
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266107323?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Dedicated to my wonderful parents,

M. Mahmood Hussain and Syeda Fatima Asra Mahmood

and my ever loving brothers,

M. Mahamid Hussain and M. Muzammil Hussain



ACKNOWLEDGEMENTS

All praise is to Almighty Allah and his beloved messenger Muhammad(SAWS).

I am grateful to King Fahd University of Petroleum and Minerals for providing

a great environment for education and research.

I extend my gratitude to my thesis advisor Dr. Magdi S. Mahmoud for his

continuous support, patience and encouragement. He stood by me in all times

and was the greatest support I had during my tenure in the university and most

importantly during my thesis. I would also like to thank my thesis committee

Dr. Abdul Wahid A. Saif and Dr. Moustafa ElShafei for their valuable time

and comments. I am very thankful to the chairman of systems engineering

department for his continuous help and support.

I would also like to thank the deanship for scientific research (DSR) at KFUPM

for financial support through research group project RG-1105-1.

I would like to acknowledge my parents, M. Mahmood Hussain and Syeda Fatima

Asra Mahmood, for their everlasting love, trust and faith in me for providing me

the finest things I ever needed. I could never have pursued my higher education

without their encouragement and support. My brothers, M. Mahamid Hussain

and M. Muzammil Hussain, who have always loved and supported me in all

ii



forms of life, their love gives me immense strength in moving ahead. I am

also thankful to my brother-in-law Syed Ameenuddin Hussain for being there

when I required a family and always supporting me on every step taken here at

KFUPM.

Lastly I would like to thank all my friends and colleagues back at home and at

KFUPM whose presence and discussions were the biggest support during times

of loneliness and despair. Things would not have been better if not for their

continuous support.

iii



Contents

ACKNOWLEDGEMENTS i

TABLE OF CONTENTS iv

LIST OF FIGURES ix

LIST OF TABLES xi

Abstract (English) xii

Abstract (Arabic ) xiv

1 INTRODUCTION 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Objective . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 3

iv



1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 LITERATURE SURVEY 7

2.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Input Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Output Saturation . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.3 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 State Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Problem statement . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Systems Presenting Nested Saturation . . . . . . . . . . . . . . 33

2.5.1 Problem statement . . . . . . . . . . . . . . . . . . . . . 34

v



2.5.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.3 Example 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Linear Systems with Deadzone . . . . . . . . . . . . . . . . . . . 38

2.6.1 Problem statement . . . . . . . . . . . . . . . . . . . . . 39

2.6.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.3 Example 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 OVERLAPPING DECENTRALIZED CONTROL FOR INTER-

CONNECTED SYSTEMS SUBJECT TO SATURATION 48

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Overlapping Decomposition . . . . . . . . . . . . . . . . 55

3.3.2 Contractibility conditions . . . . . . . . . . . . . . . . . 61

3.4 Application to A Nuclear Power Plant System . . . . . . . . . . 62

3.4.1 System description . . . . . . . . . . . . . . . . . . . . . 62

3.4.2 Dynamic behavior . . . . . . . . . . . . . . . . . . . . . 64

3.4.3 Permutations . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



3.5 Static Output Feedback Design . . . . . . . . . . . . . . . . . . 70

3.6 Dynamic Output Feedback Design . . . . . . . . . . . . . . . . . 79

3.7 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4 DECENTRALIZED H∞ CONTROLLER DESIGN FOR SYS-

TEMS SUBJECT TO SATURATION 92

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 Modeling the Multi-Zone Space Heating System . . . . . . . . . 97

4.3 H∞ Control Design . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 Conclusion and Future Work 121

Appendix 123

5.1 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.1.1 Original data of the nuclear power plant . . . . . . . . . 124

5.1.2 Permuted data . . . . . . . . . . . . . . . . . . . . . . . 127

5.2 Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

vii



5.2.1 Table showing System operating points. . . . . . . . . . 129

5.2.2 Table showing design parameters of the MZSH system. . 130

Bibliography 131

Vitae 145

viii



List of Figures

3.1 Trajectories of States x1 (left) and x2 (right) . . . . . . . . . . . 85

3.2 Trajectories of States x3 (left) and x4 (right) . . . . . . . . . . . 85

3.3 Trajectories of States x5 (left) and x6 (right) . . . . . . . . . . . 86

3.4 Trajectories of States x7 (left) and x8 (right) . . . . . . . . . . . 86

3.5 Trajectories of States x9 (left) and x10 (right) . . . . . . . . . . 86

3.6 Trajectories of States x11 (left) and x12 . . . . . . . . . . . . . . 87

3.7 Trajectories of States x13 (left) and x14 (right) . . . . . . . . . . 87

3.8 Trajectories of States x15 (left) and x16 (right) . . . . . . . . . . 87

3.9 Trajectories of States x17 (left) and x18 (right) . . . . . . . . . . 88

3.10 Trajectories of States x19 (left) and x20 (right) . . . . . . . . . . 88

3.11 Trajectories of Inputs u1 (left) and u2 (right) . . . . . . . . . . . 89

3.12 Trajectories of Inputs u3 (left) and u4 (right) . . . . . . . . . . . 89

ix



3.13 Trajectories of Outputs y1 (left) and y2 (right) . . . . . . . . . . 90

3.14 Trajectories of Outputs y3 (left) and y4 (right) . . . . . . . . . . 90

4.1 Schematic of multi-zone space heating system . . . . . . . . . . 95

4.2 Trajectories of states x1 (left) and x2 (right) . . . . . . . . . . . 115

4.3 Trajectories of states x3 (left) and x4 (right) . . . . . . . . . . . 116

4.4 Trajectories of states x5 (left) and x6 (right) . . . . . . . . . . . 116

4.5 Trajectories of states x7 (left) . . . . . . . . . . . . . . . . . . . 116

4.6 Trajectories of Outputs y1 (left) and y2 (right) . . . . . . . . . . 117

4.7 Trajectories of output y3 (left) . . . . . . . . . . . . . . . . . . 117

4.8 Trajectories of inputs u1 (left) and u2 (right) . . . . . . . . . . . 117

4.9 Trajectories of inputs u3 (left) and u4 (right) . . . . . . . . . . . 118

4.10 Trajectories of input u5 (left) . . . . . . . . . . . . . . . . . . . 118

x



List of Tables

5.1 System Operating Points. . . . . . . . . . . . . . . . . . . . . . 129

5.2 Design parameters of the MZSH system. . . . . . . . . . . . . . 130

xi



THESIS ABSTRACT

Name: Mohammed Masood Hussain.

Title: Global Stabilization of Decentralized Systems subject to Saturation.

Degree: MASTER OF SCIENCE.

Major Field: Systems Engineering.

Date of Degree: December, 2011.

Practical systems are difficult to realize for advanced control techniques,

both analysis and design, due to issues like saturation and interconnections. This

thesis proposes techniques for designing controllers locally and then globally for

linear decentralized control systems subject to input saturation using static and

dynamic output feedback designs and H∞ control design.

The analytical work presented is the development of overlapping decentralized

control for both static and dynamic output feedback designs through LMI formu-

lation. Further more using the idea of homotopy method a H∞ control design for

the same system was developed. Both the schemes are developed on the frame-

work of Linear Matrix Inequalities(LMIs). A version of the inclusion principle

was used for expanding and contracting the systems for overlapping decentralized

control. An application of the proposed design scheme for static and dynamic

output feedback was done on the Nuclear Power Plant model comprising of four

subsystems. The proposed scheme showed promising results. For the H∞ con-

troller design on linear interconnected systems subject to input saturation the
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idea of homotopy was used and the application was done on a Multi-zone Space

Heating System comprised of three subsystems. The results for the H∞ were

compared to the developed decentralized LQR control design which were found to

be favorable and better on comparison.
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Chapter 1

INTRODUCTION

1.1 Overview

Saturation is present in many physical systems and it tends to degrade the per-

formance and may also destabilize the system. The research on decentralized

control of interconnected systems has been a topic in research since late 1980’s

and still is done till the present day. Previously the research focused mainly on

the stability of the interconnected system based on control design like state feed-

back, output feedback and later developed to linear quadratic regulator(LQR)

problem. The research on large scale interconnected systems was initiated by

1
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Wang and Davison [5] and since then has been the subject of intense study. Most

recently the study on decentralized control has renewed interest because of its

fundamental role in the problem coordinating motion of multiple autonomous

agents which by itself has attracted significant attention.

