
ITERATIVE HEURISTICS FOR CMOL

HYBRID CMOS/NANODEVICES

CELLS MAPPING

ABDALRAHMAN M. ARAFEH

Computer Engineering

May 2012

ITERATIVE HEURISTICS FOR CMOL

HYBRID CMOS/NANODEVICES
CELLS MAPPING

by

ABDALRAHMAN M. ARAFEH

A Thesis Presented to the
DEANSHIP OF GRADUATE STUDIES

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Dhahran, Saudi Arabia

May 2012

Dedicated to

My Parents, beloved Brothers and Sister

&

The undaunted Syrian People

iii

Acknowledgements
All sincere praises and thanks are due to Allah (SWT), for His limitless blessings

on us. May Allah bestow his peace and blessings upon our leader Prophet Muham-

mad (P.B.U.H), his family, his companions, and those that follow his guidance until

the last day. Acknowledgements are due to King Fahd University of Petroleum &

Minerals for providing the computing resources for this research.

I would like to express my profound gratitude and appreciation to my thesis

advisor Dr. Sadiq M. Sait for his guidance and patience throughout this thesis. His

continuous support, advise and encouragement can never be forgotten. I would also

like to express my appreciation to my thesis committee members, Dr. Alaaeldin

Amin and Dr. Zubair Baig for their constructive comments. Also, I would like to

express my deepest thanks to faculty and staff members of Computer Engineering

Department for their cooperation. Thanks are due also to my fellow graduate stu-

dents, and brothers who supported me with help and encouragement during the

work. Especially, Feras Chikh Oughali, Abdulrahman Idlbi, Mouheddin Alhaffar

and Abdulnaser Alsharaa.

I also thank my beloved parents, my brothers and sister for their moral support

throughout my academic career. Their assistant and sacrifices are truly appreciated

and will be remembered. Finally, thanks to everybody who contributed to this

achievement in a direct or an indirect way.

iv

Contents

Acknowledgements iv

List of Tables ix

List of Figures xi

Abstract (English) xv

Abstract (Arabic) xvi

1 Introduction 1

1.1 Iterative Heuristics . 3

1.2 CMOS/nanodevices Hybrid . 4

1.3 Thesis Objectives . 6

1.4 Thesis Contributions . 6

1.5 Thesis Organization . 7

2 Literature Review 9

v

2.1 Nanofabric Crossbars . 9

2.1.1 Fault Diagnosis in Nanofabric Crossbars 11

2.1.2 Reconfiguration/Repair of Nanofabric Crossbars 13

2.2 CMOL Hybrid CMOS/Nanodevices Circuits 14

2.2.1 Cell-based FPGA-like CMOL Architecture 15

2.2.2 Tile-based FPGA-like CMOL Architecture 21

2.2.3 CMOL Cells Design . 22

2.2.4 Two-Terminal Latching Nanodevices 25

2.3 Other CMOS/nanodevices Architectures 27

2.3.1 Field-Programmable Nanowire Interconnect (FPNI) 27

2.3.2 3-D CMOL Architecture . 29

2.4 Cell Placement in CMOL Architecture 29

2.4.1 Theoretical Principles of CMOL Cell Placement 30

2.4.2 Cell Placement in Cell-based CMOL Architecture 31

2.4.3 Cell Placement in Tile-based CMOL Architecture 35

2.5 Non-deterministic Iterative Heuristics 38

2.5.1 Simulated Evolution . 38

2.5.2 Tabu Search . 40

3 Problem Description and Design Automation 46

3.1 Problem Statement . 46

vi

3.2 Problem Formulation . 47

3.2.1 Placement . 47

3.2.2 Reconfiguration . 49

3.3 Cost Functions . 52

3.4 Defect Maps . 54

3.5 Design Flow . 56

4 Non-deterministic Evolutionary Heuristics for CMOL Cell Map-

ping 58

4.1 Solution Representation . 59

4.2 Simulated Evolution . 59

4.2.1 Initialization . 60

4.2.2 Goodness Function . 61

4.2.3 Selection Function . 63

4.2.4 Allocation Function . 64

4.2.5 Routing . 65

4.3 Tabu Search . 66

4.3.1 Initialization . 66

4.3.2 Neighborhood Solutions Generation 67

4.3.3 Tabu List and Move Attributes 68

4.3.4 Aspiration Criterion . 69

vii

4.3.5 Routing . 70

5 Experimental Results and Comparison 71

5.1 Simulation Environment . 72

5.1.1 Benchmarks . 72

5.1.2 Defect Maps and CMOL Grids 74

5.2 Placement . 76

5.2.1 Simulated Evolution . 77

5.2.2 Tabu Search . 79

5.2.3 Results Comparison . 81

5.3 Reconfiguration . 87

5.3.1 Simulated Evolution . 87

5.3.2 Tabu Search . 87

5.3.3 Results . 90

5.4 Solutions Verification . 101

6 Conclusion & Future Work 103

6.1 Conclusion . 103

6.2 Future Work . 104

BIBLIOGRAPHY 105

Vita 116

viii

List of Tables

5.1 ISCAS’89 Benchmarks. 73

5.2 Defect Scenarios. 74

5.3 CMOL 2-D grid sizes. 75

5.4 CMOL area utilization. 76

5.5 SimE Comparison With CMOL CAD, GA, MA and LRMA - (a = 12). 83

5.6 TS Comparison With CMOL CAD, GA, MA and LRMA - (a = 12). . 84

5.7 SimE and TS Comparison With CMOL CAD, MA and LRMA - (a = 9). 86

5.8 Circuits reconfiguration using SimE and random defect map R1, (qwire =

20% - qcell = 0%) . 92

5.9 Circuits reconfiguration using SimE and clustered defect map C1 -

σ = 2a
3
, (qwire = 20% - qcell = 0%) . 93

5.10 Circuits reconfiguration using SimE and clustered defect map C2 -

σ = 4a
3
, (qwire = 20% - qcell = 0%) . 94

5.11 Circuit s820 reconfiguration around cut wires using SimE, (qnano =

20% - qcell = 0%). 94

ix

5.12 Circuit s1238 reconfiguration around cut wires using SimE, (qnano =

20% - qcell = 0%). 95

5.13 Implementation of SimE for defect scenario (iii), (qnano = 20% -

qwire = 20%). 95

5.14 Circuits reconfiguration using TS and random defect map R1, (qwire =

20% - qcell = 0%) . 98

5.15 Circuits reconfiguration using TS and clustered defect map C1 - σ =

2a
3
, (qwire = 20% - qcell = 0%) . 99

5.16 Circuits reconfiguration using TS and clustered defect map C2 - σ =

4a
3
, (qwire = 20% - qcell = 0%) . 100

5.17 Circuit s820 reconfiguration around cut wires using TS, (qnano = 20%

- qcell = 0%). 100

5.18 Circuit s1238 reconfiguration around cut wires using TS, (qnano = 20%

- qcell = 0%). 101

x

List of Figures

1.1 Levels of abstraction and corresponding design steps. 2

2.1 Low-level structure of CMOL architecture. 16

2.2 The equivalent circuit of a CMOL logic stage. 17

2.3 CMOL FPGA-like Architecture: Connectivity Domain. 19

2.4 Fan-in-two NOR gate: (a) equivalent circuit and (b) physical imple-

mentation in CMOL. 20

2.5 Example of CMOL implementation of a 7-input NOR gate. 20

2.6 Example of CMOL circuit: (a) NOR/INV logical circuit; (b) CMOL

implmentaion of (a), (c) showing only used cells. 21

2.7 CMOL FPGA: (a) Tiles configuration, (b) Latch cell 22

2.8 (a) T-Cell: Transmission gate and inverter (b) D-Cell: D flip-flop is

formed using two D-Cells and two inverter cells 23

2.9 XOR cell design based on resistive-based nanodevices. 24

xi

2.10 AND cell based on diode-like nanodevices and its equivalent circuit.

Rw and Cw represent the nanowires. 25

2.11 Single-Electron two terminal nanodevice: (a) The I - V curves, and

(b) A possible implementation of the device. 26

2.12 FPNI architecture [1]: (a) large pads connecting CMOS and nanowires,

(b) nanofabric overlay in FPNI. 28

2.13 3D CMOL architecture [2]. 30

2.14 Example of a circuit fragment reconfiguration. (a) Circuit whose gate

A is to be relocated. (b) The repair region of gate A. (c) intersection

of the repair region of cells [3]. 33

2.15 Example of global routing for a single net. 36

2.16 CMOL FPGA CAD 1.0 design flow. 37

2.17 Structure of the Simulated Evolution algorithm [4]. 41

2.18 Tabu List visualized as window over accepted moves [4]. 42

2.19 Flow-Chart of Tabu Search algorithm [4]. 44

2.20 Algorithmic description of short-term Tabu Search (TS) [4]. 45

3.1 Defects in CMOL circuits: (a) Stuck-at-Open defect (b) Broken nanowire

defect. The cells shown in light gray are not reachable by the cell in

dark gray. 51

3.2 Defect maps: (a) Random defects (b) Clustered defects. 55

xii

3.3 Design flow of CMOL cells mapping. 56

4.1 2-D grid layout of CMOL placement for s27.blif . 19 cells; 8 gates, 7

inputs and 4 outputs. 59

4.2 Evaluation of gate i’s goodness; for r = 3 cells 1, 2 and 3 are inside

i’s connectivity domain (i.e., dist ≤ r), while cells 4 and 5 are out of

it (i.e., dist > r), goodnessi = 3/5 = 0.6. 62

4.3 Evaluation of gate i’s goodness; connection between cell i and cells 4

and 5 use defective nanodevices, goodnessi = 3/5 = 0.6. Nanodevices

are shown as black dots. 63

5.1 Evaluation of SimE performance: selected elements Vs. iterations

(a = 12 - s1238.blif). 77

5.2 Correlation between distance minimization and buffers insertion in

SimE iterations (a = 12 - s1238.blif). 78

5.3 Final cost yielded by TS in four circuits vs. candidate list size (a = 12). 79

5.4 Change in cost per iteration of s1238.blif for different candidate list

sizes (a = 12). 80

5.5 Change of problem cost and Manhattan distance in TS iterations

(a = 12 - s1238.blif). 80

5.6 SimE reconfiguration heuristic: selection set size Vs. iterations -

s1238.blif. 88

xiii

5.7 Change of reconfiguration cost per iteration in Simulated Evolution

- s1238.blif. 88

5.8 Change of reconfiguration cost per iteration in Tabu Search - s832.blif. 88

5.9 Cost yielded by TS for qnano between 10% and 50% vs. candidate list

size - s1196.blif. 89

5.10 Verification steps. 101

xiv

THESIS ABSTRACT

Name: ABDALRAHMAN M. ARAFEH

Title: ITERATIVE HEURISTICS FOR CMOL HYBRID

CMOS/NANODEVICES CELLS MAPPING

Major Field: COMPUTER ENGINEERING

Date of Degree: May 2012

Recently, many CMOS/nanodevices hybrid architectures have been proposed; the
new architectures combine the flexibility and high fabrication yield advantages of
CMOS technology with nanometer scale latching devices. CMOL (CMOS/Molecular
hybrid) is a novel architecture that consists of an overlay of a nanofabric over
a CMOS stack. Combinational logic in CMOL is implemented from a netlist of
NOR gates and Inverters, by programming nanodevices placed between overlapping
nanowires. The length of the nanowires is restricted, and therefore connectivity of
the circuit elements is constrained to only cells that are located within proximity
square-like connectivity domain. The confined connectivity reduces the flexibility of
VLSI design automation and further complicates cells mapping. Furthermore, mis-
assembly of the two-terminals bistable nanodevices will lead to non-programmable
crosspoints (i.e., stuck-at defects). The defect rate in nanofabric architectures is
expected to be higher than that of conventional CMOS technology. In this work, we
solve the problems of cell placement and reconfiguration in CMOL circuits. Simu-
lated Evolution (SimE) and Tabu Search (TS) are employed to find an arrangement
of cells that adhere to connectivity constraints and rely on non defective nanode-
vices. Circuits of various sizes from ISCAS’89 benchmarks are used to evaluate the
designed heuristics. Results show that SimE and TS are able to find placement so-
lutions that are better than previously published ones, and in less computation time.
Moreover, they yield successful reconfigurations when the defect rate is as high as
50%.

Keywords: CMOL, Nanofabrics, Placement, Reconfiguration, Simulated Evolu-
tion, Tabu Search, Evolutionary Tabu Search, Search Heuristics, Defects, VLSI.

xv

xvi

 ملخص الرســالة

 عبد الرحمن محمد عرفان عرفة الإســم:

 التكرارية توزيع العناصر الإلكترونية ضمن الدارات الهجينة بإستخدام الخوارزميات العنـوان:

 غير الحتمية

 هندسة الحاسب الآلي الإختصاص:

 2102أيار تاريخ المنح:

وعناصدر نانويدة CMOSشهدت الآونة الأخيرة عدة إقتراحات لدارات هجينة تجمع بين عناصر الددارات المتكامةدة التيةيديدة

وبدين ، CMOSبين سدهولة التصدميم ومدردود التصدنيع العدالي لتكنولوجيدا الهجينة تجمع هذه الدارات ذات خواص كهربائية.

إحدد هدذه البند الجديددة هدي بنيدة . درة عةد العمدع عندد تدرددات مرت عدةقدلية وذات كثافة عا مواسك نانوية ثنائية الإستيرار

CMOLفددوط كبيددات تتوضددع ، وهددي بنيددة مكونددة مددن كبيددة أسددقك نانويددة متياكعددةCMOS يددتم تحييددط المنكددط . التيةيديددة

. يدتم تحييدط عدواك و NORشبكة من بوابات بإستخدام الأسقك والتجهيزات النانوية عة شكع CMOLالتركيبي في بنية

تسبب الصعوبات التصنيعية محدودية في برمجة العناصر النانوية المتوضعة بين الأسقك النانوية المتداخةة. الدارة من خقع

يسدبب ةتوصديع.محددد لالتوصيع بين عناصر الدارة مييداً بالخقيا الموجودة ضمن مجداع مما يجععأكواع الأسقك النانوية،

المتدوفرة فدي خقيا العمةية توزيع العناصر الإلكترونية عة وخصيصاً في ،تصميم الدارات المتكامةة صعوبة فيهذا التيييد

الدارة. كما تعاني العناصدر النانويدة ثنائيدة الإسدتيرار الموجدودة عندد تياكعدات الأسدقك النانويدة مدن عيدوب ضدمنية، أ أنهدا

مرت عدة ميارندة بنسدبة نسدبة العيدوب فدي هدذه التجهيدزات النانويدة تكدون قدع بد نيتوغيدر قابةدة لةبرمجدة أو الإسدتخدام، وتكون

 . CMOSفي دارات العيوب الموجودة

، كمدا سدنيوم CMOLفدي بنيدة المتاحدةعةد الخقيدا لمشكةة توزيع عناصدر الددارات الإلكترونيدة م حقً في هذه الرسالة سنيد

 تدينن غيدر حتمييخوارزميت . سيتم ذلك بإستخدامالنانوية المعيبة التجهيزات بإعادة توزيع هذه العناصر لتقفي إستخدام أ من

توزيدع معدين لةعناصدر، بحيدم يدتم احتدرام قيدود بإيجداد ن تيومدان االةتو Tabu Searchو Simulated Evolutionهما

دارات الد في عمةية تيييم فعالية الخوارزميات الميترحدة مجموعدة مدن معيبة. استخدمناالتوصيع واستخدام عناصر نانوية غير

أظهدرت النتدائأ أن كدقً مدن الخدوارزميتين قادرتدان عةد ليدد. ISCAS'89 والمعروفدة بإسدممختة دة الحجدام ذات الأيياسية ال

ناجحدة عندد توزيدععدادة عدن عمةيدة إ تسد رانإعكاء حةوع أفضع من مثيقتهما وبزمن حساب أقع. عقوة عةد ذلدك، فإنهمدا

 خمسين في المئة. تصع إل نسب عالية من العيوب

Chapter 1

Introduction

The recent advances in Very Large Scale Integration (VLSI) have led to the fabri-

cation of circuits with millions of transistors. Conventionally, VLSI design process

is divided into several intermediate levels of abstraction. More details about the

new design are introduced as the design progresses from highest to lowest levels of

abstraction. The design is taken from specification to fabrication step by step with

the help of various Computer Aided Design (CAD) tools that automate the design

flow and manage design information at all levels of VLSI design process. Typical

levels of abstraction, together with their corresponding design steps, are illustrated

in Figure 1.1.

Feature size scaling in CMOS technology has led to difficulties in manufacturing

due to short channel effects, doping fluctuations and expensive lithography process.

Meanwhile, advances in nanoelectronics are expected to achieve high density of

1

2

����

����	
��
�������	��

���	������	��

����	������	��

����	��
	��

�����	�

�����	����
����

�����	���������	��

��� 	����
	��
���

����
	����������	��	�	�	!�
	��"

���	�#	

	������	����
	��
����

$����#�����
	
	��	��"

��������
"���
	��"�
�%

������������������

�����	����&����	
��
����

'��	�
��
����#��&���	�

����&���(

Figure 1.1: Levels of abstraction and corresponding design steps.

devices and to operate at THz frequencies [5]. Many effective applications have been

proposed that use molecular nanodevices, nanowires, and nano-crossbar fabrics [3,

1, 6, 7]. A new trend is emerging for combining the flexibility and high fabrication

yield advantages of CMOS technology with nanometer-scale molecular devices. A

self-assembly of two-terminal nanodevices, with nanowire crossbar fabrics, enables

high functional density and sustains acceptable fabrication costs.

Assigning cells to slots is an important step in the process of electronic design

automation. The assignment problem has been proven to be NP-hard problem

for which iterative heuristics have been employed successfully to reach acceptable

solutions. Overtime, the objective of placement has changed from reducing the

overall wirelength to reducing the area, to improving timing performance, and then

to reducing the overall power dissipation. With new advances in technology come

new issues; the CMOS/nanodevices hybrid architectures require combinational logic

3

cells to be placed in slots that are connected by programmable nanodevices placed

between overlapping nano-wires. The length of the nanowires is restricted, and

therefore connectivity of the circuit elements is constrained.

1.1 Iterative Heuristics

Many of the significant optimization problems are NP-Hard. For relatively large

instances of such problems, it is not possible to resort to optimal enumerative tech-

niques; instead, we must resort to approximation algorithms. Approximation al-

gorithms, also known as heuristic methods, do not guarantee finding an optimal

solution, yet they exploit domain specific heuristic knowledge to bias the search

toward “good” solution subspace to quickly find an “acceptable” solution which

satisfies design constraints. Therefore, the time requirement of a heuristic is small

compared to that of full enumerative algorithms.

