eventually translated to a sequence of bits, or more

generally digits.

Being the most intuitive constituents of a number in computers, it makes a perfect

sense to try to confine the adjustments ∆Si to one- or multiple-bit contributions to Si−1.

Not only that this will make constructing the final result Sn as straightforward as

concatenating the bits/digits contributed by the different adjustments ∆Si, but will also

set clear bounds on what will constitute a correct and an incorrect choice of bits/digits,

as well as setting a standard on how fast/slow the precision of Si should be paced from

iteration to iteration, and what final precision to expect upon the end of the algorithm.

To achieve all this, we will modify the subtractive square root to retire a fixed number

of result bits per iteration. Note that once a number of result bits are retired, they are

final and would not be revisited or altered in later iterations.(2)

The process of electing a correct sequence of m result bits per iteration is referred to

as digit selection, whereas the process of updating the remainder accordingly is referred

to as the extraction of digits.

(2) This is in contrast with the restoring and the non-restoring division/square-root algorithms, which
are variable-time algorithms.
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2.3.1 Order of digit extraction

An important aspect of the intended upgrade is the order of determining the result

digits, which will influence the order of digit extraction.

Generally speaking, the right order for determining the result digits depend on:

1. The nature of the numbering system used(3), and

2. The nature of the mathematical operation being performed.

For example, in the case of additions/subtractions, result digits are determined from

the least- to the most-significant. This is unlike the case of division (and the square root,

for that matter), where the digits of the result can only be determined from the most-

to the least-significant.

A detailed explanation of why this is so is beyond the scope of this thesis, but can

generally be achieved by modeling division and the square root as counting problems,

where multiples of radix powers are to be extracted (one by one) from the whole set,

starting from the most-significant, in order to yield a correct count.

Figure 2.3: Substituting digits of the result for the various adjustments, while adhering to a
strict, most-to-least-significant ordering.

(3) A radix-based representation in this case.
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2.3.2 Digits as adjustments

To confine the adjustments ∆Si to ordered, m-bit revelations of S, we need to apply

the following substitution to (2.2):

∆Si → si2
m(a−i)

which can also be written as:

∆Si → sir
(a−i), r

def= 2m

where si is the i’th m-bit block, or the i’th radix-2m digit of Sn (Fig 2.3).

Note that depending on the position of the result’s most-significant digit, the digit

weights will vary, which is the purpose of the a parameter:

This way, there is no ambiguity as to what final precision to expect upon the end of

the n’th iteration. In this formulation, exactly n radix-2m digits, or n×m bits of Sn are

to be produced by the algorithm upon its completion.

2.3.3 Resulting algorithm

S0 =0

R0 =N

1 ⩽ i ⩽ n ∶ Si =Si−1 + sira−i (2.3)

Ri =Ri−1 − 2Si−1sir
a−i − si2r2(a−i)

16



In this algorithm, one digit is inserted into the result word in every iteration, while

the remainder is updated by the subtraction of two terms: a linear term 2Si−1sir
a−i and

a quadratic term si
2r2(a−i).

A major question at this point is how to obtain a correct selection of the digits si, and

whether reducing the absolute value of the remainder (∣Ri∣ < ∣Ri−1∣) is still a sufficient

condition to ensure a correct operation of the algorithm.

2.3.4 Correctness vs. increased accuracy

In every and each iteration of the new algorithm, some bits of the final result are

retired and not revisited in later iterations.

This makes the condition ∣Ri∣ < ∣Ri−1∣ insufficient, as it does not make sure that the

last m-bit/digit choice was absolutely correct. Rather, it only verifies that the last digit

choice contributed to a less absolute error in Si, which is not enough (Fig. 2.4).

Figure 2.4: Unlike the subtractive square root, blocks of m bits are finalized in the long square
root in every iteration, so at the end of the i’th iteration, only the shaded area above would be
still under development, whereas all the digits from s1 to si would have been permanently fixed.

To ensure that the last m-bit/digit choice was absolutely correct, we should verify

that the true square root S still lies between the minimum and the maximum Sn values

accessible by future iterations of the algorithm:

where the shaded area, as before, includes only the digits that are yet to be determined
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by future iterations of the algorithm. Each one of these digits is assigned an arbitrary

range from −α (also written as ᾱ) to β, where h+ and −h−, in order, are the maximum-

and the minimum-valued endless fractions that can be expressed using this digit set:(4)

h− = α

r − 1
, h+ = β

r − 1
(2.4)

In the case of a conventional representation (which is of little practical interest), α

would be equal to zero whereas β would be equal to r − 1, implying a value for h+/h− of

one and zero, respectively.

Note that unless either h+ or h− had a value of zero, a “less than” (<) sign should

be used on both sides of the inequality above, which is typically the case in practical

implementations of this algorithm and its derivative:

Si−1 + sira−i − ra−ih− < S < Si−1 + sira−i + ra−ih+

This inequality can be manipulated as follows:

Si−1 + ra−i(si − h−) < S < Si−1 + ra−i(si + h+)

(Si−1 + ra−i(si − h−))2 < S2

=N

< (Si−1 + ra−i(si + h+))2

Si−1
2 + 2Si−1r

a−i(si − h−)

+r2(a−i)(si − h−)2
< N <

Si−1
2 + 2Si−1r

a−i(si + h+)

+r2(a−i)(si + h+)2

At this point, we can simply transfer the term Si−1
2 to the middle to get N − Si−1

2,

which is equal to the current remainder Ri−1:

2Si−1r
a−i(si − h−)

+ r2(a−i)(si − h−)2
< Ri−1 <

2Si−1r
a−i(si + h+)

+ r2(a−i)(si + h+)2
(2.5)

(4) These are often referred to as the redundancy factors in textbooks, which is a term avoided here. A
more appropriate name of this amount would be the positive and the negative fractional span, respectively.
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This inequality is called the correctness constraint and works as follows: depending

on the value of the nominated digit si, it sets clear bounds on the current remainder

Ri−1 to determine whether that digit choice is a correct one or not.

Furthermore, the fact that the constraint revolves around the value of the current

remainder Ri−1 (rather than the value of the next remainder Ri) means that it can be

used as the basis of a mechanism that permits the direct choice of digits, which is the

goal of all digit-recurrence algorithms.

2.3.5 Paper-and-pencil method

A close cousin of the algorithm described above is a manual method for performing

the square root, which is the paper-and-pencil square root algorithm. Though not taught

in schools very often (compared to paper-and-pencil division), paper-and-pencil square

root provides a good insight into the inner workings of the digit-recurrence square root,

and hence is a valuable addition to this section.

Furthermore, the exact same technique used in the paper-and-pencil algorithm to

combine the linear and the quadratic terms is also used in practical implementations of

the digit-recurrence square root, adding to the relevance of this material.

Simplified correctness constraint

In paper-and-pencil square root, a conventional representation of Sn is implicitly

assumed (α = 0, β = r − 1), with a radix commonly (but not necessarily) equal to ten.

Being a manual method (i.e. a method intended to be used by humans), trial and

error is accepted as the principal mean of obtaining a correct choice of the result digits.

This implies that unlike the correctness constraint in (2.5), which revolves around the

value of the current remainder Ri−1 (permitting direct selection of digits), a much simpler

constraint that revolves around the value of the updated remainder Ri can be derived
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for the paper-and-pencil method:

Si ⩽ S < Si + ra−i

Si2 ⩽ S2 < (Si + ra−i)2

Si2 ⩽ N < Si2 + 2Sira−i + r2(a−i)

0 ⩽ Ri < 2Sira−i + r2(a−i) (2.6)

Now since we know that one of the r digit choices is necessarily correct (due to the

mathematical continuity of the square root function), only the lower bound of the upper

constraint can be used to determine the value of the next result digit, by attempting to

find the highest digit value si that does not result in a negative remainder.

Remember that the remainder Ri contains what remains of the radicand N = S2 after

extracting the square of the current result S2 from it, hence, the attempt to increase the

value of the next digit choice without resulting in a negative remainder can be understood

as trying to find the highest digit value that does not result in the new result Si exceeding

the true square root S (through making sure that the square of the first does not exceed

the square of the second).

Combining the linear and the quadratic terms

One complaint about the digit-selection tactic above (in case the same equations for

the long square root were to be used) is the depth of the trial-and-error cycle. Namely,

the user has to repeatedly subtract two terms, a linear and a quadratic term, just to see

how this would affect the value of the next remainder Ri:

Ri = Ri−1 − 2Si−1sir
a−i

linear term

− si2r2(a−i)

quadratic term

(2.7)

To overcome this, we propose the bare result Si−1 as the bare integer that results

from combining all the result digits determined so far in the algorithm (Fig. 2.5).
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Figure 2.5: An illustration of the relationship between the result Si−1 and the bare result Si−1.

The new quantity, Si−1, can be obtained from the current result Si−1 by dividing

by the weight of the least-significant, determined digit (this is the digit at the position

number a−i
+1 in the figure):

Si−1
def= Si−1r

−(a−i+1)

⇒ Si−1 ← Si−1r
a−i+1 (2.8)

By substituting this into (2.7) we get:

Ri = Ri−1 − 2Si−1sir
2(a−i)+1

linear term

− si2r2(a−i)

quadratic term

= Ri−1 − sir2(a−i)(2Si−1r + si)

Looking at the part within parentheses, it can be practically formed by concatenating

2Si−1 and si:

= Ri−1 − sir2(a−i) ( 2Si−1∣si )

Ri = Ri−1 − r2(a−i) (si × 2Si−1∣si ) (2.9)

In this new formula, the current remainder Ri−1 is updated through the subtraction

of a single term (called the linear-quadratic term). This single term represents the change

in the square of the current result Si−1 due to the contribution of the last square root

digit sir
a−i.

Note that the new term is fixed at two times the position of the last square root digit

21



(“2(a−i)” vs. “a−i”). This means that if we aggregate every couple of digits of the

current remainder Ri−1, starting from the decimal point and moving outward, then the

right edge of the linear-quadratic term would be neatly aligned with si (Fig. 2.6).

Figure 2.6: A diagram showing the correct relative position of the linear-quadratic term along the
length of the current remainder Ri−1. Note that every digit of the square root is paralleled with
a pair of remainder digits, and that the aggregation of remainder digits should always begin at
the decimal/radix point and proceed outward, to meet the a−i/2(a−i) digit-position relationship.

Combined with the simplified digit selection scheme in (2.6), the new formula corre-

sponds to searching for the highest digit value “∗” such that (∗ × 2S ∣∗ ) is less than or

equal to the value of the relevant section of Ri−1.

Decimal examples

1 2
√

1
´¶

44
´¶

●
← result

← radicand

∗ × ∣∗ − 01 (∗→ 1)
00

44

∗ × 2 ∣∗ − 44 (∗→ 2)
00
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9 8 7
√

97
´¶

41
´¶

69
´¶

●

∗ × ∣∗ − 81 (∗→ 9)
16

16 41

∗ × 18 ∣∗ − 15 04 (∗→ 8)
1 37

1 37 69

∗ × 196 ∣∗ − 1 37 69 (∗→ 7)
0 00 00

1 ● 4 1 4 2 ⋯
√

2
´¶

● 00
´¶

00
´¶

00
´¶

00
´¶

⋯

∗ × ∣∗ − 01 (∗→ 1)
01

1 00

∗ × 2 ∣∗ − 96 (∗→ 4)
04

4 00

∗ × 28 ∣∗ − 2 81 (∗→ 1)
1 19

1 19 00

∗ × 282 ∣∗ − 1 12 96 (∗→ 4)
6 04

6 04 00

∗ × 2828 ∣∗ − 5 65 64 (∗→ 2)
38 36

2.3.6 Putting it all together

The same technique used in the above to combine the linear and the quadratic terms

can also be incorporated into the long square root algorithm. Additionally, due to the

binary nature of the long square root (as compared to the predominantly-decimal nature
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of the paper-and-pencil method), further simplification is possible.

Namely, the 2Si−1 part of the linear-quadratic term can be further decomposed into

the simple concatenation of the bare result word Si−1 with a single zero bit Si−1∣0 :

S0 =0

R0 =N

1 ⩽ i ⩽ n ∶ Si =Si−1 + sira−i (2.10)

Ri =Ri−1 − r2(a−i) (si × Si−1 ∣0 ∣ si )

Result digits si are chosen from {−α,⋯, β} such that:

2Si−1r
a−i(si − h−)

+ r2(a−i)(si − h−)2
< Ri−1 <

2Si−1r
a−i(si + h+)

+ r2(a−i)(si + h+)2

2.4 Incorporating Multiplication

In this section, we will take a brief diversion from the classical digit-recurrence theory

to work up our novel inclusion of multiplication into the digit-recurrence square root.

This comes to complement, as well as to extend the work on building multiplication

into the digit-recurrence division in [2], which is explored rapidly in the appendix.

Note that throughout this section, we will admittedly try to recreate the approach

in [2], which will not only ease comparing the results, but will also increase the potential

of either design by enabling the sharing of components between the two units (more on

this in section 3.3 in Chapter 3).

24



2.4.1 An approximate radicand Ñi

So far, the assumption has been that the radicand N is an exact amount that is

provided in full precision at the beginning of the calculation:

N = S2

This assumption has permitted us to define the remainder Ri as the (exact) error in

the square, which is an amount of central importance to the current long square root

algorithm (2.10):

Ri
def= S2 − Si2

= N − Si2

To define a fused operation, on the other hand, we’re expected to carry out two

mathematical operations at the same time, with the outcome of the first (in this case:

multiplication) serving as the input of the second (in this case: the long square root).

To accomplish this, we’re challenged to modify the long square root to accommodate

an approximate radicand (i.e. a radicand that is still under calculation).

This starts by modifying the definition of the remainder above from being the exact

error in the square S2 − S2 (= N − S2) to becoming an approximation:

Æ radicand is now an approximate amount

an approximate remainder →◯̃Ri def= Ñi − Si2 (2.11)
½ radicand now needs a subscript since it

is updated in every iteration

According to the definition above, introducing some error into the radicand ε(Ñi)

will result in introducing the same amount of error into the value of the remainder R̃i:

ε(R̃i) = ε(Ñi)
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where:

− εmin(Ñi)
absolute

minimum error

< ε(Ñi) < εmax(Ñi)
absolute

maximum error

The major consequence of this modification is that the exact remainder Ri−1 will no

longer be available to the algorithm, meaning that the correctness constraint has to be

rewritten with bounds on the approximate remainder R̃i−1 instead:

lowerbound < Ri−1

=R̃i−1+ε(R̃i−1)
=R̃i−1+ε(Ñi−1)

< upperbound

lowerbound − ε(Ñi−1) < R̃i−1 < upperbound − ε(Ñi−1)

To account for the worst case, we add the absolute minimum error εmin(Ñi−1) to

the lower bound, and subtract the maximum positive error εmax(Ñi−1) from the upper

bound. This way, we ensure that the exact current residual Ri−1, if ever known, will

surely lie in-between lowerbound and upperbound:

lowerbound + εmin(Ñi−1) < R̃i−1 < upperbound − εmax(Ñi−1) (2.12)

2.4.2 Precision requirements of Ñi

To obtain a general guideline of how small/large the error in the approximate radicand

ε(Ñi−1) can be without obstructing the operation of the long square root algorithm, we

need to have a good understanding of how the scale of lowerbound and upperbound

changes from iteration to iteration (2.10):

lowerbound = 2Si−1r
a−i(si − h−) + r2(a−i)(si − h−)2

upperbound = 2Si−1r
a−i(si + h+)
term I

+ r2(a−i)(si + h+)2

term II

(2.13)

Both bounds are formed by the addition of two terms, which will be referred to in
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this discussion as “term I” and “term II”.

To investigate the scale as a function of the iteration number i, we need to express

either term as the multiplication of a simpler, fixed-scale segment with an i-based scaling

factor. To isolate this so-called scaling factor, we expand the current result Si−1 above

to the sum of its constituent, weighted digits sjr
a−j :

Si−1 =
i−1

∑
j=1

sjr
a−j

Note that despite of the sum’s upper limit above being a function of the iteration

number i, the scale of Si−1 is due to the greatest component which is independent of i

(the greatest component in the sum above is s1r
a−1).

By substituting this into (2.13) we get:

lowerbound = 2
⎛
⎝
i−1

∑
j=1

sjr
a−j⎞

⎠
ra−i(si − h−) + r2(a−i)(si − h−)2

upperbound = 2
⎛
⎝
i−1

∑
j=1

sjr
a−j⎞

⎠
ra−i(si + h+) + r2(a−i)(si + h+)2

where both expressions can be rearranged to highlight the scaling factor as follows:

lowerbound = 2
⎛
⎝
i−1

∑
j=1

sjr
−j⎞

⎠
(si − h−) r2a−i

scaling factor/I

+(si − h−)2 r2a−2i

scaling factor/II

upperbound = 2
⎛
⎝
i−1

∑
j=1

sjr
−j⎞

⎠
(si + h+) r2a−i

scaling factor/I

+(si + h+)2 r2a−2i

scaling factor/II

In both cases, the scale of term I is determined by r2a−i whereas the scale of term II

is determined by r2a−2i.

By discarding the invariable part r2a, we can see that term I’s most-significant digit

position is decreased by one in every iteration (implied by r−i) whereas term II’s most

significant digit position is decremented by two in every iteration (implied by r−2i).

This implies that in the long run (in later iterations), the contribution of term I to

the value of lowerbound and upperbound dominates, with an effective most-significant-
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digit-position shift rate of one-digit-per-iteration, for each one of the two bounds.

Conclusion: in order to result in a feasible fused algorithm, both error terms

εmin(Ñi−1) and εmax(Ñi−1) in (2.12) should have:

1. a controllable initial scale, and

2. a decrease rate no less than one digit position per iteration.

2.4.3 The direct approach

Now we’re at the point of advocating a “recipe” for gradually calculating the radicand

as the multiplication of two numbers A×B, in a way that meets the precision requirements

of the previous subsection.

To do this, we express the exact radicand N =A×B as the sum of n partial products(5):

N =
n

∑
j=1

bjr
a−jA

As concluded in 2.4.2, this value has to be gradually calculated while (1) controlling

the initial accuracy, and while (2) decreasing the error by one digit position per iteration.

A practical scheme that meets both requirements is the following:

1. one partial product is constantly added per iteration to the approximate radicand,

following a strict most-to-least-significant ordering, while

(5) The assumption here is that multiplying an n-digit multiplier B (whose digits are denoted as bj),
with an n-digit multiplicand A, will result in a 2n-digit radicand and an n-digit square root S, as follows:
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2. the long square root algorithm is tuned to start at the δ’th iteration, where δ is a

system parameter that can be used to control the radicand’s initial accuracy.

Note that a fused algorithm based on this scheme would require a total of n + δ − 1

iterations to complete (compared to n iterations only for the long square root algorithm).

This is due to the δ − 1 preliminary iterations in which only partial products are being

accumulated, but no result digits are being retired.

In this fused algorithm, the i’th iteration will experience the determination of the

(i − δ + 1)’th result digit (in iterations starting from, and following the δ’th iteration),

compared to simply the i’th result digit in a pure-square-root unit:

Si = Si−1 + ra−(i−δ+1)si−δ+1 (2.14)

Figure 2.7

Initializing/updating the remainder R̃i

In the development carried out in this subsection (and the following subsection), we

choose to initialize the approximate radicand to the first partial product b1r
a−1A:

Ñ0 = b1ra−1A
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while adding one more partial product per iteration for the rest of the algorithm(6):

Ñi = Ñi−1 + bi+1r
a−i−1A (2.15)

This way, δ partial products will be accumulated prior to determining the first result

digit (Fig. 2.7).

To derive an expression for updating the (now approximate) remainder R̃i, we follow

the same subtractive approach of subsection 2.2.2:

R̃i = R̃i−1 +∆R̃i

where:

∆R̃i
def= R̃i − R̃i−1

= (Ñi − Si2) − (Ñi−1 − Si−1
2)

= − (Si2 − Si−1
2)

evolves into the linear-quadratic-termÄ
(same as before)

+ (Ñi − Ñi−1)
½ to update the approximate radicand

(only in the fused algorithm)

This means that updating the approximate remainder will involve subtracting a

linear-quadratic term similar to that of the long square root algorithm (2.10) as well

as the addition of an extra, partial product term:

(Ñi − Ñi−1) = bi+1r
a−i−1A

This, along with the delayed mapping between the result digit numbers and the

iteration number (2.14), leads to the following full expression for updating the remainder:

R̃i = R̃i−1 − r2(a−(i−δ+1)) (si−δ+1 × Si−1 ∣0 ∣ si−δ+1 )

linear-quadratic term

+
partial-product term

bi+1r
a−i−1A

Note that in iterations preceding the δ’th iteration, the value of the linear-quadratic

(6) Note that upon using an n-digit multiplier B, which is the case assumed here, the last δ iterations
of the (n + δ − 1)-iteration algorithm will be adding zero-valued partial products.
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term will be equal to zero, resulting only in the additon of the partial product term in

this initial phase of the fused algorithm.

As for the initial value of the approximate remainder R̃0, on the other hand, it is the

same as the value of the initial approximate radicand(7):

R̃0
def= Ñ0 − S0

=0

2

= Ñ0

= b1r
a−1A

where the approximate radicand Ñi is initialized and updated as part of R̃i, rather than

being separately stored and maintaned in the fused algorithm.

Putting the above together, we get the following multi-staged description for our

fused multiplication/square-root algorithm:

S0 = 0

R̃0 = b1ra−1A

1 ⩽ i ⩽ δ − 1 { R̃i = R̃i−1 + bi+1r
a−i−1A (2.16)

δ ⩽ i ⩽ n + δ − 1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Si = Si−1 + si−δ+1r
a−(i−δ+1)

R̃i = R̃i−1 − r2(a−(i−δ+1)) (si−δ+1 × Si−1 ∣0 ∣ si−δ+1 ) + bi+1r
a−i−1A

Digit-selection criteria

Missing in the previous description is the digit-selection criteria, known previously as

the correctness constraint, which is shown in (2.12) to have two extra terms compared to

that of the long square root algorithm: εmin(Ñi−1) and εmax(Ñi−1) (called the absolute

minimum and the absolute maximum errors in the radicand, respectively).

