




 

 

 

 

 

 

 

 

 

 

 

Dedicated to 

My parents, wife, sisters and brother 



 

iv 

 

ACKNOWLEDGEMENT 

 

 

Verily, all praise is to ALLAH, the creator and sustainer of the worlds, the ONE who 

deserves all gratitude and the ONE whom we turn for help. The successful completion of 

this thesis is solely attributed to the mercy of ALLAH.  

 

The various facilities and resources provided by the King Fahd University of Petroleum 

and Minerals deserve special acknowledgment. This thesis would not have been possible 

without the help and guidance of several individuals who in one way or another 

contributed and extended their valuable assistance in course of this endeavor.  

 

First and foremost, I owe my deepest gratitude to my thesis advisor Dr. Moataz Ahmed 

whose sincerity, knowledge and compassionate attitude is unquestionable. I thank him for 

being my inspiration, role model and an elder brother which helped me overcome the 

difficulties during the course of this research work. One simply cannot wish for a better 

and friendlier advisor.  

 



 

v 

 

I sincerely thank my committee members Dr. Mohammad Alshayeb and Dr. Wasfi Al-

Khatib for their support, observations and helpful feedback.  

 

The honest and valuable assistance of my dear friends Hamza Salami and Sameer Arastu 

deserve special mention. I also wish to thank all my friends in the student housing who 

made my stay at KFUPM memorable. May ALLAH bless them and help them in their 

future endeavors. 

 

Finally, I would like to thank my family members for their continuous support, patience 

and prayers. 

 

 

 

 

 

 

 

 

 

 



 

vi 

 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENT .............................................................................................. IV 

TABLE OF CONTENTS ............................................................................................... VI 

LIST OF TABLES ....................................................................................................... XIII 

LIST OF FIGURES ..................................................................................................... XVI 

THESIS ABSTRACT .................................................................................................... XX 

الرسالة ملخص  ....................................................................................................................... XXI 

CHAPTER 1 INTRODUCTION ..................................................................................... 1 

1.1. Research Questions .............................................................................................. 5 

1.2. Main Contributions .............................................................................................. 7 

1.3. Organization of the Thesis ................................................................................... 8 

CHAPTER 2 BACKGROUND ........................................................................................ 9 

2.1. Use-Case based Effort Prediction ........................................................................ 9 

2.2. Fuzzy Logic ....................................................................................................... 12 

2.2.1. Fundamentals of Fuzzy Logic ..................................................................... 15 

2.2.2. Fuzzy Logic Systems .................................................................................. 20 

2.2.3. Adaptive Fuzzy Logic Systems .................................................................. 21 



 

vii 

 

2.3. Genetic Algorithms ............................................................................................ 23 

2.3.1. Genetic Algorithms: Fundamentals and Terminology ................................ 24 

2.3.2. Process Flow in a Genetic Algorithm ......................................................... 28 

2.3.3. Genetic Fuzzy Systems ............................................................................... 28 

CHAPTER 3 LITERATURE REVIEW ....................................................................... 38 

3.1. Use-Case based Effort Prediction Techniques ................................................... 39 

3.1.1. Use Case Points..................................................................................... 39 

3.1.2. Transactions .......................................................................................... 40 

3.1.3. Paths ...................................................................................................... 40 

3.1.4. Extended Use Case Points .................................................................... 41 

3.1.5. UCPm .................................................................................................... 41 

3.1.6. Adapted Use Case Points ...................................................................... 41 

3.1.7. Use Case Size Points ............................................................................. 42 

3.1.8. Fuzzy Use Case Size Points .................................................................. 43 

3.1.9. Simplified Use Case Points ................................................................... 43 

3.1.10. Industrial Use Case Points .................................................................... 44 

3.2. Comparison Criteria ........................................................................................... 44 

3.2.1. Accuracy ............................................................................................... 45 

3.2.2. Ease of Use ........................................................................................... 45 

3.2.3. Use Case detail considerations.............................................................. 45 

3.2.4. Factor Inclusion .................................................................................... 46 

3.2.5. Adaptability........................................................................................... 46 



 

viii 

 

3.2.6. Handling Imprecision and Uncertainty ................................................. 47 

3.2.7. Sensitivity ............................................................................................. 47 

3.2.8. Transparency ......................................................................................... 47 

3.2.9. Appropriate use of Productivity Factor................................................. 48 

3.2.10. Artifacts Considered ............................................................................. 48 

3.2.11. Empirical Validations ........................................................................... 49 

3.3. Comparison of Prediction Techniques ............................................................... 49 

3.3.1. Accuracy ..................................................................................................... 50 

3.3.2. Ease of Use ................................................................................................. 51 

3.3.3. Use Case Detail Considerations .................................................................. 53 

3.3.4. Factor Inclusion .......................................................................................... 55 

3.3.5. Adaptability................................................................................................. 57 

3.3.6. Handling Imprecision and Uncertainty ....................................................... 58 

3.3.7. Sensitivity ................................................................................................... 59 

3.3.8. Transparency ............................................................................................... 60 

3.3.9. Appropriate Use of Productivity Factor ...................................................... 61 

3.3.10. Artifacts Considered ................................................................................. 63 

3.3.11. Empirical Validations ............................................................................... 64 

3.4. Analysis.............................................................................................................. 66 

CHAPTER 4 RESEARCH APPROACH AND PROPOSED FRAMEWORKS ...... 70 

4.1. Motivation and Research Approach ................................................................... 70 

4.2. „f-UCP’: Fuzzy Use Case Points Method .......................................................... 75 



 

ix 

 

4.2.1. Defining Antecedent and Consequent Fuzzy Sets ................................ 76 

4.2.2. Rule Base Formulation ......................................................................... 77 

4.2.3. f-UCP Training ..................................................................................... 78 

4.2.4. f-UCP Validation .................................................................................. 79 

4.3. The Proposed Adaptive Fuzzy Logic based Framework for Effort Prediction . 80 

4.3.1. Initializing the System .......................................................................... 80 

4.3.2. Formulating the Rule Base.................................................................... 84 

4.3.3. Training the System .............................................................................. 86 

4.3.4. Framework Validation .......................................................................... 88 

4.4. The Simplified Adaptive Fuzzy Logic based Framework for Effort Prediction 89 

4.4.1. Initializing the System .......................................................................... 90 

4.4.2. Formulating the Rule Base.................................................................... 90 

4.4.3. Training the System .............................................................................. 92 

4.4.4. Framework Validation .......................................................................... 92 

4.5. The Proposed Genetic Fuzzy System (GeFuSys-M) for evolving multi-layered 

architectures for Use-Case based Effort Prediction Systems .................................... 92 

4.5.1. Chromosome Design for GeFuSys-M .................................................. 95 

4.5.2. The Genetic Learning Process ............................................................ 100 

CHAPTER 5 EXAMINING THE IMPACT OF VARIOUS ALTERNATIVES ON 

PERFORMANCE ......................................................................................................... 102 

5.1. Factor Analysis ................................................................................................ 103 

5.1.1. Principal Components Analysis on Experience Factors (EF) ............. 104 



 

x 

 

5.1.2. Principal Components Analysis on Technical Complexity Factors 

(TCF) 105 

5.2. Training Algorithm .......................................................................................... 106 

5.3. Genetic Learning of Rule Sets ......................................................................... 110 

5.3.1. Chromosome Structure ............................................................................. 110 

5.3.2. Other Genetic Learning Considerations.................................................... 111 

5.4. Choice of Fuzzy Inference System .................................................................. 112 

5.4.1. Design details for comparing the Mamdani FIS and Sugeno FIS ............ 114 

5.5. Impact of Pairwise Combinations on the performance of the Simplified Effort 

Prediction Framework ............................................................................................. 117 

5.6. Impact of Design Parameters on the performance of the Simplified Effort 

Prediction Framework ............................................................................................. 120 

5.6.1. Method 1 for defining the parameters of the Gaussian membership 

functions 122 

5.6.2. Method 2 for defining the parameters of the Gaussian membership 

functions 123 

CHAPTER 6 EXPERIMENTS AND RESULTS ....................................................... 125 

6.1. Prediction Accuracy ......................................................................................... 125 

6.2. Artificial Data Generation ................................................................................ 126 

6.3. Experiment 1: Evaluating the prediction accuracy of the f-UCP model ......... 128 

6.3.1. Implementation Details ............................................................................. 128 

6.3.2. Results and Discussion ............................................................................. 129 



 

xi 

 

6.4. Experiment 2: Impact of TCF and EF on use-case based effort prediction ..... 133 

6.4.1. Implementation Details ............................................................................. 133 

6.4.2. Results and Discussion ............................................................................. 133 

6.5. Experiment 3: Evaluating the prediction accuracy of the proposed framework

................................................................................................................................. 139 

6.5.1. Implementation Details ............................................................................. 139 

6.5.2. Results and Discussion ............................................................................. 139 

6.6. Experiment 4: Evaluating the prediction accuracy of the simplified framework

................................................................................................................................. 145 

6.6.1. Implementation Details ............................................................................. 145 

6.6.2. Results and Discussion ............................................................................. 145 

6.7. Experiment 5: Impact of pairwise combinations on prediction accuracy ........ 151 

6.7.1. Results and Discussion ............................................................................. 151 

6.8. Experiment 6: Comparison of Mamdani type FLS vs. the Sugeno type FLS.. 158 

6.8.1. Results and Discussion ............................................................................. 158 

6.9. Experiment 7: Impact of design parameters on prediction accuracy ............... 165 

6.9.1. Results and Discussion ............................................................................. 165 

6.10. Experiment 8: Evaluating the system performance using genetic learning of 

rule sets ................................................................................................................... 172 

6.10.1. Implementation Details ........................................................................... 172 

6.10.2. Results and Discussion ........................................................................... 172 

6.11. Experiment 9: Impact of architecture on the effort prediction framework using 

GeFuSys-M ............................................................................................................. 177 



 

xii 

 

6.11.1. Implementation Details ........................................................................... 177 

6.11.2. Results and Discussion ........................................................................... 177 

CHAPTER 7 CONCLUSION ...................................................................................... 185 

7.1. Introduction ................................................................................................. 185 

7.2. Major Contributions .................................................................................... 185 

7.3. Limitations and Future Work ...................................................................... 187 

7.3.1. Limitations .......................................................................................... 187 

7.3.2. Future Work ........................................................................................ 188 

BIBLIOGRAPHY ......................................................................................................... 189 

CURRICULUM VITAE ............................................................................................... 202 



 

xiii 

 

LIST OF TABLES 

 

Table 1: Classification of Algorithmic Models .................................................................. 4 

Table 2: Evaluation of techniques based on „Accuracy‟ .................................................. 50 

Table 3: Evaluation of techniques based on „Ease of Use‟ ............................................... 51 

Table 4: Evaluation of techniques based on „Use Case Detail Considerations‟ ............... 53 

Table 5: Evaluation of techniques based on „Factor Inclusion‟ ........................................ 55 

Table 6: Evaluation of techniques based on „Adaptability‟ .............................................. 57 

Table 7: Evaluation of techniques based on „Handling Imprecision and Uncertainty‟ .... 58 

Table 8: Evaluation of techniques based on „Sensitivity‟ ................................................. 59 

Table 9: Evaluation of techniques based on „Transparency‟ ............................................ 60 

Table 10: Evaluation of techniques based on „Appropriate Use of Productivity Factor‟ . 61 

Table 11: Evaluation of techniques based on „Artifacts Considered‟............................... 63 

Table 12: Evaluation of techniques based on „Empirical Validations‟............................. 64 

Table 13: Chromosome Description ................................................................................. 96 

Table 14: Chromosome Description ............................................................................... 111 

Table 15: Design Considerations for the Genetic Learning Process .............................. 112 

Table 16: Comparison of Mamdani FIS and Sugeno FIS ............................................... 114 

Table 17: Summary of Prediction Quality on f-UCP using five different datasets, showing 

pred(25) and MARE values on training and testing datasets .................................. 130 



 

xiv 

 

Table 18: KMO and Bartlett's Test Results on TCF ....................................................... 135 

Table 19: Total Variance Explained - TCF ..................................................................... 135 

Table 20: Pattern Matrix - TCF ...................................................................................... 136 

Table 21: Component Correlation Matrix - TCF ............................................................ 136 

Table 22: KMO and Bartlett's Test on EF ...................................................................... 137 

Table 23: Total Variance Explained - EF ....................................................................... 137 

Table 24: Pattern Matrix - EF ......................................................................................... 138 

Table 25: Component Correlation Matrix - EF............................................................... 138 

Table 26: Summary of Prediction Quality on the Effort Prediction System using five 

different datasets, showing pred(25) and MARE values on training and testing 

datasets .................................................................................................................... 141 

Table 27: Summary of Prediction Quality on the Effort Prediction System using five 

different datasets, showing pred(25) and MARE values on training and testing 

datasets .................................................................................................................... 146 

Table 28: Summary of Prediction Quality on the Normal and Pairwise Effort Prediction 

Systems using five different datasets, showing pred(25) and MARE values on 

training and testing datasets .................................................................................... 152 

Table 29: Summary of Prediction Quality on the Mamdani and Sugeno Effort Prediction 

Systems using five different datasets, showing pred(25) and MARE values on 

training and testing datasets .................................................................................... 159 

Table 30: Summary of Prediction Quality on the Effort Prediction Systems (Parameter 

Design Method 1 and Method 2) using five different datasets, showing pred(25) and 

MARE values on training and testing datasets ....................................................... 166 



 

xv 

 

Table 31: Summary of information about the genetic learning process, showing minimum 

error (MARE) values in the sub-experiments ......................................................... 173 

Table 32: Summary of information about the genetic learning process of GeFuSys-M, 

showing minimum error (MARE) values in the sub-experiments .......................... 179 



 

xvi 

 

LIST OF FIGURES 

 

Figure 1: Classification of antecedent „Number of Simple UC‟ into fuzzy regions ......... 16 

Figure 2: Fuzzy Logic System with fuzzifier and defuzzifier .......................................... 21 

Figure 3: Process Flow in a Genetic Algorithm................................................................ 30 

Figure 4: Soft computing and learning in Fuzzy Systems ................................................ 31 

Figure 5: Hybridization in soft computing........................................................................ 33 

Figure 6: Genetic Learning using Pittsburgh Rule Encoding Approach .......................... 36 

Figure 7: Genetic Learning with Michigan Rule Encoding Approach ............................. 37 

Figure 8: The Research Approach .................................................................................... 74 

Figure 9: Architecture of the f-UCP method .................................................................... 76 

Figure 10: The Proposed Framework ............................................................................... 81 

Figure 11: The Proposed Simplified Framework for Effort Prediction ............................ 91 

Figure 12: Chromosome Structure for GeFuSys-M.......................................................... 96 

Figure 13: Adjacency matrix in case of 5 components ..................................................... 98 

Figure 14: Adjacency matrix in case of 4 components ..................................................... 98 

Figure 15: Chromosome Structure .................................................................................. 111 

Figure 16: Choices that need to be made before designing an FLS ................................ 122 

Figure 17: Prediction of effort using trained f-UCP on training dataset ......................... 131 

Figure 18: Prediction of effort using trained f-UCP on testing dataset .......................... 132 



 

xvii 

 

Figure 19: Average MARE graph of training the Effort Prediction System .................. 142 

Figure 20: Prediction of effort using the trained Effort Prediction System on training 

datasets .................................................................................................................... 143 

Figure 21: Prediction of effort using the trained Effort Prediction System on testing 

datasets .................................................................................................................... 144 

Figure 22: Average MARE graph of training the Effort Prediction System .................. 147 

Figure 23: Prediction of effort using the Effort Prediction System on training datasets 148 

Figure 24: Prediction of effort using the Effort Prediction System on testing datasets .. 149 

Figure 25: Comparison of training and testing errors (MARE) on the Effort Prediction 

System ..................................................................................................................... 150 

Figure 26: Average MARE graph of training the Normal and Pairwise Effort Prediction 

System ..................................................................................................................... 153 

Figure 27: Prediction of effort on Normal and Pairwise Effort Prediction Systems using 

training datasets ...................................................................................................... 154 

Figure 28: Prediction of effort using Normal and Pairwise Effort Prediction Systems on 

testing datasets ........................................................................................................ 155 

Figure 29: Comparison of training and testing errors (MARE) on the Normal Effort 

Prediction System ................................................................................................... 156 

Figure 30: Comparison of training and testing errors (MARE) on the Pairwise Effort 

Prediction System ................................................................................................... 157 

Figure 31: Average MARE graph of training the Mamdani (Method 1) and Sugeno 

(Method 2) Effort Prediction Systems .................................................................... 160 



 

xviii 

 

Figure 32: Prediction of effort using the Mamdani and Sugeno Effort Prediction Systems 

on training datasets ................................................................................................. 161 

Figure 33: Prediction of effort using the Mamdani and Sugeno Effort Prediction Systems 

on testing datasets ................................................................................................... 162 

Figure 34: Comparison of training and testing errors (MARE) on Mamdani Effort 

Prediction System (Method 1) ................................................................................ 163 

Figure 35: Comparison of training and testing errors (MARE) on Sugeno Effort 

Prediction System (Method 2) ................................................................................ 164 

Figure 36: Average MARE graph of training the Effort Prediction Systems (Method 1 

and Method 2) ......................................................................................................... 167 

Figure 37: Prediction of effort using the Effort Prediction Systems (Method 1 and 

Method 2) on training datasets ................................................................................ 168 

Figure 38: Prediction of effort using the Effort Prediction Systems (Method 1 and 

Method 2) on testing datasets ................................................................................. 169 

Figure 39: Comparison of training and testing errors (MARE) on the Effort Prediction 

System (Method 1) .................................................................................................. 170 

Figure 40: Comparison of training and testing errors (MARE) on the Effort Prediction 

System (Method 2) .................................................................................................. 171 

Figure 41: Best So Far Graph showing the error values (MARE) on the learning dataset 

for sub-experiment 1 ............................................................................................... 174 

Figure 42: Best So Far Graph showing the error values (MARE) on the learning dataset 

for sub-experiment 2 ............................................................................................... 175 



 

xix 

 

Figure 43: Best So Far Graph showing the error values (MARE) on the learning dataset 

for sub-experiment 3 ............................................................................................... 176 

Figure 44: Best So Far Graph showing the error values (MARE) on the learning dataset 

for sub-experiment 1 ............................................................................................... 180 

Figure 45: Best So Far Graph showing the error values (MARE) on the learning dataset 

for sub-experiment 2 ............................................................................................... 181 

Figure 46: Best So Far Graph showing the error values (MARE) on the learning dataset 

for sub-experiment 3 ............................................................................................... 182 

Figure 47: A four component sample architecture ......................................................... 183 

Figure 48: A three component sample architecture ........................................................ 183 

Figure 49: A three component sample architecture ........................................................ 184 



 

xx 

 

THESIS ABSTRACT 

Name:   Mohammed Wajahat Kamal 

Title:  Use-Case based Early Software Effort Prediction using Fuzzy 

Logic and Genetic Algorithms 

Major Field:  Computer Science 

Date of Degree: May 2012 

An important and challenging activity, Software Development Effort Prediction involves 

dealing with imprecision, uncertainty and dearth of information in the early stages of 

software development. With the focus shifting more towards the use of machine learning 

techniques, predicting effort using Fuzzy Logic, Neural Networks, Genetic Algorithms or 

a combination of these has also been heavily considered by the research community. This 

thesis presents an adaptive fuzzy logic based framework for use-case based effort 

prediction capable of handling imprecision and incorporating expert opinions. 

Additionally, a simplified framework is conceptualized and empirical evaluations 

regarding the impact of various objectives are investigated which show that the proposed 

frameworks are promising and produce acceptable results. Since prediction accuracy of 

a fuzzy logic based effort prediction system is highly dependent on the system 

architecture, the development of a genetic-fuzzy tool to evolve different architectures 

provides results pertaining to the impact of architectural differences on the accuracy of 

effort prediction systems. 
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الرسالة ملخص  

 

 يحًذ ٔجٓاخ كًال    :ــــــمـالاســــــــ

انرقذيز انًثكز نهجٓذ انطهٕب نرطٕيز انثزيجياذثاسرخذاو انًُطق انغايض إعرًاداً عهي  :الرسالة عنوان

 .يخطظ الاسرخذاو

 عهٕو انحاسة الآني ٔانًعهٕياخ  :ــصــالتخصــــ

 ْـ1433جًادي الاخزج   :رجــالتخ تاريخ

 

ٔذٕاجٓٓا ذحذياخ كثيزِ في ظم عذو اذضاح , ياخ يعرثز عًهيح يًّٓعًهيح ذقذيز انًجٕٓد انًثذٔل في ذطٕيز انثزيج

يع ٔجٕد اذجاِ تحثي كثيز يزكش . انزؤيح ٔعذو دقح ٔذٕافز انًعهٕياخ في ذهك انًزاحم انًثكزِ نرطٕيز انثزيجياخ

حذِ كم ٔا, ٔانخٕارسييح انجيُيح, انشثكاخ انعصثيح, (Fuzzy Logic)عهي اسرخذو ذقُياخ يثم انًُطق انغايض

في ْذا , تًفزدْا أ انجًع تيُٓا يٍ اجم ذقذيز انًجٕٓد انذي ذرطهثح عًهيح ذطٕيز انثزيجياخ في انًزاحم انًثكزج

يٍ اجم ذقذيز انجٓذ انًطهٕب نرطٕيز ( Fuzzy Logic)انعًم ذى ذقذيى اطار عًم يعرًذ عهي انًُطق انغايض

تحيث يرعايم اطار انعًم انًقذو ُْا تكفاءِ يع عذو , ( Use-Case)اعرًادا عهي يخططاخ الاسرخذاو, انثزيجياخ

ذى شزح ٔاخرثار اطار انعًم انًقذو  .ٔضٕح انزؤيح في تذاياخ يشاريع ذطٕيز انثزيجياخ ٔيرى فيّ ديج اراء انخثزاء

اخ ٔلاٌ ذقذيز انًجٕٓد انًطهٕب نرطٕيز انثزيجي. ٔكاَد انُرائج انري ذى انحصٕل عهيٓا ٔاعذِ ٔيقثٕنّ اني حذ كثيز

تاسرخذاو الانيح انًطزٔحّ في ْذا انثحث يعرًذ تصٕرج كثيز عهي يعًاريّ انُظاو ذى ذطٕيز اداج تزيجيح ذعرًذ عهي 

يٍ اجم دراسح اثز اسرخذاو عذد يٍ انًعًارياخ ( Fuzzy Logic)انًُطق انغايض كم يٍ انخٕارسييح انجيُيح ٔ

  .خانًخرهفح في دقح ذقذيز انجٓذ انًطهٕب نرطٕيز انثزيجيا
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CHAPTER 1 

INTRODUCTION 

 

 

 

Software Development Effort Prediction, more commonly referred to as Software Effort 

Estimation is basically a prediction procedure/methodology targeted at predicting the 

amount of effort (man/hour), cost and time required to actualize a software development 

task/job. Software Effort Prediction falls under the domain of the more abstract procedure 

of Software Cost Prediction. With regards to a particular software development project, 

the associated costs are related to hardware, training, traveling and mostly effort 

pertaining to the payment of software engineers or programmers‎[86]. As such it is 

noticeable that „effort‟ is the predominant factor for predicting the cost of a software 

development project. In order to obtain accurate and reliable „cost‟ estimates for software 

development projects, it is necessary to obtain accurate and reliable „effort‟ estimates. 

Consequently, a lot of research has been carried out in the domain of software effort 

prediction. Software effort prediction spawned some of the first attempts at rigorous 

software measurement, so it is the oldest, most mature aspect of software metrics ‎[81]. 
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Narrowing down the aspect of Software Cost Prediction to Software Effort Prediction, 

the focus shifts on the practices and methodologies used in the field of Effort Prediction. 

