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Chapter 1

INTRODUCTION

1.1 What is NCS?

Networked control systems are control systems comprised of the system to be

controlled and of actuators, sensors, and controllers, the operation of which is

coordinated via a shared communication network. These systems are typically

spatially distributed, may operate in an asynchronous manner, but have their

operation coordinated to achieve desired overall objectives.

Research on Networked control systems (NCS) has been the prime focus both in

academia and in industrial applications for several decades. NCS has now devel-

1
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oped into a multidisciplinary area. In this chapter, we provide an introduction

to NCS and the different forms of NCS. The chapter begins with the history

of NCS, different advantages of having such systems. As we proceed further,

the chapter gives an insight to different challenges faced with building efficient,

stable and secure NCS. We also discuss the different fields and research arenas,

which are part of NCS and which work together to deal with different NCS is-

sues. The following chapters provide a brief literature survey concerning each

topic highlighting the recent trends in the evolution networked control systems.

For many years researchers have given us precise and optimum control strate-

gies emerging from classical control theory, starting from open-loop control to

sophisticated control strategies based on genetic algorithms. The advent of com-

munication networks, however, introduced the concept of remotely controlling

a system, which gave birth to networked control systems (NCS). The classical

definition of NCS can be as follows: When a traditional feedback control system

is closed via a communication channel, which may be shared with other nodes

outside the control system, then the control system is called an NCS. An NCS

can also be defined as a feedback control system wherein the control loops are

closed through a real-time network. The defining feature of an NCS is that in-

formation (reference input, plant output, control input, etc.) is exchanged using

a network among control system components (sensors, controllers, actuators,

etc.), see Fig. 1.1.
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Figure 1.1: General NCS architecture

1.2 Advantages of NCS

For many years now, data networking technologies have been widely applied in

industrial and military control applications. These applications include manu-

facturing plants, automobiles, and aircraft. Connecting the control system com-

ponents in these applications, such as sensors, controllers, and actuators, via

a network can effectively reduce the complexity of systems, with nominal eco-

nomical investments. Furthermore, network controllers allow data to be shared

efficiently. It is easy to fuse the global information to take intelligent decisions

over a large physical space. They eliminate unnecessary wiring. It is easy to add

more sensors, actuators and controllers with very little cost and without heavy

structural changes to the whole system. Most importantly, they connect cyber

space to physical space making task execution from a distance easily accessible

(a form of tele-presence).

The use of a multipurpose shared network to connect spatially distributed el-
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ements results in flexible architectures and generally reduces installation and

maintenance costs. Consequently, NCSs have been finding application in a broad

range of areas such as mobile sensor networks [20], and automated highway sys-

tems and unmanned aerial vehicles [6], [22]. Due to other advantages, such

as low cost of installation, ease of maintenance and great flexibility, networked

control systems (NCSs) have been widely used in DC motor systems, dual-axis

hydraulic positioning systems, and large scale transportation vehicles etc.

One of the biggest advantages of a system controlled over a network is scalability.

As we talk about adding many sensors connected through the network at differ-

ent locations, we can also have one or more actuators connected to one or more

controllers through the network. For many years now, researchers have given

us precise and optimum control strategies emerging from classical control the-

ory, starting from PID control, optimal control, adaptive control, robust control,

intelligent control and many other advanced forms of these control algorithms.

1.3 Limitations & drawbacks of NCS

Control and communications have traditionally been different areas with little

overlap. Until the 1990s it was common to decouple the communication issues

from consideration of state estimation or control problems. In particular, in

the classic control and state estimation theory, the standard assumption is that

all data transmission required by the algorithm can be performed with infinite
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Figure 1.2: Networked Control: Control + Communication

precision in value. In such an approach, control and communication components

are treated as totally independent. This considerably simplified the analysis and

design of the overall system and mostly works well for engineering systems with

large communication bandwidth.

NCSs lie at the intersection of control and communication theories. The classic

control theory focuses on the study of interconnected dynamical systems linked

through ”ideal channels”, whereas communication theory studies the transmis-

sion of information over ”imperfect channels”. A combination of these two

frameworks is needed to model NCSs. We can broadly categorize NCS ap-

plications into two categories as (1) time-sensitive applications or time-critical

control such as military, space and navigation operations; (2) time-insensitive

or non-real-time control such as data storage, sensor data collection, e-mail, etc.

However, network reliability is an important factor for both types of systems.

After having an overview of different categories, components and applications of

NCS, let us discuss the key issues that make NCSs distinct from other control

systems from a controls perspective.
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1.3.1 Limited Communication Bandwith

Any communication network can only carry a finite amount of information per

unit of time. In many applications, this limitation poses significant constraints

on the operation of NCSs. Examples of NCSs that are afflicted by severe com-

munication limitations include unmanned air vehicles (UAVs), due to stealth

requirements, power-starved vehicles such as planetary rovers, long-endurance

energy-limited systems such as sensor networks, underwater vehicles, and large

arrays of micro-actuators and sensors.

1.3.2 Network-induced Delay

To transmit a continuous-time signal over a network, the signal must be sampled,

encoded in a digital format, transmitted over the network, and finally the data

must be decoded at the receiver side. This process is significantly different

from the usual periodic sampling in digital control. The overall delay between

sampling and eventual decoding at the receiver can be highly variable because

both the network access delays (i.e., the time it takes for a shared network

to accept data) and the transmission delays (i.e., the time during which data

are in transit inside the network) depend on highly variable network conditions

such as congestion and channel quality. In some NCSs, the data transmitted

are time stamped, which means that the receiver may have an estimate of the

delays duration and take appropriate corrective action. A significant number of
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results have attempted to characterize a maximum upper bound on the sampling

interval for which stability can be guaranteed. These results implicitly attempt

to minimize the packet rate that is needed to stabilize a system through feedback.

1.3.3 Transmission losses (Packet Dropout)

A significant difference between NCSs and standard digital control is the pos-

sibility that data may be lost while in transit through the network. Typically,

packet dropouts result from transmission errors in physical network links (which

is far more common in wireless than in wired networks) or from buffer overflows

due to congestion. Long transmission delays sometimes result in packet re-

ordering, which essentially amounts to a packet dropout if the receiver discards

”outdated” arrivals. Reliable transmission protocols, such as TCP, guarantee

the eventual delivery of packets. However, these protocols are not appropriate

for NCSs since the retransmission of old data is generally not very useful.

Normally feedback-controlled plants can tolerate a certain amount of data loss,

but it is essential to determine whether the system is stable when only trans-

mitting packets at a certain rate, and to compute the acceptable lower bounds

on the packet transmission rates.

Having gone through a brief introduction to Networked Control Systems, we

now move further and take a look at the key issue that the thesis deals with,

i.e. stability of Networked Systems subject to random delays.
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1.4 Stability of NCS with Random delays

Systems with time delay have attracted the interest of many researchers since the

early 1900s. In the 1940s, some theorems were developed to check the stability

of time delay systems in the frequency domain. The corresponding theorems

in the time domain appeared in the 1950s and 1960s. In the last 20 years,

the improvement in the computation tools gave an opportunity to develop new

methods to check the stability of time delay systems.

The available tools to check the stability of time delay systems can be classified

into two categories: delay-independent methods or delay-dependent methods.

Delay-independent stability methods check whether the stability of a time delay

system is preserved for a delay of any size or not. The methods in this cat-

egory try to check if the magnitude of the delayed states does not affect the

stability of the system, no matter what the value of that delay is. These meth-

ods are easier to derive, but they suffer some conservatism because: not all the

systems have insignificant delayed states; in many cases the delay is fixed, and

so applying these methods imposes unnecessary conditions and introduces ad-

ditional complications; and lastly, delay-independent stability methods can be

used only when the delay has a destabilizing effect. For these very reasons, many

researchers have shifted their interests to the investigation of delay-dependent

stability methods.

In contrast to delay-independent stability methods, delay-dependent stability
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methods require some information about the delay. This information serves one

of the following two purposes:

• to check whether a given system, with some dynamics and delay informa-

tion, is stable or not; or

• to check the maximum duration of delays in the presence of which a given

a system, with some dynamics, can preserve its stability.

Generally, the second purpose is used to qualify any developed method. For

implementation purposes, the conditions for time delay systems can only be

sufficient. Different methods give different sets of conditions. In research, the

commonly used delay types are:

1. Fixed Delay

τ = ρ, ρ = constant.

2. Unknown Time-varying delay with an upper-bound

0 ≤ τ ≤ ρ, ρ = constant.

3. Unknown time-varying delay with an upper-bound on its value and an

upperbound on its rate of change

0 ≤ τ ≤ ρ, ρ = constant,

τ̇ ≤ µ, µ = constant.

4. Delay that varies within some interval

h1 ≤ τ ≤ h2, h1, h2 = constant.
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5. Delay that varies within some interval with an upper-bound on its rate of

change

h1 ≤ τ ≤ h2, h1, h2 = constant,

τ̇ ≤ µ, µ = constant.

1.4.1 Stability using Lyapunov’s Theorem

Based on Lyapunov’s theorem, there are two main theorems to check the stability

of time delay systems: the Lyapunov-Razumikhin theorem and the Lyapunov-

Krasovskii theorem.

Lyapunov-Razumikhin Theorem

Because the evolution of the states in time delay systems depends on the current

and previous states’ values, their Lyapunov functions should become function-

als (more details in Lyapunov-Krasovskii method discussed in the next section).

The functional may complicate the formulation of the conditions and their anal-

ysis. To avoid such complications, Razumikhin developed a theorem which will

construct Lyapunov functions but not as functionals. To apply the Razumikhin

theorem, one should build a Lyapunov function V (x(t)). This V (x(t)) is equal

to zero when x(t) = 0 and positive otherwise. The theorem does not require

V̇ to be less than zero always, but only when V (x(t)) becomes greater than or
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equal to a threshold V̄ . V̄ is given by:

V̄ = max
θ∈[−τ,0]

V (x(t+ θ))

Based on this condition, one can understand the theorem statement [78], which

is:

Theorem 1.4.1 Suppose f is a functional that takes time t and initial values

xt and gives a vector of n states ẋ, u, v and w are class K functions u(s) and

v(s) are positive for s > 0 and u(0) = v(0) = 0, v is strictly increasing. If there

exists a continuously differentiable function V : R X Rn → R such that:

u(‖x‖) ≤ V (t, x) ≤ v(‖x‖) (1.1)

and the time derivative of V (x(t)) along the solution x(t) satisfies V̇ (t, x) ≤

−w(‖x‖) whenever V̄ = V (t + θ, x(t + θ)) ≤ V (t, x(t)), θ ∈ [−τ, 0]; then the

system is uniformly stable. If in addition w(s) > 0 for s > 0 and there exists

a continuous non-decreasing function p(s) > s for s > 0 such that V̇ (t, x) ≤

w(‖x‖) whenever V (t + θ, x(t + θ)) ≤ p(V (t, x(t))) for θ ∈ [−τ, 0] then the

system is uniformly asymptotically stable.

Here V̄ serves as a measure for V (x(t)) in the interval from t− τ to t. If V (x(t))

is less than V̄ , V̇ could be greater than zero. On the other hand, if V (x(t))

becomes greater than or equal to V̄ , then V̇ must be less than zero, such that

V will not grow beyond limits. In other words, according to the Razumikhin
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theorem, V̇ need not be always less than zero, but the following conditions

should be satisfied:

V̇ + a(V (x)− V̄ ) ≤ 0 (1.2)

for a > 0. Therefore, there are three cases for the system to be stable:

1. V̇ < 0 and V (x(t)) ≥ V . Here the states do not grow in magnitude;

2. V̇ > 0 but V (x(t)) < V . In this case, although V̇ is positive (the values of

the states increase), the Lyapunov function is limited by an upper bound;

and

3. a case where both terms are negative.

The condition in (1.2) ensures uniform stability, i.e. the states may not reach

the origin, but they are contained in some domain. To ensure the asymptotic

stability, the condition should be:

V̇ + a(p(V (x(t)))− V̄ ) < 0, a > 0 (1.3)

where p(.) is a function with the property: p(s) > s.

This condition implies that when the system reaches some value which makes

p(V (x(t))) = V̄ , then V̇ should be negative and V (x(t)) will not reach V̄ . In the

coming interval τ , V (x) will never reach the old V̄ (V̄old). The maximum value
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Figure 1.3: Lyapunov-Razumikhin Method

of V in this interval is the new V̄ (V̄new) which is less V̄old . With the passage of

time, V keeps decreasing until the states reach the origin (see Figure 1.3).

Lyapunov-Krasovskii Theorem

While Razumikhin’s theorem is based on constructing Lyapunov functions, the

Lyapunov-Krasovskii theorem constructs functionals instead. Based on the Lya-

punov theorem’s concept, the function V is a measure of the system’s internal

energy. In time delay systems, the internal energy depends on the value of xt,

and it is reasonable to construct V which is a function of xt (which is also a func-

tion). Because V is a function of another function, it becomes a functional. To

ensure asymptotic stability, V̇ should always be less than zero. The Lyapunov-

Krasovskii theorem is discussed in more detail in the following section.

The remaining advantage of Razumikhin-based methods over Krasovskii is their

relative simplicity, but Lyapunov-Krasovskii gives less conservative results. Be-



14

fore discussing the theorem, we have to define the following notations:

φ = xt

‖φ‖c = max
θ∈[−τ,0]

x(t+ θ) (1.4)

The statement of the Lyapunov-Krasovskii theorem given in [78] is:

Theorem 1.4.2 Suppose f is a functional that takes time t and initial values

xt and gives a vector of n states ẋ, u, v and w are class K functions u(s) and

v(s) are positive for s > 0 and u(0) = v(0) = 0, v is strictly increasing. If there

exists a continuously differentiable function V such that:

u(‖φ‖) ≤ V (t, xt) ≤ v(‖φ‖c) (1.5)

and the time derivative of V along the solution x(t) satisfies V̇ (t, xt) ≤ −w(‖φ‖)

for θ ∈ [−τ, 0]; then the system is uniformly stable. If in addition w(s) > 0 for

s > 0 then the system is uniformly asymptotically stable.

It is clear that V is a functional and that V̇ must always be negative.

As a conclusion of the section, this present thesis will use the Lyapunov-Krasovskii

theorem to check the delay-dependent stability of uncertain continuous and

discrete-time Networked systems. Since the stability of an NCS depends on the

occurence of delays, the occurence of delays throughout this thesis is assumed
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to be governed by Bernoulli’s Binomial distribution with varying probabilitis.

The followin section presents a short summary on the Binomial distribution.

1.4.2 The Binomial Distribution

Many experiments in real life share the common element that their outcomes

can be classified into one of two events, e.g. a coin can come up heads or tails;

a child can be male or female; a person can die or not die; a person can be

employed or unemployed. These outcomes are often labeled as ”success” or

”failure.” Note that there is no connotation of ”goodness” here - for example, in

our context, when looking at a signal being transmitted, the statistician might

label the signal as a ”delayed” if the signal fails to reach on time and the signal

as ”non-delayed” if it reaches at the designated time. The usual notation is

p = probability of success, q = probability of failure = 1 - p.

Note that p+q = 1. In statistical terms, A Bernoulli trial is each repetition of an

experiment involving only 2 outcomes. We are often interested in the result of

independent, repeated bernoulli trials, i.e. the number of successes in repeated

trials.

1. independent - the result of one trial does not affect the result of another

trial.

2. repeated - conditions are the same for each trial, i.e. p and q remain
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constant across trials. Hayes refers to this as a stationary process.

If p and q can change from trial to trial, the process is nonstationary. The

term identically distributed is also often used.

Technically speanking, the Bernoulli distribution is a discrete data distribu-

tion that is used to describe a population of binary variable values. A simple

Bernoulli random variable Y is described by the dichotomous relationship:

P (Y = 1) = p (1.6)

P (Y = 0) = 1− p (1.7)

where 0 ≤ p ≤ 1 This is denoted as:

Y = Ber(p) (1.8)

The probability mass function f of the Bernoulli distribution is given by:

f(y; p) =





p for y = 1

1− p for y = 0
(1.9)

The mean and variance of the Bernoulli distribution are given by:

µ = p (1.10)

σ2 = p(1− p) (1.11)
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The Binomial distribution is a discrete data distribution that is used to model a

population of counts for n different repetitions of a Bernoulli experiment. That

is to say for:

X = (Y1, Y2, . . . , Yn) (1.12)

With probabilities given by (1.6) and (1.7), then the probability of getting ex-

actly x success in n trials is:

f(x;n, p) = (
n

x
)px(1− p)n−x (1.13)

For x = 0, 1, 2, . . . n where

(
n

x
) =

n!

x!(n− x)!
(1.14)

is the binomial coefficient. The mean and variance of the binomial distribution

are given by:

µ = p (1.15)

σ2 = p(1− p) (1.16)

Having gone through a brief introduction on NCSs, let us take a quick look at

the contributions made by this thesis in the following section.
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1.5 Thesis Outline

The remainder of this thesis is divided into 6 chapters.

Chapter 2

The chapter is an overview of the recent results that deal with Networked Con-

trol Systems. It discusses briefly the various models that have been devised to

deal with different network phenomena. The chapter is divided into sections,

each section discussing a specific class of models based on the various network

phenomena such as packet dropouts, transmission delays etc.

Chapter 3

In this chapter, we provide new results on NCS with nonstationary packet

dropouts. We extend the work of [5] by developing an improved observer-based

stabilizing control algorithm to estimate the states and control input through

the construction of an augmented system where the original control input is

regarded as a new state.

Chapter 4

In Chapter 4 we consider an NCS wherein nonstationary dropouts as well quanti-

zation losses are present in the communication network. The closed loop system

is shown to be exponentially stable. The application of the proposed algorithm

is demonstrated by means of suitable examples.
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Chapter 5

This chapter extends the results obtained in the Chapter 2, considering an NCS

with nonstationary packet dropouts and added nonlinearities. The closed-loop

system is designed considering dynamic output feedback. Stability conditions

are drawn using the Lyapunov Krasovskii functional and expressed in the form

of LMIs.

Chapter 6

While all the results in the previous chapters were drawn considering a discrete

time NCS, this chapter deals with continuous time networked systems with lossy

communication networks. The closed loop is expressed as an augmented system

and stability conditions are drawn with the help of Lyapunov theory.

Chapter 7

This chapter summarizes the main contributions of the thesis, provides very

recent results in the area that the author became aware of by the time of com-

pletion of the thesis. Finally, suggestions for future work and developments are

included in the last section of this chapter.

Notations: Capital letters denote matrices. Lower-case alphabet and Greek

letters denote column vectors and scalars, respectively. (.)T and (.)H denote

transpose and Hermitian transpose operations, respectively. In is the identity

matrix of n × n. 0n is the zero matrix of dimension n × n, diag[A]N1 is a block
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diagonal with matrix with diagonal entries Ai, i = 1, 2, . . . , N . In symmetric

block matrices or long matrix expressions, we use * as an ellipsis for terms that

are induced by symmetry, e.g.,

(∗)



(∗) +R S

(∗) Q


K = KT



RT +R S

ST Q


K

The lth element of vector ui(k) is denoted as u
(l)
i (k). In the discrete time domain,

the time index is denoted by k, k ∈ Z, k ≥ 0. In a proof when the time index k is

omitted for conciseness, v(−τ) denotes the vector v(k−τ). û denotes a sequence

of predicted vectors of u(j) starting from the current time step. ŭ denotes a

sequence of u(−j) representing the historical data of u. |Q| is the induced 1-

norm of the matrixQ, which is defined as |Q| = max{‖Qv‖2 : v ∈ R
n, ‖v‖2 ≤ 1},

‖v‖2 is the L2-norm of the vector v.

ℜn denote the n-dimensional space equipped with the norm ||.||. We use W t,

W−1, λm(W ) and λM(W ) to denote the transpose, the inverse, the minimum

eigenvalue and the maximum eigenvalue of any square matrix W , respectively.

We use W < 0 (≤ 0) to denote a symmetric negative definite (negative semidef-

inite) matrix W and Ij to denote the nj × nj identity matrix. Matrices, if their

dimensions are not explicitly stated, are assumed to be compatible for algebraic

operations.



Chapter 2

LITERATURE SURVEY

2.1 Introduction

Control systems with spatially distributed components have existed for several

decades. Examples include control systems in chemical process plants, refineries,

power plants, and airplanes. In the past, in such systems the components were

connected via hardwired connections and the systems were designed to bring

all the information from the sensors to a central location where the conditions

were being monitored and decisions were made on how to control the system.

The control policies then were implemented via the actuators, which could be

21
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valves, motors, etc. What is different today is that technology can put low-cost

processing power at remote locations via microprocessors and that information

can be transmitted reliably via shared digital networks or even wireless connec-

tions. These technology driven changes are fueled by the high costs of wiring

and the difficulty in introducing additional components into the systems as the

needs change.