To find the value of either one of the two terms, we need to derive an analytical

(7) Note that S0 in the fused algorithm is distinct from the initial root value, which is now equal to
Sδ−1 (due to the δ-iteration delay in the operation of the square root).
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expression for the error in the radicand ε(Ñi−1), as follows:

N =
n

∑
j=1

bjr
a−jA

Ñi−1 =
i

∑
j=1

bjr
a−jA

ε(Ñi−1) = N − Ñi−1

=
n

∑
j=i+1

bjr
a−jA

= ra−i
n−i

∑
j=1

bi+jr
−jA

ε(Ñi−1) = ra−iA
n−i

∑
j=1

bi+jr
−j (2.17)

The absolute minimum and maximum values this expression can evaluate to depend

on the ranges attainable by the multiplicand A, and the multiplier digits bj .

Despite the fact that both A and B are provided in a conventional, irredundant

digit representation, it is advantageous to assume that the digits of the multiplier bj , at

least, are converted to a signed-digit representation. This will reduce the number of A

multiples that need to be generated within the algorithm to form the partial product

term “bi+1r
a−i−1A” in (2.16).

Assuming a multiplier digit bj in the range {B−,⋯,B+}, this results in the following,

absolute-value limits of the sum part in (2.17):

RRRRRRRRRRR
min

⎛
⎝
n

∑
j=1

bjr
−j⎞

⎠

RRRRRRRRRRR
<

RRRRRRRRRRR
min

⎛
⎝
∞

∑
j=1

bjr
−j⎞

⎠

RRRRRRRRRRR
= h−B (= B−

r − 1
)

RRRRRRRRRRR
max

⎛
⎝
n

∑
j=1

bjr
−j⎞

⎠

RRRRRRRRRRR
<

RRRRRRRRRRR
max

⎛
⎝
∞

∑
j=1

bjr
−j⎞

⎠

RRRRRRRRRRR
= h+B (= B+

r − 1
)

where h+B and −h−B, as before, are the maximum- and minimum-valued endless fractions

that can be expressed using the signed digit set assigned to B.

Note that, should the multiplier-digit-conversion feature be dropped from the design,

h+B and h−B can simply be assigned the values of 1 and 0, respectively.
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As for the multiplicand A, on the other hand, a conventional representation of digits

is always assumed, leading to the following lower and upper limits:

min(A) = 0

max(A) = ra − ra−n < ra

By considering the limits above, we can see that to obtain an absolute-value minimum

and maximum limits for (2.17), all we need to do is to pair the maximum multiplicand

value max(A) with either the minimum, or the maximum value of the B-digit-sum part:

εmin(Ñi−1) = ra−i ×max(A) ×
RRRRRRRRRRR
min

⎛
⎝
n

∑
j=1

bjr
−j⎞

⎠

RRRRRRRRRRR
< r2a−ih−B

εmax(Ñi−1) = ra−i ×max(A) ×
RRRRRRRRRRR
max

⎛
⎝
n

∑
j=1

bjr
−j⎞

⎠

RRRRRRRRRRR
< r2a−ih+B

This implies that the error in the current radicand ε(Ñi−1) is bounded by:

− r2a−ih−B
εmin(Ñi−1)

< ε(Ñi−1) < r2a−ih+B
εmax(Ñi−1)

which leads to the following, complete description of this subsection’s fused algorithm:

S0 = 0

R̃0 = b1ra−1A
(2.18)

1 ⩽ i ⩽ δ − 1 { R̃i = R̃i−1 + bi+1r
a−i−1A

δ ⩽ i ⩽ n + δ − 1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Si = Si−1 + si−δ+1r
a−(i−δ+1)

R̃i = R̃i−1 − r2(a−(i−δ+1)) (si−δ+1 × Si−1 ∣0 ∣ si−δ+1 ) + bi+1r
a−i−1A

Result digits si−δ+1 are chosen from {−α,⋯, β} such that:

2Si−1r
a−(i−δ+1)(si−δ+1 − h−)

+ r2(a−(i−δ+1))(si−δ+1 − h−)2

+r2a−ih−B

< R̃i−1 <

2Si−1r
a−(i−δ+1)(si−δ+1 + h+)

+r2(a−(i−δ+1))(si−δ+1 + h+)2

−r2a−ih+B
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2.4.4 An alternative approach

One inconvenience with the previous formulation in (2.18) is the distinction between

iterations preceding and following the δ’th iteration.

In a synchronous digital circuit, the same combinational hardware is reused between

iterations. This requires, ideally, that the body of actions within the algorithm’s loop be

totally iteration-independent (where, in this case, the distinction between the iterations

preceding and following δ can be seen as such dependence).

To resolve this, we propose an alternative scheme in which a fused multiplicative/square-

root mechanical process is clung to throughout the algorithm, while effectively delaying

the operation of the square-root part through deliberate attenuation of the radicand.

Hence, our goal will be to ensure that the δ − 1 leading digits of the square root S/S

be equal to zero (to recreate the scenario in Fig 2.7), which in turn, requires that we

insert double this number of zero digits in the front of the radicand A ×B.

To do this in a manner that permits the accumulation of δ partial products prior to

computing the square root digits, we need to incorporate all the 2(δ−1) leading zeros into

the multiplicand A alone, rather than to the multiplier B, or by dividing this number of

leading zero digits between the two amounts.

This technique can be demonstrated algebraically as follows:

S =
√
A ×B

r−(δ−1)S = r−(δ−1)
√
A ×B

r−(δ−1)S
S′

(
delayed
result

)

=
√
r−2(δ−1)A

A′

(
preprocessed
multiplicand

)

×B

S′ =
√
A′ ×B
N ′

(
processed
radicand

)

The computational equivalent of S′ is S ′ (with digits denoted as s′i), which is the

direct outcome of a single-staged, fused algorithm that utilizes this kind of downscaling
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(or preprocessing) of the multiplicand:

A′ = r−2(δ−1)A

To restore the actual result Sfinal from the delayed one S ′n+δ−1, all we need to do is

to drop the δ − 1 leading zero digits:

Sfinal = rδ−1S ′n+δ−1

Note that the approximate radicand Ñ ′

i is affected by the preprocessing of A in the

same way the exact processed radicand N ′ is:

N ′ = r−2(δ−1)N

Ñ ′

i = r−2(δ−1)Ñi

The approximate remainder is also affected, in almost the same way as the radicand:

R̃′

i = Ñ ′

i − S ′i
2

= r−2(δ−1)Ñi − (r−(δ−1)Si)2

= r−2(δ−1) (Ñi − Si2)
R̃i

R̃′

i

(

processed
approximate
remainder

)

= r−2(δ−1)R̃i

This effect on the remainder should to be taken into account in case the actual

remainder, denoted as Rfinal, was to be recovered as one of the arithmetic unit’s outcomes

(in addition to the square root Sfinal itself). In this case, the actual remainder is obtained

by simply dropping the leading 2(δ − 1) leading zero digits from the last remainder:

Rfinal = r2(δ−1)R̃′

n+δ−1
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This way, we can achieve a single-staged fused algorithm by replacing A, Sj , Sj , sj ,

Ñj and R̃j with their processed equivalents: A′, S ′j , S ′j , s′j , Ñ ′

j and R̃′

j , respectively.

Note that the error in the radicand ε(Ñi−1) has also to be replaced by the error in the

processed radicand ε(Ñ ′

i−1), which will impact the error terms εmin/max(Ñi−1) in (2.12):

εmin(Ñ ′

i−1) = εmin(r−2(δ−1)Ñi−1)

= r−2(δ−1)εmin(Ñi−1)

= r−2(δ−1)r2a−ih−B

εmax(Ñ ′

i−1) = εmax(r−2(δ−1)Ñi−1)

= r−2(δ−1)εmax(Ñi−1)

= r−2(δ−1)r2a−ih+B

Putting all the above together, we get the following, enhanced fused algorithm:

S ′0 = 0

R̃′

0 = b1ra−1r−2(δ−1)A
(2.19)

1 ⩽ i ⩽ n + δ − 1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S ′i = S ′i−1 + s′ira−i

R̃′

i = R̃′

i−1 − r2(a−i) (s′i × S ′i−1 ∣0 ∣ s′i ) + bi+1r
a−i−1r−2(δ−1)A

Sfinal = rδ−1S ′n+δ−1

Rfinal = r2(δ−1)R̃′

n+δ−1

Result digits s′i are chosen from {−α,⋯, β} such that:

2S ′i−1r
a−i(s′i − h−)

+ r2(a−i)(s′i − h−)2

+r−2(δ−1)r2a−ih−B

< R̃′

i−1 <

2S ′i−1r
a−i(s′i + h+)

+r2(a−i)(s′i + h+)2

−r−2(δ−1)r2a−ih+B

The description above looks and feels simpler than the one in (2.18) due to the unified

loop’s body, and due to the clean mapping between the digits of the delayed result s′i and
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the iteration number i, which hides the delay in the square root and the actual, shifted

mapping between the two (Fig. 2.8).

Figure 2.8: The mapping between the delayed square root digits s′i and the digits of the actual
square root si+δ−1.

2.4.5 The Z parameter

A variation of the second approach in subsection 2.4.4 is to downscale A by a number

of bits, rather than by whole digits (i.e blocks of m bits), as follows:

A′ = 2−2ZA

Preprocessing the multiplicand using binary shifts takes full advantage of the binary

nature of modern digital systems, but introduces some complexities as well, which are

explained in this subsection with the aid of the figure below.

Figure 2.9

A case of special interest is the case when Z is not a multiple of m, that is to say, is

the case when the Z parameter is used in a way that the δ parameter cannot match.

To address this case as well as the case when Z is simply a multiple of m, we redefine

δ as a dependent variable where:

δ
def= ⌊Z

m
⌋ + 1 (2.20)
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This way, the first iteration of the square root can still be marked by δ(8).

Unlike the previous approach, the choice of the first actual square root digit s′δ might

be limited compared to the choice of the following digits, due to the ma mandatory initial

zero bits, where ma is defined as:

ma
def= Z −m ⌊Z

m
⌋ (2.21)

Note that when Z is not a multiple of m, the same number of bits will also be

needed to complete the necessary mn bits of Sfinal upon the end of the n+ δ −1 iteration

(previously regarded as the last iteration). This will require an extra conditional iteration

which will, as a side effect, produce mb bits that are beyond the required mn:

mb
def= m ⌈Z

m
⌉ −Z (2.22)

These mb bits will be referred to as the excess bits, and can be used for rounding and

other error-control purposes.

A useful test of whether the conditional iteration is needed or not is the following:

⌈Z
m

⌉ − ⌊Z
m

⌋ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if Z is a multiple of m

1 otherwise

This expression can be used to define n∗, as the number of fused-operation iterations

needed to retire nm bits in a fused algorithm that requires a Z-zero-bit preamble for S ′:

n∗
def= n + (⌈Z

m
⌉ − ⌊Z

m
⌋) (2.23)

This way, the total number of iterations required by the algorithm would be n∗+δ−1,

which can also be written as n∗+ ⌊ Zm⌋ or even n + ⌈ Zm⌉(9).

(8) Note that δ is also equal to the number of partial products accumulated prior to the fused operation.
(9) We prefer the forms based on n∗ because they split the total count into preliminary, and fused-

operation iterations.
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By putting the ideas and definitions above into effect, we reach our final algorithm

for this section, which will form the basis of the digit-recurrence algorithm of section 2.5.

S ′0 = 0

R̃′

0 = b1ra−12−2ZA
(2.24)

1 ⩽ i ⩽ n∗+ δ − 1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S ′i = S ′i−1 + s′ira−i

R̃′

i = R̃′

i−1 − r2(a−i) (s′i × S ′i−1 ∣0 ∣ s′i ) + bi+1r
a−i−12−2ZA

Sfinal = 2ZS ′n∗+δ−1

Rfinal = 22ZR̃′

n∗+δ−1

Result digits s′i are chosen from {−α,⋯, β} such that:

2S ′i−1r
a−i(s′i − h−)

+ r2(a−i)(s′i − h−)2

+2−2Zr2a−ih−B

< R̃′

i−1 <

2S ′i−1r
a−i(s′i + h+)

+r2(a−i)(s′i + h+)2

−2−2Zr2a−ih+B

2.5 Finding a Recurrence Relation

In this section, we will continue our mission which we started in the previous section

to remove all the iteration-dependent actions from the algorithm’s loop in (2.24):

1 ⩽ i ⩽ n∗+ δ − 1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S ′i = S ′i−1 + s′ira−i

R̃′

i = R̃′

i−1 − r2(a−i) (s′i × S ′i−1 ∣0 ∣ s′i ) + bi+1r
a−i−12−2ZA

This, as mentioned earlier, will enable reusing the same combinational hardware for

executing each and every iteration, resulting in a significant reduction in the hardware

complexity of the algorithm.

Note that as we try to do this, we are only allowed to change the internal products

of the algorithm, as long as the operations (and hence the outcomes) are still the same.
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By looking at the algorithm’s loop above, we can see that updating the result S ′

involves inserting the newly-elected digit s′i at an iteration-dependent position (dictated

by ra−i), which is a simple example of an iteration-dependent action.

As for updating the remainder R̃′

i, on the other hand, the problem is a little bit more

complicated as there are two iteration-dependent actions that are taking place in order

to maintain it.

To help us identify and describe each one of the two actions, we view the linear-

quadratic term and the partial-product term as the shifting of a simpler term, as follows:

R̃′

i = R̃′

i−1 −

shifting factor
³¹¹¹¹¹·¹¹¹¹¹¹µ
r2(a−i) (s′i × S ′i−1 ∣0 ∣ s′i )

linear-quadratic term
(simplified)

+

shifting factor
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
ra−i−12−2Z bi+1A

partial-product term
(simplified)

(2.25)

Guided by this distinction, we can see that the lower end of either term is positioned

at a different, yet iteration-dependent position (dictated by r2(a−i) and ra−i−12−2Z).

2.5.1 A recurrence relation for updating S ′

Speaking of S ′, we pay the reader’s attention to the bare result S ′i−1 in the expression

for updating the remainder, which is an amount introduced in subsection 2.3.5 on page 20

(in the part entitled Combining the linear and the quadratic terms).

As a reminder, the bare result (2.8) was defined as the “bare integer that results from

combining all the result digits determined so far in the algorithm”, which is an amount

easily formed digitally by feeding the newly-elected digits s′i to a shift register(10):

S ′i = rS ′i−1 + s′i

Not only that maintaining S ′ instead of the actual result S ′ will result in a simpler

implementation, it will also supply this value for the update of the remainder, while not

compromising the ease by which the final result Sfinal is obtained.

(10) Note that while this is true for an irredundant newly-elected digit s′i (a one in the set {0,⋯, r − 1},
comprising exactly m bits), this is not exactly the case with a redundant digit set of the form {−α,⋯, β}.
This will be one of the topics discussed in Chapter 4: Hardware Design.
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To obtain the final result Sfinal, we shift the final bare result S ′n∗+δ−1 to the right by

mb bits to get rid of the excess bits (Fig. 2.9), then we reposition the lower end of this

quantity at the final position, which is a − n, through multiplying by ra−n:

Sfinal = ra−n2mbS ′n∗+δ−1

A nice property of the bare result is that it naturally discards the Z-bit-long preamble,

which is evident in the expression above through the absence of any mention of Z.

2.5.2 A recurrence relation for updating R̃′

Now we get to the difficult part of the quest of this section, which is to find a recurrent

(i.e. an iteration-independent) way of implementing (2.25).

The problem of updating the remainder in (2.25) is typical of the digit-recurrence

algorithms, where to avoid subtracting a quantity from an iteration-dependent position,

we change the location of the binary point between iterations, while matching the pace

of the subtracted term, resulting in a fixed relative position (Fig. 2.10).

Figure 2.10: A scenario in which the lower end of the added/subtracted term is changed by two
digit positions per iteration. The situation can be simplified by applying a double left shift to the
base amount per iteration, resulting in a fixed relative position of the added/subtracted term.

Hence, the basic technique is to substitute a scale-changing quantity for R̃′

i, while

shifting the contents of the new variable between iterations. This will simplify the loop’s

body by making it iteration-independent.

Unfortunately, applying this technique to the fused algorithm is made cumbersome

by the partial-product term, which has a different pace from that of the linear-quadratic

term (which is the only term in a pure square-root algorithm).
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Namely, the lower end of the partial-product term changes position by one digit per

iteration, whereas the lower end of the linear-quadratic term changes position by two

digits per iteration.

Figure 2.11: A modified scenario in which two terms are being added/subtracted per iteration,
with the lower end of the first term changing position by two digits per iteration, and the lower
end of the second term changing position by one digit per iteration. The situation can still be
simplified by applying a double left shift per iteration, which will make the relative position of
the first term fixed. As for the second term, on the other hand, we need to add/subtract it at
an increasing lower-end position, to cancel one of the two left shifts applied to the base amount,
thus meeting the required pace of one digit position per iteration.

To deal with this mismatch of pace between the two terms (Fig. 2.11), we propose

the shifted multiplicand A←i as a container-type variable whose function is to effectively

cancel one of the two left shifts applied to the remainder in every iteration, to ensure that

the actual multiplicand A within of A←i will experience a single right shift per iteration:

A←0 = A

A←i = rA←i−1

which implies that:

A←j
def= rjA (2.26)

Note that as the case is with most of the other variables, the i’th shifted multiplicand

A←i is the one computed, not consumed, in the i’th iteration.

This means that to deploy this new variable in the algorithm’s loop, we need to insert
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the shifted multiplicand computed by the previous iteration A←i−1:

A←i−1 = ri−1A

⇒ A← r−i+1A←i−1

By substituting this into (2.25) we get:

R̃′

i = R̃′

i−1 − r2a−2i (s′i × S ′i−1 ∣0 ∣ s′i ) + ra−2i2−2Zbi+1A
←

i−1 (2.27)

Note that the shifting factor of either term has the same pace now (dictated by r−2i),

which is two digit positions per iteration.

This leads us to the point of applying the remainder-rescaling technique of Fig. 2.10.

To do this, we introduce the residual Wi as a variant of R̃′

i in which the binary point

is moved to the right by two digit positions per iteration:

Wj
def= r2jR̃′

j (2.28)

⇒ R̃′

i ← r−2iWi

⇒ R̃′

i−1 ← r−2iWi−1r
2

By substituting this into (2.27) we get:

r−2iWi =← r−2iWi−1r
2 − r2a−2i (s′i × S ′i−1 ∣0 ∣ s′i ) + ra−2i2−2Zbi+1A

←

i−1

where, by canceling the common r−2i we get:

Wi = r2Wi−1 − r2a (s′i × S ′i−1 ∣0 ∣ s′i ) + ra2−2Zbi+1A
←

i−1 (2.29)

Note that according to the definitions in (2.26) and (2.28), both of A←0 and W0 are

to be assigned the same values as A and R̃′

0, respectively.

As for restoring the actual remainder from the last residual, we substitute W for R̃′
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in right side of the line for obtaining Rfinal in (2.24):

Rfinal = 22ZR̃′

n∗+δ−1 R̃′

n∗+δ−1 ← r−2(n∗+δ−1)Wn∗+δ−1

Rfinal = r−2(n∗+δ−1)22ZWn∗+δ−1

2.5.3 Putting it all together

By putting the above together, we get the following, now named the digit-recurrence

multiplication/square-root algorithm(11):

(11) Note that this algorithm is different from what is commonly known as the digit-recurrence algorithm
due to the author’s choice of moving the radix point of the residual by two digit positions per iteration.
This deviation from classical theory is discussed at the end of Chapter 5: Results and Discussion.
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S ′0 = 0

W0 = b1ra−12−2ZA

A←0 = A

(2.30)

1 ⩽ i ⩽ n∗+ δ − 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S ′i = rS ′i−1 + s′i

Wi = r2Wi−1 − r2a (s′i × S ′i−1 ∣0 ∣ s′i ) + ra2−2Zbi+1A
←

i−1

A←i = rA←i−1

Sfinal = ra−n2mbS ′n∗+δ−1

Rfinal = r−2(n∗+δ−1)22ZWn∗+δ−1

where:

m∶ number of result bits retired in every iteration

r∶ the radix (equals 2m)

A∶ the multiplicand

bj ∶ j’th digit of the multiplier B

Z ∶ the number of zero bits in the preamble of S ′

n∶ number of m-bit digits in Sfinal

n∗∶ number of fused-operation iterations (2.23)

δ∶ first iteration of the fused operation (2.20)

mb∶ the excess bits in (2.22)

The algorithm revolves around maintaining three registers, to hold S ′i, Wi, and A←i .
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Chapter 3

SRT Table Design

In this chapter, we will cover the theory and techniques needed for obtaining the result

digits s′i in every iteration of the fused multiplication/square-root algorithm (2.30).

Furthermore, we will introduce the ®-based platform created as part of

this research to explore the SRT-table design space, resulting in the system parameters

leading to the most efficient design of the table. As will be shown later in this chapter,

this platform implements a number of intriguing features that make searching for optimal

designs exciting and fun.

The organization of this chapter is as follows: in section 3.1, we start by finding

a recurrent form of the correctness constraint, which was intentionally omitted from

the algorithmic description in (2.30), then, in section 3.2, we go over the body of ideas

underlying the design of the SRT table (while highlighting features in the ®-

based platform in asterisk-marked subsections), before we address the desire to share

the SRT table with a fused multiplication/division unit in section 3.3. Then, in section

3.4, we discuss how to generate the actual contents of the SRT table, with a complete

example for a maximally redundant, radix-4 system (featuring a shared table).