The major factor in predicting the effort is the size of the software system being 

developed. Accurately predicting the size of a software system is proportional to 

accurately predicting the effort required to develop the complete system ‎[40]. For this 

reason, various size metrics have been proposed by researchers in the academia and 

industry over the years. Typical size metrics are Lines of Code ‎[12], Function Points ‎[3], 

Use Case Points ‎[42], Class Points ‎[20], Feature Points, etc. In addition to the size of the 

software system, there are various other technical and non-technical factors involved in 

the effort prediction process. Videlicet, Effort Prediction is a complex procedure 

involving many factors and their interrelationships. Nevertheless, it is imperative for 

software development projects.  

 

According to Boehm et al ‎[10], the main goals of software cost and effort prediction are 

budgeting, tradeoff and risk analysis, project planning and control, and software 

improvement investment analysis. A good estimate can have many advantages for the 

project and understandably, a bad estimate can spell doom for a project. Underestimating 

the costs may result in management approving proposed systems that exceed their 

budgets, with underdeveloped functions and poor quality, and failure to complete on 

time, whereas overestimating may result in too many resources committed to the project, 

or, during contract bidding, result in not winning the contract, which can lead to loss of 

jobs ‎[53]. Since, predicting effort is an activity which is done relatively early in the 

software development lifecycle, it becomes a challenging task to accurately predict effort 
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based on incomplete, crude, uncertain and imprecise inputs ‎[45]‎[53]. Moreover, early 

estimates of size, for example based on requirements specification, are the most difficult 

to obtain, and they are often the least accurate, because very little detail is known about 

the project and the product at its start ‎[20]. Furthermore, available details are 

characterized as being imprecise and uncertain. It is also very difficult to model the 

relationships between various factors involved in the prediction process ‎[57].  

 

A variety of effort prediction models and metrics have been proposed to solve the 

problems associated with the prediction process. Unfortunately, there is not a single 

model which produces acceptable effort estimates in the early stages of the software 

development lifecycle. The issue is not with the design of the models but rather the 

uncertainty and imprecision involved in the overall process that makes it difficult to 

accurately predict effort. Broadly, the models are classified as algorithmic and non-

algorithmic. Algorithmic Models such as COCOMO ‎[10], COCOMO II ‎[10], SLIM ‎[71], 

Nelson Model, Wolverton Model, Doty Model, SoftCost, Price-S are some of the 

prominent effort prediction models in this domain. A brief discussion on the 

aforementioned models can be found in ‎[53]. Algorithmic models are further classified as 

empirical and analytical models. An empirical model utilizes data from previous projects 

to evaluate the project at hand and derives the formulae from the analysis, whereas an 

analytical model uses formulae based on global assumptions ‎[53]. A complete 

classification of the algorithmic models can be seen in Table 1. Non-algorithmic models 

comprise of the techniques and procedures related to Expert Judgment such as the Pert 

Technique and Delphi Technique. Analogy Costing is also one of the prominent effort 
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prediction methods commonly used. Other non-algorithmic models include Parkinson, 

Price-to-win, Top-down and Bottom-up procedures.     

 

Table 1: Classification of Algorithmic Models 

Algorithmic Models ‎[53] 

 Linear Multiplicative Power function Discrete Others 

Empirical Nelson Walston-Felix COCOMO Aron Price-S 

Analytical   Putnam  SoftCost 

 

 

In the recent years, there has been a trend shifting towards incorporation of artificial 

intelligence and machine learning concepts in multifarious domains, the domain of 

Software Effort Prediction is no exception. More recently, there have been various 

attempts to incorporate machine learning techniques such as Fuzzy Logic, Neural 

Networks, Bayesian Belief Networks, Genetic Algorithms and a combination of these in 

various Effort Prediction Models. A detailed reference to these works can be found in 

‎[79]‎[80]‎[81]. Such models have tried to deal with the imprecise and uncertain data 

available for prediction.  

 

Despite the availability of a plethora of models in the domain of software effort 

prediction, the domain still lacks an accomplished technique for accurately predicting 

effort ‎[40]. As a consequence, there is a continuous cycle of developmental and research 
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works aimed at producing efficient and reliable models for predicting effort 

‎[13]‎[14]‎[21]‎[34]‎[40]‎[41]‎[64]‎[70]. It is desirable to develop models which can produce 

accurate, efficient and reliable effort estimates in the early stages of software 

development. Considering the large scale of software development, minute improvements 

in the prediction accuracy is of significant importance. While developing new models, the 

focus lies in taking into consideration/deciding all the strengths and weaknesses of the 

available models and procedures. Decisions such as the choice of size metric, machine 

learning technique to be used and inclusion/exclusion of a number of internal factors are 

of significant importance. Another important deciding factor is to choose between purely 

algorithmic/mathematical models as opposed to a combination of expert opinion and 

mathematical models. More details pertaining to such considerations are discussed in the 

following sections. 

 

1.1. Research Questions 

The main aim of this research is to propose a framework for use-case based early effort 

prediction capable of dealing with imprecision and incorporating expert opinions which 

can produce accurate and reliable effort estimates.  

 

In order to meet the targets of this research, initially a critical literature review of the 

domain was conducted. The literature review can be classified in two sets. The first 

focused more on general effort estimation models which resulted in narrowing down our 

problem to using a specific size predictor, namely Use Cases (more details can be found 
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in Chapter 2). The second focused more on literature pertaining to Use Case (UC) based 

effort prediction. Both surveys were conducted systematically, the latter of which has 

been recently published ‎[40]‎[41].  

 

Based on the analysis of the critical literature review (see Section ‎3.4), the following 

research questions have been identified. 

 

1. How can fuzzy logic be employed to enable the development of transparent use 

case based effort prediction models capable of incorporating expert opinions?  

2. What are the factors that impact the accuracy of the effort prediction? Among the 

variety of factors considered by researchers in the prediction process, e.g., 

„technical complexity factors‟ and „experience factors‟, which factors can be 

ignored?  

3. What is the impact of using some strategies, e.g., pairwise combinations, in the 

context of defining rules for a specific fuzzy logic based effort prediction system? 

Can pairwise combinations be used to avoid the frequently faced problem of 

„curse of dimensionality‟ i.e. to reduce the exhaustive number of rules in a given 

fuzzy system?  

4. Does the choice of a particular implementation of a fuzzy logic system affect the 

prediction accuracy of the Effort Prediction System? More specifically, what is 

the difference in prediction accuracy of the system when either Mamdani type 

fuzzy logic system or Sugeno type fuzzy logic system is used?  
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5. How can Genetic Algorithms help in realizing an efficient Effort Prediction 

System? Is it possible to use genetic learning of fuzzy rule based architectures to 

evolve efficient effort prediction systems?  

6. Does the architecture of the prediction model have any effect on the model‟s 

prediction accuracy? Specifically, what is the impact of single-layer architecture 

vs. multi-layer architecture on the prediction accuracy of the Effort Prediction 

System? 

 

1.2. Main Contributions 

The main contributions of this work are as follows; 

i. Development of a use-case based effort prediction framework using fuzzy logic, 

capable of incorporating expert opinions and handling imprecision. 

ii. Identification and reduction of the 13 technical complexity factors and 8 

experience factors to 6 and 5 respectively, based on the results obtained from 

performing Factor Analysis.  

iii. Investigating the impact of using pairwise combinations for defining rules for the 

fuzzy logic based effort prediction system on the prediction accuracy. 

iv. Comparison of prediction accuracies for the Effort Prediction System obtained 

using Mamdani type fuzzy logic system and Sugeno type fuzzy logic system. 

v. Investigating the impact of design parameters on the prediction accuracy of the 

Effort Prediction System.  
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vi. An alternative proposal for a simplified use-case based effort prediction 

framework which includes input factors pertaining to actors and use-cases and 

excludes all the additional factors. 

vii. Development of a single-layer genetic fuzzy system for use-case based effort 

prediction, which gives the best prediction system in terms of prediction accuracy. 

viii. Design, development and implementation of a new chromosome structure for a 

generic multi-layer genetic fuzzy system (GeFuSys-M).  

ix. Fuzzifying the existing Use Case Points method to actualize an efficient model (f-

UCP) on similar lines as “f-COCOMO”.  

 

1.3. Organization of the Thesis 

The thesis is organized as follows. Chapter 2 provides a background for the core 

knowledge areas of this thesis such as Use Case based Effort Prediction, Fuzzy Logic and 

Genetic Algorithms. Chapter 3 presents the literature review on Use Case based Effort 

Prediction techniques. Chapter 4 discusses the research approach and the proposed 

frameworks for effort prediction. Chapter 5 presents the experimental designs, followed 

by Chapter 6 which discusses the experimental results. Chapter 7 concludes the thesis, 

highlights the contributions and provides directions for future research.  
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CHAPTER 2 

BACKGROUND 

 

 

 

This chapter provides the necessary background related to the core knowledge areas 

associated with this work. Three major knowledge areas have been covered quite 

extensively; Effort Prediction based on Use Cases, Fuzzy Logic and Genetic Algorithms. 

An avid reader can find more information in the references used in the course of this 

chapter. 

 

2.1. Use-Case based Effort Prediction 

The history of using use cases for effort prediction started with the development of the 

Unified Modeling Language (UML) ‎[76] by Jim Rumbaugh, Grady Booch, and Ivar 

Jacobson of Rational Software Corporation in mid-nineties ‎[36]. Sometime later, UML 

was incorporated into the Rational Unified Process RUP by Rational Software. 

Meanwhile, Gustav Karner also of Rational Software Corporation developed an 
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estimating technique to predict the effort required based on Use Cases, much the same 

way as Function Points ‎[3]. Karner‟s technique is known as Use Case Point (UCP) 

method ‎[42] and is incorporated into RUP. It is the basic estimating technique for 

predicting effort based on use cases. 

 

Use cases, as being available relatively early during the software development lifecycle, 

are expected to offer a good estimate of the size of the corresponding future system. This 

is of significant importance as effort estimates are required early in the software 

development lifecycle. Use cases are used to capture and describe the functional 

requirements of a software system. Use Case Models define the functional scope of the 

system. The Use Case model is relevant and valuable for early size measurement and 

predicting effort as it employs use cases as input. According to a survey conducted by 

Neil and Laplante ‎[68], 50% of the software projects have their requirements presented as 

Use Cases. Moreover, as Moira Forbes ‎[24] states, “With very little effort, you can use 

this technique to get a very early gross estimate. And it will be just as accurate (or 

inaccurate) as any other method you could use at this early stage in the project”. This 

highlights the fact that the effort required to predicting or estimating the effort required in 

a software project should also be minimum. This is echoed by Ochodek et al ‎[70] while 

stating the two kinds of useful research in this field, amongst which the following applies 

in this context; “making effort estimation more accurate without increasing the time and 

money spent on effort estimation”.  

 



11 

 

Based on the aforementioned facts, the approach to estimate effort using Use Cases has 

gained popularity and subsequently the basic technique of UCP has gained more 

recognition. Consequently, many techniques based on UCP have been proposed since 

then, like Use Case Size Points ‎[13], Extended Use Case Points ‎[22], UCP modified ‎[21], 

Adapted Use Case Points ‎[64], Transactions ‎[73] and Paths ‎[73] to mention a few. A 

more detailed description of a few Use Case based effort prediction techniques will be 

presented in the following sub sections. 

 

Along with the advantages of using these methods, several issues and concerns about 

these approaches have also been raised. Few of the problems are as follows; varying 

complexities in the use case models, adjusting the technical complexity factors and 

experience factors, classification of use cases and the overall construction of the UCP 

method. Additionally, there are few problems associated with using Use Cases as well 

‎[1]‎[40]. First, there is no standardized style of writing a Use Case. The variations in the 

style and formality of writing a Use Case brings about many issues like how to measure 

the size of the Use Case, and how to classify the Use Case.  

 

Second, an important issue with Use cases is the assessment of complexity of the Use 

Case. In a typical CRUD scenario (Create, Replace, Update, Delete), is it correct to 

consider the UC as one UC with four scenarios or one UC with one scenario, as all the 

other scenarios are so similar. Third, a UC represents an external actor‟s view. In case the 

system has states, it becomes necessary to define another model to represent this behavior 

which is quite complex. Fourth, granularity of Use Cases is another big issue. Questions 
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like these do not have specific answers: what is the optimum length and what are the 

details that should be mentioned while describing a UC? Fifth, most of the researchers 

complain about the non-consideration of non-functional requirements in the Use Case 

models.  

 

This raises the question that, are UCs a good choice to depend on for estimating effort? 

The answer lies with the proper evaluation and investigation of these approaches. 

Different proposed approaches have tried to address some of these issues and many of 

them have ameliorated some problems as well, but there is not a single approach which 

addresses all issues satisfactorily. We discuss these approaches and compare them for 

analysis against some criteria in Chapter 3.  

  

2.2. Fuzzy Logic 

Human beings are undoubtedly gifted with the remarkable ability to reason and make 

decisions in highly imprecise, unstructured, uncertain and ambiguous environments. It is 

this ability which creates the differentiating factor between machines and humans. In 

order to realize the goal of Artificial Intelligence, which aims at minimizing differences 

between a human and a machine, many novel concepts have been conceived and 

implemented ‎[77]. Terms such as „machine learning‟ and „soft computing‟ are not new 

paradigms, with the former encompassing a huge variety of techniques and the latter 

comprising majorly of techniques such as Fuzzy Logic ‎[99]‎[100], Artificial Neural 

Networks ‎[57], Bayesian Networks ‎[22] and Genetic Algorithms ‎[19]. Another sub-field 

of artificial intelligence is „Computational Intelligence‟ which comprises majorly of 
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Fuzzy Logic, Neural Networks and Evolutionary Computation ‎[19]. The main aim of all 

these concepts is to bring machine level intelligence on par with human level intelligence, 

in other words making the machine capable enough to deal with imprecision, uncertainty 

and partiality of knowledge. 

 

Fuzzy Logic, a novel idea first conceived by Professor Lotfi Zadeh in 1965 caused a huge 

paradigm shift in the domain of artificial intelligence. According to Zadeh ‎[99], fuzzy 

logic is “a logic which mirrors the remarkable capability of human mind to reason with 

information which is imprecise, uncertain and partially true”. The main motivation 

behind the concept of fuzzy logic is to deal with imprecision and uncertainty.  

 

Imprecision is the lack of exactness or defect in the accuracy of a certain measurable 

quantity. In terms of fuzzy logic, it refers to the vagueness associated with natural 

language. Instances of imprecision in statements are; “The weather is hot” and “The room 

temperature is very high”. From these statements, we have a subjective understanding 

about the terms „hot‟ and „very high‟, but we cannot quantify „hot‟ as being more than 30 

degrees Celsius or 35 degree Celsius. One can argue with the former and another can 

stick with later interpretation. This is what introduces vagueness in definition and 

ambiguity in interpretation, collectively termed as imprecision in natural language.  

 

Uncertainty refers to unpredictability, indeterminacy and indefiniteness. It applies to the 

prediction of future events or measurement of known/unknown quantities. In the field of 

Effort Prediction, there are numerous factors involving measurements and predictions, 
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and as such there is a lot of uncertainty associated with the overall process. Typically, 

uncertainty arises because of the following three reasons; volume of work, theoretical 

ignorance and practical ignorance ‎[60]. Furthermore, Mendel ‎[60] identified four sources 

of uncertainty while building systems based on fuzzy logic, in addition to the three 

sources of uncertainty in the effort prediction process.  

 

 Uncertainty about the meanings of the words that are used in a rule 

 Uncertainty about the consequent that is used in a rule 

 Uncertainty about the measurements that activate the FLS 

 Uncertainty about the data that are used to tune the parameters of a FLS  

 

A point to note is that the aforementioned four points will be more understandable to the 

reader provided they are familiar with the concepts of Fuzzy Logic Systems (FLS); 

nevertheless a description of the FLS is provided in the following sub-sections. 

Moreover, readers are advised to refer to ‎[67] for a more detailed explanation regarding 

uncertainty. In what follows next, are the necessary background related to the 

fundamentals of Fuzzy Logic, a brief description of Fuzzy Logic Systems and Adaptive 

Fuzzy Logic Systems. 
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2.2.1. Fundamentals of Fuzzy Logic 

This section introduces the basic concepts related to the theory and practice of fuzzy 

logic. 

 

2.2.1.1. Fuzzy Sets and Membership Functions 

Fuzzy Logic is based on the concept of fuzzy set theory which is an extension of the 

classical set theory. In classical set theory, the membership µA(x) of an element „x‟ in a 

set „A‟ is defined as µA(x) = 1, if and only if x belongs to A, and the membership is 

defined as µA(x) = 0, if and only if x does not belong to A. Such sets are also called crisp 

sets allowing only values of 0 or 1. Fuzzy set theory allows the concept of partial 

membership in sets, shown as follows; 

µA : X  [0,1] 

µA(x) is called the membership function and X is a reference set also called as Universe 

of discourse. Hence, µA(x) is interpreted as the degree of membership of x in fuzzy set A, 

where x belongs to X. A membership function (MF) is a curve that defines how each 

element in the input space is mapped to a membership value (or degree of membership) 

between 0 and 1. Amongst the many types of available membership functions, the 

commonly used MF‟s are Gaussian MF, triangular MF, trapezoidal MF and bell MF ‎[60]. 

For sake of illustration, an example of membership functions for the input factor 

„Number of Simple Use-Cases‟ is depicted in Figure 1. 
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Figure 1: Classification of antecedent ‘Number of Simple UC’ into fuzzy regions 

2.2.1.2. Linguistic Variables 

Any defined system has variables and each variable has defined values to achieve the 

functionality of the system. Fuzzy Logic uses „linguistic variables‟ and „linguistic values‟ 

in place of the normal variables and their corresponding values. A linguistic variable is a 

variable which accepts values in terms of words, also called linguistic terms. These words 

or „linguistic terms‟ are associated with a certain degree of membership in fuzzy sets.  



17 

 

Consider an instance, where in we need to represent „temperature‟ whose numerical value 

is 30 degree Celsius. The same sentence in terms of fuzzy logic can be represented by the 

following statements; 

 

 The temperature is high, with degree of membership 0.85 

 The temperature is medium, with degree of membership 0.5 

 The temperature is low, with degree of membership 0.15 

 

From the above statements, it is clear that statements in fuzzy logic are of the type 

“Linguistic Variable is Linguistic Value”, where „linguistic values‟ can take subjective 

values from the „linguistic term sets‟. An example of a „linguistic term set‟ for the 

„linguistic variable‟ temperature can be {very low, low, medium, high, very high}.  

 

2.2.1.3. Logical Operators 

Fuzzy Logic is a superset of Boolean Logic. The standard „AND‟ and „OR‟ operators of 

Boolean logic are replaced by the „MAX‟ and „MIN‟ operators respectively but the 

standard logical operations are the same.  

For all x belongs to X, the intersection of two fuzzy sets A and B results in another fuzzy 

set with the membership function defined as follows; 

μA∩B(x) = min (µA(x), µB(x)) 
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For all x belongs to X, the union of two fuzzy sets A and B results in another fuzzy set 

with the membership function defined as follows; 

μA∪B(x) = max (µA(x), µB(x)) 

Other additional operators include the t-norm and t-conorm operators. For brevity 

purposes, the detailed explanation about these operators has not been included. 

 

2.2.1.4. Fuzzy Rules 

Rules in fuzzy logic assume the form of „condition-action‟ pair, more precisely, „if-

then‟ pair. Typical fuzzy rules are of the form; 

if (x is A) then (y is B) 

„x‟ and „y‟ are the linguistic variables from the input ranges X and Y (universes of 

discourse) respectively. „A‟ and „B‟ are linguistic values defined by fuzzy sets on the 

ranges X and Y respectively. The if-part of the rule is called „antecedent‟ and the then-

part is called the „consequent‟.  

 

The antecedent of the rule returns a single value between 0 and 1, which is also called as 

„support of the rule‟. The consequent of the rule returns a fuzzy set which is assigned to 

the output. The output fuzzy set represented by a membership function is shaped 

according to the degree of support of the antecedents, and this process is called 

„Implication‟. In other words, if the antecedent of a rule is true to a certain degree, then 

the consequent is also true to the same degree. 
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Fuzzy Logic Rules can have multiple antecedents and consequents. A representation of 

such a rule is as follows; 

if (x is A) and (y is B) and (z is C) then (p is Q) and (r is S) 

In case of multiple antecedents, the degree of support of a rule is calculated by applying 

the fuzzy logical operators and a single number between 0 and 1 is computed. In case of 

multiple consequents, the degree of support of a rule equally affects the shape of all 

consequent fuzzy sets.  

 

2.2.1.5. Fuzzy Inference 

The process of fuzzy inference utilizes all the fuzzy logic concepts such as fuzzy sets, 

membership functions, linguistic variables, operators and fuzzy rules. Fuzzy inference is 

the process of mapping elements from the input domain to the elements of the output 

domain using fuzzy logic.  

 

The fuzzy inference process comprises of five main parts; 

 Fuzzification of the input variables 

 Computing the degree of support of each rule by using fuzzy operators (AND or 

OR) in the antecedent 

 Deriving the shape of the output fuzzy sets by implication from the antecedent to 

the consequent 
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 Aggregating all the output fuzzy sets across all rules into a single fuzzy set 

 Defuzzification of the output variables   

 

Systems which perform the fuzzy inference procedures are called Fuzzy Inference 

Systems or more generally referred to as Fuzzy Logic Systems. 

 

2.2.2. Fuzzy Logic Systems 

Fuzzy Logic Systems (FLS), commonly referred to as Fuzzy Rule based Systems, Fuzzy 

Expert Systems and Fuzzy Control Systems are class of systems which contribute in 

realizing the goal of artificial intelligence. The multifarious domains in which Fuzzy 

Logic Systems have been implemented complement the fact that they are an efficient 

means to solve complex problems when compared with mathematical models. Examples 

of domains where FLS have been employed include control theory, robotics, data 

classification, automation, computer vision, expert systems and decision support systems.  

 

Technically, FLS can be classified into three major types ‎[95];  

 Pure Fuzzy Logic Systems 

 Takagi and Sugeno Fuzzy Logic Systems (Sugeno FLS) ‎[92] 

 Fuzzy Logic Systems with fuzzifier and defuzzifier (Mamdani FLS) ‎[58] 

 

Typically, a fuzzy logic system comprises of four major components; 

 Fuzzifier: Performs conversion of the crisp input values to fuzzy sets. 

 Fuzzy Rule Base: Stores all the fuzzy „if-then‟ rules. Also called knowledge base.  
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 Fuzzy Inference Engine: Performs the fuzzy inference procedure (see Section 

‎2.2.1.5). 

 Defuzzifier: Performs conversion of fuzzy output sets to crisp output. 

 

 

Figure 2: Fuzzy Logic System with fuzzifier and defuzzifier 

 

Figure 2 presents a generic architecture of an FLS. More details pertaining to the 

architecture of an FLS can be found in ‎[95]. 

 

2.2.3. Adaptive Fuzzy Logic Systems 

Usually a predefined model is not present to fit a modeling scenario for a particular 

system. Only the numerical data (input-output pairs) for the system is available. In such a 

scenario, a generic fuzzy logic system can be modeled comprising of expert assisted 

design of membership functions and fuzzy rules. Training algorithms can then be applied 

to the FLS to fine tune the various parameters (shape of membership functions, position 
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of membership functions, number of rules in FLS, shape and position of consequent 

membership functions) associated with it. The numerical data assists in tuning the 

parameters. 

 

This process of adapting a fuzzy system to a given set of data is called „training the 

system‟ or „adapting the system‟ or „parameter learning‟. The training algorithms help the 

FLS to learn a given set of data it is modeling.   