The changes in the scope and implementation of control systems have caused two

main changes in the emphasis in control system analysis and design. The first

has to do with the explicit consideration of the interconnections; the network

now must be considered explicitly as it affects significantly the dynamic behavior

of the control system. The second change has to do with a renewed emphasis

on distributed control systems. Because of these changes in control systems,

several new concerns need to be addressed. Several areas such as communication

protocols for scheduling and routing have become important in control when

considering, for example, stability, performance, and reliability. Algorithms

and software that are capable of dealing with hard and soft time constraints

are very important in control implementation and design and so areas such as

realtime systems from computer science are becoming increasingly important.

There is also some reordering of priorities and importance of control concepts

due to changes in importance to control applications. There had also been

renewed emphasis on methodologies for increased autonomy that allows the

system to run without feedback information for extended periods of time. At

a more fundamental level, control theorists have been led to re-examine the
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open-(feedforward) versus closed-loop (feedback) control issues.

Technology advances, together with performance and cost considerations, are

fueling the proliferation of networked control systems and, in turn, are raising

fundamentally new questions in communications, information processing, and

control dealing with the relationship between operations of the network and the

quality of the overall systems operation. A wide range of research has recently

been reported dealing with problems related to the distributed characteristics

and the effect of the digital network in networked control systems.

The trend of modern industrial and commercial systems is to integrate comput-

ing, communication and control into different levels of factory operations and

information processes. Rigorous research has been carried out in this domain to

ensure better efficiency and stability of Networked Control Systems.

The literature review for this thesis also incorporates recent surveys carried out

by the various authors in the following papers: [7], [8], [11], [12], [25], [23], [29],

[28], [31], [27], [32], [38], [65], [67] and [72].

Feng-Li Lilian et al. in [11] discussed the impact of network architecture on

control performance in a class of networked control systems (NCSs) and pro-

vided design considerations related to control quality of performance as well as

network quality of service. The integrated network-control system changed the

characteristics of time delays between application devices. This study first iden-

tified several key components of the time delay through an analysis of network
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protocols and control dynamics. The analysis of network and control parameters

was used to determine an acceptable working range of sampling periods in an

NCS.

Tipsuwan and Chow in [12] discussed in detail the effects of network delays on

NCSs and surveyed a few networked control techniques to be used in an unsta-

ble NCS. They few assumptions these techniques used were that the Network

communication was error-free, every frame or packet had a constant length and

computational delay induced was constant and much lesser than the sampling

period T. In 1988, Halevi and Ray proposed a fundamental technique named as

the augmented deterministic discretetime model methodology to control a linear

plant over a periodic delay network. The structure of the augmented discrete-

time model is straight forward and easy. In addition, this methodology can be

modified to support non-identical sampling periods of a sensor and a controller

as mentioned by Liou and Ray in 1990.

In [38], the author presented a report to discuss the major contributions and the

possible future challenges in the area of Networked Control Systems. He catego-

rized activities in this field into control of networks, control over networks, and

multi-agent systems. Control of networks is mainly concerned with providing a

certain level of performance to a network data flow, while achieving efficient and

fair utilization of network resources. Multi-agent systems deal with the study

of how network architecture and interactions between network components in-

fluence global control goals.
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In a more recent paper [67], Rachana and Chow discussed the different fields and

research arenas in Networked control such as networking technology, network de-

lay, network resource allocation, scheduling, network security in real-time NCSs,

integration of components on a network, fault tolerance, etc. Greater emphasis

has been laid on security in an NCS with a brief discussion on the development

of efficient and scalable intrusion detection systems (IDS). Another key topic

of discussion was the the integration of components of an NCS to achieve the

global objectives.

The concept of networked control starting taking shape when Stilwell and Bishop

[4], discussed a decentralized control strategy to control Platoons of underwa-

ter vehicles. They presented a control design methodology for regulating global

functions of cooperating mobile systems. The application of relatively standard

system-theoretic tools, such as decentralized control, led to a novel broadcast-

only communication structure (single-source, unidirectional). More generally,

methods presented there allowed the designer to determine what explicit com-

munication strategies are sufficient for a stabilizing decentralized control to exist.

As the research on NCS progressed, researchers tried to focus on the more prac-

tical aspects of Networked control. Only then the various network based phe-

nomena came into picture. The earliest phenomenon to be studied in depth was

the problem of transmission losses or packet losses.
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2.2 Models incorporating only Packet Losses

Pete and Raja [6] studied the effect of communication packet losses in the feed-

back loop of a control system. They particularly emphasized the vehicle control

problems where information is communicated via a wireless local area network.

They considered a simple packet-loss model for the communicated information

and noted that the results for discrete-time linear systems with Markovian jump-

ing parameters could be applied. The goal was to find a controller such that the

closed loop is mean square stable for a given packet loss rate. LMI condition

were developed for the existence of a stabilizing dynamic output feedback con-

troller. In [22] they extended their work to develop an H∞ optimal controller for

discrete-time jump systems and derived sufficient conditions in terms of LMIs

to satisfy the H∞ norm requirements. The Markovian Jump Linear System

(MLJS) model they used was of the form:

x(k + 1) = Aθ(k)x(k) + Bθ(k)u(k)

y(k) = Cθ(k)x(k)

x(0) = x0, θ(0) = θ0

The θ(k) subscript denotes the time varying dependence of the state matrices

via the network packet loss parameters. It is noted that the open loop system

has two modes: θ = 0 when the packet from sensor is dropped and θ = 1
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when the packet is received. However in their analysis, we note that the authors

considered the effect of network (packet losses) only on the measurement channel

and not on the actuation channel. This way the dropouts occured only while

transmitting the plant output y(k) to the controller.

In [10], Walsh et al. introduced a novel control network protocol, try-once-

discard (TOD), for multiple-input multiple-output (MIMO) networked control

systems (NCSs), and provided, for the first time, an analytic proof of global

exponential stability for both the new protocol and the more commonly used

(statically scheduled) access methods. Their approach was to first design the

controller using established techniques considering the network transparent, and

then to analyze the effect of the network on closed-loop system performance.

When implemented, the NCS would consist of multiple independent sensors and

actuators competing for access to the network, with no universal clock available

to synchronize their actions. Because the nodes act asynchronously, they allowed

access to the network at anytime but they assumed each access occurs before a

prescribed deadline, known as the maximum allowable transfer interval. Only

one node may access the network at a time. This communication constraint

imposed by the network was the main focus of the paper and a significant con-

tribution to the research on networked control.

In [74] the authors considered the H∞ filtering problem for a class of networked

systems with packet losses. The networked filtering system is with packet losses

is described as a discrete-time linear switched system. A sufficient condition fot

the filtering error system to be exponentially stable is to ensure a prescribed
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Figure 2.1: Network Filtering System, Shu Yin et al. 2011

H∞ performance is derived by using piecewise continuous Lyapunov function

approach and the average dwell time method. In this paper, the problem of H∞

filtering for a class of networked systems with packet losses is investigated by

using the deterministic system approach. By using the zero-input mechanism,

i.e., the filter input holds at its last available value when a measurement is lost

during the transmission. The block diagram of the model used is shown in Fig.

2.1

The plant used in [74] is described by:

x(k + 1) = Apx(k) +Bpw(k)

y(k) = Cpx(k) +Dpw(k)

z(k) = Hpx(k)

The filter input ŷ(k) depends on the packet loss status in the network. In Fig.

2.1, the switch T1 is used to represent the packet loss status. When T1 is closed,
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ŷ(k) = y(k), and when T1 is opened, ŷ(k) = 0. Therefore the packet loss

dependent filter can be represented as follows:

xf (k + 1) = Afixf (k) + Bfiŷ(k)

zf (k) = Cfixf (k)

i ∈ M = {0, 1}

When packet is lost, i.e. i = 0, the filter model is described by:

xf (k + 1) = Af0xf (k)

zf (k) = Cf0xf (k)

ŷ(k) = 0

When packet is recieved, i.e. i = 1, the filter model is described by:

xf (k + 1) = Af1xf (k) + Bf1ŷ(k)

zf (k) = Cf1xf (k)

ŷ(k) = y(k) = Cpx(k) +Dpw(k)

If we define the error signal as e(k) = z(k)− zf (k) and the augmented state as

η(k) = [xT (k)xTf (k)ŷ
T (k − 1), then the error system can be represented as the
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following discrete-time switched system:

Sσ(k) :





η(k + 1) = Aσ(k)η(k) +Bσ(k)w(k)

e(k) = Cσ(k)η(k)
(2.1)

Where σ(k) ∈ M represents the switching signal. Simultaneously researchers

also started investigating another aspect of networks i.e. communication delays

caused by the network.

Definition 2.2.1 The closed loop system (2.1) is said to be exponentially stable

if there exist constants k > 0 and λ > 1 such that the corresponding states satisfy

‖x(k)‖ ≤ kλ−(k−k0)‖x(k0)‖, k ≥ k0 where λ is called the decay rate.

Definition 2.2.2 Given a scalar γ > 0, the system (2.1) is said to be expo-

nentially stable with an H∞ performance level γ if it is exponentially stable

and under zero initial condition,
∑∞

k=0 z
T (k)z(k) ≤

∑∞

k=0 γ
2wT (k)w(k) for all

nonzero w(k) ∈ l2[0,∞).

The authors then obtained the sufficient H∞ conditions for the filtering error

system from the following theorem.

Theorem 2.2.1 Consider system (2.1), if there exist scalars γ > 0, µ > 1,

λ > 1, and ε1 > ε0 > 1, and matrices Pi > 0, i ∈ M , such that the following
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inequalities hold:

1− ε−i 2µ ≥ 0 (2.2)


−Pi 0 PiAi PiBi

• −I Ci 0

• • −ε−2i Pi 0

• • • −γ2I




< 0 (2.3)

Pi − µPj ≤ 0 i, j ∈M (2.4)

hold, and the average dwell time and the packet loss rate satisfy τa ≥ τ ∗a =

lnµ/(2lnλ) and α < α∗ = ln(λ/ε1)/ln(ε0/ε1), respectively. Then the system is

exponentially stable with decay rate λp and ensures an H∞ performance level γ,

where ρ = 1− lnµ/(2τalnλ).

A quantitative relation between the packet loss rate and the H∞ filtering per-

formance is then obtained, a mode-dependent full-order linear filter is designed

by solving a convex optimization problem shown above.

2.3 Models incorporating only Network delays

In [13], the authors discussed the stability networked control systems with vari-

able networked-induced delays. They introduced some novel concepts and de-

signed feedback matrices and a switched strategy among them. An online al-

gorithm was also presented by using gradient method for handling the random
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delays. They described the plant model as:

ẋ(t) = Ax(t) +Bu(t), t ∈ [kh+ τk, (k + 1)h+ τk+1)

y(t) = Cx(t)

u(t+) = −Kix(t− τk), t ∈ {kh+ τk, k = 0, 1, 2 . . .}

Sampling the above system with period h and defining z(kh) = [xT (h), uT ((k−

1)h)]T , yielded the following closed loop system:

z((k + 1)h) = Φ̃(Ki)z(kh)∀i = 1, 2, . . . , p

Jing et al. [17] described the stability problems of uncertain systems with arbi-

trarily varying and severe time-delays. By using unique LyapunovKrasovskii

functionals, new stability conditions for a class of linear uncertain systems

with a time-varying delays was obtained. Effectiveness of the proposed Lya-

punovKrasovskii functionals indicated that a proper distribution of the time

delay in the LyapunovKrasovskii functionals is crucial to obtain less conserva-

tive criteria.

Srinivasgupta and Heinz [14] introduced an enhancement to the model predictive
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control (MPC) algorithm to address variable time delays that may occur in the

control loop. These variable delays could arise from various sources such as mea-

surement delays, human-in the-loop, and communication delays. The specific

focus of their research was to investigate the effect of random communication

delays on network-based process control systems.

Their experimental characterization of network communication delays revealed

that they were mostly white, had a baseline minimum and approached wide-

tailed distributions. They proposed the time-stamped model predictive con-

trol (TSMPC) algorithm, an extension to MPC that uses a communication de-

lay model, along with time-stamping and buffering to improve reliability over

networked-control systems. Experimental validation of this new algorithm re-

sulted in improved performance over traditional MPC. Where time-stamping

is not possible, accounting for the mean/median communication delay resulted

in better performance, and this simplification was termed as the mean/median

delay model predictive control (MDMPC).

In [16], the problem of robust H∞ control for uncertain discrete systems with

time-varying delays was considered. The system under consideration was sub-

ject to time-varying norm-bounded parameter uncertainties in both the state

and measured output matrices. A full-order exponential stable dynamic output

feedback controller which guarantees the exponential stability of the closed-loop

system and reduces the effect of the disturbance input on the controlled output

to a prescribed level for all admissible uncertainties was designed.
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Figure 2.2: NPC Model, Liu et al. 2007

Nguang et al. [26] dealt with the problem of robust fault estimation for uncer-

tain time-delay T-S fuzzy models and designed a delay-dependent fault estimator

ensuring a prescribed H∞ performance level for the fault estimation error, irre-

spective of the uncertainties and the time delays. Sufficient conditions for the

existence of a robust fault estimator were developed in terms of linear matrix

inequalities (LMIs). They also incorporated the characteristics of the Member-

ship functions into the fault estimator design to reduce the conservativeness of

neglecting those characteristics.

In [33], the design problem of an NCS with constant and random network delay

in the forward and feedback channels, respectively, was considered. A novel

networked predictive control (NPC) scheme was proposed to overcome the effects

of network delay and data dropout. Stability criteria of closed-loop NPC systems

were presented & necessary and sufficient conditions for the stability of closed-

loop NCS with constant time delay were given. Furthermore, they showed that

the closed-loop NPC system with bounded random network delay is stable if

its corresponding switched system is stable. The block diagram of the proposed

NPC model is shown in Fig. 2.2
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The stabilisation problem for networked control systems with time-varying de-

lays that may be smaller than one sampling period was studied in by Zhang et

al. [34]. State feedback controllers were considered and the resulting closed-loop

NCS is modelled as a discrete-time switched system. Criteria for exponential

stability for the closed-loop NCS and design procedures for stabilising controllers

were presented by using the average dwell time.

In the same year they extended the research to study time-varying delays that

may be longer than one sampling period [39]. The timing diagram of the signals

in the NCS is shown in Fig. 2.3 State feedback controllers were considered and

the resulting closed-loop NCS is modelled as a discrete-time switched system.

Conditions for exponential stability of the closed-loop NCS were however pre-

sented by using a different approach that combined the average dwell time and

asynchronous dynamic system methods. In [45] they considered state feedback

controllers, and modeled the closed-loop NCS as a switched delay system, which

was then represented as an interconnected feedback system. A sufficient BIBO

stability condition was derived for the closed-loop NCS by using the small gain

theorem and the average dwell time technique. Similarly the problem of large

delays was considered in [55], where the closed loop was modeled as a switched

system and the exponential stability conditions were derived using the average

dwell time method.

The research presented in [34] was extended by the authors in [69]. Though state

feedback controllers were considered in this case also, the closed-loop NCS was

described as a discrete-time linear uncertain system model, and the uncertain
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Figure 2.3: Timing diagram of signals in the NCS, Zhang & Yu 2007

part reflected the effect of the variation nature of the network-induced delays on

the system dynamics. Then, the asymptotic stability condition for the obtained

closed-loop NCS was derived to establish the quantitative relation between the

stability of the closed-loop NCS and two delay parameters, namely, the allowable

delay upper bound (ADB) and the allowable delay variation range (ADVR).

Xin-Gang Yu [35] considered the problem of robust H∞ filtering for uncertain

systems with time-varying distributed delays. The uncertainties under discus-

sion are time varying but norm bounded. Based on the Lyapunov stability

theory, sufficient condition for the existence of full order H∞ filters was pro-

posed by LMI approach such that the filtering error system is asymptotically

stable and satisfies a prescribed attenuation level of noise.

Chen et al. [47] proposed a new approach for delay-dependent robust H∞ sta-

bility analysis and control synthesis of uncertain systems with time-varying

delay. The key features of the approach included the introduction of a new

LyapunovKrasovskii functional, the construction of an augmented matrix with

uncorrelated terms, and the employment of a tighter bounding technique. As a

result, significant performance improvement was achieved in system analysis and
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synthesis without using either free weighting matrices or model transformation.

[49] was focussed on the design of robust sliding-mode control for time-delay

systems with mismatched parametric uncertainties. Based on a delta-operator

approach, a delay-dependent sufficient condition for the existence of linear slid-

ing surfaces was given, and a reaching motion controller was also developed.

The results obtained in this paper unified some previous related results of the

continuous and discrete systems into the delta-operator systems framework. In

[59] a similar problem of designing a sliding mode controller via static output

feedback for a class of uncertain systems with mismatched uncertainty in the

state matrix was considered. Firstly, they derived a new existence condition of

linear sliding surface in terms of strict linear matrix inequalities and proposed

an adaptive reaching control law such that the motion of the closed-loop system

satisfies the reaching condition. They further considered the delay-type switch-

ing function, and a new robust stability condition was given in terms of LMIs

for the reduced-order sliding mode dynamics.

In [76], the authors focussed on the stability analysis and robust design of un-

certain discrete-time systems with time-varying delay. They developed both

delay dependent and independent convex conditions to guarantee stability of

the closed loop. Extensions to cope with decentralized control and output feed-

back control were also discussed. All the system matrices were assumed to be

subject to polytopic disturbances and the proposed conditions employ parameter

dependent Lyapunov-Krasovskii conditions.
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2.4 Models incorporating multiple network phe-

nomena

An iterative approach was proposed by Yu et al. in [18] to model networked

control systems with arbitrary but finite data packet dropout as switched linear

systems. Sufficient conditions were presented on the stability and stabilization

of NCSs with packet dropout and network delays. The merit of the iterative

approach is that the controllers can make full use of the previous information

to stabilize NCSs when the current state measurements can not be transmitted

by the network channel instantly.

In the same year they studied the problem of data packet dropout and trans-

mission delays in NCSs in both continuous-time case and discrete-time case was

studied in [19]. They modeled the NCSs with data packet dropout and delays

as ordinary linear systems with input delays. For the continuous-time case,

their technique was based on Lyapunov-Razumikhin function method. For the

discrete-time case, they used the Lyapunov-Krasovskii based method. Atten-

tion was focused on the design of memoryless state feedback controllers that

guaranteed stability of the closed-loop systems.

Yang et al. [24] designed a controller for networked systems with random com-

munication delays. They categorized delays into two categories : i) from the

controller to the plant, and ii) from the sensor to the controller, via a limited

bandwidth communication channel. The random delays were modeled as a linear
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function of the stochastic variable satisfying Bernoulli random binary distribu-

tion. The observer-based controller was designed to exponentially stabilize the

networked system in the sense of mean square, and also achieve the prescribed

H∞ disturbance attenuation level.

In [30], a constrained convex optimization problem was developed for the ro-

bust stabilization problem of a class of discrete-time networked control systems

subject to non-linear perturbations under the effects of delays and data packet

dropout. Such NCSs were modeled as discrete-time nonlinear systems with time-

varying input delays. A sufficient condition was established in terms of a linear

matrix inequalities which guaranteed stability of the NCS and at the same time

maximized the non-linearity bound.

Yuan et al. [36] proposed a new method to model the networked control system

with data dropout and transmission delays as an asynchronous dynamical system

(ADS). Based on some assumptions, and by using Lyapunov stability theory, the

sufficient conditions on the stability of such NCSs were presented in terms of

LMIs. A similar approach based on the theory of asynchronous dynamic systems

was applied for modelling an NCS in [37].

In [40], a new approach was proposed to study the modeling and control prob-

lems for the NCS with both network induced delay and packet-dropout. Differ-

ent from the sampled data system approach presented earlier, a direct sampling

scheme was applied to describe the closed-loop NCS as a time-delay switched

linear system model by ignoring the inter-sample behavior of the NCS. Sampled
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data control approach was also used in [56] to deal with the stabilization prob-

lem of NCS with packet loss and bounded delays. A real-time networked control

system was also constructed to test the stabilizing ability of the controller design

in a real network environment.

Song et al. [46] considered a plant with network delays, dropouts and commu-

nication constraints wherein the plant has multiple sensor nodes and only one

of them is allowed to communicate with the filter at each transmission instant,

and the packet dropouts occur randomly. The filtering error system was mod-

eled as a switched system with a stochastic parameter. Sufficient conditions

were presented for the filtering error system to be mean-square exponentially

stable and achieve a prescribed H∞ performance. In [68] they proposed a new

compensation scheme, upon which the filtering error system is modelled as a

switched system by considering mode-dependent filters. Sufficient conditions

were derived for the filtering error system to be exponentially stable and en-

sure a prescribed H∞ disturbance attenuation level bound by using the average

dwell-time method.