Last but not least, in section 3.5, we discuss the software organization and the de-

sign cycle dictated by our ®-based platform, while presenting some of the

interesting system configurations that can be explored using this platform.

Note that throughout this chapter, subsections dedicated to highlighting features in
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the software platform (possibly with code snippets and detailed explanations on how

the code works), are marked with an asterisk to reflect the rather-practical nature of

these subsections, and the fact that they might require some prerequisite knowledge in

® code, which is not otherwise assumed on the part of the reader.

3.1 A Recurrent Selection Criterion

In the digit-recurrence algorithms, m-bit fragments of the final result are sequentially

revealed, which are used to update the indirect-error value stored in the remainder.

Each one of the m-bit fragments is called a digit, while the expression used to attune

the remainder to the last digit choice is known as the recurrence relation.

The goal of digit selection is hence to find a value for the next result digit that keeps

the remainder bounded, using a priori knowledge of the recurrence relation. This is done

by putting bounds on the value of the current remainder, as follows:

lowerbound

⎛
⎜⎜
⎝

input 2

current

result
,

output

digit

choice

⎞
⎟⎟
⎠
<

input 1

current

remainder
< upperbound

⎛
⎜⎜
⎝

input 2

current

result
,

output

digit

choice

⎞
⎟⎟
⎠

(3.1)

where the lower and the upper bounds are expressed as functions of the current result

and the next digit choice, as shown above.

This implies that the digital device responsible for digit selection will take two inputs,

one for the current remainder and one for the current result, while giving as output the

result digit choice that meets the inequality.

Unlike novel attempts such as [18] (Chapter 4: Comparison Multiples, a Different

Approach to Quotient Digit Selection), this device is prevalently implemented as a look-

up table, commonly known as the SRT table.

To allow reusing the same SRT table between iterations, which is a core assumption

of the digit-recurrence algorithms, the technical amounts advised for the inputs above
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should lead to a converging lower and upper bounds(1):

lowerbound = 2S ′i−1r
a−i(s′i − h−) + r2a−2i(s′i − h−)2 + 2−2Zr2a−ih−B

upperbound = 2S ′i−1r
a−i(s′i + h+)
r−i

+ r2a−2i(s′i + h+)2

r−2i
− 2−2Zr2a−ih+B

r−i

Note that in the long run (in later iterations of the algorithm), the value of either

bound will be mostly determined by the contribution of the first and the third terms

(subsection 2.4.2), which are seen as the dominant part of the expression:

lowerbound-dominant = 2S ′i−1r
a−i(s′i − h−) + 2−2Zr2a−ih−B

upperbound-dominant = 2S ′i−1r
a−i(s′i + h+) − 2−2Zr2a−ih+B

(3.2)

To obtain an iteration-independent form of the dominant part above, we start by

substituting the desired technical amount for the current result, then, through the choice

of the right technical amount for the current remainder, we will make sure that the

iteration dependence in the inequality in (3.1) will “mostly” get cancelled.

So let’s start by investigating the different technical amounts that can be substituted

for S ′i−1 in (3.2), which will serve as one of the inputs to the SRT table.

The bare result S ′i−1, despite being a digitally-friendly amount that is directly main-

tained by the current algorithm (2.30), has the problem of having an unbounded range

(the more digits get appended or shifted in to it, the greater the number becomes), and

hence cannot be used to address the SRT table.

This leaves us with the more-conventional amounts that signify the result, with the

choice between delayed, non-delayed, direct form, normalized-fraction form, etc.

To simplify the SRT-table design process, we opt for an amount that has a standard

range, namely, a range that is independent from system parameters such as a or Z.

This suggests that we go for the non-delayed result Si−1 (no prime) in a normalized-

(1) In this context, the word converging means “independent for the most part of i”, which doesn’t
imply that the expression be totally independent of i, only that the dominant part of it be.
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fraction form Ṡi−1 (with a dot), which is defined as follows:

Ṡj
def= 2Zr−aS ′j (3.3)

where the multiplication factors 2Z and r−a serve the purpose of canceling the dependence

on Z and a, respectively (Fig. 3.1).

Figure 3.1: An illustration of the relationship between the digits of the delayed result S ′i−1 and
the digits of the fractional result Ṡi−1.

To substitute the fractional result Ṡi−1 for S ′i−1 in (3.2), we apply:

S ′i−1 ← 2−ZraṠi−1

to get:

lowerbound-dominant = 2Ṡi−1r
2a−i2−Z(s′i − h−) + 2−2Zr2a−ih−B

upperbound-dominant = 2Ṡi−1r
2a−i2−Z(s′i + h+)

r−i
− 2−2Zr2a−ih+B

r−i

where the dominant terms of either bound still have a pace of one digit position per

iteration (dictated by r−i).

This implies that a variant of the remainder in which the radix point is moved by one

digit position per iteration is needed to mostly cancel the i-dependence in (3.1), leading

to converging bounds that can be used as the basis of an all-iteration SRT table.

This is in contrast with the residual W directly maintained by the algorithm (2.30),

which has a pace of two digit positions per iteration (2.28).
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For this purpose, we introduce a new amount, which we call the half-pace residual Y :

Yj
def= rjR̃′

j (3.4)

⇒ R̃′

i−1 ← r−iYi−1r

By substituting the new amounts (Yi−1 and Ṡi−1) for R̃′

i−1 and S ′i−1 in the correctness

criterion on page 39, we get the following:

2

=2−ZraṠi−1

S ′i−1 r
a−i(s′i − h−)

+r2a−2i(s′i − h−)2

+2−2Zr2a−ih−B

< R̃′

i−1

=r−iYi−1r

<
2

=2−ZraṠi−1

S ′i−1 r
a−i(s′i + h+)

+r2a−2i(s′i + h+)2

−2−2Zr2a−ih+B

2Ṡi−1r
2ar−i2−Z(s′i − h−)

+r2a−ir−i(s′i − h−)2

+2−2Zr2ar−ih−B

< r−iYi−1r <

2Ṡi−1r
2ar−i2−Z(s′i + h+)

+r2a−ir−i(s′i + h+)2

−2−2Zr2ar−ih+B

This inequality can be simplified by applying the following algebraic transformations:

canceling the common r−i, multiplying by 2Z , and transferring 22a to the middle part.

This results in the following, recurrent form of the correctness criterion:

2Ṡi−1(s′i − h−) + 2−Zh−B

+2Zr−i(s′i − h−)2
< r−2a2Z(rYi−1)

Pi−1

<
2Ṡi−1(s′i + h+) − 2−Zh+B

+2Zr−i(s′i + h+)2
(3.5)

where the lower and upper bounds are now mostly-independent of i, with a diminishing

contribution of the lower term on both sides, which is the only part of this inequality

that is iteration-dependent (due to the factor r−i).

Note that the middle part can be rewritten as Pi−1
(2), which is known as the selection

remainder, for being the technical form of the remainder that is used for digit selection.

(2) with Pj implicitly defined as r−2a2Z(rYj).
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3.2 The P -Ṡ Plane

An SRT table based on the criterion in (3.5) will have two inputs: Ṡi−1 and Pi−1,

where the set of all the different combinations of the two inputs can be conveniently

viewed as a 2-dimensional plane, referred to as the P -Ṡ plane.

Since Ṡ is designed to have a standard range, it is more intuitive to use the x-axis

to convey the value of this input, rather than the other way around. This results in a

diagram equivalent to the P -D diagram in the case of division, which we refer to as the

P -Ṡ diagram:

In the P -Ṡ diagram, the vertical area enclosed between the upper and the lower

lines of (3.5) is known as the selection region, where many such selection regions can be

plotted for each possible choice of the next result digit s′i
(3):

3.2.1 Feasibility

As the value of P goes up and down, it passes from the area eligible for one of the

digit choices to another, where, depending on the nature of that transition, three different

feasibility categories can be defined.

Specifically, if P passed one of the selection regions to an area not eligible for any

of the digit choices, which corresponds to the different selection regions having gaps in-

between, then we are in front of an infeasible system in which the digit-selection task is

impossible for some of the legitimate P/Ṡ combinations.

(3) Remember that s′i ∈ {−α,⋯,+β}.
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(a) Infeasible system (b) Impractical system (c) Practical system

Figure 3.2: Three feasibility categories

If P , on the other hand, passed one of the selection regions to another, with little to

no “overlap” in-between, then we are in front of a feasible, yet impractical system. This

is because, even though there is always a valid choice for the next result digit, arriving at

that choice might require the participation of all the bits of P and Ṡ, making the system

unviable from a practical point of view.

This leaves us with the practical case where the selection regions succeed in covering

the entire useable area of the plane while also providing a considerable overlap in-between,

which corresponds to areas where more than one digit choice is valid. These so-called

overlap regions will provide us with just enough tolerance to introduce some uncertainty

in P and Ṡ, through the use of truncated samples (denoted as P̂ and Ŝ, respectively(4)).

A natural question at this point would be the question of how to change the category

of the system or, the question of the system parameters that play a role in the system

being feasible, impractical, or practical (which is the desired category), in Fig. 3.2.

This question translates to finding the parameters that increase the height of the

selection regions and consequently, contribute to the existence or the height of the overlap

regions, where increasing the height of the selection regions corresponds to increasing the

value of the upper bound, decreasing the value of the lower bound, or both:

2Ṡi−1(s′i − h−) + 2−Zh−B

+2Zr−i(s′i − h−)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
the lower bound

< Pi−1 <
2Ṡi−1(s′i + h+) − 2−Zh+B

+2Zr−i(s′i + h+)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
the upper bound

(3.6)

(4) Note that Ŝ is used to refer to the truncated fractional result, instead of the more elaborate abbre-

viation as ˆ̇
S. This is mainly to simplify the notation.
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One factor that accomplishes both is the range of the result digit set {−α,⋯,+β},

where a wider range (i.e. higher values for α and β) increases the value of h− and h+,

thus increasing the height of the selection regions through the double act of pushing the

upper bound higher and the lower bound lower.

Another system parameter that plays a similar role is the Z parameter, which denotes

the offset in the execution between multiplication and the square root.

Namely, by opting for a more efficient integration of multiplication (a smaller value

of Z), we are going to impact the height of the selection regions (and that of the overlap

regions, thereof) negatively (through the terms +2−Zh−B and −2−Zh+B)(5).

3.2.2 Comparison constants

As mentioned earlier, practical systems use the overlap regions to absorb the amount

of uncertainty associated with a truncated remainder P̂ and a truncated result Ŝ, which

are the inputs seen by the digit-selection device (i.e. the SRT table).

Note that P̂ and Ŝ are obtained from P and Ṡ by truncating the latter amounts to

nP and nS fractional bits, respectively.

Unlike the non-truncated amounts, truncated inputs correspond to a range of (rather

than only one) possible values, where a pair of truncated inputs maps to a rectangle in

the P -Ṡ diagram, occasionally known as the uncertainty rectangle:

Consequently, for there to be a valid digit-selection outcome associated with a pair

of truncated inputs {P̂ , Ŝ}, it’s required that the corresponding uncertainty rectangle be

entirely within the selection region associated with that outcome.

(5) Hence, choosing the Z parameter is a compromise between the wish for a more efficient integration
of multiplication with the base operation, while still providing enough overlap between the selection
regions.
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Furthermore, as the entire P -Ṡ plane is now navigated through truncated values of

P and Ṡ, this defines how the height of the overlap regions is to be determined, in terms

of the region’s effective height (Fig. 3.3).

Figure 3.3: The effective height of the overlap region at different values of Ŝ. Note that the steps
ulp(P̂ ) and ulp(Ŝ) are equal to 2−nP and 2−nS , respectively.

This implies that the overlap region’s effective height can be zero when there is in

fact a bit of an overlap between the selection regions, furthermore, it implies that the

overlap region might be effectively nonexistent, even when it actually exists (Fig. 3.4).

To alter the effective geometry of the overlap regions, that is, to make an effectively-

nonexistent region exist or increase the effective height, the dotted lines above has to be

brought closer by reducing the ulp of P̂ , Ŝ, or both, which corresponds to truncating

fewer bits of P or Ṡ (i.e. a higher value for nP or nS).

The reason that makes the effective geometry of the overlap regions so important for

the design of the SRT table is the fact that such areas mark the values of P̂ associated

(a) Effectively zero-thin overlap region (b) Effectively nonexistent overlap region

Figure 3.4: Effect of quantization on the geometry of the overlap regions.

54



with a transition from one of the digit choices to another, which are known as the

comparison constants.

Namely, for each possible value of the truncated result Ŝ there exists α+β comparison

constants associated with the digit choices from −α + 1 to +β, where the digit choice is

based on the highest constant (for that value of Ŝ) that is exceeded or equalled by the

value of P̂ (Fig. 3.5).

Note that if non of the comparison constants were exceeded or equalled by the value

of P̂ , then the lowest digit choice −α is given as the output, which is why only α + β

constants are needed for making a choice between α + β + 1 digit values.

Figure 3.5: A depiction of the comparison constants. Note that 4 constants are needed to make
a choice between 5 possible digit values from -1 to +3. Also note that a similar set of comparison
constants would be needed for every possible value of the truncated result Ŝ.

COMPUTING THE EFFECTIVE GEOMETRY*

This is the first of a number of subsections that are dedicated to explaining how

the ®-based platform developed as part of this research accomplishes some

of the theoretical tasks outlined elsewhere.

In this subsection, we will explain how to compute the overlap region’s effective

geometry, which is done starting from the continuous selection region’s lower/upper-

bound function, named delta (3.6):

delta ∶= 2X × digit + 2Zradix−iterationdigit2 − 2−ZB̀ redundancỳ factor

Note that the variable X above conveys the value of the current result S ′i−1 or in
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the case of sharing the SRT table with division, can also be used to convey half the

value of the divisor (more on this in section 3.3).

As for the variable digit, it will be used to convey either (s′i − h−) or (s′i + h+),

depending on whether the substitution occurs in the lower or the upper bound of the

selection region. In the same way, the variable B̀ redundancỳ factor will be used to

denote either h−B or h+B, depending on the context.

Starting from this function, the effective geometry is computed in two steps: by

putting the quantization of Ṡ (X above) into effect first, then putting the quantization

of P (represented by the value of the whole expression above) into effect second.

To do this, we create a list of the lower and upper lines enclosing the α+β overlap

regions in the P -Ṡ diagram:

overlap`lines=Table[{

delta /. {digit→(i−h−),B`redundancy`factor→−h−B },

delta /. {digit→((i−1)+h+),B`redundancy`factor→+h+B }

},{i,−α+1,+β}]

where, as you can see, the i’th overlap region is enclosed between the lower bound of

the i’th selection region and the upper bound of the i − 1’th selection region.

To move a step forward from this point, we put the quantization of X (the truncated

result) into effect by duplicating this set of lines for every potential value of X within

its range, while substituting the continuous upper and lower lines with a worst-case

lower and upper values, dictated by the intervals associated with each one of the

possible X values (a list of such intervals is stored in xintervals below):

56



intervals=Join@@Outer[

({

Max[

#2[[1]]/.{iteration→#1[[2]],X→#1[[1,1]]},

#2[[1]]/.{iteration→#1[[2]],X→#1[[1,2]]}

],

Min[

#2[[2]]/.{iteration→#1[[2]],X→#1[[1,1]]},

#2[[2]]/.{iteration→#1[[2]],X→#1[[1,2]]}

]

})&,

MapThread[List,{xintervals,xintervals`iteration}],

overlap`lines,

1];

Note that not only this would result in an overlap region (now more properly called

an interval) for every s′i/Ŝ combination, the set is also duplicated for all the iterations

of the algorithm, since the iteration number plays a role in determining the value of

the delta expression above (more on this in subsection 3.2.3).

From this point on, it is easy to put the quantization of P into effect by dividing

the overlap-interval endpoints by the ulp of P̂ , which is 2−nP :

intervals̀ gridsteps = intervals/.{lower ,upper }→ {lower
2−n`p

,
upper

2−n`p
};

then, flooring (↓) the upper and ceiling (↑) the lower endpoints of the intervals, to find

the truncated values less than the upper, and greater than the lower grid-step values.

Note that if we used the ®-provided functions Floor and Ceiling for

this purpose, then we might end up with an upper or a lower endpoint equal to those

of the grid-step intervals above, which would violate the strictly-less-that (<) and the

strictly-greater-that (>) operators of the correctness criterion in (3.6).

To deal with this delicate problem, we define our own conservative edition of both

functions, as follows:
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ConserCeiling[number ]∶=(Ceiling[number]+Boole[IntegerQ[number]]);

ConserFloor[number ]∶=(Floor[number]−Boole[IntegerQ[number]]]);

where the original ceiling is conditionally incremented by one, and the original floor

is conditionally decremented by one, to account for the case when the endpoint is

already an exact multiple of ulp(P̂ ).

Note that before these routines are applied to either endpoint of the intervals, the

intervals are intersected to account for all the iterations of the algorithm, for custom

interval mappings, or for a symmetric table (more on the topic of intersecting intervals

in subsection 3.2.3).

3.2.3 Iteration dependence

In the asterisk-marked section COMPUTING THE EFFECTIVE GEOMETRY*, we mentioned

that many overlap intervals are computed for the same next result digit s′i and truncated

result Ŝ combination, for the different iterations of the algorithm, which is due to the

iteration-dependent term 2Zradix−iterationdigit in delta.

As you might remember, we started this chapter by attempting to find a converging

form of the lower and the upper bounds of the correctness constraint, which resulted in

the current form of the delta expression.

It was mentioned that the attempt was not to make the expression iteration-independent,

but to make the contribution of the iteration number i minor to the overall value of the

expression, which was achieved by substituting a variant of the half-pace residual Y for

the selection remainder P in the correctness constraint (page 50).

One property of the current contribution of i to the lower and the upper lines of the

overlap regions is that it is of a diminishing nature (due to radix−iteration), where only

the first few iterations (called the early iterations) would be significantly affected by this

contribution.

Note that in the fused algorithm, this corresponds to the few iterations starting from,

and following the δ’th iteration (page 37).

For this reason, designers have classically took the route of trying to provide the result
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digits during these early iteration through other means, such as a separate look-up table

(which is to be indexed by the few most-significant bits of the radicand). This look-

up table is sometimes called the initial PLA [11] [13] [17] [27], which was occasionally

escaped by opting for a smart initialization scheme [16], or through a combination of

techniques —in the influential work in [8].

In this thesis, we will take the latter route of applying a number of techniques which,

along with a special initialization scheme, will eliminate the need for an initial PLA(6).

In fact, many of the intriguing features in the ®-based platform of this thesis

are mere extension of the powerful ideas present in [8].

INTERSECTING THE INTERVALS*

To merge all the overlap intervals associated with one s′i/Ŝ combination, in prepa-

ration to quantizing the interval, and choosing a value for the comparison constant

associated with it, we apply a simple technique that we call intersecting the intervals.

This technique is illustrated in the figure below, where all the intervals associated

with one s′i/Ŝ combination (called the relevant̀ intervals in the code) are inter-

sected by finding the maximum lower endpoint, and the minimum upper endpoint.

This results in a worst-case interval that is valid for all iterations of the algorithm(7).

(6) Note that despite of this work not suggesting the use of an initial PLA, it does require a custom device
called the First-Digit Selector, to deal with the extended Ṡ range in the fused multiplication/square-root
unit. This is the topic of section 4.2 on Chapter 4.

(7)Note that despite of the iteration i = δ being included in the figure, the suggested architecture of this
thesis will in fact advocate the use of a First-Digit Selector to provide the digit selection at this iteration,
which implies that the selection intervals associated with the δ’th iteration can be dropped from the SRT
table design process.
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Hence, if a comparison constant was selected from within this intersected interval,

it will be valid for all iterations of the algorithm.

The dynamic ® line that performs this task is the following:

intersected`interval∶=Which[

relevant`intervals!={},

{ConserCeiling[Max[(Transpose@relevant`intervals)[[1]]]],

ConserFloor[Min[(Transpose@relevant`intervals)[[2]]]]},True,{}];

Note that the line uses delayed assignment (∶=), which is essential for the code in-

teractive abilities (in case we forgot to mention, the platform has interactive functions

where you can alter the intervals in some way, and watch the results instantly).

Note also the use of the conservative floor and the conservative ceiling functions,

which were documented earlier in the asterisk-marked section in 3.2.2.

It’s important to mention at this point that collapsing the intervals in this fashion

is not enough to result in feasible intervals (i.e. intervals from which a valid comparison

constant can be chosen). In fact, what is needed is a good plan for excluding some of

the problematic (and unnecessary) intervals originating in the early iterations of the

square root, which will be the subject of subsection 3.2.5.

Note that the technique of intersecting the intervals is a versatile one, which can

be used not only to eliminate the iteration dependence, but also to design a symmetric

table where negative values of P̂ are negated prior to using them to index the table,

resulting in a half-sized table. Another utilization of this technique is the deployment

of custom mappings, where both topics are discussed in subsections 3.2.6 and 3.2.7,

respectively, and are considered advanced topics.

3.2.4 Determination of the constants

In this subsection, we will discuss the overlap region’s effective-height requirements

leading to the existence of all the α + β comparison constants (for each of the possible

values of the truncated fractional result Ŝ).

Note that if these minimum heights were not met by any of the overlap regions in the

P -Ṡ diagram, then the comparison constant associated with that overlap region would
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not exist, implying an infeasible SRT table.

To fix this problem, we have the choice between: (1) increasing the amount of overlap,

by adding more digit values to the result’s digits set(8), or (2) enhancing the overlap

regions’ effective geometry through an increased value of nP , nS , or both.

