
 



 



iii 

 

 

 

 

Dedicated  

to  

My Parents  

& 

My Beloved family 

 

 

 

 

 

 



iv 

 

Acknowledgements  

In the Name of Allah, the Most Beneficent, the Most Merciful. 

Praise belongs to Allah, the Lord of all the worlds (2) The All-Merciful, the 

Very-Merciful. (3) The Master of the Day of Requital. (4) You alone do we 

worship, and from You alone do we seek help. (5) Take us on the straight path  

(6) The path of those on whom You have bestowed Your Grace, Not of those 

who have incurred Your wrath, nor of those who have gone astray. (7)  

Al-Fatiha 

I begin with the name of Allah, the most beneficent, the most merciful. May Allah 

bestow peace on our beloved Prophet Mohammed (peace and blessings of Allah be upon 

him), and his family.   I would not have able to complete this work without the help of 

Allah who endowed me with health, courage, aptitude and patience.  

During this work my parents and my family were a constant source of motivation and 

support. Their prayers, love and encouragement helped me to arrive at this milestone 

Acknowledgements are due to King Fahd University of Petroleum and Minerals 

which gave me the opportunity to pursue a graduate degree and also for all the support I 

received in carrying out this research. I am also grateful to the Saudi HoneyNet Project at 

KFUPM for its support during this research. 

I would like to express my gratitude to my thesis advisor Dr. Mohammed Houssaini 

Sqalli for all the things he taught me, for his patience when I couldn’t get things done and 

for his help when I needed it. I am also very thankful to my thesis committee members 

Dr. Zubair Baig and Dr Farag Azzedin for their involvement and encouragement.



v 

 

Table of Contents 

List of Figures .................................................................................................................. viii 

List of Tables ...................................................................................................................... x 

Thesis Abstract.................................................................................................................. xii 

الرسالة  ملخص  ...................................................................................................................... xiii 

CHAPTER 1 Introduction................................................................................................... 1 

1.1 Honeypots ................................................................................................................. 2 

1.2 Data Mining and Anomaly Detection ....................................................................... 6 

CHAPTER 2 Problem Statement ........................................................................................ 9 

2.1 Background ............................................................................................................... 9 

2.2 Aspects of Anomaly Detection ............................................................................... 11 

2.2.1 Nature of Input Data ........................................................................................ 11 

2.2.2 Types of Anomalies ......................................................................................... 12 

2.2.3 Data Labels ...................................................................................................... 13 

2.2.4 Output .............................................................................................................. 14 

2.3 Motivation ............................................................................................................... 15 

2.4 Scope of work ......................................................................................................... 17 

CHAPTER 3 Literature Survey ........................................................................................ 18 

3.1 Anomaly Detection Techniques .............................................................................. 19 



vi 

 

3.2 Clustering Techniques for Anomaly Detection ...................................................... 24 

CHAPTER 4 Proposed Solution ....................................................................................... 31 

4.1 Introduction ............................................................................................................. 31 

4.2 Clustering ................................................................................................................ 33 

4.3 Categorization of Clustering Methods .................................................................... 34 

4.4 DBSCAN ................................................................................................................ 37 

4.5 Hierarchical Clustering ........................................................................................... 39 

4.5.1 Agglomerative Clustering ................................................................................ 40 

4.5.2 Linkages ........................................................................................................... 44 

CHAPTER 5 DBSCAN .................................................................................................... 47 

5.1 Implementation ....................................................................................................... 47 

5.1.1 Parameter Tuning ............................................................................................. 48 

5.2 Experimental Results .............................................................................................. 51 

5.2.1 Scan 14 ............................................................................................................. 53 

5.2.2 Scan 19 ............................................................................................................. 55 

5.2.3 Scan 28 ............................................................................................................. 58 

5.3 Results and Discussion ........................................................................................... 63 

CHAPTER 6 Hierarchical Clustering ............................................................................... 66 

6.1 Implementation ....................................................................................................... 66 

6.2 Initial Experiments .................................................................................................. 67 



vii 

 

6.2.1 Average Linkage Clustering ............................................................................ 68 

6.2.2 Centroid Linkage Clustering ............................................................................ 72 

6.3 Result Discussion .................................................................................................... 76 

CHAPTER 7 Performance Analysis ................................................................................. 77 

7.1 Experimental Setup ................................................................................................. 77 

7.2 Description of traces used ....................................................................................... 78 

7.2.1 Scan 27 ............................................................................................................. 78 

7.2.2 Dionaea Capture Trace .................................................................................... 79 

7.2.3 Lab Trace ......................................................................................................... 80 

7.3 Collected Results .................................................................................................... 83 

7.3.1 Scan 27 ............................................................................................................. 84 

7.3.2 Dionaea Capture Trace-1 ................................................................................. 91 

7.3.3 Dionaea Capture Trace-2 ................................................................................. 96 

7.3.4 Lab Capture .................................................................................................... 103 

7.4 Results Overview .................................................................................................. 108 

CHAPTER 8 Conclusion and Future Work .................................................................... 111 

8.1 Future Work .......................................................................................................... 113 

8.2 Limitations ............................................................................................................ 114 

References ....................................................................................................................... 115 

VITAE............................................................................................................................. 118 

 



viii 

 

List of Figures 

Figure 1-1 Diagram showing an integrated honeypot configuration .................................. 3 

Figure 1-2 High Interaction Honeypot working inside a DM ............................................. 3 

Figure1-3 Different tools used by the Honeynet Community [4] ....................................... 5 

Figure1-4 Clusters (A and B) and Outliers (O1 .................................................................. 8 

Figure 3-1 Two different attacks observed on two different sensors showing same time 

series [21] .......................................................................................................................... 26 

Figure 4-1     (a) Existing work by Sqalli et al. [19] (b) Our Proposed Solution .............. 32 

Figure 4-2  (a)  p is directly density reachable from q (b) p is density reachable from q . 38 

Figure 4-3 Dendrogram of Scan-14 .................................................................................. 41 

Figure 4-4 Non-monotonic dendrogram of scan-14 ......................................................... 42 

Figure 4-5 Linkages [32] .................................................................................................. 46 

Figure 5-1 DBSCAN Program interface developed in Visual Studio .............................. 48 

Figure 5-2 KNN Plot for Scan-28 in Descending Order ................................................... 50 

Figure 5-3 Scan-14 3-D Clusters ...................................................................................... 55 

Figure 5-4 Scan-19 3-D Clusters ...................................................................................... 57 

Figure 5-5 Scan-28 Day-1 3-D Clusters ........................................................................... 60 

Figure 5-6 Scan-28 Day-3 3-D Clusters ........................................................................... 62 

Figure 6-1 Scan-14 Hierarchical clustering with average linkage .................................... 69 

Figure 6-2 Scan-28 Day-3 Hierarchical clustering with average linkage ......................... 71 

Figure 6-3 Scan-14 Centroid Linkage Clustering ............................................................. 73 

Figure 6-4 Scan-28 Day-3 Centroid Linkage Clustering .................................................. 75 

Figure 7-1 3-D Hierarchical Clustering of scan 27 ........................................................... 86 



ix 

 

Figure 7-2 3-D DBSCAN clustering of scan 27 ............................................................... 88 

Figure 7-3 3-D plot of the Hierarchical Clustering of Dionaea Capture Trace-1 ............. 92 

Figure 7-4 3-D plot of DBSCAN clustering of Dionaea Capture Trace-1 ....................... 94 

Figure 7-5 3-D plot of the Hierarchical Clustering of Dionaea Capture Trace-2 ............. 98 

Figure 7-6 3-D plot of DBSCAN clustering of Dionaea Capture Trace-2 ..................... 100 

Figure 7-7 3-D plot of the Hierarchical Clustering for the Lab Capture Trace .............. 104 

Figure 7-8 3-D plot of DBSCAN clustering of Lab Capture Trace ................................ 106 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

 

List of Tables 

TABLE ‎5-1 Honeynet Traffic Test Datasets .....................................................................52 

Table ‎5-2 Scan-14 Anomalies detected by Sqalli et al. [19] ..............................................54 

Table ‎5-3 Scan -14 DBSCAN Clustering with Min-Max Values ......................................54 

Table ‎5-4 Scan-19 Anomalies detected by Sqalli et al. [19] ..............................................56 

Table ‎5-5 Scan -19 DBSCAN Clustering with Min-Max Values ......................................56 

Table ‎5-6 Scan-28 Day-1 Anomalies detected by Sqalli et al. [19] ...................................58 

Table ‎5-7 Scan -28 Day-1 DBSCAN Clustering with Min-Max Values ...........................59 

Table ‎5-8 Scan-28 Day-1 Anomalies detected by Sqalli et al. [19] ...................................61 

Table ‎5-9 Scan -28 Day-3 DBSCAN Clustering with Min-Max Values ...........................62 

Table ‎5-10 Result Comparison ..........................................................................................65 

Table ‎6-1 Scan-14 Clusters with min-max values .............................................................69 

Table ‎6-2 Scan 28 Day-3 Clusters with min-max values ..................................................70 

Table ‎6-3 Scan-14 Clusters with min-max values .............................................................73 

Table ‎6-4 Scan-28 Day-3 Clusters with min-max values ..................................................74 

Table ‎7-1 Scan-27 Dataset Details .....................................................................................78 

Table ‎7-2 Dionaea Dataset Details ....................................................................................79 

Table ‎7-3 Lab Trace Dataset Details .................................................................................81 

Table ‎7-4 Lab Trace Attacks Detail ...................................................................................82 

Table ‎7-5 Reported Anomalies for Scan-27 ......................................................................85 

Table ‎7-6 Hierarchical Clustering of scan 27 with Min-Max Values ................................87 

Table ‎7-7 DBSCAN Clustering of Scan 27 with Min-Max values ...................................89 

Table ‎7-8 Result Comparison for scan 27 ..........................................................................90 



xi 

 

Table ‎7-9 Reported Anomalies in Dionaea Capture Trace-1 .............................................91 

Table ‎7-10 Hierarchical Clustering of Dioanaea Capture trace-1 with Min-Max Values .93 

Table ‎7-11 DBSCAN Clustering of dionaea capture trace -1 with Min-Max Values .......95 

Table ‎7-12 Comparison of the reported results with Clustering result ..............................96 

Table ‎7-13 Reported results for the Dionaea Capture trace-2 ...........................................97 

Table ‎7-14 Hierarchical Clustering of Dionaea Capture trace-2 with Min-Max Values ...99 

Table ‎7-15 DBSCAN Clustering of dionaea capture trace -2 with Min-Max Values .....101 

Table ‎7-16 Comparison of the reported results with Clustering result ............................102 

Table ‎7-17 Reported results for the Lab Capture trace. ...................................................103 

Table ‎7-18  Hierarchical Clustering of Lab Capture trace with Min-Max Values ..........105 

Table ‎7-19 DBSCAN Clustering of Lab Capture Trace with Min-Max Values .............107 

Table ‎7-20 Comparison of the reported results with Clustering result ............................108 

Table ‎7-21 Performance of clustering algorithms against each Trace file ......................109 

Table ‎7-22 Performance of clustering algorithms against each Anomaly Type ..............110 

 

 

 

 

 



xii 

 

 Thesis Abstract 

Name: Muhammad Shoieb Arshad 

Title: IDENTIFYING MALICIOUS ACTIVITIES IN HONEYNET DATA USING 

CLUSTERING 

Major Field: Computer Networks 

Date of Degree: May, 2012 

Honeypots have cemented their place as a tool used by organizations to study and 

analyze the threats against their networks and to find the vulnerabilities within. The down 

side of using Honeypots is the extensive amount of data they produce, making it virtually 

impossible to analyze manually. Researchers have come up with different ways to identify 

malicious activities in the Honeypot data. In this thesis, we propose to use the clustering 

algorithms to improve on an existing entropy based scheme used for identifying malicious 

activities in Honeynet traffic. The existing scheme partially requires manual inspection of 

the output to identify the different malicious activities. In this work, we implemented two 

clustering algorithms namely Density Based Spatial Clustering of Applications with 

Noise (DBSCAN) and Hierarchical Clustering. Then, we applied these algorithms to 

datasets, i.e., PCAP traces, provided by the Honeynet organization. Our results were 

compared with those obtained by the earlier scheme, and they showed that the use of 

automatic clustering can produce similar results, as it was produced by manual 

inspection, with better time efficiency. 



xiii 

 

 الرسالة  ملخص

 شعيب أرشد محمد             :الاسم

 التقسيم مصائد الشبكة باستخدام بيانات في الخبيثة الأنشطة تحديد :الرسالة عنوان

  الحاسوب شبكات       :خصصتال

 (م2012  مايو) - هـ 1433 جمادى الآخرة  :التخرج تأريخ

 

التهديدات ضد شبكاتهم عززت مصائد الشبكات مكانها كأداة تستخدمها المنظمات لدراسة وتحليل 

وللعثور على نقاط الضعف داخلها. إنّ الجانب السلبي لاستخدام مصائد الشبكات هو الكمية الكبيرة 

للبيانات التي تنتجها، مما يجعل من المستحيل تحليلها يدوياً. وقد توصل الباحثون إلى طرق مختلفة 

. في هذه الرسالة، إننا نستخدم خوارزميات لتحديد الأنشطة الخبيثة الناتجة عن بيانات مصائد الشبكة

التقسيم للتحسين على النظام الحالي القائم على تحديد الأنشطة الخبيثة في بيانات مصائد الشبكة. إن 

النظام السابق يتطلب جزئياً المعاينة اليدوية للبيانات لتحديد مختلف الأنشطة الخبيثة. لذلك نفذنا 

طبيقات المعتمدة على الكثافة مع الضوضاء والتقسيم الهرمي. ثم طبقنا خوارزمية التقسيم المكاني للت

هذه الخوارزميات على قواعد البيانات المقدمة من منظمة مصائد الشبكة. وتمت مقارنة نتائجنا مع 

نتائج النظام السابق حيث أظهرت أن استخدام التقسيم التلقائي يمكن أن يسفر عن نتائج مماثلة 

 المعاينة يدوياً مع كفاءة أفضل وقت. ومشابهة للنتائج

 

  علوم ماجستير شهادة

  والمعادن للبترول فهد الملك جامعة

ةالسعودي العربية المملكة ، الظهران  

 

 



1 

CHAPTER 1                                                                                 

Introduction 

The Internet era has brought revolutionary changes to the way we communicate and 

exchange information. It has also increased our reliance on digital devices for 

communication, which makes us vulnerable to all the insecurities and threats of relying 

on the Internet. Decades ago, businesses use vaults and banks to hold their sensitive trade 

secrets and financial information. But now, a centralized data center holds all the 

sensitive and day-to-day information. This makes the network security an utmost priority 

for businesses. Any software used on the network has its own exploits and vulnerabilities, 

and hackers only need a single exploit to be able to access a system. And, they can even 

hide their tracks once they take control of the system. Honeypots are developed to track 

the activities of hackers and also to figure out which exploits hackers use to gain access 

of a system. Honeypots are useful tools but they may produce a very large amount of 

data, and analyzing this data becomes very difficult. In this work, we are developing a 

framework for automatic detection of anomalies through clustering techniques, from the 

data collected by Honeypots.  

 

 



2 

1.1  HONEYPOTS 

Lance Spitzner, introduced the concept of Honeynets and Honeypots [1]. A Honeypot 

is a computer software which is placed on the network with some intentional security 

holes. Honeypots do not have any production value to the network. The main task of the 

honeypot is to record every communication, to and from it, and mark it as suspicious. The 

key responsibilities of a Honeynet include data control, data capture, and data analysis 

[1]. A Honeynet is a network consisting of multiple Honeypots. A Honeynet is more 

complex in deployment and management, but it provides better and more reliable 

information about attacks. The idea behind deploying a Honeypot is that it will be 

targeted and compromised due to some network attack, and it will capture all the data 

packets sent and received during the attack. This will help to reconstruct the attack and 

understand the method and technique deployed by the attackers to compromise the 

system security. Figure  1-1 shows multiple Honeypots integrated as part of a network. 

Figure  1-2  shows the placement of a Honeypot inside the demilitarized zone (DMZ). 

 



3 

 

Figure ‎1-1 Diagram showing an integrated honeypot configuration 

 

 

Figure ‎1-2 High Interaction Honeypot working inside a DM 



4 

Z 

Spitzner [2] introduced two types of Honeypots, High Interaction Honeypots and Low 

Interaction Honeypots.  

- High Interaction Honeypots are real machines, same like other machines 

on the network, with all the software installed on them. And, they will even have some 

fake data. So, the hacker will not be able to identify whether it is a Honeypot or a real 

system. Figure  1-2 shows a high interaction Honeypot placed inside a DMZ. 

- Low interaction Honeypots, on the other hand, are software with 

emulated services and very small interaction interface. Hackers can still exploit the 

vulnerabilities but they will not be able to control the machine after a successful attack.  

 There are currently different software packages available in the market which can 

provide the functionality of a Honeypot such as Nepenthes, Honeywall, HoneyD, 

Dionaea, etc. The difficulty associated with Honeypots is that they gather too much data 

and it can be of very different types, i.e., http, icmp, ftp, etc. Working with this extensive 

and varying types of data can create a lot of problems for the system analysts [3]. 

Figure 1-3 shows the different tools available as honeypots. 

 



5 

 

 

 

 

Figure‎1-3 Different tools used by the Honeynet Community [4] 

 

 

 

 

 



6 

1.2  DATA MINING AND ANOMALY DETECTION 

Data mining approaches applied to the network data can be classified into two 

different categories, misuse detection and anomaly detection. Misuse detection mainly 

focuses on detecting the known attacks and their variations. It tends to have very low 

false positive rate, mostly due to the attack signatures of the known attacks. On the other 

hand, anomaly detection techniques focus on the abnormalities in the network data which 

are deemed to be suspicious. These techniques can produce a large number of false 

positives due to the absence of any defined rules of abnormalities. However, anomaly 

detection has the ability to detect a zero-day attack, which is not possible with the misuse 

detection techniques. Misuse detection techniques are mostly used for real time analysis 

and detection by most of the antivirus tools and firewalls. On the other hand, anomaly 

detection techniques are usually used on the data collected during a network attack, but 

this detection is not achieved in real time. The reason behind anomaly detection 

techniques not being able to work in real time is that they usually need a certain time 

window to process the data and then identify its nature, whether it is normal or malicious. 