In [61] the authors addressed the problem of quantized feedback control for

networked control systems. Considering the effects of the network such as delays,

packet dropouts and signal quantization a sampled-data model of the closed

loop feedback system based on the updating sequence of event-driven holder was

formulated, from which a continuous system with two additive delay components

in the state was developed. Subsequently by making use of a novel interval

delay system approach, the stability analysis and control synthesis for NCSs



41

Figure 2.4: A typical networked control system with two quantizers, Jianguo
Dai 2010.

with one/two static quantizers were solved accordingly. The block diagram of

the networked system is shown in Fig. 2.4

Wu et al. [63] considered the stability of the discrete-time networked control

systems with polytopic uncertainty, where a smart controller is updated with

the buffered sensor information at stochastic intervals and the amount of the

buffered data received by the controller under the buffer capacity constraint is

also random. They established sufficient conditions to guarantee the exponential

stability of generic switched NCSs and the exponential mean square stability of

Markov-chain driven NCSs, respectively.

Considering MIMO NCSs where network is of limited access channels, a discrete-

time switched delay model was formulated in [58] by constructing a novel piece-
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wise Lyapunov-Krasovskii functional, a new stability criterion was developed in

terms of linear matrix inequalities. On the basis of the obtained stability condi-

tion, a static output feedback controller was designed by applying an iterative

algorithm.

H∞ filter design for a class of networked control systems with multiple state

delays via Takagi-Sugeno (T-S) fuzzy model was discussed in [73]. Packet losses

induced by the limited bandwidth of communication networks, were also con-

sidered. The focus of this paper was on the analysis and design of a full-order

H∞ filter such that the filtering error dynamics is stochastically stable and a

prescribed H∞ attenuation level is guaranteed.

Schendel et al. [66] presented three discrete-time modelling approaches for net-

worked control systems (NCSs) that incorporate time-varying sampling inter-

vals, time-varying delays and dropouts. The focus of their work was on the

extension of two existing techniques to describe dropouts, namely (i) dropouts

modelled as prolongation of the delay and (ii) dropouts modelled as prolonga-

tion of the sampling interval, and the presentation of a new approach (iii) based

on explicit dropout modelling using automata. Based on polytopic overapprox-

imations of the resulting discrete-time NCS models, they provided LMI-based

stability conditions for all three approaches.

NCSs under similar network conditions were studied in [64]. Communication

constraints impose that, per transmission, only one sensor or actuator node can

access the network and send its information. Which node is given access to the
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network at a transmission time was orchestrated by a so-called network pro-

tocol. The transmission intervals and transmission delays were described by a

random process, having a continuous probability density function (PDF). By fo-

cussing on linear plants and controllers and periodic and quadratic protocols, the

authors presented a modelling framework for NCSs based on stochastic discrete-

time switched linear systems. Stability (in the mean-square) of these systems

was analysed using convex overapproximations and a finite number of linear

matrix inequalities. An extension to this paper was provided in [75]. The order

in which nodes send their information is orchestrated by a network protocol,

such as, the Round-Robin (RR) and the Try-Once-Discard (TOD) protocol. In

this paper, they generalised the mentioned protocols to novel classes of so-called

periodic and quadratic protocols. By focussing on linear plants and controllers,

they presented a modelling framework for NCSs based on discrete-time switched

linear uncertain systems. This framework allows the controller to be given in

discrete time as well as in continuous time. To analyse stability of such sys-

tems for a range of possible transmission intervals and delays, with a possible

nonzero lower bound, they proposed a new procedure to obtain a convex over-

approximation in the form of a polytopic system with norm-bounded additive

uncertainty.

Cloosterman et al. [70] presented a discrete-time model for networked con-

trol systems (NCSs) that incorporates all network phenomena: time-varying

sampling intervals, packet dropouts and time-varying delays that may be both

smaller and larger than the sampling interval. Based on this model, constructive
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LMI conditions for controller synthesis were derived, such that stabilizing state-

feedback controllers can be designed. Besides the proposed controller synthesis

conditions a comparison was made between the use of parameter-dependent

Lyapunov functions and Lyapunov-Krasovskii functions for stability analysis.

Luan et al. [5] designed an observer-based stabilizing controller for networked

systems involving both random measurement and actuation delays. The de-

veloped control algorithm is suitable for networked systems with any type of

delays. By the simultaneous presence of binary random delays and making full

use of the delay information in the measurement model and controller design,

new and less conservative stabilization conditions for networked control systems

were derived. The criterion was formulated in the form of a nonconvex matrix

inequality of which a feasible solution can be obtained by solving a minimization

problem in terms of linear matrix inequalities. Below is a brief summary of their

mathematical formulation. The LTI plant under consideration was assumed to

be of the form:

xp(k + 1) = Axp + Bup

yp = Cxp (2.5)

where xp(k) ∈ R
n is the plants state vector and up(k) ∈ R

m and yp(k) ∈ R
p

are the plants control input and output vectors, respectively. The measurement
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subjected to random communication delay is given by

yc(k) = (1− δ(k))yp(k) + δ(k)yp(k − τmk ) (2.6)

where τmk is the measurement delay, whose occurence is governed by the Bernoulli

distribution, and δ(k) is Bernoulli distributed sequence with

Prob{δ(k) = 1} = E{δ(k)} = δ̄

P rob{δ(k) = 0} = 1− E{δ(k)} = 1− δ̄ (2.7)

The following observer-based controller is designed when the full state vector is

not available:

Observer





x̂(k + 1) = Ax̂+ Buc(k)

+L(yc(k)− ŷc(k))

ŷc(k) = (1− δ̄)Cx̂(k) + δ̄Cx̂(k − τmk )

(2.8)

Controller





uc(k) = Kx̂(k)

up = (1− α)uc(k) + αuc(k − τak )
(2.9)
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where x̂(k) ∈ R
n is the estimate of the system (2.5), ŷc(k) ∈ R

p is the observer

output, and L ∈ R
n×p and K ∈ R

m×n are the observer gain and the controller

gain, respectively. The stochastic variable α, mutually independent of δ, is also

a Bernoulli distributed white sequence with

Prob{α(k) = 1} = E{α(k)} = ᾱ

Prob{α(k) = 0} = 1− E{α(k)} = 1− ᾱ (2.10)

where τak is the actuation delay. In this paper, assume that τak and τmk are time

varying and have the following bounded condition:

dm ≤ τmk ≤ dm

da ≤ τak ≤ da (2.11)

The estimation error is defined by

e(k) = xp(k)− x̂(k) (2.12)
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Then it yields

xp(k + 1) = [A+ (1− ᾱ)BK]xp(k)

−(1− ᾱ)BKe(k)

+ᾱBKxp(k − τak )− ᾱBKe(k − τak )

−(α− ᾱ)BKxp(k) + (α− ᾱ)BKe(k)

+(α− ᾱ)BKxp(k − τak )

−(α− ᾱ)BKe(k − τak )

(2.13)

e(k + 1) = [A− (1− δ̄)LC]e(k)− δ̄LCe(k − τmk )

+(δ − δ̄)LCxp(k)

−(δ − δ̄)LCxp(k − τmk ).

(2.14)

The aforementioned system (2.13) and (2.14) is equivalent to the following com-

pact form:

ε(k + 1) = (Ā+ Ã)ε(k) + (B̄ + B̃)ε(k − τmk )

+(C̄ − C̃)ε(k − τak )
(2.15)

where
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ε(k) = [xTp (k) eT (k)]T

Ā =



A+ (1− ᾱ)BK −(1− ᾱ)BK

0 A− (1− δ̄)LC




Ã =



−(α− ᾱ)BK (α− ᾱ)BK

(δ − δ̄)LC 0




B̄ =



0 0

0 −δ̄LC







0 0

−(δ − δ̄)LC 0




C̄ =



ᾱBK −ᾱBK

0 0




C̃ =



(α− ᾱ)BK −(α− ᾱ)BK

0 0




The aim of this paper is to design an observer based feedback stabilizing con-

troller in the form of (2.8) and (2.9) such that the closed loop system is exponen-

tially stable in the mean square. The work presented in the following chapter is

an extension of the analysis carried out in [5] taking into consideration various

addition factors that affect the practical working of Networked systems.



49

2.5 Conclusions

In this chapter, we have presented a survey of the main results pertaining to

linear dynamical systems subject to saturation including actuator, output and

state types . The survey has outlined basic assumptions and has taken into

considerations several technical views on the analysis and design procedures

leading to stability of networked systems under consideration. The key emphasis

here was on NCSs subject to random delays. Previous results related stability

of networked control systems have been provided. Some typical examples have

been given to illustrate relevant issues.
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3.1 Introduction

The existence of time delays is commonly encountered in many dynamic sys-

tems, and time delay has been widely known to degrade the performance of the

control systems [79]-[80]. There has been considerable research work appearing

to address the control problem of networked systems in the presence of network

delays. For example, Jiang et al. [41] proposed a methodology as an augmented

deterministic discrete-time model to control a linear plant over a periodic de-

lay network. Given that the network delays are time varying but bounded, the

Lyapunov theory was employed in [10] to find the maximum delays that can be

tolerated. However, in the aforementioned works, the network-induced delays

have been commonly assumed to be deterministic, which is fairly unrealistic

since delays resulting from network transmissions are typically time varying and

random by nature.

Recently, researchers have started to model the random communication delays

in various probabilistic ways and have tried to prove a version of stability such as

the mean-square stability or the exponential mean-square stability. For exam-

ple, in [14], the random communication delays have been considered as white in

nature with known probability distributions. In [48], the time delay of NCSs was

modeled as Markov chains such that the closed-loop systems are jump systems.

In [23], the random delays were modeled as the Bernoulli binary distributed

white sequence taking values of zero and one with certain probability. Among

them, the binary random communication delay has received much research at-
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tention due to its practicality and simplicity in describing network-induced de-

lays [2, 15, 5]. In [23], both the measurement and actuation delays are viewed

as the Bernoulli distributed white sequence using a delay-free model with small

random delays. An alternative model is developed in [44] using observer-based

feedback control algorithm with time-varying delays occuring only in the chan-

nel from the sensor to the controller. This obviously does not accord with the

practical situation in most NCSs, where another typical kind of network-induced

delay often happens in the channel from the controller to the actuator. All the

foregoing results are restricted to stationary dropouts which does not fully cover

the common operational modes on networked systems.

In this chapter, we provide new results on NCS with nonstationary packet

dropouts. We extend the work of [5] by developing an improved observer-based

stabilizing control algorithm to estimate the states and control input through

the construction of an augmented system where the original control input is

regarded as a new state. Due to limited bandwidth communication channel, the

simultaneous occurrence of measurement and actuation delays are considered

using nonstationary random processes modeled by two mutually independent

stochastic variables. Several properties of the developed approach are delin-

eated. The observer-based controller is designed to exponentially stabilize the

networked system and solved within the linear matrix inequality (LMI) frame-

work. The theory is illustrated by simulation on a typical system.
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3.2 Problem Formulation

Consider the NCS with random communication delays, where the sensor is clock

driven and the controller and the actuator are event driven. The discrete-time

linear time-invariant plant model is as follows:

xp(k + 1) = Axp +Bup, yp = Cxp (3.1)

where xp(k) ∈ R
n is the plants state vector and up(k) ∈ R

m and yp(k) ∈ R
p

are the plants control input and output vectors, respectively. A, B, and C are

known as real matrices with appropriate dimensions. We assume for a more

general case that the measurement with a randomly varying communication

delay is described by

yc(k) =





yp(k − τmk ), δ(k) = 1

yp(k), δ(k) = 0
(3.2)

where τmk stands for measurement delay, the occurrence of which satisfies the

Bernoulli distribution, and δ(k) is Bernoulli distributed white sequence. It order

to capture the current practice of computer communication management that

experiences different time-dependent operational modes, we let

Prob{δ(k) = 1} = pk
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Table 3.1: Pattern of pk
pk q1 q2 · · · qn−1 qn
Prob(pk = q) r1 r2 · · · rn−1 rn

where pk assumes discrete values, see Table 3.1. Two particular classes can be

considered:

Class 1: pk has the probability mass function where qr − qr−1 = constant for

r = 2, ..., n. This covers a wide range of cases including

1. If there is no information about the likelihood of different values, we use

the uniform discrete distribution, ri = 1/n, i = 1, 2, ..., n, see Fig. 3.1.

�� �� ��

Figure 3.1: Uniform discrete distribution

2. If it is suspected that pk follows a symmetric triangle distribution, we use

the following function: i) For n even, ri = a+ jd, j = 0, 1, ..., n/2 and ri =

a+(n−j)d, j = 0, 1, ..., n/2+1, n/2+2, ..., n, where na+dn(n−1)/4 = 1,

ii) For n odd, ri = a+ jd, j = 0, 1, ..., (n− 1)/2 and ri = a+(n− j)d, j =

0, 1, ..., (n+ 1)/2, (n+ 2)/2, ..., n, where na+ dn(n− 1)2/4 = 1
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Figure 3.2: Symmetric triangle distribution: n even

�� �� ��

Figure 3.3: Symmetric triangle distribution: n odd
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�� �� ��

Figure 3.4: Decreasing linear function distribution

�� �� ��

Figure 3.5: Increasing linear function distribution

3. If it is suspected that ri is a decreasing linear function, we use ri = a −

jd, j = 0, 1, ..., n where na− dn(n− 1)/2 = 1

4. If it is suspected that ri is a increasing linear function, we use ri = a −

(n− j)d, j = 0, 1, ..., n where na− dn(n− 1)/2 = 1
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Class 2: pk = X/n, n > 0 and 0 ≤ X ≤ n is a random variable that follows

the Bionomial distribution B(q, n), q > 0, that is

Prob(pk = (ax+ b)/n) =




n

x


 qx(1− q)n−x, b > 0,

x = 0, 1, 2, ..., n, an+ b < n

���� ��

Figure 3.6: Bionomial distribution

Remark 3.2.1 It is significant to note that the case Prob{δ(k) = 1} = δ̄,

where δ̄ is a constant value, is widely used in majority of results on NCS. In this

chapter, we focus on nonstationary dropouts.

When the full state information is not available and the time delay occurs on the

actuation side, it is desirable to design the following observer-based controller

[5]:
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Table 3.2: Pattern of sk
sk s1 s2 · · · sn−1 sn
Prob(sk = t) t1 t2 · · · tn−1 tn

Observer :

x̂(k + 1) = Ax̂+Buc(k) + L(yc(k)− ŷc(k))

ŷc(k) =





Cx̂(k), δ(k) = 0

Cx̂(k − τmk ), δ(k) = 1
(3.3)

Controller :

uc(k) = Kx̂(k)

up =





uc(k), α(k) = 0

uc(k − τak ), α(k) = 1
(3.4)

where x̂(k) ∈ R
n is the estimate of the system (3.1), ŷc(k) ∈ R

p is the observer

output, and L ∈ R
n×p and K ∈ R

m×n are the observer and controller gains, re-

spectively, and τak is the actuation delay. The stochastic variable α(k), mutually

independent of δ, is also a Bernoulli distributed white sequence with

Prob{α(k) = 1} = sk

where sk assumes discrete values. By similarity, a particular class is that sk has

some probability mass function as in Table 3.2, where sr − sr−1 = constant for

r = 2, ..., n.
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With reference to the implementation of the algorithm that we propose, the

application can be summed up in the following way:

1. We assume that the measurement delay and actuation delay occur in the

measurement and actuation channel respectively.

2. Therefore the plant output yp(k) and generated control input uc(k) are

delayed by indefinite but bounded time periods τmk and τak respectively.

3. The receiving buffer at the end of the communication channel is designed

to incorporate the most recent values of plant output (coming from the

measurement channel) and the control input (coming from the actuation

channel). Assuming two delayed packets arriving at the receiving buffer at

the same time, the older packet is discarded, and the relatively new packet

used to carry out the control operation. These discarded packets are what

we term as nonstationary dropouts.

In this chapter, we assume that τak and τmk are time-varying and have the fol-

lowing bounded condition:

τ−m ≤ τmk ≤ τ+m, τ−a ≤ τak ≤ τ+a (3.5)
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Define the estimation error by e(k) = xp(k)− x̂(k). Then, it yields

xp(k + 1) =





Axp(k) +BKxp(k − ταk )

−BKe(k − ταk ), α(k) = 1,

(A+BK)xp(k)− BKe(k),

α(k) = 0,

(3.6)

e(k + 1) = xp(k + 1)− x̂(k + 1)

=





Ae(k)− LCe(k − τmk ), δ(k) = 1,

(A− LC)e(k), δ(k) = 0
(3.7)

In terms of ξ(k) = [xTp (k) eT (k)]T , system (3.6) and (3.7) can be cast into the

form:

ξ(k + 1) = Ajξ(k) + Bjξ(k − τmk ) + Cjξ(k − τak ) (3.8)

where {Aj , Bj , Cj, j = 1, ..., 4} and j is an index identifying one of the following

pairs {(δ(k) = 1, α(k) = 1), (δ(k) = 1, α(k) = 0), (δ(k) = 0, α(k) =
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0), (δ(k) = 0, α(k) = 1)}:

A1 =



A 0

0 A


 , A2 =



A+ BK −BK

0 A


 ,

A3 =



A+ BK −BK

0 A− LC


 , A4 =



A 0

0 A− LC


 ,

B1 =



BK −BK

0 0


 , B2 =



0 0

0 0


 ,

B3 =



0 0

0 0


 , B4 =



BK −BK

0 0


 ,

C1 =



0 0

0 −LC


 , C2 =



0 0

0 −LC


 ,

C3 =



0 0

0 0


 , C4 =



0 0

0 0


 (3.9)

Remark 3.2.2 It is remarked for simulation processing that we can express

(3.6)-(3.7) in the form

xp(k + 1) = sk[Axp(k) +BKxp(k − ταk )

−BKe(k − ταk )]

+(1− sk)[(A+ BK)xp(k)−BKe(k)] (3.10)

e(k + 1) = pk[Ae(k)− LCe(k − τmk )]

+(1− pk)[(A− LC)e(k)] (3.11)
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where the values of the random variables pk, sk are generated in the manner

discussed earlier.

Remark 3.2.3 It is important to note from (3.9) that

Aj + Bj + Cj =



A+ BK −BK

0 A− LC


 , j = 1, .., 4 (3.12)

The interpretation of this result is that Aj +Bj +Cj represents the fundamental

matrix of the delayed system (3.8), which must be independent of the mode of

operation. This will help in simplifying the control design algorithm.

Our aim here is to design an observer based feedback stabilizing controller in the

form of (3.3) and (3.4) such that the closed loop system (3.8) is exponentially

stable in the mean square. Our approach is based on the concepts of switched

time-delay systems [81]. For simplicity in exposition, we introduce

σ1(k) = Prob{δ(k) = 1, α(k) = 1}, σ̂1 = E[σ1]

σ2(k) = Prob{δ(k) = 1, α(k) = 0}, σ̂2 = E[σ2]

σ3(k) = Prob{δ(k) = 0, α(k) = 0}, σ̂3 = E[σ3]

σ4(k) = Prob{δ(k) = 0, α(k) = 1}, σ̂4 = E[σ4] (3.13)
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where E[σi] is the expected value of σi, i = 1, .., 4. Since we assume that δ(k)

and α(k) are independent random variables, then it follows from (3.13) that

σ̂1 = E[pk]E[sk], σ̂2 = E[pk]E[1− sk]

σ̂3 = E[1− pk]E[1− sk], σ̂4 = E[1− pk]E[sk] (3.14)

3.3 Main Results

In this section, we will thoroughly investigate the stability analysis and controller

synthesis problems for the closed-loop system (3.8). First, let us deal with

the stability analysis problem and derive a sufficient condition under which the

closed-loop system (3.8) with the given controller (3.3) and (3.4) is exponentially

stable in the mean square. Extending on [82], the following Lyapunov function

candidate is constructed to establish the main theorem:

V (ξ(k)) =
5∑

i=1

Vi(ξ(k)) (3.15)

V1(ξ(k)) =
4∑

j=1

σjξ
T (k)Pξ(k), P > 0

V2(ξ(k)) =
4∑

j=1

σj

k−1∑

i=k−τm
k

ξT (i)Qjξ(i), Qj = QT
j > 0
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V3(ξ(k)) =
4∑

j=1

σj

k−1∑

i=k−τa
k

ξT (i)Qjξ(i)

V4(ξ(k)) =
4∑

j=1

σj

−τ−m+1∑

ℓ=−τ+m+2

k−1∑

i=k+ℓ−1

ξT (i)Qjξ(i)

V5(ξ(k)) =
4∑

j=1

σj

−τ−a +1∑

ℓ=−τ+a +2

k−1∑

i=k+ℓ−1

ξT (i)Qjξ(i) (3.16)

It is not difficult to show that there exist real scalars µ > 0 and υ > 0 such that

µ‖ξ‖2 ≤ V (ξ(k)) ≤ υ‖ξ(k)‖2 (3.17)

Remark 3.3.1 By carefully considering Remark 3.2.3 in view of model (3.8),

it is justified to select matrix P to be the same for all operational modes, hence

independent of j, while keeping matrix Qj dependent on mode j.