Note that for any of the comparison constants to exist, it’s required that:

1. The range of values associated with P̂ when equal to the constant be entirely within

the selection region implied by it.

2. The range of values associated with P̂ when equal to the truncated value preceding

the value of the constant be entirely within the lower selection region.

Hence, the question of the minimum overlap region’s effective height is closely coupled

with the question of the range of values (i.e. the domain) associated with the different

values of P̂ , which, in turn, is a function of the internal representation of P (Fig. 3.6).

By constructing theoretical, minimal-height overlap regions for each one of the three

representations in Fig. 3.6, we reach the minimum height requirement of 0, ulp(P̂ ), and

ulp(P̂ ) for an irredundant (9), carry-save, and a signed-bit representations (Fig. 3.7).

In a similar way, we can obtain the codomain for choosing the comparison constants,

by constructing theoretical, maximal-height overlap regions for each one of the three

cases. This results in the codomains of Fig. 3.8.

(8) If in need, revise the last few paragraphs of subsection 3.2.1.
(9) An irredundant format is nothing but the number represented in bits, as one binary word.

(a) Irredundant (b) Carry-save format,
carry/sum components
truncated, then added.

(c) Signed-bit format, +/-
tive words truncated, then
subtracted.

Figure 3.6: The effect of the internal representation of P on the truncation intervals. Note that
in the case of the carry-save and the signed-bit representations, both components are truncated
to nP fractional bits before being added/subtracted.
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(a) Irredundant (b) Carry-save

(c) Signed-bit

Figure 3.7: The minimum overlap region’s effective height for different representations of P .

(a) Irredundant (b) Carry-save (c) Signed-bit

Figure 3.8: The target set for the comparison constants depending on the internal representation
of P . Note that the uppermost value within the effective height is excluded in the case of a
carry-save P , while the lowermost value is excluded in the case of a signed-bit one.
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SMART CHOICE OF THE COMPARISON CONSTANTS*

Now that we have arrived at the target set for choosing the comparison constants,

a legitimate question is whether there exists a more or a less judicious way of choosing

the constants within their assigned codomain, and whether it would make a difference.

Our answer to this is the smart choice feature, which aims at finding the value of

the comparison constant that features the least number of bits.

This is done by constructing a list of all the possible values of the constant within its

codomain, converting them to a binary representation, and then sorting the candidates

by bit length. After that, any of the shortest-length values is chosen, by assigning the

value of the constant to the first value in the sorted list.

This is very easily done in ® script, as follows:

smart̀ choice[codomain ] ∶=

FromDigits[First[SortBy[RealDigits[

codomain,2], (Length[#[[1]]] − #[[2]])&]],2];

Note that the RealDigits function returns binary numbers in the following format:

{{list of bits}, number of integral bits}

So what the code above does is that it sorts a list of binary numbers (in the above

format) using the criterion (Length[#[[1]]] − #[[2]]), which subtracts the number of

integral bits (the second component of each converted number) from the total number

of bits (the length of the first component, which is a list of bits). This results in the

potential constant values being sorted in the order of increased fractional-bit count.

After that, the first element is picked up (using the First function) and converted

back from binary to normal (using the FromDigits function).

To generate the codomain from a lower endpoint codomaiǹ lower, an upper end-

point codomaiǹ upper, and a value of ulp(P ) of 2−nP , we can use the Range function:

Range[codomaiǹ lower,codomaiǹ upper,2−nP]

63



Example 1: Assuming a codomain of {57
16
, 67
16

} and a step (i.e. a P ’s ulp) of 1
16

,

we get the smart choice of 4., which has no fractional bits at all.

Example 2: Using a tighter codomain of {49
16
, 55
16

} and the same step, we can still

get a good smart choice of 13
4

, which has only two fractional bits.

SMART-CONSTANT BIT RESOLUTION*

Assuming that the smart-choice algorithm was applied to all the collapsed overlap

regions of the P -Ṡ diagram, then there is a good chance that we might end up with

a set of constants that has a maximum fractional-bit count less than nP , which is the

interesting phenomenon that we wish to discuss here.

This number, known in the code as smart̀ constant̀ bits, is computed as follows:

smart̀ constant̀ bits ∶= −Log[2,GCD@@Join@@smart̀ constants];

In brief: the smart constant matrix is converted to a one-dimensional list through

the application of the Join function, then, the Greatest Common Divisor is found

using the GCD function, which returns the greatest ulp shared by all the constants.

After that, the binary logarithm is found and negated (which is equivalent to finding

the logarithm of the reciprocal).

For example, assuming we had the following set of comparison constants:

{11
4
,
13

4
,4,

9

2
,
3

2
,2,2,3,

1

2
,1,1,1}

then the previous expression would evaluate to 2, which means that two fractional

bits are sufficient to represent any of these constants.

(note that nP was equal to 4 in this case)

This implies that only 2 fractional bits would be needed to compare P̂ against

each one of the constants, resulting in the correct choice of s′i.

Yet, in an SRT-table-based system, no actual comparisons take place, rather, the

table is indexed using the truncated pair {P̂ , Ŝ}, which returns the final outcome of

the comparisons, stored as a static value in the table. Hence, the above translates to
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reducing the number of fractional bits used in indexing the table from the original nP

to this reduced number, denoted as nP smart.

In the example above, a 75% reduction in the size of the SRT table can be achieved

by reducing the number of fractional input bits from 4 to 2, which is significant saving.

Note that despite the reduction in the SRT-table size possible by smartly choosing

the constants, the ulp of the truncated remainder P̂ is still assumed to be equal to

2−nP , which is used in the error calculations.

This means that in the case of a two-word representation of the remainder P (e.g. a

cary-save or a signed-bit representation), the two words are still assumed to be both

truncated to nP fractional bits (rather than nP smart bits), then added/subtracted in

this truncated accuracy, using an appropriately-sized adder/subtractor.

3.2.5 Evolving precision of Ṡ (Advanced)

Unlike the divisor D in the case of division (which is the amount used to index the

table beside the remainder), the fractional result Ṡi−1 has an interesting property which

is that it’s continuously evolving in accuracy.

Namely, as one more digit gets appended to the result in every iteration, the number

of different values associated with it increases.

In the fused algorithm, the current result S ′i−1 would have already accumulated i − 1

digits or m(i−1) bits, Z of which are zeros. This implies m(i−1)−Z actual result bits in

the i’th iteration, which is a positive number for iterations starting from, and following

the (δ + 1)’th iteration(10).

Speaking of the fractional result Ṡi−1, having this variable number of fractional bits

implies a decreasing ulp:

ulp(Ṡi−1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 for i ⩽ δ

2−m(i−1)+Z for i > δ

This has a number of consequences. Specifically, in iterations where the number of

(10) Note that even though the first actual result digit is produced in the δ’th iteration, this digit is not
a part of the current result S ′i−1 until the (δ − 1)’th iteration.

65



result bits is still less than or equal to nS , the SRT table will be addressed using the

exact result value. This means that the input Ŝ in these iterations will be associated

with only one, rather than a range of possible values.

Furthermore, in iterations where the number of fractional result bits is strictly less

than nS , the number of values that can be possessed by Ŝ is limited, due to Ṡi−1 having

a ulp greater than 2−nS

Both observations can help optimize the overlap intervals injected by these, otherwise-

problematic early iterations, which is one of the main techniques deployed in [8] (and

followed here) to reduce the need for an initial PLA(11).

To ease referring to these iterations, we will define σ in a way similar to δ, as the

first iteration in which more than nS result bits are produced (Fig. 3.9).

It follows from the definition of σ that it would also be the last iteration in which

the current result’s fractional bits will be less than or equal to nS .

Hence, the situation in the early iterations can be summarized as follows:

δ < i ⩽ σ ∶
Ṡ ∈ [Ŝ, Ŝ]

Ŝ = k × 2−m(i−1)+Z where k ∈ Integers

As for the iterations following the σ’s iteration, which we call the late iterations,

knowledge of the changing ulp can still help refine the truncation intervals associated

(11) Remember that we’re still advocating the use of some first-digit selection mechanism, in the final
architecture in Chapter 4.

Figure 3.9: Illustration of preliminary, early, and late iterations, using the δ and the σ parameters.
Note that the early iterations are highlighted.
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with different values of Ŝ, as follows:

i > σ ∶
Ṡ ∈ [Ŝ, Ŝ + 2−nS − 2−m(i−1)+Z]

Ŝ = k × 2−nS

Excluding impossible digit choices

An interesting implication of passing an exact result value in the early iterations is

the fact that some digit choices, at the boundaries of the fractional result’s standard

range, will be deemed impossible.

For example, if Ṡ had a standard range of [1
2 ,1), which is usually the case(12), then

negative digit values cannot be returned when Ṡ is exactly 1
2 , as this would push the

result outside its range, which is known to be impossible. In the same way, positive digit

values (except zero) cannot be returned when Ṡ is exactly 1, for the same reason.

Note that as Ŝ turns into an approximation (in iterations following σ), this reasoning

stops to hold since a negative digit value might be needed to correct a result in the range

[1
2 ,

1
2 + 2−nS), by bringing it closer to 1

2 , but without necessarily pushing it outside its

designated range, and vice versa.

Unfortunately, due to the result’s extended range in the fused multiplication/square-

root case, this technique is inapplicable at the lower end of the indexing range [1
2 ,1).

Yet, it is still possible to exclude digit choices at the (δ+1)’th iteration through a special

design of the First-Digit Selector (this is the subject of subsection 4.2.6 on page 98).

(12) More on this in section 4.2.
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INTERVAL-INCLUSION ARRAY*

For every digit choice s′i and a truncated result Ŝ combination, the ®

platform computes a number of overlap intervals:

1. (σ − δ) intervals for each one of the early iterations,

2. A single interval for all the following (i.e. late) iterations(13).

These intervals are computed prior to the interactive operation, and hence cannot

be altered dynamically after executing the script.

However, the code associates a binary flag with each one of these intervals, which

conveys the user’s wish either to include, or to exclude that particular interval from

the final comparison-constant computations.

Namely, including or excluding an interval is as easy as checking or unchecking

the checkbox next to it in the interactive, designer cell interface (Fig. 3.10).

Once you check or uncheck an interval, the final interval affected by it (the one in

curly braces underneath) is updated instantly, with an exclamation mark � fnext to

it to indicte that the minimum-height requirements were not met by the interval, or

an asterisk to indicate that the final interval was effectively nonexistent (page 54).

Note that this feature, which we call the interval inclusion feature, is used to auto-

matically exclude the impossible digit choices, using the following logical test which is

used to assign False to selected elements of the inclusion array intervals̀ inclusion:

intervals`inclusion[[Join @@ Position[

labels, {digit_, index_, iteration_} /;

(iteration <= σ ∧ index == 1 ∨

digit < 0)]]] = False;

];

(13)This interval is obtained by intersecting the intervals associated with all the following iterations,
using the interval-intersecting technique on page 59.
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Figure 3.10: The interactive, designer cell interface of the ® platform.
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3.2.6 Unsigned SRT table (Advanced)

Unlike the case of division, where the selection regions in the negative half exhibit a

clear symmetry with those in the positive half, this so-called symmetry is disturbed in

the case of the square root by the terms 2Zr−i(s′i ± h±B)2 in (3.6).

Yet, it’s still possible to combine the overlap regions in the negative half of the P -Ṡ

diagram with their equivalents in the positive half, through the mechanism of intersecting

the intervals (page 59).

This, if led to feasible final intervals, will allow us to cut the size of the SRT table in

half, by storing only the digit-selection information corresponding to the positive half of

the P -Ṡ diagram.

As for negative values of the remainder, which no longer have digit-selection informa-

tion associated with them, they are first mapped to the positive half of the P -Ṡ plane by

the act of negation, then used to address the table. Note that in this case, the resulting

digit has also to be negated.

For this scheme to work, it is required that the upper and lower lines of the negative

overlap regions be negated and swapped, since the lower line will become an upper line,

and the upper line will become a lower line (Fig. 3.11).

Figure 3.11: Folding the overlap regions into the positive half of the P -Ṡ diagram resulting in
combined, unsigned overlap regions.

Furthermore, as shown in the figure, the overlap region delimiting the (−k)’th digit

choice from beneath will, upon negation (i.e. folding into the positive half) delimit the
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k’th digit choice from above, which means that it would (in its folded form) correspond

to the (k + 1)’th digit.

The only problem with this technique is the part of negating P before using it to

address the SRT table. This negation corresponds to finding the 2’s complement of the

number (prior to truncating it), which is an expensive, carry-propagating operation.

Luckily, in a practical system where the residual is maintained in a carry-save form,

a limited-precision addition is already needed to produce the truncated remainder input

P̂ of the table. Hence, this act of addition can be used to produce a negated copy of P̂ ,

without increasing the delay of the circuit. This comes at the expense of duplicating the

limited-precision adder as shown in Fig. 3.12.

Figure 3.12: Hardware needed for an unsigned SRT table.

As shown in the figure, deploying an unsigned SRT table incurs some extra hardware

at the input of the table, which adds to the delay of the digit-selection path due to

inverting and multiplexing the table input. Furthermore, using an unsigned SRT table

dictates that s′i will be produced in a sign-and-magnitude format.

3.2.7 Custom mappings (Advanced)

In subsection 3.2.5, we discussed ways to mitigate the negative impact of the early

iterations on the overlap regions, through a combination of techniques such as: refined

truncation intervals for the Ŝ input, a reduced target set for this input in the early
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iterations, and the exclusion of impossible digit choices at the boundaries of the result’s

standard range.

Yet, even with all those techniques, it’s still sometimes the case that the intervals

injected by one of the early iterations would seriously restrict the final overlap regions

for one of the Ŝ values.

Luckily, this situation can be fixed by manipulating the value of Ŝ before using it to

address the table, which can be seen as mapping the problematic intervals to another Ŝ

range where they would be less harmful.

Note that even though such mappings can reduce the internal complexity of the SRT

table, they do require additional combinational logic at the input, which will add to the

delay of the digit-selection path.

Figure 3.13: The mapping logic at the input of the SRT table.
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@ iteration H¥L : 3 4 ¥ , x interval H

0L : D ® x interval H0L :

Figure 3.14: A snapshot showing the custom mapping interface in the software platform.

3.3 Sharing the SRT Table with Division

As shown in section A.2 in the appendix, digit-selection in fused multiplication-

division is bound to the following correctness constraint, which accepts the selection

remainder P (an amount equivalent to the selection remainder in the case of the square
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root) and the fractional divisor Ḋ as its inputs (A.8):

Ḋ(q′i − h−) + 2−Zh−B < Pi−1 < Ḋ(q′i + h+) − 2−Zh+B (3.7)

By comparing this to the final correctness constraint in (3.6):

2Ṡi−1(s′i − h−) + 2−Zh−B

+2Zr−i(s′i − h−)2
< Pi−1 <

2Ṡi−1(s′i + h+) − 2−Zh+B

+2Zr−i(s′i + h+)2

we can see that if we drop the iteration-dependent term, then substitute Ḋ for 2Ṡi−1, we

can actually translate our correctness constraint to that of fused multiplication/division,

while noting that the next square-root digit s′i will become the next quotient digit q′i.

As for dropping the iteration-dependent term, this is equivalent to supporting an

infinite number of iterations, by evaluating the overlap regions at an infinite (∞) iteration

number (which is supported in the ® script), then intersecting these regions

with the overlap regions of all the other “actual” algorithm iterations.

This will result in the following, infinite-iteration correctness constraint:

2Ṡi−1(s′i − h−) + 2−Zh−B < Pi−1 < 2Ṡi−1(s′i + h+) − 2−Zh+B (3.8)

which is quite similar to (3.7), with the only difference being multiplying the input Ṡ/Ḋ

by two in the first term.

Namely, this correctness constraint models the operation A×B
2D rather than A×B

D , which

is the intended fused operation in the case of division.

The solution to this is simple, which is a combination of the following:

1. Passing 1
2Ḋ to the SRT table.

2. Using Ḋ in the fused recurrence rather than 1
2Ḋ to update the residual.

3. Adjusting the normalization of Ḋ to ensure that 1
2Ḋ has the same domain as Ṡ,

which is typically [1
2 ,1).
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Hence, some modifications are needed to allow the fused multiplication/division unit

to share the SRT table with a fused multiplication/square-root unit, but they are minor

modifications.

Note that the fused multiplication/division unit has obviously to be designed around

the same set of system parameters, such as the radix, the same internal digit set, the

same executional delay Z, etc.

3.3.1 Effect on nP integral

In this thesis, the SRT table designed for fused multiplication/square-root is shared

with fused multiplication/division through passing half of the divisor 1
2Ḋ to the table.

This is unlike other studies [16] in which the SRT table of division is shared with a

square-root unit by passing two times the result 2Ṡi−1.

One of the key consequences of this difference is the impact on nP integral, which is a

function of P̂max and P̂min.

Namely, due to the multiplication by 2 in the upper and lower bounds of (3.8) as

compared to (3.7), the maximum and the minimum values of the remainder input P̂ will

be doubled, dictating an increased integral bit count of one.

This should be taken into consideration when comparing the truncation pairs {nP , nS}

of fused multiplication/square-root with those associated with a fused multiplication/-

division design, by incrementing the effective nP value by one for a fair comparison.

3.4 Generating the SRT table contents

So far, we have discussed the process of obtaining the comparison constants, but

neglected what to do with these constants, or how to arrive at the actual device that

will be used for digit selection.

Unlike the arithmetic model, in which the value of P̂ is actually compared against

each one of the α+β constants for the relevant Ŝ value, to arrive at a valid digit choice,

the overwhelming majority of designs today are based on obtaining the next digit choice
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in constant time, through the use of a look-up table.

This means that a table will be created with entries for all the different P̂/Ŝ combi-

nations, given the ulp of either amount(14), then, based on the number of the Ŝ constants

equalled or exceeded by the value of P̂ , we will store a “static” value in that cell that

corresponds to the implied digit choice.

This way, the delay of enquiring the table will be independent from the criteria

underlying the production of its contents, which is the main idea.

3.4.1 A design example

Our typical example of a practical fused system in this thesis is a maximally-redundant,

radix-4 system with a Z value of 4(15), and an actual first selection iteration of 4 (rather

than 3, which is the δ’th iteration implied by these parameters).

The ability to skip the table in the δ’th iteration is achieved through another device

called the First-Digit Selector, whose design and purpose will be explored in the next

chapter. For the time being, we will just accept the fact that the table can be designed

while excluding some of the iterations that require some means of digit selection.

This system assumes an nP value of 4 fractional bits, an nS value of 4 fractional bits,

an irredundant multiplier B, an unsigned SRT table, and no mappings (Fig. 3.15).

These parameters result in the overlap intervals in Fig. 3.16, and the set of comparison

constants in the table below (remember that these constants are for an unsigned table):

Ŝ = 0.1002 Ŝ = 0.1012 Ŝ = 0.1102 Ŝ = 0.1112

∣s′i∣ = 3 11
4

7
2 4 5

∣s′i∣ = 2 3
2 2 2 3

∣s′i∣ = 1 1
2 1 1 1

Thanks to the smart choice of the comparison constants, the constants above are all

multiples of 1
4 , implying an nP smart value of 2 bits only. This results in the compact SRT

table contents in Table 3.1.

(14) Note that in case we were able to obtain an nP smart value less than nP , then we can design the table
around this increased ulp of 2−nP smart , rather than the actual ulp which is 2−nP .
(15) A theoretical lower bound on the value of Z will be derived in subsection 4.2.5 on page 97.
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Table 3.1: The SRT table contents of our maximally-redundant, radix-4 system. Note that this
SRT table is unsigned, and can also be shared with a used multiplication/division unit (i.e. has
support for a theoretical, infinite iteration).

Ŝ = 1
2 Ŝ = 5

8 Ŝ = 3
4 Ŝ = 7

8

P̂unsigned = 8 ∗ ∗ ∗ 3

P̂unsigned = 31
4 ∗ ∗ ∗ 3

P̂unsigned = 15
2 ∗ ∗ ∗ 3

P̂unsigned = 29
4 ∗ ∗ ∗ 3

P̂unsigned = 7 ∗ ∗ 3 3

P̂unsigned = 27
4 ∗ ∗ 3 3

P̂unsigned = 13
2 ∗ ∗ 3 3

P̂unsigned = 25
4 ∗ ∗ 3 3

P̂unsigned = 6 ∗ 3 3 3

P̂unsigned = 23
4 ∗ 3 3 3

P̂unsigned = 11
2 ∗ 3 3 3

P̂unsigned = 21
4 ∗ 3 3 3

P̂unsigned = 5 3 3 3 3

P̂unsigned = 19
4 3 3 3 2

P̂unsigned = 9
2 3 3 3 2

P̂unsigned = 17
4 3 3 3 2

P̂unsigned = 4 3 3 3 2

P̂unsigned = 15
4 3 3 2 2

P̂unsigned = 7
2 3 3 2 2

P̂unsigned = 13
4 3 2 2 2

P̂unsigned = 3 3 2 2 2

P̂unsigned = 11
4 3 2 2 1

P̂unsigned = 5
2 2 2 2 1

P̂unsigned = 9
4 2 2 2 1

P̂unsigned = 2 2 2 2 1

P̂unsigned = 7
4 2 1 1 1

P̂unsigned = 3
2 2 1 1 1

P̂unsigned = 5
4 1 1 1 1

P̂unsigned = 1 1 1 1 1

P̂unsigned = 3
4 1 0 0 0

P̂unsigned = 1
2 1 0 0 0

P̂unsigned = 1
4 0 0 0 0

P̂unsigned = 0 0 0 0 0
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Figure 3.15: The system-parameter view of our maximally-redundant, radix-4 system.
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Figure 3.16: The overlap intervals associated with our radix-4 system.
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3.5 The Software Platform

So far, we have used our custom, ®-based tools to design the contents of

the SRT table, without elaborating much on the organization of the tools, and how to

use them to explore the design space of the table.