Previously the study of stabilization using decentralized control was that of fixed

modes. Fixed modes are the poles of the system which cannot be shifted just by

using any decentralized feedback controllers. The same idea on fixed modes was

done by Wang and Davison [5] who also showed that decentralized stabilization

is possible if and only if the fixed modes are stable. Our perspective in this

thesis is when the interconnected systems are subject to input saturation. It

is known that every physically conceivable actuator has bounds on its output.

Valves can only be operated between fully open and fully closed states, pumps

and compressors have finite throughput capacity and tanks can only hold a

certain volume. Ignoring such saturation elements in any control system can be

detrimental to the stability and performance of the controlled system.

To overcome the problem of the interconnected systems when subject to input

saturation and their effects on the stability and performance of the system we

will, in this thesis, be designing a new decentralized control design for each local

controller in the subsystem of the interconnected system and using the idea of

inclusion principle and overlapping control globally stabilize the actual system.
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1.2 Thesis Objective

The main objective of the thesis is to

• Design a decentralized controller for the interconnected system subject to

input saturation which will locally stabilize each subsystem and with the

idea of inclusion principle and overlapping design have global stability.

• Design of decentralized H∞ controller using a method of homotopy to

improve the stability of the system.

1.3 Problem Statement

In this thesis, we consider an LTI interconnected system composed of a finite

number N of coupled subsystems and subject to input saturation is represented

by:

ẋ(t) = Ax(t) +Bsat(u(t)) + h(t, x(t)) (1.1)

y(t) = Cx(t) (1.2)

where x = [xt
1, ..., x

t
N ]t ∈ ℜn, n =

∑N

j=1 nj is the overall system state, sat(u) =

[sat(u)t
1, ..., sat(u)

t
N ]t ∈ ℜm, m =

∑N

j=1 mj is the saturated input of the overall

system and y = [yt
1, ..., y

t
N ]t ∈ ℜp, p =

∑N

j=1 pj is the measured output of the

overall system. The model matrices are A = diag{A11, .., ANN}, Ajj ∈ ℜnj×nj ,
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B = diag{B1, .., BN}, Bj ∈ ℜnj×mj and C = diag{C1, .., CN}, Cj ∈ ℜpj×nj .

The function

h(t, x(t)) = [ht
1(t, x(t)), .., h

t
N(t, x(t))]t

is a vector function piecewise-continuous in its arguments, it represents the

coupling of the system. In the sequel, we assume that this function is uncertain

and the available information is that, in the domains of continuity G, it satisfies

the global quadratic inequality

ht(t, x(t))h(t, x(t)) ≤ xt(t)R̃tΦ̃−1R̃x(t) (1.3)

where R̃ = [R̃t
1, .., R̃

t
N ]t, R̃j ∈ ℜrj×n are constant matrices such that h(t, 0) = 0

and x = 0 is an equilibrium of system (1.1). With focus on the structural form

of system (1.1), the jth subsystem model can be described by

ẋj(t) = Ajjxj(t) +Bjsat(uj)(t) + hj(t, x)

yj(t) = Cjxj(t) (1.4)

where xj(t) ∈ ℜnj , uj(t) ∈ ℜmj , yj(t) ∈ ℜpj are the subsystem state,

input and measured output, respectively. The function hj ∈ ℜnj is a piecewise-

continuous vector function in its arguments and in line of (1.3) it satisfies the

quadratic inequality

ht
j(t, x(t))hj(t, x(t)) ≤ φ2

j x
t(t)R̃t

jR̃jx(t) (1.5)
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where φj > 0, j ∈ {1, ..., N} are bounding parameters such that Φ̃ =

diag{φ−2
1 Ir1

, .., φ−2
N IrN

} where Imj
∈ ℜmj×mj represents identity matrix. From

(1.3) and (1.5), it is always possible to find a matrix Φ̃ such that

ht(t, x(t))h(t, x(t)) ≤ xt(t)RtΦ̃−1Rx(t) (1.6)

where R = diag{R1, .., RN}. The saturation function sat(uj) is for u ∈ ℜm

defined as,

sat(uj) =





ujmax uj ≥ ujmax,

uj ujmin < uj < ujmax,

ujmin uj ≤ ujmin

(1.7)

where ujmin and ujmax are chosen to correspond to actual input limits either by

measurement or by estimation. Input saturation can also be applied as upper

and lower limits of input constraints as ujmin and ujmax, respectively. It is

also assumed that the pair (Ajj, Bj) is a controllable pair and (Cj, Ajj) is an

observable pair for all j ∈ I := 1, 2, . . . , N .

In this thesis we will design the controllers that achieves the objectives stated

in section(1.2) and also solve the above described problem.
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More recently, some systematic design procedures based on rigorous theoreti-

cal analysis have been proposed through various frameworks, see [1] for a nice

overview of application cases requiring a formal treatment of the saturation

constraints.

This chapter addresses the latest research topics and theoretical advances on

linear dynamical systems with saturation. The chapter is organized with the

following sections showing the problem statement and theorems as well as as-

sumptions used in all the literature addressed and Section III with concluding

remarks.

2.2 Input Saturation

In this section we will be considering the important case of systems subject to

Input/Actuator saturation. Other cases of systems subject to state saturation,

systems subject to output saturation and systems presenting nested saturation

will be dealt with in the sequel.
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1.4 Thesis Organization

The thesis is organized as the chapter 2 showing the previous work done on

systems subject to saturation and also the type of control design on them. In

chapter 3 it shows the overlapping control design of interconnected systems

subject to saturation with the idea of inclusion principle. In chapter 4 a H∞

control design method will be used with an idea of homotopy method. In the

following section conclusions will be drawn and directions for future research.

Notations: The Euclidean norm |.| is used for vectors in the n-dimensional

space ℜn and we denote by ||.|| the corresponding induced matrix norm in ℜn.

We use W t, W−1, λm(W ) and λM(W ) to denote the transpose, the inverse,

the minimum eigenvalue and the maximum eigenvalue of any square matrix W ,

respectively. We use W < 0 (≤ 0) to denote a symmetric negative definite

(negative semidefinite) matrix W and Ij to denote the nj × nj identity matrix.

Matrices, if their dimensions are not explicitly stated, are assumed to be com-

patible for algebraic operations. In symmetric block matrices or complex matrix

expressions, we use the symbol • to represent a term that is induced by symme-

try. Sometimes, the arguments of a function will be omitted when no confusion

can arise.



Chapter 2

LITERATURE SURVEY

2.1 Literature Review

The behavior of linear, time-invariant (LTI) systems subject to actuator satura-

tion has been extensively studied for several decades. It is known that saturation

usually degrades the performance of a system and leads to instability. Over the

last years systems subject to saturation has attracted a lot of researchers and a

considerable amount of work has been done. Most of the study has been done

on systems subject to actuator saturation, which involves problems as global,

semi-global stabilization and local stabilization, anti-windup compensation, null

7
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controllable regions, to mention a few.

More recently, some systematic design procedures based on rigorous theoreti-

cal analysis have been proposed through various frameworks, see [1] for a nice

overview of application cases requiring a formal treatment of the saturation

constraints. Most of the research efforts geared toward constructive linear or

nonlinear control for saturated plants can be divided into two main strands. In

the first one, called anti-windup design, a pre-designed controller is given, so that

its closed-loop with the plant without input saturation is well behaved (at least

asymptotically stable but possibly inducing desirable unconstrained closed-loop

performance). The analysis and synthesis of controllers for dynamic systems

subject to actuator saturation have been attracting increasingly more attention,

see [2, 3, 4] and the references therein. There are mainly two approaches to

dealing with actuator saturation. One approach is to take control constraints

into account at the outset of control design. A low-and-high gain method was

presented in [4] to design linear semi globally stabilizing controllers.

It becomes increasingly apparent that saturation is an open topic of research

in control systems and many researchers have done lot of work in this field of

study. Available results can be broadly classified into

• Systems with actuator saturation, see [6, 8, 10, 11, 12, 17, 21, 39, 40, 43]

and their references,

• Systems with input saturation, see [7, 16, 18, 26, 30, 32, 35, 36, 41, 42]
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and their references,

• Systems with output saturation, see [13, 14, 15] and their references,

• Systems subject to state saturation, see [23, 27] and their references

Researchers also considered the study on large scale systems subject to multi

layer nested saturations [18, 33, 37]. When saturation occurs global stability is

an issue and it can never be ensured and usually semi-global stability [14, 15]

was done, also the study on estimating the large domain of attraction was done

in [2, 37, 39].

In some studies the set invariance and LMI based optimization was done [7, 10]

and feedback designs for stabilizing the system using various feedback designs

[6, 12, 16, 17, 18, 25, 28, 30, 32, 35, 36, 37, 41, 42] and various designs were

developed too. The Anti-windup designs were done for the case of actuator

saturation on systems [7, 8, 10] also resulting in a lot of interest in this part of

the study.