 

A proper definition of Adaptive Fuzzy Systems is given by Wang ‎[95]; “An adaptive 

fuzzy system is defined as a fuzzy logic system equipped with a training algorithm, where 

the fuzzy logic system is constructed from a set of fuzzy IF-THEN rules using fuzzy logic 

principles, and the training algorithms adjust the parameters of the fuzzy logic system 

based on numerical information”.  

 

Further, Wang [95] states two ways of realizing an Adaptive Fuzzy Logic System; 

 Use of linguistic information (experts. knowledge) to develop an initial fuzzy logic 

system, and then adjust the parameters of the initial fuzzy logic system by using 

on numerical information. 

 Use of numerical information and linguistic information to develop two separate 

fuzzy logic systems, and then final fuzzy logic system is obtained by averaging 

them. 
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The first method is the more commonly used one in practice. Many techniques 

comprising of training routines are also available for implementing an Adaptive FLS. 

One such example is ANFIS, an acronym for Adaptive Neuro Fuzzy Inference System, 

which uses the back propagation algorithm or a combination of back propagation and 

least squares algorithm to train the fuzzy logic system. A point worth noting is that 

ANFIS uses Sugeno type FLS to implement the training. Another example which uses 

Mamdani FLS is the training procedure prescribed by Mendel ‎[60], wherein the means 

and standard deviations of the membership functions corresponding to the positions and 

shapes of membership functions are adjusted according to the input-output data pairs. 

Both of these methods have been utilized in course of this work and a comparison 

between the methods can also be seen in the following sections. 

 

2.3. Genetic Algorithms 

Genetic Algorithms (GAs) is a relatively old paradigm of evolutionary computation. 

Other recent paradigms include Swarm Intelligence, Ant Colony Optimization, 

Evolutionary Strategies and Particle Swarm Optimization. However, GAs is the most 

established among them all. Evolutionary Computation techniques use the concept of 

Darwinian principles and biological evolution to find highly optimized solutions for 

combinatorial problems.   

 

GAs was first conceived by John Holland in 1975. Basically, GA‟s are general purpose 

search algorithms which use the principles of natural genetics to evolve solutions to 

problems ‎[18]. GA‟s use three basic concepts of biological evolution namely; selection, 
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recombination and mutation to evolve a solution to a problem. The basic idea is to 

generate a set of possible solutions for a given problem and then apply the various GA 

operators related to selection, recombination and mutation to obtain a solution. Since, 

GA‟s produce enormous possibilities of solutions for a given problem, the probability of 

finding an optimal solution is very high. Because of this reason, genetic algorithms enjoy 

a special preference and are much favored in the domain of optimization problems. 

 

The following subsections introduce the necessary background related to the 

fundamentals and terminology of GA‟s, a brief description of the process flow in GA‟s 

and a concise introduction about Genetic Fuzzy Systems.  

 

 

2.3.1. Genetic Algorithms: Fundamentals and Terminology 

2.3.1.1. Chromosome 

Any GA starts with a set of candidate solutions. These solutions are encoded in a 

particular format. Most common methods of encoding are binary bit strings and real 

numbers. The structure which holds these encoded solutions is called a Chromosome. 
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2.3.1.2. Population 

Each chromosome represents a particular solution for a given problem. A set of 

chromosomes representing a set of solutions is called Population. Each solution is also 

known as an individual, hence a population comprises of a set of individuals. 

 

2.3.1.3. Fitness Function 

The fitness function is the function which needs to be optimized. The aim of the GA is to 

minimize the error associated with applying the individuals (solutions) to the fitness 

function and maximizing the fitness value. The fitness function is also referred to as the 

objective function. 

 

2.3.1.4. Generations 

As the GA progresses, individuals in a population are evaluated based on their fitness 

value. Consequently, GA performs some computations (selection, recombination, 

mutation) to produce new populations from the old population. The successive 

populations are called Generations. 
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2.3.1.5. Parents and Children 

In order to create new generations, the GA selects certain individuals from the current 

population (having maximum fitness) called parents, and creates new individuals in the 

new population called children. Few terminologies use offspring instead of children. 

 

2.3.1.6. Selection 

The process of selecting parents from a population based on fitness value is called 

Selection. This is based on Darwin‟s theory of „survival of fittest‟, according to which the 

fittest parents should survive and create children. Many methods like Boltzmann 

Selection, Ranking Selection, Roulette Wheel Selection, Elitist Selection and Tournament 

Selection are available for the purpose of Selection in GA. 

 

2.3.1.7. Recombination (Crossover) 

The process of choosing two individuals (parent chromosomes) and swapping a segment 

of their encoded bits (real or binary) to produce children which are a combination of both 

the parents is called Recombination. In GA, this operation is called as Crossover. 

Commonly used types of crossover operators are single point crossover, two point 

crossover and uniform crossover.  
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2.3.1.8. Mutation 

The process of swapping an encoded bit with a random value is called Mutation. 

Generally, in binary encoding of chromosomes, a bit is flipped from 0 to 1 or vice versa 

when mutation operator is applied. In case of real encoded chromosomes, a small value is 

added or subtracted to the existing value of a bit.  

 

2.3.1.9. Summary of using Genetic Algorithms 

Solving a particular optimization task using a GA requires the human designer to address 

the five following issues ‎[19] which involve all the aforementioned fundamentals 

discussed so far.  

 A genetic representation (chromosome) of candidate solutions 

 A way to create an initial population of solutions 

 An evaluation function (fitness function) which describes the quality of each 

individual 

 Genetic operators (Selection, Crossover, Mutation) that generate new variants 

during reproduction 

 Values for the parameters of the GA, such as population size, number of 

generations and probabilities (crossover probability, mutation probability) of 

applying genetic operators 
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2.3.2. Process Flow in a Genetic Algorithm 

A genetic algorithm starts with an initial population of chromosomes which are randomly 

generated. A fitness function is devised so as to measure the optimality of a particular 

solution. In each generation, the fitness function is applied to all the individuals of a 

population and their respective fitness scores are computed. Based on the fitness scores, 

the most fit parent chromosomes are selected in order to reproduce children for the next 

generation. Selection is done based on the choice of the selection operator. After the 

parents are selected, crossover and mutation operators are applied depending on the 

choice of the operators. Crossover and mutation probabilities are specified and new 

children are created. The GA then evaluates the fitness of individuals of the new 

generation.  

 

This process repeats in a continuous loop until a terminating criteria is reached. Generally 

referred to as the stopping condition, the termination criteria is a measure of the desired 

fitness (example: minimum error) and thus it defines when the GA should terminate its 

operation. A flowchart on the process flow of a genetic algorithm is presented in Figure 3 

for better understanding.  

 

2.3.3. Genetic Fuzzy Systems 

Soft Computing techniques are meant to operate in an environment that is subject to 

uncertainty and imprecision ‎[19]. According to Zadeh, “the guiding principle of soft 

computing is to exploit the tolerance for imprecision, uncertainty, partial truth, and 
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approximation to achieve tractability, robustness, low solution cost and better rapport 

with reality”.  

 

Soft Computing techniques such as Fuzzy Logic, Neural Networks and Genetic 

Algorithms have proven to provide efficient methods of solving complex problems, due 

to which their popularity and usage in a wide variety of application domains is 

unquestionable. Fuzzy Logic, with its power of incorporating expert knowledge and 

linguistic representation of knowledge has been successfully applied in diversified 

applications and fields. As mentioned earlier, Fuzzy Logic Systems have been widely 

used in the fields of control theory, automation and data classification to mention a few. 

Despite their popularity and wide usage, fuzzy systems lacked learning and adaptation 

abilities in previous years, as a consequence of which hybridization between the soft 

computing techniques started gaining popularity.   

 

Neural Networks and Genetic Algorithms provide learning capabilities to fuzzy logic 

systems as can be seen in Figure 4. Moreover, all techniques within the framework of soft 

computing are complementary and synergistic in nature. The most popular hybridization 

approach is that of Neuro-Fuzzy Systems which allow fuzzy systems to learn and adapt to 

various environments. Another popular hybridization approach is that of Genetic Fuzzy 

Systems which incorporate learning capabilities in fuzzy systems via genetic algorithms. 

Other hybrid approaches which are relatively less visible are Fuzzy-Neural Systems, 

Fuzzy-Evolutionary Algorithms, Genetic Neural Networks and Genetic Bayesian 
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Networks. Figure 5 illustrates the hybridization approaches in the soft computing 

framework. 

 

 

Figure 3: Process Flow in a Genetic Algorithm 

 

A genetic fuzzy system (GFS) is essentially a fuzzy logic system supplemented by a GA 

based learning process. Genetic learning processes cover different levels of complexity 

according to the structural changes produced by the algorithm, from the simplest case of 

parameter optimization to the highest level of complexity of learning the rule set of a rule 
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based system ‎[18]. Since, GFS deal with learning the rule set of a fuzzy logic system; 

they are also called Genetic Fuzzy Rule Based Systems (GFRBS).  There are two main 

aspects in designing a GFS; firstly, determining which parts of the FRBS will be coded 

by the genetic model and secondly, determining the rule coding approach to be used in 

the genetic model. The following two sub-sections present a brief discussion about these 

two aspects.  

 

 

Figure 4: Soft computing and learning in Fuzzy Systems 
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2.3.3.1. Choice of FRBS components in genetic models 

The principal factor behind using GA‟s for automatic learning of fuzzy rule based 

systems (FRBS) is that the problem of designing a rule set for an FRBS can be 

approached as a search problem where the focus is on finding the most optimal rule sets. 

The optimization eventualizes when the rule sets (more appropriately fuzzy models) are 

encoded as chromosomes and subjected to genetic learning.  Herrera ‎[31] states “From 

the optimization point of view, to find an appropriate fuzzy model is equivalent to code it 

as a parameter structure and then to find the parameter values that give us the optimum 

for a concrete fitness function”. As such, it becomes obvious that one of the most 

important aspects in designing a GFS is to decide which parts of FRBS are subjected to 

optimization by GA. This is unfortunately not a simple task because of various concerns 

and tradeoffs.  

 

An FRBS comprises of two main components; the database (DB) and the rule base (RB), 

collectively called the knowledge base (KB). A DB contains the definitions of the 

membership functions of the fuzzy sets, whereas the RB consists of the fuzzy rules (rule 

set). The decision pertaining to the inclusion of which parts of the FRBS should be 

optimized becomes a challenging issue. A tradeoff between dimensionality and efficiency 

needs to be resolved in order to decide with which parts of the FRBS should be included. 

A search space containing only the DB (sometimes RB) yields a smaller dimension, 

hence a faster and simple learning procedure. But the obtained solutions are not necessary 

optimal. On the other hand, a large search space comprising of the RB or the complete 
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KB leads to a higher dimensionality, hence a slower and complex learning procedure, but 

is more likely to produce optimal solutions. In this regards, two methodologies are 

available which offer some help in decision making considering the tradeoffs.  

 Genetic Tuning: Tuning is more concerned with optimization of an existing FRBS. 

Tuning processes assume a predefined RB and have the objective to find a set of 

optimal parameters for the membership functions ‎[19]. 

 Genetic Learning: Learning constitutes an automated design method for fuzzy rule 

sets that starts from scratch. Learning processes perform a more elaborated search 

in the space of possible RBs or whole KBs and do not depend on a predefined set 

of rules ‎[19].  

 

Figure 5: Hybridization in soft computing 
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There have been numerous works using both methodologies. Based on the 

comprehensive surveys by Cordon et al ‎[18] and Herrera ‎[31], the following approaches 

can be classified under either of the two methodologies.  

 

 Genetic Tuning 

o Genetic tuning of KB parameters 

o Genetic adaptive inference systems 

o Genetic adaptive defuzzification methods 

 

 Genetic Learning 

o Genetic KB learning 

 Genetic rule learning 

 Genetic rule selection 

 Genetic DB learning (Apriori and Embedded) 

 Simultaneous genetic learning of KB components 

o Genetic learning of KB components and inference engine parameters 

 

Furthermore, there are various proposals in each of the aforementioned approaches in the 

literature. A detailed explanation about all the approaches can be found in ‎[18] ‎[31].  
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2.3.3.2. Genetic Rule Coding 

When it comes to genetic learning of rule sets in an FRBS, there are two major 

approaches that are commonly used for encoding the rules as individuals in a 

chromosome structure.  

 

 Pittsburgh Approach ‎[19]: In this approach, an individual comprises of a rule set. 

In other words, each individual represents a fuzzy logic system represented by a 

set of rules. The genetic learning proceeds by first maintaining a population of 

candidate solutions (rule sets representing different FLS) and then applying the 

various genetic operators to produce new generations of rule sets; thereby 

providing the most optimal rule set / FLS. In the Pittsburgh approach, 

“Chromosome = Rule Set”. The approach follows what is called as competition 

between individuals to yield the best individual (FLS). Figure 6 shows the 

pictorial representation of the Pittsburgh Approach. 
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Figure 6: Genetic Learning using Pittsburgh Rule Encoding Approach 

  

 Michigan Approach ‎[19]: In this approach, an individual represents a single rule. 

Since each individual represents a rule, an entire population of individuals 

constitutes an FLS. Genetic learning proceeds by maintain a population of 

individuals (rules) and then applying selection, crossover and mutation to 

produce new generations of rules, thereby providing the most optimal population 

(FLS). In the Michigan approach, “Chromosome = Rule”. The approach follows 
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what is called as cooperation among individuals to produce the best population 

(FLS). Figure 7 represents the Michigan Approach. 

 

 

Figure 7: Genetic Learning with Michigan Rule Encoding Approach 

 

Apart from the two aforementioned approaches, there are other approaches which have 

been used for genetic encoding of rules/rule sets in FRBS such as the „Iterative Rule 

Learning’ ‎[18] and „Genetic Cooperative-Competitive Learning’ ‎[18]. 
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CHAPTER 3 

LITERATURE REVIEW 

 

 

 

In our bid to carry out a critical survey of the literature on using Use Cases for software 

development effort prediction, we discovered that a common ground for assessing and 

comparing these prediction techniques (see Section ‎3.1) was not available. Though a few 

related works are available, there is no significant contribution which explicitly offers an 

evaluation criterion for comparison and evaluates the proposed Use Case based metrics 

on a common platform ‎[8]‎[24]‎[74]‎[85]. Boehm ‎[12] presented a set of useful criteria 

(attributes) for evaluating the utility of software cost models. The attributes targeted 

model-based estimation methods. Similarly, Saliu and Ahmed in their chapter of the book 

“Soft Computing in Software Engineering” ‎[80] proposed a set of attributes; theirs 

targeted soft computing-based effort estimation models though. As such, no criteria were 

developed to target use case-based models. The primary goal of conducting the critical 

survey is to fill the void caused by the unavailability of such literature which can help 

practitioners in selecting appropriate metrics for their respective development efforts and 
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also guide researchers interested in developing new metrics in this domain. Accordingly, 

we identified a set of comparison attributes to be used in assessing and comparing various 

use case-based approaches for effort prediction which resulted in a published critical 

survey ‎[40]‎[41]. 

 

3.1. Use-Case based Effort Prediction Techniques 

This section presents a brief survey about the various use-case based effort prediction 

techniques available in the literature. 

 

3.1.1. Use Case Points 

The basic technique proposed by Gustav Karner ‎[42] for estimating effort based on Use 

Cases. The method assigns quantitative weights to actors based on actor classification as 

simple, average and complex. The sum of all the weighted actors in the system gives the 

Unadjusted Actor Weight (UAW). Similarly, Use Cases are classified according to their 

complexity and are assigned quantitative weights. The sum of all the Use Cases in the 

system gives the Unadjusted Use Case Weight (UUCW). The sum of UAW and UUCW 

gives the Unadjusted Use Case Points (UUCP). Then, a number of technical complexity 

factors and experience factors are weighted and are multiplied to the UUCP to yield Use 

Case Points (UCP). Finally, the obtained Use Case Points are multiplied by the 

Productivity Factor PF to give the final Effort Estimate. Critics claim Karner‟s method to 

be decent with the exception of the non-flexibility in adjusting the Productivity Factor 

which was later proved to be a major variable affecting the estimation process. 
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3.1.2. Transactions 

A metric proposed by Robiolo et al ‎[73] for estimating size of software based on the size 

of Use Cases. It depends on the textual description of a Use Case. A Transaction is 

defined by a stimulus by the Actor and response by the system. The sum of all the stimuli 

is the number of Transactions in a particular Use Case. Summing up the transactions for 

all the use cases in the entire system, the number of Transactions is calculated. In order to 

estimate the final effort, the Historical Mean Productivity technique was used by the 

authors ‎[73]. Three major objectives using this metric and the following metric “Paths” 

were highlighted by the method which are simplifying the counting method, to obtain 

different units of measurement that individually may capture a single key aspect of 

software applications and reducing the estimation error.  

 

3.1.3. Paths 

Another metric proposed by ‎[73] which pursues similar objectives as the “Transaction” 

metric. It is based on the concept of Cyclomatic complexity which identifies binary and 

multiple decisions in code. The same idea has been applied in terms of textual 

descriptions of Use Cases. The method is as follows; obtaining the complexity of each 

transaction. For obtaining the complexity of each transaction, first count the number of 

binary decisions, then identify the multiple decisions by counting the different pathways 

and subtract one from the number obtained. In the final step, for computing the 

complexity of each uses case, sum up the complexity value for each transaction.  
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3.1.4. Extended Use Case Points 

The EUCP method proposed by Wang et al ‎[22] contains three parts; first, refining the 

Use Case classification with fuzzy set theory. Second, using a learning Bayesian Belief 

Network BBN for getting the Unadjusted Use Case Points UUCP probability distribution. 

Third, using a BBN for generating the effort probability distribution derived from UCP. 

The contribution of this approach is a probabilistic cost estimation model obtained by 

integrating fuzzy set theory and Bayesian belief networks with the generic UCP method. 

 

3.1.5. UCPm 

UCPm is a slight modification of the Use Case Points method proposed by Sergey Diev 

‎[21]. The method stresses more on defining Actors and Use Cases comprehensively. The 

slight change from the basic UCP method is the calculation of the size of the software 

product. The “UUCP” obtained is multiplied with the technical complexity factor “TCF” 

to give the size of the software product. To the size, environmental factor “EF”, base 

system complexity factor “BSC” and pre-defined number of person-hours per use case 

point “R” are multiplied. Finally, supplementary effort factor is added to yield the final 

effort estimate of the software product. The supplementary effort may include activities 

like writing configuration management scripts or performing regression testing.   

  

3.1.6. Adapted Use Case Points 

The basic objective of this method proposed by Mohagheghi et al ‎[64] is to develop a 

technique which fits the incremental model of software development and in situations 
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where requirements specifications are frequently changed. The method follows the 

structure of the UCP method but with major differences. All actors are assumed to be 

average without differences in classification. All the Use Cases are assumed to be 

complex and then later on they are decomposed to smaller use cases and classified as 

simple or average. The method includes the extended use cases as well and counts them 

as base use cases. Exceptional flows are also counted as average use cases. The method 

has very promising results and the major contributions are the adaptation of the UCP 

method for incremental development and identifying the impact of effort distribution 

profile on effort estimation results.  

 

3.1.7. Use Case Size Points 

This metric proposed by Braz and Vergilio ‎[13] focuses on the internal structures of the 

Use Cases in depth and hence better captures the functionality. The primary factors 

considered in this metric are the Actors classification, pre-condition classification and 

post-condition classification, main scenarios, alternate scenarios, exception classification 

and the Adjustment Factor. The sum of all these factors gives the Unadjusted Use Case 

Size Points UUSP which is subsequently multiplied by the difference of the technical 

complexity factor and the experience factor. The results are compared with Function 

Points and UCP metrics.    
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3.1.8. Fuzzy Use Case Size Points 

Another metric proposed by Braz and Vergilio ‎[13]. The primary factors considered in 

this metric are the Actors classification, pre-condition classification and post-condition 

classification, main scenarios, alternate scenarios, exception classification and the 

Adjustment Factor. The sum of all these factors gives the Unadjusted Use Case Size 

Points UUSP which is subsequently multiplied by the difference of the technical 

complexity factor and the experience factor. The difference between USP and FUSP is in 

the use of the concept of Fuzzification and Defuzzification. This creates gradual 

classifications that better deal with uncertainty. Also, it reduces the human influence on 

the classification of the Use Case elements. The results obtained using this metric are 

slightly better than the Use Case Size Points metric. 

 

3.1.9. Simplified Use Case Points 

The main aim of this method proposed by M. Ochodek et al ‎[70] is to simplify the UCP 

method and the process of Effort Estimation in general. This is not a completely defined 

metric. The approach used for realizing the objective is the cross validation procedure, 

which compares different variants of UCP with and without certain factors. Factor 

Analysis was also performed to investigate the possibility of reducing the adjustment 

factors. The results from this study include recommending a metric based on rejection of 

actor weights and rejection of 9 Technical Complexity Factors and 6 Experience Factors. 
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3.1.10. Industrial Use Case Points 

The IUCP method proposed by Edward Caroll ‎[14] is not a defined metric but an 

amalgamation of different industrial practices used in association with the UCP method 

to increase the accuracy and reliability of the estimation procedure. The main 

contribution of this method is the inclusion of the Risk Factor and additional effort for 

activities other than the development of the software product. Also, in depth analysis of 

few factors like Performance Analysis, Deliverable Analysis, Schedule Analysis, Defect 

Analysis, Causal Analysis and Quantitative Management Analysis is mentioned. The 

importance of using a Process Improvement Cycle is also highlighted. 

 

3.2. Comparison Criteria 

To compare the various proposed prediction techniques, we developed a comparison 

criteria consisting of eleven attributes, which were chosen carefully to accommodate all 

the pros and cons of using those techniques. A point worth mentioning is that 

“Transparency” was not included in the critical survey by Kamal et al ‎[40]. Since, 

“Transparency” has a significant role in developing dependable and efficient effort 

prediction models; we included it in our complete comparison criterion. The qualified 

comparison attributes and their descriptions are presented in the following sub-sections. 
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3.2.1. Accuracy 

The degree of precision or correctness obtained in estimating the effort with reference to 

a particular approach is termed as Accuracy.  It is basically obtained by comparing the 

effort estimated with the actual effort and checking for deviations.  A higher accuracy of 

an approach validates the efficiency of that approach.  Better accuracy implies better 

reliability ‎[1].  It should be noted that comparing estimation accuracy of various 

approaches is not easy pertaining to reasons such as different datasets, different 

definitions of similar terms and different goals of estimation accuracy ‎[26]. 

3.2.2. Ease of Use 

This attribute implies simplicity of use.  How easy it is to use a particular 

technique/approach? A fact that should be understood is that, the effort required in 

estimating effort for software development should be minimal.  What is the use of a 

technique which itself requires a lot of time and effort? ‎[41].  Preferably, the approach 

used should be simple enough to be implemented in a reasonable time frame as Bente 

Anda ‎[8] states that the UCP method requires little technical insight and effort and hence 

makes it easy to use in early stages. 

 

3.2.3. Use Case detail considerations 

The level of detail considered in evaluating a particular Use Case before using it in the 

estimation process is important for various reasons.  Issues like the granularity of Use 
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Cases, number of scenarios in a Use Case, inclusion of Extended Use Cases with the 

Base Use Cases, classification of Use Cases as simple and complex are commonly 

debated among various researchers for the Use Case based estimation methods 

‎[21]‎[64]‎[85].  This is a valuable attribute for comparing the different approaches related 

to Use Case based methods. 