The tools developed as part of this research are:

1. Selection function workbench for illustrating the selection ranges (not used for

the actual design of the table). The purpose of this tool is to help the designer

understand the effect of changing the different parameters on the overlap regions,

and identify the most helpful changes.

2. Selection function designer for designing the SRT table. This tool is composed

of three modules:

(a) The systems parameters module.

(b) The designer cell module.

(c) The look-up table generator module.

3. Exact and SRT-table solvers for demonstrating the solution process with or

without an SRT table (this primitive simulation tool is replaced in this thesis by

the C-language-based, bit-level simulator, which will be presented in Chapter 5).

Note that the first and the third scripts above have played a historical role in helping

the author gain a better understanding of the SRT algorithms. That is to say, beside

their historical role, they are not important for the results of this thesis.

The second script, on the other hand, which is composed of three different modules,

is of central importance as it comprises the main tool used in this thesis to arrive at a

set of good system parameters, and design the SRT table according to these parameters.

To explore the design space using this tool, we will follow an exploration cycle similar

to the one in Fig. 3.17. The final output of this cycle in our case is a C-code fragment

that fully characterizes the system, which can be used to conduct bit-level simulations

of the algorithm (more on this in Chapter 5).
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Figure 3.17: The design cycle dictated by the organization of the SRT-table-design platform.

3.5.1 Exploration Strategy

To find good designs, we start by choosing the radix, represented by the number of

result bits retired in every iteration m. Hence, the parameter m lies at the top of the

parameter hierarchy associated with good design-space exploration.

After determining m, we decide the digit set of the result, represented by the choice

of the parameters h+ and h−.

To test the basic feasibility of the chosen m/h+/h− configuration, we compute the

overlap intervals using an irredundant multiplier B (B+ = r − 1,B− = 0), an initial value

for nS of 5 or 4, an arbitrarily-high value for nP and Z, and no features (i.e. no support

for a carry-save residual, an unsigned table, no mappings, etc.).

Note that preferably, we will begin our search with the assumption that a Second-

Digit Selector is employed, by specifying a first selection iteration of δ + 3.

The logic of this step is to give the desired m/h+/h− configuration the maximum

chance of resulting in a feasible set of comparison constants, while starting to “tighten”

each one of the parameters in a wise order afterwards, to reach an optimal set of system

parameters.

If the overlap intervals associated with this entry-point configuration didn’t lead to

a feasible set of parameters, we analyze whether excluding another iteration would solve

the problem, or whether the problematic intervals can be mapped to another Ŝ interval

where they would be less harmful.

Once we reach a working entry-level configuration, which results in identifying the

right number of higher-order digit selectors or mappings, we see if we can reduce the
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value of nS while still leading to feasible constants.

After that, we activate the support for a carry-save adder and the sharing of the SRT

table, and observe the effect on the intervals.

If all was good, we find the minimum value of Z that doesn’t disturb the feasibility

of the intervals.

Then, we reduce the value of nP to the computed value of nP smart, which can either

lead to a feasible set or not, if not, we increment nP till a feasible set is reached(16).

Note that as we experiment with the value of nP , and observe the computed value

of nP smart, we also try the option of an unsigned SRT table for each one of these values,

to further explore this size-reducing possibility (Fig. 3.18)

Figure 3.18: An illustration of the suggested strategy for the SRT table design-space exploration.
Note that each box corresponds to determining one of the system parameter, whereas arrows
dictate the order of such determination of parameters.

3.5.2 Good Designs

By following the strategy of the previous subsection, we reach the set of good designs

summarized in Table 3.2.

In all of those designs, the feasibility of the SRT table was not affected by the choice

of the multiplier’s digit set. Namely, it is possible either to go for a minimally-redundant

or an irredundant multiplier B in all of those cases, where the latter choice corresponds

to generating fewer multiples of A.

Note that in cases where nP smart was equal to nP , only the former value was given,

whereas the total number of input bits was noted in the leftmost column of the table, to

(16) Note that sometimes, a value higher than the minimum nP value can result in a reduced computed
value of nP smart, which corresponds to a smaller total number of input bits and consequently, a smaller
table (at the expense of a larger adder for computing the remainder sample P̂ ).
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ease tracking the size of the resulting table.

Table 3.2: Some of the good designs that can be obtained using our SRT-table-design platform.
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3 Z = 6 No need Yes Yes Yes
(i = 5)

Ŝ ∶1→ Ŝ ∶4nP integral = 3 h±B = ∗

9 nS = 4
nP =6, nP smart=3 h± = 2

3 Z = 6 No need Yes Yes Yes
(i = 5)

Ŝ ∶1→ Ŝ ∶4nP integral = 3 h±B = ∗

9 nS = 3
nP = 3 h± = 1

Z = 4 No need Yes Yes Yes No need
nP integral = 4 h±B = ∗

8 nS = 3
nP =4, nP smart=2 h± = 1

Z = 4 No need Yes Yes Yes No need
nP integral = 4 h±B = ∗

m = 3 (radix 8)

16 nS = 6
nP =7, nP smart=6 h± = 4

7 Z = 9
Second-Digit

Selector
Yes Yes No No need

nP integral = 4 h±B = ∗

11 nS = 5
nP =5, nP smart=3 h± = 5

7 Z = 6
Second-Digit

Selector
Yes Yes Yes No need

nP integral = 4 h±B = ∗

12 nS = 6
nP = 3 h± = 5

7 Z = 6
Second-Digit

Selector
Yes Yes Yes No need

nP integral = 4 h±B = ∗

10 nS = 5
nP = 2 h± = 1

Z = 6
Second-Digit

Selector
Yes Yes Yes No need

nP integral = 4 h±B = ∗

m = 4 (radix 16)

14 nS = 5
nP =6, nP smart=5 h± = 14

15 Z = 8
Second-Digit

Selector
Yes Yes Yes No need

nP integral = 5 h±B = ∗

12 nS = 6
nP = 2 h± = 1

Z = 8
Second-Digit

Selector
Yes Yes Yes No need

nP integral = 5 h±B = ∗

m = 5 (radix 32)

14 nS = 7
nP = 2 h± = 1

Z = 10
Second-Digit

Selector
Yes Yes Yes No need

nP integral = 6 h±B = ∗
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Chapter 4

Hardware Design

4.1 A Register-Based Algorithm Description

In this section, we will change the final description of the fused algorithm (2.30) on

page 45, by substituting implementation-friendly amounts for some of the variables in

it. This will facilitate computing the register sizes, deriving sampling bit positions, and

alignment of adders/subtractors, all of which are essential tasks to the hardware design

mission carried in this chapter.

To reduce notational noise, and to signify the direct correspondence of these new

amounts with physical devices or wires in the implementation, we will denote them using

a computerized font similar to the one used for the ® code in Chapter 3.

As a start, we will define three digital variables to correspond with each one of the

three main registers maintained throughout the algorithm:

• S : corresponds to the result register.

• A←: corresponds to the shifted-multiplicand register.

• W : corresponds to the residual register.

where the design convention will be to make both S and A← of the integral type, while

making W of the fixed-binary-point type.
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This leads to the following definitions and substitutions:

Sj = S ′j S ′j ← Sj

A←j =
A←j

ra−n
A←j ← A←j r

a−n

Wj = Wj

r2a
Wj ← Wjr

2a

(4.1)

Note that these definitions are independent of the iteration number i, that is to say,

they are merely intended to change the position of the binary point, in order to make

tracking the lower end of numbers easier (in the case of S and A←), or facilitate the

correct alignment between terms and words in the implementation (in the case of W).

In addition to these substitutions, we will define the digital inputs A and B as the

integers corresponding with A and B, as follows:

A = A

ra−n
A← Ara−n

B = B

ra−n
B ← Bra−n

(4.2)

By putting these substitutions into place in (2.30), we get:

S0 = 0

W0 = b1A × r−n−12−2Z

A←0 = A

1 ⩽ i ⩽ iterations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Si = rSi−1 + s′i

Wi = r2Wi−1 − s′i × Si−1 ∣0 ∣ s′i + bi+1A
←

i−1 × r−n2−2Z

A←i = rA←i−1

(4.3)

Sfinal = Siterations × ra−n2mb

Rfinal = Witerations × r2a−2iterations22Z

Note that the total number of iterations was also changed from our previous formula

n∗ + δ − 1 to iterations, since some implementation details will now play a role in
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determining the number of needed iterations (this will be the subject of section 4.4).

Note that most of the discussions of this chapter will revolve around this implementation-

friendly, register-based description of the algorithm.

4.1.1 Register charts

An important aspect of the resulting hardware algorithm is the number of bits needed

for each one of the three registers, as well as the position of the binary point relative to

the lower end of the register, which results in what we call the register charts.

The S register

The S register stores the value of the bare result S ′j , which is the integral equivalent

of the delayed result S ′j .

Namely, at the end of the last iteration, “iterations ×m” bits would have been

already pushed into this register (from its lower end), with the Z first bits being zero.

This implies a bit-length requirement of “m(iterations)−Z”, and an integral definition:

The A← register

As for the A← register, it stores the integral equivalent of the once-called the shifted

multiplicand A←j . Namely, it is nothing but the integral A which has been pushed to the

left by one digit position per iteration for all the iterations from 1 to iterations − 1:

Note that unlike the S register, the final value of the A register is not needed, and

hence is dropped from the bit-length calculations.
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The W register

Unlike the other two registers, the W register has an integral and a fractional parts,

where it is easiest to obtain the bit-length of either part by taking a quick look at its

initialization and update lines in (4.3):

W0 = b1A × r−n−12−2Z

Wi = r2Wi−1 − s′i × Si−1 ∣0 ∣ s′i + bi+1A
←

i−1 × r−n2−2Z

Note that the update of Wi involves the subtraction of a linear-quadratic term and the

addition of a partial-product term, whereas the initialization involves only the partial-

product term.

Interestingly, the linear-quadratic term is a purely-integral amount:

s′i × Si−1 ∣0 ∣ s′i

that is subtracted in every iteration to keep the value of the residual bounded.

Henceforth, the residual’s integral part cannot be greater than the maximum value of

this term, as this would mean that the error in the result is no longer under the control

of the future result digits, which implies a diverging result.

This little fact can be used indirectly to obtain the integral-part bit length of W, by

computing the maximum number of bits needed to represent this term.

This integral-bit count is m(iterations + 1) −Z + 1, which can be broken down as:

add m bits

s′i × Si−1

m(iterations−1)−Z bits

∣

m+1 bits

0 ∣ s′i =m + 1 +m(iterations − 1) −Z +m

As for W’s fractional-part bit length, it is determined by the initialization line above:

W0 = b1A × r−n−12−2Z

where the assigned value is nothing but b1A, an integer, whose ones’ digit is shifted down
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to the m(n + 1) + 2Z fractional-bit position (dictated by r−n−12−2Z = 1
2m(n+1)+2Z ).

This results in the following chart for the W register:

where the abbreviations Wintegral and Wfractional can be conveniently used to refer to the

integral and the fractional segments of the W register.

Note that even though the W register is somewhat wide, the adders/subtractors (or

practically, the compressors) required to operate on it need not be as wide. A discussion

of the processor widths is part of section 4.5.

4.2 Loose Leading Bit of Ṡ

So far, we have overlooked a critical aspect of the fused algorithm, represented by

the result’s leading bit position being uncertain.

Not only that the extended Ṡ range associated with such uncertainty would double

the size and the complexity of the SRT table, it would also cancel the advantage possibly

gained by sharing the SRT table with division (since the table has to be doubled in size

in order to be shared).

In fact, it would not be an exaggeration to say that this extended range, if not dealt

with, would impair the raisons d’être of a fused multiplication/square-root unit.

4.2.1 Range of Ṡ in a square-root unit

Before getting into the details of the problem, let’s examine the case in pure square-

root implementations. In this case, the radicand N is presented in a normalized form

Ṅ ∈ [1
2 ,1), while associated with a binary exponent Nexp.

To account for the case when Nexp is not an even number, a single binary shift of Ṅ

might be necessary, thus extending the range of this amount to [1
4 ,1), which corresponds

to a square-root Ṡ range of [1
2 ,1).
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This is in agreement with the range of the divisor Ḋ in the case of division, which,

along with the similarity in the selection rules between the two operations, can be utilized

to share the SRT table between the two units (section 3.3).

4.2.2 Range of Ṡ in the fused unit

To operate on two numbers of arbitrary scales, A and B, which is the case in general-

purpose processors, numbers are typically conveyed as pairs of a normalized fraction(1)

Ȧ/Ḃ and an exponent Aexp/Bexp, which are processed separately by the arithmetic unit.

For our purpose, which is finding the square root of two multiplied numbers, recovery

of the final exponent requires that the radicand’s exponent Nexp by an even number:

N = A ×B

Ṅ = Ȧ × Ḃ ∣ Nexp = Aexp +Bexp

But what if the sum of the exponents above was an odd number (a case we obviously

have no control of)? In this case, one of the two significands (Ȧ or Ḃ) has to be shifted

left or right, while incrementing (or decrementing) the associated exponent, to obtain

the desired even sum.

This implies two potential ranges for one of the two significands: [1
2 ,1) or [1

4 ,
1
2),

depending on whether an exponent-correcting shift was needed or not, which leads to an

all-case, combined range of [1
4 ,1) for that significand.

Multiplying this loosely-normalized significand with a normalized one in the range

[1
2 ,1) will yield a radicand in the range [1

8 ,1), which corresponds to an extended square-

root range of [
√

1
8 ,1) ≈ [0.35,1) ≈ [0.0101101012,1.02).

This range contains binary fractions with either 0 or 1 in the first fractional bit

position, which is an important aspect of the problem(2) (Fig. 4.1).

But what if we simply accept this extended range and design the SRT table according

(1) also called the significand or the mantissa.
(2) In fact, we’ll be referring to this problem as the loose bit problem, where fixes and hardware signals

intended to deal with it will also follow this “loose-bit” designation.
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Figure 4.1: An illustration of the argument leading to the wide, problematic range of Ṡ in a fused
multiplication/square-root unit.

to it? This might not seem as a big deal at first, given that for example, an nS value

of three would require only 2 more columns in the table to address the cases when Ŝ is

equal to 0.0102 or 0.0112.

Unfortunately, this will not allow us to exclude the negative digit choices when Ṡ

is exactly equal to 1
2 (subsection 3.2.5), leading to avoiding the tight overlap regions

there in early iteration. It would also introduce even tighter regions in the area between

Ṡ =
√

1
8 ≈ 0.35 and Ṡ = 1

2 (Fig. 4.2).

0.4 0.6 0.7 0.8 0.9 1.00.5

Figure 4.2: The selection regions associated with a maximally-redundant radix-4 system. Note
that despite the abundance of overlap, the overlap regions associated with negative digits in the

range
√

1
8
< Ṡ < 1

2
are incredibly-tight. Note that this diagram was not even plotted for the first

(i.e. δ’th) iteration, in which the irregularity will be severe, but rather for the following one.

In fact, it would be prohibitively-expensive (if not impossible) to adapt to the range
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extension in [
√

1
8 ,

1
2), forcing the designer to opt for a modified range of [1

2 ,
√

2) instead

(which results from shifting the loose significand to the left).

This corresponds to an approximate binary range of [0.12,1.01101012) ≈ [1
2 ,1

1
2) which

corresponds to almost doubling the number of columns in the SRT table (compared an

the pure square-root case, with a fractional result Ṡ in the range 1
2 to 1).

To fix this problem, we will stick to the [
√

1
8 ,1) range while opting for a combination

of the following:

1. An alternative addressing scheme of the SRT table when Ŝi−1 is in[
√

1
8 ,

1
2), resulting

in the same size requirements as the pure square-root case.

2. The design of a First-Digit Selector, whose function will be to provide the value of

s′δ as well as determine the leading result bit’s position.

3. An increase in the number of required bits by 1 to account for the loose result bit,

to ensure a final normalized accuracy of nm significant bits.

In this section, we will discuss the alternative addressing scheme, and the changes it

requires in the SRT-table design rules, then we will go through the process of designing

the First-Digit Selector.

Note that the last point above will be taken into consideration as part of calculating

the total number of iterations in 4.4. For the time being, we will continue to refer to this

total count as iterations.

4.2.3 Alternative addressing scheme

Using the help of the First-Digit Selector, we will be able to provide the first digit

without going into the hassle of adding columns to the SRT table, where otherwise, we

will have to modify the table to address the case when Ŝi−1 = 0.

This has a number of advantages. First, it cancels the need for an initialization

scheme where Ṡ is assigned the value of 1.0 in the iteration preceding the δ’th iteration,

which is usually done to overcome the limitations in the internal digit set(3). This results

(3) Due to a less-than-1 h+/− value associated with anything less than a maximally-redundant digit set.
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in providing the SRT table with a reliable starting point without adding to its complexity.

Moreover, this will help us achieve a standardized SRT-table design process, where

otherwise, “gluing” the initialization and the digit-selection problems together would

have led to an amount of variation in the design process that is hard to automate.

Second, it will allow us to oversee the case when the the first fractional bit of Ŝ is

equal to zero, and possibly do something about it, which is the topic of this subsection.

Simply, to eliminate the case when Ŝ is less than 1
2 , we are planning on shifting the

fractional result Ṡ to the left by one bit position prior to passing a truncated copy of it

to the SRT table (this implies that one more bit will sometimes be effectively passed to

the table, which is how this solution works).

Note that the choice of whether to pass Ṡ or 2Ṡ to the table can be determined by

the result’s current first fractional bit (Fig. 4.3).

To examine the effect of passing 2Ṡ on the table’s design rules, we substitute 2Ṡi−1

for Ṡi−1 in the last correctness constraint (3.6) on page 52:

4Ṡi−1(s′i − h−) + 2−Zh−B

+2Zr−i(s′i − h−)2
< Pi−1 <

4Ṡi−1(s′i + h+) − 2−Zh+B

+2Zr−i(s′i + h+)2

Obviously, the constraint has changed, which means that another SRT table designed

around these “stretched” selection regions has to be provided, not what we want.

So what we do is that we suggest another variation, which is to complement the act of

passing a shifted result 2Ṡi−1 by passing a shifted copy of the selection remainder 2Pi−1:

4Ṡi−1(s′i − h−) + 2−Zh−B

+2Zr−i(s′i − h−)2
< 2Pi−1

passed for Pi−1

<
4Ṡi−1(s′i + h+) − 2−Zh+B

+2Zr−i(s′i + h+)2

which, in turn, implies that Pi−1 would meet:

2Ṡi−1(s′i − h−) + 2−Z−1h−B

+2Z−1r−i(s′i − h−)2
< Pi−1 <

2Ṡi−1(s′i + h+) − 2−Z−1h+B

+2Z−1r−i(s′i + h+)2
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which is pretty similar to (but more forgiving than) the original constraint:

2Ṡi−1(s′i − h−) + 2−Zh−B

+2Zr−i(s′i − h−)2
< Pi−1 <

2Ṡi−1(s′i + h+) − 2−Zh+B

+2Zr−i(s′i + h+)2

So, what we will do is that we will take the maximum of the two lower bounds, and

the minimum of the two upper bound, to result in a new constraint that can correctly

accommodate a combination of Ṡi−1/Pi−1 or 2Ṡi−1/2Pi−1 as inputs.

This results in the following, loose-bit correctness constraint :

2Ṡi−1(s′i − h−) + 2−Zh−B

+2Zr−i(s′i − h−)2
< Pi−1 <

2Ṡi−1(s′i + h+) − 2−Zh+B

+2Z−1r−i(s′i + h+)2
(4.4)

where the only difference is in the factor 2Z−1 in the upper bound.

Note that since the difference comes in the iteration-dependent term, it is expected

to only affect the first few iterations of the algorithm, which will be helped by our choice

to go for a dedicated, first-digit selection mechanism.

Furthermore, as the difference comes in the iteration-dependent term, it is expected

not to interfere with our plan to share the SRT table with a fused multiplication/division

unit, through evaluating the limits above at an infinite (∞) iteration number.

The good thing about this solution is that it only increases the effective nS value by

one bit, without increasing P̂ ’s effective bit length, this is because the integral scope of

2Pi−1 when Ṡi−1 is within [
√

1
8 ,

1
2) is similar to the scope of Pi−1 when Ṡi−1 is in [1

2 ,1).

To avoid ambiguity, we will denote the normalized truncated result as Ŝ∗i−1, which is

the amount seen by the SRT table (Fig. 4.3).

4.2.4 Design of the First-Digit Selector

In this subsection, we will start by deriving the correctness criterion associated with

the choice of the first digit s′δ, then from there, we will adopt a simple methodology for

the design process, with a design example for a maximally-redundant, radix-4 system.
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Figure 4.3: A high-level circuit diagram showing the meaning of the normalized truncated result
Ŝ∗i−1, which will be the input seen by the SRT table.

First-digit correctness criterion

(s′δ − h−)ra−δ < S′ < (s′δ + h+)ra−δ

(s′δ − h−)2r2(a−δ) < S′
2

=N ′
=Ñ ′

δ−1+ε(Ñ
′
δ−1)

< (s′δ + h+)2r2(a−δ)

(s′δ − h−)2r2(a−δ)

+2−2Zr2a−δ+1h−B

< Ñ ′

δ−1

=S
′
δ−1

2
+R̃′δ−1

=R̃′δ−1

<
(s′δ + h+)2r2(a−δ)

−2−2Zr2a−δ+1h+B

Now we can multiply by r−2(a−δ+1) to get an amount equal to Wi−1 in the middle of

the inequality (4.9), as follows:

(s′δ − h−)2r−2

+2−2Zr+δ−1h−B

< Wi−1 <
(s′δ + h+)2r−2

−2−2Zr+δ−1h+B

(s′δ − h−)2

+2−2Zr+δ+1h−B

< r2Wi−1 <
(s′δ + h+)2

−2−2Zr+δ+1h+B

(4.5)
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Design methodology

First, we will choose the number of result bits to be selected in the δ’th iteration

using the First-Digit Selector, which we will denote as mc.