But in a real time environment, we cannot hold the data for the whole time window 

period, as it will greatly degrade the network performance.  

Anomaly detection techniques are mostly based on either clustering or outlier 

detection. Clustering is the process of grouping data points together so that all data points 

with similar attributes can be grouped into the same cluster. Outlier detection is the 

process of identifying the data points which deviate considerably from regions of high 

density data points or other clusters. Figure 1-4 shows clusters and outliers. Clustering and 



7 

outlier detection are both used for anomaly detection, but their use is mostly defined by 

the type of network traffic to which they are applied. If we want to apply anomaly 

detection techniques to normal network data, which also contains some intrusions, 

clustering will provide mostly the clusters of normal traffic or legitimate traffic, while 

outlier detection will provide the events which are not normal. And in this case, these 

outliers will be the network intrusions or some other type of attacks. So, if we want to 

apply the same techniques to the Honeynet data, then the term normal traffic will be 

redefined because all traffic coming to a Honeynet is considered suspicious. For 

Honeynet data, the majority of data does not represent normal or legitimate traffic. In the 

case of Honeynet traffic, clustering will provide us with different types of attacks; each 

attack is confined into a single cluster. Sometimes, instances of normal or legitimate 

traffic can also form a cluster, this mostly happens due to the presence of broadcast traffic 

in the network. But these clusters are easily identifiable due to their unique nature. In this 

case, an outlier can be one of two things, either an instance of normal traffic, or some 

attack which has not been seen before in the training set, including zero day attacks. To 

correctly identify the normal traffic, either in the form of cluster or outlier, we use known 

datasets for training purposes, so that the characteristics of the normal traffic can be 

identified correctly.  

 

 

 

 



8 

 

 

 

 

 

Figure‎1-4 Clusters (A and B) and Outliers (O1) 

 

 



9 

CHAPTER 2                                                                                          

Problem Statement 

2.1  BACKGROUND 

Anomaly detection refers to finding data patterns that do not conform to the expected 

normal data behavior. These data patterns which do not conform to the expected normal 

data behavior are referred to as outliers, anomalies, peculiarities, etc.; but the names 

outlier and anomaly are more commonly used in the literature. The importance of 

anomaly detection techniques first came to light when these techniques were used in 

detecting frauds in health care, insurance, and credit card. Anomaly detection got more 

prominence most recently through their extensive use in the intrusion detection systems, 

military surveillance equipment, and fault detection in critical systems [5].  

The main reason for the focus on the anomaly detection techniques is the fact that 

anomalies represent significant actionable information in the presence of very large 

datasets, i.e., data which needs human data analyzers attention. This happens in systems 

where anomaly detection is used to raise only alarms for anomalies but are not allowed to 

take actions. For instance, if applied to a credit card system, anomalies may lead to the 

detection of credit card misuse or identity theft. Also, anomalies in the bio-imagery of 



10 

human body may reveal some disease or tumor. And similarly, anomalies in the computer 

network may lead to the detection of already infected or hacked computer systems. 

Anomalies exist in a dataset due to a variety of reasons, but one thing which is common 

about anomalies is that they are useful for the data analyst. Their usefulness for the data 

analysts leads to the increased efficiency when dealing with very large datasets, as these 

anomalies point to the data analyst to where to look for the interesting information. 

Anomaly detection is sometime compared with noise removal or noise 

accommodation [6]. Noise is the unwanted data which affects the data analysis process. 

Noise removal is the process of removing this unwanted data from a large dataset, while 

in noise accommodation we create a statistical estimation model to normalize the effect 

of noise in the dataset. Noise and anomaly are similar in a way that both deviate from the 

normal data, but noise is a hindrance to the existing data and it should be removed or 

accommodated. However, anomaly is part of the data which represents abnormality, but 

it should not be removed or accommodated as anomalies tend to lead to important events.  

Another aspect of the anomaly detection is the novelty detection [7]. Novelty 

detection is the process of detecting previously unseen groups of anomalous events. 

Novelty detection techniques are used to detect those patterns which are unavailable in 

the training dataset. The purpose of the novelty detection is to update the database of 

known anomalies; therefore we do not have to go back to the training dataset whenever a 

new anomalous, previously unseen, pattern is observed in the dataset. The difference 

between anomaly detection and novelty detection is that anomaly detection only detects 

the anomalous events based on the database of known anomalies created during the 



11 

training phase. Novelty detection not only detects the known anomalies, but it also 

updates the database if it finds an unknown anomaly in the dataset. 

2.2  ASPECTS OF ANOMALY DETECTION 

In this section, we will discuss the different aspects and challenges related to the 

anomaly detection process.  

  2.2.1  Nature of Input Data 

One of the significant aspects of anomaly detection is the nature of the input data. The 

input mostly consists of data instances (also known as observations, vector, point, record, 

sample, entity, etc.) [8]. Each data instance can be represented by using different 

attributes (also known as dimensions, variable, feature, characteristic, field, etc.). These 

attributes mostly represent the values in the binary or numerical form. Each data 

observation may consist of a single feature (uni-variate) or multiple features 

(multivariate). In the case of multivariate data features, these features can be of the same 

type or a combination of different types of data. 

The nature of input data plays an important role in the selection of the anomaly 

detection technique, as each anomaly detection technique is designed for a certain type of 

input data [8]. Most of the anomaly detection techniques assume that all the features of a 

data instance are independent of each other, but in some techniques, we can combine 

some features for better detection. To combine different features, there should be some 

existing relationship between the data features. These data relations can include sequence 

data where all members can be arranged sequentially, graph data where each member can 



12 

be presented as vertices which are connected to each other through edges, or spatial data 

where data members are similar to each other, e.g., vehicular data.  

In our work, we will be using network trace files in PCAP format as input to the 

anomaly detection system.  

  2.2.2  Types of Anomalies 

An anomaly is referred to as a point anomaly if a single data instance can define the 

anomalous event independently [8]. This type of anomaly is mostly used when a single 

event of abnormality has a very high significance. The most common use of this type of 

anomaly detection is in fraud detection for credit cards, as any single transaction is 

important in detecting the anomalous credit card activity.  

An anomaly is referred to as contextual anomaly if a certain data instance is 

anomalous in a specific context [8]. It is quite possible that the same data instance, but 

with a different context or behavior, is considered normal or non-anomalous. In these 

techniques, the anomalous behavior is determined based on the values of contextual and 

behavioral elements in that specific context. The most common use of contextual 

anomalies is in time-series data and spatial data. For example, a credit card transaction 

late in the night or early morning, even of a small amount, can be considered anomalous 

if it does not coincide with the normal behavior. But, a similar transaction in other times 

of the day can be considered normal.  

An anomaly is referred to as collective anomaly if a collection of data instances is 

anomalous with respect to the complete dataset [8]. It is important to note that these data 

instances are not anomalous individually, but as a collection they are anomalous. For 



13 

instance, a single instance of zero values is not considered anomalous, but a collection of 

4-5 zero values will raise an anomalous flag. The reason behind the collective anomaly is 

that if a single event differs from the normal behavior, we can consider this as a mistake 

by the user; but if there is a set of events which differ from the normal behavior, then it is 

considered as an anomalous event that needs further investigation. The techniques used 

for collective anomalies are more difficult to implement as compared to the other two 

types of anomalies discussed earlier. The difficulty is mostly due to checking the 

presence of a collection of points instead of a single point. 

In our work, we will focus on collective anomaly detection, because all network 

attacks consist of a group of packets sent to the target machine.  

  2.2.3  Data Labels 

Data labeling is a process in which data instances are labeled as normal traffic or 

anomalous traffic. Labeling is mostly done by the human analysts in order to provide the 

labeled training dataset. But having a labeled training dataset does not provide the 

complete solution since sometime there are anomalies for which there is no labeled data 

for the training purpose. These anomalies are mostly dynamic in nature and their pattern 

is always changing, making it very difficult to label. The availability or unavailability of 

a labeled dataset determines the mode of operation for the anomaly detection techniques. 

The following three modes of operation are discussed in the literature. 

The Supervised anomaly detection mode is based on the assumption that the labeled 

training dataset is available [8]. Techniques based on supervised anomaly detection create 



14 

a predictive model based on the training dataset; then they use this model to determine 

the anomalies in the unknown dataset. 

The Semi-Supervised anomaly detection mode is based on the assumption that the 

training dataset only contains labeling for the normal traffic [8]. Techniques based on 

semi-supervised anomaly detection create a normal behavior profile from the training 

dataset. This normal behavior profile helps to determine the nature of any new data 

instance; either it will be considered normal if it matches the existing profile or it will be 

marked anomalous if it does not match any existing normal behavior. 

The Un-supervised anomaly detection mode is based on the assumption that the 

training dataset is not labeled [8]. The only assumption made is that the number of 

instances of normal traffic will be much more than the anomalous traffic.  

In our work, we will be using the supervised anomaly detection mode, in which we 

will initially train our technique on a training dataset. Once we have the threshold values 

for the training datasets, then we will apply these thresholds to the unknown datasets.   

  2.2.4  Output 

The final step of any anomaly detection technique is to provide the output of the 

detection process. The following are two methods that are most commonly used in the 

literature to represent the output of an anomaly detection technique. 

The Score based output techniques use an anomaly score of each data instance 

representing the degree of irregularity to the normal behavior. This will help the task of 



15 

the data analyst by first looking at the top anomalies, or by defining a cut-off point for the 

anomaly score to find the top list of anomalies. 

The Label based output technique labels each data instance as normal or anomalous. 

In our work, we will provide label based output, in which we will mark the clusters as 

different types of malicious activities.  

2.3  MOTIVATION 

Anomaly detection is the process of detecting patterns of events which do not 

coincide with the normal behavior of the data. In the last decade, we have seen a dramatic 

increase in the amount of data collected for various purposes. Therefore, it becomes more 

important and challenging to find the abnormalities or unusual events in the collected 

data. These events can lead to the detection of some unwanted data, e.g., intrusion 

detection in network traffic, or of something very useful such as the discovery of a new 

star in astronomical data. In both cases, anomaly detection helps in gaining the in-depth 

knowledge about the system and the way abnormalities work within that system. The task 

of anomaly detection becomes more important when there is a certain action associated 

with the detection of unusual events. For instance, in the case of fraud detection in credit 

card, whenever there is a fraud detected, all concerned parties and law enforcement 

agencies are notified so that they can take an appropriate action.  

An important challenge when developing an anomaly detection technique is the 

unavailability of the labeled data. Therefore, most of the time, we work in an 

unsupervised anomaly detection mode, in which we do not have the information about 



16 

the number of anomalies in the data, and we detect anomalies after they are classified by 

the clustering algorithm. For unsupervised anomaly detection mode, we provide the 

dataset to the clustering algorithm, which creates the clusters based on the similarities 

between the values of traffic features in the dataset. Once the clusters are created, we 

study them to identify the type of anomaly they are representing.  

When we have to apply anomaly detection techniques to a dataset provided by any 

honeypot, the task becomes more challenging. Here, we not only have to look for the top 

anomalous events or top outliers as in the case of normal network traffic where we were 

only interested in the outliers, but also for certain common behaviors too. In normal 

traffic, common behaviors are considered legitimate as most of the traffic is legitimate. 

However, in case of honeypots, common behaviors are considered anomalous as most of 

the traffic in a honeypot is attack traffic. This is due to the fact that, in the case of a 

honeypot, all the traffic coming to it is considered suspicious. Therefore, when analyzing 

honeypot network traffic, we need to focus on both aspects of anomaly detection, 

clustering and outlier detection. Clustering is important for honeynet traffic as most of the 

data will be categorized into different clusters, and these clusters will help in identifying 

the different types of attacks. In clustering, the goal is always to define clusters in such a 

way that each cluster represents a specific set of events or in our case specific malicious 

activities, which share some similarities or represent similar kind of traffic. Ideally we are 

interested in creating clusters such that each cluster represents a specific type of attack. 

Hence, the task of any anomaly detection technique for honeypot data is to classify all the 

known attacks by comparing current values of the clusters to the threshold values from 

the known anomalies database. 



17 

2.4  SCOPE OF WORK 

The main objective of this thesis work is to analyze the network data produced by 

honeypots. As this research work is strictly focused on detecting anomalies in the 

honeynet data, our scope will be limited to the data collected by honeypots.  And, another 

important assumption which we made for this research work is the presence of the 

malicious activities in the network traffic. Since we are using clustering techniques, we 

need at least one anomaly to build a cluster around it. All the network traffic input files 

which we used for this research work contain at least one malicious activity. In addition, 

our proposed technique will only be applicable for offline data analysis. Since we will be 

using five minute sliding time windows to calculate the entropy values for the identified 

traffic features, this scheme is inefficient for real time environment. This is acceptable for 

our work because honeypots are not developed for real time protection of the network. 

The responsibility of the honeypot is to study the nature of attacks and help to build 

counter measures for future attacks on the network. 

 

 

 

 



18 

CHAPTER 3                                                                                        

Literature Survey 

This chapter contains the study conducted to understand the current state of research 

about the Honeypots, anomaly detection for the honeypot data, and the clustering 

schemes used to detect and identify the anomalies in the honeypot data. The first step in 

any Honeypot design is the deployment technique. The second step is the data collection 

phase, and finally the data analysis phase. The deployment and data collection phases are 

important as they pave the way for the most important phase, which is the data analysis 

phase. Hacker’s activities can be tracked by using the raw data captured by the 

Honeypots. However, this task can be very time consuming if we do not use the tools 

designed for automated analysis. The biggest challenge for the data analyst is to deal with 

the data overload, mostly caused by the amount of data or sometimes by the varying 

types of data collected by honeynets [9]. Honeynets are known by researchers due to their 

ability to expose vulnerabilities in networks and systems by recording the attacks against 

them. 

This chapter is divided into two sections; the first section contains the current state of 

Honeypots and detection of anomalous activities and the second section focuses on the 

data mining and clustering techniques used for honeypot data analysis. 



19 

3.1  ANOMALY DETECTION TECHNIQUES 

Anomaly detection techniques are very different from the signature-based detection 

techniques. Signature-based detection techniques are mostly based on a pre-defined set of 

activities, while anomaly detection techniques check for any irregularities or 

dissimilarities in the data. Anomaly detection has played an important role in various 

sections of network security and intrusion detection. Anomaly detection techniques are 

very helpful in detecting different kinds of attacks like [10]: 

- Different types of buffer overflow with shell code 

- New attacks based on various exploits 

- Variants of already known attacks  

The current existing techniques can be categorized into two major types. 

1- Traffic feature based detection techniques   [11] [12] 

Traffic features based techniques are those techniques which use the IP 

header information to detect anomalies. The IP header information 

includes the Source IP, Destination IP, Source port, Destination port, and 

sequence number. An important performance constraint associated with 

the feature based detection techniques is that they require the header 

inspection to get the information needed. Header inspection can be a time 

consuming process, making traffic feature based techniques very difficult 

to use in a real-time situation. 

 



20 

2- Traffic volume based detection techniques [13-16]  

Traffic volume based detection techniques are useful when there is a very 

high change in the volume of network traffic. This volume can be defined 

by the amount of data bytes sent or received, or it can be the number of 

packets sent and received in each direction. Volume based detection 

techniques are good in detecting Denial of Service (DoS) attacks and 

certain types of flooding attacks. But they cannot perform well against 

exploit or shell code based attacks.  

Lakhina et al. [11] proposed an anomaly detection method in which they stated that 

anomalies in the network traffic can be detected by the distribution of traffic features 

such as IP addresses and ports. They stated that a wide range of anomalies can be tracked 

down by traffic feature distribution along with entropy. They experimented on the whole 

network traffic as it has different types of normal and abnormal traffic. The authors 

observed that in a wide set of data, classifying the nature of anomalies is a demanding 

task as they are constantly changing. As the anomalies are fluctuating on a regular basis, 

it is not appropriate to use pre-determined anomaly thresholds in a procedure for 

detecting anomalies. The distributional features of traffic like IP addresses and port 

numbers are very helpful in detecting numerous anomalies. The main difference between 

the work proposed by Lakhina et al. [11] and the work proposed by Dainotti et al. [14] 

and Haggerty et al. [15]is that Lakhina et al. introduced a method of using traffic features 

such as IP addresses and ports to track down the anomalies, in contrast to the other two 

methods [14] [15] which use traffic volume to track down the anomalies. They argued 

that there is a limited number of anomalies which cause a noticeable change in the 



21 

volume based features, but significantly large number of anomalies can be detected by 

using their proposed feature based anomaly detection technique. The authors adopted the 

following traffic features: Source and Destination IP addresses, Source port, and 

Destination port. To isolate the normal and abnormal anomalies, they follow the Principal 

Component Analysis (PCA), which uses dimensionality reduction. 

Nychis et al. [12] proposed an anomaly detection technique by using entropy values. 

For anomaly detection, their main focus was on examining the performance by analyzing 

different traffic features and behavioral features distributions. The behavioral features 

contain the degree of distribution, measuring the number of individual Source and 

Destination IP addresses. They found, after conducting various experiments, that the 

distributions  of Source IP, Destination IP, and port address all produce the same 

behavior towards the detection of known anomalies. Authors stated that behavioral and 

flow size distributions are not related to each other and their combination is very useful in 

detecting anomalies which are not detected by the address and port distributions. To 

detect the similarities between different feature pairs, the authors used entropy values to 

detect the relationship between different feature pairs.  The authors concluded that the 

traffic feature distribution should not only be limited to port/address features, and that 

more features can be added to increase the detection results. 