A number of heuristics have been developed for various problems. Examples of

approximation algorithms are the modern general iterative algorithms such as Sim-

ulated Annealing, Tabu Search, and Simulated Evolution. All mentioned iterative

heuristics constitute very general (i.e., can be applied to solve any combinatorial op-

timization problem) and effective optimization techniques. Most iterative heuristics

are easy to implement; all that is required is to have suitable solution representa-

tion, a cost function, and a mechanism to traverse the search space. Although they

4

asymptotically converge to an optimal solution, the rate of convergence is heavily

dependent on the adequate choice of several parameters and the utilization of “hill

climbing” property.

1.2 CMOS/nanodevices Hybrid

Semiconductors have been largely dominated by CMOS (Complementary Metal-

Oxide-Silicon), however, the current VLSI paradigm, based on a combination of

lithographic patterning, CMOS circuits, and Boolean logic; can hardly be extended

into a-few-nm region [8, 9]. The main reason is that at gate length below 10 nm, the

sensitivity of parameters (most importantly, the gate threshold voltage) of silicon

field-effect transistors (MOSFETs) grows exponentially. As a result, the gate length

should be controlled with a few-angstrom accuracy, far beyond even the long-term

projections of the semiconductor industry [10]. Even if such accuracy can be tech-

nically implemented using sophisticated patterning technologies, this will send the

fabrication facilities costs to unprecedented high values, and will lead to annulment

of Moore’s Law some time during the next decade.

There is a growing consensus that the impending crisis of the microelectronics

progress may be resolved only by a radical paradigm shift from the lithography-based

fabrication to the so-called bottom-up approach [11]. In this approach, the smallest

active devices of integrated circuits are not defined lithographically but assembled

5

from parts with fundamentally reproducible size and structure, (e.g., few-nm-scale

molecules). The most straightforward example of such devices is a specially designed

two-terminal single-electron nanodevice [9, 12].

Unfortunately, integrated circuits consisting of molecular devices alone are hardly

viable because of limited device functionality. For example, the voltage gain of a

1-nm-scale transistor, based on any known physical effect (e.g., the field effect,

quantum interference, or single-electron charging), can hardly exceed one, i.e., the

level necessary for sustaining the operation of virtually any active analog or digital

circuit [13]. This is why the only plausible way toward high-performance nanoelec-

tronic circuits is to integrate molecular devices, and the connecting nanowires, with

CMOS circuits whose (relatively large) field-effect transistors would provide the nec-

essary additional functionality, in particular high voltage gain. Thus, most efforts in

the development of high-performance nanoelectronic circuits are focused on hybrid

CMOS/nanodevices [3, 14, 15, 16, 17, 18]. Recent reviews of CMOS/nanodevices

circuits can be found in [19, 20, 21, 22]. CMOS/nanodevices circuits with feature

size below 10 nm have the potential to provide huge density improvement over the

current CMOS technology [10, 23]. However, at such a small scale, fabricated chips

will exhibit a high percentage of defects, probably as much as 20%-50%.

It is important to note that even though the recent demonstrations of

CMOS/nanodevices hybrid architectures are promising, building a practical hybrid

circuit is still challenging. One of the major challenges is the interfacing with CMOS

6

environment (necessary for I/O functions). If a crossbar is small (much smaller than

the chip it is fabricated on), each nanowire may be gradually widened to eventually

fit a broader CMOS wire. Moreover, the requirement of special pins with different

heights to connect to the top or bottom crossbar nanowires may render nanowires

unreachable, causing circuits to become defective.

1.3 Thesis Objectives

The main objective of this work is to investigate the new constraints imposed on cells

mapping in CMOL hybrid CMOS/nanodevices architecture. The mapped circuits

should adhere to the architecture’s constrained connectivity and should avoid to use

any defective component. The mapping process will be divided to two main steps;

placement on defect-free layout, and defect-aware reconfiguration.

Simulated Evolution (SimE), and Tabu Search (TS) are the search heuristics

to be employed for search space exploration. The work will focus on the design

of the search heuristics and their various operators and parameters given the new

connectivity and defect constraints.

1.4 Thesis Contributions

This thesis presents the results of the investigations related to the objectives dis-

cussed in the previous section. The main contributions can be summarized as follows:

7

• The work illustrates the design of iterative heuristics to address the new constraint

related to cells placement in the emerging CMOS/nanodevices circuits.

• The work demonstrates the use of iterative heuristics for fault tolerance in CMOL

nanofabric architecture through reconfiguration.

• Implement Simulated Evolution (SimE) and Tabu Search (TS) heuristics for

CMOL placement and reconfiguration problems.

• Propose new goodness, allocation and neighborhood generation functions for bet-

ter exploration of search space and evolutionary enhancement of cells assignments.

• Generate defect maps with three types of defects part of which are based on

stuck-at-open model.

• Successfully place circuits without requiring any additional buffers and preserving

the circuits timing delay.

• Tolerate up to 50% of Stuck-at-open defects and broken nanowires rate up to 70%

by reconfiguring circuits using SimE and TS Heuristics.

1.5 Thesis Organization

This thesis is organized as follows: In chapter 2, theoretical aspects of CMOL

CMOS/nanodevices hybrid FPGA-like architecture are discussed along with a re-

view of related literature on nanofabric design, iterative heuristics and proposed

8

techniques for cell placement in CMOL. Problem formulation is dealt with in chapter

3. Chapter 4 discusses the parameters and operators of non-deterministic iterative

heuristics employed for CMOL placement and reconfiguration problems. Heuris-

tics evaluation and final results are reported in chapter 5, including comparison

with previous techniques. The thesis concludes with conclusion and future work in

chapter 6.

Chapter 2

Literature Review

2.1 Nanofabric Crossbars

A considerable amount of research has been done on developing nanoscale de-

vices and devising nanofabric architectures to replace conventional lithography-

based CMOS technology. Recently, many nanofabric logic designs have been pro-

posed based on nanoscale componenets such as carbon nanotubes (CNTs) [24, 25,

26, 27], silicon nanowires (SiNWs) [28, 29], single electron devices [30, 31], and

quantum dot cells [32]. Crossbar-based architecture is a promising computational

nanotechnology, a 2D array formed by the intersection of two orthogonal sets of par-

allel and uniformly-spaced nanometer-sized wires. Nanoscale wires can be aligned

to construct an array with nanometer-scale spacing using a form of directed self-

assembly, the formed crosspoints of nanoscale wires can be used as programmable

9

10

diodes. The nanoscale crossbar systems offers ultra-high density, however, the nan-

odevics are likely to have many imperfections and defect rates as high as 20% to

50%.

Nanoscale crossbar structures are very regular and can be implemented in a sim-

ilar manner to the conventional filed programable gate arrays (FPGAs). Goldstein

et al [7] proposed chemically assembled electronic nanotechnology FPGA-like ar-

chitecture called NanoFabric. The architecture consists of an array of connected

logic blocks, called Nanoblocks. A 2D molecular array inside each Nanoblock pro-

vides reprogrammable resistor-diode logic. DeHone et al. [6] presented another

nanofabric architecture where the main building block of the design, called the nano

programmable logic array nanoPLA, is based on self-assembled crossbar arrays of

nanowires with non-volatile diode-based switches at the intersections. The individ-

ual nanowires can be addressed by a lithographic scale address decoder. Most impor-

tantly, Likharev el al [3] proposed CMOL, the CMOS/nanodevices circuits. CMOL

uses diode-based nano crossbar arrays on top of CMOS cells. The main difference of

CMOL compared to previous proposed architectures is how the CMOS/nanodevices

are interfaced. Pins are distributed over the circuit on top of the CMOS stack to

connect to either lower or upper nanowire levels. Nanowires in CMOL do not need

to be precisely aligned with each other and the underlying CMOS layer in order to

be able to uniquely access a nanodevice.

Generally, defects can be divided into two classes: permanent defects caused by

11

inherent physics uncertainties in the manufacturing process, and transient faults due

to lower noise tolerance. The methods used to cope with the aforementioned defects

can be classified into two categories. The first one is based on redundancy, e.g. R-

fold Module Redundancy (RMR). Such approach can handle both permanent defects

and transient faults, however, it suffers from low reliability. The second category is

based on reconfiguration techniques during post-manufacturing design to avoid the

defects. It is reported that reconfiguration is the most effective technique, however,

it does not effectively handle transient faults.

Defects are a major issue for devices with few atoms in diameter. The small

cross-section and contact areas can render nanodevices fragile and defect prone.

The order of defects in nanofabric architectures surpass the conventional CMOS

devices since the inherent non-determinism in bottom-up self-assembly chemical

processes at molecular scale, result in more defects compared to highly controlled

lithography-based manufacturing process. Thus, an effective fault tolerance schemes

are required, along with test and diagnostic techniques to identify and locate the

defects and then reconfigure the circuit to bypass defective elements.

2.1.1 Fault Diagnosis in Nanofabric Crossbars

Reconfigurable devices are fault tolerant such that faults can be detected, and their

locations can be stored in a defect map. The defect map is a database that stores

defect information that can be used during reconfiguration. The faulty devices

12

can be avoided with the help of a defect map which can be constructed by testing

and diagnosis techniques. High resolution diagnosis is required to identify defective

resources such as programmable switches, wires, or logic cells. A survey of different

approaches for fault detection and diagnosis in molecular computing can be found

in [33].

The Teramac project at HP-labs [34] applies thorough testing and diagnosis

to identify defective unusable resources and maps an entire design to the usable

resources. Build-in self-test (BIST) techniques make use of the reconfigurability

of nanofabric FPGA-like architectures to provide a complete test and diagnosis of

defects. In the built-in self-test approache, the fabric is divided into mainly three

groups; a test pattern generator (TPG), blocks under test (BUTs), and output

response analyzers (ORAs). The TPG applies test patterns to the BUTs, which

send output responses to the ORA, and ORAs compare the responses to determine if

there is a defect. Different variations and enhancement to BIST have been proposed

in literature, among those the designs reported in [35, 36, 37].

The size of defect map for the entire fabric can be prohibitively large with almost

1012 nanodevices per chip. The authors in [38] show that Bloom filters can be

used as a data structure for defect maps. They develop a defect tolerant nanoscale

memory architecture that allow manufacturers to embed defect information within

the delivered nanosystem.

13

2.1.2 Reconfiguration/Repair of Nanofabric Crossbars

In the presence of defects, it is still possible to utilize the non defective nanodevices,

by reconfiguring circuits around defective ones. Huang et al [39] presented a solution

for defect tolerance in two-dimensional crossbars by utilizing defective architecture

and determining the expected size of functional (defect-free) crossbar, based on

defect density information obtained from the fabrication process. Another attempt

to reconfigure nanowire crossbar systems was reported by Yellambalase et al [40].

They presented three different logic mapping algorithms to circumvent defective

crossbars. The algorithms namely; Row-wise matching, Column-matching-first, and

Redundant column-matching first, are based on matching of two bipartite graphs,

one of them represents the defective crossbar and the other represents the circuit to

be mapped.

Tahoori has presented a defect tolerant design flow that includes a greedy map-

ping algorithm [41]. The algorithm finds and locates the maximum defect free k×k

crossbar within the defective crossbar by finding the maximum biclique in a bipar-

tite graph that represents the nanofabric crossbar. Further, a variation tolerant

logic mapping for molecular (diode-based) crossbar using heuristic algorithms has

been presented by Tahoori [42, 43]. His approach is mainly based on swapping rows

(columns) of a crossbar to reduce the output dependency and delay variation.

Although, many heuristic algorithms have been presented in the literature for the

14

reconfiguration or logic mapping in defective nanofabric crossbars, many are only

applicable for small size nanofabrics. Moreover, The devised greedy algorithms are

expected to have degraded results and to consume considerable computation time

in case of high defects rate.

2.2 CMOL Hybrid CMOS/Nanodevices Circuits

CMOL (CMOS/nanowire/MOLecular hybrid) is a hybrid circuit architecture which

combines a semiconductor MOSFET transistors with uniform reconfigurable

nanowires fabric. It was originally developed by Likharev and his colleagues [3],

to overcome the CMOS/nanodevices interface problems pertinent to earlier propos-

als. In CMOL circuits, interfacing between transistors and nanowires is provided

by sharp-tip pins that are distributed all over the circuit area on top of the CMOS

stack. Two-terminal molecular-scale nanodevices “latching switches”, that have two

metastable internal states, are self-assembled at each crosspoint of the nanofabric.

Nanodevices work as switches that are programmable to connect the two levels

of nanowires. The generic CMOL cell shown in Figure 2.1(a), consists of conven-

tional CMOS stack, two perpendicular nanowires, and two-terminal nanodevices

sandwiched between nanowires to form points of contact. The output of inverter 2

(Pin 2) is connected to the input of inverter 4 (Pin 1) by pin-nanowire-nanodevice-

nanowire-pin connection. The overlay nanofabric serves as a connection and wiring

15

logic medium with the help of molecular nanodevices.

2.2.1 Cell-based FPGA-like CMOL Architecture

CMOL cell-based, field programmable gate array (FPGA)-like architecture is based

on a uniform, reconfigurable CMOL fabric, with four transistor CMOS cells and

two-terminal nanodevices [3]. Each generic CMOS cell (Four cells are shown in

Figure 2.1(b)) consists of an inverter and two pass transistors that serve two pins

as the cell input and output, respectively. During the configuration process the

inverters are turned off, and the pass transistors are used for setting the binary

state of each molecular device. By turning programmable diodes “ON” or “OFF”,

the nanowires, nanodevice and CMOS inverters can implement a basic wired NOR

with multiple fan-ins. As shown in Figure 2.1(b), Inverter 1 has two pins; pin1

connects the input of the CMOS inverter to one of the nanowires levels, while pin2

connects the CMOS inverter’s output to the second level of nanowires. The lower

left cell (Inverter 3) is connected to the upper left cell (Inverter 4) by activating the

appropriate nanodevice (nd1) in the crosspoint between the nanowire connected to

the output of inverter 3 and nanowire connected to the input of inverter 4. When

two or more nanodevices in the input nanowire of inverter 4 are activated (nd1 and

nd2) the output of cell 4 will be equivalent to NOR gate whose inputs are cell 2 and

cell 3.

The equivalent electrical circuit of the aforementioned configuration is shown

16

(a) Schematic side view (A-A cross-section)

(b) Four CMOL cells and corresponding nanowires

(c) Nanowires crossbar and pins connectivity

Figure 2.1: Low-level structure of CMOL architecture.

17

in Figure 2.2. The figure shows five logic stages that the electrical signals should

traverse to connect two cells. The first stage is output nanowire; which is equivalent

to resistance Rwire and the capacitance of the full nanowire fragment Cwire. Then,

comes the nanodeivce which is represented as an open diode with resistance RON/D

in the ON state and as a high resistance ROFF /D in OFF state, where D is the

number of parallel molecular-scale devices each with RON resistance. Then, the

connection passes through input nanowire to reach CMOL cell which has a CMOS

pass transistor with Rpass resistance and a CMOS inverter. Those stages comprise

the pin-nanowire-nanodevice-nanowire-pin connection mentioned earlier.

Figure 2.2: The equivalent circuit of a CMOL logic stage.

Figure 2.1(c) shows CMOS pins reaching to the lower and upper nanowire levels.

CMOL fabric is arranged into a square array with side 2βFCMOS, where FCMOS is

the half-pitch of the CMOS subsystem, while β is a dimensionless factor greater

than 1 and depends on the CMOS cell complexity [21]. Because nanodevices are

18

non-volatile switches, they can be programmed to route the signals from CMOS to

the nanowires and nanodevices, and back to CMOS again. For FPGA applications,

the nanowire crossbar is turned by almost α = 45 relative to CMOS cells array,

though that is not absolutely necessary [3, 21]. More exactly, the requirements for

the angle α and the dimensionless factor β that determines the CMOS cell area

A = (2βFCMOS)2 is:

α = arcsin (
Fnano

βFCMOS

) (2.1)

Where Fnano is the nanowiring half-pitch. Also, Figure 2.1(c) shows that any

nanodevice may be addressed via the appropriate pin pair (e.g., input pin of Inverter

4 and output pins of Inverters 2 and 3), only two devices are shown but in reality,

similar nanodevices are formed at all nanowire crosspoints. Like in the case of most

programmable devices, the length of the nanowires is restricted and therefore each

CMOL cell can be connected to M = a2 − 2 other cells located within a square-

shaped Connectivity Domain shown in Figure 2.3. Where a is a positive integer

number that constitute CMOL radius. In Case a = 4 output pins of cells painted in

light-gray may be connected to the input pin of the specified dark-gray cell.

An example of implementing NOR gate using CMOL cells is given in Figure 2.4,

if only the two nanodevices shown in Figure 2.4(b) are in the “ON” state, while

all other nanodevice connected to the input nanowire of cell ‘H’ are in the “OFF”

19

Figure 2.3: CMOL FPGA-like Architecture: Connectivity Domain.

(high resistance) state, then cell ‘H’ calculates the NOR function of signals ‘A’ and

‘B’, and for the sake of clarity only the nanowires used are shown. The advantage

of such architecture that gates with high fan-in (Figure 2.5) and fan-out may be

readily formed as well by turning “ON” the corresponding latching switches. CMOL

architecture is inherently defect-tolerant, since it has M ≈ a2 >> 1 nanodevices per

CMOS cell, and few of them are required for either logic or routing functionality.

If the nanowires and nanodevices shown in Figure 2.6(b) are all activated, the

CMOL circuit will be equivalent to circuit shown in Figure 2.6(a). Shaded cells are

connected through combination of nanowires, nanodevices and CMOS pins. The

first NOR gate of the circuit can be implemented by connecting inputs ‘A’ and ‘B’

with inverter ‘2’ to satisfy both connectivity and logic wiring for the desired gate.

20

Figure 2.4: Fan-in-two NOR gate: (a) equivalent circuit and (b) physical implemen-
tation in CMOL.

Figure 2.5: Example of CMOL implementation of a 7-input NOR gate.

The abundance of available nanodevices and nanowires provide a variety of different

possible configurations for the implementation of one circuitry. Among those there

could be only certain configurations that satisfy connectivity domain constraint and

do not require additional routing resources.

21

Figure 2.6: Example of CMOL circuit: (a) NOR/INV logical circuit; (b) CMOL
implmentaion of (a), (c) showing only used cells.

2.2.2 Tile-based FPGA-like CMOL Architecture

Likharev and Strukov extended CMOL architecture into fabric of “tiles” [21, 44].