Note that mc has to be greater than or equal to 2 bits, in order to reveal the leading

bit position of the result, while being less than or equal to m (which is the maximum

number of result bits retired per iteration):

2 ⩽ mc ⩽ m

Note the choice of mc will influence the Z parameter, which now has to be chosen in

such a way as to provide an mc-bit first digit s′δ:

Z = δm −mc (4.6)

Second, we enumerate all the different values that can be taken by this first digit s′δ:

s′δ ∈
⎧⎪⎪⎨⎪⎪⎩

⎢⎢⎢⎢⎢⎣
2mc

√
1

8

⎥⎥⎥⎥⎥⎦
,2mc − 1

⎫⎪⎪⎬⎪⎪⎭

This can be done casually by truncating the binary equivalent of the result’s extended

range [0.0101101⋯2,0.1111111⋯2] to mc fractional bits, while enumerating the different

mc-bit combinations enclosed between the truncated bounds.

For example, a minimum mc value of 2 dictates a choice between {012,102,112} (one,

two or three), where the choice cannot be zero, since the result’s leading bit is known to

be in one of the first two result-bit positions.

After we enumerate all the possible values for the first result digit, we use the criterion

(4.5) to obtain the ranges in which a transition can be made from one of the digit choices

k − 1 to another k, as follows:
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(k − h−)2

+2−2Zr+δ+1h−B

< r2Wi−1 <
(k − 1 + h+)2

−2−2Zr+δ+1h+B

(4.7)

These ranges are the equivalent of the overlap regions in the SRT-table design process.

Note that the factor 2−2Zr+δ+1 can be simplified to:

2−2Zr+δ+1 = 2−2Z+m(δ+1) = 2−Z+(mδ−Z)+m = 2−Z+mc+m

To make things neat and easy, we precompute the terms ±2−Z+mc+mh∓B using our

knowledge of the Z, mc and the h±B parameters. This will result in two fractions, which

we might convert to binary by dividing in the binary notation.

Then, we compute k − h− and (k − 1)+ h+ for the different digit values excluding the

first value(4), using our knowledge of h+ and h−, which will give us two fractions for each

one of the transitional regions.

To work things directly to the point, we square the numbers in the fractions then

divide them in binary notation (up to a reasonable number of fractional bits), while

adding/subtracting the precomputed terms ±2−Z+mc+mh∓B.

This way, we will end up with an approximate lower and upper bounds for each one

of the transitional regions.

Then we enumerate all the binary values in-between the bounds while excluding the

first one (to abide by the strictly-less-than sign). This will result in columns of ordered

bit combinations for each one of the transitional regions.

Note that depending on the internal representation of P , we might also have to drop

the second or the last enumerated value as well, to conform to the case of a signed-bit

or a carry-save residual, respectively (Fig. 3.8 on page 62).

Then, by looking at the resulting bit sequences for each one of the transitional regions,

(4) The first digit choice is not associated with a transitional region because there is no valid digit choice
lower than it.
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we try to find the simplest logical test for each one of the digit choices, using the minimum

number of the W register bits.

The resulting logical tests can be implemented directly using combinational logic,

which will comprise our First-Digit Selector (Fig. 4.4).

Figure 4.4: The First-Digit Selector. Note that the selector gets its inputs from the W register
through hardwired connections.

Design example

In this subsection, we will go through the process of designing a First-Digit Selector

for a system that we know has a reasonably-sized SRT table associated with it.

This system is a radix-4 system (m=2) that uses a maximally-redundant internal

digit set (h+ = h− = 1) and an irredundant multiplier bj ∈ {0,1,2,3} (h−B = 0, h+B = 1).

In this design, the Z parameter is given a minimal value of 4 (corresponds to two

preliminary iterations, only), while the Selector is to be designed to provide the first full

digit of the result (mc = 2).

This dictates a choice between {1,2,3} for s′δ, with only two transitional regions: one

for the transition from 1 to 2, and another for the transition from 2 to 3.

The 2−Z+mc+m factor in this design is equal to 1, which signifies a minimal Z choice

in this case (more on this later). This means that the ±2−Z+mc+mh∓B terms will have a

value of 0 for the lower bound, and -1 for the upper bound.

The design data for the First-Digit Selector is shown in Table 4.1, which assumes an

irredundant residual.

Note that if a carry-save residual W was to be supported, then a limited-precision

addition has to be performed first, followed by the selection logic.

This will incur a 2ulp error in the value of W from the selection logic’s viewpoint,
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where the ulp will be that of the adder used, which we will denote as 2X (5).

To adapt to this error, we need to back off from the end of the enumerated range by

2X , on both sides of Table 4.1. This results in the modified design data of Table 4.2 for

a maximal 2X value of 0001.2 (which corresponds to a 4-bit adder).

Table 4.1: The design data of the First-Digit Selector in a maximally-redundant, radix-4 system,
note that the final digit choice is given as two bits: (s2)(s1)2.

transition from 1 to 2 transition from 2 to 3
k = 2 k = 3

(2 − h−)2 (1 + h+)2 (3 − h−)2 (2 + h+)2

12 22 22 32

+ 0 − 1 + 0 − 1
1 3 4 8

(0001.)2 (0011.)2 (0100.)2 (1000.)2

0001.001 0100.001
0001.010 0100.010

∶ ∶
0001.111 0100.111
0010.000 0101.000

∶ ∶
0010.111 0111.111
0011.000 1000.000
ABCD.EFGH ABCD.EFGH

choose3 = A
choose2 = A(B + C)
choose1 = A(B + C)

s2 = A + A(B + C)
s1 = A + A(B + C)

Table 4.2: The design data of the previous Selector for a carry-save residual, and a 4-bit adder.

transition from 1 to 2 transition from 2 to 3
k = 2 k = 3

(0001.)2 (0011.)2 (0100.)2 (1000.)2

− 2X − 2X

(0001.)2 (0010.)2 (0100.)2 (0111.)2

0001.001 0100.001
0001.010 0100.010

∶ ∶
0001.111 0101.000
0010.000 ∶

0101.111
0110.000

∶
0111.000

ABCD.EFGH ABCD.EFGH

choose1 = ABC
choose2 = A(B⊕ C)
choose3 = A + A(BC)

s2 = A + A(B + C)
s1 = A + A(B⊕ C)

(5) with X being the bit position of the LSB of the limited-precision adder, relative to r2Wi−1.
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Figure 4.5: The support circuit needed for the First-Digit Selector of Table 4.2.

4.2.5 Analytical minimum bound on Z

Using the inequality in (4.7), we can derive an analytical bound on the value of the

Z parameter as a function of the W sample’s ulp, which we denoted earlier as 2X .

The logic of this derivation is finding the minimum Z value that secures a height of

the transitional region of at least one ulp, which corresponds to the minimum Z value

permitting the design of a First-Digit Selector.

For this derivation, we will substitute k with the minimum first digit value plus one,

since it’s the k value associated with the narrowest transitional region:

kmin ←
⎢⎢⎢⎢⎢⎣
2mc

√
1

8

⎥⎥⎥⎥⎥⎦
+ 1 ≈ 2mc−2 + 1

Then, while assuming a symmetric digit set (h+ = h−), we compute the height of the

transitional region as the difference between the two bounds in (4.7):

(kmin − 1 + h)2

−2−Z+mc+mh+B

−
(kmin − h)2

+2−Z+mc+mh−B

= (2kmin − 1)(2h − 1) − 2−Z+mc+m(h+B − h−B)

= (2mc−1 + 1)(2h − 1) − 2−Z+mc+m(h+B − h−B)
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Then we make up an inequality to ensure that this amount is larger than 2X :

(2mc−1 + 1)(2h − 1) − 2−Z+mc+m(h+B − h−B) > 2X

(2mc−1 + 1)(2h − 1) − 2X > 2−Z+mc+m(h+B − h−B)

By finding the binary logarithm of both sides, then rearranging the terms we get:

Z > mc +m + log2(h+B − h−B) − log2 ((2mc−1 + 1)(2h − 1) − 2X)

Z > mc +m + log2 (
h+B − h−B

(2mc−1 + 1)(2h − 1) − 2X
)

Zmin =m +mc + ⌈log2 (
h+B − h−B

(2mc−1 + 1)(2h − 1) − 2X
)⌉ (4.8)

Note that one thing that is not accounted for in this formula is the restriction put on

the value of Z due to the choice of mc (4.6). For example, this expression returns a value

of 3 for the case of our maximally-redundant, radix-4 system above, which is incorrectly

related to an mc value of 2.

That is to say, even though a Z value of 3 is theoretically-sufficient to provide feasible

transitional regions, the fact that an mc value of 2 requires that Z be a multiple of 2

dictates an actual minimum of 4, which is the value chosen previously for our maximally-

redundant system.

4.2.6 Aided exclusion of digit choices

Note that the First-Digit Selector can be designed using an h+ or h− value smaller

than that of the internal digit set. An advantage of this is our ability to deliberately

exclude some of the digit choices in the (δ+2)’th iteration, which might be advantageous

in some cases.

For example, the First-Digit selector of Table 4.2 can be redesigned using an h− value

of 2
3 , while still using an h+ value of 1. This will have the effect of making the digit choice

−3 impossible (or unnecessary to make the result converge) in the (δ + 2)’th iteration,
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which corresponds to the 4’th iteration in this case (leading to the key exclusion of a

problematic interval in Fig. 3.16 on page 77).

Henceforth, the design of the First-, as well as Higher-Order Digit Selectors can be

used to exclude some of the digit choices in early iterations of the fused algorithm, which

otherwise would not be possible in the case of a fused algorithm using dynamic shifting

of the Ŝ input (subsection 4.2.3).

4.3 The Selection Inputs: P and Ṡ

To obtain the value of the next result digit s′i in (4.3), we need to be able to forward

the first few bits of Pi−1 and Ṡi−1 to the SRT table, which might involve sampling the W

and the S registers at an iteration-dependent position.

In this section, we will work our way through the many layers of abstraction of this

thesis in order to relate the SRT table inputs Pi−1 and Ṡ to the actual registers of the

algorithm (W and the S), while suggesting hardware solutions for the sampling problem.

4.3.1 Relationship between Pi−1 and Wi−1

The selection remainder Pj is defined as follows(6):

Pj
def= r−2a2Zrj+1R̃′

j

where, to substitute the register value Wj for the remainder R̃′

j we need to apply(7):

Wj
def= r−2a−2jR̃′

j ⇒ R̃′

j ← r2a−2jWj (4.9)

(6) A combination of P
def
= r−2a2Z(rYj) and Yj

def
= rjR̃′

j (3.4) (page 50).
(7) A combination of the residual definition Wj

def
= r2jR̃′

j (2.28) (page 43) and the definition of Wj in
the beginnings of this chapter.
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Table 4.3

sampling
bit position

i = 1 −m −Z
i = 2 −Z
i = 3 −Z +m
i = 4 −Z + 2m

∶

This results in the following relationship:

Pj = 2Zr−j+1Wj

Pi−1 = r−i (2Zr2Wi−1) (4.10)

where the current selection remainder Pi−1 is the result of sampling W at a changing, or

a sliding bit position.

4.3.2 Sampling P from the W register

To deal with the iteration-dependent mapping in (4.10), we compute a sequence of

sampling bit positions, for all the iterations from 1 to iterations, using:

Pi−1 = 2Zr2−iWi−1

Pi−1 = 2Z+(2−i)mWi−1

⇒ Wi−1 = 2−Z+(i−2)mPi−1

This results in the sequence in Table 4.3.

Note that up to the δ’th iteration of the fused algorithm, these P values won’t actually

be needed since the result digits will be equal to zero.

As for the δ’th iteration itself, the digit selection in this iteration is performed by the

First-Digit Selector, rather than through the SRT table, which means that the sampling

can be restricted to iterations starting from, and following the δ + 1’th iteration.
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This results in the following, sampling bit-position sequence:

{−Z + (δ − 1)m,−Z + δm,−Z + (δ + 1)m, ⋯ ,−Z + (iterations − 1)m}

Note that upon sampling the W register at any one of these bit positions, a range

of integral as well as fractional bits needs to be extracted, which will constitute the

truncated remainder input P̂ of the SRT table.

This involves a sign bit, nP integral integral bits, nP fractional bits, and an additional

fractional bit in case 2Pi−1 was to be passed to the table (subsection 4.2.3).

total count = nP + nP fractional + 2

Figure 4.6

Note that only a subset of these bits would be passed to the SRT table. For example,

the extra bit is only utilized when 2Pi−1 needs to be passed to the table. Another example

is the case of using an unsigned SRT table (subsection 3.2.6), in which the sign bit will

not be needed to address the table, but will be used to drive the supporting logic.

To identify this number of bits at a changing bit position in every iteration, we will

deploy a shift register with moving 1, which will be called the iteration indicator register.

At any given time, only one of this register’s bits will be equal to one, with the position

of that active bit being in tight correspondence with the iteration number i (Fig. 4.7).

Then, we will associate a set of wires with each one of the sampling positions above,

while passing the right sample with the help of the iteration-indicator register (Fig. 4.8).

4.3.3 Relationship between Ṡi−1 and Si−1

In a manner similar to the previous subsection, we start by providing a definition of

the fractional result Ṡj , as follows (3.3):

Ṡj
def= r−a2ZS ′j
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Figure 4.7: Circuit for the iteration-indicator register.

Figure 4.8: Passing the right P̂ sample using the help of the iteration-indicator register.

where, to substitute the register value Sj for the result S ′j we need to apply(8):

Sj
def= r−(a−j)S ′j ⇒ S ′j ← ra−jSj

This results in the following relationship:

Ṡj = 2Zr−jSj

Ṡi−1 = r−i (2ZrSi−1) (4.11)

which, similar to the case of P and W, shows that the current fractional result Ṡi−1 can

be obtained by sampling the S register at a sliding bit position.

However, it would be a better option in this case to attempt to build a dedicated

circuit that stores the value of the first nS result bits, while taking care of the negative

digit values in a simple manner (through carry propagation).

This circuit is shown in Fig. 4.9, which provides the normalized truncated result Ŝ∗i−1

as its output (the direct input of the SRT table in the fused algorithm).

(8) A combination of Sj = S
′
j and S ′j

def
= r−(a−j)S ′j .
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Figure 4.9: The Ṡ register design for a radix-4 system, an mc of 2, and an nS value of 5 (plus an
extra bit in case 2Ṡ was to be passed to the table).

4.4 Number of iterations

In this section, we’ll discuss the number of iterations needed by the fused algorithm to

produce a normalized final result with nm significant bits. To do this, we will come across

the topic of the result’s final accuracy, while confining the discussion to the simplest mode

of accuracy, which is truncation.

4.4.1 Final accuracy

In an SRT system, the final accuracy of the result is governed by the internal digit

set through the h+/h− parameters, as follows:

−h−ulp(Sfinal) < ε(Sfinal) < h+ulp(Sfinal)
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This implies that the true result, S, is related to Sfinal in the following way:

Sfinal − h−ulp(Sfinal) < Sfinal + ε(Sfinal)
=S

< Sfinal + h+ulp(Sfinal) (4.12)

where in redundant (as opposed to over-redundant) systems, both of h+ and h− are less

than or equal to one.

4.4.2 Truncated accuracy

The inequality in (4.12) includes two possibilities:

Sfinal ⩽ S < Sfinal + h+ulp(Sfinal) ⇒ truncate(S) = Sfinal

Sfinal > S > Sfinal − h−ulp(Sfinal) ⇒ truncate(S) = Sfinal − ulp(Sfinal)

where the two cases can be distinguished by the sign of the error, ε(Sfinal), which coincides

with the sign of the residual.

Hence, to obtain an accurate truncated result, we should be able to detect the sign

of the final residual and in the case of a negative sign, decrement the result word.

Note that to reduce the delay of the sign detection in the case of a carry-sum residual,

an approximation of the sign can be used, which will incur some error in the final result.

As for decrementing the result, the decremented value can be obtained from the on-

the-fly-conversion registers, rather than attempting to decrement S (subsection 4.5.1).

4.4.3 Rounded accuracy

The issue of rounding will not be discussed in detail in this thesis, rather, we will

adhere to the simplistic assumption that rounding requires the production of an extra

result bit(9), which might not be the case if higher precision in rounding was required,

or if the full set of the IEEE rounding modes was to be supported [1].

The choice to overlook the issue of rounding is intended to reduce the distraction

from the novel contribution of this thesis, which is the incorporation of multiplication.

(9) called the rounding bit.
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This is also encouraged by the fact that implementing the different practical, on-the-fly

rounding methods would be straightforward [10][22].

4.4.4 Computing the number of iterations

The number of iterations is a function of the total number of result bits that need to

be produced by the fused algorithm, which can be broken down as follows:

total number of bits = Z±
leading zero bits

+ nm±
actual result bits

+ 1°
loose result bit

+ 1°
rounding bit

This implies the following total number of iterations:

iterations = n + ⌈Z + 2

m
⌉ (4.13)

4.5 Hardware Functions

In this section, we will present the partial circuits needed to perform the different

functions of the fused algorithm (4.3), which include:

1. Updating the result S register,

2. Formation of the Si−1 ∣0 ∣ s′i -part(10) of the linear-quadratic term,

3. Updating the residual W register, and

4. The digit-selection path (using the components and ideas of subsection 4.3).

4.5.1 Updating the result S register

In (4.3), the S register is updated in a manner that resembles the operation of a shift

register, where the old contents are shifted to the left by m bits, followed by the addition

of the current result digit s′i:

Si = rSi−1 + s′i
(10) also called the S0s part.
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Namely, if the current result digit was irredundant (i.e. in the range {0,⋯, r − 1},

comprising exactly m bits), the addition would translate to concatenation.

However, as this is known not to be the case in an SRT system, where the result digits

s′i are chosen from a redundant digit set φ = {−α,⋯,+β}, we are facing the addition of a

signed, (m + 1)-bit digit that cannot be simply appended to the shifted result rSi−1.

A classical solution to this problem is known in the literature by the name on-the-fly

conversion of digits [9], which revolves around maintaining two registers instead of one,

with one of them storing the value immediately preceding that of the current result (this

register is typically denoted as Sm or S−).

To update the S register, the shifted part is substituted with either rSi−1 or rS−i−1,

depending on the sign of the digit, then, the truncated value of the digit is appended

(which corresponds to s′i or r−∣s′i∣ depending on whether the digit was positive or negative

prior to truncating it).

The process can be simply understood as using the sign bit of the digit to decrement

the result (through forwarding S− in place of S), then appending the truncated digit(11).

The process for maintaining the S− register is similar, with the only difference being

that s′i − 1 is used to update the register instead of s′i.

Namely, the shifted part is substituted with either rSi−1 or rS−i−1 depending on the

sign of s′i − 1, while appending the truncated value of s′i − 1 to the shifted part.

This results in the simple conversion scheme of Table 4.4. Note that this scheme will

work with a maximally-redundant digit set, since representing S− for the minimum digit

value of −r + 1 implies adding −r, which is an (m + 1)-bit amount.

This conversion method can be implemented using the simple circuit in Fig. 4.10.

Note that in addition to the role played by the S− register in such conversion, it can

also be utilized in the case of a negative final residual to avoid decrementing the result

word, by delivering S− instead of S at the end o the algorithm (subsection 4.4.2).

(11) This only works for negative digits in the 2’s complement format. Note that to handle digits in
the sign-and-amplitude format (such as those returned by an unsigned SRT table), we will assume that
negative digits are converted to the 2’s complement format first.
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Table 4.4: Simple on-the-fly conversion of digits.

S− S

s′i = +β Õ×××
use S

Õ×××××
use S

s′i = +1 Si−1 ∣ (s′i − 1)m

s′i = 0 S−i−1 ∣ (s′i − 1)m Si−1 ∣ (s′i)m

s′i = −1 ×××××Ö
use S−

S−i−1 ∣ (s′i)m
××Ö use S−

s′i = −α

4.5.2 Formation of the S0s part

Another incident of seemingly “appending” the current result digit s′i in (4.3) is the

case of forming the S0s-part of the linear-quadratic term:

Wi = r2Wi−1 − s′i × Si−1 ∣0 ∣ s′i
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
the S0s part

+bi+1A
←

i−1 × r−n2−2Z

Unlike what the notation suggests, s′i is a signed (m + 1)-bit number that cannot be

simply concatenated with 2Si−1, rather, the whole part has to be formed on-the-fly in a

Figure 4.10: On-the-fly conversion of result digits.
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manner similar to updating the S register in subsection 4.5.1.

This results in the circuit in Fig. 4.11, which uses the value of the S/S− registers.

Figure 4.11: On-the-fly formation of the S0s part of the linear-quadratic term.

4.5.3 Updating the residual W register

In (4.3), the W register is updated through the combined act of adding the partial-

product term, and subtracting the linear-quadratic term:

Wi = r2Wi−1 − s′i × Si−1 ∣0 ∣ s′i
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

linear-quadratic term

+ bi+1A
←

i−1 × r−n2−2Z

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
partial-product term

Unlike the linear-quadratic term (whose computation requires the value of s′i), the

partial-product term can be computed and added early in the iteration, which will help

optimize the critical path of the algorithm.

For this reason, we choose to separate the act of adding the partial-product term

from that of subtracting the linear-quadratic term, while using two processors of different

lengths for each one of the two tasks.

Note that in the circuits of this section, we will assume a maximally-redundant,

radix-4 system with an irredundant multiplier B (bj ∈ {0,1,2,3}).
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Adding the partial-product term

To provide the multiplier digits in order, starting from the most-significant, we will

be using the register design in Fig. 4.12, where the LOAD input will be connected to the

initialization signal i = 0 while the value of B is fed to the register in parallel.