A dynamic output feedback approach is developed in [6] for the controller design

using the cone complementary linearization procedure. The paper dealt with

the estimation of domain of attraction and then a method is described for the

controller design of a LTI system in the presence of actuator saturation. The

feasibility problem is solved using the cone complementary linearization method.

The condition for set invariance with actuator saturation is also presented. They

also considered the design of a controller for the system with saturation such
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that the estimated domain of attraction was maximized respect to prescribed

bounded convex set. This presented a solution for the state feedback case, where

all states are measurable, but when the states are not measurable then only the

outputs are measurable for designing the output feedback controller.

In [10], an anti-windup technique was presented to enlarge the domain of at-

traction for systems subject to actuator saturation. They assumed a linear

anti-windup compensator which stabilizes the system in the absence of actuator

saturation and then used LMI techniques to enlarge the domain of attraction.

A method for estimating the domain of attraction of the origin for the system

under saturated linear feedback was discussed in [11]. A set invariance condi-

tion was derived and conditions for enlarging this invariant set was done. Using

these conditions analysis and design was done for both closed loop stability and

disturbance rejection. The condition they developed for the determination of

invariant set was less conservative than that based on the circle criterion or the

vertex analysis.

In [16], the goal of study was to design controllers for saturating decentralized

systems that achieve not only stabilization but also achieve high performance.

Their contribution to the work was to provide a broad and sufficient condi-

tions for decentralized stabilization under saturation and they have shown that

stabilization is possible whenever,

• the open loop eigen values are in closed unit disc,
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• the eigen values on the closed unit circle disc are not in decentralized fixed

modes, and

• these eigen values on unit circle have algebraic multiplicity of 1.

They tried to solve the problem of developing semi-global stabilization via de-

centralized control, which was not achieved, but semi-global stabilization was

shown.

In [18], A study on the decentralized controllers for large-scale linear systems

subjected to saturation control is done and also on the L2 disturbance rejection.

For a closed loop system under a saturating decentralized feedback law condi-

tions were identified for which an ellipsoid is contractively invariant and also

within the domain of attraction. A numerical algorithm was developed to solve

the optimization BMI problems. The extension of the work was done for sys-

tems subjected to nested saturation case. Also, in this paper discussion on the

various methods employed for weakly coupled and strongly coupled subsystems

was discussed. The first phase of the paper dealt with the absence of actuator

saturation and a design of a decentralized controller using the homotopy method

[20]. In the second phase of the paper they considered the actuator saturation

present. They used the decentralized feedback law as an initial controller a path

following algorithm was developed which searches a new decentralized feedback

law that could achieve a larger domain of attraction or stronger disturbance

rejection capability.
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In [35], they summarized observations about the control of decentralized systems

with input saturation. They were able to show that time-invariant non-linear

controllers cannot be used to move the fixed modes to zero. They used the sin-

gular perturbation method for model reduction and comment that this method

is very promising for the first step in design of stabilizing controllers for decen-

tralized systems with input saturation.

In [13], An LTI MIMO system was considered which is controllable and observ-

able with each output component saturated. In this paper the output is first

brought out of saturation, using a method which relies on the sign of the out-

put. When the output comes out of the saturation, the state of the system is

identified using the deadbeat control strategy. Since it was found to be difficult

to bring all the outputs out of saturation at the same time in case of a MIMO

system, it was found that it is better to use one output at a time out of the

saturation regions, even if some others are in the saturation zone. After getting

all the data for all the outputs at certain different times they merged the results

and found the states of the systems. These states were brought to the origin

using the deadbeat control.

It is described that basically global asymptotic stabilization is possible by output

feedback and also it was illustrated that information from multiple output com-

ponents at different points can be combined to identify the states of the system.

But for the origin of a LTI MIMO system with saturated outputs to be globally

asymptotic and stabilized it is necessary for the system to be controllable and

observable.
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In [15], they considered the problem of semi-globally stabilizing linear system

using linear feedback of the saturated output measurement. They established

that a SISO linear stabilizable and detectable system subject to output satura-

tion can be semi-globally stabilized by linear output feedback if all the invariant

zeros are in the closed left-half plane, no matter where open loop poles are. The

linear feedback laws were designed in such a way that they used the saturated

output to cause the system output to oscillate into the linear region of output

saturation function and remain there in a finite time.

In [23], The study on the problem of stability analysis and controller design for

continuous time linear systems with the consideration of full state saturation

as well as partial state saturation was done. A new and tractable system was

constructed showing that this system is with same domain of attraction as the

original system. An LMI method is used for estimating the attraction domain

of the origin for new constructed system with state saturation. An algorithm

was developed for the designing of of output feedback controllers guaranteeing

that the attraction domain of the origin for the closed-loop system is as large as

possible.

In [27], they discussed the problem of stability analysis for linear systems un-

der state constraints and some conditions were devised for global asymptotic

stability of such systems. They achieved certain conditions under which linear

systems defined on closed hypercube and linear systems with partial satura-

tion are globally asymptotically stable at origin. Iterative LMI formulation was

proposed for verifying the asymptotically stable system.
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The problem of synthesizing fixed order anti-windup compensator which meet

an L2 performance bound was addressed in [7]. They used the linear anti-windup

augmentation method to develop a controller. It was also shown that if and only

if the plant is asymptotically stable this plant order anti-windup compensation

is always feasible for large L2 gain. They have demonstrated that the Lyapunov

formulation of this problem can be taken as a non convex optimization problem.

A new saturation control technique is developed in [8] for anti-windup design

for the case of exponentially unstable LTI system. The algorithm developed

guaranteed regional stability in the presence of input saturation and improves

performance too. It was also commented that systems with input non-linearities

such as deadzone and hysteresis can also be treated using this approach.

In [12], a method for output feedback with saturation for stabilizing the system

was presented. Also the enlargement of domain of attraction was done. They

have used a non-linear output feedback controller expressed in quasi-LPV system

form, establishing conditions for closed loop stability.

In [38], A piece-wise quadratic Lyapunov function is developed for the analysis

of global and regional performances for systems with input saturation with an

algebraic loop. The function incorporated the structure of the saturation non-

linearity. Sector conditions were considered which are shown in the following

section and also an introduction to three sector like conditions that were useful in

this paper. A comparison with the non-quadratic Lyapunov function in [31] was

done. They have addressed the problem of stability and performance analysis
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for linear systems which involve saturation/deadzone. They have compared the

results from [6] with the ones produced by these new methods. In this paper they

showed that the Lyapunov based approach on piece-wise quadratic function was

developed to analyze the global, regional stability and performances for systems

subject to saturation.

In [28], They presented the LMI based synthesis approach on output feedback

design for input saturated linear systems using deadzone loops. The proposed

approach will lead to regional stabilizing controllers if the plant is exponentially

unstable, to semi-global stability if the plant is non-exponentially unstable, and

to global stability if the plant is already exponentially stable, the requirement

of the plant being detectable and stabilizable.

The design of decentralized controllers for interconnected linear systems subject

to multi-layer nested saturations were considered in [37]. They formulated the

decentralized state feedback laws that resulted in large domain of attractions.

Their study was divided into two phases, the first phase they assumed no satu-

ration and using the homotopy idea [20]. This decentralized control law, when

subject to saturation still achieves local stabilization with guaranteed domain

of attraction. The second phase, they consider the actuator saturation and

designed the algorithms for larger domain of attraction.

In [33], they showed the problem of stability for systems presenting nested sat-

urations. The generalized sector conditions were used for the stability analysis.

This work proposed that it allows a more general nested saturation structure
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and addressed the global stability and global stabilization problems solved by

LMI methods.

In [54], the authors developed a new LMI-based procedure for the design of

decentralized dynamic output controllers for systems composed of linear sub-

systems coupled by uncertain nonlinear interconnections satisfying quadratic

constraints. The scheme utilizes the general linear dynamic output feedback

structure. The design procedure consists of two steps, the first providing the

local Lyapunov matrices together with the corresponding robustness degrees,

and the second the controller parameters providing a robustly stable overall

system. A comprehensive review of decentralized control design techniques was

provided in [55]. The synthesis of output feedback controllers with saturating

inputs was studied in [61] where an observer based controller and a dynamic

output feedback controller based on the circle criterion was developed via LMI

formulation.