The fabric is a uniform mesh of square-shaped “tiles” as shown in Figure 2.7(a). Each

tile consists of a shell of T basic inverter-based cells surrounding a single “latch”

cell shown in Figure 2.7(b). The latter cell is a level-sensitive latch implemented in

CMOS subsystem and connected to eight interface pins, plus two pass transistors

used for circuit configuration. All four pins of each of the input or the output group

are always connected, so nanowires they contact always carry the same signal. The

latch cell is assumed to be four times larger than the size of the basic cell. Thus, the

total tile area is equal to T = 12+4 = 16 = 4×4 basic cells. That provide latch/logic

resource ratio comparable to conventional FPGAs. For worst case 4-input Boolean

function (i.e., 4-input parity function); the function can be implemented using 14

four-input NOR gates, while an average 4-input Boolean function requires much less

22

Figure 2.7: CMOL FPGA: (a) Tiles configuration, (b) Latch cell

gates. Hence, each CMOL tile is crudely similar in functionality to the basic logic

element consisting of a four-input LUT and one latch.

2.2.3 CMOL Cells Design

Different variations of CMOL cells were developed in the literature; the generic

inverter-based cell which was proposed by Likharev [21] is only capable of imple-

menting NOR or NAND based combinational logic. Likharev [21] extended cell

types to include latches and later Dong et al [45] presented two CMOL cells called

T-Cell and D-Cell for combinational and sequential logic designs. The new cells

are capable of implementing functions dependent on transmission or tri-state gates.

The proposed T-Cell consists of one transmission gate connected to one generic

23

Figure 2.8: (a) T-Cell: Transmission gate and inverter (b) D-Cell: D flip-flop is
formed using two D-Cells and two inverter cells

inverter CMOL cell as shown in Figure 2.8(a). This configuration provide more

efficient logic designs for multiplexer (MUX), XOR gate, tri-stat buffers and full

adders. The D-Cell consists of one transmission gate and one inverter, two D-Cells

and two ordinary inverter cells are connected together to implement a D flip-flop

as shown in Figure 2.8(b). The authors claim that those proposed new cells could

significantly reduce the number of required CMOL cells in a range of 18% - 43%

when implementing circuits that requires transmission or tri-state gates.

Abid et al [46] utilized two types of nanodevices to implement cryptographic

algorithms. They develop XOR gate with resistive junctions and XOR/AND gates

with diode-like junctions. The proposed design combines two cells each with CMOS

inverters and transmission gates to build gates with XOR functionality as shown in

Figure 2.9. The input pins of the two cells are the two inputs of the XOR gate,

and the output of the right-hand cell is the output of the XOR gate. The output

24

Figure 2.9: XOR cell design based on resistive-based nanodevices.

pin of the left-hand cell is left floating for easier interconnect and routing. The

XOR cell is sufficiently larger than conventional inverter cell of CMOL (i.e., three

times larger). The AND gate in the XOR/AND cells is implemented using diode-

like junction nanodevices, similar to those used to make NOR gates in CMOL. The

difference is that the AND gate, Figure 2.10, has diodes in the opposite direction,

thus, only when the two inputs are both at logic “1” the diodes are OFF and the

output becomes “1”. However, the output of the AND gate is weak and requires

a skewed inverter to restore the logic levels, thus, as a limitation each AND gate

should be followed with XOR gate, which is sufficient for encryption application but

not for general circuitry.

25

Figure 2.10: AND cell based on diode-like nanodevices and its equivalent circuit.
Rw and Cw represent the nanowires.

2.2.4 Two-Terminal Latching Nanodevices

The first critical issue in the development of semiconductor/molecular hybrids is

making a proper choice in the trade-off between molecule simplicity and function-

ality. Molecular nanodevices are used to connect perpendicular nanowires at each

crosspoint. Nanodevices acting as switches route signals from one nanowire level to

the other. Relatively short and rigid molecules (with the number of atoms of the

order of one hundred), having two (or a few) metastable internal states, are prob-

ably the best choice for the initial development of molecular electronics. A binary

“latching switch”, i.e., a two-terminal, bistable device with I-V curves, is shown in

Figure 2.11(a). Such switch may be readily implemented as a combination of two

single-electron devices [9, 12]: a “transistor” and a“trap” (Figure 2.11(b)). If the

applied drain-to-source voltage V = Vd − Vs is low, the trap island in equilibrium

has no extra electrons, and its net electric charge is zero. Thus, the transistor is in

26

Figure 2.11: Single-Electron two terminal nanodevice: (a) The I - V curves, and (b)
A possible implementation of the device.

the virtually closed (OFF) state, and source and drain are essentially disconnected.

If V is increased beyond a certain threshold value V+, its electrostatic effect on the

trap island potential (via capacitance Cs) leads to tunnelling of an additional elec-

tron into the trap island. This change of trap charge affects, through the coupling

capacitance Cc, the potential of the transistor island, and suppresses the Coulomb

blockade threshold to a value well below V+. As a result, the transistor, whose tun-

nel barriers should be thinner than that of the trap, is turned into ON state in which

the device connects the source and drain with a finite resistance R0. If the applied

voltage stays above V+, this connected state is sustained indefinitely; however, This

ON → OFF switching may be forced to happen much faster by making the applied

voltage V sufficiently negative, V = V− [21].

27

2.3 Other CMOS/nanodevices Architectures

Different architectures have been proposed in the literature to address specific de-

sign details such as CMOS/nanofabric interfacing, or three dimensional designs.

The following sections introduce the Field-Programmable Nanowire Interconnect

(FPNI) [1], and 3-D CMOL architecture [2].

2.3.1 Field-Programmable Nanowire Interconnect (FPNI)

Field-programmable nanowire interconnect (FPNI) [1] was introduced as a general-

ization of CMOL architecture, allowing for simpler fabrication, more conservative

process parameters, and greater flexibility in the choice of nanoscale devices. Unlike

CMOL, logic in FPNI is done only in CMOS buffer-based cells, while routing is

handled by nanowires, which allows for reduction of static power dissipation and

the use of linear nanodevices (resistive junctions). Figure 2.12 shows the geometry

of nanowires, pins and underlying CMOS stack. FPNI assumes a sea of logic gates,

buffers and other components (i.e., NAND gates, D flip-flops) in the CMOS layer.

Nanowires are rotated so that each one connects to only one pin. The nanowires

crossbar include large “pads” to cover the pins, used to simplify fabrication, and

eliminating the need for special pins as in CMOL. However, it needs sparse nanowire

crossbar to reserve the space for the contacts of the CMOS pins. Thus, the device

density of FPNI circuit is substantially lower than that of the corresponding CMOL

28

Figure 2.12: FPNI architecture [1]: (a) large pads connecting CMOS and nanowires,
(b) nanofabric overlay in FPNI.

29

circuit (i.e., five folds increase in circuits area [1]).

2.3.2 3-D CMOL Architecture

A 3D CMOL FPGA [2] implements circuits in three dimensions, so that it can

increase the density of the nanodevices and achieve higher performance compared

to 2D CMOL and field programmable nanowire interconnect (FPNI). 3D CMOL

can be built by assembling two CMOS layers in a face-to-face manner with the

nanowire crossbar layer in between as shown in Figure 2.13. Each CMOS layer

reaches to nanowires spanning in one direction. The CMOS layers and nanowire

layers are prepared separately, allowing different fabrication technologies for CMOS

and nanodevices. The top and bottom nanowires of the crossbar are connected to

the top and bottom CMOS dies, respectively, using separate interface pins or vias

with the same heights. Thus relaxing the requirement of special pins with different

heights in CMOL. This arrangement provides improved density, but with complex

inter-cell connectivity as each cell is only restricted to access one level of the nanowire

crossbar.

2.4 Cell Placement in CMOL Architecture

As CMOL field programmable gate array seems as a promising nanotechnology de-

sign that has the potential to be accepted and adopted for future circuits industry,

30

Figure 2.13: 3D CMOL architecture [2].

it is highly important to develop computer aided design (CAD) tools for automated

cell placement/assignment. In contrast to traditional placement problem, CMOL

cell assignment has the constraint that each gate can only be wired to a limited

number of gates in its neighbors Connectivity Domain. Thus, investigations should

be conducted to devise new solutions to overcome the nanowires connectivity limi-

tation.

2.4.1 Theoretical Principles of CMOL Cell Placement

Under the restriction of connectivity domain, an investigation was conducted by

Chen et al [47] to outline the principles of CMOL cells placement and to theo-

retically prove that combinational circuits are placeable in CMOL FPGA generic

architecture [3]. The study concludes that any combinational circuit can be trans-

formed to an equivalent circuit which is placeable given a reasonable connection

31

domain size, while, an unlimited fan-out size, could possibly results in unplaceable

circuits. For example, given a gate g with fan-out value larger than available cells

in the connectivity domain of g, then, no connection domain has enough cells to be

assigned to all nodes connected to g. The problem has to be solved by converting

the circuit to an equivalent one with maximum fan-out value of all nodes less than

or equal to two [47].

Chen et al, provides certain lemmas and definitions to convert circuit into place-

able one in CMOL, mainly by adding even number of inverters (to maintain signal

polarity) between cells that could not be placed in each other’s connectivity do-

main. However, adding inverters will further complicate circuit’s placement and

opens up for tight integration of placement and routing, in which buffer insertion is

an indispensable step for complex circuits.

2.4.2 Cell Placement in Cell-based CMOL Architecture

Original cell placement into apparently perfect (defect-free) CMOL cell-based ar-

chitecture (discussed in Section 2.2.1) was done by Likharev et al [3], where an

additional reconfiguration step is performed to route the circuit around defective

components. The initial assignment is done for artificially confined connectivity

domain that have M ′ < M cells and radius a′ < a, as analysis showed that most

reconfiguration failures come from longest initial connections.

The authors have also developed an automatic procedure (i.e., linear-time algo-

32

rithm) for reconfiguration assuming only one type of defects (stuck-at-open). The

algorithm is based on sequential attempts to move each gate from a cell with bad

input or/and output connections to a new cell, while keeping its input and output

gates in fixed position. The gate may be swapped with another one, provided that

all connections of the swapped gates can be realized with the CMOL fabric and are

not defective.

Figure 2.14 shows an example of a circuit fragment reconfiguration, a cell “re-

pair region”, Figure 2.14(b), is identified as the overlap of the connectivity domains

of all its input and output cells. The cell can be moved to any place in its re-

pair region when all connections are satisfied. In Figure 2.14(c) repair region for

two gates intersect, then those two gates can be swapped, keeping the circuit func-

tional. Likharev [3] provided Monte Carlo simulations of two simple circuits (a

32-bit integer adder and a 64-bit full crossbar switch) which have shown that the

reconfiguration allows one to increase the circuit yield above 99% at the fraction of

bad nanodevices above 20%.

A novel solution to CMOL cell assignment problem was reported using satisfia-

bility [48], and it was extended as a reconfiguration tool for various CMOL defects.

First, the authors transform logically synthesized circuits based on AND/OR/NOT

gates to a NOR gate circuits and then, they encode the CMOL cell assignment

problem as Boolean conditions. These Boolean constraints are satisfied if and only

if there exists a solution to map all the NOR gates to the CMOL cells. Further, they

33

Figure 2.14: Example of a circuit fragment reconfiguration. (a) Circuit whose gate
A is to be relocated. (b) The repair region of gate A. (c) intersection of the repair
region of cells [3].

introduce additional Boolean conditions to satisfy reconfiguration around bad com-

ponents. However, satisfiability in general works for small to medium sized problems,

and when circuits sizes increased the computation time became exhibitant.

Previous attempts to use sub-optimal search heuristics are reported in [49, 50,

51]. Genetic Algorithm (GA) [49] were formulated using two dimensional block

partially mapped crossover operator (PMX). The PMX is applied to solve the du-

plication problem by position based pair-wise exchanges. Mutation is applied to

produce spontaneous random changes in various individuals, by pairwise exchange.

Fitness function used to evaluate the adaptive ability of the solution is based on

wirelenghts of connected NOR gates, and penalizing infeasible solutions when con-

nection length is longer than “connectivity domain” radius. Nonetheless, memory

requirements, choices of data structure for chromosomes representation, and com-

putation time are significant disadvantages of GA.

34

A more elaborate work was reported in [50]; where Memetic computing approach

(MA) was used for cell mapping task in CMOL. Memetic Algorithm is an efficient

heuristic for solving complex optimization problems [52]; it implements a hybrid

of Genetic Algorithm that use genetic operators to explore the mating pool and

Simulated Annealing [4] (SA) local-based search heuristic to improve the quality of

solutions. MA have the same genotype structure, crossover, and mutation the one

used in GA [49]. Simulated Annealing algorithm was used in each generation to en-

hance offsprings resulted from PMX crossovers and pairwise interchange mutations

in GA.

Hung et al extend their work on Memetic approach by integrating self-learning

operators using Lagrangian Multipliers into so called LRMA approach [51]. LRMA

uses same local search, based on Simulated Annealing (SA) along with penalty

updating mechanism using Lagrangian multipliers. At the end of each loop of the

MA search process, the cell assignment solution is examined for any pair of violating

gates, then Lagrangian multipliers representing penalty values in fitness function are

then updated. Results reported using LRMA approach are promising, however, more

computations are needed for penalty updating mechanism. GA, MA and LRMA

approaches does not account for fault or defective components, and only assign cells

on the assumption of faulty-free fabric.

35

2.4.3 Cell Placement in Tile-based CMOL Architecture

As CMOL has different variations, the cell assignment in CMOL “tile-based” archi-

tecture [44] (discussed in Section 2.2.2) is conducted by a custom set of tools for

CMOL FPGA design automation [53]. The CMOL tile design was original devel-

oped to utilize existing cluster-based FPGA CAD tools, and the netlist of NOR gates

is partitioned into logic clusters, each with N gate and one latch, using T-VPack

program [54]. The logic clusters are then mapped on the CMOL tile fabric using

VPR tool [55, 54] and Simulated Annealing (SA). The cost function try to place

gates into locations such that their interconnect is local or within tile connectivity

domain of each other.

CMOL tile design, Figure 2.7(a), with size equal to T basic cells, consists of N

cells reserved for logic operations, one latch, and T −N cells for routing purposes.

Global routing, which is needed to connect gates across different tiles is performed

with the help of a routing algorithm which consider a set of “nets”. Each net will be

routed by configuring an even number of routing inverters from the T −N logic-free

basic cells in each tile. If the net has more than one “output” cluster, the algorithm

tries to minimize the total number of routing cells by sharing them among different

connections, such problem is equal to finding the shortest-path Steiner tree [56].

At this stage routing congestion could happen as routing resources (i.e., routing

cells in each tile) could not be sufficient to route all possible nets. In subsequent

36

step the algorithm identifies the nets which are routed using tiles with the maximum

number of routing cells and tries to reroute them by applying the algorithm’s steps

again. Starting with the longest nets and using slack analysis to keep critical paths

the same, rerouting is performed around congestion. Figure 2.15 shows an example

of routing procedure, where tile size is assumed to be 5 × 5 basic cells, and cell I

needs to be connected to cells O1, O2, O3. Five inverters (routing cells) are used to

suffice the connection.

Figure 2.15: Example of global routing for a single net.

The CMOL design flow used in [21, 44] is shown in Figure 2.16. In case no feasible

solution can be reached due to congestion, the whole design flow is repeated with a

reduced number of logic gates (N) is each tile, leaving more space to routing cells.

37

Figure 2.16: CMOL FPGA CAD 1.0 design flow.

When N equals to 0 the process is terminated and the circuit can’t be implemented.

Hossein et al [57] presented a modification to the routing flow of CMOL CAD

tool. They rank placement solution of each iteration of the placement algorithm

according to the placement cost, (i.e., placement solution which has lower cost, has

higher priority for being the platform for routing). When circuit is routed without

congestion, this placement should be accepted and the algorithm is terminated.

Otherwise, a new placement solution from the ranked list is provided for routing.

The procedure carries on until the algorithm routes the circuit without congestion.

Although, results provided by Hossein et al claims to be able to route circuits that

CMOL CAD failed to, but it doesn’t account for the consequences (i.e., delay, area)

of using inferior placements.

38

2.5 Non-deterministic Iterative Heuristics

Several iterative heuristics has been used to solve combinatorial optimization prob-

lems, in this section we discuss two known heuristics; Simulated Evolution (SimE)

proposed by Kling and Banerjee [58] and Tabu Search (TS) which was introduced

by Fred Glover [59, 60, 61, 62].

2.5.1 Simulated Evolution

The SimE heuristic is similar to Simulated Annealing except that the elements that

are movable have a goodness value (a number between 0 and 1). Those with goodness

value close to 1 have a smaller possibility to leaving their locations, while those with

smaller goodness have otherwise.

The structure of the SimE algorithm is shown in Figure 2.17. SimE assumes

that there exists a solution φ of a set M of n (movable) elements or modules. The

algorithm starts from an initial assignment φinitial, and then, following an evolution-

based approach, it seeks to reach better assignments from one generation to the next

by perturbing some ill-suited components and retaining the near-optimal ones. A

cost function Cost associates with each assignment of movable element mi a cost Ci.

The cost Ci is used to compute the goodness (fitness) goodnessi of an element mi,

for each mi ∈ M. The algorithm has one main loop consisting of three basic steps,

Evaluation, Selection, and Allocation. The three steps are executed in sequence

39

until the solution average goodness reaches a maximum value, or no noticeable

improvement to the solution cost is observed after a number of iterations. The

Evaluation step consists of evaluating the goodness goodnessi of each element mi of

the solution φ. The goodness measure must be a single number expressible in the

range [0, 1], and can be defined as

goodnessi =
Oi

Ci

(2.2)

Where Oi is an estimate of the optimal cost of element mi, and Ci the actual cost

of mi in its current location. Or simply goodness can be defined as the fraction of

two values related to the problem cost.

The second step of the SimE algorithm is Selection. Selection takes as input a

bias value B, the solution φ together with the estimated goodness of each element.

It partitions φ into two disjoint sets; a selection set S and a partial solution φp of

the remaining elements of the solution φ. Each element in the solution is considered

separately from all other elements. The decision whether to assign an element mi to

the set S is based solely on its goodness goodnessi. The selection operator shown in

Figure ??, has a non-deterministic nature, i.e., an individual with a high goodness

(close to one) still has a non-zero probability of being assigned to the selection set S.

It is this element of non-determinism that gives SimE the capability of escaping local

minima. Allocation is the SimE operator that has the most important impact on

40

the quality of solution. Allocation takes as input the set S and the partial solution

φp and generates a new complete solution φ′ with the elements of set S mutated

according to an allocation function. The goal of Allocation is to favor improvements

over the previous generation, without being too greedy [4].