 

3.2.4. Factor Inclusion 

The effort estimation calculated using the basic UCP method considers various 

Experience factors and Technical Complexity factors ‎[42].  The variety of other Use Case 

based approaches we have considered, discard few of these factors and consider them 

unrequired for the estimation process, whereas few of the approaches consider some 

additional factors ‎[64]‎[70].  The attribute will help in analyzing the approaches and 

contribute in specifying the optimal factors to be considered in the estimation process. 

 

3.2.5. Adaptability 

The capability of the model or method to adjust according to new environments and fit 

the incremental style of development practices is termed as Adaptability of the model.  

“Incremental or evolutionary development approaches have become dominant.  

Requirements are changed in successive releases, working environments are shifted and 

this has been accepted as a core factor in software development” ‎[64].  A method or a 
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model should be adaptive to these changes and if it is otherwise, then the model will have 

limited usability value. 

 

3.2.6. Handling Imprecision and Uncertainty 

Quite a common aspect in all the software development practices is to take account of the 

imprecision and uncertainty associated with the processes.  We know that there is a 

reasonable imprecision in estimating the size of software and a lot of uncertainty in 

predicting various factors associated with developing software ‎[67].  A model which 

considers these factors is better than a model which doesn‟t. 

 

3.2.7. Sensitivity 

The receptiveness or responsiveness to an input stimulus is called sensitivity.  In terms of 

software development, a model in which the change in estimated effort with respect to a 

small change in the input values is large or significant is termed as a sensitive model.  In 

Effort Estimation, it is desirable to have low sensitivity models. 

 

3.2.8. Transparency 

The visibility of the underlying effort prediction model is termed as transparency.  It is 

desirable to have transparent models as it would provide the experts the ability to 
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incorporate their opinions based on their knowledge and experience. Empirical research 

studies have shown prediction models coupled with expert opinions to be better than the 

prediction systems or the expert alone ‎[57]. 

 

3.2.9. Appropriate use of Productivity Factor 

The conversion of estimated points based on Use Cases to Effort requires the 

multiplication of a factor called productivity factor whose units are person-hours.  

Initially, Karner ‎[42] proposed a productivity factor value of 20 person-hours, which later 

turned out to be variable for different projects.  An appropriate use of the productivity 

factor results in close to accurate estimations and reduces the deviations.  This is a 

valuable attribute to distinguish between the available approaches. 

 

3.2.10. Artifacts Considered 

This attribute reflects the artifacts that are considered in the implementation of a 

particular technique or metric. Effort Estimation using Use Cases considers all the 

functional requirements in a satisfactory way, but a major complaint against the use of 

this method is that the non- functional requirements are not considered extensively.  But, 

if the artifacts pertaining to non-functional requirements like estimating for reports, 

schedule spreadsheets, staffing concerns are considered ‎[14], then the method could have 



49 

 

a valid defense.  The use of artifacts considered by different models is helpful in 

comparing them. 

 

3.2.11. Empirical Validations 

The evaluation and validation of a metric or a model in general is essential.  If the model 

is validated, then the validation criteria and the dataset on which it is validated are 

considered.  Datasets from the industry are considered more reliable than student datasets 

or datasets from open sources ‎[1].  The empirical validation of a model adds to its 

credibility as well.  

 

3.3. Comparison of Prediction Techniques 

The comparisons have been presented in tabulated form for sake of simplicity and ease of 

understanding. Each table is followed by a short discussion which summarizes the 

tabulated information and provides recommendations for the use of certain techniques 

with respect to the attributes. It is noteworthy that subjective ratings have been used for 

comparing the various techniques. 
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3.3.1. Accuracy 

 

Table 2: Evaluation of techniques based on ‘Accuracy’ 

Metric Comments 

UCP ‎[42] Relatively good accuracy and promising results. More accurate than expert 

estimates in few cases and almost equally accurate in some other cases. 

Transactions ‎[73] Good accuracy, close to UCP, lower variability of prediction error, high 

correlation with actual effort.  

Paths ‎[73] Better accuracy than Transactions and UCP, lower deviation from actual 

effort, high correlation with actual effort. 

EUCP ‎[22] Better accuracy than UCP as they use Fuzzification and a Bayesian Belief 

Network to train the system. 

UCPm ‎[21] Relatively good accuracy, less calculations required in the method. 

AUCP ‎[64] Very good accuracy, effort calculated using AUCP for release 1 and release 

2 were 21% and 17% lower than Actual Effort. 

USP ‎[13] Competent accuracy compared to others, but lower error rates. 

FUSP ‎[13] Competent accuracy results with lower error rates, a fuzzified form of USP 

with minor changes in results. 

SUCP ‎[70] Slight improvement in accuracy. Discarding TCF and EF doesn‟t cause a 

negative effect in prediction of effort. 

IUCP ‎[14] Perhaps the most efficient and accurate results. Using the process 

improvement loop, the deviation in prediction has been cut down to 9%, 

which is a very significant contribution. 

 

Discussion: Even after evaluating all metrics based on their respective results, terming a 

certain metric better than others is not justified because of many reasons such as different 

data sets used, differences in the nature of the software projects, environmental and 

expertise differences, etc. Nevertheless, it is recommendable to use metrics which use 

machine learning techniques like FUSP. Additionally, the use of industrial practices in 

the estimation process improves the accuracy of the method. Hence, the use of IUCP is 

also recommendable. 
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3.3.2. Ease of Use 

 

Table 3: Evaluation of techniques based on ‘Ease of Use’ 

Metric Comments 

UCP ‎[42] Very easy to compute effort using UCP. It can be done at the early stages 

of the development of the life cycle. A rough estimate can also be made 

just by mental calculation. 

Transactions ‎[73] An easy method involving counting the number of transactions in each Use 

Case and subsequently the total in a system.  

Paths ‎[73] A relatively complex method to use, involving obtaining the complexity of 

a transaction by summing up the number of binary decisions and 

identification and summing up of multiple decisions. 

EUCP ‎[22] A complex method involving fuzzifying the inputs and training the 

Bayesian Belief Network for estimating effort and consequently 

defuzzifying the output to obtain a crisp value. 

UCPm ‎[21] An easy method, almost similar to UCP; the only difference being size is 

calculated as the product of Unadjusted Use Case Weights and the sum of 

Technical Complexity factors. 

AUCP ‎[64] A complex method compared to other approaches. Involves computing 

modified Unadjusted Use Case Weights and uses many additional factors 

such as Adaptation Adjustment Factor (AAF), and Equivalent Modification 

Factor (EMF) which itself comprises of 6 other factors. 

USP ‎[13] A fairly simple method to calculate the effort. Only lengthy part is to 

consider the details of use cases and classify them appropriately. 

FUSP ‎[13] A simple method, slightly complex than USP because of the Fuzzification 

of inputs and Defuzzification of outputs respectively. 

SUCP ‎[70] A method simpler than conventional UCP, this reduces the number of 

Technical Complexity Factors and Experience Factors by limiting them to 

6 only.  

IUCP ‎[14] A simple method similar to UCP, with the additional overhead of 

calculating for non-functional requirements like documenting reports, 

spread sheets, etc. 

 

Discussion: Almost all the metrics are subjectively rated equally in terms of „Ease of 

Use‟, with the exception of Paths and AUCP metrics. It is intuitive that since the basic 

UCP method is quite simple in terms of use, a metric or method which deviates from the 

norms and structure of the basic method is bound to be relatively complex. Though the 

EUCP method is mentioned as complex, the rational can be to consider the metrics which 
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use soft computing methods as relatively more time consuming rather than terming them 

as complex to use. We recommend SUCP as the metric easiest to use compared to the 

others with UCP coming a close second. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 

 

3.3.3. Use Case Detail Considerations 

 

Table 4: Evaluation of techniques based on ‘Use Case Detail Considerations’ 

Metric Comments 

UCP ‎[42] Only considers the complexity classification of a Use Case by counting the 

number of transactions in a Use Case. Classified as simple, average and 

complex. 

Transactions ‎[73] Considers only the stimulus by an actor and response by the system, by 

counting the number of transactions. No other details are considered.  

Paths ‎[73] Identifies binary and multiple decisions in a Use Case. Sums up the number 

of binary and multiple decisions in a Use Case and consequently for the 

entire system. No other details are considered. 

EUCP ‎[22] The Use Case classification is refined by considering detailed aspects of a 

Use Case such as User Interface Screens, pre-conditions, primary scenario, 

alternative scenario, exception scenario, post-conditions. 

UCPm ‎[21] High level of detail is considered. Scoping of actors, classification of Use 

Cases as zero weight use cases, duplicated use cases, background process 

use cases, report use cases. Also considers the granularity of use cases. 

AUCP ‎[64] Initially all Use Cases as considered complex, then are broken down to 

simple and average based on transactions. Include extended Use Cases as 

base Use Cases and exceptional flows in a Use Case are also assigned a 

weight factor of 2.  

USP ‎[13] A detailed classification comprising of pre-conditions, post-conditions, main 

scenarios, alternate scenarios and exceptional scenarios. 

FUSP ‎[13] The Use Case detailed classification comprises of pre-conditions, post-

conditions, main scenarios, alternate scenarios and exceptional scenarios. 

SUCP ‎[70] Considers the complexity classification of a Use Case by counting the 

number of transactions in a Use Case. Additionally, the cardinality of Use 

Cases is computed.  

IUCP ‎[14] Similar to UCP, IUCP does not consider any extra Use Case details except 

the complexity classification. 

 

Discussion: This is perhaps a very important and valuable attribute for distinguishing the 

strengths and weaknesses of the available metrics. Majority of the metrics base their 

calculations of size on the number of transactions in a Use Case without considering 

other details related with use cases. If the metrics were to be ranked according to this 

attribute or recommended on this basis, Use Case Size Point „USP‟ would win the 
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evaluation followed by UCPm and AUCP. The reason for this ranking is quite visible in 

the tabulated information. USP considers almost all the details associated with a Use 

Case. UCPm takes it to a further level by classifying use cases by varying levels but 

misses including the pre-conditions and post-conditions.  
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3.3.4. Factor Inclusion 

 

Table 5: Evaluation of techniques based on ‘Factor Inclusion’ 

Metric Comments 

UCP ‎[42] Includes Actor weights and Use Case weights. Also includes 13 Technical 

Complexity Factors and 8 Experience Factors. 

Transactions ‎[73] No use of Actor weights and Use Case weights. Does not include any 

Technical Complexity Factors and Experience Factors.  

Paths ‎[73] No use of Actor weights and Use Case weights. Does not include any 

Technical Complexity Factors and Experience Factors.  

EUCP ‎[22] Includes Actor weights, Use Case weights, 13 Technical Complexity Factors 

and 8 Experience Factors. 

UCPm ‎[21] Includes Actor weights, Use Case weights, 13 Technical Complexity 

Factors, 8 Experience Factors. Additionally, UCPm includes Base System 

Complexity factor and Supplementary Effort Factor. 

AUCP ‎[64] Actor Weights and Use Case weights are included. All the Technical 

Complexity Factors and Experience Factors are discarded. Includes new 

factors such as Adaptation Adjustment Factor (AAF), Equivalent 

Modification Factor (EMF), and Overhead Factor (OF).  

USP ‎[13] Actor weights and Use Case weights are included as per the detailed Use 

Case classification. Additionally, 14 Technical Complexity factors and 5 

Environmental Factors are included. 

FUSP ‎[13] Actor weights and Use Case weights are included. 14 Technical Complexity 

Factors and 5 Environmental Factors are included. 

SUCP ‎[70] Discards Actor weights and includes only Use Case weights. 9 out of 13 

Technical Complexity factors and 6 out of 8 Experience Factors are 

discarded. 

IUCP ‎[14] Includes Actor weights and Use Case weights. Also includes 13 Technical 

Complexity Factors and 8 Experience Factors. 

 

Discussion: Perhaps the most debated attribute which can involve lot of future work. The 

issue is to find the optimum number of factors that are to be considered while estimating 

effort. Many metrics agree with the standardized thirteen technical complexity factors 

and the eight experience or environmental factors as proposed by the basic UCP method. 

SUCP discards nine technical complexity factors and six experience factors. UCPm keeps 

all the standard factors same but includes additional factors. Few metrics like 
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Transactions, Paths and AUCP discard all the standardized factors but the latter makes up 

for the non-inclusion by using new factors such as AAF, EMF and OF. As such, we 

cannot recommend any metric to be the best in terms of this attribute. 
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3.3.5. Adaptability 

 

Table 6: Evaluation of techniques based on ‘Adaptability’ 

Metric Comments 

UCP ‎[42] Very simple and adaptable method. Fits any Use Case modeling 

environment easily. 

Transactions ‎[73] An adaptable method, worked well with 13 different projects under different 

environments. Fits the dynamic model of software development. Only needs 

counting the number of transactions. 

Paths ‎[73] Fairly adaptable. Depends on calculating the complexity of Use cases. Slight 

difficulty expected in adapting to environments with less experienced teams.   

EUCP ‎[22] Less adaptive as compared with other metrics because of the involvement of 

the training BBN. 

UCPm ‎[21] Fairly adaptable to different environments. Difficulty with less experienced 

teams for estimating effort. 

AUCP ‎[64] Perhaps the most adaptable metric. The aim of realizing this metric was to 

fit the incremental model of development and support environments where 

Extreme Programming is used.  

USP ‎[13] Slightly less adaptable relatively. The adjustment factors need to be 

calibrated with each and every changing project and environment. 

FUSP ‎[13] Same as the USP method. Less adaptable relatively. 

SUCP ‎[70] Adaptable in many environments. Applied to 14 industrial and academia 

projects with relative ease and promising results were obtained. Removal of 

few factors supports adaptability. 

IUCP ‎[14] A very adaptable metric, perhaps because of the feedback loop and its ability 

to fit into any mode of operation and environment. The metric has been 

custom designed to fit any model of development. 

 

Discussion:  Almost all metrics qualify well for this attribute. Few of them are more 

adaptable in terms of their structure, ease of use and lesser difficulty with new and 

inexperienced teams. An interesting observation is that, the use of soft computing 

methods like in the case of EUCP, where a learning Bayesian Belief Network is 

incorporated in the estimation process, it made the metric relatively less adaptable to 

different working environments. But the validity of this observation can be debatable. 

AUCP is the most recommended metric in terms of Adaptability. 
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3.3.6. Handling Imprecision and Uncertainty 

 

Table 7: Evaluation of techniques based on ‘Handling Imprecision and Uncertainty’ 

Metric Comments 

UCP ‎[42] Doesn‟t handle imprecision, though it manages to deal with uncertainty up 

to some extent. 

Transactions ‎[73] Doesn‟t handle imprecision nor uncertainty. 

Paths ‎[73] It is not designed to handle imprecision and uncertainty.   

EUCP ‎[22] Handles imprecision and uncertainty fairly because of the use of Fuzzy logic 

and additionally because of the learning Bayesian Belief Network. 

UCPm ‎[21] Not capable of handling imprecision and uncertainty. 

AUCP ‎[64] Does not handle imprecision, but the metric deals with uncertainty 

satisfactorily. 

USP ‎[13] Is not capable of handling both imprecision and uncertainty. 

FUSP ‎[13] The fuzzified version of USP, and hence it handles imprecision and 

uncertainty quite well. 

SUCP ‎[70] Does not handle imprecision, nor does it handle uncertainty. 

IUCP ‎[14] A metric tailored to deal with uncertainties but cannot handle imprecision. 

 

Discussion: Another important factor for evaluation. It is much desirable that in a process 

like estimation of effort and cost where loads of uncertainty is possible and imprecise 

estimates are quite common, a metric should account for both the afore-mentioned 

factors. Unfortunately, most of the metrics don‟t account for both imprecision and 

uncertainty. Few of them such as UCP, AUCP and IUCP are capable of dealing with 

uncertainties but not imprecision. EUCP and FUSP, since they use soft computing 

techniques account reasonably well for both imprecision and uncertainty and are 

recommended for use.  
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3.3.7. Sensitivity 

 

Table 8: Evaluation of techniques based on ‘Sensitivity’ 

Metric Comments 

UCP ‎[42] The metric is less sensitive to input changes. Can accommodate noise 

reasonably well. 

Transactions ‎[73] Is less sensitive to changes. A small change to the input i.e. the increase or 

decrease in the number of transactions of a Use Case will not adversely 

impact the effort estimated. 

Paths ‎[73] Is moderately sensitive when compared to Transactions metric. If the Use 

Case details are changed, the number of binary decisions and multiple 

decisions change considerably. This affects the final estimated effort.    

EUCP ‎[22] Less sensitive because of the Fuzzification and Defuzzification process. 

Accommodates noise levels easily. 

UCPm ‎[21] Less sensitive as the input factors don‟t impact the final estimated effort 

much. 

AUCP ‎[64] A moderately sensitive metric. AUCP incorporates many factors because of 

which, a slight change in some factors may result in considerable changes to 

the final estimated effort. 

USP ‎[13] Less sensitive to changes. 

FUSP ‎[13] A slightly less sensitive metric than the USP. It accounts for varying levels 

of input changes. 

SUCP ‎[70] A lesser sensitive metric. Almost similar to the conventional UCP metric. 

IUCP ‎[14] Not sensitive to input changes. Works the dynamic way and hence accounts 

for changes anywhere in the process lifecycle. 

 

Discussion: A much desirable attribute for comparison in many fields and not just effort 

estimation, Sensitivity like „Use Case Details Consideration‟ can distinguish between 

metrics in a very proper way. Unfortunately, it is very difficult to distinguish between the 

available metrics because of lack of information related with the sensitiveness of the 

metric inputs and outputs. Nevertheless, few metrics have been classified as lowly 

sensitive and moderately sensitive. It is worth noting that, using soft computing 

approaches can minimize the sensitivity of a metric considerably. The IUCP can be 

recommended for use if Sensitivity is the main concern. 
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3.3.8. Transparency 

 

Table 9: Evaluation of techniques based on ‘Transparency’ 

Metric Comments 

UCP ‎[42] UCP is not transparent. The equations of the UCP method don‟t give any idea 

about the way UCP is calculated. As such experts cannot calibrate the factor 

values of UCP 

Transactions 

‎[73] 

Not transparent. The calculation of size is based on the number of transactions 

and the final effort is calculated based on Historical Mean Productivity. 

Paths ‎[73] Not transparent. The calculation of size is based on the number of paths and the 

final effort is calculated based on Historical Mean Productivity. 

EUCP ‎[22] Not transparent. Even though EUCP uses the Bayesian Belief Network for 

training the prediction system, the visibility of the underlying process is 

minimal. 

UCPm ‎[21] Not transparent enough. Just allows the expert to calibrate few factors but as a 

whole the effect of calibrating those factors cannot be determined. 

AUCP ‎[64] AUCP is not transparent, as it follows the UCP method and its associated 

equations with few modifications. 

USP ‎[13] Not transparent. All the use cases are classified and size is calculated based on 

training from the historical data. 

FUSP ‎[13] Not transparent. The size and effort are calculated based on historical data. 

SUCP ‎[70] Not transparent. Doesn‟t allow for any calibrations within the process. 

IUCP ‎[14] IUCP is not transparent. It has the basic equations of the UCP method and only 

adopts few additional industrial practices, which don‟t account for 

transparency. 

 

Discussion: Transparency is a very important factor in effort prediction processes. A 

metric or a method can be termed as fully transparent if its underlying model is clear 

enough to be understood and allows the experts to calibrate the input values while 

knowing what the corresponding results will be obtained. But unfortunately, none of the 

metrics have taken into account this factor. 
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3.3.9. Appropriate Use of Productivity Factor 

 

Table 10: Evaluation of techniques based on ‘Appropriate Use of Productivity 

Factor’ 

Metric Comments 

UCP ‎[42] Karner described the method and fixed the productivity factor at 20 man-

hours per Use Case Point. 

Transactions ‎[73] Effort calculation is based on Historical Mean productivity technique. No 

involvement of Productivity Factor. 

Paths ‎[73] Effort Estimation is based on Historical Mean productivity technique. No 

involvement of Productivity Factor.  

EUCP ‎[22] Not much use of the productivity factor. All the calculations are based on 

adjusting other factors. 

UCPm ‎[21] Uses the productivity factor specified by the conventional UCP method. 

AUCP ‎[64] Productivity factor of 36 man-hours per Use Case is used in addition to other 

adjustment factors such as AAF, EMF and OF. In case of the overhead 

factor (OF) not being used, the use of 72 man-hours as productivity factor 

has been prescribed. 

USP ‎[13] A productivity factor of 26 man-hours is used as per the calculations. 

FUSP ‎[13] Productivity factor of 26 man-hours has been used. 

SUCP ‎[70] Productivity factor of 20 man-hours, 28 man-hours and 36 man-hours has 

been used as per the requirement of the project under consideration which is 

appropriate. 

IUCP ‎[14] Productivity factor of 20 man-hours and 28 man-hours has been used as 

other adjustments are taken care of by the risk adjustment factor and factors 

like estimating for reports. 

 

Discussion: With respect to Use Case based effort estimation, this attribute has a vital 

contribution in the comparative analysis. Earlier when the estimation of effort based on 

use cases was in its infancy, there were quite significant variations in estimated effort 

even though the technical complexity factors and experience factors were properly 

adjusted. The reason which came in the focus after many years was the inappropriate use 

of Productivity Factor. Since, Karner proposed a 20 person-hour per use case; it was not 

changed for quite some time until variations with it resulted in more accurate effort 
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estimates. SUCP can be recommended for use as it allows variable use of the 

Productivity Factor with respect to the project. The use of IUCP is also recommended as 

it provides freedom to the estimators for selecting the appropriate Productivity Factor. 
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3.3.10. Artifacts Considered 

 

Table 11: Evaluation of techniques based on ‘Artifacts Considered’ 

Metric Comments 

UCP ‎[42] Does not take into account any additional artifacts. 

Transactions ‎[73] Does not consider any additional artifacts. Deals with the functional 

requirements only. 

Paths ‎[73] No consideration of additional artifacts.  

EUCP ‎[22] No additional artifacts considered. 

UCPm ‎[21] No additional artifacts are considered. 

AUCP ‎[64] Considered artifacts related to non-functional requirements of the process 

lifecycle like availability, performance and security. 

USP ‎[13] No consideration of additional artifacts. 

FUSP ‎[13] No additional artifacts are considered. 

SUCP ‎[70] Additional artifacts are not considered. 

IUCP ‎[14] A lot many artifacts have been considered by the IUCP metric. Artifacts like 

estimating for reports, risk management artifacts, artifacts dealing with 

performance analysis, deliverable analysis, schedulable analysis and defect 

analysis are considered. 

 

Discussion: In terms of this study, artifacts imply the inclusion of non-functional 

requirements in the effort estimation process. As tabulated in the above tables, most of 

the metrics do not consider any additional artifacts with the exception of the AUCP and 

the IUCP. AUCP considers important non-functional requirements such as performance 

and security. IUCP also considers non-functional requirements in addition to including 

lesser effect artifacts such as Reports documentation etc. As such, both AUCP and IUCP 

are recommended for use. 

 

 

 



64 

 

3.3.11. Empirical Validations 

 

Table 12: Evaluation of techniques based on ‘Empirical Validations’ 

Metric Comments 

UCP ‎[42] Many empirical validations are available for the use of traditional UCP 

approach. Many authors have validated the UCP procedure empirically 

using both Industry datasets as well as Student datasets. 

Transactions ‎[73] Empirically validated using datasets comprising of 13 small business 

projects distributed across 3 different contexts; an Undergraduate Academic 

Environment, System and Technology Department at Austral University and 

a level 4 CMM certified company. The projects are also distributed 

implementation wise as well. 

Paths ‎[73] The same datasets used to validate the Transactions metric were used.   

EUCP ‎[22] Validated using two industry projects in a Chinese company of 500 

employees. Since results show some inconsistency, more evaluation needs to 

be done with the metric. 