Kind et al. [17] presented a new theory regarding the feature based anomaly detection 

of Lakhina et al. [11]. They proposed a graphical method, i.e., histograms, to detect the 

anomalies. The authors constructed histogram patterns of different features. To track 

down the anomalies, they find different histogram patterns for different anomalies. The 

detection of anomalies is achieved in four levels: choosing features and creating 



22 

histograms, mapping histograms into a metric space, clustering and extracting patterns, 

and then identifying the anomalies. In this research, the authors employed different traffic 

features including port numbers, TCP flags, Source and Destination ports etc. The 

Principal Component Analysis (PCA) is employed for dimensionality reduction. Lakhina 

et al. [11] used PCA to distinguish between normal and abnormal traffic. This approach 

uses the histogram instead of entropy in order to track down the anomalies.  

Ping and Abe [16] proposed an anomaly detection technique to detect Denial of 

Service attacks by using Packet size entropy. The authors stated that packets are assigned 

fixed sizes by default in numerous applications when dealing with initial data request and 

response messages. For example, the FTP application has by default reserved 40 bytes for 

acknowledgement and 1500 bytes for full packet data. The packets which are produced, 

even in the attack, are of the same size. From the normal non-attack traffic data, the 

threshold of the entropy is calculated and an entropy value is assigned to the threshold. 

Once they have calculated the threshold values for the normal traffic, the task is then to 

examine when entropy values exceed the threshold value, and this will be considered as 

an attack. This research work allows for tracking down short term as well as long term 

attacks. Hence, it is an advanced approach in detecting the anomalies as compared to the 

volume-based schemes. 

Al-Haidari et al. [18] proposed an entropy-based solution to protect firewalls against 

DoS attacks. They used packet size entropy and compared it with pre-defined threshold 

values to determine the nature of incoming traffic. Based on these values, they were able 

to identify the DoS attacks targeting firewalls among the normal network traffic. Based 

on their experimentation, they showed that the entropy based scheme leads to high 



23 

performance improvements in firewalls by isolating the DoS attacks from the normal 

traffic. This also led to the increase of the throughput, the decrease in the delay, and the 

high availability of firewalls. 

Sqalli et al. [19] developed a technique based on entropy and volume values of 

selected features for classifying malicious activities in Honeynet traffic. Initially, they 

experimented with different combinations of the proposed entropy-based features such as 

IP address and port number, as well as volume-based features such as number of packets 

and total number of bytes. Based on their results, they decided to use a combination of 

three entropy-based features and two volume-based features for effective and efficient 

anomaly detection. The three entropy-based features are: 

- Destination Port Entropy 

- Source Port Entropy  

- Destination IP Entropy 

And the two volume based features are: 

- Total Payload Bytes 

- Packet Count 

Entropy can be described as a measure of uncertainty or randomness associated with 

a random variable, or in the case of Honeynets, it will be the randomness associated with 

a specific feature of the data entering or leaving the network. Entropy is mostly used to 

find the deviation in the data items, and these deviations can help in detecting anomalies. 

Entropy H(X) is defined by equation [3-1]. 

 ( )    ∑  (  )      (  )
 
                                       [‎3-1] 

 



24 

Where:  

 (  )  
                                            

                       
      [‎3-2] 

Sqalli et al. [19] used five minute sliding windows to calculate the entropy for the 

selected features. They also used the same window size to calculate the volume-based 

features. After studying the relationship of these features with the known malicious 

activities in the training dataset, they were able to identify different threshold values for 

different kind of attacks. Then, they applied these threshold values to other traffic traces 

provided by the Honeynet community. The limitation of this technique is that once the 

entropy and volume values are computed for any honeynet trace, thresholds have to be 

manually found against these measured entropy and volume values. The manual 

determination of thresholds increases the chances of accurately detecting an anomaly, but 

it also significantly decreases the efficiency of the technique. Our work is based on this 

technique, but it automates the detection and identification process. 

3.2  CLUSTERING TECHNIQUES FOR ANOMALY DETECTION 

Barbar et al. [20] presented and implemented an Audit Data Analysis and Mining 

(ADAM) system. ADAM is based on anomaly detection in a large dataset. The authors’ 

proposed approach is to use a combination of the association of rule mining and 

classification mining techniques. Initially, ADAM is applied to the training data to create 

a normal usage profile for the data during an attack free period. Then, the algorithm is 

applied to the known attacks dataset to create an association rule profile for the known 

attacks. ADAM is designed to work as a real time anomaly detection tool, but its training 



25 

phase is performed on offline known data. Then, it is placed online with the profiles of 

known attack patterns and the normal usage. ADAM will monitor the incoming data in 

the form of a sliding window to match the incoming data patterns to already known ones. 

Any unknown pattern will be marked as suspicious and will be separated along with all 

its related information for further analysis. 

Thonnard et al. [21] applied data mining techniques to the honeypot data to develop 

attack signatures of distributed and polymorphic attacks. This work relies on a quality-

based clustering technique specifically designed to identify the groups of similar attacks. 

The technique used is applied to the data collected by the honeynet, and depends on the 

“time series” clustering. The time series is a graphical plot of the time against the sum of 

Source count for any specific type of attack. The authors used a graph-based approach to 

define and formulate the problem. The Symbolic Aggregate Approximation (SAX) 

method is used to find the similarity distance for different time series graphs. SAX tends 

to approximate different time series by segmenting them into time intervals of equal size 

and summarizing each of these intervals by their mean values and then comparing these 

values against the known anomalies. Figure  3-1presents two different attacks on separate 

ports having similar time series graphs.  

 

 

 

 



26 

 

 

 

 

 

Figure ‎3-1 Two different attacks observed on two different sensors showing same time series [21] 

 

 

 

 



27 

Jin et al. [22] applied the knowledge discovery techniques on the data produced by a 

Honeynet. They developed their own technique and named it K-Nearest neighbor Outlier 

Factor (KNOF) which is the combination of two other techniques K-Nearest Neighbor 

(KNN) [23] and Local Outlier Factor (LOF) [24]. The algorithm is divided into two 

major parts; the first part is visualizing the data, and the second part is identifying the 

outliers. For the visualization purpose, they used the Ordering Points to Identify the 

Clustering Structure (OPTICS) algorithm [25].  

The working principal of OPTICS [25] is first to place data points into space, and 

these points can be based on multiple features, i.e., Source IP, Destination IP, port 

number, TTL, packet size, etc. Once all the data points have been placed into the space, 

then they will be categorized as a cluster or an outlier. To become a cluster, each point 

should have ‘k’ neighbors in its ‘Ԑ’ neighborhood. ‘k’ is defined as the minimum number 

of data points inside the specified maximum radius ‘Ԑ’. Data points outside the ‘Ԑ’ 

neighborhood will be declared as outliers. This technique, OPTICS, will provide an 

augmented ordering of the data according to its density based clustering. These types of 

techniques are very helpful in visualizing the high-dimensional data. For the outlier 

detection, the authors used two different techniques, K-Nearest Neighbor (KNN) and 

Local Outlier factor (LOF).  

KNN is a distance based outlier detection technique, while the LOF is a density based 

outlier detection technique. KNN does not need to have any prior knowledge of the 

dataset, as it bases its calculation on the distance value of the k
th

 nearest neighbor with 

reference to an object in the dataset. Initially, it will create a table containing each object 

in the dataset along with its k-distance, distance of the k
th

 neighbor from that object. 



28 

Then, this table will be sorted in descending order according to the k-distance. The first n 

objects in the table will be declared as outliers, where k and n are numbers defined by the 

user. The logic behind this assumption is the fact that sparse objects in the dataset have 

higher values of the k-distance than the objects in the dense neighborhood. As KNN takes 

the global view of the dataset to calculate the outliers, these outliers can be named as 

global outliers.  

The Local Outlier Factor (LOF) of an object ‘p’ is the ratio between the average local 

reachability densities of p’s k-nearest neighbors to the local reachability density of p. The 

local reachability density for any object ‘p’ is the inverse of the average reachability 

distance based on the k nearest neighbors of ‘p’. The reachability distance between an 

object ‘p’ and any other object ‘o’ is the maximum of the k-distance of ‘o’ and the 

distance between ‘p’ and ‘o’. Based on these two techniques, the authors developed their 

own technique called k-Nearest Outlier Factor (KNOF) and it is defined for an object ‘p’ 

as the product of p’s LOF and the average reachability distance of its k-nearest neighbors. 

The reason to take this product is that the difference between LOF and the average 

reachability distance can be up to three to four times the value of LOF. So, to give proper 

representation to both protocols, the authors used the product of the two values instead of 

addition. When KNOF of all the objects have been calculated, a table will be created 

according to the descending value of KNOF, and the first n objects will be declared as 

outliers, i.e., malicious, in terms of intrusion detection.  

Ghourabi et al. [26] presented a data analyzer for a honeypot router. A Honeypot 

router works as a honeypot, but with the added functionality of a router.  To analyze the 

output of the honeypot router, the authors suggested a data mining based data analyzer 



29 

which will find the suspicious packets and will separate them for further analysis. 

Initially, they compared three different data mining approaches, namely Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN) [27], Cobweb [28], and k-

mean [29]. They found that the DBSCAN approach has the minimum false positive rate, 

so they decided to use this scheme in their data analyzer.  

Ghourabi et al. [26] derived their algorithm based on DBSCAN such that they will 

apply this approach to all the data and will create clusters according to this approach. All 

elements which are not classified as core objects or density reachable will be considered 

suspicious. And, they will be separated for human analysis. Each point represents a 

unique feature of the data, and in their case, the authors selected the following features: 

Source IP, Destination IP, protocol, TTL, packet length, and type. 

Maheshwari et al. [30] discussed the limitations of the DBSCAN algorithm. The first 

limitation of DBSCAN is its inability to create clusters using time as a clustering 

parameter. Because the value of time increases linearly in the whole dataset, it is difficult 

to associate time with certain events and create clusters around it. The second limitation 

of DBSCAN is its inability to assign weights according to the density of the cluster. And 

it sometime fails to identify noise points between clusters of different densities. The next 

limitation is that DBSCAN clusters have different border densities inside a cluster. For 

very large databases, the memory requirement of DBSCAN becomes a problem as it has 

to process all the elements.  

In this literature review, we thoroughly studied the current status of anomaly 

detection techniques[11, 16-19], and we also studied the developments made in the 



30 

clustering techniques [20-26]. This helped us in developing a framework which utilizes 

both the anomaly detection techniques discussed in [18] [19] and the clustering 

techniques discussed in[22] [26]. Our study of anomaly detection techniques [11] [16] 

[19] showed us that Entropy values of different traffic features are found to be very 

helpful in detecting the anomalies in the Honeynet data. While the study of clustering 

techniques discussed in [20] [21] [25]helped in designing the automatic detection 

framework. In this thesis, we will use Entropy based anomaly detection techniques along 

with the clustering algorithms to automate the anomaly detection process.  

 

 



31 

CHAPTER 4                                                                                            

Proposed Solution 

4.1  INTRODUCTION 

The idea of this thesis work is to automate the detection process of anomalies in the 

data collected by Honeypots. After studying different solutions, we are able to develop 

our own framework for the automatic detection of anomalies. In our framework we will 

take a dataset produced by a honeypot, and will use the selected traffic features for the 

calculation of entropy values. Once we have the entropy values, we will then use the 

selected features to create the clusters using the proposed clustering algorithms. After the 

clusters are created, the maximum and minimum values for each cluster will be compared 

with the detected values for the known anomalies. Then, cluster names will be assigned 

based on the similarities with the threshold limits of known anomalies. Figure  4-1 shows 

a comparison between the work of Sqalli et al. [19] and our proposed solution. We will 

experiment with density based clustering and hierarchical clustering as these two 

clustering schemes do not require the number of clusters as an input parameter. We do 

not want to fix the number of clusters in our research work as this will allow us to apply 

our technique to various types of network data where the output may not be a fixed 



32 

number of anomalies.  In this way, we can have different number of clusters based on the 

number of anomalies inside the dataset.  

 

 

Figure ‎4-1     (a) Existing work by Sqalli et al. [19]                                       (b) Our Proposed Solution 

 

 

 



33 

4.2  CLUSTERING 

Clustering is a process of grouping the data into similar groups or clusters, so that 

objects inside a cluster have high similarity in comparison to one another, but are very 

dissimilar to objects in other clusters. Dissimilarities are assessed based on the feature 

values describing the objects. Common features include distance, density, probability, 

etc. Clustering is also known as data segmentation in some applications, as it is used to 

partition large datasets according to certain similarity criteria. Clustering algorithms are 

used in various fields of science to manage large sets of data and information. There are 

some recommendations in the literature about choosing the best clustering algorithm for a 

particular dataset. The following are typical requirements of clustering in data mining [9]: 

 Scalability: Ability to perform well when applied to large datasets. High 

scalability in clustering is needed.  

 Ability to deal with different types of attributes: Data handling should not be 

limited to numerical data; an application may require the clustering algorithm to 

handle data other than numerical data.  

 Discovery of Clusters with arbitrary shape: A clustering algorithm should be 

able to detect clusters not only in the standard geometrical shapes but also in 

arbitrary shapes.  

 Minimal requirements for domain knowledge to determine input 

parameters:  The ability of a clustering algorithm to start the clustering process 

without having too much information about the dataset is also needed. And the 

output produced by the clustering algorithm should not be over reliant on the 



34 

input parameters provided by the users, because these parameters are not very 

easy to determine, and they may lead to biased results. These parameters can 

have either positive or negative effect on the results; this effect depends on the 

precision of the initial parameters. The output of some clustering algorithms is 

largely affected by the preciseness of the input parameters. For those clustering 

algorithms, performance solely depends on the accuracy of the input parameters.  

 Ability to deal with noisy data: A clustering algorithm’s performance should 

not be affected by the presence of noise in the dataset.  

 Incremental clustering and insensitivity to the order of input records: A 

clustering algorithm should be able to include new data to the existing clustering 

structure, instead of starting the whole clustering process again. And, the order of 

input data should not affect the outcome of the clustering process.  

 High dimensionality: A clustering algorithm should be able to perform with the 

same efficiency for the datasets with higher number of dimensions as it performs 

for the datasets with lower number of dimensions.  

 Constraint-based clustering: A clustering algorithm may also have to ability to 

add constraints before starting the clustering process. Different applications have 

different constraints for the clustering. 

4.3  CATEGORIZATION OF CLUSTERING METHODS 

There exist many clustering algorithms in the literature, but there is no fixed 

categorization of these clustering algorithms. Some clustering algorithms use multiple 

features to improve their output, which makes it difficult to categorize them into a single 



35 

category.  In general, the major clustering methods can be classified into the following 

categories: [9]  

 Partitioning Method: A partitioning method divides all the data points into k 

partitions, where k is a pre-defined number. Each partition is a cluster and 

satisfies the condition that each cluster contains at least one data point, and 

each data point should be part of only one cluster. The general criterion of a 

good partitioning is that objects in the same cluster are “close” or related to 

each other, whereas objects of different clusters are “far apart” or very 

different.  

 Hierarchical Method: Hierarchical clustering creates clusters by arranging 

all the elements into a specific hierarchy. This hierarchy can be built from 

bottom-up, as in the case of agglomerative clustering, or from top-down, as in 

the case of divisive clustering. In agglomerative clustering, each data point is 

assigned to a separate cluster, and then it will start merging the clusters based 

on the similarities between each other. It will stop when there will be only one 

cluster or when it will reach a pre-defined stopping condition. In divisive 

clustering, all the data points are assigned to the single cluster in the 

beginning. Then, we start breaking the large cluster into smaller ones, which 

are similar. Divisive clustering also requires a predefined stopping condition 

to halt the clustering process.  

 Density-based Method:  The majority of clustering algorithms are based on 

the distance between the data points, but these clusters are not helpful in 

creating arbitrary shaped clusters. In density based clustering, clusters are 



36 

created based on the density of data points close to the starting data point. And 

the cluster shape follows the density pattern in the “neighborhood”, instead of 

following a standard geometric shape. “Neighborhood” is defined by the 

presence of a minimum number of data elements in the pre-defined radius. 

DBSCAN and its extension, OPTICS, are the most common density based 

clustering algorithms.  

 Grid-based Method: In grid-based clustering, we first create a grid-like 

structure consisting of cells. And, each cell in the grid structure represents the 

data points from the given dataset. Each data point is the combination of all 

the selected features for that specific packet. The benefit of the grid-based 

clustering algorithms is the fast processing time, as these algorithms are 

independent of the number of data points. The grid-based clustering 

algorithms only depend on the number of cells in each dimension.  

 Model-based Method: In model based clustering, we first create a statistical 

model for each known type of cluster. And when we apply these algorithms to 

the datasets, it starts matching each cluster model with the incoming data. 

Incoming data is assigned to the clusters based on their similarity with the 

existing model. 

Out of these cluster categorizations, we have decided to use the density-based method 

and Hierarchical method. One reason for selecting density-based method and hierarchical 

method is that we do not know the exact number of anomalies or clusters in a given 

dataset. Secondly, the shape of the clusters formed can be arbitrary. In both density-based 

and hierarchical methods, we do not need to specify the number of clusters and these 



37 

methods can handle clusters with arbitrary shape. Therefore, density-based and 

hierarchical clustering methods are better suited for our requirements. In density based 

clustering, we are going to use the Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN). In Hierarchical clustering, we are going to use the agglomerative 

(bottom-up) clustering.  

4.4  DBSCAN 

The Density Based Spatial Clustering of Applications with Noise (DBSCAN) [27] is 

a Clustering based algorithm. The idea of DBSCAN is that each cluster must contain a 

predefined minimum number of data points in its neighborhood. The minimum number 

of neighbors and the neighborhood radius are both predefined. Epsilon (Eps) is the 

maximum radius of the neighborhood. The maximum radius for any data point is defined 

as the maximum distance from that data point, considering it as the neighborhood center. 

The circular area surrounding a data point is called Eps-neighborhood for that data point. 