In [62], the authors presented a method for designing an output feedback law

that stabilizes a linear system subject to actuator saturation with a large domain

of attraction. This method applies to general linear systems including strictly

unstable ones. A nonlinear output feedback controller is first expressed in the

form of a quasi-LPV system. Conditions under which the closed-loop system

is locally asymptotically stable are then established in terms of the coefficient

matrices of the controller. The design of the controller (gain matrices) that

maximizes an estimate of the domain of attraction is then formulated and solved

as an optimization problem with LMI constraints.
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2.2.1 Problem statement

Consider the LTI plant described by,

ẋp(t) = Apxp(t) +BpSat(u) + Ew(t)

y(t) = Cpxp(t) +DpSat(u) (2.1)

where xp(t) ∈ ℜnp is the plant state, u(t) ∈ ℜnu is the control input, y(t) ∈ ℜny

is the plant output available for measurement and w(t) ∈ ℜnw is the input

disturbance.

In most of the works, the following assumptions were considered:

Assumption 2.2.1 The following conditions hold

• The triple (Ap, Bp, Cp) is stabilizable and detectable,

• The matrices Bt
p and Cp have full row rank,

• Dp=0

The common objective is to address the stability analysis and control design

problems for system (2.1) under Assumption 2.2.1. In this paper, we survey

available results pertaining to both problems using alternative approaches.
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2.2.2 Main results

Initially, assume that the controller is given for the system with actuator satura-

tion, the problem of interest is that finding the estimate of domain of attraction.

The following theorem developed in [6] provides a basic result:

Theorem 2.2.1 Given an ellipsoid Ξ(P, ρ), P ∈ ℜn×n , if there exists an H

∈ ℜn×n, such that,

(Acl +Bcl(ViCcl + V −
i H))tP +

P (Acl +Bcl(ViCcl + V −
i H)) < 0 (2.2)

for all Vi ∈ V and Ξ(P, ρ) ⊂ P(H), that is,

|Hix| ≤ 1 ∀ x ∈ Ξ(P, ρ)

is contractively invariant set.

Remark 2.2.1 System (2.1) was considered in [10] under Assumption 2.2.1.

Introducing a typical anti-windup compensator involving a correction term of

the form Ec(σ(u) − u) leads the closed-loop system

ẋc = Acxc +Bc + Ec(σ(u) − u), xc(0) = 0

u = Ccxc +Dcy, xc ∈ ℜnc (2.3)



20

Based on Theorem (2.2.1), the problem estimating the domain of attraction is

addressed. By using the matrix E as a free design parameter, it is shown that

the domain of attraction can be enlarged via optimization procedure.

In the following theorem a condition of set invariance examined in [11] is pre-

sented:

Theorem 2.2.2 Given an ellipsoid Ξ(P, ρ), if there exists an H ∈ ℜm×n such

that,

(A+BM(v, F,H))tP + P (A+BM(v, F,H)) < 0 (2.4)

where,

{M(v, F,H) : v ∈ ν} = {H,



h1

f2


 ,




f1

h2


 , F}

ν = v ∈ ℜm : vi = 1or0 (2.5)

for all v ∈ ν and Ξ(P, ρ) ⊂ ℓ(H), that is,

|hix| ≤ 1, ∀x ∈ Ξ(P, ρ), i ∈ [1,m]

then Ξ(P, ρ) is a contractively invariant set.

The class of disturbances treated in the literature is characterized below
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Assumption 2.2.2 The input disturbance w(t) ∈ ℜnw belongs to the bounded

set W defined by

W := {w(t) : w(t)tw(t) ≤ 1∀ t ≥ 0}

An efficient method of determining disturbance rejection with guaranteed do-

main of attraction is summarized by the following theorem [11]:

Theorem 2.2.3 Given two ellipsoids

Ξ(P, ρ1), Ξ(P, ρ2), ρ2 > ρ1 > 0

If there exist matrices H1, H2 ∈ ℜm×n and a positive number η such that

(A+BM(v, F,H1))
tP + P (A+BM(v, F,H1)) +

1

η
PEEtP +

η

ρ1

P < 0,∀v ∈ ν (2.6)

(A+BM(v, F,H2))
tP + P (A+BM(v, F,H2)) +

1

η
PEEtP +

η

ρ2

P < 0,∀v ∈ ν (2.7)

and Ξ(P.ρ1) ⊂ L(H1), Ξ(P.ρ2) ⊂ L(H2), then for every ρ ∈ [ρ1, ρ2], there exists

a matrix H ∈ ℜm×n such that

(A+BM(v, F,H))tP + P (A+BM(v, F,H)) +

1

η
PEEtP +

η

ρ
P < 0,∀v ∈ ν (2.8)
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and Ξ(P, ρ) ∈ L(H). This implies that Ξ(P, ρ) is also strictly invariant.

Next, in [16] the following system is considered

x(k + 1) = Ax(k) +
v∑

i=1

BiSat(ui(k))

yi(k) = Cix(k), i = 1, . . . v (2.9)

where x ∈ ℜn is the state, ui ∈ ℜmi , i = 1 . . . v are control inputs, yi ∈ ℜpi are

measured outputs. For system (2.9) an improved controller stabilization result

is developed and summarized by the following theorem:

Theorem 2.2.4 For system (2.9), there exists non-negative integers s1, s2, . . . , sv

such that for any given collection of compact sets W ∈ ℜn and Si ∈ ℜsi there

exists v controllers of the form,

zi(k + 1) = Kizi(k) + Liyi(k)

ui(k + 1) = Mizi(k) +Niyi(k) (2.10)

such that the origin of the resulting closed loop system is asymptotically stable

and the domain of attraction includes W ×Si × . . .× Sv only if,

• All fixed modes are in the open unit disc

• All eigen values of A are in the closed loop unit disc.
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An additional result on the conditions of semi-global stabilizability of system

Theorem 2.2.4 using the set of controllers (2.10) is established by the theorem

below:

Theorem 2.2.5 Consider system (2.9), there exists non-negative integers s1, s2, . . . , sv

such that for any given collection of compact sets W ∈ ℜn and Si ∈ ℜsi there

exists v controllers of the form (2.10), such that the origin of the resulting

closed loop system is asymptotically stable and the domain of attraction includes

W ×Si × . . .× Sv if,

• All fixed modes are in the open unit disc

• All eigen values of A are in the closed loop unit disc with those eigen values

on the unit disc having algebraic multiplicity equal to one.

Remark 2.2.2 Based on the condition for set invariance developed in [6], a

result on the determination of disturbance tolerance capability of the closed loop

system under state feedback law is reported in [18]. This result is stated in the

theorem below.

Theorem 2.2.6 Consider system (2.1) under the state feedback law u = Fx.

For a give positive definite matrix P , if

(A+B(DsF +D−
s H))tP + P (A+B(DsF +D−

s H)) +

1

η
PEEtP ≤ 0, s ∈ I2m (2.11)
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and Ξ(P, 1 + αη) ⊂ L(H), then every trajectory of the closed loop system that

starts from inside of Ξ(P, 1) will remain inside of Ξ(P, 1+αη) for every w ∈W 2
α.

Additionally, there exists a matrix H ∈ ℜm×n and a positive number η such that

(2.11) is satisfied and Ξ(P, αη) for every w ∈ W 2
α.

The following theorem characterizes the conditions under which the linear sys-

tem under actuator saturation (2.1) has L2 gain less than or equal to γ.

Theorem 2.2.7 Let αmax be the maximal tolerable disturbance level. Consider

an α ∈ (0, αmax]. For a given constant γ > 0, if there exists a matrix H ∈ ℜm×n

such that,

(A+B(DsF +D−
s H))tP + P (A+B(DsF +D−

s H)) +

PEEtP +
1

γ2
CtC ≤ 0, s ∈ I2m (2.12)

and Ξ(P, α) ⊂ L(H), then the restricted L2 gain from w to z over W 2
α is less

than or equal to γ.

In establishing Theorem 2.2.7, the procedure for stabilization of systems subject

to nested saturations developed in [22] was employed.
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2.2.3 Example 1

, Consider the system with,

Ap =




0 1

1 0


 , Bp =




0

5


 ,

Cp =

[
1 0

]

Using a standard dynamic output feedback controller, it was shown in [6] that

the gains are described by

Ak = −30, Bk = −22, Ck = −20, Dk = −30

Letting R = I3×3, and solving an optimization problem, the feasible solution

was attained at γ∗ = 118.0139 and

Π∗ =




109.1588 −0.4927 29.8610

−0.4927 1.3420 −2.6067

29.8610 − 2.6067 20.4395




H∗ =

[
−7.7212 −0.7368 −0.4017

]

Considering the same system and setting, Ξ = 2, N = 5, T = 5, τ = 5,

algorithm 1 in [6], and the values obtained above, the efficiency of the ensuing
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design can be seen from the following results,

K =




−33.4815 −133.8522

−2.1163 −11.8956


 ,

H∗
1 =

[
−7.0427 −0.3701 −0.3873

]
,

Π∗
1 =




56.5258 −0.0227 5.4276

−0.0227 2.1547 −0.5192

5.4276 −0.5192 1.5738




2.3 Output Saturation

In what follows, we will examine the case of systems subject to output saturation.