UCPm ‎[21] Not validated using any dataset. The proposed metric is a result of analysis 

carried out over 50 projects in a period of 2 years as reported. 

AUCP ‎[64] The results of applying this metric were validated using a telecom project of 

Ericcson and across 2 releases. The authors report more case studies that 

validated the AUCP metric but information about them has not been 

specified explicitly. 

USP ‎[13] A case study was done to validate the results of this metric using a real 

project database of a private company. The metric was validated against 

Function Points and traditional UCP. 

FUSP ‎[13] Same case study as was used by the USP metric. FUSP was validated 

against Function Points, traditional UCP and USP itself. Differences 

between USP and FUSP were also highlighted. The use of these metric 

needs more validations and more experiments needs to be done. 

SUCP ‎[70] Empirically validated against 7 industrial projects and 7 other projects from 

the Poznan University of Technology. The range of the actual effort was 277 

man-hours to 3593 man-hours. Promising results were obtained. 

Additionally, a framework was built to evaluate the estimation accuracy of 

all the 14 projects using this metric. 

IUCP ‎[14] The metric has been validated over a continuous period of 5 years, 

consisting of 200 projects in a CMM level 5 company. The results are 

astonishing as the feedback loop helped in reaching 9% deviation with 

reference to the Actual Effort for 95% of the company‟s projects. 

 

Discussion: The attribute where in all the metrics are on par with each other. It is 

interesting to note that all the metrics have been extensively validated using Industrial 
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data sets. As such, we cannot underestimate the evaluations of the proposed metrics in 

any manner.  
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3.4. Analysis 

Based on the critical literature review and after drawing comparisons between the various 

Use Case based metrics on a common ground, several shortcomings arose which were 

anticipated.  The comparison brought forth many weak links in the Use Case based 

estimation process and at the same time highlighted many advantages of using it. The 

following analysis is based on the evaluation attributes used in the comparison. 

 

Nearly all the metrics have been validated using either industry datasets or student 

datasets. This is an onus for the validity of the efficiency and accuracy of the metrics.  

This is well complemented by the fact that most of them have competent and reliable 

effort estimates.  Most of the proposed metrics are easy to use which makes them more 

liable to be favored over other techniques and metrics which provide similar results.  

Adaptability, in terms of usage of the metrics is noteworthy considering that almost all 

metrics qualify as being fairly adaptable and the case studies involving them verify the 

fact.  Few metrics consider detail classification of the Use Cases with respect to 

complexity by considering all the aspects related to the implementation of Use Case.  

Metrics which capture the details are definitely more useful and efficient than metrics 

which do not consider detailed classification.  Also, the inclusion and exclusion of the 

technical complexity factors and experience factors showed varied results.  Mostly, it was 

generalized that the exclusion of few factors does not have negative impact on the 

estimation of effort. Many metrics considered the technical complexity factors to be 

overlapped and hence discarded many such factors. 
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Sensitivity is an attribute which could not be properly addressed in the comparison. It is 

due to the fact that enough information was not available to distinguish the metrics from 

being highly sensitive and lowly sensitive. It is desirable to have metrics and techniques 

which have low level of sensitivity. Based on our comparison, few metrics were found to 

be lowly sensitive and few moderately sensitive. Productivity factor is an important 

concern while estimating effort using Use Cases.  It is an important contributor for the 

conversion of the metric in terms of size to effort. Appropriate use of this factor affects 

the final estimated results.  The degree of correlation between estimated effort and Actual 

effort can be established satisfactorily if the productivity factor is rightly used. Most of 

the proposed approaches don‟t consider the importance of this factor and focus more on 

other adjustment factors. One of the most important weaknesses of Use Case based 

approaches was the non-consideration of the non-functional requirements associated with 

software development processes. Though few metrics attempted to incorporate the 

artifacts pertaining to non-functional requirements, it is not enough. Any software 

process depends on both functional and non-functional requirements.  A metric or 

technique which does not consider additional artifacts will have varying levels of 

deviation in the estimated effort. 

 

The two most important and perhaps the negative factors in terms of using Use Case 

based metrics are the non-transparency of effort prediction processes and the inability to 

deal with imprecision and uncertainty.  These two attributes show the vulnerability of the 

Use Case based approach when compared with other approaches. Transparency in effort 

prediction processes is a major issue as it reflects the visibility of the prediction process 
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to experts and software engineers. Collaboration between the experts and the prediction 

system is highly recommended as the experts can use their knowledge and experience to 

improve the prediction process. Usually, prediction systems coupled with expert opinions 

are more mature and better off than the standalone prediction systems ‎[57].  Most of the 

compared metrics do not account for imprecision with the slight exception of the metrics 

using fuzzy logic and other machine learning techniques. With the prediction processes 

accommodating expert opinions, the imprecision only increases. It is desirable to have 

prediction systems that can handle imprecision. Fuzzy Logic can be employed to handle 

such imprecision. Uncertainty, however, did not seem to have caught enough attention; 

future research is needed to consider the uncertainty associated with measurements 

provided by the different metrics.  

 

The important requirement is that the negative aspects which expose the vulnerability of 

Use Cases should be addressed. In the same context, if a standardized approach is 

established to write Use Cases, many issues would be minimized.  Alternately, each 

organization can come up with their own standards of writing Use Cases and keep a 

check on the standards so that, the estimation process can be generalized using Use 

Cases.  Lastly, using the process improvement lifecycle as a feedback loop to learn and 

incorporate efficient techniques should be prescribed by organizations so as to reap the 

benefits of efficient and accurate effort prediction.  Causal Analyses and Quantitative 

Management Analysis of the reports documented should be carried out on a periodic 

interval to ensure continuous improvement. 
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Despite few shortcomings and negative aspects, the detailed comparison and evaluations 

support the fact that predicting effort using use-cases is justified and that they can be 

successfully used in the software effort prediction process. The primary aspect that 

strongly justifies the use of use-cases for software development effort prediction is the 

early availability of use-cases in the software development life cycle. This is a value 

adder in terms of the effort prediction process in the sense that it is desirable to have 

effort prediction models which can aid in the early prediction of effort. Moreover, the 

applicability of fuzzy logic can help in evolving transparent and adaptive effort prediction 

models capable of handling imprecision and incorporating expert opinions, thereby 

helping in overcoming the majority of the shortcomings as deduced from the outcomes of 

the literature survey.     
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CHAPTER 4 

RESEARCH APPROACH AND PROPOSED 

FRAMEWORKS 

 

 

 

This chapter follows up the discussion from the previous chapters and provides us the 

motivation for the work, various proposals and technical details pertaining to the 

proposed frameworks.  

 

4.1. Motivation and Research Approach 

The discussion from the previous sections highlights the fact that, effort prediction is a 

complex activity involving many difficulties such as dealing with imprecision, 

accounting for uncertainty, and involvement of experts to produce a reasonably accurate 

effort estimate. The impact of producing accurate effort estimates is also clearly visible in 
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terms of project proffering, acceptance, scheduling, execution and profit/loss for business 

entities. The presence of numerous algorithmic and non-algorithmic models for effort 

prediction have certainly added value and improvements in this area, but the scope for 

further improvements and development still prevails. This is justified by the ongoing 

research in this domain and is even more highlighted by the attempts from researchers to 

incorporate machine learning and other related techniques to produce improvements in 

the effort prediction accuracy. 

 

The hierarchical break down of the domain from Cost Estimation to Effort Estimation, 

and subsequently from Effort Estimation to Size Estimation brings forth the diversity of 

approaches and methodologies designed and developed over the years. A vast number of 

techniques for effort estimation and an equally vast number of metrics and techniques for 

size estimation can be found in the literature. As mentioned in Section ‎1.2, the results of 

the first survey show the presence of machine learning techniques in various approaches 

as early as in 1992. Zonglian and Xihui ‎[101] presented the idea of fuzzifying the 

COCOMO model for effort estimation in 1992 which is famously called „f-COCOMO’.  

 

Dividing the effort prediction techniques into two categories namely‟ use-case based 

techniques‟ and „non- use-case based techniques‟, one can draw a clear distinction 

portraying the wide gap in the incorporation of machine learning techniques between 

them. Apart from the work of Zonglian and Xihui ‎[101], other prominent works in the 

„non-use-case based techniques‟ category which utilized machine learning are 
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‎[33]‎[35]‎[54]‎[57]‎[65]‎[67]‎[78]‎[81]‎[88]. Liang and Noore ‎[54] presented a proposal for a 

multi-stage software estimation model using Fuzzy Logic. Saliu ‎[81] presented an 

adaptive fuzzy logic based framework for effort prediction. The main aim of Saliu‟s work 

was to deal with imprecision. Muzaffar ‎[67] proposed a novel framework for effort 

prediction aimed at dealing with imprecision and uncertainty using the concept of type-2 

fuzzy logic. Comparing the aforementioned approaches with the „use-case based 

techniques’ category, there are only two works which have tried to incorporate machine 

learning ‎[13] ‎[22]. Braz and Vergilio [13] proposed a new size metric called USP and 

later incorporated fuzzy logic with it to create FUSP. The USP and FUSP focus mainly 

on including the details of the use cases to produce the size estimate. Fan et al ‎[22] used a 

combination of fuzzy logic and bayesian belief networks to evolve a new framework for 

effort prediction based on use cases.  

 

As such, it is clear that there have been very few attempts to incorporate techniques such 

as fuzzy logic, neural networks, Bayesian networks and genetic algorithms in the „use-

case based techniques‟ category. Surprisingly, the much acclaimed use-case based 

technique proposed by Karner ‎[42], the Use Case Points method has not been subjected 

to the collaboration of machine learning techniques. This leads to the idea of modifying 

the existing UCP method (f-UCP) by incorporating fuzzy logic on similar lines as the „f-

COCOMO‟ model ‎[101].    

 



73 

 

Following up the discussion from Section ‎3.3, it is obvious that two major shortcomings 

that need to be dealt with are the non-transparency of effort prediction processes and the 

inability to deal with imprecision and uncertainty. Fuzzy Logic, along with its power of 

approximate reasoning can help build transparent effort prediction models capable of 

incorporating expert opinions and dealing with imprecision and uncertainties. 

Additionally, Kamal et al ‎[40] states in the future work that the impact of the technical 

complexity factors (TCF) and experience factors (EF) on the prediction accuracy needs to 

be evaluated.  

 

With the above stated facts exhibiting a clear insight about the motivation of the work, 

the research approach follows a well-structured and goal based methodology. Initially, a 

proposal for integrating fuzzy logic with the existing UCP method (viz a viz „f-UCP‟) can 

be seen in the immediately following section. To study the impact of TCF and EF on the 

prediction process and to decide between including/excluding few factors, dimension 

reduction (Factor Analysis) on TCF and EF is performed. Then, the proposed adaptive 

fuzzy logic based framework is presented keeping in mind the post-implementation 

observations obtained from „f-UCP‟ and „Factor Analysis‟.  

 

Following the proposed framework is another alternative framework for effort prediction 

which is aimed at simplifying the effort prediction process by removing all additional 

factors other than the main factors pertaining to use-case information (Actors and Use 

Cases). This simplified framework is then extensively evaluated for a variety of 
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objectives including the impact of pairwise combinations strategy for defining rules in a 

fuzzy logic system, impact of design parameters and the choice of fuzzy logic system to 

be used (Mamdani vs. Sugeno). More details regarding these evaluations can be seen in 

Chapter 5.  

 

Figure 8: The Research Approach 

Fuzzification of the basic UCP model (f-UCP) - Section 
4.2

Identification and reduction of TCF and EF (Factor 
Analysis) - Section 5.1

Development of the proposed framework - Section 4.3

Development of the simplified framework - Section 4.4

Investigating the impact of genetic rule learning on the 
effort prediction system - Section 5.3

Investigating the impact of using Mamdani and Sugeno 
FLS in the context of the effort prediction system - Section 

5.4

Investigating the impact of applying pairwise combinations 
to form the rule base of the effort prediction system -

Section 5.5

Investigating the impact of various design parameters on 
the effort prediction system - Section 5.6

Development of the genetic-fuzzy system (GeFuSys-M) to 
evolve multiple effort prediction architectures - Section 4.5
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Finally, the power of Genetic Fuzzy Systems is realized by developing a genetic learning 

model for the simplified effort prediction framework. Summing up, a specially designed 

chromosome structure for implementing a generic multi-layer genetic fuzzy system 

(GeFuSys-M) for effort prediction is developed and implemented. For sake of illustration, 

the research approach is presented as a flow chart in Figure 8.  

 

4.2. ‘f-UCP’: Fuzzy Use Case Points Method 

The UCP method proposed by Karner ‎[42] is the most popular method of effort 

prediction based on Use Cases. The aim of fuzzifying the UCP method is to replace the 

existing mathematical model with a fuzzy model. The added advantage is that, 

fuzzification of UCP factors will provide a gradual and continuous classification for 

experts to choose between 2 values for a particular factor. Another reason to actualize the 

f-UCP method is to try to improve the prediction of effort by building a transparent 

system which can aid the experts to incorporate their opinions. To design a fuzzy UCP 

model, we need to use fuzzy logic systems (FLS) as components coupled in an 

architecture representing a complete UCP method. The architecture for f-UCP is 

presented in Figure 9.  

 

The f-UCP method is designed using Sugeno type of fuzzy inference system as opposed 

to the more commonly used Mamdani type fuzzy inference system. More details 

regarding the differences between the two types of inference systems can be seen in the 

next chapter. Designing a fuzzy logic system requires four steps. The first step in building 
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a fuzzy logic system hereafter referred to as FLS; is to define the fuzzy sets for all 

input/internal and output/external attributes. The second step is to formulate the rule base 

using the linguistic variables for each fuzzy set. The third step is training the FLS to 

refine the linguistic relationships in the rule base. The fourth step is to validate the 

performance of the FLS using test data. We will discuss the four steps in the following 

sequel. 

 

E

1

6

2
3
4
5

1
2
.

.

.
13

1
2
3
4
5
6
7
8

AC

UC

TCF

EF

PF

EFFORT

 

Figure 9: Architecture of the f-UCP method 

4.2.1. Defining Antecedent and Consequent Fuzzy Sets 

The internal and external attributes of the system under consideration are classified into 

fuzzy sets based on either expert opinion or by analysis of numerical data sets. From the 
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architectural design of the f-UCP method, it is visible that the number of inputs to the 

components in the first layer is large. The last component in the second layer has 

relatively lesser number of inputs. Nevertheless, we use 3 membership functions for each 

input attribute. The type of the membership functions used is Gaussian. The membership 

functions overlap initially and are shouldered at the interval boundaries of the 

antecedents.   

4.2.2. Rule Base Formulation 

There are quite a few approaches which are commonly used for formulating the rules of 

an FLS. One such method is to consider all the possible combinations of antecedent fuzzy 

sets to create a complete rule base. Even though this approach has advantages, the 

disadvantage is that, it creates a large rule base when the number of inputs is large or the 

number of membership functions used is large. In f-UCP, each component is an 

individual FLS and since there are a large number of inputs to each component, there 

would be an explosion of rules in the rule base.  

 

To resolve the problem of accommodating a large rule base, a clustering technique called 

„Subtractive Clustering‟ is used. The subtractive clustering method extracts rules that 

model the data behavior. The method (see, algorithm 4-1) assumes each data point to be a 

potential cluster center and calculates a measure of the likelihood that each data point 

would define the cluster center, based on the density of surrounding data points.  
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A point to be noted is that, the subtractive clustering method is used for formulating the 

rules of the first 3 components in the first layer. The last component (Effort) in the 

second layer does not use subtractive clustering since it has only 4 inputs. As a result, all 

possible combinations are used to define the rule base of the last component, which imply 

the presence of 81 rules (3x3x3x3). 

 

Algorithm 4-1: Subtractive Clustering Method 

 

 

4.2.3. f-UCP Training 

The most important aspect of realizing an efficient f-UCP method is related to the 

training of the system. Training corresponds to the refinement of linguistic relationships 

in the rule base by adapting the parameters associated with the membership functions. In 

the context of f-UCP, the adaptive neuro-fuzzy inference system (ANFIS) is used for 

training the system.  

 

1. Selects the data point with the highest potential to be the first cluster center. 

2. Removes all data points in the vicinity of the first cluster center (as 

determined by radii), in order to determine the next data cluster and its 

center location. 

3. Iterate on this process until all of the data is within radii of a cluster center      
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Referring to the discussion in Section ‎2.3.3 wherein it is stated that neural networks and 

genetic algorithms provide learning capabilities to Fuzzy Logic Systems, ANFIS is an 

example of one such system which uses the adaptive learning techniques of neural 

networks in the context of fuzzy systems to learn information about a data set. In essence, 

ANFIS is concerned with tuning/training the parameters of membership functions 

belonging to a particular FLS. ANFIS allows two methods of training the FLS; a back 

propagation method and a combination of back propagation method with least squares 

method, the latter of which is called the Hybrid method of ANFIS training.  

 

In f-UCP, all the 4 components are subjected to training using ANFIS. The training data 

set is prepared before the start of the training procedure. The training data set comprises 

of 70% of the available data.  

 

4.2.4. f-UCP Validation 

Finally, the complete system comprising of all the 4 FLS is activated. Testing data can be 

used to validate the performance of the proposed f-UCP method. The testing data set is 

30% of the available data. The mean absolute relative error (described in the next section) 

is used for validating the performance of f-UCP.    
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4.3. The Proposed Adaptive Fuzzy Logic based Framework for 

Effort Prediction 

The proposed framework aims at resolving all the issues and observations collectively 

obtained from the critical literature review, the f-UCP implementation and factor 

analysis. The proposed framework is depicted in Figure 10. The framework consists of 

two layers and 5 components, wherein each component is an individual FLS. The 

architecture presented in Figure 10 shows 4 components in the first layer and 1 

component in the second layer. The outputs of the first layer are propagated as inputs to 

the last component in the second layer which produces the actual output i.e. the predicted 

effort. In this section, the details pertaining to the use of the proposed framework to 

initialize, formulate, train and validate the effort prediction systems are explicitly 

discussed. For sake of brevity, the discussion in the following sub-sections is kept general 

and is applicable to all the 5 components in the framework. For illustration purposes, few 

sub-sections have examples related to a specific component. 

 

4.3.1. Initializing the System 

Each component in the effort prediction system has certain input attributes and a single 

output attribute. Initializing the system corresponds to initializing the membership 

functions for the antecedent and consequent fuzzy sets for each individual component 

(FLS). In this thesis, we have used type-1 singleton FLS for all the components and the 

definitions of the antecedent and consequent membership functions have been obtained 



81 

 

using numerical analysis of data sets. Initializing the membership functions requires 

deciding on 3 major aspects;  

 

1. Type of membership function to be used, 

2. Number of membership functions to be used corresponding to the division of the variable 

interval into the number of regions/fuzzy sets, 

3. Selecting the parameters for the membership functions. 

 

AC

UC

EF

TCF

E EFFORT

Simple AC

Average AC

Complex AC

Simple UC

Average UC

Complex UC

EF1
EF2
EF3

EF4

EF5

TCF 1
TCF 2
TCF 3
TCF 4

TCF 5
TCF 6

 

Figure 10: The Proposed Framework 

 

As such, type-1 Gaussian membership functions have been used for both the antecedents 

and consequents. All the input attributes and output attributes of the five components 
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have been divided into 3 fuzzy sets, corresponding to 3 membership functions for each 

antecedent and consequent. A point to be noted is that, the terms membership function 

and fuzzy sets are used interchangeably and hence, antecedent fuzzy sets or antecedent 

membership functions imply the same.  

 

After the variable (antecedent inputs) interval is divided into 3 regions, i.e. 3 antecedent 

fuzzy sets, we need to make sure that the 3 adjacent antecedent fuzzy sets overlap 

initially. This is done by making the tails of fuzzy sets lie at the mean of the adjacent 

fuzzy sets. The initial overlap helps in exploiting the power of fuzzy logic to handle data 

that lies in between the fuzzy sets intervals ‎[81]. Also, the fuzzy sets that lie at the 

interval boundaries are shouldered.  

 

When it comes to initializing the parameters for the membership functions, we follow the 

approach prescribed by Mendel ‎[60]. This approach is suitable for designing type-1 

singleton FLS which use back propagation methods for training the FLS. For the 

antecedents, there are two parameters which need to be defined while using a Gaussian 

membership function; mean (M) and standard deviation (σ) and for the consequents, one 

parameter needs to be defined; center of consequent membership function (c). 

 

To define the antecedent parameters based on the numerical data set, the first step is to 

calculate the mean (M) and standard deviation (σ) values for each input attribute. Then 
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depending on the number of fuzzy sets for each input attribute, define the means of the 

membership functions „M‟ as follows; 

 

Mmf1 = M – α.σ 

Mmf2 = M 

Mmf3 = M + α.σ 

 

Where, „α‟ is a constant that should be defined properly (using experience) so as to cover 

the complete interval range of a particular input attribute. Mmfi refers to the mean of the 

i
th

 membership function. The standard deviation values for all the 3 membership 

functions are kept to the same value of „σ‟.  

 

To define the consequent parameters based on the numerical data set, i.e. the centers of 

consequent fuzzy sets, the lowest and highest values for a particular output attribute are 

extracted from the numerical data. Then the range is calculated as the difference between 

the highest and lowest value. Dividing the range by the number of membership functions 

minus 1, gives the increment factor. To get the initial values for the center of consequents 

(c), start with the lowest value, keep adding the increment factor until all the consequent 

fuzzy sets have the center (c) values. While defining these values, one has to be careful to 

cover the domain interval of the output attributes.  
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4.3.2. Formulating the Rule Base 

An integral part of the FLS is the rule base. The definitions of the system parameters and 

the rule base aid in realizing the process of fuzzy inference. In this context, we have used 

the approach described in ‎[67]‎[81], but with modifications. Both the approaches ‎[67]‎[81] 

use all possible combinations of the antecedent fuzzy sets to define the rule base. 

Moreover, the number of consequent fuzzy sets is equal to the number of the rules, with 

each consequent fuzzy set having a distinct center of consequents (c) value. This is 

similar to the One-pass method ‎[60] of FLS design where the number of consequent 

fuzzy sets is equal to the number of rules in an FLS.  

 

In our approach (back propagation method), we use all possible combinations of the 

antecedent fuzzy sets to define the rule base, but we have a fixed number of consequent 

fuzzy sets in an FLS corresponding to a fixed center of consequents (c) values. Since, 

each rule in an FLS should have a certain „c‟ value, a random value from among the fixed 

„c‟ values is chosen.  

 

Typical rules for component 1 (Actors) are of the form; 

 If simpleAC is low and averageAC is low and complexAC is low, then ACTORS is low 

 If simpleAC is low and averageAC is medium and complexAC is low, then ACTORS is 

low 

 If simpleAC is medium and averageAC is low and complexAC is high, then ACTORS 

is medium 
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 If simpleAC is medium and averageAC is high and complexAC is high, then ACTORS 

is high 

 If simpleAC is medium and averageAC is low and complexAC is high, then ACTORS 

is medium 

A point worth mentioning is that, low, medium and high correspond to the antecedent 

membership functions Mmf1, Mmf2 and Mmf3 respectively. Since, we consider all possible 

combinations of antecedent fuzzy sets to form the rule base; the total number of rules in 

an FLS is given by the product of the number of fuzzy sets for each input attribute in an 

FLS. In terms of the proposed framework, for component 1 (Actors), there are 3 input 

attributes namely; simpleAC, averageAC and complexAC. Each input attribute has 3 

fuzzy sets which means that component 1 (Actors FLS) has 27 (3x3x3) rules. This 

method of formulating the rules applies to all the individual components in the overall 

effort prediction system.  