And MinPts is the minimum number of points in the Eps-neighborhood. The DBSCAN 

algorithm defines two sets of objects: core objects and density reachable. Core objects are 

those that contain MinPts in their Eps-neighborhood, and density reachable objects are 

those objects which exist inside an Eps of a core object, but do not have MinPts points. A 

data point can either be a single point, then it will be called directly density reachable as 

in Figure  4-2  (a), or it can be a chain of points such that each point is directly density 

reachable from another point, then the two points at the end of the chain are called 

density reachable as in Figure  4-2  (b). 

 



38 

 

 

 

 

 

Figure ‎4-2  (a)  p is directly density reachable from q                (b) p is density reachable from q [8] 

 

 

 

 

 

 



39 

4.5  HIERARCHICAL CLUSTERING 

Another type of clustering that is also present in the literature is called Hierarchical 

clustering. It provides a hierarchy or a structure as an output, which gives us more 

information about all the clusters. Hierarchical clustering also shows, in the form of a 

hierarchical tree view, the order in which different data points are merged from the initial 

to the last merge operation, while  flat clustering cannot provide any information about 

merge operations performed during cluster formation. Algorithms used in Hierarchical 

clustering do not require the number of clusters as input, and most of these algorithms, 

which are also used in information retrieval, are deterministic. But, a drawback that is 

associated with the Hierarchical clustering is its inefficiency. This is due to the fact that 

Hierarchical clustering algorithms have quadratic complexity as compared to the linear 

complexity of the k-means or other flat clustering algorithms. Hierarchical clustering 

algorithms can be divided into two major categories [31]: 

1- Bottom-Up Clustering (Agglomerative Clustering) 

2- Top-Down Clustering (Divisive Clustering) 

Agglomerative Clustering starts by assigning each data point into a separate cluster 

and then building up clusters from the bottom. On the other hand, Divisive Clustering 

starts by assigning all data points into a single cluster, and then breaking them into 

smaller clusters based on some defined criteria. In our research work, we have 

focused on the Agglomerative Hierarchical Clustering, as it is more flexible and it can 

operate with multiple clusters creation criteria. This flexibility of having multiple 



40 

criteria will help us in finding the best criterion for anomaly detection in addition to 

allowing us to fine tune the performance of the detection algorithm.  

  4.5.1  Agglomerative Clustering 

Agglomerative clustering is also known as the bottom-up clustering. In agglomerative 

clustering, initially each data point is assigned as a single cluster. Then, clusters which 

are similar to each other are merged. In every iteration, the clusters are merged based on 

the similarity between them. At the end of the clustering process, the hierarchy of the 

clusters can be viewed by a special type of graphs called “dendrogram”. In this graph, 

horizontal lines represent the merging of two clusters. The y-coordinate of these 

horizontal lines represent the value of similarity when they are merged, and this is called 

the combination similarity of the merged clusters. The similarity value depends on the 

criteria used to merge the clusters together. By going up in the dendrogram, we can 

reconstruct the history of all the mergers between the clusters. Figure  4-3 shows the 

dendrogram for the scan 14. 

A fundamental assumption in agglomerative clustering is that all the merging 

operations are monotonic. Monotony in the merging operations means that the sum of the 

combination similarities of both data points merging to form a new point should be equal 

to or greater than the combination similarity of the new point created after the merging. If 

this condition is not met, then the merge operation will be called inversion. Inversion 

does not affect the performance or throughput of the clustering algorithm, but it is used to 

identify an abnormal merge operation. Usually, a centroid linkage has one or two 

inversions, and these inversions simply show the irregularities in a merge operation. The 

reason is that in a centroid linkage all merge operations are non-weighted merges. When 



41 

a large centroid, containing large number of data points, is merged with a very small 

centroid, containing very few data elements, then it is possible that the new centroid may 

have a combination similarity greater than the sum of individual similarities of the 

centroids merging to form a new centroid. Figure  4-4 shows a non-monotonic 

dendrogram of scan-14. 

 

 

Figure ‎4-3 Dendrogram of Scan-14 

 

 

 

 



42 

 

 

 

 

Figure ‎4-4 Non-monotonic dendrogram of scan-14 

 

 

 

 

29182711  4  813  9161017262425  5  6  7192220212312  1  230  3281415

0.5

1

1.5

2

2.5

3

3.5

4

4.5



43 

 

The hierarchical cluster creation process has some similarities with the flat clustering, 

but it also offers options which are unique to the agglomerative clustering. As we 

have seen in Figure  4-3 , a dendrogram provides us with the hierarchy; but to create 

clusters, we need to define some cutoff criteria. The following three criteria are 

defined in the literature to create clusters [32]: 

 The first criterion is called natural clustering. In this method, we look for 

the maximum difference between two combination similarities before any 

merge operation, and then we break these maximum difference merge 

operations to create clusters.  

 In the second criterion, instead of going for the highest value of the 

difference between the individual similarities before the merge operation, 

we specify a certain value of the difference in individual similarity. Then, 

a cluster is created every time we encounter that the dissimilarity value is 

greater than the defined threshold.  

 In the third criterion, as in the flat clustering, we provide the number of 

clusters required. This option of providing the number of clusters is 

optional and it can be used to further enhance the performance and 

throughput of the anomaly detection technique. Clusters are created at the 

top of the dendrogram by dividing the whole tree into the required number 

of clusters.  

 



44 

  4.5.2  Linkages 

Linkages play an important role in the agglomerative clustering. Linkages are the 

functions which are used to create the similarities or dissimilarities between the data 

points. In general, the role of the linkages is to define the criteria by which the small 

clusters will be merged. There are four different types of linkages defined in the literature 

[31]. 

 Single linkage 

 Complete linkage  

 Average linkage 

 Centroid linkage 

In the single linkage case, when we need to take a decision about merge operations, 

we only look at the value of the data points which are closest to each other. Or in simple 

words, we look for the closest link between two clusters, and this value for the closest 

link will be used to determine the possible merge operations. Decisions based on the 

single linkage are mostly considered as local decisions as they do not take the global 

picture into account.  

In the complete linkage case, when we need to take a decision about the merge 

operations, we look at the value of the data points which are farthest from each other. Or 

in simple words, we look for the value of the farthest link between two clusters. This 

value will be used to determine the possible merge operations. The benefit of using the 

complete linkage is that the priority is given to the merge operations involving small 

clusters instead of merging big clusters first.  



45 

In the average linkage case, when we need to take a decision about the merge 

operations, we look at all the distance pairs in both clusters and take their average. Or 

simply, we can say that the average linkage is the average distance between all the data 

point pairs in both clusters. The average linkage helps us to overcome the shortcomings 

of the first two linkages as it does not only take into account the local perspective but the 

global one as well.  

In the centroid linkage case, when we need to take a decision about the merge 

operation, we first calculate the centroid or center of mass, which is the average of all the 

data points inside the cluster. Once we have calculated the centroids, then we will start 

merging those centroids that are closest to each other. Closeness is decided by the 

distance between the centroids. In contrast to the other three types, the centroid linkage is 

sometimes non-monotonic or it has inversion in its dendrogram. This non-monotonicity is 

due to the recalculation of a centroid before every merge operation. As centroids are not 

actual data points, and needed to be calculated every time, this sometime leads to an 

increase in the distance similarity, which shows as an inversion in the dendrogram. 

Figure  4-5 shows a graphical presentation of the linkages discussed above. 

 

 

 

 

 



46 

 

 

 

 

 

Figure ‎4-5 Linkages [32] 



47 

CHAPTER 5                                                                              

DBSCAN 

Density Based Spatial Clustering of Applications with Noise (DBSCAN) [27]is 

density based clustering algorithm which we are going to use for this thesis work. Details 

of DBSCAN have been discussed in detail in Chapter 4. In this chapter we going to 

implement DBSCAN and then we will tune the input parameters for the DBSCAN and 

finally we will test the performance of DBSCAN on different network trace files. 

5.1  IMPLEMENTATION 

Our aim in this work is to improve the efficiency of the earlier scheme by Sqalli et al. 

[19] by the automatic creation of clusters. This will remove the need of manually 

identifying the malicious activities inside the Honeynet traffic.  For this purpose, we use a 

data mining based clustering algorithm namely Density Based Spatial Clustering of 

Applications with Noise (DBSCAN) [27].  

For implementation purposes, we use Microsoft Visual Studio 2010 to develop our 

DBSCAN program. This program takes a comma separated file as input, which contains 

five columns. Each column represents the entropy values of the selected features, i.e., 

Source port, and Destination port, Source IP, as well as the values of the packet count, 



48 

and total payload bytes. In addition to the input file, the program requires two more input 

parameters, MinPts and Ԑ (Eps). Based on the value of MinPts and Ԑ (Eps), our program 

will process the input data to create the clusters. And, it will provide the output in the 

form of clusters and noise. “Clusters” will contain the data elements belonging to them, 

and “noise” will contain the data elements which do not belong to any cluster. Microsoft 

Visual Studio does not support the 3-D scatter plots. So, for the purpose of plotting 

graphs and creating plots, we have used MATALB 2011R2. Figure  5-1 shows a snapshot 

of the DBSCAN program interface developed in Microsoft Visual Studio 2010. 

 

 

Figure ‎5-1 DBSCAN Program interface developed in Visual Studio 

 

  5.1.1  Parameter Tuning  

Choosing the best value of “MinPts” depends on the level of granularity required and 

the minimum number of points that should be available in each cluster. The maximum 

value of “MinPts” depends on the total number of data elements in the dataset. A suitable 

value of “Eps” will be the last dip or “valley” in the plot for any specific value of 



49 

“MinPts”, after which the plot line becomes almost a straight line [27]. Figure  5-2 shows 

the K-NN plot for the training dataset, i.e., Scan 28 Honeynet trace, with “MinPts”=2, 3, 

4, 5, 6. A suitable value of “Eps” can be found for each value of “MinPts”. . In 

Figure  5-2, if we choose the value of “MinPts” to be 2, then by following the blue line we 

can find the last dip in the curve, which is around 0.70 for Eps. Sqalli et al. [19] used 

entropy values for three traffic features, and all of these values are in the range of zero to 

20. Zero shows that there is no change in entropy and 20 shows the maximum change. 

However, the values of the two volume-based features were used by Sqalli et al. [19] 

rather than their entropy value, and the range for these values was much higher, e.g., 1 

KB to 500 KB for the Total Byte feature. The magnitude of these values complicated the 

cluster creation process as they are larger by orders of magnitude compared to the other 

three entropy-based values. Therefore, we normalize the two volume-based features by 

taking the logarithm (log) of their respective values. This way, we can easily create a 5-

dimensinal space and apply DBSCAN on all five features for creating clusters. Then, we 

analyze the output to find how many clusters exist, which represent the malicious 

activities, and compare the output to the results obtained by Sqalli et al. [19]. In 

summary, the five dimensions used are: the Destination Port Entropy, the Source Port 

Entropy, the Destination IP Entropy, the Log of the Total Payload Bytes, and the Log of 

the Packet Count. 

 

 

 



50 

 

 

 

 

 

 

Figure ‎5-2 KNN Plot for Scan-28 in Descending Order 

 

 

 

 

 



51 

5.2  EXPERIMENTAL RESULTS 

We implemented our approach so that it can take the five parameters as input and 

then create a 5-dimensional space to apply the DBSCAN algorithm. We adjusted the 

values of “Eps” and “MinPts” to fine tune the cluster creation process. Finally, we obtain 

the clusters along with the data points falling into each cluster. Then, we plot these 

clusters in a 3-dimensional space, because of the limitation in plotting higher dimensions. 

For the plotting purposes, we used the following three dimensions: Destination Port 

Entropy, Source Port Entropy, and Destination IP Entropy. All clusters shown in the 3-D 

plots are created using all five parameters.  

For experimentation purposes, we used the same “Scan of the Month” traces which 

were used by Sqalli et al. [19]. These traces are taken from the “Scan of the Month” 

challenges available on the Honeynet Organization’s public website [33]. 

TABLE  5-1provides more detailed information about these traces. 

 

 

 

 

 

 



52 

 

 

 

 

TABLE ‎5-1 Honeynet Traffic Test Datasets 

Traffic Dataset Name 

& Source 
Traffic Details Description 

Scan 28 - Honeynet.org – 

Scan of the Month 

Day1: 18843 Packets – 24 

Hours 

Day 3: 123123 Packets – 24 

Hours 

Trace collected by the Mexico 

Honeynet Team, Italian blackhats 

break into a Solaris server then 

enable IPv6 tunneling for 

communications. 

Scan 14 - Honeynet.org – 

Scan of the Month 

6707 packets 

Total Duration 20 Hours 

This trace is about a successful 

Windows NT attack. 

Scan 19 - Honeynet.org – 

Scan of the Month 

24440 packets 

Total Duration 23 Hours 

Trace of Redhat Linux 6.2 

honeypot compromise. 

 

 

 

 

 



53 

  5.2.1  Scan 14 

Scan 14 is the first Honeynet trace used by Sqalli et al. [19], to identify malicious 

activities within, and 3 anomalies have been reported in this trace. When we run the 

DBSCAN clustering algorithm on the five output parameters, we obtained five clusters. 

Figure  5-3 shows the graphical output of the clusters for this trace. Out of these five 

clusters, Clusters 3, 4, and 5 exactly match the threshold of malicious activities found in 

[19]. Clusters 1 and 2 do not match any anomalous pattern defined in [19]. As explained 

earlier, clustering algorithms create clusters based on similarities between the selected 

traffic features. But, it is not necessary that all the clusters created will match the 

threshold values for the known attacks. The number of clusters produced is related to the 

level of granularity which we want from the data, so sometimes it will produce clusters 

which will not match any threshold of the known attacks. The tuning phase helps us 

identify the suitable values which will produce better detection and results. Each cluster 

is defined based on specific entropy and volume values for each traffic feature. Clusters 1 

and 2, which do not represent any reported malicious activity, can either be considered as 

noise or as a new attack for which there is no threshold available. If we use a switch level 

trace file, it always contains traffic to or from other hosts which are connected to the 

same switch along with the Honeypot; and in this case, we can safely assume that these 

clusters represent noise. However, if it is a Honeypot level trace file then we have to 

further investigate the cluster. Table  5-2 presents the anomalies detected by Sqalli et al. 

[19]. Table  5-3 presents the DBSCAN Clustering results with the minimum and 

maximum values for each traffic feature. Each cluster present in these tables is shown as 



54 

a combination of all the selected features, along with their maximum and minimum 

values, which are shown for each feature separately.  

 

Table ‎5-2 Scan-14 Anomalies detected by Sqalli et al. [19] 

 
Dst Port Ent Src Port Ent Dst IP Ent 

Total Payload 

Bytes 
Total Packets 

 
Min Max Min Max Min Max Min Max Min Max 

System 

Compromise 
3.15 3.56 3.065 4.465 0 1.84 4.0834 4.1452 2.1398 2.1818 

Malicous File 

Download 
X X X X X X 4.2254 4.8481 2.1613 2.2671 

Running 

Various 

Commands 

0 2.71 1 3.85 0 1.95 3.1179 3.9364 1.6532 2.0644 

 

Table ‎5-3 Scan -14 DBSCAN Clustering with Min-Max Values 

 
Dst Port Ent Src Port Ent Dst IP Ent Total Payload Bytes Total Packets 

 
Min Max Min Max Min Max Min Max Min Max 

Cluster 1 0 1.42 0 1.25 0 0 0 0 0 0 

Cluster 2 0.81 0.92 0.81 0.92 0 0 1.79 1.87 0 0 

Cluster 3 1.08 2.66 1.08 3 0 1.48 3.37 4.85 1.11 2.74 

Cluster 4 3.25 3.64 3.66 4.49 0 0.44 4.92 5.31 2.66 2.82 

Cluster 5 2.43 3.26 3.06 3.67 1.4 2.31 4.61 5.47 2.1 2.79 

 



55 

 

Figure ‎5-3 Scan-14 3-D Clusters 

  5.2.2  Scan 19 

Scan 19 is the smallest trace used by Sqalli et al. [19], where three malicious 

activities were reported. DBSCAN created four clusters based on the values of the five 

features used. Figure  5-4 shows the graphical output of the clusters for this trace. Out of 

these four clusters, Cluster 3 represents a “System Compromise”, while Cluster 4 

represents two malicious activities, i.e., “Malicious File Download” and “Port Scan”. The 

reason for having two events in one cluster is that the minimum and maximum values for 

this cluster match with two threshold intervals presented by Sqalli et al. [19]. This 

problem of having a single cluster representing multiple anomalies is due to the fact that 

Sqalli et al. [19] used separate names for different anomalies falling under the category of 

a system compromise attack. System compromise attacks always involve exploiting some 

legitimate service with vulnerability by sending malicious requests to gain access. Most 

of the attacks which fall under the system compromise category show very similar 

behavior. The only difference is that as each service has its own vulnerabilities, the 



56 

number of malicious messages and size of those malicious messages is different for each 

attack. These anomalies are almost alike and their threshold values overlap for more than 

one selected feature. On the other hand, DBSCAN sometimes fails to identify the 

difference between these anomalies and it clusters them into a single anomaly. This 

happens due to the similar values for more than one selected feature. Table  5-4 presents 

the anomalies reported by Sqalli et al. [19]and Table  5-5 presents the DBSCAN 

Clustering results with the minimum and maximum values. 