We now present the analysis result for system (3.8) to be exponentially stable.

Theorem 3.1: Let the controller and observer gain matrices K and L be given.

The closed-loop system (3.8) is exponentially stable if there exist matrices 0 <

P, 0 < QT
j = Qj, j = 1, .., 4 and matrices Ri, Si, and Mi, i = 1, 2, such that
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the following matrix inequality holds

Λj =



Λ1j Λ2j

• Λ3j


 < 0 (3.18)

Λ1j =




Ψj + Φj1 −R1 + ST
1 −R2 + ST

2

• −S1 − ST
1 − σ̂jQj 0

• • −S2 − ST
2 − σ̂jQj




Λ2j =




−R1 +MT
1 − Φj2 −R2 +MT

2 − Φj3

−S1 −MT
1 0

0 −S2 −MT
2




Λ3j =



−M1 −MT

1 + Φj4 Φj5

• −M2 −MT
2 + Φj6


 (3.19)

where

Ψj = −P + σ̂j(τ
+
m − τ−m + τ+a − τ−a + 2)Qj +R1 +RT

1 +R2 +RT
2

Φj1 = (Aj + Bj + Cj)
T σ̂jP (Aj + Bj + Cj)

Φj2 = (Aj + Bj + Cj)
T σ̂jPBj

Φj3 = (Aj + Bj + Cj)
T σ̂jPCj, Φj5 = B

T
j PCj

Φj4 = B
T
j σ̂jPBj, Φj6 = C

T
j σ̂jPCj
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Proof: Defining y(k) = x(k + 1)− x(k), one has

ξ(k − τmk ) = ξ(k)−
k−1∑

i=k−τm
k

y(i) (3.20)

ξ(k − τak ) = ξ(k)−
k−1∑

i=k−τa
k

y(i) (3.21)

Then the system (3.8) can be transformed into

ξ(k + 1) = (Aj + Bj + Cj)ξ(k)− Bjλ(k)− Cjγ(k) (3.22)

where

λ(k) =
k−1∑

i=k−τm
k

y(i), γ(k) =
k−1∑

i=k−τa
k

y(i).

Evaluating the difference of V1(ξ(k)) along the solution of system (3.22), we have

E[∆V1(ξ(k))] = E[V1(ξ(k + 1))]− V1(ξ(k))

=
4∑

j=1

σ̂j

[
ξT (k)[Φj1 − P ]ξ(k)− 2ξT (k)Φj2λ(k)

−2ξT (k)Φj3γ(k) + λT (k)Φj4λ(k) + 2λT (k)Φj5γ(k) + γT (k)Φj6γ(k)

]
(3.23)
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A straightforward computation gives

E[∆V2(ξ(k)] =
4∑

j=1

σ̂j

[ k∑

i=k+1−τm
k+1

ξT (i)Qjξ(i)−
k−1∑

i=k−τm
k

ξT (i)Qjξ(i)

= ξT (k)Qξ(k)− ξ(k − τmk )Qjξ(k − τmk )

+
k−1∑

i=k+1−τm
k+1

ξT (i)Qjξ(i)−
k−1∑

i=k+1−τm
k

ξ(i)Qjξ(i)

]
(3.24)

In view of

k−1∑

i=k+1−τm
k+1

ξT (i)Qjξ(i)

=

k−τm
k∑

i=k+1−τm
k+1

ξT (i)Qjξ(i) +
k−1∑

i=k+1−τm
k

ξT (i)Qjξ(i)

≤
k−1∑

i=k+1−τm
k

ξT (i)Qjξ(i) +

k−τ−m∑

i=k+1−τ+m

ξT (i)Qjξ(i) (3.25)

We readily obtain

E[∆V2(ξ(k))] ≤
4∑

j=1

σ̂j

[
ξT (k)Qjξ(k)− ξT (k − τmk )Qjξ(k − τmk )

+

k−τ−m∑

i=k+1−τ+m

ξT (i)Qjξ(i)

]
(3.26)
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Following parallel procedure, we get

E[∆V3(ξ(k))] ≤
4∑

j=1

σ̂j

[
ξT (k)Qjξ(k)

−ξT (k − τak )Qjξ(k − τak ) +

k−τ−a∑

i=k+1−τ+a

ξT (i)Qjξ(i)

]
(3.27)

Finally

E[∆V4(ξ(k))] =
4∑

j=1

σ̂j

[ −τ−m+1∑

ℓ=−τ+m+2

[ξT (k)Qjξ(k)

−ξT (k + ℓ− 1)Qjξ(k + ℓ− 1)]

]

=
4∑

j=1

σ̂j

[
(τ+m − τ−m)ξ

T (k)Qjξ(k)−
k−τ−m∑

i=k+1−τ+m

ξT (i)Qjξ(i)

]
(3.28)

E[∆V5(ξ(k))] =
4∑

j=1

σ̂j

[
(τ+a − τ−a)ξ

T (k)Qjξ(k)

−

k−τ−a∑

i=k+1−τ+a

ξT (i)Qjξ(i)

]
(3.29)

It follows from (3.20) and (3.21) that:

ξ(k)− ξ(k − τmk )− λ(k) = 0 (3.30)

ξ(k)− ξ(k − τak )− γ(k) = 0 (3.31)
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Therefore, for any appropriately dimensioned matrices Ri, Si and Mi, i = 1, 2,

we have the following equations:

2[ξT (k)R1 + ξT (k − τmk )S1 + λT (k)M1]

×[ξ(k)− ξ(k − τmk )− τ(k)] = 0 (3.32)

2[ξT (k)R2 + ξT (k − τak )S2 + γT (k)M2]

×[ξ(k)− ξ(k − τak )− γ(k)] = 0 (3.33)

On combining (3.23)–(3.33), we reach

E[∆V (ξ(k))] ≤
4∑

j=1

σ̂j

[
ξT (k)Ψjξ(k)

+ξT (k)(−2R1 + 2ST
1 )ξ(k − τmk )

+ξT (k)(−2R2 + 2ST
2 )ξ(k − τak )

+ξT (k)(−2R1 + 2MT
1 − 2Φj2)λ(k)

+ξT (k)(−2R2 + 2MT
2 − 2Φj3)γ(k)

+ξT (k − τmk )(−S1 − ST
1 − σ̂jQj)ξ(k − τmk )

+ξT (k − τmk )(−2S1 − 2MT
1 )λ(k)

+ξT (k − τak )(−S2 − ST
2 − σ̂jQj)ξ(k − τak )

+ξT (k − τak )(−2S2 − 2MT
2 )γ(k)

+λT (k)(−M1 −MT
1 + Φj4)λ(k)

+γT (k)(−M2 −MT
2 + Φj5)γ(k)

+λT (k)Φj6γ(k)

]
=

4∑

j=1

σ̂j

[
ζT (k)Λ̃jζ(k)

]
(3.34)
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where

ζ(k) =

[
ζT1 ζT2

]T
, ζ2 =

[
λT (k) γT (k)

]T

ζ1 =

[
ξT (k) ξT (k − τmk ) ξT (k − τak )

]T
(3.35)

and Λ̃j corresponds to Λj in (3.19) by Schur complements. If Λj < 0, j = 1, .., 4

holds, then

E[V (ξ(k + 1))− V (ξ(k))] =
4∑

j=1

σ̂j

[
ζT (k)Λ̃jζ(k)

]

≤
4∑

j=1

σ̂j

[
− Λ̃min(Λ̃j)ζ

T (k)ζ(k)

]

< −
4∑

j=1

σ̂j

[
βjζ

T (k)ζ(k)

]
(3.36)

where

0 < βj < min
[
λmin(Λj),max{λmax(P ), λmax(Qj)}

]

Inequality (3.36) implies that E[V (ξ(k+1))−V (ξ(k))] < −φV (ξ(k)), 0 < φ < 1.

In the manner of [23], we get

||ξ(k)||2 ≤
υ

κ
||ξ(0)||2(1− φ)k +

λ

µφ

Therefore, it can be verified that the closed-loop system (3.8) is exponentially

stable. This completes the proof.
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A solution to the problem of the observer-based stabilizing controller design is

provided by the following theorem:

Theorem 3.2: Let the delay bounds τ+m, τ
−
m, τ

+
a , τ

−
a be given. Evaluate the

quantities σ̂j, j = 1, .., 4. Then the closed-loop system (3.8) is exponentially

stable if there exist matrices 0 < X, Y1, Y2, 0 < Ξj, j = 1, .., 4 and matrices

Πi, Υi and Γi, i = 1, 2, such that the following matrix inequality holds for
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j = 1, .., 4:




Λ̂1j Λ̂2j Ω̂j

• Λ3j 0

• • −σ̂jX̂



< 0 (3.37)

X̂ =



X 0

X X


 (3.38)

Ψ̂j = −X + σ̂j(τ
+
m − τ−m + τ+a − τ−a + 2)Ξj +Π1 +ΠT

1 +Π2 +ΠT
2

Λ̂1j =




Ψ̂j −Π1 +ΥT
1 −Π2 +ΥT

2

• −Υ1 −ΥT
1 − σ̂jΞj 0

• • −Υ2 −ΥT
2 − σ̂jΞj




Λ̂2j =




−Π1 + ΓT
1 −Π2 + ΓT

2

−Υ1 − ΓT
1 0

0 −Υ2 − ΓT
2



, Λ̂3j =



−Γ1 − ΓT

1 0

• −Γ2 − ΓT
2




Ω̂j =

[
Ω̂1j 0 0 −Ω̂4j −Ω̂5j

]

Ω̂1j =



XAT + Y T

1 B
T 0

XAT XAT − Y T
2


 , ∀ j

Ω̂4j =



Y T
1 B

T 0

0 0


 , j = 1, 4, Ω̂5j =



0 0

0 −Y T
2


 , j = 1, 2

Ω̂4j = 0, j = 2, 3, Ω̂5j = 0, j = 3, 4 (3.39)
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where the gain matrices are given by

K = Y1X
−1, L = Y2X

−1C†

Proof: Define

Ωj =

[
(Aj + Bj + Cj) 0 −Bj −Cj

]T

then matrix inequality (3.18) can be expressed as

Λj = Λ̃ + ΩjPΩ
T
j < 0 (3.40)

Λ̃j =



Λ̃1j Λ̃2j

• Λ̃3j


 < 0

Λ̃1j =




Ψj −R1 + ST
1 −R2 + ST

2

• −S1 − ST
1 −Qj 0

• • −S2 − ST
2 −Qj




Λ̃2j =




−R1 +MT
1 −R2 +MT

2

−S1 −MT
1 0

0 −S2 −MT
2




Λ̃3j =



−M1 −MT

1 0

• −M2 −MT
2


 (3.41)
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Setting X̂ = P−1, invoking Schur complements, we write matrix Λj in (3.40)

equivalently as




Λ̃1j Λ̃2j Ωj

• Λ̃3j 0

• • −X̂



< 0 (3.42)

Applying the congruence transformation

Tj = diag[X̂, X̂, X̂, X̂, X̂, I]

to matrix inequality in (3.42) and manipulating using (3.38) and

Ξj = X̂QjX̂, Πj = X̂RjX̂, Υj = X̂SjX̂,

Γj = X̂MjX̂

we readily obtain matrix inequality (3.37) subject (3.39).

Remark 3.3.2 The selection of X̂ as given by (3.38) has the advantage of con-

verting the solution of bilinear matrix inequalities to that of seeking the feasibility

of linear matrix inequalities and hence avoiding iterative procedures. It should be

noted that the LMI (3.37) dependens of the average dropout patterns identified

by (3.14), which is quite useful in illustrating different operating conditions of

the communications network.
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Remark 3.3.3 It is remarked that the implementation of Theorem 3.2 is on-

line in nature as it requires cally random generators to pick-up numbers cor-

responding to the scalars σ̂1, ..., σ̂4 and to evaluate the probabilities in model

(3.10) and (3.11) to compute the state and error trajectories. This represents a

salient feature not shared by other methods for networked control design under

unreliable communication links.

3.4 Numerical Simulation

In this section, we aim to demonstrate the effectiveness and applicability of the

developed control design method and provide the simulation results on three

representative examples

3.4.1 Uninterruptible power system

We study the networked control problem for the uninterruptible power system

(UPS). Our objective here is to control the pulsewidth-modulated inverter, such

that the output ac voltage is kept at the desired setting and undistorted [83].

We consider an UPS with 1 kVA, the discrete-time model (3.1) of which can be

obtained with a sampling time of 10 ms at a half-load operating point as follows
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:

A =




0.9226 −0.633 0

1 0 0

0 1 0



, B =




1

0

0




C =

[
23.737 20.287 0

]

In what follows, we apply the new algorithm with nonstationary dropouts of

Theorem 3.2 to obtain the controller and observer gain matrices as:

K = [−0.0809 0.0190 − 0.0001], ||K|| = 0.0831

L = [−0.0035 − 0.0023 − 0.0002]T , ||L|| = 0.0042

Had we considered stationary dropouts and applied the algorithm of [5] by taking

the occurrence probabilities of the random measurement delay and the actuation

delay to be δ̄ = ᾱ = 0.1, we would obtained the controller and observer gain

matrices as:

K = [−0.2178 0.1729 0.0269], ||K|| = 0.2794,

L = [0.0117 0.0299 0.0230]T , ||L|| = 0.0395

For the purpose of simulation, we assume that the measurement delay and the

actuation delay vary as τmk ∈ [0.5 −→ 5] and τak ∈ [1 −→ 10], respectively.

With the help of the ’variable fraction delay’ block in Matlab Simulink software

(Matlab 7.0) to handle discrete time-varying delays τmk and τak and under the
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initial conditions x0p = [1 0 0]T and x̂0 = [0 0 0]T , the simulation results of

the state responses are given in Fig. 3.7, where the dotted lines denote the state

responses using the control algorithm proposed in [5]. The Bernoulli sequences

α(k) and δ(k) are depicted in Fig. 3.8.

It can be observed from Fig. 3.7 that, with the new control algorithm that

we developed, not only does the dynamical behavior of the NCS take less time

to converge to zero but also the system oscillation is smaller. In other words,

compared with the control algorithm presented in [5], the new developed control

algorithm has the advantages of faster response, smaller overshoot, and higher

control precision. The feedback gain required for regulation is also much smaller.

In addition, the simulations were carried out on the above system considering

nonstationary packet dropouts where the probability distributions of pk and sk

follows a symmetric triangle distribution with n = 100, the delay sequences α(k)

and δ(k) for nonstationary packet dropouts are similar to that of Fig. 3.10 and

the response of system states is shown in Fig. 3.9.

3.4.2 Autonomous underwater vehicle

A dynamic model of autonomous underwater vehicle (AUV) was describbed in

[84] where the control objective is to ensure that the motion of the AUV is stable
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Figure 3.7: State trajectories for stationary dropouts (UPS)
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Figure 3.9: State trajectories for nonstationary dropouts (UPS)
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at a prescribed setting. The discrete-time model is given by follows :

A =




−0.14 −0.69 0

−0.19 −0.048 0

0 1 0



, B =




0.056

−0.23

0



,

C =

[
1 0 0

]

Following parallel lines, we apply the new algorithm with nonstationary dropouts

of Theorem 3.2 to obtain the controller and observer gain matrices as:

K = [−0.0809 0.0190 − 0.0001], ||K|| = 0.0098

L = [−0.0035 − 0.0023 − 0.0002]T , ||L|| = 0.2126

Where for the case of stationary dropouts, we applied the algorithm of [5] by

taking the occurrence probabilities of the random measurement delay and the

actuation delay to be δ̄ = ᾱ = 0.5, we then obtained the controller and observer

gain matrices as:

K = [−0.4548 0.0036 0.3584], ||K|| = 0.5791

L = [−0.2479 − 0.3181 − 0.0147]T , ||L|| = 0.4035

For the purpose of simulation, we assume that the measurement delay and the

actuation delay vary as τmk ∈ [1 −→ 5] and τak ∈ [3 −→ 9], respectively. Like-

wise, we employ the ’variable fraction delay’ block in Matlab Simulink software
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Figure 3.11: State trajectories for stationary dropouts (AUV)

(Matlab 7.0) to handle discrete time-varying delays τmk and τak and under the

initial conditions x0p = [1 0 0]T and x̂0 = [0 0 0]T . The simulation results

of the state responses are given in Fig. 3.11, where the dotted lines denote the

state responses using the control algorithm reported in [5].

It can be observed from Fig. 3.11 by comparing the developed control algorithm

with the control algorithm presented in [5] that our control method has the

advantages of faster response, smaller overshoot, and higher control precision.

The feedback gain required for regulation is also much smaller.

The response of systems states with nonstationary dropouts is shown in Fig.
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Figure 3.12: State trajectories for nonstationary dropouts (AUV)

3.12.

3.5 Conclusion

The stability analysis and controller synthesis problems are thoroughly investi-

gated for NCSs with time-varying delays and subject to nonstationary packet

dropouts. Attention is focused on the design of the new observer-based con-

troller such that the resulting closed-loop system is exponentially stable in the

mean-square sense. The effectiveness of the proposed results has been shown

through several numerical examples. One of our future research topics would be
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the study of NCSs with both network-induced random delays and presence of

quantization, while we also intend to study the behaviour of the NCS when it

is subjected to bounded nonlinearities and disturbances.



Chapter 4

NETWORKED CONTROL

SYSTEMS WITH

QUANTIZATION AND

PACKET DROPOUTS

4.1 Introduction

It becomes increasingly apparent that networked control systems (NCSs), where

sensors, controllers and plants are connected over a communication network,

provide appealing advantages in several applications covering a broad range of

84
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areas. Considerable attention has been devoted to the stability and control of

NCSs; see for example, Jiang, Mao, and Shi (2010), Seiler and Sengupta (2005),

Walsh, Ye, and Bushnell (2002), Yang, Xia, and Shi (2011), Yin, Yu, and Zhang

(2010) and Zhao, Liu, and Rees (2009) and the references therein. Nevertheless,

it is worth mentioning that the insertion of communication networks in con-

trol loops leads to some inevitable phenomena including random delay, packet

dropout, quantization errors and so on, which may result in system performance

deterioration and have been primarily highlighted in the literature.

Time delays commonly exist in practical NCSs (Liu & Yang, 2011; Shi, Mah-

moud, Nguang, & Ismail, 2006; Wang, Ho, Liu, & Liu, 2009; Wu, Su, Shi, &

Qiu, 2011), which are of discrete nature.

Quantization always exists in computer-based control systems and quantization

errors have adverse effects on the NCSs performance. In early 1990s, quantized

state feedback was employed to stabilize an unstable linear system by Delchamps

(1990). Since then, there is a new trend of research on the quantization effect on

NCSs where a quantizer is regarded as an information coder. Consequently, it

is necessary to conduct an analysis on the quantizers and understand how much

effect the quantization makes on the overall systems.

On the other hand, due to the limited transmission capacity of the network,

one of the challenging issues that has inevitably emerged is data loss (Liu, 2010;

Shen, Wang, & Hung, 2010; Zhao et al., 2009). Recently, there have been three

main methods to deal with control input data loss for real-time NCSs, that is



86

to use zero control input, keep the previous one, or use the predictive control

sequence (Liu, 2010). In NCSs, it is assumed that the measurement signals are

quantized before being communicated.

Recently, researchers have started to model the random communication delays

in various probabilistic ways and have tried to prove a version of stability such as

the mean-square stability or the exponential mean-square stability. For exam-

ple, in [14], the random communication delays have been considered as white in

nature with known probability distributions. In [48], the time delay of NCSs was

modeled as Markov chains such that the closed-loop systems are jump systems.

In [23], the random delays were modeled as the Bernoulli binary distributed

white sequence taking values of zero and one with certain probability. Among

them, the binary random communication delay has received much research at-

tention due to its practicality and simplicity in describing network-induced de-

lays [2, 15, 5]. In [23], both the measurement and actuation delays are viewed

as the Bernoulli distributed white sequence using a delay-free model with small

random delays. An alternative model is developed in [44] using observer-based

feedback control algorithm with time-varying delays occurring only in the chan-

nel from the sensor to the controller. This obviously does not accord with the

practical situation in most NCSs, where another typical kind of network-induced

delay often happens in the channel from the controller to the actuator. All the

foregoing results are restricted to stationary dropouts which does not fully cover

the common operational modes on networked systems.

In this paper we assume that the output measurements from the plant undergo
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logarithmic quantization before reaching the controller. An observer is designed

to estimate the states of the plant from these quantized measurements. We

are also considering random delays occuring in the measurement and actuation

channel simultaneously. The control system is designed to render the closed-loop

system with all the vagaries stable in the mean square sense. The Lyapunov

Krasovkii functionals are deployed and the stability conditions are expressed in

the form of LMIs. A practical example has also been considered for simulation

to illustrate the effectiveness of the developed strategies.