Figure 4.12: The design of the B→ register.

After that, the digits of the multiplier will be provided through the DATA SHIFT OUT

output of this component, starting from b1 (the most-significant digit) in the initialization

step (i = 0), and up to bn (the least-significant digit) in the (n − 1)’th iteration(12).

Using the digit value bi+1 provided through this register, computing the partial prod-

uct term would be straightforward for an irredundant multiplier B, which is the case of

the system assumed in this section (Fig. 4.13).

Note that to figure out the length as well as the correct alignment of the operands

(represented by the dots in WS/C[...]), we need to revisit the register charts in subsection

4.1.1, and namely those of the W and the A← registers.

This results in the partial-product-term chart in Fig. 4.14, which can be consulted

upon designing the processor used for the addition of the partial-product term.

Subtracting the linear-quadratic term

For the subtraction of the linear-quadratic term, on the other hand, the alignment

is easy since such term is purely integral, and hence will only target the integral bits of

(12) After that, zero-valued digits will be delivered until the end of the algorithm.
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the W register, implying a reduced-width processor (Fig. 4.15).

Note that the differences in the case of subtracting the linear-quadratic term are:

1. The subtraction of the linear-quadratic term lies on the critical path of the algo-

rithm (i.e. it has to wait for the selection of current result digit s′i).

2. The multiplier amount s′i is signed, expressed in a sign-and-magnitude format(13).

3. Hence, the 4-to-2 compressor (in the case of our radix-4 system) has to support

addition as well as subtraction over two of its 4 inputs, while controlling the function

through the digit’s sign wire.

4. Unlike the addition of the partial product term, the width of the compressor is

almost half that of the W registers, with only the uppermost integral bits being

involved in the addition/subtraction.

These differences, along with the fact that this subtraction will operate on the output

of the previous addition (r2W′S/r
22W′C), results in the circuit of Fig. 4.16.

(13) Note that to facilitate addition/subtraction, we will assume that the digit is converted to this format,
even when it’s not the native format returned by the SRT table.

Figure 4.13: Circuit for adding the partial-product term.
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Figure 4.14: An illustration of the relevant section of W, denoted as WS/C[...] in Fig. 4.13.

Figure 4.15

Figure 4.16: Circuit for subtracting the linear-quadratic term, using the S0s signal produced by
the circuit in Fig. 4.11.

4.5.4 The digit-selection path

So far, a lot of ideas and techniques have be proposed for the task of digit selection,

with the entire volume of the previous chapter being dedicated to the design of its

contents.

To combine this information together, we present the circuit in Fig. 4.17, which is

intended to support the SRT table design arrived at in the end of the previous chapter.

Note that either a 7- or an 8-bit CLA adder can be used for producing the selection
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Figure 4.17: The digit selection path for our maximally-redundant radix-4 system, with the
choice between two different CLA-adder sizes, resulting in one less or more bit being passed to
the SRT table.

remainder P̂ , with the higher number corresponding to half-sized table (through the use

of the smart constants).

Note that by opting for an unsigned SRT table, which is also possible in this case,

we can further reduce the number of P bits used in addressing the table to 5 bits only,

which requires an 8-bit CLA adder and some additional support circuitry similar to the

one in Fig. 3.12 on page 71 (not shown in the figure).

Note also that we used the same adder for producing the W sample for the First-Digit

Selector, as opposed to the dedicated 4-bit adder suggested in Fig. 4.5 on page 97.

The multiplexing logic at the lowermost stage of Fig. 3.12 is designed to return one of

the following: (a) zero for iterations preceding the δ’th iteration, (b) the value returned

by the First-Digit Selector for the δ’th iteration, or (c) the digit value returned by the

SRT table for all the following iterations.
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4.6 Optimizing the Critical Path

At this point, we are ready for putting together the whole circuit needed for imple-

menting the algorithm in (4.3).

To do this, we will stick to our maximally-redundant, radix-4 system with a value for

Z of 4, a simple First-Digit Selector, an nP value of 4 fractional bits, and an nS value of

3 fractional bits.

Note that unlike Fig. 4.17, we will stick to an 8-bit sampling CLA adder, while opting

for an unsigned SRT table. This will allow us to use a compact SRT table with a total

number of input bits of 2 + 5 = 7 bits.

Hence, the algorithm requires a complex support circuitry, with large registers, and

two 4-to-2 compressors. There is also a lot of wiring involved in sampling P , and many

stages in the digit-selection path, but the resulting SRT table is compact.

As noted earlier in subsection 4.5.3, the addition of the partial-product term can

be moved out of the critical path by performing this addition in parallel with the digit

selection, which will require two processors (Fig. 4.18).
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Figure 4.18: The final circuit for the maximally-redundant, radix-4 system. Note that to keep
complexity under control, the circuit for on-the-fly conversion is omitted, and so is the circuit
for forming the S0s part. As for the internal circuits of the iteration-indicator register, the B→

register, and the Ṡ register, they can be easily found in Fig. 4.7, 4.12, and 4.9, respectively. Note
that unlike the Ṡ register in Fig. 4.9, the one used here is designed for an nS value of 3, rather
than a value of 6.
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Chapter 5

Results and Discussion

In this thesis, we went through the theoretical development, the SRT table design,

and the hardware design of a fused multiplication/square-root algorithm similar to that

of fused multiplication/division in [2].

To test the resulting algorithm as well as the contents of the SRT table, we use

the lookup table generator to produce a C-code fragment that summarizes the system

parameters. Then, using a special simulation tool, we test whether the algorithm can

indeed produce correct results using the table generated by the ® code.

The simulation tool is based on software-emulated bit vectors, where all the basic

arithmetic and binary operations were rewritten to operate on these bit vectors, which

permitted us to watch the execution of the algorithm on a closer level, and to implement

automatic detection of overflow, underflow, and other suspicious conditions.

Another advantage of these emulated bit vectors is that we can simulate the tested

algorithms to bit lengths beyond those of the machine registers. For example, we can

test that the algorithm can still cause the result to converge even after 100, 200, or a

1000 iterations, while producing results as long as 4 thousand bits, which would not be

possible if the machine native arithmetic was used to test the algorithm.

Furthermore, the emulated bit vectors allow us to execute different steps of the algo-

rithms as closely as possible to their physical counterparts, resulting in a more meaningful

indication of the correctness of the algorithm.
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5.1 System Fingerprint

Here is the system fingerprint produced by the lookup table generator for our maximally-

redundant, radix-4 system, which only needs to be pasted in the C-language source-code

file to allow testing the system(1):

// independent system parameters

// - SET 1: BASIC-THEORETICAL

const unsigned short

algorithm_m = 2,

algorithm_n = 10,

algorithm_Z = 4;

// - SET 2: BASIC-PRACTICAL

const unsigned short

algorithm_alpha = 3,

algorithm_beta = 3,

algorithm_ns = 3,

algorithm_np = 5,

algorithm_np_fractional = 2,

algorithm_table_unsigned = 1;

const short SRT_table[][5] = {

{4, 4, 4, 3},

{4, 4, 4, 3},

{4, 4, 4, 3},

{4, 4, 4, 3},

{4, 4, 3, 3},

{4, 4, 3, 3},

{4, 4, 3, 3},

{4, 4, 3, 3},

{4, 3, 3, 3},

{4, 3, 3, 3},

{4, 3, 3, 3},

{4, 3, 3, 3},

{3, 3, 3, 3},

{3, 3, 3, 2},

{3, 3, 3, 2},

{3, 3, 3, 2},

{3, 3, 3, 2},

{3, 3, 2, 2},

{3, 3, 2, 2},

{3, 2, 2, 2},

{3, 2, 2, 2},

{3, 2, 2, 1},

{2, 2, 2, 1},

{2, 2, 2, 1},

{2, 2, 2, 1},

{2, 1, 1, 1},

{2, 1, 1, 1},

{1, 1, 1, 1},

{1, 1, 1, 1},

{1, 0, 0, 0},

{1, 0, 0, 0},

{0, 0, 0, 0},

{0, 0, 0, 0}

};

const unsigned short SRT_table_dimensions[] = {33,4};

const unsigned short SRT_table_p0 = 8 << algorithm_np_fractional;

const unsigned short

SRT_table_mappings[][3] = {{0,0,0}};

const unsigned short

SRT_table_mappings_count = 0;

5.1.1 Simulation Output

Once pasted in the simulator, random problems can be solved while maintaining two

residual and two result registers: one that is updated using the digits returned by the

(1) In fact, this is not entirely true since special code has also to be written for the emulation of the
First-Digit Selector. This is done by emulating the logic in Table 4.2 on page 96.
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SRT table, and another that is updated using the exact result digits, which are obtained

through a simple, radix-2 algorithm.

This way, by comparing the development of both register sets, we can make sure that

things are going the way they should and in case they did not, we can spot the iteration

at which the actual result diverged from the theoretical one (indicating an erroneous

digit-selection entry in the table).

Below is the simulation output for a random problem, with 10 iterations and a 48-bit

result, showing agreement between the theoretical and the actual results:

--------------------------------------------------------------

ORWA-AMIN MULTIPLICATIVE SQUARE-ROOT ALGORITHM SIMULATOR

--------------------------------------------------------------

Configuration: <ADVANCED>

- Signed-digit result using on-the-fly digit conversion: YES

- Supports rounding: YES

- Actual digit selection: YES

- Digit selection using an actual table: YES

- Carry-Save residual: YES

- Signed-digit multiplier B with automatic conversion: NO

--------------------------------------------------------------

System parameters:

- m: 2 bits RADIX = 4

- n: 24 iterations

- Z: 4 bits

System variables:

- size of operands: 48 bits

- iterations: 27 iteration(s)

--------------------------------------------------------------

TYPE OF SIMULATION: One-problem demonstration S = SQRT(A * B)

--------------------------------------------------------------

Problem data:

- A : 201123211030233033210010 (size = 48 bits, radix = 4)

- B : 201021200013330111200221 (size = 48 bits, radix = 4)

- S : 201102201123302212223122 (size = 48 bits, radix = 4)

- S’: 00201102201123302212223122 (size = 52 bits)

iteration 0 (initialization):

{S} = 0000000000000000000000000

{A} = 0000000000000000000000000201123211030233033210010

(overflow = NO, underflow = NO)

{W} = 00000000000000000000000000000001002313022121132133020020

(overflow = NO, underflow = NO)

iteration 1 (b = 0):

00000000000000000000000000000001002313022121132133020020

(^) : 3332

--------------------------------------------------------

P = "0000" ( 0000)

S. = "0"."00"

s’ = 0

00000000000000000000000000000001002313022121132133020020

(+) :

--------------------------------------------------------

{W} = 00000000000000000000000000000100231302212113213302002000

(overflow = NO, underflow = NO)

{W}t= 00000000000000000000000000000100231302212113213302002000

(overflow = NO, underflow = NO)

{S}ac = 0000000000000000000000000

{S}th = 0000000000000000000000000

{A} = 0000000000000000000000002011232110302330332100100

iteration 2 (b = 1):

00000000000000000000000000000100231302212113213302002000

(^) : 3332

--------------------------------------------------------

P = "0002" ( 0002)

S. = "0"."00"

s’ = 0

00000000000000000000000000000100231302212113213302002000

(+) : 20112321103023303321001

--------------------------------------------------------

{W} = 00000000000000000000000000010103303202321011300121201000

(overflow = NO, underflow = NO)

{W}t= 00000000000000000000000000010103303202321011300121201000

(overflow = NO, underflow = NO)

{S}ac = 0000000000000000000000000

{S}th = 0000000000000000000000000

{A} = 0000000000000000000000020112321103023303321001000

iteration 3 (b = 0, s’<precomputed> = 2):

00000000000000000000000000010103303202321011300121201000

(^) : 3332

--------------------------------------------------------

P = "0020" ( 0020)

S. = "0"."00"

s’ = FIRST-DIGIT-SELECTOR(ABC = 010) = "2"

00000000000000000000000000010103303202321011300121201000

(+) :

(-) : 1

--------------------------------------------------------

{W} = 00000000000000000000000001010330320232101130012120100000

{W} = 00000000000000000000000000010330320232101130012120100000

(overflow = NO, underflow = NO)

{W}t= 00000000000000000000000000010330320232101130012120100000

(overflow = NO, underflow = NO)

{S}ac = 0000000000000000000000002

{S}th = 0000000000000000000000002

{A} = 0000000000000000000000201123211030233033210010000

iteration 4 (b = 2, s’<precomputed> = 0):

00000000000000000000000000010330320232101130012120100000

(^) : 3332

--------------------------------------------------------

P = "0002" ( 0002)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[31][0] = 0

00000000000000000000000000010330320232101130012120100000

(+) : 100231302212113213302002

(-) :

--------------------------------------------------------

{W} = 00000000000000000000000001103121220031330323202210200000

{W} = 00000000000000000000000001103121220031330323202210200000

(overflow = NO, underflow = NO)

{W}t= 00000000000000000000000001103121220031330323202210200000

(overflow = NO, underflow = NO)
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{S}ac = 0000000000000000000000020

{S}th = 0000000000000000000000020

{A} = 0000000000000000000002011232110302330332100100000

iteration 5 (b = 1, s’<precomputed> = 1):

00000000000000000000000001103121220031330323202210200000

(^) : 3332

--------------------------------------------------------

P = "0022" ( 0022)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[27][0] = 1

00000000000000000000000001103121220031330323202210200000

(+) : 20112321103023303321001

(-) : 1001

--------------------------------------------------------

{W} = 00000000000000000000000110332300330302122230202021000000

{W} = 00000000000000000000000010232300330302122230202021000000

(overflow = NO, underflow = NO)

{W}t= 00000000000000000000000010232300330302122230202021000000

(overflow = NO, underflow = NO)

{S}ac = 0000000000000000000000201

{S}th = 0000000000000000000000201

{A} = 0000000000000000000020112321103023303321001000000

iteration 6 (b = 2, s’<precomputed> = 1):

00000000000000000000000010232300330302122230202021000000

(^) : 3332

--------------------------------------------------------

P = "0021" ( 0021)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[28][0] = 1

00000000000000000000000010232300330302122230202021000000

(+) : 100231302212113213302002

(-) : 10021

--------------------------------------------------------

{W} = 00000000000000000000001030233012113000021213222120000000

{W} = 00000000000000000000000022133012113000021213222120000000

(overflow = NO, underflow = NO)

{W}t= 00000000000000000000000022133012113000021213222120000000

(overflow = NO, underflow = NO)

{S}ac = 0000000000000000000002011

{S}th = 0000000000000000000002011

{A} = 0000000000000000000201123211030233033210010000000

iteration 7 (b = 0, s’<precomputed> = 0):

00000000000000000000000022133012113000021213222120000000

(^) : 3332

--------------------------------------------------------

P = "0011" ( 0011)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[30][0] = 1

00000000000000000000000022133012113000021213222120000000

(+) :

(-) : 100221

--------------------------------------------------------

{W} = 00000000000000000000002213301211300002121322212000000000

{W} = 13333333333333333333332131201211300002121322212000000000

(overflow = NO, underflow = NO)

{W}t= 00000000000000000000002213301211300002121322212000000000

(overflow = NO, underflow = NO)

{S}ac = 0000000000000000000020111

{S}th = 0000000000000000000020110

{A} = 0000000000000000002011232110302330332100100000000

iteration 8 (b = 0, s’<precomputed> = 2):

13333333333333333333332131201211300002121322212000000000

(^) : 3332

--------------------------------------------------------

P = "1303" (-0031)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[25][0] = -2

13333333333333333333332131201211300002121322212000000000

(+) :

(-) : 13333333333333333333132231

--------------------------------------------------------

{W} = 13333333333333333333213120121130000212132221200000000000

{W} = 00000000000000000000020223121130000212132221200000000000

(overflow = NO, underflow = NO)

{W}t= 00000000000000000000020223121130000212132221200000000000

(overflow = NO, underflow = NO)

{S}ac = 0000000000000000000201102

{S}th = 0000000000000000000201102

{A} = 0000000000000000020112321103023303321001000000000

iteration 9 (b = 0, s’<precomputed> = 2):

00000000000000000000020223121130000212132221200000000000

(^) : 3332

--------------------------------------------------------

P = "0101" ( 0101)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[24][0] = 2

00000000000000000000020223121130000212132221200000000000

(+) :

(-) : 2011021

--------------------------------------------------------

{W} = 00000000000000000002022312113000021213222120000000000000

{W} = 00000000000000000000011231113000021213222120000000000000

(overflow = NO, underflow = NO)

{W}t= 00000000000000000000011231113000021213222120000000000000

(overflow = NO, underflow = NO)

{S}ac = 0000000000000000002011022

{S}th = 0000000000000000002011022

{A} = 0000000000000000201123211030233033210010000000000

iteration 10 (b = 1, s’<precomputed> = 0):

00000000000000000000011231113000021213222120000000000000

(^) : 3332

--------------------------------------------------------

P = "0002" ( 0002)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[31][0] = 0

00000000000000000000011231113000021213222120000000000000

(+) : 20112321103023303321001

(-) :

--------------------------------------------------------

{W} = 00000000000000000001131123132113030313210100100000000000

{W} = 00000000000000000001131123132113030313210100100000000000

(overflow = NO, underflow = NO)

{W}t= 00000000000000000001131123132113030313210100100000000000

(overflow = NO, underflow = NO)

{S}ac = 0000000000000000020110220

{S}th = 0000000000000000020110220

{A} = 0000000000000002011232110302330332100100000000000

iteration 11 (b = 3, s’<precomputed> = 1):

00000000000000000001131123132113030313210100100000000000

(^) : 3332

--------------------------------------------------------

P = "0023" ( 0023)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[27][0] = 1

00000000000000000001131123132113030313210100100000000000

(+) : 121010223321203123223003

(-) : 1002211001

--------------------------------------------------------

{W} = 00000000000000000113233330101230301110233013000000000000

{W} = 00000000000000000013012230001230301110233013000000000000

(overflow = NO, underflow = NO)

{W}t= 00000000000000000013012230001230301110233013000000000000
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(overflow = NO, underflow = NO)

{S}ac = 0000000000000000201102201

{S}th = 0000000000000000201102201

{A} = 0000000000000020112321103023303321001000000000000

iteration 12 (b = 3, s’<precomputed> = 1):

00000000000000000013012230001230301110233013000000000000

(^) : 3332

--------------------------------------------------------

P = "0032" ( 0032)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[25][0] = 2

00000000000000000013012230001230301110233013000000000000

(+) : 121010223321203123223003

(-) : 2011022011

--------------------------------------------------------

{W} = 00000000000000001303033103022302202322131330000000000000

{W} = 13333333333333333232011032022302202322131330000000000000

(overflow = NO, underflow = NO)

{W}t= 00000000000000000300222100322302202322131330000000000000

(overflow = NO, underflow = NO)

{S}ac = 0000000000000002011022012

{S}th = 0000000000000002011022011

{A} = 0000000000000201123211030233033210010000000000000

iteration 13 (b = 3, s’<precomputed> = 2):

13333333333333333232011032022302202322131330000000000000

(^) : 3332

--------------------------------------------------------

P = "1313" (-0021)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[27][0] = -1

13333333333333333232011032022302202322131330000000000000

(+) : 121010223321203123223003

(-) : 133333333333333233112233101

--------------------------------------------------------

{W} = 13333333333333323213210231223001211202033300000000000000

{W} = 13333333333333333301320321123001211202033300000000000000

(overflow = NO, underflow = NO)

{W}t= 00000000000000003330031010223001211202033300000000000000

(overflow = NO, underflow = NO)

{S}ac = 0000000000000020110220113

{S}th = 0000000000000020110220112

{A} = 0000000000002011232110302330332100100000000000000

iteration 14 (b = 0, s’<precomputed> = 3):

13333333333333333301320321123001211202033300000000000000

(^) : 3332

--------------------------------------------------------

P = "1332" (-0002)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[31][0] = 0

13333333333333333301320321123001211202033300000000000000

(+) :

(-) :

--------------------------------------------------------

{W} = 13333333333333330132032112300121120203330000000000000000

{W} = 13333333333333330132032112300121120203330000000000000000

(overflow = NO, underflow = NO)

{W}t= 00000000000000031013133010200121120203330000000000000000

(overflow = NO, underflow = NO)

{S}ac = 0000000000000201102201130

{S}th = 0000000000000201102201123

{A} = 0000000000020112321103023303321001000000000000000

iteration 15 (b = 1, s’<precomputed> = 3):

13333333333333330132032112300121120203330000000000000000

(^) : 3332

--------------------------------------------------------

P = "1320" (-0020)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[28][0] = -1

13333333333333330132032112300121120203330000000000000000

(+) : 20112321103023303321001

(-) : 133333333333323311223310201

--------------------------------------------------------

{W} = 13333333333333020011001101103011120203010000000000000000

{W} = 00000000000000022222010021003011120203010000000000000000

(overflow = NO, underflow = NO)

{W}t= 00000000000000022222010021003011120203010000000000000000

(overflow = NO, underflow = NO)

{S}ac = 0000000000002011022011233

{S}th = 0000000000002011022011233

{A} = 0000000000201123211030233033210010000000000000000

iteration 16 (b = 1, s’<precomputed> = 0):

00000000000000022222010021003011120203010000000000000000

(^) : 3332

--------------------------------------------------------

P = "0011" ( 0011)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[30][0] = 1

00000000000000022222010021003011120203010000000000000000

(+) : 20112321103023303321001

(-) : 100221100231321

--------------------------------------------------------

{W} = 00000000000002230212300211210103013001100000000000000000

{W} = 13333333333332202102211013110103013001100000000000000000

(overflow = NO, underflow = NO)