Table ‎5-4 Scan-19 Anomalies detected by Sqalli et al. [19] 

 
Dst Port Ent Src Port Ent 

Dst IP 

Ent  

Total Payload 

Bytes 
Total Packets 

 
Min Max Min Max Min Max Min Max Min Max 

System 

Compromise 

1.807

8 

1.807

8 

2.15

9 
0.9893 

3.075

9 
4.11 5 

4.145

2 

1.518

5 

2.008

6 

Malicous File 

Download 
X X X X X X 

5.572

9 

5.572

9 

3.618

2 

3.618

5 

Port scan 1.5 12.26 1.53 12.26 0.218 0.419 
5.330

6 

5.330

6 

3.730

2 

2.064

4 

 

 

Table ‎5-5 Scan -19 DBSCAN Clustering with Min-Max Values 

 

Dst Port Ent Src Port Ent Dst IP Ent Total Payload Bytes Total Packets 

 

Min Max Min Max Min Max Min Max Min Max 

Cluster 1 1 1 1 1 0 0 2.13 2.92 0.3 0.3 

Cluster 2 0.37 0.98 0.98 1.2 0.99 0.99 3.71 3.77 1.11 1.11 

Cluster 3 0.96 1.91 0.92 1.97 0 0.22 2.51 4.4 0.78 2.44 

Cluster 4 12.59 12.97 12.58 12.96 0.08 0.33 5.83 5.86 3.91 4.02 

 

 



57 

 

 

 

 

 

 
 

Figure ‎5-4 Scan-19 3-D Clusters 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



58 

  5.2.3  Scan 28 

 

Sqalli et al. [19] reported 4 malicious activities in the Day1 of the scan 28, while 

DBSCAN created five clusters. Figure  5-5 shows the graphical output of the clusters for 

this trace. Clusters 4 and 5 map exactly to the “Malicious File Download” and “System 

Compromise” activities, respectively. Cluster 1 is a large cluster representing two 

malicious activities, i.e., “IRC Communication” and “ICMP (DDoS)”. The reason of 

having two anomalies in the same cluster is discussed in section    5.2.2  . Clusters 2 and 3 

show traffic patterns which are not reported as malicious activities by Sqalli et al. [19]. 

The problem of having a cluster not representing any anomaly is discussed in section   

5.2.1  . Table  5-6 presents the anomalies reported by Sqalli et al. [19], and Table  5-7 

presents the DBSCAN Clustering with the minimum and maximum values. 

Table ‎5-6 Scan-28 Day-1 Anomalies detected by Sqalli et al. [19] 

 Dst Port Ent Src Port Ent Dst IP 

Ent 

 Total Payload 

Bytes 

Total Packets 

 Min Max Min Max Min Max Min Max Min Max 

System 

Compromise 

2.02 2.988 2.02 3.11 0 2.2 3.6577 5.87 1.342

4 

3.17 

Malicous File 

Download 

X X X X X X 5.5936 5.87 2.87 3.17 

IRC 

Communication 

1 2.5 1 2.6 0 2.5 3.7923 4.27

9 

1 1.986

7 

ICMP (DDoS) 0 1.38 0 1.63 0.721 3.4 3.8026 4.20

8 

0.778

1 

1.76 

Port Scan 7.09 8.8685 6.95 9.81 0 0.91 5.185 5.88

3 

2.608

5 

3.5 

 

 



59 

 

 

 

 

Table ‎5-7 Scan -28 Day-1 DBSCAN Clustering with Min-Max Values 

 
Dst Port Ent Src Port Ent Dst IP Ent Total Payload Bytes Total Packets 

 
Min Max Min Max Min Max Min Max Min Max 

Cluster 1 0 2.56 0 2.56 0.67 4.97 2.26 4.69 0.3 2.07 

Cluster 2 0.92 1 0.92 1 0 0 2.43 2.47 0.3 0.3 

Cluster 3 0 0 0 0 0 0 2.4 2.48 0.3 0.6 

Cluster 4 2.02 2.19 2.08 2.25 0.99 1.58 5.59 5.81 2.88 3.14 

Cluster 5 2.95 3.19 3.19 3.23 1.03 1.57 5.7 5.88 3.03 3.17 

 

 

 

 

 

 



60 

 

 

Figure ‎5-5 Scan-28 Day-1 3-D Clusters 

 

 

For the traffic from Day 3 of the scan 28, Sqalli et al. [19] reported 5 malicious 

activities. When we applied DBSCAN to the output, it created seven clusters. Figure  5-6 

shows the graphical output of the clusters for this trace. Cluster 1 represents two 

malicious activities, i.e., “System Compromise” and “ICMP (DDoS)” due to the 

overlapping threshold values, explained in section   5.2.2  . Clusters 4 and 7 represent 

“Malicious File Download” and “IRC Communication”, respectively. Clusters 2, 3, and 5 

represent a “Port Scan” event. The reason for having three separate clusters is that each 

one represents a different port scan attack with a different level of intensity. Most of the 

“Post Scan” attacks consist of very high values of Destination port entropy and 

Destination IP entropy. When we have multiple “Port Scan” attacks in a single dataset, it 

is uncommon for all of these attacks to have the same values for port entropy and 



61 

Destination entropy. And, if the difference between the entropy values of each attack is 

more than the Eps-radius, then they will be classified into separate clusters. Cluster 6 

represents an un-reported traffic pattern, due to the same explanation provided in section   

5.2.1  .  

Table  5-8 presents the anomalies reported by Sqalli et al. [19], and Table  5-9 presents 

the DBSCAN Clustering results with the minimum and maximum values. 

 

Table ‎5-8 Scan-28 Day-3 Anomalies detected by Sqalli et al. [19]] 

 Dst Port Ent Src Port Ent Dst 

IP 

Ent 

 Total Payload 

Bytes 

Total Packets 

 Min Max Min Max Min Max Min Max Min Max 

System 

Compromise 

2.02 2.988 2.02 3.11 0 2.2 3.657

7 

5.870

6 

1.342

4 

3.17 

Malicous File 

Download 

X X X X X X 5.593

6 

5.87 2.87 3.17 

IRC 

Communication 

0 0 0 0 0 0 3.219

3 

3.937

1 

1.176 1.875 

ICMP (DDoS) 0 1.38 0 1.63 0.721 3.4 3.802

6 

4.208

8 

0.778

1 

1.763

4 

Port Scan 4.99 7.424 5.29 9.61 0 0.39 4.748 5.228

4 

2.828

6 

3.442

9 

 

 

 

 



62 

Table ‎5-9 Scan -28 Day-3 DBSCAN Clustering with Min-Max Values 

 
Dst Port Ent Src Port Ent Dst IP Ent Total Payload Bytes Total Packets 

 
Min Max Min Max Min Max Min Max Min Max 

Cluster 1 0 2.18 0 2.25 0 3.15 3.15 4.66 0.78 2.36 

Cluster 2 7.31 8.48 9.61 9.87 0.96 1.57 3.88 4.15 1.18 1.69 

Cluster 3 7.96 8.45 9.69 9.87 0.03 1.19 5.19 5.88 3.19 3.49 

Cluster 4 1 2.45 1 2.45 0.04 0.68 5.21 5.87 3.14 3.5 

Cluster 5 7.04 7.45 8.86 9.68 0.02 0.34 4.07 4.55 1.38 2.12 

Cluster 6 0.78 0.98 0.78 0.98 0 0.49 4.57 4.77 2.33 2.87 

Cluster 7 0 0 0 0 0 0 3.24 4.2 1.18 2.02 

 

 

Figure ‎5-6 Scan-28 Day-3 3-D Clusters 

 



63 

5.3  RESULTS AND DISCUSSION 

Once we have created the clusters, we calculated the maximum and minimum values 

for each cluster, and then we applied the known anomaly threshold values to these ranges 

to find the type of anomalous activity represented by that cluster. During these 

comparisons, we find four types of results.  

 The first case is when the cluster boundaries coincide with the anomaly 

threshold. 

 The second case is when a single cluster represents multiple anomalies, and 

this happens when anomaly thresholds are overlapping with each other in 

some or all traffic parameters. This happens mostly when the difference 

between two malicious activities is smaller than the Eps-radius, or when their 

threshold ranges overlap with each other. To overcome this problem, we need 

to look into the threshold values and come up with a common name for 

anomalies which have overlapping threshold values or we can add another 

feature which will help us to better differentiate these types of anomalies. 

 The third case is when multiple clusters represent a single anomaly, and this 

mostly happens due to the presence of multiple attacks of the same type but of 

different intensity. When we have multiple attacks of the same type in a single 

dataset, it is not necessary for all of these attacks to have the selected entropy 

and volume features. And, if the difference between the selected feature 

values of each attack is more than the Eps-radius, then they will be classified 

into separate clusters. 



64 

 The fourth case is when the cluster does not match any of the known threshold 

values for the anomalies, and this happens mostly due to the presence of non-

anomalous traffic in the dataset or the presence of a new type of attacks for 

which a threshold is not defined. Another reason is the presence of broadcast 

traffic and in some cases due to the switch level datasets. These datasets do 

not only contain the packets related to the honeypot traffic but they also have 

some packets which are not related to the honeypot.   

TABLE  5-10 presents the comparison between the reported malicious activities by 

Sqalli et al. [19]  and the clusters which are detected by the DBSCAN Clustering in our 

work. For Scan 14, DSBSCAN successfully detected all of the anomalies, which were 

reported by Sqalli et al. [19] as separate clusters. For Scan19, Sqalli et al. [19] reported 

four anomalies, while DBSCAN was able to detect three anomalies. DBSCAN detected 

one anomaly as a separate cluster and two anomalies as a part of a larger cluster. For 

Scan28 day1, Sqalli et al. [19] reported four anomalies, while DBSCAN was able to 

detect all four anomalies. DBSCAN detected two anomalies as separate clusters and two 

anomalies as part of larger cluster. For Scan 28 day3, Sqalli et al. [19] reported five 

anomalies, while DBSCAN was able to detect all five anomalies. DBSCAN detected two 

anomalies as a separate cluster, two as a part of larger cluster, and one anomaly is 

represented by three separate clusters. 

 
 
 
 
 
 
 
 
 



65 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table ‎5-10 Results Comparison 

Trace Scan14 Scan19 Scan28 day 1 Scan28 day 3 

Reported Malicious Activities 

in [19] 
3 3 4 5 

Identified Clusters using 

DBSCAN 
5 4 5 7 

Clusters Matching Malicious 

Activities 
3 1+1a 2+1a 2+1a+3b 

Clusters not representing 

Malicious Activities 
2 2 2 1 

Xa = One Cluster Represents Multiple Events 
Xb = Multiple Clusters Represent a Single Event 

 

 

 



66 

CHAPTER 6                                                                                  

Hierarchical Clustering 

Agglomerative Clustering [31] is a Hierarchical Clustering algorithm which we are 

going to use for this thesis work. Details of Agglomerative Clustering have been 

discussed in detail in Chapter 4. In this chapter we going to implement Agglomerative 

Clustering and then we will test the performance of Agglomerative Clustering on 

different network trace files. 

6.1  IMPLEMENTATION 

The implementation of the agglomerative clustering algorithm can be divided into 

three major activities. The first step is to create the distance matrix. The distance matrix 

for N data points is an NxN matrix consisting of N rows, where each row represents the 

distance of one data point to all the other data points. These distances can be calculated 

using various distance calculation algorithms, e.g., Euclidian distance, city-block 

distance, etc. 

The second step is to create the linkage matrix from the distance matrix. The linkage 

matrix uses a predefined linkage method, e.g., single-linkage, multiple linkage, average 

distance, or centroid. The task of the linkage matrix is to calculate the combination 



67 

similarity for each data point, and all future clustering operations will be based on this 

linkage matrix. Based on these combination similarities, a Hierarchical binary tree, called 

dendrogram is created. A dendrogram can be used to display the Hierarchical binary tree, 

displaying all the merge operations converging at the root of the binary tree. Figure  4-3 

and Figure  4-4 show the dendrogram created from the linkage matrix created for scan 14.  

The third and final step is to create clusters from the linkage matrix. For the cluster 

creation, we can use one of the three cutoff criteria for cluster creation, discussed in 

section   4.5.1  , i.e., by natural clustering, by specifying a certain threshold value of the 

combination similarity, or by specifying the number of clusters. To display the output of 

the clustering process, we can use a 3-D scatter plot. 

6.2  INITIAL EXPERIMENTS 

For the experimentation purpose, we are using the PCAP files from the “scan of the 

month” challenges provided by the global Honeynet community. Once we have 

completed the implementation, we decided to review different configurations of the 

agglomerative clustering, and find the combination which will help us to create more 

informative and well-defined clusters. The most important configuration in agglomerative 

clustering is the type of linkage used to create the clusters. We will experiment with both 

average linkage and centroid linkage. We have selected these two linkages because they 

use all the data points inside the cluster to calculate for the next merge operation. Then, at 

the end, we will compare the results. For the clustering criteria, we will use natural 

clustering. 



68 

  6.2.1  Average Linkage Clustering 

In the average linkage, when we need to take a decision about the merge operations, 

we look at all the distance pairs in both clusters and take their average. The average 

linkage has been discussed in details in section   4.5.2   

We used scan-14 and scan-28 for the initial testing with the average linkage 

clustering. 

   6.2.1.1 Scan-14 

The average linkage clustering produced five clusters from the scan-14 dataset, while 

using the natural clustering criteria. Figure  6-1 shows the 3-D plot of the clusters, and 

Table  6-1 shows the minimum and maximum values for each cluster. The clusters created 

by the average linkage clustering do not match with the already known malicious 

threshold. As discussed in section   4.5.2  , the average linkage clustering uses a weighted 

average to decide about the merge operations. When we applied the average linkage 

clustering to the scan-14 dataset, it produced five different clusters; but the clusters 

ranges do not match any of the threshold values for the known anomalies detected by 

Sqalli et al. [19].  

Our understanding about the average linkage clustering’s failure to create usable 

clusters is the use of a weighted average. When using a weighted average, each merge 

operation tends to favor the larger of the two clusters involved in the merging operation. 

In the end, clusters created by using average linkage do not match with known threshold 

values. 

 



69 

 

Table ‎6-1 Scan-14 Clusters with min-max values 

 

Dst Port 

Ent 

Src Port 

Ent 
Dst IP Ent 

Total Payload 

Bytes 

Total 

Packets 

 
Min Max Min Max Min Max Min Max Min Max 

Cluster 1 0 1.418 0 1.246 0 0 0 0 0 0 

Cluster 2 1.076 2.664 1.0762 3.002 0 1.476 3.3672 4.8522 1.1139 2.7443 

Cluster 3 0 0 0 0 0 0 4.3375 4.3375 2.4472 2.4472 

Cluster 4 0 1.240 0.8113 2.299 0 0 1.7924 2.7536 0 0.6021 

Cluster 5 2.426 3.640 3.0586 4.485 0 2.307 4.606 5.4738 2.0969 2.8176 

 

 

 

Figure ‎6-1 Scan-14 Hierarchical clustering with average linkage 

 



70 

   6.2.1.2 Scan-28 Day-3 

The average linkage clustering produced four clusters when applied to the scan-28 

day-3 dataset. The natural clustering is used here as the clustering criteria. Table  6-2 

shows the clusters with their minimum and maximum ranges. Figure  6-2 shows the 3-D 

scatter plot for the scan-28 day-3. Similar to the previous trace, the clusters created by the 

average linkage clustering for this trace do not match with the already known malicious 

activities ranges. The reason for not matching any known threshold value is discussed in 

section    6.2.1.1.  

 

Table ‎6-2 Scan 28 Day-3 Clusters with min-max values 

 
Dst Port Ent Src Port Ent Dst IP Ent 

Total Payload 

Bytes 
Total Packets 

 
Min Max Min Max Min Max Min Max Min Max 

Cluster 

1 
1.53 1.98 1.53 1.98 1.08 1.25 5.8 6.17 3.01 3.36 

Cluster 

2 
0 2.39 0 2.26 0 3.34 3.46 4.99 1.04 2.64 

Cluster 

3 
7.02 9.52 7.87 10.19 0.02 0.44 4.97 6.18 2.91 3.81 

Cluster 

4 
1.04 2.68 1.04 2.68 2.58 4.58 4.29 4.97 1.85 2.72 

 

 

 

 



71 

 

 

 

 

 

Figure ‎6-2 Scan-28 Day-3 Hierarchical clustering with average linkage 

 

 

 

 

 

 



72 

  6.2.2  Centroid Linkage Clustering 

In the centroid linkage, when we need to take a decision about the merge operation, 

we first calculate the centroid or center of mass, which is the average of all the data 

points inside the cluster. Then we calculate the minimum distance between centroids. All 

the decisions about the merge operations are based on the minimum distance between the 

centroids.  Centroid Linkage Clustering has been discussed in details in section   4.5.2   

We used scan-14 and scan-28 for the initial testing with the centroid linkage 

clustering. 

   6.2.2.1 Scan-14 

The centroid linkage clustering produced four clusters when applied to the scan-14 

dataset, while using the natural clustering as the clustering criterion. Table  6-3 shows the 

minimum and maximum values of the features in a clusters and it shows the type of 

anomaly which these clusters are representing. Figure  6-3 shows the 3-D scatter plot for 

scan-14. 

 

 

 

 

 

 



73 

 

Table ‎6-3 Scan-14 Clusters with min-max values 

 
Dst Port Ent Src Port Ent Dst IP Ent Total Payload Bytes Total Packets 

 
Min Max Min Max Min Max Min Max Min Max 

Cluster 1-RVC 1.08 2.66 1.08 3 0 1.48 3.37 4.85 1.11 2.74 

Cluster 2-MFD 0 0 0 0 0 0 4.34 4.34 2.45 2.45 

Cluster 3-noise 0 1.42 0 2.3 0 0 0 2.75 0 0.6 

Cluster 4-SC 2.43 3.64 3.06 4.49 0 2.31 4.61 5.47 2.1 2.82 

 

 

 

Figure ‎6-3 Scan-14 Centroid Linkage Clustering 

 

 



74 

   6.2.2.2 Scan-28 Day-3 

The centroid linkage clustering produced eight clusters when applied to the scan-28 day-3 dataset, while 

using the natural clustering as the clustering criterion.  