4.2 Problem Formulation

Consider the NCS with random communication delays, where the sensor is clock

driven and the controller and the actuator are event driven. The discrete-time

linear time-invariant plant model is as follows:

xp(k + 1) = Axp +Bup, yp = Cxp (4.1)

where xp(k) ∈ R
n is the plants state vector and up(k) ∈ R

m and yp(k) ∈ R
p

are the plants control input and output vectors, respectively. A, B, and C are

known as real matrices with appropriate dimensions. With reference to Fig. 4.1,

the measured output yp(k) is transmitted through a logarithmic quantizer that
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Figure 4.1: System Block Diagram

yields yq(k). Let the set of quantized levels be described as

V = {±vj, vj = ̺jv0, j = 0,±1, ±2, ...} ∪ {0},

0 < ̺ < 1, v0 > 0

where the parameter ̺ is called the quantization density, and the logarithmic

quantizer q(.) is defined by

q(ν) =





vj, if vmj < ν ≤ vMj,

0, if ν = 0,

−q(−ν), if ν < 0

(4.2)

where ω = (1 − ̺)/(1 + ̺), vmj = vj/(1 + ω), vMj = vj/(1 − ω). Note that

the quantizing effects can be transformed for a given quantization density ̺ into
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sector bounded format as

q(ν) − ν = ∆ν, ||∆|| ≤ ω (4.3)

Based on the quantized signals, the controller will be designed such that the

desired dynamic performance of system (4.1) is achieved while the data packet

dropout arises. Toward our goal, we assume for a more general case that the

measurement with a randomly varying communication delay is described by

yc(k) =





yq(k), δ(k) = 0

yq(k − τmk ), δ(k) = 1

which in view of yq(k) = q(yp(k)) = (1 +∆)yp(k), it becomes

yc(k) =





(1 +∆)yp(k), δ(k) = 0

(1 +∆)yp(k − τmk ), δ(k) = 1
(4.4)

where τmk stands for measurement delay, the occurrence of which satisfies the

Bernoulli distribution, and δ(k) is Bernoulli distributed white sequence. We let

Prob{δ(k) = 1} = pk

where pk assumes discrete values. Two particular classes can be considered:

Class 1: pk has the probability mass function where qr−qr−1 = constant for r =

2, ..., n. This covers a wide range of cases including uniform discrete distribution,
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symmetric triangle distribution, decreasing linear function or increasing linear

function.

Class 2: pk = X/n, n > 0 and 0 ≤ X ≤ n is a random variable that follows

the Bionomial distribution B(q, n), q > 0.

Remark 4.2.1 It is significant to note that the case Prob{δ(k) = 1} = δ̄,

where δ̄ is a constant value, is widely used in majority of results on NCS. But

here we focus on nonstationary dropouts.

Taking into consideration the time delay that occurs on the actuation side, we

proceed to design the following observer-based controller:

Observer :

x̂(k + 1) = Ax̂+Buc(k) + L(yc(k)− ŷc(k))

ŷc(k) =





Cx̂(k), δ(k) = 0

Cx̂(k − τmk ), δ(k) = 1
(4.5)

Controller :

uc(k) = Kx̂(k)

up =





uc(k), α(k) = 0

uc(k − τak ), α(k) = 1
(4.6)
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where x̂(k) ∈ R
n is the estimate of the system (4.1), ŷc(k) ∈ R

p is the observer

output, and L ∈ R
n×p and K ∈ R

m×n are the observer and controller gains, re-

spectively, and τak is the actuation delay. The stochastic variable α(k), mutually

independent of δ, is also a Bernoulli distributed white sequence with

Prob{α(k) = 1} = sk

where sk assumes discrete values. By similarity, a particular class is that sk

has some probability mass function as in Table II, where sr − sr−1 = constant

for r = 2, ..., n. It is assumed that τak and τmk are time-varying and have the

following bounded condition:

τ−m ≤ τmk ≤ τ+m, τ−a ≤ τak ≤ τ+a (4.7)

Define the estimation error by e(k) = xp(k)− x̂(k). Then, it yields

xp(k + 1) =





(A+BK)xp(k)

−BKe(k), α(k) = 0,

Axp(k) +BKxp(k − ταk )

−BKe(k − ταk ), α(k) = 1,

(4.8)

e(k + 1) = xp(k + 1)− x̂(k + 1)

=





(A− LC)e(k)

−LC∆xp(k), δ(k) = 0,

Ae(k)− LCe(k − τmk )

−LC∆xp(k − τmk ), δ(k) = 1,

(4.9)
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In terms of ξ(k) = [xTp (k) eT (k)]T , system (4.8) and (4.9) can be cast into the

form:

ξ(k + 1) = Ajξ(k) + Bjξ(k − τmk ) + Cjξ(k − τak ) (4.10)

where {Aj , Bj, Cj, j = 1, ..., 4} and j is an index identifying one of the following

pairs {(δ(k) = 1, α(k) = 1), (δ(k) = 1, α(k) = 0), (δ(k) = 0, α(k) =

0), (δ(k) = 0, α(k) = 1)}:

A1 =



A 0

0 A


 , A2 =



A+BK −BK

0 A


 ,

A3 =



A+BK −BK

−LC∆ A− LC


 ,

A4 =




A 0

−LC∆ A− LC


 ,

B1 =




0 0

−LC∆ −LC


 , B2 =




0 0

−LC∆ −LC


 ,

B3 =



0 0

0 0


 , B4 =



0 0

0 0


 ,

C1 =



BK −BK

0 0


 , C2 =



0 0

0 0


 ,

C3 =



0 0

0 0


 , C4 =



BK −BK

0 0


 (4.11)
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Remark 4.2.2 It is remarked for simulation processing that we can express

(4.8)-(4.9) in the form

xp(k + 1) = sk[Axp(k) + BKxp(k − ταk )

− BKe(k − ταk )]

+ (1− sk)[(A+ BK)xp(k)−BKe(k)] (4.12)

e(k + 1) = pk[Ae(k)− LCe(k − τmk )

− LC∆xp(k − τmk )]

+ (1− pk)[(A− LC)e(k)− LC∆xp(k)] (4.13)

where the values of the random variables pk, sk are generated in the manna r

discussed earlier.

Remark 4.2.3 It is important to note from (4.11) that

Aj + Bj + Cj =



A+ BK −BK

−LC∆ A− LC


 , j = 1, .., 4 (4.14)

The interpretation of this result is that Aj +Bj +Cj represents the fundamental

matrix of the delayed system (4.10), which must be independent of the mode of

operation. This will help in simplifying the control design algorithm.

Our aim here is to design an observer based feedback stabilizing controller in the

form of (4.5) and (4.6) such that the closed loop system (4.10) is exponentially
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stable in the mean square. Our approach is based on the concepts of switched

time-delay systems [81]. For simplicity in exposition, we introduce

σ1(k) = Prob{δ(k) = 1, α(k) = 1}, σ̂1 = E[σ1]

σ2(k) = Prob{δ(k) = 1, α(k) = 0}, σ̂2 = E[σ2]

σ3(k) = Prob{δ(k) = 0, α(k) = 0}, σ̂3 = E[σ3]

σ4(k) = Prob{δ(k) = 0, α(k) = 1}, σ̂4 = E[σ4] (4.15)

where E[σi] is the expected value of σi, i = 1, .., 4. Since we assume that δ(k)

and α(k) are independent random variables, then it follows from (4.15) that

σ̂1 = E[pk]E[sk], σ̂2 = E[pk]E[1− sk]

σ̂3 = E[1− pk]E[1− sk], σ̂4 = E[1− pk]E[sk] (4.16)

4.3 Main Results

In this section, we will thoroughly investigate the stability and controller synthe-

sis problems for the closed-loop system (4.10). First, let us deal with the stability

analysis problem and derive a sufficient condition under which the closed-loop

system (4.10) with the given controller (4.5) and (4.6) is exponentially stable in

the mean square. Extending on [82], the following Lyapunov function candidate
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is constructed to establish the main theorem:

V (ξ(k)) =
5∑

i=1

Vi(ξ(k)) (4.17)

V1(ξ(k)) =
4∑

j=1

σjξ
T (k)Pξ(k), P > 0

V2(ξ(k)) =
4∑

j=1

σj

k−1∑

i=k−τm
k

ξT (i)Qjξ(i), Qj = QT
j > 0

V3(ξ(k)) =
4∑

j=1

σj

k−1∑

i=k−τa
k

ξT (i)Qjξ(i)

V4(ξ(k)) =
4∑

j=1

σj

−τ−m+1∑

ℓ=−τ+m+2

k−1∑

i=k+ℓ−1

ξT (i)Qjξ(i)

V5(ξ(k)) =
4∑

j=1

σj

−τ−a +1∑

ℓ=−τ+a +2

k−1∑

i=k+ℓ−1

ξT (i)Qjξ(i) (4.18)

It is not difficult to show that there exist real scalars µ > 0 and υ > 0 such that

µ‖ξ‖2 ≤ V (ξ(k)) ≤ υ‖ξ(k)‖2 (4.19)

Remark 4.3.1 By carefully considering Remark 4.2.3 in view of model (4.10),

it is justified to select matrix P to be the same for all operational modes, hence

independent of j, while keeping matrix Qj dependent on mode j.

We now present the analysis result for system (4.10) to be exponentially stable.

Theorem 3.1: Let the controller and observer gain matrices K and L be given.

The closed-loop system (4.10) is exponentially stable if there exist matrices 0 <
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P, 0 < QT
j = Qj, j = 1, .., 4 and matrices Ri, Si, and Mi, i = 1, 2, such that

the following matrix inequality holds

Λj =



Λ1j Λ2j

• Λ3j


 < 0 (4.20)

Λ1j =


Ψj + Φj1 −R1 + ST
1 −R2 + ST

2

• −S1 − ST
1 − σ̂jQj 0

• • −S2 − ST
2 − σ̂jQj




Λ2j =




−R1 +MT
1 − Φj2 −R2 +MT

2 − Φj3

−S1 −MT
1 0

0 −S2 −MT
2




Λ3j =



−M1 −MT

1 + Φj4 Φj5

• −M2 −MT
2 + Φj6


 (4.21)

where

Ψj = −P + σ̂j(τ
+
m − τ−m + τ+a − τ−a + 2)Qj

+ R1 +RT
1 +R2 +RT

2

Φj1 = (Aj + Bj + Cj)
T σ̂jP (Aj + Bj + Cj)

Φj2 = (Aj + Bj + Cj)
T σ̂jPBj

Φj3 = (Aj + Bj + Cj)
T σ̂jPCj, Φj5 = B

T
j PCj

Φj4 = B
T
j σ̂jPBj, Φj6 = C

T
j σ̂jPCj
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Proof: Defining y(k) = x(k + 1)− x(k), one has

ξ(k − τmk ) = ξ(k)−
k−1∑

i=k−τm
k

y(i) (4.22)

ξ(k − τak ) = ξ(k)−
k−1∑

i=k−τa
k

y(i) (4.23)

Then the system (4.10) can be transformed into

ξ(k + 1) = (Aj + Bj + Cj)ξ(k)− Bjλ(k)− Cjγ(k) (4.24)

where

λ(k) =
k−1∑

i=k−τm
k

y(i), γ(k) =
k−1∑

i=k−τa
k

y(i).

Evaluating the difference of V1(ξ(k)) along the solution of system (4.24), we have

E[∆V1(ξ(k))] = E[V1(ξ(k + 1))]− V1(ξ(k))

=
4∑

j=1

σ̂j

[
ξT (k)[Φj1 − P ]ξ(k)− 2ξT (k)Φj2λ(k)

−2ξT (k)Φj3γ(k) + λT (k)Φj4λ(k)

+2λT (k)Φj5γ(k) + γT (k)Φj6γ(k)

]
(4.25)
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A straightforward computation gives

E[∆V2(ξ(k)] =
4∑

j=1

σ̂j

[ k∑

i=k+1−τm
k+1

ξT (i)Qjξ(i)

−

k−1∑

i=k−τm
k

ξT (i)Qjξ(i)

= ξT (k)Qξ(k)− ξ(k − τmk )Qjξ(k − τmk )

+
k−1∑

i=k+1−τm
k+1

ξT (i)Qjξ(i)−
k−1∑

i=k+1−τm
k

ξ(i)Qjξ(i)

]
(4.26)

In view of

k−1∑

i=k+1−τm
k+1

ξT (i)Qjξ(i)

=

k−τm
k∑

i=k+1−τm
k+1

ξT (i)Qjξ(i) +
k−1∑

i=k+1−τm
k

ξT (i)Qjξ(i)

≤

k−1∑

i=k+1−τm
k

ξT (i)Qjξ(i) +

k−τ−m∑

i=k+1−τ+m

ξT (i)Qjξ(i) (4.27)

We readily obtain

E[∆V2(ξ(k))] ≤
4∑

j=1

σ̂j

[
ξT (k)Qjξ(k)

−ξT (k − τmk )Qjξ(k − τmk )

+

k−τ−m∑

i=k+1−τ+m

ξT (i)Qjξ(i)

]
(4.28)
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Following parallel procedure, we get

E[∆V3(ξ(k))] ≤
4∑

j=1

σ̂j

[
ξT (k)Qjξ(k)

−ξT (k − τak )Qjξ(k − τak ) +

k−τ−a∑

i=k+1−τ+a

ξT (i)Qjξ(i)

]
(4.29)

Finally

E[∆V4(ξ(k))] =
4∑

j=1

σ̂j

[ −τ−m+1∑

ℓ=−τ+m+2

[ξT (k)Qjξ(k)

−ξT (k + ℓ− 1)Qjξ(k + ℓ− 1)]

]

=
4∑

j=1

σ̂j

[
(τ+m − τ−m)ξ

T (k)Qjξ(k)

−

k−τ−m∑

i=k+1−τ+m

ξT (i)Qjξ(i)

]
(4.30)

E[∆V5(ξ(k))] =
4∑

j=1

σ̂j

[
(τ+a − τ−a)ξ

T (k)Qjξ(k)

−

k−τ−a∑

i=k+1−τ+a

ξT (i)Qjξ(i)

]
(4.31)

It follows from (4.22) and (4.23) that:

ξ(k)− ξ(k − τmk )− λ(k) = 0 (4.32)

ξ(k)− ξ(k − τak )− γ(k) = 0 (4.33)
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Therefore, for any appropriately dimensioned matrices Ri, Si and Mi, i = 1, 2,

we have the following equations:

2[ξT (k)R1 + ξT (k − τmk )S1 + λT (k)M1]

×[ξ(k)− ξ(k − τmk )− τ(k)] = 0 (4.34)

2[ξT (k)R2 + ξT (k − τak )S2 + γT (k)M2]

×[ξ(k)− ξ(k − τak )− γ(k)] = 0 (4.35)

On combining (4.25)–(4.35), we reach

E[∆V (ξ(k))] ≤
4∑

j=1

σ̂j

[
ξT (k)Ψjξ(k)

+ξT (k)(−2R1 + 2ST
1 )ξ(k − τmk )

+ξT (k)(−2R2 + 2ST
2 )ξ(k − τak )

+ξT (k)(−2R1 + 2MT
1 − 2Φj2)λ(k)

+ξT (k)(−2R2 + 2MT
2 − 2Φj3)γ(k)

+ξT (k − τmk )(−S1 − ST
1 − σ̂jQj)ξ(k − τmk )

+ξT (k − τmk )(−2S1 − 2MT
1 )λ(k)

+ξT (k − τak )(−S2 − ST
2 − σ̂jQj)ξ(k − τak )

+ξT (k − τak )(−2S2 − 2MT
2 )γ(k)

+λT (k)(−M1 −MT
1 + Φj4)λ(k)

+γT (k)(−M2 −MT
2 + Φj5)γ(k)

+λT (k)Φj6γ(k)

]
=

4∑

j=1

σ̂j

[
ζT (k)Λ̃jζ(k)

]
(4.36)
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where

ζ(k) =

[
ζT1 ζT2

]T
, ζ2 =

[
λT (k) γT (k)

]T

ζ1 =

[
ξT (k) ξT (k − τmk ) ξT (k − τak )

]T
(4.37)

and Λ̃j corresponds to Λj in (4.21) by Schur complements. If Λj < 0, j = 1, .., 4

holds, then

E[V (ξ(k + 1))− V (ξ(k))] =
4∑

j=1

σ̂j

[
ζT (k)Λ̃jζ(k)

]

≤
4∑

j=1

σ̂j

[
− Λ̃min(Λ̃j)ζ

T (k)ζ(k)

]

< −
4∑

j=1

σ̂j

[
βjζ

T (k)ζ(k)

]
(4.38)

where

0 < βj < min
[
λmin(Λj),max{λmax(P ), λmax(Qj)}

]

Inequality (4.38) implies that E[V (ξ(k+1))−V (ξ(k))] < −φV (ξ(k)), 0 < φ < 1.

In the manner of [23], we get

||ξ(k)||2 ≤
υ

κ
||ξ(0)||2(1− φ)k +

λ

µφ

Therefore, it can be verified that the closed-loop system (4.10) is exponentially

stable. This completes the proof.
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A solution to the problem of the observer-based networked feedback stabilizing

controller design is provided by the following theorem:

Theorem 3.2: Let the delay bounds τ+m, τ
−
m, τ

+
a , τ

−
a be given. Evaluate the

quantities σ̂j , j = 1, .., 4. Then the closed-loop system (4.10) is exponentially

stable if there exist matrices 0 < X, Y1, Y2, 0 < Ξj, j = 1, .., 4 and matrices

Πi, Υi and Γi, i = 1, 2, such that the following matrix inequality holds for

j = 1, .., 4:




Λ̂1j Λ̂2j Ω̂j

• Λ3j 0

• • −σ̂jX̂



< 0 (4.39)

X̂ =



X 0

X X


 (4.40)

Ψ̂j = −X + σ̂j(τ
+
m − τ−m + τ+a − τ−a + 2)Ξj +

Π1 +ΠT
1 +Π2 +ΠT

2
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Λ̂1j =




Ψ̂j −Π1 +ΥT
1 −Π2 +ΥT

2

• −Υ1 −ΥT
1 − σ̂jΞj 0

• • −Υ2 −ΥT
2 − σ̂jΞj




Λ̂2j =




−Π1 + ΓT
1 −Π2 + ΓT

2

−Υ1 − ΓT
1 0

0 −Υ2 − ΓT
2




Λ̂3j =



−Γ1 − ΓT

1 0

• −Γ2 − ΓT
2




Ω̂j =

[
Ω̂1j 0 0 −Ω̂4j −Ω̂5j

]T

Ω̂1j =



XAT + Y T

1 B
T −∆Y T

2

XAT XAT − (1 +∆)Y T
2


 , ∀ j

Ω̂4j =



Y T
1 B

T 0

0 0


 , j = 1, 4

Ω̂5j =



0 0

0 −Y T
2


 , j = 1, 2

Ω̂4j = 0, j = 2, 3, Ω̂5j = 0, j = 3, 4 (4.41)

where the gain matrices are given by

K = Y1X
−1, L = Y2X

−1C†
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Proof: Define

Ωj =

[
(Aj + Bj + Cj) 0 −Bj −Cj

]T

then matrix inequality (4.20) can be expressed as

Λj = Λ̃ + ΩjPΩ
T
j < 0 (4.42)

Λ̃j =



Λ̃1j Λ̃2j

• Λ̃3j


 < 0

Λ̃1j =




Ψj −R1 + ST
1 −R2 + ST

2

• −S1 − ST
1 −Qj 0

• • −S2 − ST
2 −Qj




Λ̃2j =




−R1 +MT
1 −R2 +MT

2

−S1 −MT
1 0

0 −S2 −MT
2




Λ̃3j =



−M1 −MT

1 0

• −M2 −MT
2


 (4.43)

Setting X̂ = P−1, invoking Schur complements, we write matrix Λj in (4.42)

equivalently as




Λ̃1j Λ̃2j Ωj

• Λ̃3j 0

• • −X̂



< 0 (4.44)
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Applying the congruence transformation

Tj = diag[X̂, X̂, X̂, X̂, X̂, I]

to matrix inequality in (4.44) and manipulating using (4.40) and

Ξj = X̂QjX̂, Πj = X̂RjX̂, Υj = X̂SjX̂,

Γj = X̂MjX̂

we readily obtain matrix inequality (4.39) subject (4.41).

Remark 4.3.2 The selection of X̂ as given by (4.40) has the advantage of con-

verting the solution of bilinear matrix inequalities to that of seeking the feasibility

of linear matrix inequalities and hence avoiding iterative procedures. It should be

noted that the LMI (4.39) depend ens of the average dropout patterns identified

by (4.16), which is quite useful in illustrating different operating conditions of

the communications network.