 

In some cases, for an FLS, the number of input attributes is large or the number of fuzzy 

sets for input attributes is large. This leads to an explosion in the number of rules in the 

rule base which brings forth many difficulties in designing and implementing the FLS. 

This problem is called as the „curse of dimensionality‟ and is commonly faced by 

researchers mainly due to the former issue of large number of input attributes for and 

FLS. Section ‎5.5 presents an approach „pairwise combinations‟ to check whether it can 

successfully resolve the issue of curse of dimensionality. 
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4.3.3. Training the System 

In the context of the framework, training the system refers to the training of the rules in 

an FLS so as to improve the accuracy of predicting the output. After defining the fuzzy 

sets and formulating the fuzzy rule base, the third step is to train the FLS. Training the 

FLS is required to refine the linguistic relationships in the rule base. In this thesis, 

training is realized using back propagation algorithm, wherein the training proceeds by 

propagating the inputs through the FLS and modifying the parameters of various 

membership functions based on computed error and steepest descent approach, see 

Algorithm 4-2.  

 

Before starting with the training procedure, training data sets need to be prepared from 

the available data sets. The training data set comprises of 70% of the available data. 

Additionally, because of the dearth of industrial data sets, artificial data sets were 

generated. More details pertaining to the generation of artificial data sets can be found in 

Chapter 6. 
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Algorithm 4-2: Training algorithm for tuning a singleton type-1 FLS 

 

The training algorithm is essentially the same as initially proposed by Mendel [60] and 

used by Muzaffar ‎[67] and Rahman ‎[72].  

 

Given N input-output training samples ):( )()( ii yx , i = 1 … N. The objective is 

to minimize the error function for „k‟ training epochs. The error function is 

computed as: 

)(ie  =  2)()( )(
2

1 ii yxf   i = 1 … N 

 

Steps 

1. Initialize all the parameters.  

 

2. Set the counter, ep, of the training epoch to zero i.e. ep=0.  

 

3. Set the counter, i, of the training data to one. i.e., i=1. 

 

4. Apply the means of inputs with their corresponding standard deviation 

to the singleton type-1 FLS and compute the output )( )(ixf . 

 

5. Compute the output error (relative) as: 
)(

)()(  - )(
  

i

ii

y

yxf
e   

 

6. Tune the means and standard deviations of the antecedent membership 

functions and the centers of consequents using steepest descent 

algorithm for the error function. 

 

7. Set i=i+1. If i = N+1, go to next step otherwise apply the next input. 

 

8. Set ep=ep+1. If ep=k, Stop; otherwise start a new epoch. 
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4.3.4. Framework Validation 

Once the prediction system has been trained, the last step is to validate the performance. 

This is done by testing the system on testing data sets. The testing data sets are prepared 

from the available data sets and comprise of 70% of the available data.  

 

For testing purposes, the trained system consisting of the modified parameters 

(antecedent means, antecedent standard deviations, center of consequents) is used and the 

testing data is applied to get the predicted output. Both the training and testing are carried 

out in terms of the overall prediction system, i.e. for all the 5 components. The output of 

the last component (predicted effort) and the actual effort values in the testing data set are 

used to calculate the error which gives a measure of the system‟s prediction accuracy and 

the overall validity of the proposed framework. The mean absolute relative error 

(MARE) has been used for obtaining the prediction accuracy. The mean absolute relative 

error is defined in Section ‎6.1. Thus, by using the testing data and the error measures, the 

validity of the framework can be established. 
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4.4. The Simplified Adaptive Fuzzy Logic based Framework 

for Effort Prediction 

The proposed framework in Section ‎4.3 consists of a multi-layered architecture, the 

reason being the presence of a variety of input attributes pertaining to the technical 

complexity factors (TCF) and experience factors (EF). As a result, the prediction system 

was divided into multiple components and layers. Following from the results of the 

literature review, especially the result of the work by Ochodek et al ‎[70], which states 

that the difference in the prediction accuracy is insignificant whether or not the TCF and 

EF are considered, we thought of designing a simple framework for effort prediction. 

Moreover, the aim of Ochodek et al ‎[70] also, was to simplify the process of effort 

prediction based on use case points. They use multiple regression analysis to prove the 

result that TCF and EF affect the final prediction of effort minimally.  

 

The proposed simplified framework differs from the previous framework in terms of the 

number of components and the number of attributes. The simplified framework has a 

single component consisting of 6 input attributes which include 3 inputs pertaining to the 

Actors and 3 inputs pertaining to the Use Cases. The output attribute is the Effort 

(predicted effort). The simplified framework is depicted in Figure 11. In what follows, 

are the details related to initializing, training and activating the simplified effort 

prediction framework. 
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4.4.1. Initializing the System 

With regards to initializing the system, the sequel follows from the previous discussion in 

Section ‎4.3.1. Type-1 singleton FLS is used and Gaussian membership functions are 

chosen for the input attributes. Each input attribute has 3 membership functions. The 

parameters related to the definition of membership functions (means of antecedents, 

standard deviations of antecedents, centers of consequents) are initialized in a similar 

manner as described in Section ‎4.3.1. 

 

4.4.2. Formulating the Rule Base 

The prediction system consists of a single component having 6 input attributes and each 

input attribute has 3 membership functions. Since, we follow the approach used in the 

previous framework; we have 729 rules in the rule base corresponding to all the possible 

combinations of the antecedent membership functions. Examples of rules in the rule base 

are as follows; 

 

 If simpleAC is low and averageAC is low and complexAC is low and simpleUC is low 

and averageUC is low and complexUC is low then EFFORT is low 

 If simpleAC is low and averageAC is medium and complexAC is high and simpleUC is 

low and averageUC is medium and complexUC is medium then EFFORT is medium 

 If simpleAC is medium and averageAC is low and complexAC is high and simpleUC is 

high and averageUC is low and complexUC is low then EFFORT is medium 
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 If simpleAC is high and averageAC is high and complexAC is medium and simpleUC 

is low and averageUC is medium and complexUC is high then EFFORT is high 

 If simpleAC is high and averageAC is low and complexAC is medium and simpleUC is 

medium and averageUC is low and complexUC is high then EFFORT is medium 

 

A point to note is that this is quite a large rule base in terms of implementing an FLS. 

More commonly, the number of input attributes is lesser in practice as can be seen in 

Muzaffar‟s ‎[67] and Saliu‟s ‎[81] work. Typically, in industrial applications of FLS, 

expert opinions are used to define the rule base of a fuzzy logic system which helps in 

reducing the number of rules considerably. The experts use their experience in deciding 

upon including the important rules and discarding the unnecessary ones. This aids in 

realizing simple, yet efficient systems.  

 

E

Simple AC

Average AC

Complex AC

Simple UC

Average UC

Complex UC

EFFORT

 

Figure 11: The Proposed Simplified Framework for Effort Prediction 
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4.4.3. Training the System 

The prediction system under consideration is trained for refining the linguistic 

relationships in the rule base on similar lines as the previous framework. Back 

propagation (Steepest Descent Approach) algorithm is used to train the system. The 

training algorithm (Algorithm 4-2) can be seen in Section ‎4.3.3. The training data set is 

extracted from the available data set. The training data set contains 70% of the available 

data set.  

 

4.4.4. Framework Validation 

The simplified framework is validated by testing the prediction system with testing data. 

The testing data is obtained from the available data set and is chosen to be 30% of the 

available data. MARE is used as the error measure and helps in obtaining the prediction 

accuracy. 

 

4.5. The Proposed Genetic Fuzzy System (GeFuSys-M) for 

evolving multi-layered architectures for Use-Case based Effort 

Prediction Systems 

A fuzzy logic system augmented by a genetic learning process makes it more efficient 

than a plain FLS which just performs the process of fuzzy inference by utilizing a defined 

rule base to produce outputs given a set of inputs. From Section ‎2.3.3, we note that 
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genetic learning processes cover different levels of complexity according to the structural 

changes produced by the algorithm, from the simplest case of parameter optimization to 

the highest level of complexity of learning the rule set of a rule based system. Fuzzy 

Systems with genetic learning capabilities to learn the rule sets are also called Genetic 

Fuzzy Rule based Systems (GFRBS). A complete design and implementation of a 

GFRBS in the context of the simplified framework for effort prediction can be seen in 

Section ‎5.3.  

 

Based on the observations obtained from implementing the genetic learning process for 

the simplified effort prediction framework, the idea of designing a special chromosome 

structure for building a multi-layered genetic fuzzy system (GeFuSys-M) was conceived. 

The main theme of designing such a system is to exploit the power of genetic learning to 

generate an exhaustive number of effort prediction systems and then return the most 

optimal effort prediction system. The generated effort prediction systems differ from each 

other in terms of number of inputs used, number of components within a system, division 

of inputs into each component, number of rules in each component, interconnection 

between the components, and rule sets for each component.  

 

GeFuSys-M is a complex genetic fuzzy system with an even more complex chromosome 

structure which caters to a large number of requirements of a prediction system designer. 

Following are the requirements that are expected to be fulfilled by GeFuSys-M in the 

context of effort prediction systems; 
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1. GeFuSys-M selects the number of inputs to be used in a particular effort prediction 

system. Suppose a designer specifies a set of inputs to be used for designing an 

effort prediction system, GeFuSys-M selects either a subset of the total inputs or the 

complete set as per the genetic learning process. 

2. GeFuSys-M defines the number of components (individual FLS) in a particular 

effort prediction system. Depending on the number of inputs selected for that 

particular system, GeFuSys-M defines the number of components based on the 

genetic learning process. 

3. GeFuSys-M divides the selected inputs into the defined components. Assuming that 

there are „X‟ inputs to be divided across „Y‟ components, GeFuSys-M offers a 

genetic learning based solution for the task. 

4. GeFuSys-M is responsible for defining the number of rules for each component. 

Depending on the number of inputs in a component, GeFuSys-M defines the number 

of rules to be accommodated in the particular component. The rules are initialized 

randomly. 

5. Most importantly, GeFuSys-M gives various architectures for effort prediction 

systems. This is achieved by depending on the learning process to give different 

interconnections between the components.  

6. Lastly, GeFuSys-M gives the best set of rules for each component within the system 

and consequently the best overall effort prediction system.  

 

A point worth mentioning is that, GeFuSys-M is a generic system, in other words a 

framework which is not fixed to be used in the context of effort prediction alone, but 

rather to any application domain utilizing fuzzy systems. The idea is to play with a 
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plethora of design possibilities for building a fuzzy logic system. Since, genetic 

algorithms and genetic fuzzy systems have been extensively discussed in Chapter 2 of 

this thesis; we can proceed directly to the chromosome structure of GeFuSys-M.  

 

4.5.1. Chromosome Design for GeFuSys-M 

The most important step in designing a genetic fuzzy system is designing the 

chromosome itself. A large number of GFS differ in the way their chromosome structures 

are designed. As we know that, genetic algorithms start with an initial population of 

candidate solutions encoded as chromosomes, it is imperative that an efficient 

chromosome structure be designed which can lead to optimal solutions. The chromosome 

structure is depicted in Figure 12. Table 13 presents a detailed description of the 

chromosome structure. 
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Figure 12: Chromosome Structure for GeFuSys-M 

 

Table 13: Chromosome Description 

Chromosome 

Part 

Size in Bits Description 

A numBitsPerm This part selects an index from a list of 2
numBitsPerm

 index 

values. A pre-defined array whose size is 2
numBitsPerm

 

consists of permutation wise arrangement of the set of 

inputs for a particular system. „numBitsPerm‟ is the 

number of bits used for making the permutation array and 

it defines the number of permutations the array should 

hold. If numBitsPerm = 16, and the number of inputs = 

27, then the permutation array holds 65536 permutation 

wise arrangements of 27 inputs.   

B numBitsInput = 

log2(numInputs) 

This part gives the number of inputs selected from the 

total set of inputs, i.e. from „numInputs‟. „numBitsInput‟ 

corresponds to the size in bits in the chromosome 

structure reserved for the selected inputs. 

C = C1, C2… 

CMNC-1 

(MNC – 1) * 

numBitsInput 

This part indicates how many inputs go to each of the 

components. „MNC‟ stands for maximum number of 

components. It helps us to put an upper limit on the 

number of components we wish to accommodate in our 
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system. 

D (MNC–2)(MNC–

1)/2 

This part gives the different architectures possible in the 

system by defining interconnections between the 

components by utilizing an adjacency matrix (see Section 

‎4.5.1.1). 

E = E1, E2… 

EMNC 

MNC * 

numBitsMRPC 

This part gives the number of rules for each component. 

The number of rules in each component does not exceed 

the limit defined by MRPC. MRPC stands for „Maximum 

number of Rules per Component‟. As such, 

„numBitsMRPC‟ allocates the size for accommodating 

the rules in the chromosome structure. 

H = H1, H2 … 

HnumInputs+MNC-1 

(numInputs + MNC 

- 1) * 

numBitsInputMFs 

This part gives the values of the input membership 

functions (low, medium, high) for data inputs. 

Additionally, in case of a multi layered architecture being 

produced by the system, this part gives the values of the 

input membership functions for those inputs which are 

outputs of the previous components and are being fed as 

inputs to the next component. „numBitsInputMFs‟ is the 

size in bits required to accommodate the values of the 

input membership functions. 

I numBitsOutputMFs This part gives the values of the output membership 

functions (low, medium, high) for data outputs. 

„numBitsOutputMFs‟ is the size in bits required to 

accommodate the values of the output membership 

functions.  

G = G1, G2 … 

GMRPC 

MRPC * (H + I) (G = H + I) is one complete rule. A collection of such 

rules i.e. G1, G2 … GMRPC gives one complete Rule Set. 

Hence, this part of the chromosome gives the „Rule Set‟ 

for one component.  

F = F1, F2 … 

FMNC 

MNC * G This part of the chromosome gives the Rule Sets of all 

the components in the complete system.  

 

4.5.1.1. Adjacency Matrix for interconnections between components 

One of the most important and challenging aspect of designing the chromosome is to 

allow the learning process of GeFuSys-M to generate a variety of architectures for the 

effort prediction system. To embed this functionality in GeFuSys-M, we used the concept 

of adjacency matrix. An upper triangular adjacency matrix for defining the 

interconnections between the components is used. The structure of the adjacency matrix 
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is for 5 components and 4 components is depicted in Figure 13 and Figure 14 

respectively. 

 

Figure 13: Adjacency matrix in case of 5 components 

 

 

 

Figure 14: Adjacency matrix in case of 4 components 

 

Before interpreting the contents of the adjacency matrix, we first determine its size in 

terms of the chromosome structure. The assumption is that, the last component is fixed at 

the end of the architecture and hence the output of the immediately preceding component 

will always be the input to the last component. So, we do not need to know the 

interconnections for the last 2 components, as a consequence why we have the number of 

rows in the adjacency matrix as „1 to MNC-2‟. And since, if any of the previous 
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components are not connected to each other, it implies that they are connected to the last 

component. Hence, the number of columns in the adjacency matrix starts from „2 to 

MNC-1‟. The size of the adjacency matrix is calculated based on the number of entries in 

the matrix.  

 

Number of entries = 1 + 2 + 3 +…. + (MNC-2) 

Using the formula for sum of ‘n’ numbers, i.e. n (n+1) / 2; 

Size of matrix = (MNC-2) (MNC-1) / 2 

 

The method of interpreting the contents of the adjacency matrix is as follows; 

Let the entry in the adjacency matrix be a vector of row entry and column entry 

corresponding to (i, j).   

 

If (i, j) = 1, => the i
th

 component is connected to component ‘j’, which also implies 

that the output of the i
th

 component is input to component ‘j’.   

If (i, j) = 0,  => the i
th

 component is not connected to component ‘j’. 

 

A point to note that, if any component is not connected to any other component in the 

adjacency matrix, it means that the component is connected to the last component in the 

architecture, which is always fixed. 
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4.5.2. The Genetic Learning Process 

The genetic learning process begins with a random population, i.e. a set of randomly 

generated chromosomes. Each individual in a population corresponds to one complete 

effort prediction system. Subsequently, the fitness value for each individual in the 

population is obtained. The fitness function used is the Mamdani type-1 FLS which takes 

the rule set and the inputs used from the chromosome and evaluates the prediction 

accuracy of the system. The fitness value corresponds to the Mean Absolute Relative 

Error (MARE) which is calculated in the fitness function itself. Once a generation is 

completed, the genetic learning process applies operators such as Selection, Crossover 

and Mutation to generate the population for the next generation.  

 

Selection: Stochastic uniform selection is used in the context of GeFuSys-M. Stochastic 

uniform selection lays out a line in which each parent corresponds to a section of the line 

of length proportional to its scaled value. The selection algorithm moves along the line in 

steps of equal size. At each step, the algorithm allocates a parent from the section it lands 

on. 

 

Crossover: Scattered crossover is used in the context of GeFuSys-M. It creates a random 

binary vector of 1‟s and 0‟s and selects the genes from the first parent where the vector is 

a 1, and the genes from the second parent where the vector is a 0, and combines the genes 

to form the child. The crossover probability is kept at 0.8. For example, if p1 and p2 are 

the parents given as follows; 
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p1 = [a z j k n l y t] 

p2 = [1 2 3 4 5 6 7 8] 

Binary vector = [1 1 0 0 1 0 0 0], the function returns the following child: 

Child = [a z 3 4 n 6 7 8] 

 

Mutation: Gaussian mutation is used, which adds a random number taken from a 

Gaussian distribution with mean 0 to each entry of the parent vector. The standard 

deviation of this distribution is determined by the parameters Scale and Shrink. The Scale 

parameter determines the standard deviation at the first generation. The Shrink parameter 

controls how the standard deviation shrinks as generations go by.  

 

The genetic learning process continues until the end of the specified generations. The best 

fitness value corresponding to the minimum MARE value is reported from among the 

complete learning phase. The prediction system which gives the best fitness value is 

returned as the most optimal effort prediction system. An important point is that, 

GeFuSys-M during its learning phase exhaustively searches for various possibilities of 

effort prediction system pertaining to different architectures, different inputs, different 

components and different rule bases. Overall, GeFuSys-M is an attempt to create a 

powerful tool which aims at realizing an efficient GFS which can cater to the needs of the 

FLS designers irrespective of the application domain. The application of GeFuSys-M in 

the domain of Effort Prediction has yielded encouraging and promising results which can 

be seen in Chapter 6. 
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CHAPTER 5 

EXAMINING THE IMPACT OF VARIOUS 

ALTERNATIVES ON PERFORMANCE 

 

 

 

In this chapter, we present the important aspects of the proposed frameworks related to 

the training algorithm used, the choice of the fuzzy inference system, and the definition 

of design parameters for training the proposed frameworks. All the aforementioned 

aspects play a vital role in designing FLS based effort prediction systems. We proceed by 

first presenting a brief discussion on factor analysis which played a key role in the 

development of the proposed effort prediction framework, see Section ‎4.3. A genetic 

learning model for learning the rule sets of an FLS has been presented in the context of 

the simplified effort prediction framework.  
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5.1. Factor Analysis 

The term Factor Analysis refers to a widely used statistical technique for dimension 

reduction and data classification. The main applications are to reduce the number of 

variables, and to classify the variables by detecting structure in the relationships between 

variables. Factor analytic techniques are broadly classified into two categories; 

Exploratory Factor Analysis and Confirmatory Factor Analysis. Exploratory factor 

analysis aims at finding new structural relationships between factors, whereas 

Confirmatory Factor Analysis aims at determining whether or not the factors conform to 

the pre-defined structural relationship. One of the most commonly used forms of 

exploratory factor analysis is the „Principal Components Analysis‟ which has been used 

in the context of this thesis.  

 

Principal Components Analysis (PCA) is a descriptive statistical technique that employs 

the concept of orthogonal transformations to convert a set of possibly correlated variables 

into a set of linearly uncorrelated variables. The resulting sets of uncorrelated variables 

are called „principal components‟. Usually, the number of principal components is less 

than the number of original variables. PCA extracts the components in such a way that 

the first principal component accounts for the largest possible variance. This is continued 

further, wherein the second principal component accounts for the maximum variance 

amongst the remaining components and at the same time is orthogonal to the first 

component. 
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We applied PCA to reduce the number of „Experience Factors‟ and „Technical 

Complexity Factors‟ pertaining to the design of the adaptive fuzzy logic based framework 

for effort prediction. As a consequence of developing the f-UCP method, the observation 

that large number of inputs to any FLS resulted in an explosion of rules (curse of 

dimensionality), led us to reason about ways of reducing the number of rules. 

Subsequently, the idea of dimension reduction was conceived which is realized by the use 

of Principal Components Analysis to reduce the number of inputs to FLS, thereby 

reducing the number of rules.  

 

5.1.1. Principal Components Analysis on Experience Factors (EF) 

PCA was conducted to reduce the number of variables corresponding to the 8 Experience 

Factors. Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy and Bartlett‟s test 

of Sphericity was conducted and a KMO value of 0.652 was found. A KMO value close 

to one indicates that correlations are tightly coupled and as a result the PCA should 

produce distinct and reliable factors/components. Additionally, a Chi Square value of 

307.174 with 10 degrees of freedom and a significance value of 0.000 was reported 

which establishes that there are non-zero correlations between the 8 EF variables and 

hence factors exist.  

 

Since, rotation optimizes the component structure; we used the Direct Oblimin Rotation 

method along with the principal components analysis. The „maximum iterations for 
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convergence‟ value was set to 10. The rotations converged in 3 iterations and yielded 5 

variables classified under 2 components. EF-1, EF-2, EF-3 fall under the first component 

and EF-7 and EF-8 fall under the second component. The comprehensive set of results 

for PCA on Experience Factors can be seen in Chapter 6. 

 

5.1.2. Principal Components Analysis on Technical Complexity Factors 

(TCF) 

PCA was conducted to reduce the number of variables corresponding to the 13 Technical 

Complexity Factors. Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy and 

Bartlett‟s test of Sphericity was conducted. A KMO value of 0.459 was reported. Even 

though the KMO value is not close to one, there is finite possibility that PCA would 

produce distinct factors. A Chi Square value of 368.514 with 15 degrees of freedom and a 

significance value of 0.000 were reported.  

 

The Direct Oblimin Rotation method was used and the „maximum iterations for 

convergence‟ value was set to 10. The rotations converged in 4 iterations and yielded 6 

variables classified under 3 components. TCF-2 and TCF-3 fall under the first 

component; TCF-5 and TCF-9 fall under the second component and the third component 

includes TCF-6 and TCF-12. The comprehensive set of results for PCA on Technical 

Complexity Factors can be seen in Chapter 6. 
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5.2. Training Algorithm 

In this thesis, back propagation (Steepest Descent Approach) algorithm has been used in 

the context of training the FLS based effort prediction system. Both the proposed 

frameworks utilize the same training algorithm as mentioned in Section ‎4.3.3 and Section 

‎4.4.3. In the back propagation method, neither of the antecedent or consequent 

parameters is fixed ahead of time ‎[60]. A steepest descent method is used to tune the 

antecedent and consequent parameters. A point worth mentioning is that, the following 

discussion related to the steepest descent approach of tuning the antecedent and 

consequent parameters via a back propagation algorithm is essentially the same as 

prescribed by Mendel ‎[60] and used by Muzaffar ‎[67].  

 

Consider a type-1 singleton fuzzy logic system with Gaussian membership functions 

which uses max-product composition, product implication and height defuzzification. 

Such an FLS is expressed by the following equation: 

 

 =  =   (5-1) 

 

Where, „M‟ is number of rules, „p‟ is number of antecedents and „N‟ is number of data 

points. 
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Given an input-output training pair ( ), the aim is to design an FLS such that the 

following error function is minimized: 

=     (5-2) 

 

From equation (5-1), it is clear that,  is completely characterized by the following 3 

parameters; 

    (point at which rule l has the highest degree of membership),  

 (mean of k
th
 antecedent in rule l), 

  (Standard deviation of k
th
 antecedent in rule l).  