2.5.2 Tabu Search

Tabu Search is a general iterative metaheuristic for solving combinatorial optimiza-

tion problems. TS is an elegant heuristic that proceeds by making iterative per-

turbations while preventing cycling to certain number of recently visited points in

search space. The TS procedure starts from an initial feasible solution S (cur-

rent solution) in the search space Ω. A neighborhood ℵ(S) is defined for each

S. A sample of neighbor solutions V∗ ⊂ ℵ(S) is generated called trial solutions

(n = |V∗| ¿ |ℵ(S)|), and comprises what is known as the candidate list. From

this generated set of trial solutions, the best solution, say S∗ ∈ V∗ is chosen for

consideration as the next solution. A solution S∗ ∈ ℵ(S) can be reached from S by

an operation called a move to S∗. The move to S∗ is considered even if S∗ is worse

than S, that is, Cost(S∗) > Cost(S). Selecting the best move in V∗ is based on the

supposition that good moves are more likely to reach the optimal or near-optimal

solutions. The best candidate solution S∗ ∈ V∗ may or may not improve the current

solution, but is still considered. It is this feature that enables escaping from local

optima. However, with this strategy, it is possible to reach the local optimum, since

41

ALGORITHM Simulated Evolution(B, Φinitial, StoppingCondition)
NOTATION
B= Bias Value. Φ= Complete solution.
mi= Module i. gi= Goodness of mi.
ALLOCATE(mi, Φi)=Function to allocate mi in partial solution Φi

Begin
Repeat

EVALUATION:
ForEach mi ∈ Φ evaluate gi;

SELECTION:
ForEach mi ∈ Φ DO

begin
IF Random ≤ 1− gm + B
THEN

begin
S = S ∪ mi; Remove mi from Φ

end
end

Sort the elements of S
ALLOCATION:

ForEach mi ∈ S DO
begin

ALLOCATE(mi,Φi)
end

Until Stopping Condition is satisfied
Return Best solution.
End (Simulated Evolution)

Figure 2.17: Structure of the Simulated Evolution algorithm [4].

42

moves with Cost(S∗) > Cost(S) are accepted, and then in a later iteration return

back to local optimum.

In order to prevent returning to previously visited solutions a memory or list T,

known as tabu list, is maintained. This list contains information that to some extent

forbids the search from returning to a previously visited solution. Whenever a move

is accepted, its attributes are introduced into the tabu list T. Move reversal are

prevented for next k = |T| iterations because they might lead back to a previously

visited solution. The tabu list can be visualized as a window on accepted moves as

shown in Figure 2.18. The moves which tend to undo previous moves within this

window are forbidden.

Tabu List Size

Accepted Moves

Figure 2.18: Tabu List visualized as window over accepted moves [4].

In some cases, it is necessary to overrule the tabu status since only move at-

tributes (not complete solutions) are stored in tabu lists. These tabu moves may

also prevent the consideration of some solutions which were not visited earlier. This

is done with help of the notion of aspiration criterion. Aspiration criterion is a de-

vice used to override the tabu status of moves whenever appropriate. It temporarily

overrides the tabu status if the move is sufficiently good. Aspiration criterion must

make sure that the reverse of a recently made move leads the search to an unvisited

43

solution, generally a better one. A flow chart illustrating the basic short-term mem-

ory tabu search algorithm is given in Figure 2.19. Intermediate-term and long term

memory processes are used to intensify and diversify the search respectively [4].

One of the Tabu search algorithm parameters is the size of the tabu list. A small

tabu list size is preferred for exploring the solution near a local optimum, and a

larger tabu list size is preferable for breaking free of the vicinity of local minimum.

The list size varying between 5 and 12 have been used in many applications. Any

aspect (feature or component of a solution) that changes as a result of a move from

S to Strial can be an attribute of that move, where a single move can have several

attributes. The duration for which a move containing the particular tabu attribute

is forbidden (the size of tabu list) is called Tabu tenure. An algorithmic description

of a simple implementation of tabu search is given in Figure 2.20.

44

Best
Solution

New
Solution

New
Solution

Current
Solution

Current
Solution

Regenerate
Moves

Current
Solution

TABU
?

‘‘Best’’

Aspiration
Criterion
Passed?

Move n

Move 1

NO

YES

YES

NO

Figure 2.19: Flow-Chart of Tabu Search algorithm [4].

45

Ω : Set of feasible solutions.
S : Current solution.
S∗ : Best admissible solution.
Cost : Objective function.
ℵ(S) : Neighborhood of S ∈ Ω.
V∗ : Sample of neighborhood solutions.
T : Tabu list.
AL : Aspiration Level.

Begin
1. Start with an initial feasible solution S ∈ Ω.
2. Initialize tabu lists and aspiration level.
3. For fixed number of iterations Do
4. Generate neighbor solutions V∗ ⊂ ℵ(S).
5. Find best S∗ ∈ V∗.
6. If move S to S∗ is not in T Then
7. Accept move & update best solution.
8. Update tabu list.
9. Update aspiration level.
10. Increment iteration number.
11. Else
12. If Cost(S∗) < AL Then
13. Accept move & update best solution.
14. Update tabu list & aspiration level.
15. Increment iteration number.
16. EndIf
17. EndIf
18. EndFor

End.

Figure 2.20: Algorithmic description of short-term Tabu Search (TS) [4].

Chapter 3

Problem Description and Design

Automation

3.1 Problem Statement

Cell placement is a design automation step that involves a collection of cells or

modules with input/output ports, and a collection of nets (which are sets of ports

that are to be wired together). Placement consists of finding suitable physical lo-

cations for each cell on the entire layout. By suitable we mean those locations

that minimize a given objective function, subject to certain constraints imposed

by the designer. Like in the case of most programmable nanofabrics, the length

of the nanowires in CMOL is restricted, and therefore connectivity of the cir-

cuit’s elements (i.e., cells) is constrained to be within a certain radius. In ad-

46

47

dition, nanofabric architectures have high defect rates. Nanodevices connecting

circuit’s modules can be defective (i.e., not programmable). A Reconfiguration

of the circuit’s elements is required to avoid using any defective devices. The so-

lution sought for CMOL cells mapping problem comprises of employing iterative

search heuristics to find an assignment that respects the connectivity constraint and

does not use defective resources.

3.2 Problem Formulation

3.2.1 Placement

The placement or assignment of cells in order to minimize a cost function has been

proven to be an NP-hard problem [4]. Even one dimensional placement, the simplest

possible, is hard to solve. In a 2-D array of n locations there are as many as:

S = n(n− 1)(n− 2)...(n−m + 1) (3.1)

arrangements for placing m cells, where m could be in thousands. Overtime,

heuristic techniques have been developed to solve the placement problem.

Implementation of combinational logic using CMOL involves assignment of logic

gates (i.e., NORs or Inverters) to slots that are connected by programmable nan-

odevices placed between overlapping nanowires. The length of the nanowires is

48

restricted, and therefore connectivity of the circuit’s elements is constrained. Each

CMOL cell is connectable to its proximity cells, those cells comprise its input and

output Connectivity Domains, each has radius equal to a. Any violation of this

constraint would impose further processing (i.e., buffer insertion) to satisfy connec-

tivity.

Formally, CMOL placement problem can be stated as follows: for a set of gates

G = g1, g2, g3, ..., gm and a set of nets Γ = γ1, γ2, γ3, ..., γm where γi = {fan −

ini & fan − outi} of gi and given a set of slots or locations L = L1, L2, L3, ..., Ln

where m ≤ n, the placement problem is to assign each gi ∈ G to a unique location

Lj such that the objective is optimized. Positions are defined by the coordinate

values (xj, yj) where the subset of G that represent inputs/outputs may be pre-

assigned fixed locations or constrained to certain positions. Mathematically, CMOL

placement constraints can be defined as follows; given a gate and its net (gi, γi)

placed in location Li, for any gate gk ⊆ G and gk in the net γi the following

equations should be satisfied.

∀gi, gk ∈ G : (gi 6= gk) ⇒ (Li 6= Lk) (3.2a)

∀gi ∈ G,∃gk ∈ γi : dist(Li, Lk) ≤ a (3.2b)

Where Lk is the location of gk, dist is Manhattan distance, and a is CMOL

49

connectivity radius. Inequality 3.2(b) defines a domain that is an approximation

to the one shown in Figure 2.3, this definition has been used in previous works

related to CMOL cell placement [49, 50, 51], nonetheless, adhering to the original

shape of the connectivity domain [21] is preferable. The objective of CMOL cell

placement is to satisfy the constraints in Equation 3.2, and to minimize distance

between connected gates in circuit G. Failing to comply with CMOL constraint will

result in an implementation that has more delay and area requirements.

The difficulty of CMOL placement arises from the overlap in connectivity do-

main of adjacent cells; each cell is considered as part of the connectivity domain

of other M = a2 − 2 cells. The mapping of a particular gate into a given cell will

limit the connectivity options of those other cells that are located in its proximate

neighborhood. The value of the connectivity radius a and the size of NOR gates has

substantial effect on the realization of CMOL designs; if gates with high fan-in are

allowed, the placement problem becomes substantially harder.

3.2.2 Reconfiguration

There are tens of thousands of nanodevices (i.e., possible connections) in a CMOL

circuit, however, those connections will not be used simultaneously and a small sub-

set of them is sufficient to map a particular circuit. The extra nanodevices are mainly

intended for better reconfigurability especially in the presence of defects. Misas-

sembly of the two-terminals bistable nanodevices will lead to non-programmable

50

crosspoints (i.e., stuck-at defects). Defects including broken wires and bridging of

adjacent nanowires have also been reported by Dehon [63]. In this work we will

consider three of the widely used defect models:

1. Stuck-at-Open: The nanodevice connecting two perpendicular nanowires is

stuck-at-open (i.e., not programmable). In this case, the connection between

two cells through this nanodevice is not feasible. However, those two CMOL

cells can still be used. The connectivity domain of the two cells should be

modified.

2. Broken Nanowire: An input or output nanowire of a CMOL cell is broken

into two segments. Thus, CMOL cell may not be able to connect to all other

CMOL cells within its input/output connectivity domains. The connectivity

domains of the cells will be significantly reduced.

3. CMOS Cell Defect: In this defect, CMOS cell could be unusable, because the

input/output pins connecting the CMOS stack to the input/output nanowires

are broken, or the CMOS inverter is defective. Any cell with this type of defect

cannot be used.

Defects of type 1 and type 2 are shown in Figure 3.1; in stuck-at-open defects,

the input of cell A can not be connected with the output of cells B and C, because

the nanodevices between them are not programable. In broken nanowire defect; the

number of unreachable cells (e.g., cells B, C and D) from a given cell (e.g., cell A)

51

could be larger as more connections are affected by the cut in the nanowire.

Figure 3.1: Defects in CMOL circuits: (a) Stuck-at-Open defect (b) Broken nanowire
defect. The cells shown in light gray are not reachable by the cell in dark gray.

Based on the aforementioned defect models; Reconfiguration involves rearranging

CMOL cells as to avoid the use of any defective nanodevices. According to the

CMOL FPGA topology shown in Figure 2.3, if a particular cell is moved to another

location it will use different set of nanodevices to connect with its fan-in and fan-out

cells. Reconfiguration should not relocate two cells in which their connectivity is

violated (i.e., invalidate the assignment set by Placement step), but rather to only

avoid using any defective components. For a given gate and its net (gi, γi), any gate

gk in the net γi should satisfy the following.

52

∀gi ∈ G : Li 6= 0 (3.3a)

∀gi ∈ G,∃gk ∈ γi : N(Li, Lk) 6= 0 (3.3b)

Where N(Li, Lk) is the nanodevice connecting gate gi in location Li and gate

gk in location Lk. N = 0 means the nanodevice is defective and L = 0 means

the location (i.e., CMOL cell) has a defect of type 3. CMOL reconfiguration is

intended to rearrange cells to honor the constraints in Equation 3.3, and meanwhile

not violating the constraints in Equation 3.2. Reconfiguration is highly dependent

on the defect rate and connectivity radius a. For small connectivity radius, high

defect rate may lead to reconfiguration failure.

3.3 Cost Functions

The main objective of placement is to find a feasible assignment of cells in which all

connections are satisfied. One way to accomplish this is to place strongly connected

cells close to each other. A commonly used objective function is the total weighted

wirelength over all signal nets and is expressed as:

L(P) =
∑
n∈N

wn · dn (3.4)

53

Where, dn is the estimated wirelength of net n and wn is weight of net n. Since,

in CMOL all cells are connected via pre-assembled nanowires, the problem we are

trying to optimize is to place connected cells within each others connectivity domain

as to avoid insertions of additional buffers. Therefore, we should have a measure

which can quantify the overall quality of the solution. A conventional approach is

to calculate the number of connections that violate connectivity domain constraint

(Equation 3.2). The overall cost of a solution is the total number of connectivity

domain violating connections (i.e., the number of additional buffers that are needed

to satisfy all connections). The cost of each gate g ∈ G is expressed in Equation 3.5,

where the overall circuit’s cost is the sum of individual gates cost.

Ci =
∑

j∈γ(i)

ui,j (3.5a)

ui,j =

1 if dist(Li, Lj) > a

0 otherwise

(3.5b)

Similarly, the cost of Reconfiguration step is the total number of used defec-

tive nanodevices (i.e., the number of connections that violate Equation 3.3(b)).

Equation 3.6 shows the cost of each gate g ∈ G as to be the number of defective

components it uses to connect with its fan-in and fan-out cells. The overall circuit’s

cost is the sum of individual gates cost.

54

Ci =
∑

j∈γ(i)

ui,j (3.6a)

ui,j =

1 if N(Li, Lj) = 0

0 otherwise

(3.6b)

3.4 Defect Maps

In nanowire crossbars, imprecision and nondeterminism of the nanoscale fabrication

process may cause the programmable nanodevices to be defective. Different meth-

ods for simulating faults distribution has been reported in the literature [64]. In

this work, two methods are used for stuck-at-open faults simulation. In the first

approach, a uniform random distribution is used. For any given nanodevice, a ran-

dom number p is generated, the nanodevice could be defective if p is less than a

pre-defined defect rate qnano. In the second approach, clustered faults are injected

around multiple defect sources. Each cluster is generated as follow; first a ran-

dom location (x0, y0) is chosen, and then a probability mass function pmf(x, y) is

computed for each location using the Gaussian distribution:

pmf(x, y) = Ce−
(x−x0)2+(y−y0)2

2σ2 (3.7)

This probability mass function controls the injection of faults; where C is a

55

constant that sets the density of the simulated faults, and σ is the standard deviation

that controls the diameter of the defects cluster. For each nanodevice we generate

a random number p between 0 and 1. A fault is injected if p ≤ pmf(x, y).

For broken nanowires defects; a nanowire is cut if a randomly generated number p

is less than wires cut rate qwire, and the cut point is randomly specified. All unreach-

able nanodevices on the cut nanowire are then encoded as if they are stuck-at-open.

In similar manner, CMOS cells are assumed to be defective based on a defect rate

qcell.

Figure 3.2 shows defect maps for stuck-at-open defect rate qnano = 30% and wires

cut rate qwire = 10%. The first map shows randomly distributed defects and the

second shows clustered defects when C = 0.7 and σ = a
3
. White dots represent

non programmable nanodevices (i.e., stuck-at-open), while black dots represent pro-

gramable ones.

Figure 3.2: Defect maps: (a) Random defects (b) Clustered defects.

56

3.5 Design Flow

Using Technology Mapping and known synthesis tools (e.g., SIS), circuits can be

mapped into a network of NOR gates (with a certain maximum fan-in). Figure 3.3

shows the design flow for mapping logic circuits into CMOL grid; three main steps

are required to implement a given logical design in CMOL:

1. Defects unaware circuit Placement.

2. Circuit Reconfiguration around defective components.

3. Complementary Routing of connections with violations.

��������

	
����

����������

�
�����

������������

�������
�
��

���������

�� �������

����

 ���������

����	
����

!���
�������

�
�����

��������

	��
��������
�

������
�

�����"�����

	
����

#$��������

%�����

!������

��������
��������

%�����

��������

	
����

&����

	��'
�
��������

%�����

(�������
��������� (�������������������
�����������

Figure 3.3: Design flow of CMOL cells mapping.

In the first step, the circuit is placed in defect-free N × N grid. Placement

follows the formulation outlined in Section 3.2.1 and constraints in Equation 3.2.

Nondeterministic heuristics iteratively rearrange gates locations as to minimize the

cost function. The only defect that placement phase is aware of is type 3 defect

(i.e., defective CMOL cell). When placement is finished, some connections may still

be unresolved (i.e., beyond the connectivity domain). In this case, routing step is

57

needed to insert extra buffers (i.e., pair of inverters to maintain signal polarity) as

intermediate cells between unconnected gates. Each pair of inverters can make a

cell connect to another cell whose distance is within 3a. The routing step can only

be performed after all NOR gates are placed. Routing may not be successful in

case the grid do not have empty slots or some cells are unreachable (i.e., all cells in

its connectivity domain are occupied). In that case, placement should be repeated

using bigger CMOL grid or longer connectivity radius.

The second step, involves reconfiguring the circuit around defective components.

Defects information will be stored in a defect map. Reconfiguration iteratively im-

proves circuit’s reliability by rearranging gates locations so they do not use defective

nanodevices or defective CMOS cells. Constraints in Equation 3.2 and Equation 3.3

should apply for the reconfigured cells. If circuit’s reconfiguration is not success-

ful (i.e., some connections still use defective components), a routing step, similar

to the one used after placement, can be used to connect those connections with

stuck-at-open defective nanodevices.

Chapter 4

Non-deterministic Evolutionary

Heuristics for CMOL Cell

Mapping

In this chapter, we discuss the non-deterministic evolutionary heuristics that are

used to solve CMOL cells mapping problem. Simulated Evolution (SimE) and Tabu

Search (TS) were used to find an arrangement of cells that satisfy the objectives

outlined in Chapter 3. In the following sections we will focus on the design of

various operators and parameters to better explore the search space.

58

59

4.1 Solution Representation

A placement solution is an arrangement of logic cells in two dimensional layout

surface. The solution representation used in this work is in the form of a 2-D grid

with N×N location. The layout is constructed by computing the number of required

CMOL cells to fit each benchmark circuit. The outer cells of the grid are reserved

for I/O pins, where placement of the circuit’s I/Os is restricted to these reserved

locations. Each logic gate is assigned a positive integer value that distinguishes it

from the rest. The encoded logic gates are assigned in the 2-D layout as shown in

Figure 4.1.

Figure 4.1: 2-D grid layout of CMOL placement for s27.blif . 19 cells; 8 gates, 7
inputs and 4 outputs.