Remark 4.3.3 It is remarked that the implementation of Theorem 3.2 is on-

line in nature as it requires calling random generators to pick-up numbers cor-

responding to the scalars σ̂1, ..., σ̂4 and to evaluate the probabilities in model

(4.12) and (4.13) to compute the state and error trajectories. This represents a

salient feature not shared by other methods for networked control design under

unreliable communication links.
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4.4 Numerical Simulation

A quadruple-tank process consisting of four interconnected water tanks and two

pumps is considered for simulation. Its manipulated variables are voltages to

the pumps and the controlled variables are the water levels in the two lower

tanks. The quadruple-tank process is being built by considering the concept of

two double-tank processes. The quadruple tank system presents a multi-input-

multi-output (MIMO) system. A schematic description of the four tank system

can be visualized by Figure 4.2. The system has two control inputs (pump

throughputs) which can be manipulated to control the water level in the tanks.

The two pumps are used to transfer water from a sump into four overhead tanks.

In [85], an appropriate model is presented with the control objective being to

regulate the level in the four-tanks at a desired setting and undistorted. The

system matrices are given by:

A =




−0.0278 0 0.0206 0

0 −0.0233 0 0.0141

0 0 −0.0206 0

0 0 0 −0.0141




,

B =




5 0

0 6.667

0 10

11.667 0




, C =



1 0 0 0

0 1 0 0



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The mass functions of random variables pk and qk are selected to follow sym-

Figure 4.2: Schematic diagram of quadruple tank system

metric triangle distribution using 300 sample values, it is found that

σ̂1 = 0.0100, σ̂2 = 0.0964

σ̂3 = 0.8100, σ̂4 = 0.0837

Next, setting ̺ = 0.333 and applying the new Algorithm, we obtain the con-

troller and observer gain matrices as follows:

K =



−0.1204 −0.1107 0.0897 0.3033

−0.0018 0.0315 0.1174 −0.0090




Lt =



−0.0127 0.1024 −0.0297 −0.3498

0.0156 0.0116 0.0245 −0.0876




||K|| = 0.3654, ||L|| = 0.4093
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Similarly, with ̺ = 0.667 and applying the new Algorithm, we obtain the con-

troller and observer gain matrices as follows:

K =



−0.0002 −0.0067 −0.1262 0.1099

0.0002 0.0049 0.0851 −0.0105




Lt =



−0.0300 −0.0356 −0.0047 0.0108

−0.0879 −0.1043 −0.0083 −0.0560




||K|| = 0.1813, ||L|| = 0.1535

On the other hand, with δ̄ ᾱ following the same distribution and the measure-

ment and actuation delays varying as τmk ∈ [1 −→ 5] and τak ∈ [3 −→ 9], the

algorithm presented in the previous chapter was implemented and controller and

observer gain matrices obtained are as follows:

K =



−0.0440 0.0037 −0.2525 0.1129

−0.0596 0.0549 0.1034 −1.0081




L =



−0.3836 −0.0889 0.0635 0.1217

0.0424 0.0189 −0.0379 −0.0375




||K|| = 1.0261, ||L|| = 0.4213

Invoking the ’variable fraction delay’ block in Matlab Simulink software (Matlab

7.0) to handle discrete time-varying delays τmk and τak and under the initial con-
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Figure 4.3: State trajectories for systems with and without quantization

ditions x0p = [1.36 1.37 1.3 1.3]T and x̂0 = [0 0 0 0]T , the simulation

results of the state responses are given in Fig. 4.3, where the dotted lines denote

the state responses of the system without quantization. It is quite visible that

the system response with quantization takes more time to settle and shows more

oscillations.

On the other hand, the response of quantized systems states with two distinct

values of ̺, 0.333 and 0.667 is shown in Fig. 4.4.



110

0 5 10 15 20 25 30
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

s
ta

te
 x

_
1

ρ = 0.667

ρ = 0.333

0 5 10 15 20 25 30
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

s
ta

te
 x

_
2

ρ = 0.667

ρ = 0.333

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

1.5

time

s
ta

te
 x

_
3

ρ = 0.667

ρ = 0.333

0 5 10 15 20 25 30
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

s
ta

te
 x

_
1

ρ = 0.667

ρ = 0.333

Figure 4.4: Quantized tate trajectories for nonstationary dropouts
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4.5 Conclusion

The stability analysis and controller synthesis problems are thoroughly investi-

gated for NCSs with time-varying delays and and subject to quantization and

nonstationary packet dropout. Attention has been focused on the design of the

new observer-based controller such that the resulting closed-loop system is ex-

ponentially stable in the mean-square sense. The effectiveness of the proposed

results has been shown through a typical numerical example. The effect of

quantization on a system response has also been demonstrated.
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5.1 Introduction

Every advancement in technology has it’s pros and cons. Similarly, despite the

huge advantage and widespread use of networked communication in control sys-

tems, the introduction of the networks in the control loops makes the analysis

of networked control systems very complicated and adds a great deal of uncer-

tainity to the system behavior. The justification to the above statement is the

fact that the network itself is a dynamic system subject to various shortcomings,

such as data dropout, limited bandwidth, time delay, and quantization.

Nonlinear time-delay systems have widely been used to describe propagation and

transport phenomena in engineering and practical applications as mentioned in

[94]. The investigation into the adverse effects caused by the delays on the per-

formance of any control system has drawn considerable interest since the pres-

ence of delays may induce complexity and uncertainity, especially in nonlinear

systems as shown in [93], [95], [96], [97]. In this context, the stability conditions

for linear time-delay systems are broadly classified into two main categories:

delay-independent, which are not influenced by the arbitrary size of the delays

[98] and delay-dependent, which include information on the size and occurence

of the delay, see [95]–[99]. In [96] the authors initially reported results on de-

riving delay-dependent stability and stabilization criteria using Leibniz–Newton

formula. Some improved mehods as in [100, 101] were obtained recently to deal

with the problem of robust control design of uncertain time-delay systems.
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In recent years, there has been considerable development in the control theory for

nonlinear time-delay systems and a large number of methods generalizing some

aspects of the so-called differential geometric approach have been developed

[102], including backstepping, adaptive control, observer-based control and also

by using state-predictors for controlling nonlinear time-delay systems and can

be found in [15]–[103] . Relevant results were also reported in [104], [105], [106],

[107].

With this chapter we take a step further in the development of feedback stabi-

lization methods for nonlinear discrete-time NCSs with random packet dropouts

and delays. We develop an improved observer-based stabilizing control algo-

rithm through the construction of an augmented system where the original

control input is regarded as a new state. Due to limited bandwidth commu-

nication channel, the simultaneous occurrence of measurement and actuation

delays are considered using nonstationary random processes modeled by two

mutually independent stochastic variables. The developed stability conditions

are represented in the form of a convex optimization problem and the results

are tested by simulation on a real-time example.

5.2 Problem Formulation

Consider the NCS with random communication delays, where the sensor is clock

driven and the controller and the actuator are event driven. The plant model
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under consideration is given by:

xp(k + 1) = Axp(k) + Bup(k) + f0(xk, k) + Γ0w(k),

yp(k) = Cxp(k)

zp(k) = Gxp(k) + Φ0w(k) (5.1)

where xp(k) ∈ R
n is the plants state vector, up(k) ∈ R

m and yp(k) ∈ R
p are

the plants control input and output vectors, respectively, w(k) ∈ R
q is the

disturbance input which belongs to ℓ2[0,∞) and zp(k) ∈ R
q is the controlled

output. A, B, C, G, Γ0 and Φ0 are known as real matrices with appropriate

dimensions.

The unknown function f0(xp, k) ∈ R
n is a vector-valued time-varying nonlinear

perturbation with f0(0, k) = 0 and satisfies the following Lipschitz condition for

all (xp, k), (x̂p, k):

‖f0(xp, k)− f0(x̂p, k)‖ ≤ α‖F (xp − x̂p)‖ (5.2)

for some constant α > 0 and F ∈ R
n ×R

n is a constant matrix. Note that as

a consequence of (5.2) we have

‖f0(xp, k)‖ ≤ α‖F xp‖ (5.3)

Equivalently stated, condition (5.3) implies that
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f t
0(xp, k)f0(xp, k)− α2xtpF

tFxp ≤ 0 (5.4)

Towards our goal, we assume for a more general case that the measurement with

a randomly varying communication delay is described by

yc(k) =





yp(k), δ(k) = 0

yp(k − τmk ), δ(k) = 1
(5.5)

where τmk stands for measurement delay, the occurrence of which satisfies the

Bernoulli distribution, and δ(k) is Bernoulli distributed white sequence. It order

to capture the current practice of computer communication management that

experiences different time-dependent operational modes, we let

Prob{δ(k) = 1} = pk

where pk assumes discrete values. Two particular classes can be considered:

Class 1: pk has the probability mass function where qr−qr−1 = constant for r =

2, ..., n. This covers a wide range of cases including uniform discrete distribution,

symmetric triangle distribution, decreasing linear function or increasing linear

function.

Class 2: pk = X/n, n > 0 and 0 ≤ X ≤ n is a random variable that follows
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the Bionomial distribution B(q, n), q > 0.

Remark 5.2.1 It is significant to note that the case Prob{δ(k) = 1} = δ̄,

where δ̄ is a constant value, is widely used in majority of results on NCS. Here

we focus on nonstationary dropouts.

Figure 5.1: Block diagram of Nonlinear NCS

Taking into consideration the time delay that occurs on the actuation side, we

proceed to design the following observer-based controller:
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Observer :

x̂(k + 1) = Ax̂(k) + Buc(k) + L(yc(k)− ŷc(k))

ŷc(k) =





Cx̂(k), δ(k) = 0

Cx̂(k − τmk ), δ(k) = 1
(5.6)

Controller :

uc(k) = Kx̂(k)

up =





uc(k), α(k) = 0

uc(k − τak ), α(k) = 1
(5.7)

where x̂(k) ∈ R
n is the estimate of the system (5.1), ŷc(k) ∈ R

p is the observer

output, and L ∈ R
n×p and K ∈ R

m×n are the observer and controller gains, re-

spectively, and τak is the actuation delay. The stochastic variable α(k), mutually

independent of δ, is also a Bernoulli distributed white sequence with

Prob{α(k) = 1} = sk

where sk assumes discrete values. By similarity, a particular class is that sk

has some probability mass function as in Table II, where sr − sr−1 = constant

for r = 2, ..., n. It is assumed that τak and τmk are time-varying and have the

following bounded condition:

τ−m ≤ τmk ≤ τ+m, τ−a ≤ τak ≤ τ+a (5.8)
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Define the estimation error by e(k) = xp(k)− x̂(k). Then, it yields

xp(k + 1) =





(A+ BK)xp(k)

−BKe(k) + f0(xp, k)

+Γ0w(k), α(k) = 0,

Axp(k) + BKxp(k − ταk )

−BKe(k − ταk ) + f0(xp, k)

+Γ0w(k), α(k) = 1,

(5.9)

e(k + 1) = xp(k + 1)− x̂(k + 1)

=





(A− LC)e(k)

+f0(xp, k) + Γ0w(k), δ(k) = 0,

Ae(k)− LCe(k − τmk )

+f0(xp, k) + Γ0w(k), δ(k) = 1,

(5.10)

In terms of ξ(k) = [xTp (k) eT (k)]T , system (5.9) and (5.10) can be cast into

the form:

ξ(k + 1) = Ajξ(k) + Bjξ(k − τmk ) + Cjξ(k − τak )

+f̂(xp, k) + Γ̂w(k) (5.11)

where {Aj , Bj , Cj, j = 1, ..., 4} and j is an index identifying one of the following

pairs {(δ(k) = 1, α(k) = 1), (δ(k) = 1, α(k) = 0), (δ(k) = 0, α(k) =
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0), (δ(k) = 0, α(k) = 1)}:

A1 =



A 0

0 A


 , A2 =



A+ BK −BK

0 A


 ,

A3 =



A+ BK −BK

0 A− LC


 ,

A4 =



A 0

0 A− LC


 ,

B1 =



0 0

0 −LC


 , B2 =



0 0

0 −LC


 ,

B3 =



0 0

0 0


 , B4 =



0 0

0 0


 , (5.12)

C1 =



BK −BK

0 0


 , C2 =



0 0

0 0


 ,

C3 =



0 0

0 0


 , C4 =



BK −BK

0 0


 ,

Γ̂ =



Γ0 0

0 Γ0


 , ĜT =



G

0


 , Φ̂T =



Φ0

0




Remark 5.2.2 It is remarked for simulation processing that we can express
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(5.9)-(5.10) in the form

xp(k + 1) = sk[Axp(k) + BKxp(k − ταk )

+ BKe(k − ταk ) + f0(xp, k) + Γ0w(k)]

+ (1− sk)[(A+ BK)xp(k)−BKe(k)

+ f0(xp, k) + Γ0w(k)] (5.13)

e(k + 1) = pk[Ae(k)− LCe(k − τmk ) + f0(xp, k)

+ Γ0w(k)]

+ (1− pk)[(A− LC)e(k) + f0(xp, k)

+ Γ0w(k)] (5.14)

where the values of the random variables pk, sk are generated in the manner

discussed earlier.

Remark 5.2.3 It is important to note from (5.13) that

Aj + Bj + Cj =



A+ BK −BK

0 A− LC


 , j = 1, .., 4 (5.15)

The interpretation of this result is that Aj +Bj +Cj represents the fundamental

matrix of the delayed system (5.11), which must be independent of the mode of

operation. This will help in simplifying the control design algorithm.

Our aim here is to design a feedback stabilizing controller in the form of equa-
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tions (5.6) and (5.7) such that the closed-loop system (5.11) is exponentially

stable using the Lyapunov theory. Our approach is based on the concepts of

switched time-delay systems [81].

5.3 Main Results

This section investigates the stability analysis and controller synthesis problems

for the closed-loop system (5.11). At first, the sufficient conditions are obtained

under which the closed-loop system (5.11) with the given controller (5.6) and

(5.7) is exponentially stable in the mean square. Extending on [82], the following

Lyapunov function candidate is constructed to establish the main theorem:

V (ξ(k)) =
5∑

i=1

Vi(ξ(k)) (5.16)



123

V1(ξ(k)) =
4∑

j=1

σjξ
T (k)Pξ(k), P > 0

V2(ξ(k)) =
4∑

j=1

σj

k−1∑

i=k−τm
k

ξT (i)Qjξ(i), Qj = QT
j > 0

V3(ξ(k)) =
4∑

j=1

σj

k−1∑

i=k−τa
k

ξT (i)Qjξ(i)

V4(ξ(k)) =
4∑

j=1

σj

−τ−m+1∑

ℓ=−τ+m+2

k−1∑

i=k+ℓ−1

ξT (i)Qjξ(i)

V5(ξ(k)) =
4∑

j=1

σj

−τ−a +1∑

ℓ=−τ+a +2

k−1∑

i=k+ℓ−1

ξT (i)Qjξ(i) (5.17)

It is not difficult to show that there exist real scalars µ > 0 and υ > 0 such that

µ‖ξ‖2 ≤ V (ξ(k)) ≤ υ‖ξ(k)‖2 (5.18)

Remark 5.3.1 By carefully considering Remark 5.2.3 in view of model (5.11),

it is justified to select matrix P to be the same for all operational modes, hence

independent of j, while keeping matrix Qj dependent on mode j.

We now present the analysis result for system (5.11) to be exponentially stable.

Theorem 3.1: Let the controller and observer gain matrices K and L be given.

The closed-loop system (5.11) is exponentially stable if there exist matrices 0 <

P, 0 < QT
j = Qj, j = 1, .., 4 and matrices Ri, Si, and Mi, i = 1, 2, such that
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the following matrix inequality holds

Λj =



Λ1j Λ2j

• Λ3j


 < 0 (5.19)

Λ1j =




Ψj + Φj1 −R1 + ST
1 −R2 + ST

2

• −S1 − ST
1 −Qj 0

• • −S2 − ST
2 −Qj




Λ2j =




−R1 +MT
1 − Φj2 −R2 +MT

2 − Φj3

−S1 −MT
1 0

0 −S2 −MT
2




Λ3j =



−M1 −MT

1 + Φj4 Φj5

• −M2 −MT
2 + Φj6


 (5.20)

where

Ψj = −P + (τ+m − τ−m + τ+a − τ−a + 2)Qj

+ R1 +RT
1 +R2 +RT

2 + ρα2F̂ T F̂

Φj1 = (Aj + Bj + Cj)
TP (Aj + Bj + Cj)

Φj2 = (Aj + Bj + Cj)
TPBj

Φj3 = (Aj + Bj + Cj)
TPCj, Φj5 = B

T
j PCj

Φj4 = B
T
j PBj, Φj6 = C

T
j PCj
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Proof: Defining y(k) = x(k + 1)− x(k), one has

ξ(k − τmk ) = ξ(k)−
k−1∑

i=k−τm
k

y(i) (5.21)

ξ(k − τak ) = ξ(k)−
k−1∑

i=k−τa
k

y(i) (5.22)

Then the system (5.11) can be transformed into

ξ(k + 1) = (Aj + Bj + Cj)ξ(k) + f̂(xp, k) + Γ̂w(k)

−Bjλ(k)− Cjγ(k) (5.23)

where

λ(k) =
k−1∑

i=k−τm
k

y(i), γ(k) =
k−1∑

i=k−τa
k

y(i).
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Evaluating the difference of V1(ξ(k)) along the solution of system (5.23), we have

∆V1(ξ(k)) = V1(ξ(k + 1))− V1(ξ(k))

=
4∑

j=1

σ̂j

[
ξT (k)[Φj1 − P ]ξ(k)− 2ξT (k)Φj2λ(k)

− 2ξT (k)Φj3γ(k) + λT (k)Φj4λ(k)

+ 2λT (k)Φj5γ(k) + γT (k)Φj6γ(k)

+ 2ξT (k)(Aj + Bj + Cj)
TP f̂

+ 2ξT (k)(Aj + Bj + Cj)
TP Γ̂w(k)

− 2λT (k)BT
j P f̂ − 2λT (k)BT

j P Γ̂w(k)

− 2γT (k)CT
j P f̂ − 2γT (k)CT

j P Γ̂w(k)

+ f̂TP f̂ + 2f̂TP Γ̂w(k)

+ wT (k)Γ̂TP Γ̂w(k)

]
(5.24)

A straightforward computation gives

∆V2(ξ(k) =
4∑

j=1

σ̂j

[ k∑

i=k+1−τm
k+1

ξT (i)Qjξ(i)

−

k−1∑

i=k−τm
k

ξT (i)Qjξ(i)

= ξT (k)Qξ(k)− ξ(k − τmk )Qjξ(k − τmk )

+
k−1∑

i=k+1−τm
k+1

ξT (i)Qjξ(i)−
k−1∑

i=k+1−τm
k

ξ(i)Qjξ(i)

]
(5.25)
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In view of

k−1∑

i=k+1−τm
k+1

ξT (i)Qjξ(i)

=

k−τm
k∑

i=k+1−τm
k+1

ξT (i)Qjξ(i) +
k−1∑

i=k+1−τm
k

ξT (i)Qjξ(i)

≤

k−1∑

i=k+1−τm
k

ξT (i)Qjξ(i) +

k−τ−m∑

i=k+1−τ+m

ξT (i)Qjξ(i) (5.26)

We readily obtain

∆V2(ξ(k)) ≤
4∑

j=1

σ̂j

[
ξT (k)Qjξ(k)

−ξT (k − τmk )Qjξ(k − τmk )

+

k−τ−m∑

i=k+1−τ+m

ξT (i)Qjξ(i)

]
(5.27)

Following parallel procedure, we get

∆V3(ξ(k)) ≤
4∑

j=1

σ̂j

[
ξT (k)Qjξ(k)

−ξT (k − τak )Qjξ(k − τak ) +

k−τ−a∑

i=k+1−τ+a

ξT (i)Qjξ(i)

]
(5.28)
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Finally

∆V4(ξ(k)) =
4∑

j=1

σ̂j

[ −τ−m+1∑

ℓ=−τ+m+2

[ξT (k)Qjξ(k)

−ξT (k + ℓ− 1)Qjξ(k + ℓ− 1)]

]

=
4∑

j=1

σ̂j

[
(τ+m − τ−m)ξ

T (k)Qjξ(k)−
k−τ−m∑

i=k+1−τ+m

ξT (i)Qjξ(i)

]
(5.29)

∆V5(ξ(k)) =
4∑

j=1

σ̂j

[
(τ+a − τ−a)ξ

T (k)Qjξ(k)

−
k−τ−a∑

i=k+1−τ+a

ξT (i)Qjξ(i)

]
(5.30)

It follows from (5.21) and (5.22) that:

ξ(k)− ξ(k − τmk )− λ(k) = 0 (5.31)

ξ(k)− ξ(k − τak )− γ(k) = 0 (5.32)