2.3.1 Problem statement

Consider the LTI system with saturated outputs as,

ẋ = Ax+Bu

y = Sat(C(x)) (2.13)

where, x ∈ ℜn is the state of the system u ∈ ℜm is the controller input and

y ∈ ℜp is the output measurement.
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2.3.2 Main results

Basic results are established in [13] and [15] and summarized by the following

theorems:

Theorem 2.3.1 The origin of system (2.13) is globally asymptotically stable,

that is

x(0) = 0 ⇒ x(t) = 0 ∀ t ≥ 0 (equilibrium)

such that ||x(0)|| ≤ σ (stability)

and ∀ x(0), limt→inf x(t) = 0 (global attractivity).

Theorem 2.3.2 System (2.13) is semi-globally asymptotically stabilizable by

linear feedback of the saturated output if

• The pair(A,B) is stabilizable,

• The pair (A,C) is detectable,

• All invariant zeros of the triple (A,B,C) are in the closed left-half plane.

More specifically, for any a priori given bounded set H0 ⊂ ℜ2n, there exists a

linear dynamic output feedback law of the form,

ż = Fz +Gy, z ∈ ℜn

u = Hz +H0y
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such that the equilibrium (x,z)=(0,0) of the closed loop system is asymptotically

stable with H0 contained in its domain of attraction.

2.3.3 Example 2

Consider the system,

ẋ1(t) = x2(t) + x3(t)

ẋ2(t) = u1(t)

ẋ3(t) = u2(t)

y1(t) = x1(t)

y2(t) = x1(t) + x2(t)

The system has an eigen value with multiplicity one and an eigen value with

multiplicity 2, both at the origin, thus the system is open-loop unstable. In [13],

the controller algorithm is implemented using T = 0.5, ρ = 1.1, h1 = Ct
1 and

h2 = Ct
2 with initial conditions were x1(0) = 2, x2(0) = −4 and x3(0) = 1.

2.4 State Saturation

We now direct attention to the case of systems subject to state saturation.
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2.4.1 Problem statement

Consider a class system with state saturation in the form

ẋp = sat(Apxp) +Bpu

y = Cpxp (2.14)

where xp ∈ ℜnp is the plant state, u ∈ ℜnu is the control input, y ∈ ℜny is the

plant output available for measurement.

2.4.2 Main results

For system (2.14), sufficient conditions were derived in [27] to guarantee global

asymptotic stability. The theoretical results are summarized by the following

two theorems. The first theorem concerns the stability analysis:

Theorem 2.4.1 If there exists a symmetric positive-definite matrix P ∈ ℜn×n

and a matrix G ∈ ℜn×n such that,

(DiA+D−
i G)tP + P (DiA+D−

i G) < 0 (2.15)

where G is (row) diagonally dominant and the diagonal is composed of negative
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elements as specified below

h(Ax+K) ∈ coDi(Ax+K) +D−
i Gx, i ∈ [1, 2n] ∀ x ∈ Dn

for any matrix K ∈ ℜn independent of x.

The next theorem is for determining the globally stabilizing feedback gain F :

Theorem 2.4.2 If there exists a symmetric positive-definite matrix P ∈ ℜn×n

and a matrix G ∈ ℜn×n such that,




A B

DiC DiE +D−
i G




t

P +

P




A B

DiC DiE +D−
i G


 < 0 i ∈ [1, 2n] (2.16)

where Di ∈ Dm and and G is (row) diagonally dominant and the diagonal is

composed of negative elements, then the system is globally asymptotically stable

at origin.



31

2.4.3 Example 3

Consider the following system with state saturation

A =




−9.9 8

10 5


 ,

B =




1

−9


 ,

C =

[
1 2

]

Without considering the state saturation a controller is designed with gain pa-

rameters as,

Ak =




−1 2.5

30 −9


 ,

Bk =




−0.9

−0.5


 ,

Ck =

[
0.1 −2

]

Dk = 1

XR = col[1100]t, [1 − 100]t, [−1100]t, [−1 − 100]t.
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By Algorithm 1 in [23], the domain of attraction was estimated and the results

were as follows,

γ∗ = 1.6971

Q∗ =




3.1511 0.9275 0.3591 −0.4926

0.9275 2.0033 0.4194 −0.0770

0.3591 0.4194 0.1521 −0.0429

−0.4926 −0.0770 −0.0429 1.3383




,

U∗ =




0.1114 0

0 0.1111




To design the controller, Algorithm 2 was implemented to obtain the largest

domain of attraction. The controller gains were

A∗
k =




−1.6255 4.4283

31.3529 −22.3786


 ,

B∗
k =




−2.8123

4.5233


 ,

C∗
k =

[
0.3996 −3.1210

]
,

D∗
k = 2.4213
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and the result of the domain of attraction was found to be ,

γ∗ = 0.4913

Q∗ =




12.2710 −1.8511 0.4432 3.2522

−1.8511 16.8187 2.9340 −9.4093

0.4432 2.9340 0.7476 −1.5786

3.2522 −9.4093 −1.5786 12.7334




,

U∗ =




0.7090 0

0 0.1629




It is demonstrated in [23] that by using Algorithm 2, the index of domain of

attraction is improved than that which was obtained by Algorithm 1.

2.5 Systems Presenting Nested Saturation

Proceeding further, we deal with the case of systems presenting nested satura-

tion.
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2.5.1 Problem statement

Consider a linear system consisting ofN interconnected subsystems, each subject

to multi-layer nested saturation in its inputs,

ẋi = Aixi +
∑

j 6=1

Aijxj +BiSat(F1ix+K2iSat(F2ix+

+ . . .+KpiSat(Fpix))), i ∈ IN (2.17)

where xi ∈ ℜni is the state of the ith subsystem. For a vector ui ∈ ℜmi where

Sat : ℜmi → ℜmi

is the vector valued standard saturation function defined as

Sat(ui) = [Sat(ui1 Sat(ui2) . . . Sat(uimi
]t

and

Sat(uil) = sign(uil)min|uil|, 1, l ∈ Imi

2.5.2 Main results

Set invariance conditions were provided in [37] as presented by the following

theorem:
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Theorem 2.5.1 Given an ellipsoid Ξ(P, ρ). If there exists an H ∈ ℜm×n such

that,

(A+B(DsF +D−
s H))tP +

P (A+B(DsF +D−
s H)) ≤ 0, s ∈ [1, 2m] (2.18)

and Ξ(P, ρ) ⊂ L(H). Then Ξ(P, ρ) is an invariant set. If ”‘<”’ holds for the

aforementioned inequalities, then Ξ(P, ρ) is a contractively invariant set towards

the origin.

For the multi-layered nested saturations, the following theorem present a useful

result [18]:

Theorem 2.5.2 Consider the interconnected linear system 2.17. For a given

ellipsoid Ξ(P, 1), if there exists some matrices Hℓ, Fℓ ∈ ℜm×n, ℓ ∈ Ip, such

that, for all diagonal matrices D1, D2, . . . , Dp+1 ∈ ℜm×m whose diagonal

elements can only be 0 or 1, with
∑p+1

i=1 Di = 1 such that

P (A+B(D1H1 +D2(F1 +K2H2) + . . .+

Dp(F1 +K2F2 + . . .+K2 . . . KpHp) +

Dp+1(F1 +K2F2 + . . .+K2 . . . KpFp))) +

P (A+B(D1H1 +D2(F1 +K2H2) + . . .+

Dp(F1 +K2F2 + . . .+K2 . . . KpHp) +

Dp+1(F1 +K2F2 + . . .+K2 . . . KpFp)))
tP < 0 (2.19)
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and Ξ(P, 1) ⊂ ∩p
l=1L(Hl), then Ξ(P, 1) is contractively invariant set.

Extending to the situation of disturbance rejection, the following theorem es-

tablishes a workable result

Theorem 2.5.3 Consider the interconnected linear system 2.17 Let P be a pos-

itive definite matrix.