4.2 Simulated Evolution

The Simulated Evolution algorithm (see Section 2.5.1) is a general search strategy

for solving a variety of combinatorial optimization problems. It is stochastic because

the selection of which elements to be reallocated is done according to a stochastic

60

rule. Already well located components have a high probability to remain where they

are. The following sections describe the design of the main steps of the algorithm.

4.2.1 Initialization

Initialization is the step that comes before the iterative evolutionary phase of the

algorithm. In this step, the various parameters of the algorithm are set to their

desired values; such as the maximum number of iterations, and the selection bias

B. SimE construct an initial solution by randomly assigning gates to locations in

the 2-D grid. It has been proven that the quality of the initial solution has little

impact on the convergence aspects of the heuristic, nonethess, strating from a good

soultion could reduce the number of iterations required to converge to a near-optimal

solution [4].

The quality of the SimE solution improves over iterations; the improvement is

significant in early iterations and gets less steeper in later iterations. One significant

aspect of SimE iterations that early ones require more time than later iterations.

The reason is that as more and more iterations get executed, less and less cells get

selected for reallocation. Usually, the number of iterations is fine tuned based on

experiments and problem size. The value of the selection bias B should be much

less than 1. A positive value will increase the number of elements selected to allow

the algorithm to search harder. Although, this may lead to better solutions, but at

the expense of runtime. On the other hand, a negative value of B will speed-up the

61

heuristic as less elements are selected for reallocation, but that may results in early

convergence.

4.2.2 Goodness Function

In Simulated Evolution, goodness function is used to evaluate individual elements in

each generation, where unfit elements are selected and reassigned to other locations.

The goodness measure must be strongly related to the objective of the problem,

in that sense the goodness function of each individual element (i.e., gate) in the

placement phase is defined as following:

goodnessi =
insidei

|γi| (4.1)

Where insidei represents the number of those gates in set γi (the net of gate

i), that satisfy the connectivity constraint (i.e., inside the connectivity domain of

element i) and |γi| is the number of fanin and fanout gates of gate i. The above

equation assumes a minimization problem (or a maximization of goodness). Fig-

ure 4.2 shows an example on how goodness value is calculated, where two gates in

γi are outside the connectivity domain of gate i and three otherwise. The proposed

goodness function results in probabilistic selection of those elements that violate

constraint expressed in Equation 3.2(b), and therefore, directs the heuristic into en-

hancing the overall cost of the problem. Figure 4.2 assumes that the connectivity

62

Figure 4.2: Evaluation of gate i’s goodness; for r = 3 cells 1, 2 and 3 are inside i’s
connectivity domain (i.e., dist ≤ r), while cells 4 and 5 are out of it (i.e., dist > r),
goodnessi = 3/5 = 0.6.

domain is defined based on Manhattan distance and Equation 3.2(b). The same can

apply if connectivity domain is defined as in Figure 2.3. Reconfiguration phase uses

similar goodness evaluation, where each element’s goodness is defined as follows:

goodnessi =
connecti
|γi| (4.2)

Where connecti represents the number of connections in set γi that do not use

defective nanodevices (i.e., the connections that are defect free). According to the

aforementioned definition, if cell i′s connections violate the constraint in Equa-

tion 3.3(b), the cell will have low goodness value. An example of such cell is shown

in Figure 4.3, where two defective nanodevices are used to connect gates 4 and 5

with gate i. According to the given definitions of the goodness function, the value

of |γi| do not change from generation to generation, but it is only computed once

based on the original circuit description.

63

Figure 4.3: Evaluation of gate i’s goodness; connection between cell i and cells 4
and 5 use defective nanodevices, goodnessi = 3/5 = 0.6. Nanodevices are shown as
black dots.

4.2.3 Selection Function

The Selection phase uses original SimE selection function [4]; an element (i.e., gate)

is selected for reallocation if its goodness score is less than a randomly generated

number between 0 and 1. The higher is the goodness value of the element, the higher

is its chance of retaining its current location. While, the lower is the goodness value,

the more likely the element will be perturbed and reallocated in the next generation.

SimE selection function has a nondeterministic nature; an individual with a high

goodness (i.e., close to one) still has a non zero probability of being selected. This

stochastic role gives SimE the hill climbing property. Reallocating the selected

elements can be done in a deterministic order that is correlated with the objective

function being optimized. Hence, prior to the Allocation step, the elements in the

selection set are sorted in an ascending order based on their net size, where elements

with higher cardinality of γi are processed first.

64

4.2.4 Allocation Function

Allocation function has the most impact on the quality of the solution; it’s intended

to generate a new solution that is inherently better than the old one. The design

of the allocation function is related to the problem specifications. The allocation

function is a complex form of genetic mutation, it alters the locations of all elements

in the selection set one after the other. In our case the alteration consists of swapping

the location of one module with the location of another one. Allocation function

seeks to swap an element with any other element in the solution. The trial that

leads to the best configuration with the respect to the objective being optimized

is accepted and made permeant. This constitute a global allocation policy, which

could prove to be very useful specially in the early iterations.

The allocation function in placement phase chooses to swap a selected element

(i.e., gate) with another one, given that this swap is the best in terms of the cost

function (i.e., number of buffers). If two swaps has the same cost, the one that

results in smaller Manhattan distance will be chosen. In this phase, allocation

procedure is unaware of defects (i.e., swaps or moves can result in using defective

nanodevices). The only aspect of defects that this phase is aware of is the one related

to Equation 3.3(a), where a particular gate should not be placed in a defective

CMOS cell. On the other hand, allocation function in reconfiguration phase is

fully aware of the presence of defects. It actually, swap cells based on the cost

65

defined by the number of used defective nanodevices. For each selected element, the

allocation function evaluates the cost of swapping the element with another one in

the grid based on the cost function in Equation 3.6. Then, the best swap is chosen.

An additional constraint also applies for gates movements in reconfiguration phase;

the reallocation of cells is constrained to the region defined by the intersection of

the connectivity domains of the two cells under investigation and their fanin and

fanout cells (see Figure 2.14). This insure that reconfiguration do not invalidate the

assignment made by placement phase (i.e., do not move cells in which some of the

connections would again require buffers to be resolved).

4.2.5 Routing

Since CMOL grid may be highly congested, using a greedy algorithm to exhaustively

route connections (i.e., insert buffers) may not be successful. Instead, the problem

can be solved by the same iterative methods used for placement and reconfiguration;

for that we recall the SimE heuristic given a number of modifications. All blank

cells in the grid are considered for buffers insertion. Inverters are placed in empty

locations as to maximize their goodness. Initially, the routing phase starts with one

buffer (pair of inverters) for each unconnected or defective connections. The inverters

are randomly assigned. The allocation functions (similar to those of placement and

reconfiguration) only permit the interchange of two routing inverters or an inverter

and blank cell. The algorithm continuously improve the locations of the inverters. If

66

the algorithm terminates and still some connections violate the connectivity domain,

additional buffers are added for those connections and the routing algorithm is

repeated. This process repeats until all connected gates are within each others

connectivity domain, or when no blank cells are left. A reasonable way to avoid

worsening the circuit’s timing delay by inserting too many buffers, is to limit the

number of buffers that can be inserted for each gate pair.

4.3 Tabu Search

Tabu Search algorithm (see Section 2.5.2) is a non-deterministic iterative heuristic

that has been applied to solve many combinatorial optimization problems, it is

considered as a generalization of local search algorithms. At each step, Tabu Search

explore the local neighborhood of the current solution and the best solution in that

neighborhood is selected as the new current solution. In the following sections we

will discuses the various parameters used in solving the objectives of this work.

4.3.1 Initialization

Based on the solution representations outlined in Section 4.1, TS begin by randomly

assigning the circuit’s gates to the cells (i.e., locations) in CMOL grid.

67

4.3.2 Neighborhood Solutions Generation

A move in Tabu Search consists of a small perturbation in the current solution to

explore solutions that are in the proximate neighborhood of the current one. An

efficient move should help to quickly explore the neighborhood search space. In

placement phase, one perturbation is performed as follows: two cells (two I/O pins

or two logic cells) are selected randomly, then their locations are interchanged. In

each iteration we generate a number of neighbor solutions (i.e., a candidate list),

each one of these solution is generated by performing one move (i.e., perturbation).

Each solution in the candidate list is evaluated based on the change in number of

buffers before and after the swap. If two or more neighborhood solutions have equal

swap cost, which also happens to be the best cost in the candidate list, the solution

with lesser Manhattan distance is chosen. Similarly, reconfiguration phase uses the

same tabu move; the cost in Equation 3.3 is used to evaluated each swap, and it

is based on the number of defective nanodevices that are being used. Furthermore,

the swaps should not violate the constraints set by Equation 3.2 (see Figure 2.14).

TS will favor the swap (from those in the candidate list) that results in least cost

(i.e., no. of buffers, or no. of defective nanodevices).

The size of the candidate list constitute the amount of search space exploration

in the local neighborhood of a given solution. A small neighborhood size ensures

quicker iterations, but may require more iterations to reach a good solution. On

68

the contrary, a bigger candidate list provides more exploration of the search space

at the cost of increased computation overhead. Nonetheless, it may ensure arrival

to a good solution in lesser number of iterations. It is thus concluded that the

same solution can be reached in equivalent amount of time by either using smaller

candidate list and higher number of iterations or bigger candidate list and smaller

number of iterations [4]. The actual size of the candidate list is empirically set based

on the performance of the heuristic and the problem behavior.

4.3.3 Tabu List and Move Attributes

Tabu search algorithm avoids returning to previously visited solutions by using a

Tabu List (i.e., memory element that stores information about previous moves).

The search therefore is forced away from recently visited solutions. The tabu list

contains attributes of some k most recent moves. The size of the tabu list is the

number of iterations for which a move containing that attribute is forbidden after it

has been made. Early experiments on practical problems reported good performance

with list sizes varying between 5 and 12. The size of the tabu list is also related to

the strictness of the tabu restriction; the more stringent the restrictions the smaller

should be the size of the tabu list. The actual size of the list can be determined

by experimental runs, watching for occurrence of cycling when the size is too small,

and the deterioration of solution quality when the size is too large. A short term

memory element is used in our implementation, where Tabu list is implemented as

69

a queue (FIFO) data structure.

Move attributes are used to impose tabu restrictions to prevent reversal of

changes represented by these attributes. Many attributes of a move can be stored,

for example, when two cells i and j are swapped, one attribute is to forbid moves

related to cell i; which means any move that includes i (even swapping i with j) is

restricted. Another attribute considers both i and j, forbidding any perturbations

that include either of them. The Tabu attribute of a move that is used in our imple-

mentation is swap reversal. That means if cell i and j are swaped, the reversal swap

is forbidden for the next k iteration. Tabu restrictions play the role of diversifying

the search by perturbing unperturbed elements.

4.3.4 Aspiration Criterion

The aspiration criterion consists of overriding the tabu status when plausible solu-

tions is reached. In our implementation aspiration criterion is based on the following:

if the current solution is the best seen so far (i.e., better than the global best solu-

tion) then tabu restriction is overridden and the current solution is accepted as new

best solution and tabu list is updated. This criterion is know as Global Aspiration

by Objective and is widely used.

70

4.3.5 Routing

The routing phases use the same parameters and operators explained earlier; such

as tabu move, move attribute, candidate list and tabu list sizes. The only difference

is that swaps are allowed only between added inverters or an inverter and blank

cell. The other cells locations are assumed to be fixed and no perturbation can

involve any one of them. The routing phase iteratively try to insert buffers (pair of

inverters) between unconnected or defective connections. The insertion follows the

same constraints and objectives as in placement and reconfiguration. The locations

of the inverters are perturbed as to place them within the connectivity domains

of their fanin and fanout gates. The routing procedure follows the same steps as

explained under Section 4.2.4 for SimE implementation.

Chapter 5

Experimental Results and

Comparison

This chapter presents results obtained by implementing Simulated Evolution and

Tabu Search for CMOL cell placement and reconfiguration. The following sections

describe simulation environment, benchmarks, and defect maps. Next, an evaluation

of the employed heuristics is given. This is followed by comparison with previously

published techniques about CMOL cell placement (see Section 2.4.2). Finally, we

show how the solutions obtained by SimE and TS are verified.

71

72

5.1 Simulation Environment

Simulated Evolution and Tabu Search are implemented using Java programming

language and run on a machine comparable to the one used by other simulations

published in literature. The machine has 1.5 GHz Intel Pentium M processor with

512MB memory. Technology mapping is done using SIS logic synthesis tool [65].

Verification and defect maps modelling programs are also written in Java program-

ming language. Comparisons between CMOL solutions and original benchmarks are

done by HOPE simulator [66], which is run on a LINUX machine.

Simulated Evolution and Tabu Search heuristics stop when solution cost (either

number of buffers or number of defective nanodevices) becomes zero or when reach-

ing a predefined number of iterations, in our case the number of iterations in SimE

for all phases of the design flow is equal to 4000, on the other hand, a significantly

larger number of iterations is used in Tabu Search. The median value of the results

of 20 successful runs for each benchmark is reported where each run uses different

random numbers seed.

5.1.1 Benchmarks

Evaluation of the employed search heuristics is conducted using 19 circuits of dif-

ferent sizes from ISCAS’89 benchmarks suite [67]. Further consideration should be

given to ISCAS’89 circuits as they include structural faults that should be elim-

73

inated. Furthermore, the benchmarks contain sequential elements (i.e., flip-flop);

CMOL generic architecture can only implement combinational logic, thus, the se-

quential elements’ inputs and outputs are substituted with POs and PIs respectively.

The circuits are then mapped by SIS synthesis tool [65] to a NOR netlist with max-

imum of five inputs. Details of the circuits are shown in Table 5.1; the numbers of

Cells to be placed including Gates, Inputs and Outputs are given.

Table 5.1: ISCAS’89 Benchmarks.

Circuits Cells Gates Inputs Outputs
s27 19 8 7 4
s208 136 109 18 9
s298 122 85 17 20
s344 180 130 24 26
s349 184 134 24 26
s382 175 124 24 27
s386 164 138 13 13
s400 188 137 24 27
s420 299 248 34 17
s444 187 136 24 27
s510 304 266 25 13
s526 273 222 24 27
s641 302 206 54 42
s713 321 225 54 42
s820 447 400 23 24
s832 454 407 23 24
s838 606 507 66 33
s1196 675 613 31 31
s1238 724 662 31 31

74

5.1.2 Defect Maps and CMOL Grids

Given the random and clustered defect maps discussed in Section 3.4, we have

evaluated the heuristics performance using a randomly generated map (R1) and

two clustered maps (C1 and C2). Those maps have C = 0.8 and standard deviation

σ = 2a
3

and σ = 4a
3

for C1 and C2 respectively. The experiments involving defects

follow one of the scenarios shown in Table 5.2.

Table 5.2: Defect Scenarios.

Scenario qnano qwire qcell

(i) 10% - 50% 20% 0%
(ii) 20% 10% - 70% 0%
(iii) 20% 20% 10% - 20%

Where qnano is the probability a nanodevice is stuck-at-open (type 1 defect), qwire

is the probability a nanowire is broken (type 2 defect), and qcell is the probability

a CMOS cell is defective (type 3 defect). For example, scenario (i) include five

experiments when qnano ranges between 10% and 50%, where qwire = 20% and

qcell = 0%.

Table 5.3 shows CMOL grids used to place ISCAS’89 benchmarks; Area (Tiles)

is the area used by CMOL FPGA CAD 1.0 tool [44], it uses 4× 4 cells in each tile.

Area (Row×Column) is the area used in GA [49], MA [50], LRMA [51] and in our

implementation of SimE and TS for defect free placement and for reconfiguration of

defect scenarios (i) and (ii). The table also shows the grids for scenario (iii), when

75

qcell equals to 10% and 20%. Table 5.4 shows the area utilization for CMOL FPGA

CAD 1.0, GA, MA, LRMA and our implementation using SimE and TS. The AU%

represents the ratio of those cells that are used to implement the benchmarks in a

given CMOL grid. The table further gives the ratio of utilized cells when CMOS

defect probability qcell equals to 10% or 20%.

Table 5.3: CMOL 2-D grid sizes.

Circuit Area (Tiles)
Area

(Row × Column)

Area
(Row × Column)

qcell = 10%

Area
(Row × Column)

qcell = 20%
s27 64(2× 2) 25(5× 5) - -
s208 256(4× 4) 169(13× 13) - -
s298 256(4× 4) 144(12× 12) - -
s344 400(5× 5) 196(14× 14) - -
s349 400(5× 5) 196(14× 14) - -
s382 400(5× 5) 196(14× 14) - -
s386 400(5× 5) 196(14× 14) - -
s400 400(5× 5) 196(14× 14) - -
s420 400(5× 5) 361(19× 19) - -
s444 400(5× 5) 196(14× 14) - -
s510 - 361(19× 19) - -
s526 576(6× 6) 324(18× 18) - -
s641 576(6× 6) 676(26× 26) 676(26× 26) 676(26× 26)
s713 - 676(26× 26) 676(26× 26) 676(26× 26)
s820 - 529(23× 23) 576(24× 24) 625(25× 25)
s832 - 529(23× 23) 576(24× 24) 625(25× 25)
s838 - 676(26× 26) 729(27× 27) 784(28× 28)
s1196 - 729(27× 27) 841(29× 29) 900(30× 30)
s1238 - 784(28× 28) 900(30× 30) 961(31× 31)

76

Table 5.4: CMOL area utilization.

Circuit AU%
(Tiles) AU% AU%

qcell = 10%
AU%

qcell = 20%
s27 18.75 76.00 - -
s208 48.05 80.47 - -
s298 48.83 84.72 - -
s344 43.50 91.84 - -
s349 26.50 93.88 - -
s382 43.25 89.29 - -
s386 54.75 83.67 - -
s400 47.25 95.92 - -
s420 75.00 82.83 - -
s444 52.50 95.41 - -
s510 - 84.21 - -
s526 57.12 84.26 - -
s641 50.17 44.67 44.67 44.67
s713 - 47.49 47.49 47.49
s820 - 84.50 77.60 71.52
s832 - 85.82 78.82 72.64
s838 - 89.64 83.13 77.30
s1196 - 92.59 80.26 75.00
s1238 - 92.35 80.44 75.34

5.2 Placement

As stated in Section 3.5; placement in CMOL assumes a defect free grid, in which

gates are placed following the constraints and cost function given in Chapter 3.

The following sections evaluate the employed heuristics; first we start with simu-

lated evolution, then Tabu Search parameters are discussed. The comparison with

previous techniques (e.g., Genetic Algorithm, and Memtic Algorithm) is presented

afterward.