 

In order to minimize error function in (5-2), the steepest descent approach can be applied. 

The steepest descent approach helps in obtaining the following recursions to update all 

the design parameters of this FLS ( , and ):  

 =   (5-3) 

 

   =  (5-4) 

 

 =  (5-5) 
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Mendel ‎[60] states that, since ,  and  are parameters associated with the 

membership functions for meaningful variables; it is possible to obtain good initial values 

for them. In the worst case, these parameters can be chosen randomly. The point is that, 

smartly initializing the parameters causes the back propagation algorithm to converge 

faster and randomly initializing the parameters causes the algorithm to converge slower. 

The back propagation algorithm is presented as follows; 
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y l
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m l
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Algorithm 5-1: Back Propagation Algorithm for Type-1 FLS 

 

 

The mean absolute relative error is given as follows; 

MARE =
 

)(iy − )( )(i

s xf  

)(iy
    (5-6) 

1. Initialize the parameters of all the membership functions for all the rules, )0(l
kF

m , 

)0(
l

y and )0(l
kF

 . 

2. Choose the learning parameters, m ,
y

 and  . Usually they are chosen to 

be the same, say . 

3. Set some end criterion to achieve convergence. 

4. Repeat 

i.    for all data points (
  )(: ii yx ) Ni ,...,1  

 

a. Propagate the next data point through the FLS and compute )( )(i

s xf
 
 

b. Compute error as: )(  )()( i

s

i xfye   

c. Update the parameters of the membership functions using (5-3), 

(5-4) and (5-5). 

ii. end for (*end for each input-output pair*) 

iii. Compute the mean absolute relative error (MARE) as in (5-6). 

iv. Test the end criterion. If satisfied break. 

Until (*end for each epoch*) 
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5.3. Genetic Learning of Rule Sets 

Genetic Fuzzy Systems (GFS) have been extensively discussed in Section ‎2.3 and 

Section ‎4.5 of Chapter 2 and Chapter 4 respectively. As such, it is clear that fuzzy 

systems with genetic learning capabilities to learn the rule sets are called Genetic Fuzzy 

Rule based Systems (GFRBS). This section presents a design of one such GFRBS in the 

context of the proposed simplified framework for effort prediction, see Section ‎4.4. The 

actual theme behind the concept of developing the GFRBS is to design a genetic learning 

model for learning the rules in a rule set. In this context, each rule set corresponds to a 

single FLS, which implies that the genetic learning process generates an exhaustive 

number of FLS with different rule sets and finally returns the most optimal FLS for effort 

prediction. 

 

5.3.1. Chromosome Structure 

As mentioned earlier, chromosome is the most important part of the genetic process, 

since the genetic algorithms start with an initial population of solutions which are 

encoded as chromosomes. The chromosome structure for the GFRBS under consideration 

is depicted in Figure 15. 
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Figure 15: Chromosome Structure 

 

Table 14: Chromosome Description 

Chromosome 

Part 

Size in Bits Description 

I = I1, I2 … INI NI * 

numBitsPerInp

ut 

This part gives the values of the input membership 

functions (low, medium, high) for data inputs. 

„numBitsPerInput is the size in bits required to 

accommodate the values of the input membership 

functions. 

O = O1, O2 … 

ONO 

NO * 

numBitsPerOu

tput 

This part gives the values of the output membership 

functions (low, medium, high) for data outputs. 

„numBitsPerOutput is the size in bits required to 

accommodate the values of the output membership 

functions. Usually, we have 1 output, but the 

chromosome has space for accommodating multiple 

outputs. 

R = R1, R2 … 

RNRIRS 

NRIRS * (I + 

O) 

(R = I + O) is one rule. This part gives the complete rule 

set made of NRIRS rules. „NRIRS‟ is an abbreviation for 

the number of rules in a rule set. 

 

 

5.3.2. Other Genetic Learning Considerations 

The genetic learning process begins with a population of candidate solutions, i.e. a set of 

randomly generated chromosomes. Each individual in a population corresponds to one 
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complete effort prediction system with one complete rule set. Subsequently, the fitness 

value for each individual in the population is obtained and the population for the next 

generation is produced. This activity proceeds until the maximum number of generations 

is reached. In the end, GA returns the FLS with the most optimal rule set. The various 

design considerations for implementing the genetic learning process are presented in 

Table 15. 

 

Table 15: Design Considerations for the Genetic Learning Process 

Design Consideration Value 

Fitness Function Mamdani type-1 FLS 

Measure of Fitness Value Mean Absolute Relative Error (MARE) 

Selection Function Stochastic Uniform Selection 

Crossover Function Scattered Crossover 

Crossover Probability 0.8 

Mutation Function Gaussian Mutation 

 

 

5.4. Choice of Fuzzy Inference System 

Fuzzy Inference Systems (FIS) can be seen as functions which perform universal 

approximation and conform to the laws of the Universal Approximation theorem [37]. 

FIS maps the input space to the output space of a model by approximating the model 

input-output data. There are basically two types of Fuzzy Inference Systems; Mamdani-

type and Sugeno-type. 
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Mamdani-type FIS are more popular and widely used because of the relatively simple 

structure of the inference model and also because of the interpretability of the rule base 

‎[28]. In a Mamdani FIS, both the antecedent membership functions and the consequent 

membership functions are fuzzy sets which add to the interpretability of the rules. The 

Mamdani FIS uses the centroid method for defuzzifying the consequent fuzzy sets and 

converting them to crisp values. Moreover, Mamdani FIS can be used for MIMO 

(multiple input multiple output) systems and MISO (multiple input single output) systems 

‎[29]. 

 

Sugeno-type FIS are acknowledged widely to be more computationally efficient than the 

Mamdani FIS. The reason for this is that Sugeno FIS uses a linear or constant function 

for computing the output instead of the fuzzy membership functions. This means that 

there are an equal number of parameters for the rule consequents as the number of the 

input rule antecedents. This corresponds to higher degree of freedom in terms of system 

design. However, Sugeno FIS can only be used for MISO (multiple input single output) 

systems. The Sugeno FIS uses the weighted average method of computing the crisp 

output. 

 

Given the differences between both the methods, the main motivation of this comparison 

is to find the impact of Mamdani and Sugeno FIS on the effort prediction system and also 

to find out which type of FIS is more suitable and efficient for predicting effort in the 

highly imprecise and uncertain environment of software development. Even though there 
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are previous studies ‎[28]‎[29]‎[37]‎[59] which compare both the methods, the underlying 

models used belong to completely different domains like resonant frequency calculation 

of rectangular micro strip antennas, space fault detection system, evaluation of quality of 

experience of audio-visual haptic application and modeling visual perception lab data. A 

more theoretical and general comparison between the Mamdani and Sugeno FIS is 

presented in Table 16. 

 

Table 16: Comparison of Mamdani FIS and Sugeno FIS 

Mamdani-type FIS Sugeno-type FIS 

More expressive power and interpretability Less expressive power and interpretability 

Output is expressed as fuzzy membership 

functions 

Output is a mathematical function; linear or 

constant 

Output is converted to crisp value by centroid 

Defuzzification method 

Output is calculated by using the Weighted 

Average method 

Less flexibility in system design More flexibility in system design 

Supports MIMO and MISO systems Supports only MISO systems 

Relatively lower computational efficiency Higher computational efficiency 

Relatively higher computation time Lower computation time 

 

 

5.4.1. Design details for comparing the Mamdani FIS and Sugeno FIS 

Both the FIS have been compared in the context of the simplified framework for effort 

prediction. The effort prediction system has 6 inputs and 1 output. The process of fuzzy 

inference starts with the construction of the initial FIS. Construction refers to the process 

of defining the fuzzy membership functions for the input and outputs, and also to the 

development of the fuzzy rule base. This is followed by training the Fuzzy Inference 

System by employing a dataset of input-output pairs. In the end, the trained Fuzzy 
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Inference System is subjected to testing by employing another dataset which is discussed 

in the following subsections. 

 

5.4.1.1. Membership Functions 

Antecedent MFs: Initially 3 membership functions were chosen for each of the 6 input 

attributes. The MF type used is Gaussian. The advantage of using Gaussian Membership 

function is that it allows obtaining smooth, differentiable surfaces of fuzzy models. 

 

Consequent MFs: 3 membership functions were chosen for the output attribute as well. 

The MF type is Gaussian. This is only defined for the Mamdani FIS and not the Sugeno 

FIS as it uses a mathematical linear or constant function to compute the output.  

 

5.4.1.2. Rules Formulation 

For both the Mamdani FIS and Sugeno FIS, the complete sets of rules were generated. 

The number of rules in both the cases is 729 (3x3x3x3x3x3). 
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5.4.1.3. Training the FIS 

In case of Mamdani FIS, the training algorithm (Algorithm 4-2) used in Section ‎4.3.3 is 

used. The result of training is that the initially defined membership functions are tuned 

according to the input-output data pairs. The training algorithm approximates the 

initialized FIS structure to the desired FIS structure according to the training data. The 

actual effect of training is the change in the shape and location of the membership 

functions. The change in shape is attributed to the change in the standard deviations of 

the initialized membership functions, whereas the change in the location of the 

membership function is attributed to the change in means of the initialized membership 

functions. 

 

In case of Sugeno FIS, the ANFIS (adaptive neuro-fuzzy inference system) function is 

used to train the initialized FIS. ANFIS uses the back propagation algorithm or a 

combination of the least squares method and the back propagation to approximate the FIS 

structure according to the input-output data pairs. For the sake of a fair comparison, we 

use only the back propagation algorithm for training the effort prediction system. The 

output membership functions are not present in Sugeno FIS, hence ANFIS allows us to 

choose between a linear or constant output (a constant output is chosen). The antecedent 

membership functions are tuned similarly to the Mamdani FIS by the changes in the 

shape and locations. 
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5.4.1.4. Testing the FIS 

Both the systems are subjected to the hold-out cross validation form of testing. The 

trained FIS are provided with inputs which predict the output values. The predicted 

values are compared with the actual output values for calculating performance error 

measures such as the Mean Absolute Relative Error (MARE). This helps in comparing 

the prediction accuracy of the Mamdani FIS and the Sugeno FIS. 

 

5.5. Impact of Pairwise Combinations on the performance of 

the Simplified Effort Prediction Framework 

Pairwise Combinations is basically a testing strategy used to generate test cases for 

testing of software systems. Testing all pairwise (2-way) interactions between input 

components helps to reveal the combinatorial explosion problem and can ensure the 

detection of 50 – 97 percent of faults ‎[48]. Although using pairwise testing gives a good 

percentage of reduction in fault coverage, empirical studies show that pairwise testing is 

not sufficient enough for highly interactive systems and constructing a minimum test set 

for combinatorial interaction is still a NP complete problem ‎[48].  

 

To understand the concept of pairwise testing, the example used by Ghazi et al [25] is 

presented as follows; 

Consider different versions of an online portal system developed in two scripting 

languages (JavaScript and VbScript) and uses Apache, IIS, or PWS webserver. A user 
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may view the portal using Netscape or Internet Explorer. In this example the system can 

be considered to be composed of instances of three component classes namely Scripting 

Language, Webserver, and Browser. For the system tester, two sample test 

configurations could be {JavaScript, Internet Explorer, and Apache} and {VbScript, 

Internet Explorer, IIS}. In other words, the system tester will need to test such different 

configurations to make sure that the system works properly in all configurations and not 

just some. It is obvious that the total number of configurations in this case is 2 ×3 × 2 = 

12 different configurations. 

 

As the complexity of the system to be tested increases, the total number of configurations 

also increases. It becomes a very difficult task for system testers to design test 

configurations for the complete system. Pairwise Testing is one such strategy which aids 

in minimizing the number of configurations to be tested. Pairwise Testing is widely used 

in the industry and as such there are numerous tools available.  

 

Analogous to the problem of testing is the problem of defining rules in the FLS. The 

curse of dimensionality is a widely faced problem in the field of Fuzzy Logic Systems. A 

brief discussion on this problem can be seen in Section ‎4.3.2. We have investigated the 

impact of using pairwise combinations for defining rules on the accuracy of the effort 

prediction system generated using the proposed simplified framework. 

 

The effort prediction system as initialized in Section ‎4.4.1 is used. The only difference is 

in the formulation of the rule base. The actual system contains 729 rules corresponding to 
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3 membership functions for 6 inputs. When pairwise combination is used, the rule base 

contains only 14 rules which are generated from a tool which uses combinatorial 

algorithm for pairwise testing. The rules are as follows; 

 

1. If simpleAC is low and averageAC is low and complexAC is low and simpleUC is low 

and averageUC is low and complexUC is low then EFFORT is low 

2. If simpleAC is low and averageAC is low and complexAC is medium and simpleUC is 

high and averageUC is medium and complexUC is low then EFFORT is medium 

3. If simpleAC is low and averageAC is medium and complexAC is low and simpleUC is 

low and averageUC is high and complexUC is medium then EFFORT is medium 

4. If simpleAC is low and averageAC is medium and complexAC is medium and 

simpleUC is medium and averageUC is medium and complexUC is medium then 

EFFORT is medium 

5. If simpleAC is low and averageAC is high and complexAC is high and simpleUC is 

high and averageUC is high and complexUC is high then EFFORT is high 

6. If simpleAC is medium and averageAC is low and complexAC is low and simpleUC is 

medium and averageUC is medium and complexUC is high then EFFORT is medium 

7. If simpleAC is medium and averageAC is low and complexAC is high and simpleUC is 

high and averageUC is high and complexUC is medium then EFFORT is medium 

8. If simpleAC is medium and averageAC is medium and complexAC is medium and 

simpleUC is low and averageUC is high and complexUC is low then EFFORT is 

medium 

9. If simpleAC is medium and averageAC is medium and complexAC is high and 

simpleUC is medium and averageUC is low and complexUC is low then EFFORT is 

medium 



120 

 

10. If simpleAC is medium and averageAC is high and complexAC is low and simpleUC is 

high and averageUC is low and complexUC is medium then EFFORT is medium 

11. If simpleAC is medium and averageAC is high and complexAC is medium and 

simpleUC is low and averageUC is medium and complexUC is high then EFFORT is 

high 

12. If simpleAC is high and averageAC is low and complexAC is high and simpleUC is 

low and averageUC is medium and complexUC is medium then EFFORT is medium 

13. If simpleAC is high and averageAC is medium and complexAC is medium and 

simpleUC is high and averageUC is low and complexUC is high then EFFORT is 

medium 

14. If simpleAC is high and averageAC is high and complexAC is low and simpleUC is 

medium and averageUC is high and complexUC is low then EFFORT is high 

 

The effort prediction system is trained using these 14 rules and the accuracy of predicting 

the output effort is tested. The results of the impact of pairwise combinations can be seen 

in Chapter 6.  

 

5.6. Impact of Design Parameters on the performance of the 

Simplified Effort Prediction Framework 

Designing an FLS is not an easy task. Various considerations need to be kept in mind 

while designing an FLS. According to Mendel ‎[60], we must decide on the kind of 

fuzzification (singleton or non-singleton), types of membership functions (triangular, 

trapezoidal, Gaussian, piece-wise linear), parameters of membership functions, 
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composition (max-min, max-product), implication (minimum, product), and defuzzifier 

(centroid, center of sums, height, modified height). Different combinations of the 

aforementioned possibilities can result in 131,072 different FLS. Figure 16 shows the 

choices that need to be made before designing an FLS. 

 

The parameters of the FLS can affect the behavior of the FLS. Muzaffar ‎[67] investigated 

the impact of the design parameters such as the Height Defuzzification vs. Modified 

Height Defuzzification and triangular membership functions vs. Gaussian membership 

functions.  

 

In the context of our work, we investigate the impact of defining the parameters of the 

membership functions. In course of this work, we came across two different methods of 

defining the parameters (means of antecedents MFs, standard deviation of antecedent 

MFs and centers of consequent MFs) related to the Gaussian membership functions. The 

first method is the same as described in Section ‎4.3.1. Nevertheless, both the methods are 

described in the sequel. 
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Figure 16: Choices that need to be made before designing an FLS 

 

5.6.1. Method 1 for defining the parameters of the Gaussian 

membership functions  

To define the antecedent parameters based on the numerical data set, the first step is to 

calculate the mean (M) and standard deviation (σ) values for each input attribute. Then 

depending on the number of fuzzy sets for each input attribute, define the means of the 

membership functions „M‟ as follows; 
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Mmf1 = M – α.σ 

Mmf2 = M 

Mmf3 = M + α.σ 

 

Where, „α‟ is a constant that should be defined properly (using experience) so as to cover 

the complete interval range of a particular input attribute. Mmfi refers to the mean of the 

i
th

 membership function. The standard deviation values for all the 3 membership 

functions are kept to the same value of „σ‟.  

 

To define the consequent parameters based on the numerical data set, i.e. the centers of 

consequent fuzzy sets, the lowest and highest values for a particular output attribute are 

extracted from the numerical data. Then the range is calculated as the difference between 

the highest and lowest value. Dividing the range by the number of membership functions 

minus 1, gives the increment factor. To get the initial values for the center of consequents 

(c), start with the lowest value, keep adding the increment factor until all the consequent 

fuzzy sets have the center (c) values. While defining these values, one has to be careful to 

cover the domain interval of the output attributes.  

 

5.6.2. Method 2 for defining the parameters of the Gaussian 

membership functions  

In method 2, based on the numerical data sets, the means of the membership functions are 

defined as follows; 
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Mmf1 = lowest value in the data set 

Mmf2 = (lowest value + highest value) / 2 

Mmf3 = highest value in the data set 

 

The standard deviation values are calculated as follows; 

σ = (highest value – lowest value) / 8 

 

Finally, the centers of consequent values are calculated similar to the way the means for 

the antecedents are calculated. The difference is in the random selection of these values 

corresponding to different rules. Suppose, we have a system which uses 3 membership 

functions for the output attribute and has 81 rules. Since, each rule should have a center 

of consequent value, and we have just 3 values of centers of consequents, each rule takes 

a random value from among the 3 values. 

 

Both the methods are applied to an effort prediction system pertaining to the simplified 

effort prediction framework and results are reported for both the cases.  
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CHAPTER 6 

EXPERIMENTS AND RESULTS 

 

 

 

This chapter presents the experimental information and implementation details with 

regards to the proposed frameworks and other related studies discussed in the previous 

chapters. Due to unavailability of industrial datasets for validating the proposed 

frameworks, artificial datasets have been used. The algorithm for artificial data 

generation is presented in the course of this chapter. The results have been analyzed and 

discussed based on the Mean Absolute Relative Error (MARE) and prediction accuracy. 

 

6.1. Prediction Accuracy 

Prediction Accuracy or prediction at level „q‟, i.e. pred(q) is a quantitative measure that 

helps in measuring the prediction power of the effort prediction systems by comparing 

the predicted values and the actual values. 
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Given a set of „n‟ projects, and let „k‟ be the number of projects whose mean absolute 

relative error is less than equal to q, then prediction accuracy is given as follows; 

pred(q) = k / n 

An acceptable level for mean absolute relative error is something less than or equal to 

0.25 as suggested by Conte et al ‎[17]. For example, if pred(0.25) is 0.72, then 72% of the 

predicted values fall within 25% of the original values. 

 

The mean absolute relative error (MARE) is given as follows; 

MARE =
 𝒂𝒄𝒕𝒖𝒂𝒍 𝒆𝒇𝒇𝒐𝒓𝒕 − 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒆𝒇𝒇𝒐𝒓𝒕 

𝒂𝒄𝒕𝒖𝒂𝒍 𝒆𝒇𝒇𝒐𝒓𝒕
 

 

6.2. Artificial Data Generation   

While dealing with systems which utilize the concept of machine learning techniques, it 

is imperative that sufficient data be available for training and testing these systems. 

Historical dataset plays a vital role in training and testing adaptive FLS based prediction 

systems generated using the frameworks ‎[67]. Unfortunately, such data (use case based 

effort prediction) is not readily available in the public domain or other data repositories.  

 

Henceforth, the need for generating artificial datasets arises which is realized by 

algorithm 6-1. Due to the wide acceptance of the mathematical equations in the UCP 

method, they have been utilized for generation of artificial data. A point worth 

mentioning is that the proposed frameworks are general and can accept any factor 
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measure as inputs. The data generation algorithm follows from the approach adopted by 

Ahmed et al ‎[2] and Muzaffar et al ‎[66] wherein the COCOMO equations have been 

employed to generate artificial data. 

 

Algorithm 6-1: Generation of artificial data for training and validation data sets 

 

1. Generate random values for a desired number of data points, say „K‟, in the 

domain intervals [EF
-
 EF

+
], [TCF

-
 TCF

+
], [AC

-
 AC

+
], [UC

-
 UC

+
], [PF

-
 PF

+
] 

using Uniform Distribution for all the 8 EF factors, 13 TCF factors, 3 types 

of Actors (simple, average, complex), 3 types of Use Cases (simple, 

average, complex) and productivity factor PF. 

2. For each factor value generated in step 1, compute the Efactor, Tfactor, 

UAW, UUCW values by multiplying each factor by its weight factor as 

follows; 

Σ (EF Factor Value) * (Weighting Factor) * = Efactor 

Σ (TCF Factor Value) * (Weighting Factor) * = Tfactor 

Σ (Actor Factor Value) * (Weighting Factor) * = UAW 

Σ (Use Case Factor Value) * (Weighting Factor) * = UUCW 

3. For each data point, compute the final EF, final TCF, and UCP values using 

the following equations obtained from the UCP method; 

(-0.03 * Efactor) + 1.4 = EF 

(0.01 * Tfactor) + 0.6 = TCF 

(UAW + UUCW) * EF * TCF = UCP 

4. For each data point, compute the EFFORT value as follows; 

UCP * PF = EFFORT 

5. Repeat steps 2 to 4 until „K‟ data points have been generated, with each data 

point consisting of attributes in step 1 as the inputs and EFFORT as the 

output. 

6. Partition the „K‟ data points into training and testing data sets. The ratio of 

training data sets to the testing data sets is 70:30. 
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6.3. Experiment 1: Evaluating the prediction accuracy of the f-

UCP model 

This experiment deals with the performance evaluation of the proposed f-UCP model 

discussed in Chapter 4, for handling imprecision in software development effort 

prediction. In the following sub sections, the implementation details and the results 

(tabular values and graphs) are presented.  

 

6.3.1. Implementation Details 

The f-UCP model is implemented using Sugeno type of Fuzzy Logic System which 

applies to all the 4 components in the architectural design. The number of membership 

functions used for each component is 3 and the type is Gaussian shouldered. Since, the 

number of inputs to the components in the 1
st
 layer is large, subtractive clustering (see 

algorithm 4-1 in Section ‎4.2.2) is used to define the rule base of the 3 components. The 

last component in the 2
nd

 layer has 4 inputs and hence all possible combinations of inputs 

are used to define the rule base. The f-UCP model is trained using ANFIS (Adaptive 

Neuro Fuzzy Inference System) which utilizes a combination of back propagation and 

least squares estimation learning. The experiment is run for 5 times with different data 

sets each time. The number of data points in each data set is 100. The training and testing 

data are in the ratio 70:30.  
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6.3.2. Results and Discussion 

The f-UCP model is a complete fuzzy model which replaces the existing mathematical 

model of UCP. As such, prior to fuzzifying the UCP model, positive outcomes 

corresponding to a low margin of error was expected. The extremely low MARE values 

in the training part (see Table 17) highlight the efficiency of ANFIS in training the 

system and a high average testing prediction accuracy of 95.33% confirms that fuzzifying 

the UCP model (f-UCP) has positive outcomes. This also establishes the fact that f-UCP 

produces acceptable results and is better than the mathematical UCP model.  
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Table 17: Summary of Prediction Quality on f-UCP using five different datasets, showing pred(25) and MARE values on 

training and testing datasets 

Experimental Run 

  

Training Testing 

pred(25) MARE pred(25) MARE 

1 100 4.8593 * 10
-7

 93.3407  0.0628 

2 100 8.2661 * 10
-7 

100  0.0487 

3 100 5.1713 * 10
-7

  93.3407  0.0637 

4 100 6.1311 * 10
-7

 90.0111  0.1046 

5 100 4.5803 * 10
-7 

100  0.0499 
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Figure 17: Prediction of effort using trained f-UCP on training dataset 
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Figure 18: Prediction of effort using trained f-UCP on testing dataset 
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6.4. Experiment 2: Impact of TCF and EF on use-case based 

effort prediction  

This experiment aims at investigating the impact of technical complexity factors and 

experience factors on effort prediction which is achieved by using factor analytic 

techniques to resolve and reduce the factors into components. 