• If there exists a positive number η some matrices Hℓ, Fℓ ∈ ℜm×n, ℓ ∈ Ip,

such that, for all diagonal matrices D1, D2, . . . , Dp+1 ∈ ℜm×m whose

diagonal elements can only be 0 or 1, with
∑p+1

i=1 Di = 1 such that

P (A+B(D1H1 +D2(F1 +K2H2) + . . .+

Dp(F1 +K2F2 + . . .+K2 . . . KpHp) +

Dp+1(F1 +K2F2 + . . .+K2 . . . KpFp))) +

P (A+B(D1H1 +D2(F1 +K2H2) + . . .+

Dp(F1 +K2F2 + . . .+K2 . . . KpHp) +

Dp+1(F1 +K2F2 + . . .+K2 . . . KpFp)))
tP < 0 (2.20)

and Ξ(P, 1 + αη) ⊂ ∩p
l=1L(Hl), then every trajectory of the closed loop

system that starts from inside of Ξ(P, 1) will remain inside of Ξ(P, 1+αη)

for every w∈ W 2
α.

• If there exists a positive number η some matrices Hℓ, Fℓ ∈ ℜm×n, ℓ ∈ Ip,

such that, for all diagonal matrices D1, D2, . . . , Dp+1 ∈ ℜm×m whose
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diagonal elements can only be 0 or 1, with
∑p+1

i=1 Di = 1, inequality (2.20)

is satisfied and Ξ(P, αη) ⊂ ∩p
l=1L(Hl), then every trajectory of the closed

loop system that starts from origin will remain inside of Ξ(P, αη) for every

w∈ W 2
α.

2.5.3 Example 4

For the case of multi layered nested saturation, let us consider a system with

w = 0 and the following data

A =




0 4 3 2

2 3 3 4

1 5 0 1

1 1 3 4




,

B =




0 0

1 0

0 0

0 1




p = 2, K2 = blkdiag[0.5, 0.5]

XR = [1 0.5 0.6 0.9]

Consider the design algorithm for decentralized control for multi layered nested

saturation in [37]. It is found that the feasible solution of the corresponding
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optimization problems was as follows:

µ∗ = 80.0127

P∗ =




8.7974 17.0317 −1.3232 2.0154

17.0317 49.1759 3.6958 0.8127

−1.3232 3.6958 29.3195 28.3716

2.0154 0.8127 28.3716 45.0384




,

H∗
1 =




−2.1505 −5.5006 −3.3058 −3.6132

−1.8211 −4.6616 −3.8394 −4.9424


 ,

H∗
2 =




−0.4850 −1.9498 −4.0923 −4.4794

−1.9933 −3.4248 −0.0002 −1.4339




2.6 Linear Systems with Deadzone

Finally, we deal with the case of systems containing deadzone.
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2.6.1 Problem statement

Generally a system with saturation or deadzone is described as,

ẋ = Ax+Bqq +Bww

y = Cyx+Dyqq +Dyww

z = Czx+Dzqq +Dzww

q = dz(y) (2.21)

where x ∈ ℜn, q, y ∈ ℜm, w ∈ ℜr, and z ∈ ℜp. The deadzone function

dz(.) : ℜm → ℜm is defined by

dz(y) := y − Sat(y), ∀y ∈ ℜm

where Sat(.) is a vector saturation function with the saturation levels given by

a vector

ū ∈ ℜm, ūi > 0, i = 1, 2, . . . ,m

In [38], they considered an algebraic loop, when Dyq 6= 0 and a nonlinear alge-

braic loop imposed by

y = Cyx+Dyqdz(y) +Dyww (2.22)

Further analysis is based on the following facts:
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Fact 1: For every diagonal matrix δ ∈ ℜs×s, δ > 0, the deadzone function dz(.)

satisfies

dz(v)tδ {v − dz(v)} ≥ 0,∀v ∈ ℜs (2.23)

Fact 2: Given r ∈ ℜm such that

−ūi ≤ ri ≤ ūi, ∀i = 1, . . . ,m

the following inequality holds for any diagonal matrix δ ∈ ℜm×m, δ > 0 :

dz(v)tδ {v − dz(v) − r} ≥ 0,∀v ∈ ℜm (2.24)

2.6.2 Main results

The following results were the sector-like conditions introduced to describe the

properties of the algebraic loop with deadzone:

Result 1: In view of the non-decreasing properties of saturation and deadzone

functions, the following inequality holds for every diagonal matrix δ ∈ ℜm×m,

δ > 0

{dz(v1) − dz(v2)}
t δ {sat(v1) − sat(v2)}

≥ 0, ∀ v1, v2 ∈ ℜm. (2.25)
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Result 2: For every diagonal matrix δ ∈ ℜm×m, the following equalities hold

almost everywhere:

φ(x,w)tδ {u̇− φ(x,w)} ≡ 0

dz(u)tδ {u̇− φ(x,w)} ≡ 0 (2.26)

where,

u̇ = CyAx+ CyBqdz(y) + CyBww +Dyqφ(x,w)

The conditions characterizing global analysis and regional analysis are men-

tioned in the following theorems:

Theorem 2.6.1 Considering system 2.21, the following results hold true:

1. (Exponential Stability): If there exists a matrix P ∈ ℜ(n+m)×(n+m), P =

P t > 0, and diagonal matrices ∆i ∈ ℜm×m, i=1, . . . , 5,∆i=1,2,3 > 0,

satisfying the LMI,

[In+3m 0(n+3m)×r]Ψ̄




In+3m

0r×(n+3m)


 < 0 (2.27)

then for the Lyapunov function V (x) = ξ(x)tPξ, there exists an Ξ > 0

such that V̇ < −Ξ||x||2 for almost all x ∈ ℜn and w = 0. This guarantees

the origin of the system is globally exponentially stable.
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2. (Reachable Region): If there exists a matrix P ∈ ℜ(n+m)×(n+m), P = P t >

0, and diagonal matrices ∆i ∈ ℜm×m, i=1, . . . , 5,∆i=1,2,3 > 0, satisfying

the LMI,

Ψ̄ − Ψ̄6Ψ̄
t
6 < 0 (2.28)

then V̇ < wtw for almost all x =∈ ℜn and all w =∈ ℜr. If x(0) = 0 and

||w||2 ≤ s, then ξ(x(t)) ∈ Ξ(P/s2) for all t ≥0.

3. (Global L2 Gain): If there exists a matrix P ∈ ℜ(n+m)×(n+m), P = P t > 0,

and diagonal matrices ∆i ∈ ℜm×m, i = 1, . . . , 5,∆i=1,2,3 > 0, satisfying

the LMI,




Ψ̄ − Ψ̄6γΨ̄
t
6 •[

Cz 0 0 Dzq Dzw

]
−γI


 < 0 (2.29)

then, V̇ + 1
γ
ztz < γwtw for almost all x ∈ ℜn and all w w ∈ ℜτ . If

x(0) = 0, then ||z||2 ≤ γ||w||2, that is, the global L2 gain is bounded by γ.

The theorem for regional analysis [38] is as follows:

Theorem 2.6.2 Considering system 2.21, the following results hold true:

1. (Exponential Stability): If there exists a matrix P ∈ ℜ(n+m)×(n+m), P =

P t > 0, H1, H2 ∈ ℜm×(n+m), satisfying and diagonal matrices δi ∈ ℜm×m,
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i=1, . . . , 5, δi=1,2,3 > 0, satisfying the LMI,

[In+3m 0(n+3m)×r](Ψ̄ − Ω̄ − Ω̄t)

•




In+3m

0r×(n+3m)


 < 0 (2.30)

then for the Lyapunov function V(x) = ξ(x)tPξ, there exists an Ξ > 0

such that V̇ < −Ξ|x|2 for almost all x ∈ ℜn and w = 0. Thus the origin

of the system is globally exponentially stable. If ξ(x(0)) ∈ Ξ(P ), then

ξ(x(t)) ∈ Ξ(P ) for all t >0. and limt→infx(t)=0.

2. (Reachable Region): Let s >0. If there exists a matrix P ∈ ℜ(n+m)×(n+m), P =

P t > 0, H1, H2 ∈ ℜm×(n+m) and diagonal matrices δi ∈ ℜm×m, i=1,

. . . , 5, δi=1,2,3 > 0, satisfying the LMI,

Ψ̄ − Ω̄ − Ω̄t − Ψ̄6Ψ̄
t
6 < 0 (2.31)

then V̇ < wtw for almost all x ∈ ℜn and all w ∈ ℜr. If ξ(x(0)) = 0 and

||w||2 ≤ s, then ξ(x(t)) ∈ Ξ(P/s2) for all t ≥0.