Table  6-4 shows the minimum and maximum values of the clusters as well as the type 

of anomaly represented by these clusters. Figure  6-4 shows the 3-D scatter plot for scan-

28 Day-3. 

 

Table ‎6-4 Scan-28 Day-3 Clusters with min-max values 

 
Dst Port Ent Src Port Ent Dst IP Ent Total Payload Bytes Total Packets 

 
Min Max Min Max Min Max Min Max Min Max 

Cluster 1-IRC 0 0 0 0 2.22 3.03 4.09 4.49 1.32 1.87 

Cluster 2-s-PS 9.42 9.52 9.54 9.58 0.06 0.08 6.17 6.18 3.47 3.49 

Cluster 3-s-PS 7.02 7.98 7.87 8.93 0.34 0.44 4.97 5.71 2.91 3.13 

Cluster 4-SC 0.41 2.68 0.65 2.68 0.49 3.82 3.46 4.99 1.23 2.72 

Cluster 5-s-MFD 1.53 1.98 1.53 1.98 1.08 1.25 5.8 6.17 3.01 3.36 

Cluster 6-s-SC 1.04 1.68 1.04 1.68 3.9 4.58 4.33 4.42 1.9 2.18 

Cluster 7-ICMP 0 0.92 0 0.57 0 1.99 3.46 4.54 1.04 2.44 

Cluster 8-PS 7.26 8.82 9.42 10.19 0.02 0.18 5.2 5.99 3.34 3.81 

 

 

 



75 

 

 

 

 

 

 

Figure ‎6-4 Scan-28 Day-3 Centroid Linkage Clustering 

 

 

 

 

 



76 

6.3  RESULTS DISCUSSION 

In this chapter, we experimented with a hierarchical Clustering algorithm with two 

different linkages, average linkage and centroid linkage. In the average linkage, we were 

able to create different clusters but these clusters did not match any of the detected 

threshold values for the known anomalies. On the other hand, the centroid linkage 

clustering was able to identify all of the anomalies, available in the dataset, by creating 

the clusters that match the detected threshold values for the known anomalies. Based on 

the results obtained here, we decided to use the centroid linkage for the experiments 

related to the hierarchical clustering in this thesis work. In summary, the hierarchical 

clustering with centroid linkage worked very well in identifying the general attack 

categories. But in some cases, especially for the system compromise attack, it failed to do 

so; while Sqalli et al. [19]have divided the thresholds into specific attack categories. For 

these attacks, which fall under the sub-category of system compromise attack, 

Hierarchical clustering sometimes categorized the anomalies into their generalized attack 

category, i.e., system compromise, rather than creating separate clusters for each 

specialized attack.  

 

 



77 

CHAPTER 7                                              

Performance Analysis 

In this chapter, we will apply both clustering algorithms, DBSCAN and Hierarchical 

Clustering, to different datasets. Some of these datasets are provided by the Honeynet 

community and some are generated inside a KFUPM lab. Once we have the results, by 

applying both schemes to the same datasets, then we will compare the efficiency of both 

algorithms as well as the detection rate. This will also help to determine which algorithm 

is better to be used for the automatic detection of the anomalies from new datasets.  

7.1  EXPERIMENTAL SETUP 

For the experimental setup, we are using a JAVA code to determine the entropy 

values for the selected features from the provided PCAP files. JNetPcap Java API is used 

to read the PCAP files. Once we have the entropy values, then we will provide these 

entropy values as an input to both algorithms to create the clusters. Both algorithms will 

provide the output in the form of 3-D scatter plots and cluster tables, comprising the 

minimum and maximum values for each cluster against each of the selected features.  

 



78 

The trace files used for obtaining the results are: 

 Scan 27: Scan of the month challenge provided by honeynet.org, March 2003 

 Dionaea Capture Trace-1 and 2: This is provided by the Saudi Honeynet 

Project team, collected from the KFUPM network. 

 Lab Trace: Trace created inside a lab environment by using the penetration 

testing tool provided in backtrack 4.1 [21]. 

 

7.2  DESCRIPTION OF TRACES USED 

  7.2.1  Scan 27 

This trace was collected from Honeynet.org which releases the Scan of the Month 

Challenges. This trace was collected by the Azusa Pacific University Honeynet Project 

team from an un-patched Windows 2000 honeypot. The details of this trace are provided 

in Table  7-1. 

Table ‎7-1 Scan-27 Dataset Details 

Source Honeynet.org, Scan of the Month Challenge 

File Name Scan27.pcap 

Format PCAP File 

Size 17.6 MB 

Number of Packets 54536 

Duration 5 Days 



79 

The identification of anomalies inside this dataset was also provided by the 

Honeynet.org as the solution for this challenge. We will compare our results against the 

solutions provided by the Honeynet.org. 

  7.2.2  Dionaea Capture Trace 

A low interaction honeypot Dionaea was setup and connected in the KFUPM 

network. The two trace files were collected by the Saudi Honeynet Project team as part of 

their network monitoring project. The trace details are given in Table  7-2. 

Table ‎7-2 Dionaea Dataset Details 

Source Saudi HoneynetProject team 

Number of files 2 

File Name Dionaea-trace1.pcap 

File Name Dioanea-trace2.pcap 

Format PCAP File 

Size 15.6 MB, 648KB 

Number of Packets 1541731 

Duration  1 Day 

 

The result of this dataset is provided by the Saudi Honeynet Project team. We will use 

these results to compare them to the clusters created by both algorithms used in our work.  



80 

  7.2.3  Lab Trace 

The last trace that we have used was generated in the Lab setup within KFUPM. A 

Honeynet was setup with Honeywall - a high interaction honeypot and Windows XP 

honeypot. The BackTrack 4.1 operating system was used to launch different types of 

attacks targeting the Windows XP honeypot. The honeypot was made visible on the 

network and popular services were activated on it such as IIS web server, FTP server, 

SSH server, etc. The main tools that were used from the BackTrack operating system are 

Nmap, Open VAS vulnerability scanner, and Metasploit Penetration Testing Framework 

3.0. 

The Metasploit Framework [30] is one of the most popular Open Source penetration 

testing tools that are available in the market [34]. We used these tools to generate a trace 

that includes different types of malicious activities. The Metasploit framework has been 

used by other authors to generate similar datasets for the purpose of evaluating their 

anomaly detection techniques. Laskov and Kloft [35] have used the Metasploit 

framework to create a malicious dataset by generating various exploits. Rieck and Laskov 

[36] have also used the Metasploit framework to create a malicious dataset for the 

purpose of testing their anomaly detection technique. Düssel et al. [37] also used the 

Metasploit framework to generate malicious dataset for testing their anomaly detection 

technique. 

Details of the trace file used are given in the Table  7-3. 

 

 



81 

 

 

 

 

 

Table ‎7-3 Lab Trace Dataset Details 

Source Network Security Lab 

File Name Labcptr.pcap 

Format PCAP File 

Size 30 MB 

Number of Packets 312599 

Duration  22 Day 

 

 

 

 

 

 



82 

The details of the attacks conducted are presented in Table  7-4. 

Table ‎7-4 Lab Trace Attacks Detail 

Categories Type of attack 

Port Scan 

NMAP regular scan 

NMAP quick scan 

NMAP intense scan 

NMAP slow comprehensive scan 

Vulnerability Scanning Open VAS Scanner 

Database attacks 
MYSQL login utility scanner 

MYSQL database access attempts 

Server Message Block (SMB) 

protocol attacks 

SMB Negotiate Dialect Corruption 

(Fuzzers/smb/smb_negotiate_corrupt) 

Microsoft Workstation Service 

NetAddAlternateComputerName Overflow 

Microsoft Server Service Relative Path 

Stack Corruption 

Microsoft Server Service 

NetpwPathCanonicalize Overflow 

Microsoft Plug and Play Service Overflow 

Microsoft Print Spooler Service 

Impersonation Vulnerability 

DCE/RPC, (Distributed Computing 

Environment / Remote Procedure 

Calls) attacks 

Endpoint Mapper Service Discovery 

(scanner/dcerpc/endpoint_mapper) 

DCERPC TCP Service Auditor 

Microsoft RPC DCOM Interface Overflow 

exploit 

Microsoft Message Queuing Service Path 

Overflow exploit 



83 

FTP 
Simple FTP Fuzzer 

FTP attack access gain attempt 

HTTP IIS web server attacks 

Microsoft IIS WebDAV Writ exploit 

Microsoft IIS 5.0 Printer exploit 

Microsoft IIS/PWS CGI Fil exploit 

Microsoft IIS 5.0 WebDAV ntdll.dll Path 

Overflow 

SMTP attacks 
MS03-046 Exchange 2000 XEXCH50 Heap 

Overflow exploit 

SNMP attacks 
Network Node Manager Snmp.exe CGI 

Buffer Overflow 

Backdoor Energizer DUO Trojan Code Execution 

SSH attacks SSH Key Exchange Init Corruption 

 

7.3  COLLECTED RESULTS 

We applied the two clustering algorithms, Hierarchical clustering and DBSCAN 

clustering, to the datasets discussed in the previous section. The process of gathering 

results is similar to the process discussed in chapters 4 and 5 for DBSCAN Clustering 

and Hierarchical Clustering, respectively. Initially, we calculated the entropy value for 

the three IP header based traffic features, i.e., Destination port entropy, Source port 

entropy, and Destination IP entropy. And, for the two volume based features, i.e., total 

payload bytes and total packet count, we took the log10 of the original values for 

normalization. The values of the entropy based features were in the range of one to 

fifteen, while the values of the volume based features were in the ranges of five hundred 

to ten thousand. Therefore, we have normalized the volume values by taking log10 of the 



84 

original values. Once we have all the values of these five traffic features stored in a 

comma separated file, we use them as an input to the clustering algorithms.  

The results collected from each clustering algorithm are provided in this chapter.  The 

results will be presented in the following order. First, we will present the results for each 

dataset separately; and then at the end, we will discuss all the collected results and 

compare the performance of both clustering algorithms, i.e., DBSCAN and Hierarchical 

Clustering. For each dataset, initially we will provide all the reported results from the 

literature, and then we will present our results for that dataset using both Hierarchical and 

DBSCAN Clustering. Finally, we will compare our collected results with the reported 

results for that dataset.  

  7.3.1  Scan 27 

Scan of the month challenge 27 was presented by the honeynet.org as a challenge of 

the month. Table  7-5 shows the reported anomalies for the scan 27. 

 

 

 

 

 

 

 



85 

 

 

Table ‎7-5 Reported Anomalies for Scan-27 

Type of Anomaly No. of  Occurrences 

SMB Attacks 5 

System Compromise 1 

Malicious File Download 1 

HTML Script Kiddies 1 

Buffer Overflow 1 

Port Scan 3 

Vulnerability Scan 1 

Slammer Worm 1 

IRC Communication 1 

 

 

 

 



86 

   7.3.1.1 Hierarchical Clustering 

Hierarchical clustering produced nine clusters when applied to the scan 27 datasets. 

Out of these nine clusters, clusters 1, 4, and 6 are all port scan attacks. Cluster 9 matches 

the threshold of the vulnerability scan. Cluster 7 matches the threshold of the IRC 

communication from the affected machine to the botnet server. Clusters 2 and 8 match 

the threshold values for the system compromise attack. Cluster 3 matches the malicious 

file download’s threshold signatures. On the other hand, cluster 5 presents the noise 

inside the input dataset, which is mostly due to the fact that these scan files also have 

some network traffic which is not coming from or going to the Honeypot IP address.  

Scan 27 is a switch level trace file, so it also includes traffic coming to other hosts 

connected to the same switch. Figure  7-1 shows the 3-D plot for the clusters created by 

the Hierarchical clustering algorithm. Table  7-6  shows the cluster ranges for each type of 

anomaly.  

 

Figure ‎7-1 3-D Hierarchical Clustering of scan 27 



87 

 

 

 

 

Table ‎7-6 Hierarchical Clustering of scan 27 with Min-Max Values 

 
Dst Port Ent Src Port Ent Dst IP Ent Total Payload Bytes Total Packets 

 
Min Max Min Max Min Max Min Max Min Max 

Cluster 1-PS 7.33 7.33 2.74 2.74 0.02 0.02 5.25 5.25 3.44 3.44 

Cluster 2-SC 0 2.38 0.88 2.48 0 1.9 2.18 3.82 0.3 1.58 

Cluster 3-MFD 1.64 1.64 1.41 1.41 1.06 1.06 7.06 7.06 4.23 4.23 

Cluster 4-PS 7.09 7.09 7.11 7.11 0.64 0.64 4.33 4.33 2.49 2.49 

Cluster 5-noise 0 1.21 0 1.21 0 0.21 0 0 0 0 

Cluster 6-PS 8.37 8.37 0.17 0.17 0 0 5.08 5.08 3.3 3.3 

Cluster 7-IRC 0 2.27 0 2.42 0 0.55 4.2 6.2 2.18 3.4 

Cluster 8-SC 3.04 3.12 2.61 3.41 0.23 2.12 5.51 5.71 2.83 3.07 

Cluster 9-VS 4.78 6.02 4.54 5.93 0 0 4.95 5.39 3.1 3.58 

 

 



88 

   7.3.1.2 DBSCAN 

When we applied DBSCAN clustering to the Scan 27, it produced eight clusters. 

Clusters 2 and 4 match the threshold of the IRC Communication from a compromised 

machine to the botnet server. Clusters 5 and 6 match the threshold for the System 

compromise attack. Cluster 7 matches the malicious file down attack’s threshold. Cluster 

1 matches the HTML script kiddies attack and cluster 3 matches the slammer worm 

attack. Cluster 8 matches the threshold of the vulnerability scan attack. Figure  7-2 shows 

the 3-D plot of the DBSCAN clustering for the Scan 27. 

 

 

Figure ‎7-2 3-D DBSCAN clustering of scan 27 

 

 

 



89 

Table  7-7 represents the clusters created by the DBSCAN clustering along with the 

minimum and maximum values for each cluster. 

Table ‎7-7 DBSCAN Clustering of Scan 27 with Min-Max values 

 

Dst Port 

Ent 

Src Port 

Ent 
Dst IP Ent 

Total Payload 

Bytes 

Total 

Packets 

 
Min Max Min Max Min 

Ma

x 
Min Max Min Max 

Cluster 1-Html 

Script 
0.76 2.15 0.76 2.15 0 0.54 2.33 3.82 0.3 1.58 

Cluster 2-IRC 0 0 0 0 0 0 2.18 3.08 0.3 1.11 

Cluster 3-Slammer 1.53 1.64 0.92 1.53 
0.9

7 
1.06 3.02 3.14 0.6 1 

Cluster 4-IRC 0 0 1 1 0 0 2.92 3.26 0.3 1.04 

Cluster 5-SC 0 2.17 0 2.52 0 0.99 4.2 5.44 2.18 3.58 

Cluster 6-SC 1.91 2.37 2.31 2.36 1 1.38 2.68 2.92 0.3 0.48 

Cluster 7-MFD 0 0 1 1 0 0 5.08 5.51 2.83 3.3 

Cluster 8-VS 4.78 4.98 5.82 5.93 0 0 3.02 3.14 1 1 

 

Table  7-8 presents the results comparison of both clustering algorithms against the 

reported results as well as the detection results of sqalli et al. [19]. The Hierarchical 

Clustering algorithm was successful in detecting 82% of the anomalies except for the 

Buffer Overflow attack, the Slammer worm attack, and the HTML script kiddies attack. 

Hierarchical clustering also performed very well in detecting the port scan attack, 

according to their intensity and categorized them in separate clusters. DBSCAN does not 

perform very well on this dataset as it only detected 71% of the anomalies. DBSCAN was 

unable to detect any of the port scan attacks or buffer overflow attacks. But, it was 



90 

successful in detecting the Slammer worm attack and the HTML script kiddies’ attack, 

which had gone undetected in Hierarchical clustering. Both Clustering algorithms are 

able to detect the system compromise attack and also the SMB attack on Microsoft 

services running on port 445. Both Clustering algorithms were also successful in 

detecting malicious file download and IRC Communication attacks.  

 

Table ‎7-8 Result Comparison for scan 27 

Type of Anomaly 
No. of  

Occurrences 

Hierarchical 

Clustering 
DBSCAN 

Sqalli et 

al[19] 

SMB Attacks 5 Yes, one cluster Yes, one cluster Yes 

System Compromise 1 Yes, one cluster Yes, one cluster Yes 

Slammer Worm 1 
Merged in other 

Cluster 
Yes, one cluster Not detected 

HTML Script 

Kiddies 
1 

Merged in other 

Cluster 
Yes, one cluster Yes 

Buffer Overflow 1 
Merged in other 

Cluster 

Merged in other 

Cluster 
Yes 

Malicious File 

Download 
1 Yes, one cluster Yes, one cluster Yes 

Port Scan 3 Yes, Three cluster Not Detected 
Yes, 1 

occurrence 

Vulnerability Scan 1 Yes, one cluster Yes, one cluster Not detected 

IRC Communication 2 Yes, one cluster Yes, two cluster Yes 

 

 



91 

  7.3.2  Dionaea Capture Trace-1 

The Dionaea Capture Trace-1 was captured by the Saudi Honeynet Project team as 

part of their Honeypot deployment inside KFUPM network. The anomalies for this trace 

that have been reported by the Saudi Honeynet Project team in Sqalli et al. [19]are 

presented in Table  7-9. 

Table ‎7-9 Reported Anomalies in Dionaea Capture Trace-1 

Type of Anomaly No. of  Occurrences 

Web Robots 2 

System Compromise, 

SQL Brute Force 

2 

Connection attempts 

on popular ports 

4 

SIP Worm 1 

Port Scan 3 

 

   7.3.2.1 Hierarchical Clustering  

When we applied Hierarchical clustering to the Dionaea Capture Trace-1, we 

obtained eight clusters as output. Cluster 4 represents the port scan attack. Clusters 5 and 

6 represent the system compromise attack on the SQL by brute forcing or password 

guessing. Clusters 7 and 8 match the threshold of the attack on the popular ports by 

having multiple connection attempts. Cluster 1 matches the threshold of the web robots 

attack on the honeypot and cluster 2 represents the SIP worm attack, which tries to 

connect of the SIP port 5060. Cluster 3 represents the noise in the available dataset. This 

noise is mostly due to the fact that all the packets available in the dataset are not coming 



92 

from or going towards the Honeypot. Figure  7-3 shows the 3-D plot of the Hierarchical 

clustering on the Dioanea Capture Trace-1.  