77

5.2.1 Simulated Evolution

A verification of Simulated Evolution heuristic is shown in Figure 5.1; at the begin-

ning of iterations many elements are selected for perturbation, after that less and

less elements are selected until a final cells arrangement is decided. The feasibility of

CMOL cell placement is heavily dependent on the number of circuit’s connections

and the size of the connectivity domain. For example, a circuit with high fan-in

NOR gates will result in bigger nets that could not possibly be fit inside a partic-

ular connectivity domain. On the other hand, limiting the size of NOR gates will

simplify CMOL placement, but on the expense of using more cells per circuit.

0 200 400 600 800 1000
20

40

60

80

100

120

140

160

180

Iteration

N
o#

 o
f

E
le

m
en

ts
 S

el
ec

te
d

Selection Set

Figure 5.1: Evaluation of SimE performance: selected elements Vs. iterations (a =
12 - s1238.blif).

Three options were available to find a placement solution that satisfies the CMOL

connectivity constraint; one, was to minimize Manhattan distance, another was to

minimize number of inserted buffers by using the cost function discussed in Sec-

tion 3.5, and the third was to minimize both distance and buffers. Results obtained

78

0 200 400 600 800 1000
0

20

40

60

80

100

Iteration

C
os

t:
In

se
rt

ed
 B

uf
fe

rs

0 200 400 600 800 1000

6000

7000

8000

9000

10000

11000

M
an

ha
tta

n
D

is
ta

nc
e

Distance
Buffers

Figure 5.2: Correlation between distance minimization and buffers insertion in SimE
iterations (a = 12 - s1238.blif).

for the first option showed that the number of inserted buffers are more than that

of second option. Moreover, when minimizing buffers, Manhattan distance was re-

duced to similar levels as if distance was being optimized. Minimizing both distance

and buffers required more processing and didn’t have significant advantage over

minimizing buffers only.

Figure 5.2 shows the cost (i.e., number of buffers inserted) per iteration. SimE

progressively converges, in reasonable number of iterations, toward an optimal con-

figuration where each gate is optimally located, it also performs hill-climbing to

avoid local optimum. Simulated Evolution heuristic is directed into selecting and

reallocating only those gates that are violating the connectivity domain constraint.

Reducing the number of buffers will inevitably reduce the overall Manhattan dis-

tance.

79

5.2.2 Tabu Search

A short term memory element is used throughout the implementation where exper-

iments of tabu list size ranging from 5 to 12 were conducted. It was concluded that

change in tabu list size in this range has little impact on the quality of the solutions,

thus the size of tabu list is taken as a fixed value equal to 5.

We have experimented with different sizes of the candidate list; Figure 5.3 shows

the final cost yielded by TS in four benchmark circuits when candidate list size

is changed, given that all other parameters are constant. It is clearly seen that

for this problem, TS had better results when more neighbor solutions are consid-

ered. Figure 5.4 shows the per iteration cost of one circuitry given different sizes

of candidate list. Candidate list size of 50 is reaching the optimal solution of zero

buffers (when a = 12) in less iterations, thus this size has been used throughout our

implementation.

5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

400

Candidate List Size

C
os

t:
In

se
rt

ed
 B

uf
fe

rs

s1238
s1196
s832
s838

Figure 5.3: Final cost yielded by TS in four circuits vs. candidate list size (a = 12).

80

0 50 100 150 200 250 300
0

50

100

150

200

250

Iterations

C
os

t:
B

uf
fe

rs
 I

ns
er

te
d

CL=20
CL=30
CL=40
CL=50

Figure 5.4: Change in cost per iteration of s1238.blif for different candidate list sizes
(a = 12).

50 100 150 200 250 300
0

50

100

Iteration

C
os

t:
B

uf
fe

rs
 I

ns
er

te
d

50 100 150 200 250 300

6000

7000

8000

9000

10000

M
an

ha
tte

n
D

is
ta

nc
e

Distance
Buffers

Figure 5.5: Change of problem cost and Manhattan distance in TS iterations (a = 12
- s1238.blif).

Figure 5.5 shows the correlation between the number of inserted buffers and Man-

hattan distance. It’s clear that TS is accepting bad moves in order to reach better

solutions in terms of inserted buffers, which are also better in terms of Manhattan

distance.

81

5.2.3 Results Comparison

In this section we compare the results of Simulated Evolution and Tabu Search with

CMOL FPGA CAD 1.0 [44], GA [49], MA [50] and LRMA [51] (see Section 2.4.2),

when connectivity domain radius a = 12 and a = 9. Table 5.5 and Table 5.6 show

the final results obtained for ISCAS’89 benchmarks; (D) is the circuit’s logical levels

reported by SIS tool after inserting the buffers, computation time (T) in seconds,

(B) shows the number of inserted buffers to satisfy CMOL connectivity domain,

and (T%) is the percentage of time improvement compared with computation time

reported for LRMA. GA, MA and LRMA use population size equals to 24 and

stopping criteria when fitness score is not updated for 50 times. The crossover rate in

MA and LRMA is RC = 0.33 and mutation rate RM = 0.01. Simulated Annealing

used in each of GA iterations has initial temperature T = 0.2 and terminating

temperature 0.01.

Simulated Evolution and Tabu Search solutions are more effective than those of

CMOL CAD 1.0 in terms of computation time, delay, and even they are able to place

large circuits that CMOL CAD failed to. Results obtained from implementation

of SimE for a = 12 are better than those obtained in GA, MA and LRMA in

both computation time and buffers count. SimE required shorter CPU processing

time compared to time required by genetic crossover, mutation and Lagrangian

multipliers calculation in LRMA. Table 5.5 shows that Simulated Evolution found

82

the optimal solutions with zero buffers for all benchmarks, with up to 82% average

computation time saving. For example, SimE required only 23.50 seconds to find

the optimal solution of zero buffers and delay equals to 23 for benchmark s1196,

while LRMA required 179.47 seconds and needed 9 buffers to satisfy connectivity

raising timing delay to 24.

Results of Tabu Search for a = 12 are better than those obtained in GA, MA

and LRMA in both computation time and buffers count and similar to those of

Simulated Evolution. TS required shorter CPU processing time due to its simplified

operations compared to genetic crossover and Lagrangian multipliers calculation

in LRMA. Table 5.6 shows that Tabu Search found the optimal solutions with zero

buffers for all benchmarks, with 92% average computation time saving. For example,

s1238 benchmark needed only 12.87 seconds in TS, comprising only a 3.6% of time

needed by LRMA, and 23.93% of time needed by SimE.

Table 5.7 shows SimE, and TS results when a = 9; solutions found by TS are

better than those of MA for all benchmark circuits. TS falls behind LRMA in

only two circuits (s820 and s1238) while sustaining equal averaged results. TS

found solutions in lesser time with 73% saving. Simulated Evolution is better than

published techniques; it finds placement solutions that have less cost and in efficient

computation time. As shown in Table 5.7, SimE required almost quarter the time

to find a solution with one third of the number of buffers reported by LRMA for

s1238 benchmark. SimE has worse results than LRMA only in one circuit (s713).

83

Table 5.5: SimE Comparison With CMOL CAD, GA, MA and LRMA - (a = 12).

Circ. CAD GA [49] MA [50] LRMA [51] SimE
D T D T B D T B D T B D T B T%

s27 9 1 7 0.01 0 7 0.01 0 7 0.01 0 7 0.01 0 0.00
s208 18 3 16 1.12 0 16 0.12 0 16 0.10 0 16 0.01 0 90.00
s298 13 7 11 0.17 0 11 0.11 0 11 0.09 0 11 0.01 0 88.89
s344 20 8 18 0.57 0 1 0.29 0 18 0.16 0 18 0.01 0 93.75
s349 20 7 18 0.49 0 18 0.28 0 18 0.18 0 18 0.02 0 88.89
s382 13 7 11 1.60 0 11 0.38 0 11 0.32 0 11 0.04 0 87.50
s386 16 11 10 1.05 0 10 0.33 0 10 0.34 0 10 0.02 0 94.12
s400 15 8 11 2.12 1 11 0.40 0 11 0.34 0 11 0.03 0 91.18
s420 20 8 16 8.50 1 16 3.41 0 16 1.57 0 16 0.09 0 94.27
s444 17 9 11 1.86 2 11 0.40 0 11 0.34 0 11 0.03 0 91.18
s510 - - 18 16.56 2 18 7.56 0 18 3.42 0 18 0.16 0 95.32
s526 16 13 11 9.75 5 11 4.36 0 11 1.59 0 11 0.25 0 84.28
s641 25 8 23 82.66 15 19 39.40 4 16 22.02 0 16 2.92 0 86.74
s713 - - 24 52.84 34 19 30.11 3 19 41.77 2 19 3.40 0 91.86
s820 - - 15 77.52 41 12 61.71 10 12 54.09 6 12 27.72 0 48.75
s832 - - 16 69.27 54 12 60.17 11 12 63.77 4 12 31.00 0 51.39
s838 - - 28 201.37 50 24 85.62 7 24 100.40 4 24 2.42 0 97.59
s1196 - - 30 234.88 84 23 208.15 19 24 179.47 9 23 23.50 0 86.91
s1238 - - 37 268.92 121 28 267.34 31 26 353.00 9 26 53.76 0 84.77
Avg. - - 17 54.28 22 15 40.53 4 15 43.31 2 15 7.65 0 82.33

D: Delay (i.e., Logic Levels).
T: Computation Time in Seconds.
B: Buffers Inserted.
T%: Percentage time improvement.

84

Table 5.6: TS Comparison With CMOL CAD, GA, MA and LRMA - (a = 12).

Circ. CAD GA [49] MA [50] LRMA [51] TS
D T D T B D T B D T B D T B T%

s27 9 1 7 0.01 0 7 0.01 0 7 0.01 0 7 0.01 0 0.00
s208 18 3 16 1.12 0 16 0.12 0 16 0.10 0 16 0.01 0 90.00
s298 13 7 11 0.17 0 11 0.11 0 11 0.09 0 11 0.01 0 88.89
s344 20 8 18 0.57 0 1 0.29 0 18 0.16 0 18 0.01 0 93.75
s349 20 7 18 0.49 0 18 0.28 0 18 0.18 0 18 0.01 0 94.44
s382 13 7 11 1.60 0 11 0.38 0 11 0.32 0 11 0.03 0 90.63
s386 16 11 10 1.05 0 10 0.33 0 10 0.34 0 10 0.03 0 91.18
s400 15 8 11 2.12 1 11 0.40 0 11 0.34 0 11 0.02 0 94.12
s420 20 8 16 8.50 1 16 3.41 0 16 1.57 0 16 0.07 0 95.54
s444 17 9 11 1.86 2 11 0.40 0 11 0.34 0 11 0.03 0 91.18
s510 - - 18 16.56 2 18 7.56 0 18 3.42 0 18 0.18 0 94.74
s526 16 13 11 9.75 5 11 4.36 0 11 1.59 0 11 0.48 0 96.81
s641 25 8 23 82.66 15 19 39.40 4 16 22.02 0 16 6.27 0 71.53
s713 - - 24 52.84 34 19 30.11 3 19 41.77 2 19 8.69 0 79.20
s820 - - 15 77.52 41 12 61.71 10 12 54.09 6 12 11.77 0 78.24
s832 - - 16 69.27 54 12 60.17 11 12 63.77 4 12 10.55 0 83.46
s838 - - 28 201.37 50 24 85.62 7 24 100.40 4 24 4.48 0 95.54
s1196 - - 30 234.88 84 23 208.15 19 24 179.47 9 23 6.87 0 96.17
s1238 - - 37 268.92 121 28 267.34 31 26 353.00 9 26 12.87 0 96.35
Avg. - - 17 54.28 22 15 40.53 4 15 43.31 2 15 3.28 0 92.42

D: Delay (i.e., Logic Levels).
T: Computation Time in Seconds.
B: Buffers Inserted.
T%: Percentage time improvement.

85

Compared with TS, SimE has better results in all benchmarks except for two circuits

(s641 and s713), it requires more computation time, still it produces results in

significantly lesser time compared to MA, and LRMA.

Placement solutions reported for a = 9 have more violating connections com-

pared to those reported for a = 12; that is justified as the placement problem

become harder when the connectivity domain size get decreased. Some of the re-

sults reported in Table 5.7 have not been successfully routed, either because there is

no enough blank cells or simply because some gates are not reachable given that the

connectivity radius a is small. Based on this observation we conclude that the value

of the connectivity domain radius is very important to successful place circuits in

CMOL. In our test cases, a = 12 seemed appropriate.

86

Table 5.7: SimE and TS Comparison With CMOL CAD, MA and LRMA - (a = 9).

Circuit CAD MA [50] LRMA [51] SimE TS
T T C T C T C T% T C T%

s27 0.07 0.01 0 0.01 0 0.01 0 0.00 0.01 0 0.00
s208 509.84 0.22 0 0.20 0 0.01 0 95.00 0.01 0 95.00
s298 370.3 0.27 0 0.37 0 0.02 0 94.59 0.05 0 86.94
s344 6.18 0.85 0 0.65 0 0.02 0 96.92 0.04 0 93.85
s349 7.6 0.57 0 0.72 0 0.03 0 95.83 0.04 0 94.44
s382 12.88 5.70 0 1.43 0 0.38 0 73.43 0.67 0 53.15
s386 10.3 1.89 0 1.62 0 0.09 0 94.44 0.20 0 87.65
s400 7.52 4.48 0 1.82 0 0.29 0 84.07 0.61 0 66.48
s420 - 13.83 0 7.73 0 0.36 0 95.34 1.24 0 83.96
s444 7.59 5.74 0 2.05 0 0.38 0 81.46 0.97 0 52.68
s510 213.27 22.71 7 25.49 5 23.09 1 9.42 64.57 1 -
s526 - 21.72 5 23.13 2 4.30 0 81.41 39.44 0 -
s641 - 48.26 11 106.64 6 38.57 5 63.83 51.73 1 51.49
s713 - 79.63 12 97.38 3 44.13 5 54.68 51.88 2 46.72
s820 - 202.60 42 153.20 31 127.62 18 16.70 75.91 32 50.45
s832 - 118.83 45 164.06 39 152.75 26 6.89 77.75 37 52.61
s838 - 22.60 15 189.12 10 73.90 2 60.92 63.13 1 66.62
s1196 - 502.22 49 565.41 36 158.09 8 72.04 72.35 35 87.20
s1238 - 404.11 55 856.69 39 210.90 13 75.38 73.00 54 91.48
Avg. - 76.64 13 115.67 9 43.94 4 62.01 30.19 9 73.90
T: Computation Time in Seconds.
C: Connectivity Violating Connection.
T%: Percentage time improvement.

87

5.3 Reconfiguration

The defect tolerance of the circuits directly after placement phase is poor, the dam-

age in any of the nanodvices used to connect the circuits elements leads to circuits

failure. Reconfiguration phase rearrange the circuits cells to ensure that they im-

plement the desired functionality. Simulated Evolution and Tabu Search are used

to explore the search space looking for an arrangement of cells that avoid defects.

5.3.1 Simulated Evolution

Simulated Evolution is employed according to the formulation given in Chapter 3. A

particular gate goodness is evaluated following the number of defective nanodevices

it’s associated with (Equation 4.2). Figure 5.6 shows the number of elements selected

for perturbation in each iteration, the size of the selection set decresses with time,

until a final solution with the least cost is reached. In addition, Figure 5.7 shows the

change of the problem cost (Equation 3.6) per iteration, it shows how the heuristic

is evolving to better solutions without being too greed.

5.3.2 Tabu Search

In a similar manner to the verification given for Tabu Search in Section 5.2.2; Fig-

ure 5.8 shows the quality of the solutions produced by TS over iterations. The

heuristic steadily converges to near optimal solution.

88

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

Iteration

C
os

t:
D

ef
ec

tiv
e

N
an

od
ev

ic
es

s1238

Figure 5.6: SimE reconfiguration heuristic: selection set size Vs. iterations -
s1238.blif.

0 50 100 150 200 250
0

20

40

60

80

100

Iteration

N
o#

 o
f

E
le

m
en

ts
 S

el
ec

te
d

Selection Set

Figure 5.7: Change of reconfiguration cost per iteration in Simulated Evolution -
s1238.blif.

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

40

45

Iterations

C
os

t:
D

ef
ec

tiv
e

N
an

od
ev

ic
es

s832

Figure 5.8: Change of reconfiguration cost per iteration in Tabu Search - s832.blif.

89

Figure 5.9 shows the change in the problem cost in respect to candidate list size

and given different defect rates. Each rate constitutes a distinct instance of the

reconfiguration problem. In high defect rates, a small candidate list results in bad

solutions, whereas for low rates, a small list is sufficient. The problem becomes more

constrained when many nanodevices are defective, thus, TS requires more choices to

effectivly explore the search space. Throughout our implementation we have used

different sizes for different defect rates; a maximum value of 60 is used as an upper

bound limit on the list size. Further, we have investigated the impact of tabu list

size on solutions quality; it was concluded that a size less than 5 is suitable for our

problem; therefore we have chosen a fixed value equals to 2 for all of the circuits.

5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

Candidate List Size

C
os

t:
D

ef
ec

tiv
e

N
an

od
ev

ic
es

50% defect
40% defect
30% defect
20% defect
10% defect

Figure 5.9: Cost yielded by TS for qnano between 10% and 50% vs. candidate list
size - s1196.blif.

90

5.3.3 Results

This section presents the final results for CMOL reconfiguration problem using Sim-

ulated Evolution and Tabu Search iterative heuristics. In reconfiguration phase we

have adhered to the original description of the connectivity domain shown in Fig-

ure 2.3, instead of depending on the definition outlined in Equation 3.2(b) using

Manhattan distance. Given a particular connectivity radius a, the later definition

has bigger connectivity domains than the former one. For that reason, we have used

a connectivity radius a = 18 to compensate the difference between the two defini-

tions. We have used a bias B between [−0.06, 0.05], where small bias values are used

for high defect rates. Negative bias was required to reduce the number of selected

elements (especially in early iterations) to prevent the heuristic from performing

conflicting moves, which results in poor exploration of the search space.

The following tables show results for the given defect scenarios in Section 5.1.2;

Tabel 5.8 report the results for random defect map R1 and defect scenario (i).

Time is the computation time in seconds, while Buffers is the number of buffers

the routing phase has inserted to reroute those nets that still use stuck-at-open

defective nanodevices. The results show that for high defect rates SimE required

more computation time. Similarly, Table 5.9 and Table 5.10 present the results for

defect scenario (i) when clustered defect maps C1 and C2 are used. The results

show that finding a successful reconfiguration is harder and requires more time

91

when defects are clustered. In SimE results, only circuits s820 and s832 required

additional buffers to reroute the connections that could not be reconfigured.