Therefore, for any appropriately dimensioned matrices Ri, Si and Mi, i = 1, 2,

we have the following equations:

2[ξT (k)R1 + ξT (k − τmk )S1 + λT (k)M1]

×[ξ(k)− ξ(k − τmk )− τ(k)] = 0 (5.33)

2[ξT (k)R2 + ξT (k − τak )S2 + γT (k)M2]

×[ξ(k)− ξ(k − τak )− γ(k)] = 0 (5.34)
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Taking (5.4) into consideration and forming the Lipschitz condition for the above

system we get

−ρf̂ tf̂ + ρα2ξtF̂ tF̂ ξ ≥ 0 (5.35)
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On combining (5.24)–(5.35), we reach

∆V (ξ(k)) ≤
4∑

j=1

σ̂j

[
ξT (k)Ψjξ(k)

+
4∑

j=1

ξT (k)(−2R1 + 2ST
1 )ξ(k − τmk )

+ξT (k)(−2R2 + 2ST
2 )ξ(k − τak )

+ξT (k)(−2R1 + 2MT
1 − 2Φj2)λ(k)

+ξT (k)(−2R2 + 2MT
2 − 2Φj3)γ(k)

+ξT (k − τmk )(−S1 − ST
1 −Qj)ξ(k − τmk )

+ξT (k − τmk )(−2S1 − 2MT
1 )λ(k)

+ξT (k − τak )(−S2 − ST
2 −Qj)ξ(k − τak )

+ξT (k − τak )(−2S2 − 2MT
2 )γ(k)

+λT (k)(−M1 −MT
1 + Φj4)λ(k)

+γT (k)(−M2 −MT
2 + Φj5)γ(k)

+λT (k)Φj6γ(k)

+ 2ξT (k)(Aj + Bj + Cj)
TP f̂

+ 2ξT (k)(Aj + Bj + Cj)
TP Γ̂w(k)

− 2λT (k)BT
j P f̂ − 2λT (k)BT

j P Γ̂w(k)

− 2γT (k)CT
j P f̂ − 2γT (k)CT

j P Γ̂w(k)

+ f̂TP f̂ + 2f̂TP Γ̂w(k)− ρf̂ tf̂ + ρα2ξtF̂ tF̂ ξ

+ wT (k)Γ̂TP Γ̂w(k)

]
=

4∑

j=1

σ̂j

[
ζT (k)Λ̃jζ(k)

]
(5.36)
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where

ζ(k) =

[
ζT1 ζT2 ζT3

]T
, ζ2 =

[
λT (k) γT (k)

]T

ζ1 =

[
ξT (k) ξT (k − τmk ) ξT (k − τak )

]T

ζ3 =

[
f̂T (xp, k) wT (k)

]T
(5.37)

and Λ̃j corresponds to Λj in (5.20) by Schur complements. If Λj < 0, j = 1, .., 4

holds, then

V (ξ(k + 1))− V (ξ(k)) =
4∑

j=1

σ̂j

[
ζT (k)Λ̃jζ(k)

]

≤

4∑

j=1

σ̂j

[
− Λ̃min(Λ̃j)ζ

T (k)ζ(k)

]

< −

4∑

j=1

σ̂j

[
βjζ

T (k)ζ(k)

]
(5.38)

where

0 < βj < min
[
λmin(Λj),max{λmax(P ), λmax(Qj)}

]

Inequality (5.38) implies that V (ξ(k + 1))− V (ξ(k)) < −φV (ξ(k)), 0 < φ < 1.

In the manner of [23], we get

||ξ(k)||2 ≤
υ

κ
||ξ(0)||2(1− φ)k +

λ

µφ
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Consider the performance measure

JK =
K∑

k=0

(
zTp (k)zp(k)− γ2wT (k)w(k)

)
(5.39)

For any w(k) ∈ ℓ[0,∞) 6= 0 and zero initial condition, we have

JK =
K∑

k=0

(
zTp (k)zp(k)− γ2wT (k)w(k)

+∆V (x)|(1) −∆V (ξ(k))|(1)

)

≤

K∑

k=0

(
zTp (k)zp(k)− γ2wT (k)w(k) + ∆V (x)|(1)

)

where ∆V (x)|(1) defines the Lyapunov difference along the solutions of system

(5.1). Proceeding as before we get

zTp (k)zp(k)− γ2wT (k)w(k) + ∆V (ξ(k))|(1)

=
4∑

j=1

σ̂j

[
ζT (k)Λ̄jζ(k)

]
(5.40)

where Λ̄j corresponds to the Λ̃j in (5.20) by Schur complements. It is readily

seen that

zTp (k)zp(k)− γ2wT (k)w(k) + ∆V (ξ(k))|(1) < 0

for arbitrary k ∈ [0, K), which implies for any w(k) ∈ ℓ2[0,∞) 6= 0 that J < 0

leading to ‖zp(k)‖2 < γ|w(k)‖2 and the proof is completed.
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A solution to the problem of the observer-based networked feedback stabilizing

controller design is provided by the following theorem:

Theorem 3.2: Let the delay bounds τ+m, τ−m, τ+a , τ−a be given. Then the

closed-loop system (5.11) is exponentially stable if there exist matrices 0 <

X, Y1, Y2, 0 < Ξj, j = 1, .., 4 and matrices Πi, Υi and Γi, i = 1, 2, such

that the following matrix inequality holds for j = 1, .., 4:




Λ̂1j Λ̂2j Ω̂j Ω̂j 0 X̂ĜT αX̂F̂ T

• Λ̂3j 0 0 0 0 0

• • X̂ − ρI X̂Γ̂T 0 0 0

• • • −X̂ 0 0 0

• • • • −γ2I Φ̂T 0

• • • • • −I 0

• • • • • • −µI




< 0

(5.41)
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X̂ =



X X

X X


 (5.42)

Ψ̂j = −X̂ + (τ+m − τ−m + τ+a − τ−a + 2)Ξj

+Π1 +ΠT
1 +Π2 +ΠT

2

Λ̂1j =




Ψ̂j −Π1 +ΥT
1 −Π2 +ΥT

2

• −Υ1 −ΥT
1 − Ξj 0

• • −Υ2 −ΥT
2 − Ξj




Λ̂2j =




−Π1 + ΓT
1 −Π2 + ΓT

2

−Υ1 − ΓT
1 0

0 −Υ2 − ΓT
2




Λ̂3j =



−Γ1 − ΓT

1 0

• −Γ2 − ΓT
2




Ω̂j =

[
Ω̂1j 0 0 −Ω̂4j 0

]T

Ω̂1j =



XAT XAT − Y T

2

XAT XAT − Y T
2


 ∀ j

Ω̂4j =



0 −Y T

2

0 −Y T
2


 ∀ j = 1, 2

Ω̂4j = 0 ∀ j = 3, 4, (5.43)

where the gain matrices are given by

K = Y1X
−1, L = Y2X

−1C†
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Proof: Define

Ωj =

[
(Aj + Bj + Cj) 0 −Bj −Cj

]T

then matrix inequality (5.19) can be expressed as

Λj = Λ̃j + ΩjPΩ
T
j < 0 (5.44)

Λ̃j =



Λ̃1j Λ̃2j

• Λ̃3j


 < 0

Λ̃1j =




Ψj −R1 + ST
1 −R2 + ST

2

• −S1 − ST
1 −Qj 0

• • −S2 − ST
2 −Qj




Λ̃2j =




−R1 +MT
1 −R2 +MT

2

−S1 −MT
1 0

0 −S2 −MT
2




Λ̃3j =



−M1 −MT

1 0

• −M2 −MT
2


 (5.45)
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Setting X̂ = P−1, invoking Schur complements, we write matrix Λj in (5.44)

equivalently as




Λ̃1j Λ̃2j Ωj ΩjP 0 ĜT αF̂ T

• Λ̃3j 0 0 0 0 0

• • X̂ − ρI Γ̂TP 0 0 0

• • • −P 0 0 0

• • • • −γ2I Φ̂T 0

• • • • • −I 0

• • • • • • −µI




< 0

(5.46)

Applying the congruence transformation

Tj = diag[X̂, X̂, X̂, X̂, X̂, I, X̂, I, I, I]

to matrix inequality in (5.46) and manipulating using (5.42) and

Ξj = X̂QjX̂, Πj = X̂RjX̂, Υj = X̂SjX̂,

Γj = X̂MjX̂

we readily obtain matrix inequality (5.41) subject (5.43).

Remark 5.3.2 The selection of X̂ as given by (5.42) has the advantage of con-

verting the solution of bilinear matrix inequalities to that of seeking the feasibility
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of linear matrix inequalities and hence avoiding iterative procedures.

5.4 Numerical Simulation

The system under consideration for simulation is a quadruple-tank process con-

sisting of four water tanks that are interconnected and the flow through the

pipes is controlled by two pumps as shown in Fig. 4.2 in the previous chapter.

By controlling the voltages to the pumps we aim at regulating the water levels

in the two lower tanks. The four tank system is being built by considering the

concept of two double-tank processes. The quadruple tank system presents a

multi-input-multi-output (MIMO) system. A schematic description of the four

tank system can be visualized by the Figure shown. The system has two con-

trol inputs (pump throughputs) which can be manipulated to control the water

level in the tanks. The two pumps are used to transfer water from a sump into

four overhead tanks. In [85], an appropriate model is presented with the control

objective being to regulate the level in the four-tanks at a desired setting and
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undistorted. The system matrices are given by:

A =




−0.0278 0 0.0206 0

0 −0.0233 0 0.0141

0 0 −0.0206 0

0 0 0 −0.0141




,

B =




5 0

0 6.667

0 10

11.667 0




,

C =



1 0 0 0

0 1 0 0


 .
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Nonlinearities were added to the system by the following matrices:

F =




2.9875 2.1215 4.7685 3.4080

1.6765 2.1470 2.2895 2.3165

1.4960 0.6245 1.2025 1.0610

2.2630 0.1220 3.8195 0.4925




,

Γ0 =




0.0987 0.0863 0.1091 0.0999

0.1210 0.1000 0.1256 0.1100

0.0898 0.0918 0.1000 0.0888

0.1090 0.1220 0.1235 0.1156




,

G =




0.0905 0.0703 0.1064 0.1064

0.1006 0.0108 0.1072 0.0539

0.0141 0.0309 0.0175 0.0889

0.1015 0.0608 0.1078 0.0158




,

Φ0 =




0.0987 0.0863 0.1091 0.0999

0.1210 0.1000 0.1256 0.1100

0.0898 0.0918 0.1000 0.0888

0.1090 0.1220 0.1235 0.1156




.

In the above system the control signal is transmitted through a network, and

due to the limited bandwidth of the network, it gives rise to probabilistic signal

delays. The mass functions of the random variables pk and sk are selected to fol-

low symmetric triangle distribution using 300 sample values. The measurement
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and actuation delays were bounded as follows: 0.5 < τmk < 5 and 1 < τak < 10.

The ’variable fraction delay’ block in Matlab Simulink software (Matlab 7.0)

was used to handle the discrete time-varying delays.

The variable µ was chosen to be less than 0.1 in each of the cases illustrated

below. The value of α was varied and the system behavior was studied in each

case. Setting α = 0.5 and applying the new algorithm, we obtain the controller

and observer gain matrices as follows:

K =



−0.1327 −0.0349 −0.0268 −0.0452

0.0146 0.0333 0.0023 −0.2489




LT =



−0.2156 −0.0415 0.0188 0.0207

0.0062 −0.0159 −0.0019 0.0327




‖K‖ = 0.2546, ‖L‖ = 0.2213

Similarly with α = 1 and applying the new algorithm, we obtain the controller

and observer gain matrices as follows:

K =



−0.1199 −0.0308 −0.0125 −0.0646

0.0087 0.0405 0.0151 −0.2502




LT =



−0.2065 −0.0399 0.0200 0.0226

0.0020 −0.0271 −0.0001 0.0345




‖K‖ = 0.2615, ‖L‖ = 0.2126
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With α = 1.5 and applying the new algorithm, we obtain the controller and

observer gain matrices as follows:

K =



−0.1275 −0.0441 −0.0237 −0.0403

0.0117 0.0389 0.0132 −0.2712




LT =



−0.2024 −0.0416 0.0201 0.0188

0.0025 −0.0233 −0.0029 0.0326




‖K‖ = 0.2763, ‖L‖ = 0.2085

Further it was noted that as we increase the value of α to 2, the networked

control system was rendered unstable. The comparative state responses of the

system at different values of α are shown in Fig. 5.2. As we vary the value of α

there was not much variation in the norms of the controller and observer gain

matrices, but the difference in the state trajectories was notable. As the value of

α is increased, the system takes slightly longer to settle to steady state and most

importantly the steady state error in the response increases. We then compare

the response of the nonlinear system for a given value of α, say 0.5, with the

linear system, subject to similar delays and nonstationary packet dropouts. For
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Figure 5.2: State trajectories for different values of α



143

0 5 10 15 20 25 30 35 40
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

sample k

s
ta

te
 x

_
1

linear system

nonlinear system

0 5 10 15 20 25 30 35 40
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

sample k

s
ta

te
 x

_
2

linear system

nonlinear system

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

1.5

sample k

s
ta

te
 x

_
3

linear system

nonlinear system

0 5 10 15 20 25 30 35 40
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

sample k

s
ta

te
 x

_
4

linear system

nonlinear system

Figure 5.3: Comparative response of nonlinear and linear system



144

the linear case, we obtain the controller and observer gain matrices as follows:

K =



−0.0440 0.0037 −0.2525 0.1129

−0.0596 0.0549 0.1034 −1.0081




LT =



−0.3836 −0.0889 0.0635 0.1217

0.0424 0.0189 −0.0379 −0.0375




‖K‖ = 1.0261 ‖L‖ = 0.4213

The comparative plots are shown in Fig. 5.3. We see that the linear system

settles to steady state much quicker than the nonlinear system and the steady

state error is zero in case of the linear system.

5.5 Conclusion

The stability analysis and controller synthesis problems are thoroughly investi-

gated for nonlinear NCSs with time-varying delays and subject to nonstationary

packet dropouts. The main focus of the study was design of the new observer-

based controller such that the resulting closed-loop system is exponentially stable

in the mean-square sense. The proposed results were validated by simulation on

a realtime example and comparison has been drawn with a linear system subject

to similar network phenomena.
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6.1 Introduction

Many complicated control systems, such as process plants, surveillance aircrafts,

and space shuttles, wireless communication networks are employed to exchange

information and control signals between spatially distributed system compo-

nents, like supervisory computers, controllers, and intelligent inputoutput (I/O)

devices (e.g., smart sensors and actuators). Each of the system components

connected via a serial communication channel is labelled as a networked control

system (NCS).

Data is exchanged between networked nodes in the form of discrete units called

packets. Therefore any continuous-time signal is sampled before transmission

over the network. Data packets may be lost at any point between the source

and the destination and are termed as dropouts. Packet dropout may occur

along the network as a result of various uncertainties and noise in the channels.

It may also occur at the destination when out of order delivery takes place. In

reliable transmission protocols that guarantee the eventual delivery of packets,

data is resent repeatedly to ensure the delivery of each packet. However NCSs

should operate with non-reliable transport protocols since transmission of old

data is retudant and meaningless in process control plants. Networked control is

being used for many real-time applications for a number of reasons [108], which

include their low cost of operation owing to reduced hardware, lesser power

requirements, easier installation and maintenance, and greater flexibility and

reliability.
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In [10] Walsh et al. introduced a novel control network protocol, try-once-

discard (TOD), for multiple-input multiple-output NCSs, and provided, for the

first time, an analytic proof of global exponential stability for both the new

protocol and the more commonly used (statically scheduled) access methods.

An approach was initially proposed by Yu et al. in [18] to model networked

control systems with arbitrary but finite data packet dropout as switched linear

systems. In the same year they studied the problem of data packet dropout

and transmission delays in NCSs in both continuous-time case and discrete-time

case in [19]. They modeled the NCSs with data packet dropout and delays

as ordinary linear systems with input delays. The stabilisation problem for

networked control systems with time-varying delays smaller than one sampling

period was studied in by Zhang et al. [34]. Later they extended the research

to study delays longer than one sampling period [39]. In [45] they considered

state feedback controllers, and modeled the closed-loop NCS as a switched delay

system.

In the recent past Luan et al. [5] developed an observer-based controller for

networked systems involving two major types of delays namely: random mea-

surement and actuation delays. The occurence of delays was governed by a

Binary Bernoulli distribution. An observer-based controller was also designed

by [111] for a system incorporating packet dropouts besides communication de-

lays. A similar work was also presented in [112] where the authors considered

the H∞ control problem for interconnected continuous-time delay systems and

an added network phenomenon of quantization.
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We intend to design an observer-based output feedback controller that remotely

stabilizes a linear plant subject to network phenomena, i.e., delays, sampling,

and packet dropouts in the (sensor) measurement and actuation channels. The

chapter is organized as follows: In section II we introduce the plant structure

and the intended controller framework. We design the closed loop model con-

sidering dynamic output feedback. In section III we find a sufficient condition

for asymptotic stability of system in the form of LMIs. In the last section we

illustrate the use of our method by means of a real-time example. The following

are the few key assumptions that we make while carrying out the analysis:

A1 : The sensor is time-driven, has a receiving buffer which contains the most

recently received data packet from the sensor and the sampling period is

hm.

A2 : The actuator is time-driven and has a receiving buffer which contains

the most recently received data packet from the controller. The actuator

reads the buffer periodically at a sampling rate of ha.

A3 : The time-varying measurement delay at time step k ∈ N is denoted by

τmk , and is bounded by ϕ1 < τmk < ̺1

A4 : The time-varying actuation delay at time step l ∈ N is denoted by τal ,

and is bounded by ϕ2 < τal < ̺2

A5 : Every sampled data is time stamped, so the controller and actuator

always use the most recent data packet.
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A6 : It is assumed that nm and na dropouts can occur in the measurement

and actuation channel respectively.

Lemma 6.1.1 (The S Procedure) [110] : Denote the set Z = {z} and let

F(z), Y1(z), Y2(z), . . . ,Yk(z) be some functionals or functions. Define domain

D as

D = {z ∈ Z : Y1(z) ≥ 0, Y2(z) ≥ 0, ...,Yk(z) ≥ 0}

and the two following conditions:

(I) F(z) > 0, ∀ z ∈ D,

(II) ∃ ε1 ≥ 0, ε2 ≥ 0, ..., εk ≥ 0 such that S(ε, z) = F(z) −
∑k

j=1 εj Yj(z) >

0 ∀ z ∈ Z

Then (II) implies (I).

Lemma 6.1.2 (The Integral Inequality) [109] : For any constant matrix 0 <

Σ ∈ ℜn×n, scalar τ∗ < τ(t) < τ+ and vector function ẋ : [t − τ+, t − τ∗] → ℜn

such that the following integration is well-defined, then it holds that

−(τ+ − τ∗)

∫ t−τ∗

t−τ+
ẋT (s) Σ ẋ(s) ds

≤ − [x(t− τ∗) − x(t− τ+)]T Σ [x(t− τ∗) − x(t− τ+)]

Lemma 6.1.2 is frequently called the ”integral inequality” and it is derived from

Jensen’s inequality [109]. Sometimes, the arguments of a function will be omit-

ted when no confusion can arise.
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6.2 Problem Statement

We consider a linear state-space model of a system given by:

ẋ(t) = Ax(t) + Bu(t) (6.1)

y(t) = Cx(t) (6.2)

where x(t) ∈ ℜn is the system state vector, u(t) ∈ ℜm is the control input to

the system and the y(t) ∈ ℜp is the output of the system. A ∈ ℜn×n, B ∈ ℜn×m

and C ∈ ℜp×m are real and constant matrices of appropriate dimensions.

The measurements of the plant output y(t) are sampled at a time interval hm so

they are available at the other end of the network at time instants khm where

k ∈ N. However in our case we assume that the network is subject to delays as

well. The variable measurement delay encountered by each sample is assumed

to be τmk . Therefore the measurements subject to delays arrive at the controller

at time instants khm + τmk . The time delay is also subject to upper and lower

bounds ϕ1 < τmk < ̺1. A block diagram of the network model under study can

be seen in Fig. 6.1.

The estimate of the plant’s state is generated by the observer as follows:

˙̂x(t) = Ax̂(t) +Bu(t) + L(y(khm)− Cx̂(khm))

∀ t ∈ [khm + τmk , (k + 1)hm + τmk+1) (6.3)
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Figure 6.1: Feedback NCS with Observer-based control

Where u(t) is the last successfully receieved measurement. The controller sends

updates to the actuation unit at time intervals of ha (sampling time). But due

to the delays present in the network, the updates are received by the actuation

unit at time instants lha+τal where l ∈ N and τal is the bounded actuation delay

such that ϕ2 < τal < ̺2.