{W}t= 00000000000002230212300211210103013001100000000000000000

(overflow = NO, underflow = NO)

{S}ac = 0000000000020110220112331

{S}th = 0000000000020110220112330

{A} = 0000000002011232110302330332100100000000000000000

iteration 17 (b = 1, s’<precomputed> = 2):

13333333333332202102211013110103013001100000000000000000

(^) : 3332

--------------------------------------------------------

P = "1310" (-0030)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[26][0] = -2

13333333333332202102211013110103013001100000000000000000

(+) : 20112321103023303321001

(-) : 13333333333132231132210031

--------------------------------------------------------

{W} = 13333333333220231000023020100211221111000000000000000000

{W} = 00000000000021333201212323100211221111000000000000000000

(overflow = NO, underflow = NO)

{W}t= 00000000000021333201212323100211221111000000000000000000

(overflow = NO, underflow = NO)

{S}ac = 0000000000201102201123302

{S}th = 0000000000201102201123302

{A} = 0000000020112321103023303321001000000000000000000

iteration 18 (b = 2, s’<precomputed> = 2):

00000000000021333201212323100211221111000000000000000000

(^) : 3332

--------------------------------------------------------

P = "0103" ( 0103)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[23][0] = 2

00000000000021333201212323100211221111000000000000000000

(+) : 100231302212113213302002

(-) : 2011022011233021

--------------------------------------------------------

{W} = 00000000002200323100321031213321131120000000000000000000

{W} = 00000000000123301023022010213321131120000000000000000000

(overflow = NO, underflow = NO)
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{W}t= 00000000000123301023022010213321131120000000000000000000

(overflow = NO, underflow = NO)

{S}ac = 0000000002011022011233022

{S}th = 0000000002011022011233022

{A} = 0000000201123211030233033210010000000000000000000

iteration 19 (b = 0, s’<precomputed> = 1):

00000000000123301023022010213321131120000000000000000000

(^) : 3332

--------------------------------------------------------

P = "0031" ( 0031)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[26][0] = 2

00000000000123301023022010213321131120000000000000000000

(+) :

(-) : 20110220112330221

--------------------------------------------------------

{W} = 00000000012330102302201021332113112000000000000000000000

{W} = 13333333332213222123210200332113112000000000000000000000

(overflow = NO, underflow = NO)

{W}t= 00000000002301332213002311232113112000000000000000000000

(overflow = NO, underflow = NO)

{S}ac = 0000000020110220112330222

{S}th = 0000000020110220112330221

{A} = 0000002011232110302330332100100000000000000000000

iteration 20 (b = 0, s’<precomputed> = 2):

13333333332213222123210200332113112000000000000000000000

(^) : 3332

--------------------------------------------------------

P = "1310" (-0030)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[26][0] = -2

13333333332213222123210200332113112000000000000000000000

(+) :

(-) : 13333333132231132210031121

--------------------------------------------------------

{W} = 13333333221322212321020033211311200000000000000000000000

{W} = 00000000023031020110322312211311200000000000000000000000

(overflow = NO, underflow = NO)

{W}t= 00000000023031020110322312211311200000000000000000000000

(overflow = NO, underflow = NO)

{S}ac = 0000000201102201123302212

{S}th = 0000000201102201123302212

{A} = 0000020112321103023303321001000000000000000000000

iteration 21 (b = 2, s’<precomputed> = 2):

00000000023031020110322312211311200000000000000000000000

(^) : 3332

--------------------------------------------------------

P = "0112" ( 0112)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[21][0] = 3

00000000023031020110322312211311200000000000000000000000

(+) : 100231302212113213302002

(-) : 30132330202122332121

--------------------------------------------------------

{W} = 00000002310110330121013013330200020000000000000000000000

{W} = 13333333230211303302113201230200020000000000000000000000

(overflow = NO, underflow = NO)

{W}t= 00000000233022312221330232330200020000000000000000000000

(overflow = NO, underflow = NO)

{S}ac = 0000002011022011233022123

{S}th = 0000002011022011233022122

{A} = 0000201123211030233033210010000000000000000000000

iteration 22 (b = 2, s’<precomputed> = 2):

13333333230211303302113201230200020000000000000000000000

(^) : 3332

--------------------------------------------------------

P = "1312" (-0022)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[27][0] = -1

13333333230211303302113201230200020000000000000000000000

(+) : 100231302212113213302002

(-) : 133333233112233102012230221

--------------------------------------------------------

{W} = 13333323031220121033132111010202200000000000000000000000

{W} = 13333333113330210231303022310202200000000000000000000000

(overflow = NO, underflow = NO)

{W}t= 00000003202100300030020000010202200000000000000000000000

(overflow = NO, underflow = NO)

{S}ac = 0000020110220112330221223

{S}th = 0000020110220112330221222

{A} = 0002011232110302330332100100000000000000000000000

iteration 23 (b = 1, s’<precomputed> = 3):

13333333113330210231303022310202200000000000000000000000

(^) : 3332

--------------------------------------------------------

P = "1322" (-0012)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[29][0] = -1

13333333113330210231303022310202200000000000000000000000

(+) : 20112321103023303321001

(-) : 133332331122331020122302221

--------------------------------------------------------

{W} = 13333312013200010233332201001221000000000000000000000000

{W} = 00000012300300302221101312301221000000000000000000000000

(overflow = NO, underflow = NO)

{W}t= 00000012300300302221101312301221000000000000000000000000

(overflow = NO, underflow = NO)

{S}ac = 0000201102201123302212223

{S}th = 0000201102201123302212223

{A} = 0020112321103023303321001000000000000000000000000

iteration 24 (s’<precomputed> = 1):

00000012300300302221101312301221000000000000000000000000

(^) : 3332

--------------------------------------------------------

P = "0031" ( 0031)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[26][0] = 2

00000012300300302221101312301221000000000000000000000000

(-) : 2011022011233022122231

--------------------------------------------------------

{W} = 13333213002012323022002333122100000000000000000000000000

(overflow = NO, underflow = NO)

{W}t= 00000221213021302233100112022100000000000000000000000000

(overflow = NO, underflow = NO)

{S}ac = 0002011022011233022122232

{S}th = 0002011022011233022122231

{A} = 0201123211030233033210010000000000000000000000000

iteration 25 (s’<precomputed> = 2):

13333213002012323022002333122100000000000000000000000000

(^) : 3332

--------------------------------------------------------

P = "1303" (-0031)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[25][0] = -2

13333213002012323022002333122100000000000000000000000000

(-) : 13313223113221003112111021

--------------------------------------------------------

{W} = 00002011022011233022122231210000000000000000000000000000

(overflow = NO, underflow = NO)

{W}t= 00002011022011233022122231210000000000000000000000000000
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(overflow = NO, underflow = NO)

{S}ac = 0020110220112330221222312

{S}th = 0020110220112330221222312

{A} = 2011232110302330332100100000000000000000000000000

iteration 26 (s’<precomputed> = 2):

00002011022011233022122231210000000000000000000000000000

(^) : 3332

--------------------------------------------------------

P = "0100" ( 0100)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[24][0] = 2

00002011022011233022122231210000000000000000000000000000

(-) : 201102201123302212223121

--------------------------------------------------------

{W} = 00000000000000000000000000000000000000000000000000000000

(overflow = NO, underflow = NO)

{W}t= 00000000000000000000000000000000000000000000000000000000

(overflow = NO, underflow = NO)

{S}ac = 0201102201123302212223122

{S}th = 0201102201123302212223122

{A} = 0112321103023303321001000000000000000000000000000

iteration 27 (s’<precomputed> = 0):

00000000000000000000000000000000000000000000000000000000

(^) : 3332

--------------------------------------------------------

P = "0000" ( 0000)

S. = "0"."20"

loose-bit signal = 1

s’ = SRTLookUp[32][0] = 0

00000000000000000000000000000000000000000000000000000000

(-) :

--------------------------------------------------------

{W} = 00000000000000000000000000000000000000000000000000000000

(overflow = NO, underflow = NO)

{W}t= 00000000000000000000000000000000000000000000000000000000

(overflow = NO, underflow = NO)

{S}ac = 2011022011233022122231220

{S}th = 2011022011233022122231220

RESIDUAL SUCCESSFULLY ELIMINATED!

5.2 Comparisons and Conclusion

By comparing the set of good designs in Table 3.2 against those published in the

case of the Multiplier-Divider unit in [2], we can see that through an increased value of

Z, the potential use of a Second-Digit Selector, and by benefiting from the smart choice

feature, we were able to obtain equivalent truncation pairs in the case of a minimally-

and a maximally-redundant radix-4 and radix-8 systems.

Note that the equality of the truncation pairs takes into account the additional inte-

gral bit of P̂ in the case of the square root (subsection 3.3.1 on page 74).

In the maximally-redundant radix-16 and radix-32 cases, we also seem to be able to

provide an equivalent truncation pair at the cost of a higher Z value and the use of a

Second-Digit Selector.

In fact, surprisingly, by comparing the total number of input bits in the second row

of Table 3.2 to the efficient design in [8], we can see that we were even able to provide the

same SRT table size compared to a pure square-root unit of the same radix and internal

digit set, with the added advantage of supporting incorporated multiplication.

Note that unlike the circuit in [8], our architecture requires a First-Digit Selector,

whose design in the minimally-redundant, radix-4 case is unknown. This First-Digit

Selector is not needed in [8].
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Still, the conclusion holds, which is that incorporating multiplication, beside adding

to the complexity of the data path of the square-root algorithm, seems to only cause a

moderate increase (if any) in the size of the SRT table, at the expense of a higher Z

value compared to a fused multiplication/division unit.

5.3 Future Work

This work can be improved by exploring the classical route of developing the recur-

rence relation, which is expected to result in a lower hardware cost.

In fact, the author will produce a scientific paper that will address this shortage, while

proposing a minimally-redundant, radix-4 unit based on the alternative recurrence.

Aside from this, more work can be done on standardizing the SRT table design

process, and developing the tools presented in this thesis to increase their efficiency and

usability. It’s also desired to formally work on the issue of SRT-table verification, by

creating easy-to-use tools that provide total assurance of the correctness of the contents

of the SRT table. Note that there are tools whose purpose is to verify arithmetic circuits,

but isolating the problem of verifying of SRT table contents has not be attempted before,

and there are no efficient, open-source tools for this.

More work can also be done on modeling and simulating a combined multiplication/-

division and a multiplication/square-root unit, and possibly sharing more components

than just the SRT table.
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Appendix A

Theory of Digit-Recurrence

Multiplication/Division∗

In this appendix, we will rapidly develop the digit-recurrence multiplication/division

theory using the same theoretical approach of Chapter 1, which will demonstrate the

power of this approach as well as its educational value.

The development is broken down into two main parts, which are the development of

the recurrence relation in A.1, and the derivation of the correctness constrain in A.2.

A.1 The Recurrence Relation

Division is defined as finding the number, called the quotient Q, whose multiplication

with one of the two operands, named the divisor D, is equal to the other operand, which

is named the dividend N :

Q
quotient

=

dividend

N

D
divisor

⇒ N = Q ×D

The fact that Q is defined indirectly through a criterion dictates that it has to be

approached in steps (using search), which implies an iterative algorithm in which an

initial approximation Q0 is repeatedly enhanced through the course of n iterations, to
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arrive at a result Qn that has an adequate accuracy:

initial
approximation

↓

Q0∶ Q1, Q2, Q3, Q4, . . . Qn−1,

the
result
↓

Qn
n iterations

To guide the convergence of the result, we compute the difference between the true

dividend N and the dividend implied by the current approximation N (Q), as follows:

R = N −N (Q)

= N −QD

where this error value is named the remainder R, and is considered as one of the outcomes

of division in addition to the result Qn itself.

This indirect error value is nothing but a scaled version of the actual error, and hence

can be used satisfactorily to direct as well as supervise the development of the result:

R = N −QD = QD −QD = (Q −Q
actual error

)D

A.1.1 An additive algorithm

To design an additive algorithm based on maintaining R andQ, we have to update

the remainder additively. This is done by computing the difference between Ri and Ri−1:

Ri = Ri−1 +∆Ri

∆Ri
def= Ri −Ri−1

= (N −QiD) − (N −Qi−1D)

= −(Qi −Qi−1)D

(A.1)

In digit-recurrence division, the quotients are enhanced by the addition of a new

result digit in every iteration, assuming a most-significant digit position of a − 1 and a

total length of n digits (equal to the number of iterations). This implies the following
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change in the quotient:

Qi −Qi−1 = qi
the i’th

result digit

ra−i

By substituting this into (A.1) we get:

Ri = Ri−1 − qira−iD

A.1.2 Incorporating multiplication

Note that in the case of fused multiplication/division, an approach similar to the one

in section 2.4 is used, which includes:

1. Substituting N with the Ñi, which is the approximate dividend resulting from

accumulating i + 1 partial products of A ×B in the i’th iteration. Note that B is

the multiplier, A is the multiplicand, and A ×B is the multiplied dividend in the

fused algorithm (i.e. Q = A×B
D ).

2. Delaying the actual execution of division by adding Z leading zero bits to Q, which

is done by downscaling A by 2−Z (also known as the processed multiplicand A′).

3. Due to the preprocessing of the multiplicand A, both of the quotients Qi and the

approximate dividends Ñi will be affected as follows:

Ñ ′

i = 2−ZÑi Q′i ( with digits
denoted as q′j) = 2−ZQi

To maintain a remainder based on the approximate processed radicand Ñ ′

i we use

the same diacritics, namely the tilde and the apostrophe (to denote approximation and

executional delay, respectively), which results in the following notation/definition:

R̃′

i
def= Ñ ′

i −Q′iD (A.2)
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where to update this remainder in an additive, digit-based algorithm we need to add:

∆R̃′

i = R̃′

i − R̃′

i−1

= (Ñ ′

i −Q′iD) − (Ñ ′

i−1 −Q′i−1D)

= (Ñ ′

i − Ñ ′

i−1

=bi+1Ara−i−1
) − (Q′i −Q′i−1

=q′ir
a−i
)D

This implies the following line for updating the remainder:

R̃′

i = R̃′

i−1 − q′ira−iD + bi+1Ar
a−i−1 (A.3)

To eliminate the dependence on the iteration number i, we counteract the change in

position of both terms by shifting the remainder between iterations.

This leads us to introducing the residual Wj as:

Wj
def= rjR̃′

j ⇒ R̃′

j ← r−jWj (A.4)

By substituting this into (A.3) we get:

r�−iWi = r�−i+1Wi−1 − q′ira�−iD + bi+1Ar
a�−i−1

Wi = rWi−1 − q′iDra + bi+1Ar
a−1

where, by substituting a with either 0 or n for the fractional/integral cases we get the

following, fused-operation recurrence relations [2]:

fractional case (a = 0): Wi = rWi−1 − q′iD + bi+1Ar
−1 (A.5)

integral case (a = n): Wi = rWi−1 − q′iDrn + bi+1Ar
n−1 (A.6)
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A.2 The Correctness Constraint

In a manner similar to Chapter 1, we can arrive at the correctness constraint by en-

suring that the true (processed) quotient Q′ lies in-between, or enclosed by the minimum

and the maximum values reachable by future iterations of the algorithm(1), as follows:

Q′i−1 + (q′i − h−)ra−i < Q′ < Q′i−1 + (q′i + h+)ra−i

Q′i−1D +D(q′i − h−)ra−i < Q′D

=N ′
< Q′i−1D +D(q′i + h+)ra−i

D(q′i − h−)ra−i < N ′

=Ñ ′
i−1+ε(Ñ

′
i−1)

−Q′i−1D < D(q′i + h+)ra−i

D(q′i − h−)ra−i < R̃′

i−1+ε(Ñ ′

i−1) < D(q′i + h+)ra−i

which results in:

D(q′i − h−)ra−i − ε(Ñ ′

i−1) < R̃′

i−1 < D(q′i + h+)ra−i − ε(Ñ ′

i−1) (A.7)

To resolve the error terms, we need to compute the difference between N ′ and Ñ ′

i−1:

Ñ ′

i−1 =
i

∑
j=1

bjr
a−jA′ =

i

∑
j=1

bjr
a−j2−ZA

N ′ =
n

∑
j=1

bjr
a−jA′ =

n

∑
j=1

bjr
a−j2−ZA

(1) This corresponds to the repetition of the minimum digit choice −α in the minimum case, or the
repetition of the maximum digit value +β in the positive case, while assuming a redundant internal digit
set of φ = {−α,⋯,+β}. Note that such a recurring fraction will have a minimum value of −h− = − α

r−1 and

a maximum value of h+ = β
r−1 .
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which results in the following value for the error:

ε(Ñ ′

i−1) = N ′ − Ñ ′

i−1

=
n

∑
j=i+1

bjr
a−j2−ZA

= ra−i2−ZA
n

∑
j=1

bi+jr
−j

noting that, assuming a general digit set of the multiplier B of φB = {−B−,⋯B+} and a

fractional span of h−B = B−
r−1 and h+B = B+

r−1 , we get the following range for the sum above:

−h−B <
n

∑
j=1

bi+jr
−j ≈

∞

∑
j=1

bi+jr
−j < h+B

This, combined with the following range for an irredundant multiplicand A:

0 ⩽ A < ra

gives us the following minimum and maximum limits for the error terms in (A.7):

εmin(Ñ ′

i−1) = −r2a−i2−Zh−B

εmax(Ñ ′

i−1) = +r2a−i2−Zh+B

By incorporating the minimum error value in the lower bound and the maximum

error value in the upper bound of (A.7) to account for the worst-case scenario, we obtain

the following:

D(q′i − h−)ra−i + r2a−i2−Zh−B < R̃′

i−1 < D(q′i + h+)ra−i − r2a−i2−Zh+B
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By substituting the recurrence residual Wi−1 (A.4) for R̃′

i−1 in this inequality we get:

D(q′i − h−)ra�−i + r2a�−i2−Zh−B < r�−i+1Wi−1 < D(q′i + h+)ra�−i − r2a�−i2−Zh+B

D(q′i − h−)ra + r2a2−Zh−B < rWi−1 < D(q′i + h+)ra − r2a2−Zh+B

Then, to standardize the range of the D input, we opt for a normalized fraction form

of it Ḋ (known as the fractional divisor), where:

Ḋ
def= r−aD ⇒ D ← raḊ

By substituting this in the above then dividing by r2a we get the following, final

correctness constraint for combined multiplication and division:

Ḋ(q′i − h−) + 2−Zh−B < r−2a(rWi−1)
Pi−1

< Ḋ(q′i + h+) − 2−Zh+B (A.8)

where the amount in the middle is named the selection remainder P , which is the equiv-

alent of the selection remainder in the case of the square root.

The similarity between this correctness constraint and that of fused multiplication/square-

root operation is addressed in subsection 3.3, which is used to share the SRT table

between the two units.
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List of Symbols

m number of result bits retired per iteration

r the radix (= 2m)

n number of radix-r significant digits in the final result

i the iteration index

φ the result digit set = {−α,⋯, β}

h− = α

r − 1

h+ = β

r − 1

a {
0 for a fractional result

n for an integral result

S true square root

Q true quotient

A multiplicand

B multiplier =
n

∑
j=1

bjr
a−j

D divisor =
n

∑
j=1

djr
a−j

φB multiplier’s digit set = {B−,⋯,B+}

h−B = B−

r − 1

h+B = B+

r − 1

N = A ×B

Si computational square root =
i

∑
j=1

sjr
a−j
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Qi computational quotient =
i

∑
j=1

qjr
a−j

Sfinal =
n

∑
j=1

sjr
a−j

Qfinal =
n

∑
j=1

qjr
a−j

Rj
= N − Sj2 (square root)

= N −QjD (division)

Sj = Sjr−(a−j)

Z executional delay in the fused unit

δ = ⌊Z
m

⌋ + 1

ma = Z −m ⌊Z
m

⌋

mb =m ⌈Z
m

⌉ −Z (also called the excess bits)

mc =m −ma

n∗ = n + (⌈Z
m

⌉ − ⌊Z
m

⌋)

A′

= 2−2ZA (square root)

= 2−ZA (division)

N ′

= 2−2ZN (square root)

= 2−ZN (division)

S′/S ′ = 2−ZS/S

Q′/Q′ = 2−ZQ/Q

S ′i =
i

∑
j=1

s′jr
a−j

Q′i =
i

∑
j=1

q′jr
a−j

S ′j = S ′jr−(a−j)

Ñi =
i+1

∑
j=1

bjr
a−jA
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R̃j
= Ñj − Sj2 (square root)

= Ñj −QjD (division)

Ñ ′

i =
i+1

∑
j=1

bjr
a−jA′

R̃′

j

= Ñ ′

j − S ′j
2

(square root)

= Ñ ′

j −Q′jD (division)

ε(Ñj) = N − Ñj

ε(Ñ ′

j) = N ′ − Ñ ′

j

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2−2Zε(Ñj) (square root)

2−Zε(Ñj) (division)

A←j shifted multiplicand = rjA

Wj residual = r2jR̃i

Yj half-pace residual = rjR̃i

Pj selection remainder = r−2a2Z(rYj)

Ṡj fractional result = r−a2ZS ′j
P̂ truncated Pi−1

Ŝ truncated Ṡi−1

nP fractional bits in the sample P̂

nS fractional bits in the sample Ŝ

nP smart fractional bits that can be passed to the SRT table of P̂

σ = ⌊Z + nS
m

⌋ + 1

2X ulp of the adder used to sample rWδ−1 for First-Digit Selection

Ḋ fractional divisor = r−aD

P̂ ∗ dynamically-shifted sample, equals to 2P̂ if Ŝ is less than 1
2 , and to P̂

otherwise.

Ŝ∗ dynamically-shifted result, equals to 2Ŝ if Ŝ is less than 1
2 , and to Ŝ

otherwise.
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