3. (Regional L2 Gain): Let s¿0. If there exists a matrix P ∈ ℜ(n+m)×(n+m), P =

P t > 0, H1, H2 ∈ ℜm×(n+m) and diagonal matrices δi ∈ ℜm×m, i=1,

. . . , 5, δi=1,2,3 > 0, satisfying the LMI,




Ψ̄ − Ω̄ − Ω̄t − Ψ̄6Ψ̄
t
6 •[

Cz 0 0 Dzq Dzw

]
−γI


] < 0 (2.32)
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then, V̇ + 1
γ
ztz < γwtw for almost all ξ(x) ∈ Ξ(P/s2) and all w ∈ ℜr. If

ξ(x(0))=0, and||w||2 ≤ s, then ||z||2 ≤ γ||w||2

Conditions for LMI-feasibility testing are contained in the following theorem

[28]:

Theorem 2.6.3 Given s >0. Consider the linear plant subject to saturation/deadzone

with ||w||2 ≤ s. Let [N1 N2]
t span the null space of [Cpy Dp,yw]. If the follow-

ing LMIs in the variables Q11, P11 ∈ ℜnp×np, Q11 = Qt
11 > 0, P11 = P t

11 > 0,

Yp ∈ ℜnu×np , γ2 > 0,Ξ ≤ 1
s2 are feasible:




ApQ11 +BpuYp Bpw 0

0 − I
2

0

CpzQ11 +Dp,zuYp Dp,zw −γ2I

2



< 0



N1P11ApN

t
1 +N1P11BpwN

t
1 −

1
2
N2N

t
2 0

CpzN
t
1 +Dp,zwN

t
2 −γ2I

2






Q11 I

I P11


 > 0




Ξū2 Ypi

Ypi Q11


 ≥ 0 i = 1, . . . , nu
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then there exists an output feedback controller in the form of

ẋc = Acxc +Bcy + E1dz(yc)

yc = Ccxc +Dcy + E2dz(yc)

of the order of np , which guarantees the following three properties of the closed

loop system:

1. the regional L2 gain is bounded by γ,

2. Ξ(ξQ−1
11 ) × 0 inside the domain of attraction,

3. the reachable set of the plant bounded by Ξ((s2Q11)
−1).

where Ypi denotes the ith row of Yp
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LyapunovFunction

[
−3 −1
−2 −4

] [
−3 −1.3
−2.3 −4

] [
−3 −2
−2 −4

]

Piecewise Quadratic [38] 15.13 17.19 25.86
Convex Hull Quadratic [31] 17.06 19.33 31.67

Max Quadratic [31] 17.37 20.78 42.34
Quadratic via PDI [31] 38.96 170.15 ∞
Lure− Postinikov [38] 46.96 ∞ ∞

Quadratic via NDI [7], [31] 46.96 ∞ ∞

2.6.3 Example 5

Consider system 2.21 with the following system parameters [38]:




A Bq Bw

Cy Dyq Dyw

Cz Dzq Dzw




=




0 0 −1 1 0 0 1

1 0 −2 0 1 1 0

0 1 −3 1 −1 1 1

1 0 1 −3 −1 1 −1

0 1 0 −2 −4 0 1

0 1 0 1 0 −1 0

0 0 1 0 1 0 −1




The results of using various Lyapunov type of functions are summarized in the

following table:
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2.7 Conclusions

In this chapter, we have presented a survey of the main results pertaining to

linear dynamical systems subject to saturation including actuator, output and

state types . The survey has outlined basic assumptions and has taken into

considerations several technical views on the analysis and design procedures

leading to global or semi-global stability results. A key feature has been the

equal emphasis on the design of linear feedback laws, decentralized controllers.

Results related stability with enlarging the domain of attraction and systems

subject to multi-layered nested saturations have been provided. Some typical

examples have been given to illustrate relevant issues.
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3.1 Introduction

The development of techniques to design output feedback controllers for in-

terconnected systems has been of great interest since the past few years [48]-

[55]. Many techniques and design strategies were proposed and developed to

form the control design of these systems. Various theorems were developed for

calculating the unknowns of the dynamic output feedback controller gain ma-

trix.Applications of multi-agent control designs subject to feedback have been

generalized and looked upon. In the area of decentralized control designs it has

been implied that the system with local feedback closed around the sub-systems

is generally stable. Several methods were used for the development of static

and dynamic output feedback designs as in [48, 49, 54, 55, 56, 59, 61, 62, 63].

LMI solution to the decentralized output feedback control problem for the in-

terconnected non-linear systems was developed in [48], where the interacting

non-linearity of each subsystem was considered o be bounded by a quadratic

form of states of the overall system. Local output signals from each subsystems

were used to generate the local control inputs. The robust stabilization prob-

lem of a class of nonlinear interconnected systems was considered in [49] and a

decentralized dynamic output feedback controller was proposed. The authors

formulated the controller design in the LMI framework, and used local sliding

mode observers for the subsystems state estimation. However, the problem of

designing local observers that are robust with respect to measurement noise is

still unresolved. In [54], the authors developed a new LMI-based procedure for

the design of decentralized dynamic output controllers for systems composed
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of linear subsystems coupled by uncertain nonlinear interconnections satisfying

quadratic constraints. The scheme utilizes the general linear dynamic output

feedback structure. The design procedure consists of two steps, the first pro-

viding the local Lyapunov matrices together with the corresponding robustness

degrees, and the second the controller parameters providing a robustly stable

overall system. A comprehensive review of decentralized control design tech-

niques was provided in [55]. The synthesis of output feedback controllers with

saturating inputs was studied in [61] where an observer based controller and a

dynamic output feedback controller based on the circle criterion was developed

via LMI formulation. In [62], the authors presented a method for designing an

output feedback law that stabilizes a linear system subject to actuator satura-

tion with a large domain of attraction. This method applies to general linear

systems including strictly unstable ones. A nonlinear output feedback controller

is first expressed in the form of a quasi-LPV system. Conditions under which

the closed-loop system is locally asymptotically stable are then established in

terms of the coefficient matrices of the controller. The design of the controller

(gain matrices) that maximizes an estimate of the domain of attraction is then

formulated and solved as an optimization problem with LMI constraints.

On another research front, the behavior of linear, time-invariant (LTI) systems

subject to saturation has been extensively studied for several decades. It is

known that saturation usually degrades the performance of a system and leads

to instability. Over the last years systems subject to saturation has attracted a

lot of researchers and a considerable amount of work has been done. Most of the
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study has been done on systems subject to actuator saturation, which involves

problems as global, semi-global stabilization and local stabilization, anti-windup

compensation, null controllable regions, to mention a few.

More recently, some systematic design procedures based on rigorous theoreti-

cal analysis have been proposed through various frameworks, see [1] for a nice

overview of application cases requiring a formal treatment of the saturation

constraints. Most of the research efforts geared toward constructive linear or

nonlinear control for saturated plants can be divided into two main strands. In

the first one, called anti-windup design, a pre-designed controller is given,so that

its closed-loop with the plant without input saturation is well behaved (at least

asymptotically stable but possibly inducing desirable unconstrained closed-loop

performance). The analysis and synthesis of controllers for dynamic systems

subject to actuator saturation have been attracting increasingly more attention,

see [2, 3, 4] and the references therein. There are mainly two approaches to

dealing with actuator saturation. One approach is to take control constraints

into account at the outset of control design. A low-and-high gain method was

presented in [4] to design linear semi-globally stabilizing controllers. The over-

lapping decomposition principle has been used extensively for interconnected

systems for the design of the feedback controller [55].

In this chapter, we use the principle of overlapping decomposition to design

output feedback controllers for each of the interconnected subsystems. This

method helps us to differentiate each subsystem and design a local output feed-

back controller for the same and finally contract them to the original system
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comprising of all the subsystems. Controlling the interconnected systems with

saturating inputs we have used the Overlapping design methodology and ap-

plied two types of controllers for the design, that is, static and dynamic output

feedback schemes. For the design of controllers we firstly expand the system

and carry on with the control design methods and after the controller has been

designed we utilize the overlapping decomposition technique of contracting the

expanded system to the original form.

3.2 Problem Statement

Consider an interconnected system composed of a finite number N of coupled

subsystems and subject to input saturation is represented by:

ẋ(t) = Ax(t) +Bsat(u(t)) + h(t, x(t)) (3.1)

y(t) = Cx(t) (3.2)

where x = [xt
1, ..., x

t
N ]t ∈ ℜn, n =

∑N

j=1 nj is the overall system state, sat(u) =

[sat(u)t
1, ..., sat(u)

t
N ]t ∈ ℜm, m =

∑N

j=1 mj is the saturated input of the overall

system and y = [yt
1, ..., y

t
N ]t ∈ ℜp, p =

∑N

j=1 pj is the measured output of the

overall system. The model matrices are A = diag{A11, .., ANN}, Ajj ∈ ℜnj×nj ,

B = diag{B1, .., BN}, Bj ∈ ℜnj×mj and C = diag{C1, .., CN}, Cj ∈ ℜpj×nj .