 

6.4.1. Implementation Details 

The Principal Components Analysis method is used for reducing the number of factors 

and resolving them into individual components. Kaiser Meyer Olkin test and Bartlett‟s 

test of Sphericity is used, the details for which can be found in Section ‎5.1.1 and Section 

‎5.1.2. For rotations, the Direct Oblimin method is adopted and the maximum number of 

iterations for convergence is kept to be 4 and 3 for TCF and EF respectively. 

 

6.4.2. Results and Discussion 

The KMO test and Bartlett‟s test values (Table 18 and Table 22) obtained are significant 

and imply that distinct and reliable factors can be produced as a result of conducting 

PCA. The reduction of TCF and EF factors from 13 and 8 to 6 and 5 respectively can be 

seen in the pattern matrix generated (Table 20 and Table 24). A point worth mentioning 

is that, the reduction of factors according to the principal component analysis is purely 

dependent on the data at hand. As such it cannot be generalized that the specific factors 

which have been removed as a consequence of PCA do not have any influence of the 
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effort prediction process. The inclusion and exclusion of the various factors varies with 

the nature of the available data.  
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Table 18: KMO and Bartlett's Test Results on TCF 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .459 

Bartlett's Test of Sphericity 

Approx. Chi-Square 368.514 

df 15 

Sig. .000 

 

 

 

Table 19: Total Variance Explained - TCF 

Component Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of 

Variance 

Cumulative 

% 

Total % of 

Variance 

Cumulative 

% 

1 1.806 30.107 30.107 1.806 30.107 30.107 

2 1.479 24.654 54.761 1.479 24.654 54.761 

3 1.041 17.342 72.103 1.041 17.342 72.103 

4 .899 14.990 87.093    

5 .523 8.721 95.814    

6 .251 4.186 100.000    
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Table 20: Pattern Matrix - TCF 

 Component 

1 2 3 

VAR00002 .924   

VAR00003 .912   

VAR00005  .855  

VAR00009  .821  

VAR00006   .835 

VAR00012   .623 

 

 

 

Table 21: Component Correlation Matrix - TCF 

Component 1 2 3 

1 1.000 .048 .061 

2 .048 1.000 .144 

3 .061 .144 1.000 
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Table 22: KMO and Bartlett's Test on EF 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .652 

Bartlett's Test of Sphericity 

Approx. Chi-Square 307.174 

df 10 

Sig. .000 

 

 

 

Table 23: Total Variance Explained - EF 

Component Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of 

Variance 

Cumulative 

% 

Total % of 

Variance 

Cumulative 

% 

1 2.093 41.854 41.854 2.093 41.854 41.854 

2 1.143 22.850 64.704 1.143 22.850 64.704 

3 .877 17.540 82.244    

4 .535 10.693 92.937    

5 .353 7.063 100.000    
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Table 24: Pattern Matrix - EF 

 Component 

1 2 

VAR00001 .810  

VAR00002 .830  

VAR00003 .856  

VAR00007  .740 

VAR00008  .750 

 

 

 

Table 25: Component Correlation Matrix - EF 

Component 1 2 

1 1.000 .053 

2 .053 1.000 
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6.5. Experiment 3: Evaluating the prediction accuracy of the 

proposed framework 

This experiment deals with validating the performance of the proposed adaptive use-case 

based effort prediction framework using fuzzy logic. More details regarding the 

framework can be found in Chapter 4. 

 

6.5.1. Implementation Details 

The proposed framework is implemented using Mamdani type of Fuzzy Logic System 

which applies to all the 5 components in the architectural design. The number of 

membership functions used for each component is 3 and the type is Gaussian shouldered. 

All possible combinations of inputs are used to define the rule base for all the 

components in the system. The system is trained using a back propagation algorithm 

(Steepest Descent Approach). The experiment is run for 5 times with different data sets 

each time. The number of data points in each data set is 140. The training and testing data 

are 100 and 40 respectively. 

 

6.5.2. Results and Discussion 

Minimum training and testing error values (MARE) of 7.11% and 9.94% have been 

reported. Additionally, the average testing prediction accuracy is 89.56% which 

highlights the performance of the prediction system obtained from the proposed 

framework. This highlights the fact that the proposed framework can be used for evolving 
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efficient effort prediction systems according to the needs and requirements of the users. 

Moreover, the obtained effort prediction systems are transparent and allow the users to 

incorporate their judgment and experience to further tune the system in terms of its 

operation which corresponds to the tuning of the rule base of the system. In essence, the 

users have the discretion to either include or exclude a particular rule from the rule base 

or the users may include or exclude a particular input factor from the system, thereby 

making the system more adaptive and receptive to the users‟ requirements. 
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Table 26: Summary of Prediction Quality on the Effort Prediction System using five different datasets, showing pred(25) and 

MARE values on training and testing datasets 

Experimental Run 

  

Training Testing 

pred(25) MARE pred(25) MARE 

1 99.0001 0.0711 87.8121 0.1180 

2 95.0005 0.0940 90.0062 0.1142 

3 95.0005 0.0881 92.5047 0.1003 

4 95.0005 0.1095 92.5047 0.0994 

5 94.0004 0.0995 85.0094 0.1734 
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Figure 19: Average MARE graph of training the Effort Prediction System

 

 

 

 

 

 



143 

 

 

 

 

Figure 20: Prediction of effort using the trained Effort Prediction System on 

training datasets 
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Figure 21: Prediction of effort using the trained Effort Prediction System on testing 

datasets 
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6.6. Experiment 4: Evaluating the prediction accuracy of the 

simplified framework 

This experiment aims at validating the performance of the proposed simplified adaptive 

use-case based effort prediction framework using fuzzy logic. The framework includes 

just the Use Case elements such as Actors and Use Case information.   

 

6.6.1. Implementation Details 

The simplified framework is implemented using Mamdani type of Fuzzy Logic System. 

The number of membership functions used is 3 and the type is Gaussian shouldered. All 

possible combinations of inputs are used to define the rule base for the system. The 

system is trained using a back propagation algorithm (Steepest Descent Approach). The 

experiment is run for 5 times with different data sets each time. The number of data 

points in each data set is 100. The training and testing data are in the ratio 70:30. 

 

6.6.2. Results and Discussion 

Minimum training and testing error values (MARE) of 7.28% and 16.87% have been 

reported. Additionally, the average testing prediction accuracy is 74.67% which is 

acceptable and showcases the performance of the prediction system obtained from the 

simplified framework. A point to be noted is that the simplified framework differs from 

the proposed framework just in terms of the exclusion of additional factors. 
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Table 27: Summary of Prediction Quality on the Effort Prediction System using five different datasets, showing pred(25) and 

MARE values on training and testing datasets 

Experimental Run 

  

Training Testing 

pred(25) MARE pred(25) MARE 

1 97.1434 0.0889 73.3629 0.1687 

2 95.7152 0.0735 76.6926 0.1985 

3 95.7152 0.0777 76.6926 0.1816 

4 97.1434 0.0728 63.3740 0.2017 

5 95.7152 0.0892 83.3518 0.1860 
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Figure 22: Average MARE graph of training the Effort Prediction System 
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Figure 23: Prediction of effort using the Effort Prediction System on training 

datasets 
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Figure 24: Prediction of effort using the Effort Prediction System on testing datasets 
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Figure 25: Comparison of training and testing errors (MARE) on the Effort 

Prediction System 
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6.7. Experiment 5: Impact of pairwise combinations on 

prediction accuracy 

This experiment is concerned with the comparison of effort prediction systems in the 

context of the simplified framework; one using all possible combinations of inputs to 

create the rule base and the other using pairwise combinations to create the rule base. As 

mentioned earlier, the predictions systems being tested are obtained from the simplified 

framework; needless to say the implementation details are the same (refer to Section 

‎6.6.1) and need no explicit further details.   

 

6.7.1. Results and Discussion 

It is evident from Table 28 that the normal prediction system using all possible 

combinations of inputs to define the rule base outperforms the other prediction system 

using pairwise combinations. The prediction accuracies (training and testing) clearly 

exhibit the difference in the performance of both the systems. Moreover, the average 

training error graph (Figure 26) also highlights the superiority of the normal prediction 

system as opposed to the pairwise based prediction system. Even though pairwise 

combinations are an effective strategy for producing minimal number of test cases in the 

software testing phase, it is not an effective approach in the context of software effort 

prediction systems. Overall, from the results obtained, it can be safely concluded that the 

pairwise combinations are ineffective in terms of minimizing the rules in the rule bases 

for fuzzy based effort prediction systems.  
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Table 28: Summary of Prediction Quality on the Normal and Pairwise Effort Prediction Systems using five different datasets, 

showing pred(25) and MARE values on training and testing datasets 

Experimental Run 

Normal Pairwise 

Training Testing Training Testing 

pred(25) MARE pred(25) MARE pred(25) MARE pred(25) MARE 

1 95.7152 0.0977 80.0222 0.1861 47.1536 0.2762 46.7259 0.2900 

2 100 0.0795 63.3740 0.1934 72.8627 0.1776 66.7037 0.1999 

3 100 0.0575 80.0222 0.1943 80.0041 0.1650 70.0333 0.2098 

4 95.7152 0.0818 63.3740 0.2065 65.7213 0.2161 66.7037 0.2603 

5 92.8586 0.0910 86.6815 0.1354 58.5799 0.2945 63.3740 0.2587 
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Figure 26: Average MARE graph of training the Normal and Pairwise Effort 

Prediction System 
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Figure 27: Prediction of effort on Normal and Pairwise Effort Prediction Systems 

using training datasets 
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Figure 28: Prediction of effort using Normal and Pairwise Effort Prediction Systems 

on testing datasets 
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Figure 29: Comparison of training and testing errors (MARE) on the Normal Effort 

Prediction System 
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Figure 30: Comparison of training and testing errors (MARE) on the Pairwise 

Effort Prediction System 

 

 

 

 

 



158 

 

6.8. Experiment 6: Comparison of Mamdani type FLS vs. the 

Sugeno type FLS 

This experiment is concerned with evaluating the performances of the prediction systems 

utilizing Mamdani and Sugeno type of fuzzy logic systems (FLS) in the context of the 

simplified framework. The implementation details for this experiment can be found in 

Section ‎6.6.1. 

 

6.8.1. Results and Discussion 

The experiment produces controversial results in the essence that, the Sugeno type of 

FLS outperforms the Mamdani FLS in terms of training (Figure 32), whereas the 

Mamdani FLS clearly outperforms the Sugeno FLS in terms of testing (Figure 33). As 

such it becomes difficult to establish the superiority of one system over the other which is 

in conformation to the results of other comparisons which state that the choice of a 

particular system is dependent on the application domain and application data. 
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Table 29: Summary of Prediction Quality on the Mamdani and Sugeno Effort Prediction Systems using five different datasets, 

showing pred(25) and MARE values on training and testing datasets 

Experimental Run 

Mamdani Sugeno 

Training Testing Training Testing 

pred(25) MARE pred(25) MARE pred(25) MARE pred(25) MARE 

1 92.8586 0.1033 70.0333 0.2174 100 6.1017 * 10
-8 

33.4073 0.4598 

2 91.4303 0.1108 73.3629 0.1584 100 5.7148 * 10
-8 

23.4184 0.4148 

3 97.1434 0.0830 76.6926 0.1544 100 8.5959 * 10
-8 

30.0777 0.4416 

4 94.2869 0.1153 60.0444 0.2136 100 5.7706 * 10
-8 

16.7592 0.5274 

5 95.7152 0.0796 80.0222 0.1500 100 8.4250 * 10
-8 

16.7592 0.4918 
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Figure 31: Average MARE graph of training the Mamdani (Method 1) and Sugeno 

(Method 2) Effort Prediction Systems 
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Figure 32: Prediction of effort using the Mamdani and Sugeno Effort Prediction 

Systems on training datasets 
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Figure 33: Prediction of effort using the Mamdani and Sugeno Effort Prediction 

Systems on testing datasets 
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Figure 34: Comparison of training and testing errors (MARE) on Mamdani Effort 

Prediction System (Method 1) 
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Figure 35: Comparison of training and testing errors (MARE) on Sugeno Effort 

Prediction System (Method 2) 
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6.9. Experiment 7: Impact of design parameters on prediction 

accuracy 

This experiment deals with evaluating the performance of the prediction system in the 

context of the simplified framework when two different methods for initializing the 

design parameters are used. More details pertaining to both the methods for initializing 

the design parameters are present in Section ‎5.6 of Chapter 5. The implementation details 

for this experiment can be found in Section ‎6.6.1. 

 

6.9.1. Results and Discussion 

It is evident from Table 30 that the system with method 1 of initializing the design 

parameters performs relatively better than the second system. The difference in 

performance is not very large in terms of prediction accuracies; wherein the average 

testing prediction accuracy of system 1 is 78.01% and the average testing prediction 

accuracy of system 2 is 76.68%. Additionally, the average training error graph (Figure 

36) also follows a similar observation with less difference in training error (MARE) 

values. Overall, it can be safely stated that the investigation pertaining to the impact of 

design parameters on the fuzzy systems stands valid, and the method of 

defining/initializing the design parameters does have an effect on the final result of the 

performance of the fuzzy system, which in this case is the prediction accuracy of the 

effort prediction system.  
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Table 30: Summary of Prediction Quality on the Effort Prediction Systems (Parameter Design Method 1 and Method 2) using 

five different datasets, showing pred(25) and MARE values on training and testing datasets 

Experimental 

Run 

Method 1 Method 2 

Training Testing Training Testing 

pred(25) MARE pred(25) MARE pred(25) MARE pred(25) MARE 

1 95.7152 0.1121 73.3629 0.1732 71.4344 0.1995 80.0222 0.1767 

2 92.8586 0.0998 86.6815 0.1469 81.4324 0.1480 83.3518 0.1495 

3 97.1434 0.0911 83.3518 0.1490 84.2889 0.1333 93.3407 0.1374 

4 95.7152 0.0963 66.7037 0.2235 84.2889 0.1461 63.3740 0.1819 

5 94.2869 0.0973 80.0222 0.1638 77.1475 0.1781 63.3740 0.2132 
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Figure 36: Average MARE graph of training the Effort Prediction Systems (Method 

1 and Method 2) 
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Figure 37: Prediction of effort using the Effort Prediction Systems (Method 1 and 

Method 2) on training datasets 
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Figure 38: Prediction of effort using the Effort Prediction Systems (Method 1 and 

Method 2) on testing datasets 
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Figure 39: Comparison of training and testing errors (MARE) on the Effort 

Prediction System (Method 1) 
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Figure 40: Comparison of training and testing errors (MARE) on the Effort 

Prediction System (Method 2) 
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6.10. Experiment 8: Evaluating the system performance using 

genetic learning of rule sets 

This experiment deals with the evaluation of a genetic learning based prediction system 

where the focus is on learning the rule sets to evolve an optimal rule set which 

corresponds to an optimal prediction system.  

 

6.10.1. Implementation Details 

The prediction system used is essentially the same as the one obtained from the 

simplified framework. Genetic parameters such as size of population, number of 

generations, and type of selection, crossover, mutation and probabilities associated with 

them are initialized. The data set consists of 100 data points. There are 3 sub-experiments 

(different combinations of parameters of genetic algorithms). Each sub-experiment is run 

for 5 repetitions. 

 

6.10.2. Results and Discussion 

The minimum value of mean absolute relative error obtained in the 3 sub-experiments is 

10.76%, 10.22% and 10.58% respectively. Moreover, the standard deviation is very less 

which shows more confidence in the error values obtained. Therefore, the use of genetic 

learning for evolving rule bases in the context of effort prediction systems is credible. 
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Table 31: Summary of information about the genetic learning process, showing minimum error (MARE) values in the sub-

experiments 

Serial 

Number 

Size Of 

Population 

Number Of 

Generations 

Number Of 

Repetitions 

Number Of 

Rules in Rule 

Set 

Minimum 

Error 

(MARE) 

Graph 

1 100 100 5 100 0.1076 Figure 6-25 

2 100 200 5 100 0.1022 Figure 6-26 

3 100 200 5 200 0.1058 Figure 6-27 
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Figure 41: Best So Far Graph showing the error values (MARE) on the learning 

dataset for sub-experiment 1 
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Figure 42: Best So Far Graph showing the error values (MARE) on the learning 

dataset for sub-experiment 2 
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Figure 43: Best So Far Graph showing the error values (MARE) on the learning 

dataset for sub-experiment 3 
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6.11. Experiment 9: Impact of architecture on the effort 

prediction framework using GeFuSys-M 

This experiment deals with investigating the performance of various systems (different 

architectures) by measuring the MARE values of each system obtained from GeFuSys-M. 

More details pertaining to the design of GeFuSys-M can be found in Section ‎4.5. For 

sake of illustration, few sample architectures (Figure 47, Figure 48 and Figure 49) 

obtained from GeFuSys-M have been included at the end of this section. 

 

6.11.1. Implementation Details 

The system is initialized by setting the genetic parameters. The data set used consists of 

100 data points. There are 3 sub-experiments (different combinations of parameters of 

genetic algorithms). Each sub-experiment is run for 5 repetitions.  

 

6.11.2. Results and Discussion 

The „Best so far‟ graphs for 3 sub-experiments yield consistent results, as can be seen 

from the minimum value of mean absolute relative error obtained in the 3 sub-

experiments which are 25.61%, 25.41% and 25.51% respectively. Also, the minimal 

standard deviation values obtained show more confidence in the error values obtained. 

Even though the MARE values are not comparable with those obtained from the 

prediction systems implemented using the proposed framework (see Section ‎6.5.2), they 

are promising because the genetic learning process evolves prediction systems based on 
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different architectures and different rule sets,  whereas the proposed framework produces 

systems based on back propagation learning and adaptation of learning parameters. A 

point worth mentioning is that, future work on incorporating back propagation method of 

parameter learning within GeFuSys-M will probably yield more efficient use-case based 

effort prediction systems in terms of prediction accuracy. Moreover, the results conforms 

the claims that the architecture of the effort prediction systems does have an impact on its 

accuracy. 
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Table 32: Summary of information about the genetic learning process of GeFuSys-M, showing minimum error (MARE) values 

in the sub-experiments 

Serial 

Number 

Size Of 

Population 

Number Of 

Generations 

Number Of 

Repetitions 

Maximum number 

of Rules Per 

Component 

Minimum 

Error 

(MARE) 

Graph 

1 100 100 5 100 0.2561 Figure 6-28 

2 100 50 5 200 0.2541 Figure 6-29 

3 200 50 5 200 0.2551 Figure 6-30 
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Figure 44: Best So Far Graph showing the error values (MARE) on the learning 

dataset for sub-experiment 1 
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Figure 45: Best So Far Graph showing the error values (MARE) on the learning 

dataset for sub-experiment 2 

 

 

 

 

 



182 

 

 

 

 

Figure 46: Best So Far Graph showing the error values (MARE) on the learning 

dataset for sub-experiment 3 
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Figure 47: A four component sample architecture 

 

 

 

 

 

Figure 48: A three component sample architecture 
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Figure 49: A three component sample architecture 
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CHAPTER 7 

CONCLUSION 

 

 

 

7.1. Introduction 

The preceding chapters have presented the proposed frameworks and their validations in 

terms of experimental results. In this chapter, the conclusions viz a viz the major 

contributions of the investigations are presented in Section ‎7.2 and ideas for future work 

on effort prediction with use cases using fuzzy logic and genetic algorithms in Section 

‎7.3. 

 

7.2. Major Contributions 

The research work carried out in the course of this quest to provide answers to the 

research questions framed in the initial phase of this thesis resulted in the following 

contributions.  
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1. Development of a use-case based effort prediction framework using fuzzy logic, 

capable of incorporating expert opinions and handling imprecision. Fuzzy Logic 

with its power of approximate reasoning provides a transparent system which 

allows the experts to tune the rules of the effort prediction system. Not only do the 

experts have freedom to tune the classification of factors, but also differentiate in 

the operating aspect as well by including or excluding a particular input factor 

from the rule. 

2. Identification and reduction of the 13 technical complexity factors and 8 

experience factors to 6 and 5 respectively, based on the results obtained from 

performing Factor Analysis.  

3. Fuzzifying the existing Use Case Points method to actualize an efficient model (f-

UCP) on similar lines as “f-COCOMO”.   

4. Development of a simplified use-case based effort prediction framework using 

fuzzy logic, capable of incorporating expert opinions and handling imprecision. 

5. Investigation of the impact of using pairwise combinations for defining rules for 

the fuzzy logic based effort prediction system on the prediction accuracy. 

6. Comparison of prediction accuracies for the effort prediction system obtained 

using Mamdani type fuzzy logic system and Sugeno type fuzzy logic system. 

7. Investigation of the impact of design parameters on the prediction accuracy of the 

Effort Prediction System. 
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8. Development of a single-layer genetic fuzzy system for use-case based effort 

prediction, which gives the best rule base, in other words, the best fuzzy system in 

terms of prediction accuracy. 

9. Development of a genetic-fuzzy tool (GeFuSys-M) for evolving multiple 

architectures in the context of use-case based effort prediction systems, which 

includes design and implementation of a new chromosome structure for GeFuSys-

M. The tool GeFuSys-M has been applied in the context of use-case based effort 

prediction and encouraging results have been reported.  

 

7.3. Limitations and Future Work 

It is very ambitious and challenging to take into account all the aspects associated with 

the problem of use-case based effort prediction using machine learning, given the limited 

time allocated for the thesis work. As such, we have highlighted some limitations and 

ideas for future research in the following sequel; 

 

7.3.1. Limitations 

1. Subjective evaluation of the available use case based effort prediction metrics and 

models led us to find the shortcomings in the use case based effort prediction 

process, but not the actual head to head comparisons because no rating scheme 

has been used.  

2. Inability of the proposed effort prediction framework to deal with uncertainty.  
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3. Evaluating the performance of the proposed frameworks and other investigations 

based on industrial datasets rather than the artificially generated datasets which 

have been used because of the shortage of industrial (real) dataset. 

 

7.3.2. Future Work 

1. Development of formal metrics based on our generic set of attributes to evaluate 

the use case based effort prediction metrics which can involve quantitative 

evaluations.  

2. Development of use-case based effort prediction frameworks capable of dealing 

with both imprecision and uncertainty using type-2 fuzzy logic ‎[66]. 

3. Investigating the prospect of using different membership functions other than the 

Gaussian MF used for the fuzzy logic based proposed frameworks. (example: 

Triangular MF) 

4. Studying the impact of training algorithms on the performance of the proposed 

frameworks. Back propagation (Steepest Descent Approach) has been used now, 

which can be replaced by some other „heuristic based‟ approach as studied by 

Muzaffar ‎[67]. 
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