Simulated Evolution results for defect scenario (ii) are shown in Table 5.11 and

Table 5.12. The reconfiguration of two circuits (i.e., s820 and s1238) is performed

when up to 70% of the nanowires are cut and 20% of the nanodevices are stuck-

at-open. SimE has found successful reconfigurations even when the probability of

broken wires is high. Table 5.13 gives the results for defect scenario (iii). Those

results are for circuits placement when some of CMOL cells are defective. Unlike

earlier placement results, here we have used connectivity domain of Figure 2.3 and

connectivity radius a = 18. The heuristic found solutions with zero buffers for all

circuits under test except for circuit s820.

Further we have invistigated the roubutness of our heuristic design by testing

the recofiguration of a given placement for benchmark circuit s1238 in 20 different

clusterd defect maps. The defect maps had C = 0.8, σ = 4a
3
, defect rate qnano =

50% and cut rate qwire = 20%. The heuristic was run for 40 times for each map;

reconfiguration was successful in 19 out of 20 maps, where the overally successful

reconfiguration rate (for 20 maps, each runned 40 times) was 60%. For defect maps

with rate qnano < 50% the heuristic successfully reconfigured all of the 20 defect

maps, and the overall successful reconfiguration rate was almost equal to 100%.

92

Table 5.8: Circuits reconfiguration using SimE and random defect map R1, (qwire =
20% - qcell = 0%)

.

Circ. qnano = 10% qnano = 20% qnano = 30% qnano = 40% qnano = 50%
Time Buffers Time Buffers Time Buffers Time Buffers Time Buffers

s27 0.03 0 0.03 0 0.03 0 0.03 0 0.03 0
s208 0.03 0 0.03 0 0.03 0 0.03 0 0.03 0
s298 0.06 0 0.06 0 0.03 0 0.06 0 0.06 0
s344 0.03 0 0.03 0 0.03 0 0.03 0 0.06 0
s349 0.03 0 0.03 0 0.03 0 0.06 0 0.10 0
s382 0.03 0 0.03 0 0.06 0 0.10 0 1.22 0
s386 0.03 0 0.03 0 0.10 0 0.26 0 3.78 0
s400 0.03 0 0.03 0 0.06 0 0.13 0 0.64 0
s420 0.03 0 0.03 0 0.06 0 0.16 0 0.32 0
s444 0.03 0 0.03 0 0.10 0 0.16 0 0.77 0
s510 0.03 0 0.10 0 0.22 0 1.02 0 1.09 0
s526 0.03 0 0.10 0 0.26 0 1.06 0 2.21 0
s641 0.06 0 0.10 0 0.13 0 0.29 0 0.61 0
s713 0.06 0 0.10 0 0.16 0 0.38 0 0.64 0
s820 0.26 0 0.61 0 1.66 0 4.26 0 8.06 3
s832 0.32 0 0.96 0 2.46 0 6.50 0 9.18 3
s838 0.16 0 0.22 0 0.32 0 0.90 0 1.31 0
s1196 0.26 0 0.54 0 1.09 0 0.99 0 3.04 0
s1238 0.51 0 0.70 0 0.96 0 0.99 0 4.99 0
Avg. 0.11 0.00 0.20 0.00 0.41 0.00 0.92 0.00 2.01 0

Time: Computation Time in Seconds.
Buffers: Buffers Inserted.

93

Table 5.9: Circuits reconfiguration using SimE and clustered defect map C1 - σ = 2a
3
,

(qwire = 20% - qcell = 0%)

.

Circ. qnano = 10% qnano = 20% qnano = 30% qnano = 40% qnano = 50%
Time Buffers Time Buffers Time Buffers Time Buffers Time Buffers

s27 0.03 0 0.03 0 0.03 0 0.03 0 0.03 0
s208 0.03 0 0.03 0 0.03 0 0.03 0 0.03 0
s298 0.03 0 0.03 0 0.03 0 0.06 0 0.19 0
s344 0.03 0 0.03 0 0.03 0 0.06 0 0.10 0
s349 0.03 0 0.03 0 0.06 0 0.10 0 0.10 0
s382 0.03 0 0.03 0 0.06 0 0.26 0 0.32 0
s386 0.03 0 0.03 0 0.19 0 0.80 0 3.10 0
s400 0.03 0 0.03 0 0.13 0 0.32 0 0.64 0
s420 0.06 0 0.06 0 0.10 0 0.16 0 0.26 0
s444 0.03 0 0.03 0 0.10 0 0.32 0 0.35 0
s510 0.06 0 0.13 0 0.26 0 0.90 0 2.34 0
s526 0.06 0 0.06 0 0.35 0 0.90 0 1.06 0
s641 0.06 0 0.13 0 0.16 0 0.32 0 1.22 0
s713 0.06 0 0.13 0 0.19 0 0.38 0 1.79 0
s820 0.32 0 0.61 0 2.46 0 5.44 0 12.13 4
s832 0.64 0 1.02 0 2.72 0 6.50 0 18.27 6
s838 0.16 0 0.26 0 0.42 0 1.02 0 1.79 0
s1196 0.51 0 0.67 0 0.74 0 2.62 0 6.24 0
s1238 0.42 0 1.38 0 1.89 0 3.68 0 9.12 0
Avg. 0.14 0 0.25 0 0.52 0 1.26 0 3.11 1

Time: Computation Time in Seconds.
Buffers: Buffers Inserted.

94

Table 5.10: Circuits reconfiguration using SimE and clustered defect map C2 -
σ = 4a

3
, (qwire = 20% - qcell = 0%)

.

Circ. qnano = 10% qnano = 20% qnano = 30% qnano = 40% qnano = 50%
Time Buffers Time Buffers Time Buffers Time Buffers Time Buffers

s27 0.03 0 0.03 0 0.03 0 0.03 0 0.03 0
s208 0.03 0 0.03 0 0.03 0 0.06 0 0.03 0
s298 0.03 0 0.03 0 0.03 0 0.03 0 0.29 0
s344 0.03 0 0.03 0 0.03 0 0.06 0 0.10 0
s349 0.03 0 0.03 0 0.03 0 0.10 0 0.13 0
s382 0.03 0 0.06 0 0.06 0 0.19 0 1.28 0
s386 0.03 0 0.03 0 0.13 0 0.48 0 8.54 0
s400 0.03 0 0.03 0 0.10 0 0.29 0 0.48 0
s420 0.06 0 0.10 0 0.10 0 0.19 0 0.22 0
s444 0.03 0 0.03 0 0.10 0 0.26 0 0.74 0
s510 0.06 0 0.22 0 0.35 0 1.63 0 2.21 0
s526 2.02 0 0.29 0 0.58 0 2.18 0 6.34 0
s641 0.10 0 0.10 0 0.19 0 0.32 0 1.06 0
s713 0.10 0 0.13 0 0.26 0 0.32 0 0.61 0
s820 0.51 0 0.64 0 1.60 0 4.19 0 11.78 4
s832 0.48 0 0.99 0 2.82 0 7.07 0 15.84 6
s838 0.19 0 0.26 0 0.48 0 1.22 0 1.82 0
s1196 0.35 0 0.51 0 1.02 0 2.75 0 7.01 0
s1238 0.51 0 1.15 0 1.57 0 7.62 0 5.54 0
Avg. 0.25 0 0.25 0 0.50 0 1.53 0 3.37 1

Time: Computation Time in Seconds.
Buffers: Buffers Inserted.

Table 5.11: Circuit s820 reconfiguration around cut wires using SimE, (qnano = 20%
- qcell = 0%).

qwire
R1 C1 - σ = 2a

3 C2 - σ = 4a
3

Time Buffers Time Buffers Time Buffers
10% 0.29 0 0.29 0 0.45 0
20% 0.42 0 0.48 0 0.77 0
30% 1.15 0 1.12 0 1.98 0
40% 1.34 0 2.59 0 4.13 0
50% 2.56 0 10.11 0 9.79 0
60% 7.20 0 13.47 0 18.30 0
70% 13.60 0 26.14 0 22.85 0
Avg. 3.79 0 7.74 0 8.32 0

Time: Computation Time in Seconds.
Buffers: Buffers Inserted.

95

Table 5.12: Circuit s1238 reconfiguration around cut wires using SimE, (qnano = 20%
- qcell = 0%).

qwire
R1 C1 - σ = 2a

3 C2 - σ = 4a
3

Time Buffers Time Buffers Time Buffers
10% 0.38 0 0.45 0 0.61 0
20% 0.58 0 0.54 0 1.22 0
30% 0.83 0 0.86 0 0.90 0
40% 0.86 0 1.73 0 1.76 0
50% 2.21 0 1.95 0 1.70 0
60% 3.46 0 3.04 0 4.99 0
70% 4.77 0 5.54 0 6.14 0
Avg. 1.87 0 2.02 0 2.47 0

Time: Computation Time in Seconds.
Buffers: Buffers Inserted.

Table 5.13: Implementation of SimE for defect scenario (iii), (qnano = 20% - qwire =
20%).

Circ. qcell = 10% qcell = 20%
Time Buffers Time Buffers

s641 17.06 0 18.50 0
s713 23.17 0 28.22 0
s820 136.96 2 240.13 3
s838 60.48 0 95.04 0
s1196 295.68 0 320.90 0
s1238 390.88 0 415.30 0
Avg. 154.04 0 186.35 1

Time: Computation Time in Seconds.
Buffers: Buffers Inserted.

96

Table 5.14 shows Tabu Search reconfiguration results for random defect map

R1. Defect rates below 30% are easily tolerated, whereas, for 40% and 50% defects,

additional buffers are needed to reroute defective connections. When more defects

are involved TS required more computation time to find the best solution. Table 5.15

and Table 5.16 present the results when defects are clustered around multiple points

(i.e., defect maps C1 and C2). Most of the cells are reconfigured around defects and

some of them required additional buffers. The heuristic has failed to find solutions

that do not use any defective nanodevices or tolerate defective connections by using

additional buffers for circuits s820 and s832. Those two circuits contain many 5-

input NOR gates, which make them harder to reconfigure.

Tabu search has been also employed to reconfigure circuits when nanowires are

broken. Table 5.17 shows the reconfiguration cost for circuit s820 when wires cut rate

qwire is between 10% and 70% and defective nanodevices rate qnano equals 20%. For

high cut rates, the heuristic has failed to reconfigure the circuits. Results reported

when defective nanodevices are randomly distributed are better than those when

nanodevices defects are clustered. Clustered defects are harder to tolerate as some

cells may have many of thier connectivity domain cells unreachable. In addition,

Table 5.18 presents the reconfiguration results for circuit s1238 for different cut

rates. All reconfigurations are successful and zero additional buffers are needed.

Comparing the results of Simulated Evolution and Tabu Search indicate that

SimE is able to produce better results and in less computation time for both random

97

and clustered defects. That is because SimE is applying an evolutionary technique

to choose which elements to be reconfigured. Although, TS is an efficient search

heuristic but it fails in circuits with high defect rates or in circuits that have many

connections.

98

Table 5.14: Circuits reconfiguration using TS and random defect map R1, (qwire =
20% - qcell = 0%)

.

Circ. qnano = 10% qnano = 20% qnano = 30% qnano = 40% qnano = 50%
Time Buffers Time Buffers Time Buffers Time Buffers Time Buffers

s27 0.03 0 0.03 0 0.03 0 0.03 0 0.03 0
s208 0.03 0 0.03 0 0.10 0 0.10 0 0.22 0
s298 0.03 0 0.06 0 0.10 0 0.22 0 1.28 0
s344 0.06 0 0.06 0 0.10 0 0.19 0 1.92 0
s349 0.06 0 0.06 0 0.10 0 0.38 0 6.43 0
s382 0.10 0 0.10 0 0.26 0 0.61 0 5.60 0
s386 0.35 0 0.48 0 2.72 0 2.43 0 69.95 1
s400 0.16 0 0.22 0 0.70 0 1.50 0 15.36 0
s420 0.06 0 0.13 0 0.19 0 0.64 0 1.50 0
s444 0.22 0 0.26 0 0.96 0 3.68 0 9.50 0
s510 0.19 0 0.26 0 1.50 0 12.64 0 85.98 1
s526 0.19 0 0.32 0 0.83 0 4.19 0 72.67 1
s641 0.32 0 0.38 0 0.86 0 2.21 0 37.38 1
s713 0.32 0 0.45 0 0.83 0 2.05 0 41.47 1
s820 0.77 0 3.01 0 15.26 0 97.98 2 160.16 8
s832 1.06 0 3.81 0 17.76 0 103.14 2 171.87 7
s838 0.64 0 0.96 0 1.54 0 3.04 0 11.10 0
s1196 1.15 0 2.02 0 4.74 0 57.38 0 99.26 0
s1238 1.70 0 3.17 0 8.19 0 33.22 0 153.54 0
Avg. 0.39 0 0.83 0 2.99 0 17.14 0 49.75 1

Time: Computation Time in Seconds.
Buffers: Buffers Inserted.

99

Table 5.15: Circuits reconfiguration using TS and clustered defect map C1 - σ = 2a
3
,

(qwire = 20% - qcell = 0%)

.

Circ. qnano = 10% qnano = 20% qnano = 30% qnano = 40% qnano = 50%
Time Buffers Time Buffers Time Buffers Time Buffers Time Buffers

s27 0.03 0 0.03 0 0.03 0 0.03 0 0.03 0
s208 0.03 0 0.06 0 0.32 0 1.60 0 9.82 0
s298 0.03 0 0.03 0 0.10 0 0.26 0 4.32 0
s344 0.06 0 0.06 0 0.16 0 0.93 0 3.94 0
s349 0.06 0 0.10 0 0.19 0 3.30 0 29.95 0
s382 0.10 0 0.10 0 0.16 0 1.60 0 5.41 0
s386 0.19 0 0.35 0 3.01 0 21.06 0 69.38 1
s400 0.16 0 0.19 0 0.51 0 5.09 0 15.84 0
s420 0.13 0 0.13 0 0.22 0 0.64 0 2.46 0
s444 0.16 0 0.32 0 0.70 0 12.99 0 7.30 0
s510 0.42 0 0.42 0 1.41 0 11.90 0 80.48 1
s526 0.16 0 0.26 0 0.70 0 4.70 0 61.22 1
s641 0.32 0 0.64 0 0.83 0 2.66 0 37.15 1
s713 0.35 0 0.64 0 1.06 0 2.30 0 45.22 2
s820 0.93 0 1.92 0 25.60 0 90.05 1 - -
s832 1.02 0 2.59 0 44.96 0 98.53 2 - -
s838 0.67 0 1.34 0 2.75 0 4.38 0 23.14 0
s1196 1.25 0 2.72 0 7.26 0 48.26 0 136.93 0
s1238 1.28 0 3.20 0 10.14 0 49.50 0 184.06 3
Avg. 0.39 0 0.79 0 5.27 0 18.94 0 42.16 1

Time: Computation Time in Seconds.
Buffers: Buffers Inserted.

100

Table 5.16: Circuits reconfiguration using TS and clustered defect map C2 - σ = 4a
3
,

(qwire = 20% - qcell = 0%)

.

Circ. qnano = 10% qnano = 20% qnano = 30% qnano = 40% qnano = 50%
Time Buffers Time Buffers Time Buffers Time Buffers Time Buffers

s27 0.03 0 0.03 0 0.03 0 0.03 0 0.03 0
s208 0.06 0 0.06 0 0.16 0 0.96 0 1.09 0
s298 0.13 0 0.06 0 0.10 0 0.19 0 5.25 0
s344 0.06 0 0.06 0 0.13 0 0.42 0 4.51 0
s349 0.13 0 0.16 0 0.16 0 0.93 0 26.75 0
s382 0.06 0 0.10 0 0.22 0 1.28 0 11.94 0
s386 0.32 0 0.61 0 2.88 0 22.21 0 65.76 2
s400 0.19 0 0.19 0 0.67 0 4.80 0 25.63 0
s420 0.10 0 0.22 0 0.26 0 0.90 0 2.46 0
s444 0.26 0 0.26 0 0.96 0 7.52 0 16.54 0
s510 0.29 0 1.22 0 2.05 0 18.62 0 70.40 1
s526 0.77 0 0.90 0 1.63 0 8.64 0 72.70 1
s641 0.42 0 0.74 0 1.63 0 4.13 0 46.18 2
s713 0.45 0 0.77 0 1.28 0 2.88 0 5.12 3
s820 1.92 0 3.94 0 44.19 0 88.19 1 - -
s832 1.31 0 4.54 0 25.15 0 92.42 1 - -
s838 0.70 0 1.22 0 2.88 0 5.50 0 63.84 0
s1196 1.38 0 2.62 0 11.04 0 52.29 0 133.25 0
s1238 2.08 0 2.91 0 17.95 0 98.24 0 156.03 0
Avg. 0.56 0 1.08 0 5.97 0 21.59 0 41.62 1

Time: Computation Time in Seconds.
Buffers: Buffers Inserted.

Table 5.17: Circuit s820 reconfiguration around cut wires using TS, (qnano = 20% -
qcell = 0%).

qwire
R1 C1 - σ = 2a

3 C2 - σ = 4a
3

Time Buffers Time Buffers Time Buffers
10% 1.38 0 1.25 0 3.65 0
20% 4.29 0 2.88 0 5.79 0
30% 12.80 0 9.22 0 71.81 1
40% 25.28 0 92.48 1 99.81 2
50% 119.97 1 134.50 2 111.55 3
60% 150.72 2 140.67 3 - -
70% 190.21 2 - - - -
Avg. 72.09 1 63.50 1 58.52 1

Time: Computation Time in Seconds.
Buffers: Buffers Inserted.

101

Table 5.18: Circuit s1238 reconfiguration around cut wires using TS, (qnano = 20%
- qcell = 0%).

qwire
R1 C1 - σ = 2a

3 C2 - σ = 4a
3

Time Buffers Time Buffers Time Buffers
10% 1.50 0 2.34 0 3.52 0
20% 2.27 0 3.58 0 6.05 0
30% 3.78 0 5.28 0 4.93 0
40% 5.92 0 9.60 0 8.38 0
50% 9.38 0 14.50 0 8.74 0
60% 16.13 0 26.21 0 32.96 0
70% 35.04 0 47.36 0 38.18 0
Avg. 10.57 0 15.55 0 14.68 0

Time: Computation Time in Seconds.
Buffers: Buffers Inserted.