6.3 Output-Feedback Design

We now develop the observer based controller for the above mentioned Net-

worked Control System. The control input to the linear plant is defined as

shown below:

u(t) = Kx̂(lha) (6.4)
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where the gain matrix K will be selected to guarantee that the closed-loop

system is stable.

Keeping the delays and nature of the system in mind, we formulate the delay

differential equations as follows:

τ̄m = t− khm, ∀ t ∈ [khm + τmk , (k + 1)hm + τmk+1)

τ̄a = t− lha, ∀ t ∈ [lha + τal , (l + 1)ha + τal+1)
(6.5)

The range of τ̄m and τ̄a is defined by

τ̄m ∈ [min{τmk }, hm +max{τmk+1}), ˙̄τm = 1

τ̄a ∈ [min{τal }, ha +max{τal+1}), ˙̄τa = 1 (6.6)

We can now reformulate the equation of the observer in (6.3) as follows:

˙̂x(t) = Ax̂(t) + Bu(t) + L(y(t− τ̄m)− Cx̂(t− τ̄m))

u(t) = Kx̂(t− τ̄a) (6.7)

Fig. 6.2.a shows the variation of τ̄m with time. Packet dropouts are treated as

delays which grow beyond bounds. If there are nm dropouts in the measurement
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Figure 6.2: Evolution of τ̄ s with respect to time (a) No packet dropout occurs,
(b) Packet sent at khm is dropped.

channel and na dropouts in the actuation channel, then

τ̄m ∈ [min{τmk }, (nm + 1)hm +max{τmk+1})

τ̄a ∈ [min{τal }, (na + 1)ha +max{τal+1})

Therefore it should be noted that any dropouts in the channel will be reflected

in the system in the form of delays which are multiples of the sampling time

period. Fig. 6.2.b shows the variation in τ̄m if the packet at a given instant khm

is dropped. Defining the estimation error in the system as e(t) = x(t) − x̂(t),

assuming the augmented state vector ξ(t) = [x̂T (t) eT (t)]T using eq. (6.1), eq.
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(6.2) and eq. (6.7), the closed loop is defined by

ξ̇(t) =



A 0

0 A


 ξ(t) +



0 LC

0 −LC


 ξ(t− τ̄m) +



−BK 0

0 0


 ξ(t− τ̄a) (6.8)

where

A =



A 0

0 A


 , B1 =



0 LC

0 −LC


 , B2 =



−BK 0

0 0




To facilitate further development, we consider the case where the output ma-

trix C is assumed to be of full row rank and C† represents the right-inverse.

Introducing the Lyapunov-Krasovskii functional for the given system:

V (t) =
5∑

i=1

Vi(t)

V1(t) = ξTj (t)Pjξ(t),

V2(t) =
2∑

j=1

∫ t

t−ϕj

ξT (s)Qjξ(s) ds,

V3(t) =
2∑

j=1

ϕj

∫ 0

−ϕj

∫ t

t+s

ξ̇T (α)Wj ξ̇(α)dα ds,

V4(t) =
2∑

j=1

(̺j − ϕj)

∫ −ϕj

−̺j

∫ t

t+s

ξ̇T (α)Sj ξ̇j(α)dα ds,

V5(t) =
2∑

j=1

∫ t

t−̺j

ξT (s)Rjξ(s) ds (6.9)

where j = 1 applies to measurement delays and j = 2 applies to actuation delays.
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0 < Pj = P
T
j , 0 < Wj = W

T
j , 0 < Qj = Q

T
j , 0 < Rj = R

T
j , 0 < Sj = S

T
j are

weighting matrices of appropriate dimensions. The theorem below establishes

the main control design.

Theorem 6.3.1 Given the bounds ϕ1, ϕ2 > 0 and ̺1, ̺2 > 0 . System (6.1)-

(6.2) is delay-dependent asymptotically stable if there exist weighting matrices

0 < X , Y1, Y2, 0 < Λ11, Λ12, Λ21, Λ22, Λ31, Λ32, Λ41, Λ42 satisfying the

following LMI

Π̃ =




Π1 Π2 Π3

• Π4 Π5

• • Π6



< 0 (6.10)

Π1 =




Πjo 0 B1X̂ Λ21

• −Πc1 Λ31 0

• • −Πm1 Λ31

• • • −Πn1




,

Π2 =




ϕ1X̂A
T (̺1 − ϕ1)X̂A

T 0 B2X̂

0 0 0 0

ϕ1X̂B
T
1 (̺1 − ϕ1)X̂B

T
1 0 0

0 0 0 0




,

Π3 =




Λ22 ϕ2X̂A
T (̺2 − ϕ2)X̂A

T

0 0 0

0 0 0

0 0 0



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Π4 =




−2X̂ + Λ21 0 0 0

• −2X̂ + Λ31 0 0

• • −Πc2 Λ32

• • • −Πm2




,

Π5 =




0 0 0

0 0 0

0 0 0

Λ32 ϕ2X̂B
T
2 (̺2 − ϕ2)X̂B

T
2




Π6 =




−Πn2 0 0

• −2X̂ + Λ22 0

• • −2X̂ + Λ32



,

X̂ =



X X

X X




Πjo = AX̂ + X̂AT + Λ11 + Λ12 + Λ41 + Λ42 − Λ21 − Λ22,

Πc1 = Λ11 + Λ31, Πc2 = Λ12 + Λ32,

Πn1 = Λ21 + Λ31 + Λ41, Πn2 = Λ22 + Λ32 + Λ42,

Πm1 = 2Λ31, Πm2 = 2Λ32, (6.11)

Here we should note that the gain matrices are given by K = Y1X
−1 and L =

Y2X
−1C†.

Proof : Computing the time-derivative of the Lyapunov function V (t) along
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the solutions of (6.1) gives us:

V̇ (t) = 2ξT (t)P ξ̇(t) + ξT (t)[Q1 +R1 +Q2 +R2]ξ(t)

−ξT (t− ϕ1)Q1ξ(t− ϕ1)− ξT (t− ϕ2)Q2ξ(t− ϕ2)− ξT (t− ̺1)R1ξ(t− ̺1)

−ξT (t− ̺2)R2ξ(t− ̺2) + ξ̇T (t)[ϕ2
1W1 + (̺1 − ϕ1)

2S1]ξ̇(t)

+ξ̇T (t)[ϕ2
2W2 + (̺2 − ϕ2)

2S2]ξ̇(t)−

∫ t

t−ϕ1

ξ̇T (α)W1ξ̇(α)dα

−

∫ t

t−ϕ2

ξ̇T (α)W2ξ̇(α)dα−

∫ t−ϕ1

t−̺1

ξ̇T (α)S1ξ̇(α)dα−

∫ t−ϕ2

t−̺2

ξ̇T (α)S2ξ̇(α)dα

≤ 2ξT (t)P ξ̇(t) + ξT (t)[Q1 +R1 +Q2 +R2]ξ(t)− ξT (t− ϕ1)Q1ξ(t− ϕ1)

−ξT (t− ϕ2)Q2ξ(t− ϕ2)− ξT (t− ̺1)R1ξ(t− ̺1)− ξT (t− ̺2)R2ξ(t− ̺2)

+ξ̇T (t)[ϕ1W1 + (̺1 − ϕ1)S1]ξ̇(t) + ξ̇T (t)[ϕ2W2 + (̺2 − ϕ2)S2]ξ̇(t)

−ϕ1

∫ t

t−̺1

ξ̇T (α)W1ξ̇(α)dα− ϕ2

∫ t

t−̺2

ξ̇T (α)W2ξ̇(α)dα

−(̺1 − ϕ1)

∫ t−ϕ1

t−̺1

ξ̇T (α)S1ξ̇(α)dα− (̺2 − ϕ2)

∫ t−ϕ2

t−̺2

ξ̇T (α)S2ξ̇(α)dα (6.12)

Applying Lemma 6.1.1, we get

−ϕj

∫ t

t−ϕj

ξ̇T (α)Wj ξ̇(α)dα

≤




ξ(t)

ξ(t− ϕj)




T 

−Wj Wj

• −Wj







ξ(t)

ξ(t− ϕj)


 (6.13)
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Similarly,

−(̺j − ϕj)

∫ t−ϕj

t−̺j

ξ̇T (α)Sj ξ̇(α)dα

= −(̺j − ϕj)

[ ∫ t−ϕ

t−τ

ξ̇T (α)S ξ̇(α)dα +

∫ t−τj

t−̺j

ξ̇T (α)Sj ξ̇(α)dα

]

≤ −(τj − ϕj)

[ ∫ t−ϕj

t−τj

ξ̇T (α)Sj ξ̇(α)dα

]
− (̺j − τj)

[ ∫ t−τj

t−̺j

ξ̇T (α)Sj ξ̇(α)dα

]

≤ −

(∫ t−ϕj

t−τj

ξ̇T (α)dα

)
Sj

(∫ t−ϕj

t−τj

ξ̇(α)dα

)

−

(∫ t−τj

t−̺j

ξ̇T (α)dα

)
Sj

(∫ t−τj

t−̺j

ẋj(α)dα

)

= −[ξ(t− ϕj)− ξ(t− τj)]
TSj[ξ(t− ϕj)− ξ(t− τj)]

−[ξ(t− τj)− ξ(t− ̺j)]
TSj [ξ(t− τj)− ξ(t− ̺j)] (6.14)

where j = 1 applies to measurement delay and j = 2 applies to actuation delay.

From equations (6.9)-(6.14) by applying Schur complements and using Lemma

6.1.1, we get

V̇ (t) ≤ ζT (t) Ξ ζ(t),

ζ(t) =

[
ζT1 (t) ζT2 (t)

]T
,

ζ1(t) =

[
ξT (t) ξT (t− ϕ1) ξT (t− ̺1)

]T
,

ζ2(t) =

[
ξT (t− ϕ2) ξT (t− ̺2)

]T
(6.15)

where Ξ corresponds to Π̃ in (6.10) by means of schur complement operations.

If Π̃ < 0 so is Ξ < 0, leading to V̇ (t) ≤ −ω ||ζ||2. This establishes the internal
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asymptotic stability.

To compute that the feedback gains, we apply Schur complements and rewrite

Ξ as

Ξ̂ =




Ξ1 Ξ2 Ξ3

• Ξ4 Ξ5

• • Ξ6



< 0 (6.16)

Ξ1 =




Ξos 0 PB1 W1

• −Ξc1 S1 0

• • −Ξm1 S1

• • • −Ξn1




,

Ξ2 =




ϕ1A
T (̺1 − ϕ1)A

T 0 PB2

0 0 0 0

ϕ1B
T
1 (̺1 − ϕ1)B

T
1 0 0

0 0 0 0




,

Ξ3 =




W2 ϕ2A
T (̺2 − ϕ2)A

T

0 0 0

0 0 0

0 0 0



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Ξ4 =




−W−1
1 0 0 0

• −S−11 0 0

• • −Ξc2 −S2

• • • −Ξm2




,

Ξ5 =




0 0 0

0 0 0

0 0 0

S2 ϕ2B
T
2 (̺2 − ϕ2)B

T
2




Ξ6 =




−Ξn2 0 0

• −W−1
2 0

• • S−12



,

Ξos = PA+ATP +Q1 +Q2 +R1 +R2 −W1 −W2,

Ξc1 = Q1 + S1, Ξc2 = Q2 + S2,

Ξn1 =W1 + S1 +R1, Ξn2 =W2 + S2 +R2,

Ξm1 = 2S1, Ξm2 = 2S2. (6.17)

Then we define X̂ = P−1 and apply the congruent transformation

T = diag[ X̂ X̂ X̂ X̂ I I X̂ X̂ X̂ I I ]

Using the algebraic matrix inequalities −W−1
j ≤ −2Xj + Λ2j, −S

−1
j ≤ −2Xj +

Λ3j in addition to the matrix definitions (6.11), we obtain LMI (6.10) by Schur

complements. This concludes the proof.
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6.4 Example

Consider an LTI plant model quadruple-tank process consisting of four water

tanks [85]. These are interconnected and the flow through the pipes is regulated

by using two pumps. Fig. 4.2 shows a schematic diagram of a typical quadruple

tank process. The aim of the control strategy is to regulate the level of water

in the two lower tanks by controlling the electrical power to the pumps. The

quadruple tank system presents a multiple-input-multiple-output (MIMO) sys-

tem. The system has two control inputs which can be manipulated to control

the water level in the tanks. The two pumps are used to transfer water from a

sump into four overhead tanks. The model used for simulation was a continuous

version of the discrete-time system shown below:

A =




−0.0278 0 0.0206 0

0 −0.0233 0 0.0141

0 0 −0.0206 0

0 0 0 −0.0141




,

B =




5 0

0 6.667

0 10

11.667 0




, C =



1 0 0 0

0 1 0 0


 .

The simulation was carried out on Matlab R2008b, wherein, for each given case

the LMIs in Theorem 6.3.1 were solved to obtain the gain matrices, following
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which the data from the workspace was imported into a Simulink Model and

the plant was run to obtain the results. For the convenience of simulation, it

was assumed that the sampling rate in the measurement as well as the actuation

channel is equal, i.e. hm = ha = 0.1sec. For the purpose of illustration, 4

different cases have been shown below:

Case I

̺1 = 0.3, ̺2 = 3.8, ϕ1 = 0.4, ϕ2 = 4.0, nm = 0, na = 0

K =




0.5783 −0.0658 −0.5752 0.4191

−0.1633 0.2681 0.6544 −0.1536




L =




0.1861 −0.5918 −0.0235 −0.1784

−0.2267 0.3555 0.0208 0.2400




‖K‖ = 1.1269, ‖L‖ = 0.7975

Case II

̺1 = 0.5, ̺2 = 3.5, ϕ1 = 0.4, ϕ2 = 5.0, nm = 1, na = 1
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K =




0.5122 −0.1001 −0.4978 0.4990

−0.1194 0.3504 0.5649 −0.2188




L =




0.1851 −0.4786 0.0093 −0.1133

−0.2136 0.0904 0.0168 0.1585




‖K‖ = 1.0681, ‖L‖ = 0.5664

Case III

̺1 = 0.5, ̺2 = 4, ϕ1 = 0.6, ϕ2 = 5.5, nm = 3, na = 3

K =




0.4599 −0.1501 −0.4368 0.5793

−0.1289 0.4367 0.5835 −0.2802




L =



−0.0201 −0.4142 0.0391 −0.0863

−0.2350 −0.0453 −0.0301 0.1346




‖K‖ = 1.1133, ‖L‖ = 0.4267

Case IV

̺1 = 0.3, ̺2 = 3.8, ϕ1 = 0.4, ϕ2 = 4.0, nm = 5, na = 5
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K =




0.5150 −0.1212 −0.4952 0.5306

−0.1420 0.3792 0.6365 −0.2310




L =



−0.0484 −0.2057 0.3326 −0.1342

−0.1525 −0.0533 −0.0981 0.1097




‖K‖ = 1.1309, ‖L‖ = 0.4239

Case V

̺1 > 15 and/or ̺2 > 12.

After carrying out simulations for various values of delay bounds and packet

dropouts, it was concluded that the system is driven unstable at values of ̺1 > 15

and ̺2 > 12. The response of the system in Case V has been shown in Fig.

6.3.

6.5 Conclusions

This chapter provides a new output feedback stabilization technique for net-

worked systems subject to network phenomena such as sampling, delays and
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Figure 6.3: Response of system to conditions given in Case I
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Figure 6.4: Response of system to conditions given in Case V
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packet dropouts based on the Lyapunov-Krasovskii theory. Numerical simula-

tions have also been used to illustrate the developed techniques. We look forward

to extending our results to robust control problem by incorporating noise and de-

signingH∞ orH2 controllers. Taking into consideration the tremendous amount

of research that has gone into networked controller, the problem of controller

saturation can also incorporated in such NCS.



Chapter 7

CONCLUSIONS AND

FUTURE WORK

To sum up the work presented in the thesis, we have provided new

control design strategies for networked control systems with the perspective of

practical applications, incorporating greater amount of randomness in network

behavior and paying significant attention to statistical analysis of networked

systems. Another notable fact here is that the design strategies throughout

were based on the assumption that all the states of the system are not available

for measurement, which generalizes our approach in the control of networked

systems.

The most recent developments in networked control were concerned with prob-

abilistic approach to occurence of random delays, however to the best of the au-

168
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thors knowledge, the probabilities were generally assumed to be constant which

is slightly an optimistic assumption. Various factors could lead to non-uniform

behaviour of the network ranging from ambient temperature to network traf-

fic and aging of communication equipment. We have addressed this fact by

considering nonstationary probabilities.

We extended the work of Luan et al. [5] by developing an improved observer-

based stabilizing control algorithm to estimate the states and control input

through the construction of an augmented system where the original control

input was regarded as a new state. The occurrence of measurement and actua-

tion delays were considered using nonstationary random processes modeled by

two mutually independent stochastic variables. The observer-based controller

was designed to exponentially stabilize the networked system and the devel-

oped stability conditions were represented in the form of a convex optimization

problem and the results wre tested by simulation on a real-time examples. The

simulations revealed that the newly developed strategies provided faster speed

of response with lesser control inputs compared to the conventional techniques

and were more effective in stabilizing NCSs.

In the next part of the thesis we considered the quantization problem. Quan-

tization as we know generally exists in computer-based control systems and

quantization errors have adverse effects on the performance of NCSs. It can

delineate a system and result in chaotic behaviour. We assume that the output

measurements from the plant are subjected to logarithmic quantization before

they reach the controller. An observer-based controller is designed to provide
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the necessary control and render the closed-loop system stable in the presence of

quantization as well as random delays in both the measurement and actuation

channels of the NCS.

With the next chapter we took a step further in the development of feedback

stabilization methods for nonlinear discrete-time NCSs with random packet

dropouts and delays. The presence of disturbance inputs was also acknowl-

edged. The linearities were assumed to be bounded however and the system

behaviour was studied with varied amounts of nonlinearities and disturbances

entering the system. The behaviour of the nonlinear system was compared with

the linear system with similar delays occuring in their networks.

In the last part we took into consideration the analysis of continuous time NCSs

with Lossy networks. The Lyapunov Krasovskii functionals were deployed to

obtain the stability conditions, expressed in the form of LMIs. Simulations were

carried out under different conditions in several cases to study the variation in

system behaviour.

The area of networked control is still a raw arena for research advances, and

constitutes a new paradigm for control engineers to explore. Hence our work in

this thesis has the great potential to be further expanded in several directions.

Suggestions for future work in brief would be

• With reference to Chapter 5, where we considered bounded nonlinearities,

controller design for the non-linear networked systems with unbounded



171

nonlinearities can be further investigated.

• In Chapter 4 of the thesis we have considered quantization only in the

measurement channel, however, stability analysis and control design for

NCSs subject to quantization in both measurement and actuation channel,

with nonstationary dropouts is still left to be explored.

• A lot of study still needs to be done into statistical models to see how they

can be applied to occurence of random delays in the networked systems.

Finally we would like to reiterate that the analysis presented in this thesis is

general in the sense that no specific underlying network type, structure or op-

erating protocol has been taken into consideration. Hence the results can be

applied to wired or wireless type of networks, with the knowledge that several

specific models will have to be devised for the latter.
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Nomenclature

Discrete Case

xp(k) - plant state vector (∈ ℜn)

up(k) - plant input vector (∈ ℜm)

yp(k) - plant state vector (∈ ℜp)

τmk - bounded measurement delay (τ−m ≤ τmk ≤ τ+m)

τak - bounded actuation delay (τ−a ≤ τak ≤ τ+a )

δ(k) - bernoulli sequence governing the occurence of measurement delay

α(k) - bernoulli sequence governing the occurence of actuation delay

yc(k) - plant output reaching the controller

uc(k) - control signal generated by controller

pk - probability that measurement delay occurs (not constant)

sk - probability that actuation delay occurs (not constant)

A - plant state matrix (∈ ℜn×n)

B - plant input matrix (∈ ℜn×m)

C - plant output matrix (∈ ℜm×p)
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K - state-feedback gain matrix (∈ ℜm×n)

L - observer gain matrix (∈ ℜm×p)

w(k) - ℓ2 disturbance input (∈ ℜ
q)

z(k) - controlled plant input (∈ ℜq)

f0(x, k) - time-varying nonlinear perturbation (∈ ℜ
n)

Γ0 - disturbance matrix (∈ ℜ
q×n)

G - matrix that realtes the states to the controlled outputs (∈ ℜn×q)

Φ0 - matrix that relates the disturbances to the controlled outputs (∈ ℜ
q×q)

Continuous Case

x(t) - plant state vector (∈ ℜn)

u(t) - plant input vector (∈ ℜm)

y(t) - plant state vector (∈ ℜp)

hm - sensor sampling period

hm - actuator sampling period

τmk - bounded measurement delay (ψ1 ≤ τmk ≤ ρ1)

τak - bounded actuation delay (ψ2 ≤ τak ≤ ρ2)
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