 

 

Figure ‎7-3 3-D plot of the Hierarchical Clustering of Dionaea Capture Trace-1 

Table  7-10 represents the cluster created by the Hierarchical clustering along with the 

minimum and maximum values for each cluster. 

 

 

 

 



93 

Table ‎7-10 Hierarchical Clustering of Dioanaea Capture trace-1 with Min-Max Values 

 

Dst Port 

Ent 

Src Port 

Ent 
Dst IP Ent 

Total Payload 

Bytes 

Total 

Packets 

 
Min Max Min Max Min Max Min Max Min Max 

Cluster 1-Web Robots 6.37 7.25 8.68 9.66 0 0.57 5.72 6 3.74 4.02 

Cluster 2-SIP 0.86 2.32 0.92 2.59 0 1 2.09 4.12 0.3 1.79 

Cluster 3-noise 0 0 0 0 0 0 0 0 0 0 

Cluster 4-PS 
10.3

3 

11.4

4 
7.56 

10.5

4 
0.17 0.59 5.3 6.23 3.49 4.42 

Cluster 5-SC SQL BF 6.65 6.65 3.98 3.98 0.01 0.01 5.71 5.71 3.82 3.82 

Cluster 6-SC- SQL BF 5.64 7.07 6.52 7.96 0 1.56 5.18 5.66 3.18 3.6 

Cluster 7-Conection 

attempts 
1.88 4.39 2.2 4.48 0 1.14 2.99 4.21 1.23 2.36 

Cluster 8-Connection 

Attempts 
3.65 3.92 5.16 6.28 2.09 2.56 4.67 5.35 2.62 3.15 

 

   7.3.2.2 DBSCAN 

When we applied DBSCAN clustering to the Dionaea Capture Trace-1, it produced 

six clusters. Clusters 1 and 4 represent the System Compromise attack on the MS-SQL 

service by brute forcing or password guessing. Cluster 2 matches the threshold of the 

attack on the popular services by having various connection attempts. Clusters 3 and 5 

represent the port scan attack on the Honeypot IP address, while cluster 6 matches the 

threshold of the web robots attack on the Honeypot. Web robots are mostly automated 

scripts which crawl over the Internet, looking for vulnerable web servers. Figure  7-4 

represents the 3-D plot of the DBSCAN clustering for the Dionaea Capture Trace-1. 



94 

 

 

 

 

 

Figure ‎7-4 3-D plot of DBSCAN clustering of Dionaea Capture Trace-1 

 

 

 

 

 



95 

Table  7-11 shows the DBSCAN Clustering of the Dionaea Capture Trace-1 with the 

minimum and maximum values of each cluster.  

 

Table ‎7-11 DBSCAN Clustering of Dionaea Capture Trace -1 with Min-Max Values 

 

Dst Port 

Ent 

Src Port 

Ent 
Dst IP Ent 

Total Payload 

Bytes 

Total 

Packets 

 
Min Max Min Max Min Max Min Max Min Max 

Cluster 1-SC-SQL BF 6.65 6.93 3.98 4.55 0.01 0.01 5.71 5.93 3.82 4.04 

Cluster 2- Connection 

attempts 
0.86 4.26 0.92 4.48 0 1.14 2.09 4.21 0.3 2.36 

Cluster 3-PS 10.5 11.0 7.56 7.76 0.21 0.42 5.38 5.47 3.6 3.67 

Cluster 4--SC-SQL BF 6.52 7.07 6.52 7.07 0 0.2 5.18 5.3 3.18 3.3 

Cluster 5-PS 11.2 11.4 9.05 9.21 0.17 0.35 5.84 6.23 4.05 4.42 

Cluster 6- Web robots 7.01 7.25 9.36 9.66 0 0.57 5.96 6 3.97 4.02 

 

Table  7-12 represents the results comparison of both clustering algorithms against the 

reported results as well as the detection results of sqalli et al. [19]. The Hierarchical 

Clustering algorithm was successful in detecting all of the anomalies. The Hierarchical 

clustering performed very well in detecting the port scan attack, and SQL brute force 

attacks. Hierarchical clustering was also able to detect the SIP worm attack. DBSCAN 

also perform very well on this dataset as it was able to detect 92% of the attacks. It was 

also successful in detecting port scan attacks and placing them in a separate cluster 

according to their intensity. However, DBSCAN was unable to detect the SIP worm 



96 

attack. Both Clustering algorithms are able to detect the system compromise attack, 

which was an SQL brute force in this case. Both Clustering algorithms were also 

successful in detecting the Web robots attack and the multiple connection request attack. 

Table ‎7-12 Comparison of the reported results with Clustering result 

Type of Anomaly 
No. of  

Occurrences 

Hierarchical 

Clustering 
DBSCAN 

Sqalli et all, 

[19] 

Web Robots 2 Yes, 1 Cluster Yes, 1 Cluster Yes 

System Compromise, SQL 

Brute Force 
2 Yes, 2 Clusters Yes, 2 Clusters Yes 

Connection attempts on 

popular ports 
4 Yes, 2 Clusters Yes, 1 Cluster Yes 

SIP Worm 1 Yes, 1 Cluster 
Merged in other 

Cluster 
Not detected 

Port Scan 3 Yes, 1 Cluster Yes, 2 Cluster Yes 

 

  7.3.3  Dionaea Capture Trace-2 

Dionaea Capture Trace-2 was captured by the Saudi Honeynet Project team as part of 

their Honeypot deployment inside the KFUPM network. The following anomalies have 

been reported for this trace by the Saudi Honeynet Project team in Sqalli et al. [19], and 

are presented in Table  7-13. 

 

 

 

 



97 

Table ‎7-13 Reported results for the Dionaea Capture Trace-2 

Type of Anomaly No. of  Occurrences 

Vulnerability Scanning 1 

phpmyadmin Attacks 1 

Connection attempts on 

popular ports 
1 

SIP Worm 1 

 

   7.3.3.1 Hierarchical Clustering 

When we applied Hierarchical clustering to the Dionaea Capture Trace-2 trace, we 

get five clusters as output. Cluster 4 matches the threshold values for the vulnerability 

scan. Cluster 2 matches the description of the attack targeted towards PhpMyAdmin. 

Cluster 5 matches the threshold of the attack on the popular port by having multiple 

connections; and in this dataset, the popular port used was the FTP port. Cluster 1 

matches the description of the SIP worm, and cluster 3 is labeled as noise. Noise in the 

datasets is due to the broadcast traffic and also to the traffic which is not intended for the 

Honeypot IP address. Figure  7-5  shows the 3-D plot of the Hierarchical Clustering of the 

Dionaea Capture Trace-2.  

 

 

 

 



98 

 

 

 

 

 

 

Figure ‎7-5 3-D plot of the Hierarchical Clustering of Dionaea Capture Trace-2 

 

 

 

 

 



99 

Table  7-14  shows the Hierarchical Clustering of the Dionaea Capture Trace-2 with 

the minimum and maximum values of each cluster. 

Table ‎7-14 Hierarchical Clustering of Dionaea Capture trace-2 with Min-Max Values 

 
Dst Port Ent Src Port Ent Dst IP Ent Total Payload Bytes Total Packets 

 
Min Max Min Max Min Max Min Max Min Max 

Cluster 1-SIP 0.81 2.32 0.92 2.25 0 1.09 2.06 3.91 0.3 2.06 

Cluster 2-PHP MA 0.92 2.41 0.92 2.41 0 2.53 4.39 5.93 2.32 4.12 

Cluster 3-noise 0 0 0 0 0 0 0 0 0 0 

Cluster 4-VS 0.92 0.92 9.22 9.22 0 0 2.09 2.09 0.3 0.3 

Cluster 5-FTP con 3.03 3.72 3.4 3.72 0 0.38 2.26 3.69 0.48 1.85 

 

   7.3.3.2 DBSCAN 

When we applied DBSCAN Clustering to the Dionaea Capture Trace-2, it produced 

five clusters. Clusters 1, 2, and 3 match the threshold of the attack on the PhpMyAdmin. 

Cluster 4 represents the SIP attack worm and Cluster 5 represents the attack on the FTP 

port. Figure  7-6  shows the 3-D clustering created by the DBSCAN from the Dionaea 

Capture Trace-2. 

 

 

 



100 

 

 

 

 

 

Figure ‎7-6 3-D plot of DBSCAN clustering of Dionaea Capture Trace-2 

 

 

 

 

 



101 

Table  7-15  shows the DBSCAN Clustering of the Dionaea Capture Trace-2 with the 

minimum and maximum values of each cluster. 

Table ‎7-15 DBSCAN Clustering of Dionaea Capture Trace -2 with Min-Max Values 

 
Dst Port Ent Src Port Ent Dst IP Ent 

Total Payload 

Bytes 
Total Packets 

 
Min Max Min Max Min Max Min Max Min Max 

Cluster 1-PHP 

MA 
1 2.41 0.92 2.41 0 0.48 4.88 5.93 2.88 4.12 

Cluster 2- PHP 

MA 
0.92 2.32 1 2 0 0 2.08 3.28 0.3 1.34 

Cluster 3- PHP 

MA 
0.92 2.25 0.92 2.25 0 1.09 3.12 3.85 1.08 1.65 

Cluster 4-SIP 1.52 1.59 1.52 1.59 0.81 1 2.06 2.41 0.3 0.6 

Cluster 5-FTP 

Con 
0.81 0.95 0.92 1.41 0 0.56 3.85 3.91 1.89 2.06 

 

Table  7-16  represents the comparison of the reported results with the results obtained 

by both clustering algorithms, as well as the comparison with the results reported by 

Sqalli et al. [19]. Hierarchical clustering was able to identify all the anomalies present in 

the Dionaea Capture Trace-2 dataset, including Vulnerability scanning, PhpMyAdmin 

attack, FTP attack, and the SIP worm attack. Similar to the Hierarchical clustering, 

DBSCAN Clustering was able to identify all the anomalies in the dataset. DBSCAN 

reported PhpMyAdmin attacks under 3 different clusters, while in the reported results it 

has only one occurrence. The reason of having multiple clusters in this case is that the 

dataset we used for this experiment has very few packets, and all the data points are very 

sparse. Also, the single occurrence of a PhpMyAdmin attack has similar IP and Port 

Entropy values, but the values of the total payload bytes and packet count vary during the 



102 

whole attack. This is due to the fact that a PhpMyAdmin attack starts with a very small 

number of packets, in which the attacker uses a specially crafted URL to gain access to 

the system. After that, the attacker tries to download a rootkit to the compromised 

PhpMyAdmin server, and this involves a high number of packets and payload bytes. 

Finally, the attacker uses the rootkit to run various commands on the compromised 

PhpMyAdmin server, and this involves a medium number of packets and payload bytes. 

So, all these three clusters lie in the same threshold area, but with little differences. 

Because of this, DBSCAN has labeled all the three clusters as a single anomaly category, 

i.e., the PhpMyAdmin attack. DBSCAN was also unable to identify the Vulnerability 

scan attack on the Honeypot IP. The 3-D graph of the original dataset shows the existence 

of the data points in the threshold region for the vulnerability scan, but DBSCAN was 

unable to identify the anomaly because the number of points is less than the number 

required to create a DBSCAN cluster within the neighborhood radius. For this reason, 

DBSCAN was not able to identify the Vulnerability scan. Table  7-16 presents the 

comparison of the reported results with the results obtained by the clustering algorithms.  

Table ‎7-16 Comparison of the reported results with Clustering result 

Type of Anomaly 
No. of  

Occurrences 

Hierarchical 

Clustering 
DBSCAN 

Sqalli et all, 

[19] 

Vulnerability Scanning 1 Yes, 1 Cluster 
Not 

detected 
Yes 

phpmyadmin Attacks 1 Yes, 1 Cluster 
Yes, 3 

Cluster 
Yes 

Connection attempts on 

popular ports 
1 Yes, 1 Cluster 

Yes, 1 

Cluster 
Yes 

SIP Worm 1 Yes, 1 Cluster 
Yes, 1 

Cluster 
Not detected 

 



103 

  7.3.4  Lab Capture 

This trace was created inside the lab environment. The purpose of this is to create 

synthetic anomalies trace, and then apply the anomaly detection technique to check 

whether it will detect these anomalies. We also used the same lab capture trace to 

evaluate the performance of the clustering algorithms. Table  7-17  shows the reported 

results for the Lab capture trace.  

Table ‎7-17 Reported results for the Lab Capture trace. 

Type of Anomaly No. of  Occurrences 

System Compromise, 

ICMP Flood 

3 

System Compromise 12 

Brute Force password 

guessing 

4 

SMB Attack 2 

Port Scan- NMAP 5 

Vulnerability Scan 1 

SSH Attack 1 

 

   7.3.4.1 Hierarchical Clustering  

When we applied the Hierarchical clustering to the Lab capture trace, it produced 

seven clusters. Cluster 6 matches the threshold of the port scan attack. Cluster 2 

represents the Vulnerability scan attack on the honeypot. Cluster 5 represents the ICMP 

Flood attack. Cluster 4 represents the system compromise attack on the SMB service. 

Cluster 7 matches the threshold for the system compromise attack. And, cluster 1 



104 

matches the threshold of the brute force password guessing attack, while cluster 3 

represents the noise present in the dataset. The noise in the dataset is mostly due to the 

packets, which are not directed to or from the Honeypot IP, and this happens mostly in 

the switch level datasets. Figure  7-7  represents the 3-D plot of the Hierarchical clustering 

produced for the lab capture trace.  

 

Figure ‎7-7 3-D plot of the Hierarchical Clustering for the Lab Capture Trace 

 

 

 

 

 

 



105 

Table  7-18  shows the Hierarchical Clustering of the Lab Capture trace with the 

minimum and maximum values of each cluster. 

Table ‎7-18  Hierarchical Clustering of Lab Capture trace with Min-Max Values 

 
Dst Port Ent Src Port Ent Dst IP Ent Total Payload Bytes Total Packets 

 
Min Max Min Max Min Max Min Max Min Max 

Cluster 1-BF 2.99 4.75 4.06 5.38 0 0.08 5 5.96 3 3.33 

Cluster 2-VS 11.45 12.32 11.46 12.33 0 0.02 5.86 5.99 4.07 4.2 

Cluster 3-noise 0 0 0 0 0 0 0 0 0 0 

Cluster 4-SMB 1.89 4.09 3.99 4.14 3.06 4.42 3.89 4.47 2.05 2.13 

Cluster 5-ICMP 4.05 8.07 6.13 8.12 0 0.23 4.86 6.21 3.07 4.33 

Cluster 6-PS 9.62 11.03 7.23 9.64 0 0.07 5.1 5.96 3.31 4.16 

Cluster 7-SC 0 3.92 0 3.92 0 3.37 2.39 5.67 0 3.3 

 

   7.3.4.2 DBSCAN  

DBSCAN Clustering of the lab capture trace produced ten clusters. Clusters 1, 7, and 

8 match the threshold of the System Compromise attack. Clusters 3, 4, and 5 represent 

the system compromise attack by ICMP Flooding. Cluster 9 matches the threshold of the 

System Compromise attack on the SMB service. Cluster 6 represents the brute force 

password guessing attack. Cluster 2 represents the port scan attack. Cluster 10 represents 

the noise in the dataset. Figure  7-8 shows the 3-D plot of the DBSCAN clustering for the 

lab capture trace.  



106 

 

 

 

 

 

 

Figure ‎7-8 3-D plot of DBSCAN clustering of Lab Capture Trace 

 

 

 

 

 



107 

Table  7-19  shows the DBSCAN Clustering of the lab capture trace with the 

minimum and maximum values of each cluster. 

Table ‎7-19 DBSCAN Clustering of Lab Capture Trace with Min-Max Values 

 
Dst Port Ent Src Port Ent Dst IP Ent Total Payload Bytes Total Packets 

 
Min Max Min Max Min Max Min Max Min Max 

Cluster 1-SC 0 3.92 0 3.92 0 1.94 2.39 4.88 0.6 2.85 

Cluster 2-PS 11.45 11.57 11.46 11.58 0 0.01 5.86 5.99 4.07 4.2 

Cluster 3 ICMP 8.02 8.07 8.05 8.09 0.11 0.23 4.86 4.88 3.07 3.09 

Cluster 4- ICMP 6.83 7.12 6.83 7.12 0 0 5.4 5.46 3.49 3.55 

Cluster 5-ICMP 6.09 6.44 6.13 6.49 0 0 6.09 6.21 4.24 4.33 

Cluster 6-BF 4.33 4.75 4.06 5.38 0 0.08 5 5.53 3 3.33 

Cluster 7-SC 1.25 1.69 1.26 1.72 0 0 5.42 5.67 3.06 3.3 

Cluster 8-SC 1.86 2.17 2.19 2.59 0 0.49 5.18 5.47 2.38 2.51 

Cluster 9-SMB 3.18 3.28 3.18 3.31 0.35 0.35 5.16 5.2 2.54 2.54 

Cluster 10-Noise 0 0 0 0 0 0 0 0 0 0 

 

Table  7-20 represents the comparison of the reported results with the results produced 

by the clustering process, and it also includes the comparison with the results reported by 

sqalli et al. [19]. Hierarchical clustering was able to identify all the attacks and put them 

in separate clusters. Only two attacks, SSH attack and path overflow exploit, are not 

detected by the Hierarchical clustering algorithm. Other than these two attacks, all other 

attacks were detected.  DBSCAN also performed very well on this trace as it was able to 



108 

identify 93% of anomalies. For ICMP flood attack and System comprise attack, 

DBSCAN created three separate clusters for each attack. The reason for creating three 

separate clusters is the difference in the intensity of the attack, but all three clusters lay 

inside the defined threshold for the attack, so all the attacks are labeled under the same 

anomaly type.  