5.4 Solutions Verification

In this section, we discuss the verification of CMOL circuits produced by aforemen-

tioned heuristic implementations. Each mapped circuit uses a number of nanode-

vices to connect its modules (i.e., gates). The final result of CMOL cell mapping

heuristics is the list of nanodevices that should be programmed (i.e., set to ”ON”

state). Circuits verification follows the steps shown in Figure 5.10.

��������	�
����������
���������������

��
���
�

������
����	����

�����������

����������

����������

	
��������

����
����

������
��������

����

����

�����
���

�� ��

����	�

!��������

"��	
�#�

���

 ��$���������	�

������

����	�
���
���

 ��$����

����	�
���%
�

��
���

 ��$����

Figure 5.10: Verification steps.

102

The verification procedure starts by checking if any of the nanodevices used to

connect CMOL cells is defective, this is done with the help of the same defect map

used when the circuit is mapped and reconfigured. Then, the circuit is written in

bench formate and forwarded to HOPE simulator [66], along with the original circuit

description (i.e., the one before mapping) and a randomly generated input patterns.

We use perl script to run the simulator and compare the output of the two circuits

to decide if they match. Based on the generated outputs we conclude if the two

circuits are equal or not. The verification procedure make sure that our heuristics

perturbations do not change the circuits description, and verify that mapped circuits

have the same logical functionality as the original ones.

Chapter 6

Conclusion & Future Work

6.1 Conclusion

In this work, a design automation solution was presented for cell placement and

reconfiguration in CMOL nanofabric architecture. CMOL is a novel hybrid archi-

tecture that has been proposed by Likharev and Strukov [3]. Two general iterative

search heuristics (Simulated Evolution and Tabu Search) were implemented.

The placement of the circuits modules given the confined CMOL connectivity is a

hard problem, the problem tend to be more constrained when the fan-in of the NOR

gates become bigger. The value of the connectivity radius a, which constitute the

size of the connectivity domain, is very important for the successful implementation

and adaptation of CMOL circuits.

Nanodevices high defect rates is the draw back of the new hybrid architectures;

103

104

our implementation has shown that a rate of up to 50% stuck-at-open defects

(either clustered or randomly located) can be tolerated. Other types of defects

(e.g. nanowires cut, defective CMOS cells) can also be avoided.

The routing of unconnected nets (i.e., those violate connectivity radius or use

stuck-at-open devices) is a very important step in CMOL design flow. Insertion

of many buffers (i.e., pair of inverters) may worsen the timing delay of the circuit.

Successful connections rerouting depends on the available resources (blank cells),

connectivity radius a, and defect rate. An efficient placement and reconfiguration

heuristics reduce the need for invoking routing procedure.

6.2 Future Work

For the future work, other search heuristics can be implemented. An investigation on

the causes of placement and reconfiguration failures can be done. A new modifica-

tions can be incorporated as to increase the probability of having successful circuits

mapping in CMOL. Furthermore, the mapping procedure can be extended to cover

the different versions of CMOL architecture. As we have only addressed perme-

ant faults, an investigation on transient faults in CMOL could be very timely and

needed. The various techniques for testing nanofabrics and extraction/compaction

of defect maps can be explored.

Bibliography

[1] Gregory S. Snider and Stanley R Williams. Nano/CMOS architectures using

a field-programmable nanowire interconnect. Nanotechnology, 18(3):035204,

2007.

[2] Z. Abid, Ming Liu, and Wei Wang. 3D integration of CMOL structures for

FPGA applications. Computers, IEEE Transactions on, 60(4):463 –471, april

2011.

[3] Dmitri B Strukov and Konstantin K. Likharev. CMOL FPGA: a reconfig-

urable architecture for hybrid digital circuits with two-terminal nanodevices.

Nanotechnology, 16(6):888–900, 2005.

[4] Sadiq M. Sait and Habib Youssef. Iterative Computer Algorithms with Appli-

cations in Engineering: Solving Combinatorial Optimization Problems. IEEE

Computer Society Press, California, December 1999.

105

106

[5] Michael Butts and Andre DeHon. Molecular electronics: Devices, systems and

tools for Gigagate, Gigabit chips. In In ICCAD-2002, pages 433–440, 2002.

[6] A. DeHon. Array-based architecture for FET-based, nanoscale electronics. Nan-

otechnology, IEEE Transactions on, 2(1):23 – 32, mar 2003.

[7] S. Copen Goldstein and M. Budiu. NanoFabrics: spatial computing using

molecular electronics. In Computer Architecture, 2001. Proceedings. 28th An-

nual International Symposium on, pages 178 –189, 2001.

[8] D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur, and Hon-

Sum Philip Wong. Device scaling limits of Si MOSFETs and their application

dependencies. Proceedings of the IEEE, 89(3):259 –288, mar 2001.

[9] Konstantin Likharev. Electronics below 10 nm. In Nano and Giga Challenges

in Microelectronics, pages 27–68, 2003.

[10] International technology roadmap for semiconductors, 2003 Edition.

[11] J. Tour. Molecular Electronics. World Scientific, Singapore, 2003.

[12] S. Folling, O. Turel, and K. Likharev. Single-electron latching switches as

nanoscale synapses. In Neural Networks, 2001. Proceedings. IJCNN ’01. Inter-

national Joint Conference on, volume 1, pages 216 –221 vol.1, 2001.

107

[13] Konstantin K Likharev. Hybrid CMOS/nanoelectronic circuits: Opportunities

and challenges. Journal of Nanoelectronics and Optoelectronics, 3(3):203–230,

2008.

[14] Andr DeHon. Design of programmable interconnect for sublithographic pro-

grammable logic arrays. Proceedings of the 2005 ACMSIGDA 13th interna-

tional symposium on Fieldprogrammable gate arrays FPGA 05, C-28(9):127,

2005.

[15] S. Copen Goldstein and M. Budiu. NanoFabrics: spatial computing using

molecular electronics. In Computer Architecture, 2001. Proceedings. 28th An-

nual International Symposium on, pages 178 –189, 2001.

[16] Philip J. Kuekes, Duncan R. Stewart, and R. Stanley Williams. The cross-

bar latch: Logic value storage, restoration, and inversion in crossbar circuits.

Journal of Applied Physics, 97(3):034301 –034301–5, Feb 2005.

[17] O”zgr Trel, Jung Hoon Lee, Xiaolong Ma, and Konstantin K Likharev. Neu-

romorphic architectures for nanoelectronic circuits. International Journal of

Circuit Theory and Applications, 32(5):277–302, 2004.

[18] Greg Snider, Philip Kuekes, and R Stanley Williams. CMOS-like logic in de-

fective, nanoscale crossbars. Nanotechnology, 15(8):881, 2004.

108

[19] A. DeHon and K.K. Likharev. Hybrid CMOS/nanoelectronic digital circuits:

devices, architectures, and design automation. In Computer-Aided Design,

2005. ICCAD-2005. IEEE/ACM International Conference on, pages 375 – 382,

nov. 2005.

[20] G. S. Snider P. J. Kuekes and R. S. Williams. Crossbar nanocomputers. Sci-

entific American, 293(5):7276, 2005.

[21] Dmitri B. Strukov and Konstantin K. Likharev. CMOL FPGA circuits. In In

Proc. of Int. Conf. on Computer Design, CDES2006, pages 213–219, 2006.

[22] M.R. Stan, P.D. Franzon, S.C. Goldstein, J.C. Lach, and M.M. Ziegler. Molec-

ular electronics: from devices and interconnect to circuits and architecture.

Proceedings of the IEEE, 91(11):1940 – 1957, nov 2003.

[23] Changjian Gao and D. Hammerstrom. Cortical models onto CMOL and CMOS;

architectures and performance / price. Circuits and Systems I: Regular Papers,

IEEE Transactions on, 54(11):2502 –2515, nov. 2007.

[24] Sumio Iijima. Helical microtubules of graphitic carbon. Nature, 354(6348):56–

58, 1991.

[25] A Bachtold, P Hadley, T Nakanishi, and C Dekker. Logic circuits with carbon

nanotube transistors. Science, 294(5545):1317–1320, 2001.

109

[26] Hj Choi, J Ihm, Sg Louie, A Zettl, with Fuhrer Nygard J McEuen, Pl, L Shih,

M Forero, Yg Yoon, and Mazzoni. Crossed Nanotube Junctions. Science,

288(5465):494–497, 2000.

[27] T Rueckes, K Kim, E Joselevich, Gy Tseng, Cl Cheung, and Cm Lieber. Carbon

Nanotube-based nonvolatile random access memory for molecular computing.

Science, 289(5476):94–97, 2000.

[28] T. I. Kamins, R. Stanley Williams, Y. Chen, Y.-L. Chang, and Y. A. Chang.

Chemical vapor deposition of Si nanowires nucleated by TiSi2 islands on Si.

Applied Physics Letters, 76(5):562–564, 2000.

[29] Y Huang, X Duan, Y Cui, L J Lauhon, K H Kim, and C M Lieber. Logic

gates and computation from assembled nanowire building blocks. Science,

294(5545):1313–7, 2001.

[30] H Park, J Park, A K L Lim, E H Anderson, A P Alivisatos, and P L McEuen.

Nanomechanical oscillations in a single-C60 transistor. Nature, 407(6800):57–

60, 2000.

[31] Sergey Kubatkin, Andrey Danilov, Mattias Hjort, Jerome Cornil, Jean-Luc

Bredas, Nicolai Stuhr-Hansen, Per Hedegard, and Thomas Bjornholm. Single-

electron transistor of a single organic molecule with access to several redox

states. Nature, 425(6959):698–701, 2003.

110

[32] P. Douglas Tougaw and Craig S. Lent. Logical devices implemented using

quantum cellular automata. Journal of Applied Physics, 75(3):1818–1825, 1994.

[33] Mehdi B. Tahoori and Subhasish Mitra. Fault detection and diagnosis tech-

niques for molecular computing. In in NanoTech, 2004.

[34] J R Heath. A defect-tolerant computer architecture: Opportunities for nan-

otechnology. Science, 280(5370):1716–1721, 1998.

[35] J.G. Brown and R.D. Blanton. CAEN-BIST: testing the nanofabric. In Test

Conference, 2004. Proceedings. ITC 2004. International, pages 462 – 471, oct.

2004.

[36] M. Tehranipoor and R.M.P. Rad. Built-In Self-Test and recovery procedures for

molecular electronics-based nanofabrics. Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, 26(5):943 –958, may 2007.

[37] M.V. Joshi and W.K. Al-Assadi. A BIST approach for configurable nanofabric

arrays. In Nanotechnology, 2008. NANO ’08. 8th IEEE Conference on, pages

695 –698, aug. 2008.

[38] Gang Wang, Wenrui Gong, and Ryan Kastner. On the use of Bloom filters

for defect maps in nanocomputing. In Proceedings of the 2006 IEEE/ACM

international conference on Computer-aided design, ICCAD ’06, pages 743–

746, New York, NY, USA, 2006. ACM.

111

[39] Jing Huang, M.B. Tahoori, and F. Lombardi. On the defect tolerance of nano-

scale two-dimensional crossbars. In Defect and Fault Tolerance in VLSI Sys-

tems, 2004. DFT 2004. Proceedings. 19th IEEE International Symposium on,

pages 96 – 104, oct. 2004.

[40] Yadunandana Yellambalase and Minsu Choi. Cost-driven repair optimization

of reconfigurable nanowire crossbar systems with clustered defects. J. Syst.

Archit., 54(8):729–741, August 2008.

[41] M. B. Tahoori. A mapping algorithm for defect-tolerance of reconfigurable

nano-architectures. In Proceedings of the 2005 IEEE/ACM International con-

ference on Computer-aided design, ICCAD ’05, pages 668–672, Washington,

DC, USA, 2005. IEEE Computer Society.

[42] C. Tunc and M.B. Tahoori. On-the-fly variation tolerant mapping in crossbar

nano-architectures. In VLSI Test Symposium (VTS), 2010 28th, pages 105

–110, april 2010.

[43] Masoud Zamani and Mehdi B. Tahoori. Variation-aware logic mapping for

crossbar nano-architectures. In Proceedings of the 16th Asia and South Pacific

Design Automation Conference, ASPDAC ’11, pages 317–322, Piscataway, NJ,

USA, 2011. IEEE Press.

112

[44] Dmitri B. Strukov and Konstantin K. Likharev. A reconfigurable architecture

for hybrid CMOS/Nanodevice circuits. In Proceedings of the 2006 ACM/SIGDA

14th international symposium on Field programmable gate arrays, FPGA ’06,

pages 131–140, New York, NY, USA, 2006. ACM.

[45] C. Dong, W. Wang, and S. Haruehanroengra. Efficient logic architectures for

CMOL nanoelectronic circuits. Micro Nano Letters, IET, 1(2):74 –78, december

2006.

[46] Z. Abid, A. Alma’aitah, M. Barua, and W. Wang. Efficient CMOL gate designs

for cryptography applications. Nanotechnology, IEEE Transactions on, 8(3):315

–321, may 2009.

[47] Gang Chen, Xiaoyu Song, and Ping Hu. A theoretical investigation on CMOL

FPGA cell assignment problem. Nanotechnology, IEEE Transactions on,

8(3):322 –329, may 2009.

[48] William N.N. Hung, Changjian Gao, Xiaoyu Song, and D. Hammerstrom.

Defect-tolerant CMOL cell assignment via satisfiability. Sensors Journal, IEEE,

8(6):823 –830, june 2008.

[49] Yinshui Xia, Zhufei Chu, William N.N. Hung, Lunyao Wang, and Xiaoyu Song.

CMOL cell assignment by genetic algorithm. In NEWCAS Conference (NEW-

CAS), 2010 8th IEEE International, pages 25 –28, june 2010.

113

[50] Zhufei Chu, Yinshui Xia, William N.N. Hung, Lunyao Wang, and Xiaoyu Song.

A memetic approach for nanoscale hybrid circuit cell mapping. In Digital Sys-

tem Design: Architectures, Methods and Tools (DSD), 2010 13th Euromicro

Conference on, pages 681 –688, sept. 2010.

[51] Y. Xia, Z. Chu, W. Hung, L. Wang, and X. Song. An integrated optimization

approach for nano-hybrid circuit cell mapping. Nanotechnology, IEEE Trans-

actions on, PP(99):1, 2011.

[52] Quang Huy Nguyen, Yew-Soon Ong, and Meng Hiot Lim. A probabilis-

tic memetic framework. Evolutionary Computation, IEEE Transactions on,

13(3):604 –623, june 2009.

[53] CMOL FPGA CAD 1.0. Technical report, Stony Brook, State University of

New York, 2008.

[54] J. Rose V. Betz and A. Marquardt. Architecture and CAD for deep-submicron

FPGAs, volume 497 of Kluwer Int. Series in Eng. and Comp. Science. Kluwer

Academic, Boston, London, 1999.

[55] Vaughn Betz and Jonathan Rose. VPR: A new packing, placement and routing

tool for FPGA research. pages 213–222, 1997.

[56] Frank K Hwang. Steiner Tree Problem, The. Annals of Discrete Mathematics,

volume 53. ELSEVIER SCIENCE AND TECHNOLOGY, February 2010.

114

[57] Hossein Hamidipour, Parviz Keshavarzi, and Ali Naderi. Routing congestion

removing of CMOL FPGA circuits by a recursive method. In Proceedings of

the 9th WSEAS international conference on Microelectronics, nanoelectronics,

optoelectronics, MINO’10, pages 75–79, Stevens Point, Wisconsin, USA, 2010.

World Scientific and Engineering Academy and Society (WSEAS).

[58] Ralph M. Kling and Prithviraj Banerjee. ESP: A new Standard Cell Placement

Package using Simulated Evolution. Proceedings of 24th Design Automation

Conference, pages 60–66, 1987.

[59] Fred Glover. Tabu SearchPart I. ORSA Journal on Computing, 1(3):190–206,

Summer 1989.

[60] Fred Glover. Tabu SearchPart II. ORSA Journal on Computing, 2(1):4–32,

Summer 1990.

[61] Fred Glover, Eric Taillard, and Eric Taillard. A user’s guide to Tabu Search.

Annals of Operations Research, 41:1–28, 1993. 10.1007/BF02078647.

[62] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers,

Norwell, MA, USA, 1997.

[63] Andre Dehon. Nanowire-based programmable architectures. ACM Journal on

Emerging Technologies in Computing Systems, 1:109–162, 2005.

115

[64] C.H. Stapper. Simulation of spatial fault distributions for integrated circuit

yield estimations. Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, 8(12):1314 –1318, dec 1989.

[65] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,

H. Savoj, P. R. Stephan, R. K. Brayton, and A. S. Vincentelli. SIS: A System

for Sequential Circuit Synthesis. Electronics Research Laboratory Memorandum,

(UCB/ERL M92/41), May 1992.

[66] H.K. Lee and D.S. Ha. HOPE: an efficient parallel fault simulator. In Design

Automation Conference, 1992. Proceedings., 29th ACM/IEEE, pages 336 –340,

jun 1992.

[67] F. Brglez, D. Bryan, and K. Kozminski. Combinational profiles of sequential

benchmark circuits. In Circuits and Systems, 1989., IEEE International Sym-

posium on, pages 1929 –1934 vol.3, may 1989.

Vitae

• Abdalrahman M. Arafeh

• Born in Damascus, Syria, April 5th 1987.

• Received B.S. degree in Computer Engineering from Damascus University,

Damascus, Syria in September 2009.

• Joined Computer Engineering, King Fahd University of Petroleum & Minerals,

as Research Assistant in February 2010.

• Awarded M.S degree in Computer Engineering from KFUPM, Saudi Arabia

in May 2012.

• Co-author on the following publications:

– Sadiq M. Sait, Feras Chikh Oughali, Abdalrahman Arafeh, “FSM State-

Encoding for Area and Power Minimization Using Simulated Evolution

Algorithm”, Journal of Applied Research and Technology, December 2012.

– Sadiq M. Sait, Abdalrahman M. Arafeh, “Efficient CMOL Nanoscale Hy-

brid Circuit Cell Assignment Using Simulated Evolution Heuristic” in

117

The 22nd Great Lakes Symposium on VLSI, GLSVLSI2012, Salt Lake

City, Utah, 2012.

– Abdalrahman Arafeh, Feras Chikh Oughali, Tarek Sheltami, Ashraf Mah-

moud, “A Contention Free Multi-Channel MAC Protocol With Improved

Negotiation Efficiency for Wireless Adhoc Networks”, Proceedings of the

International Conference on Ambient Systems, Networks and Technolo-

gies, Paris, France, 2010.

	TitleGreen
	Final_Arafeh_May_2012_Signature
	Final_Arafeh_May_2012
	Abstract(Arabic)
	thesis

	Signature