Table ‎7-20 Comparison of the reported results with Clustering result 

Type of Anomaly 
No. of  

Occurrences 

Hierarchical 

Clustering 
DBSCAN 

Sqalli et all, 

[19] 

System Compromise, 

ICMP Flood 
3 Yes, 1 cluster Yes, 3 Clusters Yes 

System Compromise 12 Yes, 1 cluster Yes, 3 Clusters Yes 

Brute Force password 

guessing 
4 Yes, 1 cluster Yes, 1 Cluster Yes 

SMB Attack 24 Yes, 1 cluster Yes, 1 Cluster Yes 

Port Scan- NMAP 5 Yes, 1 cluster Yes, 1 Cluster Yes 

Vulnerability Scan 1 Yes, 1 cluster Not Detected Yes 

SSH Attack 1 
Merged in other 

Cluster 

Merged in other 

Cluster 
No 

Path Overflow exploit 1 
Merged in other 

Cluster 

Merged in other 

Cluster 
No 

 

7.4  RESULTS OVERVIEW 

Table 7-21 shows the performance overview of both clustering algorithms, 

Hierarchical Clustering and DBSCAN, against all the network trace files used for the 

experimentation. It also compares our results with the results reported by Sqalli et al. 

[19]. In Table 7-21, the first column represents the trace files used, the second column 



109 

represents the number of anomalies detected by Sqalli et al. [19], while the third and 

fourth columns represent the number of anomalies detected by Hierarchical clustering 

and DBSCAN, respectively, along with their percentage of success in comparison with 

the results reported by Sqalli et al. [19]. 

Table ‎7-21 Performance of clustering algorithms against each Trace file 

Trace Name Sqalli et al. [19] Hierarchical Clustering DBSCAN 

Scan 27 17 14 (82%) 12 (71%) 

Dionaea Capture trace-1 12 12 (100%) 11 (92%) 

Dionaea Capture trace-2 5 5 (100%) 4 (80%) 

Lab Capture 15 15 (100%) 14 (93%) 

 

Table 7-22 shows the performance overview of both clustering algorithms, 

Hierarchical Clustering and DBSCAN, against different anomaly types present in the 

network trace files used for the experimentation. It also compares our results with the 

results reported by Sqalli et al. [19]. 

 

 



110 

Table ‎7-22 Performance of clustering algorithms against each Anomaly Type 

Anomaly Type Sqalli et al. [19] 
Hierarchical 

Clustering 
DBSCAN 

System 

Compromise 
66 61 (92.4%) 62 (93.9%) 

IRC 

Communication 
2 2 (100%) 2 (100%) 

Malicious File 

Download 
1 1 (100%) 1 (100%) 

Port Scan 13 13 (100%) 8 (61.5%) 

 

Tables 7-21 and 7-22 present the performance results of Hierarchical clustering and 

DBSCAN clustering in comparison with the results reported by Sqalli et al. [19] along 

with the percentage success. The results calculated by the automatic clustering algorithms 

showed performance  comparable to the anomaly detection technique used by Sqalli et al. 

[19], with the added advantage of automation of the whole anomaly detection process. In 

this way, we can analyze very large network trace files in very limited time by using the 

clustering algorithms. The detailed analysis of these results along with the future 

recommendations is discussed in the Chapter 8.  

 



111 

CHAPTER 8                                                                                    

Conclusion and Future Work 

Honeypots are deployed to have a better understanding of the network attacks and 

network intrusions. So, analyzing the data produced by the Honeypots becomes a 

pivotal step in the understanding of the network attacks. We can easily relate the 

success of a Honeypot to the amount of data successfully analyzed and the network 

attack information extracted from the Honeypot data. The main focus of this thesis is 

to use an anomaly detection technique alongside with the automatic clustering of the 

detected anomalies. In this thesis, we used an anomaly detection technique which 

uses a combination of the volume and IP based features to calculate the entropy or 

volume values of the following selected features: 

 Destination Port Entropy 

 Source Port Entropy 

 Destination IP Entropy 

 Total Payload Bytes 

 Total Packet Count 

Once the entropy and log of volume values are calculated, these values are passed 

as input to the two clustering algorithms, i.e., DBSCAN and Hierarchical clustering. Both 



112 

clustering algorithms are implemented separately and their output is compared, to find 

out which clustering algorithm is a better candidate to use as an automatic clustering 

algorithm for anomaly detection in Honeynets.  

Initially, we used some training datasets to check the suitability of the clustering 

algorithms and find the best combination of different tuning parameters. Initial 

experiments with the training datasets proved that the clusters created by the clustering 

algorithms are very much similar to the anomalies detected by the manual analysis of the 

entropy and volume values. Then, we applied both clustering algorithms to the unknown 

datasets and compared the results with the reported anomalies available in the datasets as 

well as those reported in earlier work.  

Our first and major contribution for thesis work is to develop a framework for the 

automatic cluster creation for the known anomalies based on their threshold values for 

each traffic feature. To develop this framework, we implemented two different clustering 

algorithms, Hierarchical Clustering and DBSCAN Clustering. Both algorithms were 

successful in identifying different anomalies from the unknown datasets. Another 

contribution of our work is the improvement of the time required to detect anomalies for 

any new dataset. This also minimizes the human input in the process of analyzing dataset 

and detecting anomalies present in it. If we use Hierarchical Clustering then the whole 

process is automated, and no human input is required. While for using DBSCAN, the 

only human input required is in providing the tuning parameters, Epsilon and Minimum 

Points.  

 



113 

8.1  FUTURE WORK 

The work presented in this thesis can be extended, so that it can provide more 

accurate and complete detection of different kinds of anomalies. Some ideas for future 

work are listed below. 

  A large dataset of known anomalies can be created by using different training 

datasets. This will help us to increase the detection rate as well as the accuracy 

of the detected results.  

 The antivirus companies and security analysts create defenses against new 

malwares by reverse engineering the network trace files. Our proposed 

anomaly detection mechanism can also be very helpful in pointing to some 

interesting segments in the network trace file, as each cluster member can lead 

directly to the time window where the actual attack has happened. This 

becomes very useful in case of very large trace files which are normally very 

difficult to reverse engineer because of the large number of packets as well as 

the long duration of the trace.  

 The amount of information provided by each cluster can be increased by 

adding more feature information with each data element, i.e., time 

information. By using the time distribution and the placement of the data 

elements inside the clusters, we can detect multiple attacks of the same type 

inside a particular cluster. And this will also help to create more resilient 

attack signatures. 



114 

 In this thesis, we applied both clustering algorithms separately from each 

other. In future, we can look at the possibility of having these two clustering 

algorithms working in cascade or in some other possible combination, in such 

a way that the output of one clustering algorithm could become the input for 

the other clustering algorithm. This may help us in fine tuning the cluster 

boundaries. 

8.2  LIMITATIONS 

The first drawback which we faced using the DBSCAN is its inability to detect the 

sparse anomalies. Sparse anomalies do not have the required minimum number of data 

points inside the neighborhood radius to create a DBSCAN cluster. In this case, 

DBSCAN does not create a cluster for the sparse anomaly, but instead it considers that 

particular anomaly as a noise.  

The second drawback came in the use of Hierarchical clustering, as it successfully 

detected most of the anomalies but it was unable to differentiate between two attacks of 

the same type but different intensities, or two specific attacks under a generalized 

category. This inability is due to the natural clustering criteria used in the Hierarchical 

clustering, since natural clustering criteria only create clusters when the dissimilarity 

coefficient has the maximum value.  

 

 



115 

References 

[1] L. Spitzner, Honeypots: tracking hackers: Addison-Wesley Professional, 2003. 

[2] L. Spitzner. (2012, April 10). Honeypots: Definitions and Value of Honeypots. 

Available: http://www.spitzner.net/honeypots.html 

[3] P. Barford, Y. Chen, A. Goyal, Z. Li, V. Paxson, and V. Yegneswaran, 

"Employing Honeynets For Network Situational Awareness," Cyber Situational 

Awareness, pp. 71-102, 2010. 

[4] D. Watson and J. Riden, "The honeynet project: Data collection tools, 

infrastructure, archives and analysis," in Proceedings of the 2008 WOMBAT 

Workshop on Information Security Threats Data Collection and Sharing, 2008, 

pp. 24-30. 

[5] V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection: A survey," ACM 

Computing Surveys (CSUR), vol. 41, p. 15, 2009. 

[6] P. J. Rousseeuw, A. M. Leroy, and J. Wiley, Robust regression and outlier 

detection vol. 3: Wiley Online Library, 1987. 

[7] M. Markou and S. Singh, "Novelty detection: a review--part 1: statistical 

approaches," Signal Processing, vol. 83, pp. 2481-2497, 2003. 

[8] P. N. Tan, M. Steinbach, and V. Kumar, Introduction to data mining: Pearson 

Addison Wesley Boston, 2006. 

[9] H. Jiawei and M. Kamber, "Data mining: concepts and techniques," San 

Francisco, CA, itd: Morgan Kaufmann, vol. 5, 2001. 

[10] F. Gong, "Deciphering detection techniques: Part ii anomaly-based intrusion 

detection," White Paper, McAfee Security, 2003. 

[11] A. Lakhina, M. Crovella, C. Diot, A. Lakhina, M. Crovella, and C. Diot, "Mining 

anomalies using traffic feature distributions," presented at the Proceedings of the 

2005 conference on Applications, technologies, architectures, and protocols for 

computer communications, Philadelphia, Pennsylvania, USA, 2005. 

[12] G. Nychis, V. Sekar, D. G. Andersen, H. Kim, and H. Zhang, "An empirical 

evaluation of entropy-based traffic anomaly detection," presented at the 

Proceedings of the 8th ACM SIGCOMM conference on Internet measurement, 

Vouliagmeni, Greece, 2008. 

[13] P. Barford, J. Kline, D. Plonka, and A. Ron, "A signal analysis of network traffic 

anomalies," presented at the Proceedings of the 2nd ACM SIGCOMM Workshop 

on Internet measurment, Marseille, France, 2002. 

[14] A. Dainotti, A. Pescape, and G. Ventre, "Wavelet-based Detection of DoS 

Attacks," in Global Telecommunications Conference, 2006. GLOBECOM '06. 

IEEE, 2006, pp. 1-6. 

http://www.spitzner.net/honeypots.html


116 

[15] J. Haggerty, T. Berry, Q. Shi, and M. Merabti, "DiDDeM: a system for early 

detection of TCP SYN flood attacks," in Global Telecommunications Conference, 

2004. GLOBECOM '04. IEEE, 2004, pp. 2037-2042 Vol.4. 

[16] D. Ping and S. Abe, "Detecting DoS attacks using packet size distribution," in 

Bio-Inspired Models of Network, Information and Computing Systems, 2007. 

Bionetics 2007. 2nd, 2007, pp. 93-96. 

[17] A. Kind, M. P. Stoecklin, and X. Dimitropoulos, "Histogram-based traffic 

anomaly detection," Network and Service Management, IEEE Transactions on, 

vol. 6, pp. 110-121, 2009. 

[18] F. Al-Haidari, M. Sqalli, K. Salah, and J. Hamodi, "An entropy-based 

countermeasure against intelligent DoS attacks targeting firewalls," in Policies for 

Distributed Systems and Networks, 2009. POLICY 2009. IEEE International 

Symposium on, 2009, pp. 41-44. 

[19] M. H. Sqalli, S. N. Firdous, Z. Baig, and F. Azzedin, "An Entropy and Volume-

Based Approach for Identifying Malicious Activities in Honeynet Traffic," in 

Cyberworlds (CW), 2011 International Conference on, 2011, pp. 23-30. 

[20] D. Barbara, J. Couto, S. Jajodia, L. Popyack, and N. Wu, "ADAM: Detecting 

intrusions by data mining," in In Proceedings of the IEEE Workshop on 

Information Assurance and Security, 2001. 

[21] O. Thonnard and M. Dacier, "A framework for attack patterns' discovery in 

honeynet data," digital investigation, vol. 5, pp. S128-S139, 2008. 

[22] H. Jin, O. de Vel, K. Zhang, and N. Liu, "Knowledge discovery from honeypot 

data for monitoring malicious attacks," AI 2008: Advances in Artificial 

Intelligence, pp. 470-481, 2008. 

[23] T. Cover and P. Hart, "Nearest neighbor pattern classification," Information 

Theory, IEEE Transactions on, vol. 13, pp. 21-27, 1967. 

[24] M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander, "LOF: identifying density-

based local outliers," Sigmod Record, vol. 29, pp. 93-104, 2000. 

[25] M. Ankerst, M. M. Breunig, H. P. Kriegel, and J. Sander, "OPTICS: ordering 

points to identify the clustering structure," ACM SIGMOD Record, vol. 28, pp. 

49-60, 1999. 

[26] A. Ghourabi, T. Abbes, and A. Bouhoula, "Data analyzer based on data mining 

for Honeypot Router," presented at the Proceedings of the ACS/IEEE 

International Conference on Computer Systems and Applications - AICCSA 

2010, 2010. 

[27] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for 

discovering clusters in large spatial databases with noise," in A density-based 

algorithm for discovering clusters in large spatial databases with noise, 1996, pp. 

226-231. 

[28] D. Fisher, "Improving inference through conceptual clustering," in Proceedings of 

the sixth National conference on Artificial intelligence - Volume 2, 1987, pp. 461-

465. 

[29] J. MacQueen, "Some methods for classification and analysis of multivariate 

observations," in Proc. of the fifth Berkeley Symposium on Mathematical 

Statistics and Probability, 1967, p. 14. 

[30] A. Maheshwari and M. M. Dabbeeru, "Title," unpublished|. 



117 

[31] C. D. Manning, P. Raghavan, and H. Schutze, Introduction to information 

retrieval vol. 1: Cambridge University Press Cambridge, 2008. 

[32] N. K. Malhotra, Marketing Research: An Applied Orientation, 5/e: Pearson 

Education India, 2008. 

[33] (2010, June 5). Honeynet.org. Honeynet Project, Honeynet Definitions, 

Requirements, and Standards Documentation, Honeynet Project website. 

Available: http://old.honeynet.org/alliance/requirements.html 

[34] Fyodor. (2011, July 25). Top 100 Network Security Tools Available: sectools.org/ 

[35] P. Laskov and M. Kloft, "A framework for quantitative security analysis of 

machine learning," in Proceedings of the 2nd ACM workshop on Security and 

artificial intelligence, 2009, pp. 1-4. 

[36] K. Rieck and P. Laskov, "Language models for detection of unknown attacks in 

network traffic," Journal in Computer Virology, vol. 2, pp. 243-256, 2007. 

[37] P. Düssel, C. Gehl, P. Laskov, J. U. Bußer, C. Störmann, and J. Kästner, "Cyber-

critical infrastructure protection using real-time payload-based anomaly 

detection," Critical Information Infrastructures Security, pp. 85-97, 2010. 

 

 

 

 

 

 

 

 

 

 

 

http://old.honeynet.org/alliance/requirements.html


118 

VITAE 

 Muhammad Shoieb Arshad 

 Born in Bahawalpur, Pakistan, on 16
th

 October, 1985 

 Nationality: Pakistani 

 Received B.S Computer Engineering from COMSATS Institute of Information 

Technology (CIIT) in August 2007 

 Worked in COMSATS Institute of Information Technology (CIIT) as Lecturer 

from Nov,2007 to Feb,2010  

 Joined King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia 

as a Research Assistant in February, 2009.   

 Completed M.S in Computer Networks from King Fahd University of Petroleum 

and Minerals, Dhahran, Saudi Arabia in May 2012.  

 E-mail: shoieb.arshad@gmail.com 

 Phone: 00966546975870 

 Present Address: P.O. Box 1542, King Fahd University of Petroleum and 

Minerals, Dhahran-31261, Saudi Arabia 

 Permanent Address: H. No. 29,  Muslim Town, Bahawalpur, Pakistan 

 

 

mailto:shoieb.arshad@gmail.com

	Chapter 1                                                                                 Introduction
	1.1   Honeypots
	1.2   Data Mining and Anomaly Detection

	Chapter 2                                                                                          Problem Statement
	2.1   Background
	2.2   Aspects of anomaly detection
	2.2.1   Nature of Input Data
	2.2.2   Types of Anomalies
	2.2.3   Data Labels
	2.2.4   Output

	2.3   Motivation
	2.4   Scope of work

	Chapter 3                                                                                        Literature Survey
	3.1   Anomaly Detection Techniques
	3.2   Clustering Techniques for Anomaly Detection

	Chapter 4                                                                                            Proposed Solution
	4.1   Introduction
	4.2   Clustering
	4.3   Categorization of Clustering Methods
	4.4   DBSCAN
	4.5   Hierarchical Clustering
	4.5.1   Agglomerative Clustering
	4.5.2   Linkages


	Chapter 5                                                                              DBSCAN
	5.1   Implementation
	5.1.1   Parameter Tuning

	5.2   Experimental Results
	5.2.1   Scan 14
	5.2.2   Scan 19
	5.2.3   Scan 28

	5.3   Results and Discussion

	Chapter 6                                                                                  Hierarchical Clustering
	6.1   Implementation
	6.2   Initial Experiments
	6.2.1   Average Linkage Clustering
	6.2.1.1 Scan-14
	6.2.1.2 Scan-28 Day-3

	6.2.2   Centroid Linkage Clustering
	6.2.2.1 Scan-14
	6.2.2.2 Scan-28 Day-3


	6.3   Results Discussion

	Chapter 7                                              Performance Analysis
	7.1   Experimental Setup
	7.2   Description of traces used
	7.2.1   Scan 27
	7.2.2   Dionaea Capture Trace
	7.2.3   Lab Trace

	7.3   Collected Results
	7.3.1   Scan 27
	7.3.1.1 Hierarchical Clustering
	7.3.1.2 DBSCAN

	7.3.2   Dionaea Capture Trace-1
	7.3.2.1 Hierarchical Clustering
	7.3.2.2 DBSCAN

	7.3.3   Dionaea Capture Trace-2
	7.3.3.1 Hierarchical Clustering
	7.3.3.2 DBSCAN

	7.3.4   Lab Capture
	7.3.4.1 Hierarchical Clustering
	7.3.4.2 DBSCAN


	7.4   results Overview

	Chapter 8                                                                                    Conclusion and Future Work
	8.1   Future Work
	8.2   Limitations

	References
	VITAE