The function

h(t, x(t)) = [ht
1(t, x(t)), .., h

t
N(t, x(t))]t



53

is a vector function piecewise-continuous in its arguments. In the sequel, we

assume that this function is uncertain and the available information is that, in

the domains of continuity G, it satisfies the global quadratic inequality

ht(t, x(t))h(t, x(t)) ≤ xt(t)R̃tΦ̃−1R̃x(t) (3.3)

where R̃ = [R̃t
1, .., R̃

t
N ]t, R̃j ∈ ℜrj×n are constant matrices such that h(t, 0) = 0

and x = 0 is an equilibrium of system (3.1). With focus on the structural form

of system (3.1), the jth subsystem model can be described by

ẋj(t) = Ajjxj(t) +Bjsat(uj)(t) + hj(t, x)

yj(t) = Cjxj(t) (3.4)

where xj(t) ∈ ℜnj , uj(t) ∈ ℜmj , yj(t) ∈ ℜpj are the subsystem state,

input and measured output, respectively. The function hj ∈ ℜnj is a piecewise-

continuous vector function in its arguments and in line of (3.3) it satisfies the

quadratic inequality

ht
j(t, x(t))hj(t, x(t)) ≤ φ2

j x
t(t)R̃t

jR̃jx(t) (3.5)

where φj > 0, j ∈ {1, ..., N} are bounding parameters such that Φ̃ =

diag{φ−2
1 Ir1

, .., φ−2
N IrN

} where Imj
∈ ℜmj×mj represents identity matrix. From

(3.3) and (3.5), it is always possible to find a matrix Φ̃ such that

ht(t, x(t))h(t, x(t)) ≤ xt(t)RtΦ̃−1Rx(t) (3.6)
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where R = diag{R1, .., RN}, Φ̃ = diag{δ1Ir1
, .., δNIrN

} and δj = φ−2
j . The

saturation function sat(uj) is for u ∈ ℜm defined as,

sat(uj) =





ujmax uj ≥ ujmax,

uj ujmin < uj < ujmax,

ujmin uj ≤ ujmin

(3.7)

where ujmin and ujmax are chosen to correspond to actual input limits either by

measurement or by estimation. Input saturation can also be applied as upper

and lower limits of input constraints as ujmin and ujmax, respectively. It is

also assumed that the pair (Ajj, Bj) is a controllable pair and (Cj, Ajj) is an

observable pair for all j ∈ I := 1, 2, . . . , N .

Remark 3.2.1 It is significant to observe that the local function hj(., .) depends

on the full state and delayed state vectors x(t), x(t − τ) and therefore inequal-

ity (3.5) for j = 1, ..., N represents a set of coupling relations that has to be

manipulated simultaneously in order to achieve the desired objective.

Our objective in this work is to design a static output feedback controller and a

dynamic output feedback controller that stabilizes the interconnected continuous

system 3.1,3.2 subject to input saturation using the overlapping decomposition

technique.
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3.3 Controller Design

In this section we will consider the two control designs for the interconnected

system subject to input saturation, one being the Static Output Feedback De-

sign and the other as Dynamic Output Feedback Design using the Overlapping

Decomposition technique. In the following sub-section we will explain the over-

lapping decomposition principle also a version of the inclusion principle.

3.3.1 Overlapping Decomposition

In most of the systems, the subsystems share common parts. It is advantageous

to use this fact for building and designing of a decentralized control using over-

lapping information from these subsystems. On using the overlapping technique

it is clear that the overlapping subsystems appear as disjoint. Using each subsys-

tem as different systems a decentralized control can be designed in the expanded

space. These designed controls are later contracted for their implementation in

the original system. For these kind of systems a mathematical framework known

as Inclusion Principle is used. The Inclusion Principle was proposed in the early

1980s in the context of analysis and control of complex systems [55, 64, 65].

The main idea of the Inclusion Principle is to expand an initial system, with

shared components, into higher dimensions in which overlapped subsystem ap-

pear as disjoint. Under certain conditions the expanded system contains the

essential information about the initial system. The relation between the initial
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and the expanded system is constructed on the basis of appropriate linear trans-

formations. These include a set of complementary matrices which have to satisfy

well established necessary and sufficient conditions to ensure the Inclusion Prin-

ciple. The conditions given in previous works [64, 65] on the complementary

matrices to ensure the Inclusion Principle have a fundamental, implicit nature,

in the sense that they have the form of matrix products from which it is not easy

to select specific values for the matrices. The selection of these matrices helps in

obtaining the expanded system and studying their properties. These matrices

influence on properties like stability, controllability or even observability.

A version of the Inclusion Principle

A system S̃ includes the system S, denoted by S̃ ⊃ S, if there exists a pair

matrices (U,V) satisfying UV=I and such that for any initial state x0 and

any fixed point sat(u(t)) of S, the choice x̃0 = V x0 of the system S̃ implies

x(t;x0, sat(u)) = Ux̃(t; x̃0(t), sat(u))∀t ≥ 0. If S̃ ⊃ S, then S̃ is said to be an

expansion of S and S is a contraction of S̃.

Consider a system and cost function of the form:

S : ẋ = Ax(t) +Bsat(u(t)) (3.8)

J(x0, sat(u)) =

∫ 0

∞

[
xtQx+ sat(u)tRsat(u)

]
(3.9)



57

Its expanded system with the cost functions are of the form

S̃ : ˙̃x = Ãx̃(t) + B̃sat(u(t)) (3.10)

J(x0, sat(u) =

∫ 0

∞

[
x̃T Q̃x̃+ sat(ũ)T R̃sat(ũ)

]
(3.11)

where x(t) ∈ ℜn and sat(u(t)) ∈ ℜm are the states and the saturated inputs of

S and x̃(t) ∈ ℜñ and sat(u(t)) ∈ ℜm are corresponding to the expanded system

S̃. The matrices A, B and Ã, B̃ are constant of dimensions n × n, n ×m and

ñ× ñ, ñ×m, respectively.

The weighting matrices Q, Q̃ are symmetric positive definite and R, R̃ are sym-

metric positive definite. Suppose that the dimensions of the state vector x(t)

are smaller than or equal to the vector x̃(t) of system S̃. Let x(t;x0, sat(u))

denote the unique solution of S for a fixed input sat(u(t)) and an initial state

x(0) = x0. Similar notation for x̃(t; x̃(t), sat(u)) is used for system S̃.

Let us consider the following transformations

V : ℜn → ℜñ, U : ℜñ → ℜn (3.12)

Where rank(V)=n and such that UV = In, where In is identity matrix of indi-

cated dimension. Given a matrix V, the pseudo inverse matrix U can be obtained

by U = (V TV )−1V T .
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Definition 3.3.1 The system S̃ is an extension of the system S, if there exists

transformations as in 3.12 such that for any initial state x0 ∈ Rn and for any

saturated input sat(ũ(t)) ∈ Rm̃, 0≤ t < inf, the choice,

x̃0 = V x0 (3.13)

sat(u(t)) = Usat(ũ(t)) ∀t ≥ 0

implies that

x̃(t; x̃0, sat(ũ)) = V xt;x0, sat(u) ∀t ≥ 0 (3.14)

There are two particular cases within the inclusion principle called restriction

and aggregation. They are defined as follows:

1. A system S is a restriction of S̃, if there exists a pair of matrices(U,V) sat-

isfying UV=I such that for an initial state x0 and any fixed input sat(u(t))

of S, the choice x̃0 = V x0 implies

x̃(t; x̃0, sat(u)) = V x(t;x0, sat(u))∀t ≥ 0

2. A system S is an aggregation of S̃ if there exists a pair of matrices(U,V)

satisfying UV=I such that for an initial state x̃0 and any fixed input u(t)
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of S̃, the choice x0 = Ux̃0 implies

x̃(t; x̃0, sat(u)) = V x(t;x0, sat(u))∀t ≥ 0

Complementary matrices

The expanded matrices Ã, B̃, Q̃ and R̃ of S̃ can be expressed as

Ã = V AU +M, B̃ = V B +N (3.15)

Q̃ = U tQU +MQ, R̃ = R +NR (3.16)

where M,N,MQ and NR are the complementary matrices. The designer have to

choose the matrices MQ and NR is such a way that the corresponding expanded

weighting matrices Q̃ and R̃ are symmetric positive semi-definite and symmetric

positive definite matrices, respectively.

For S̃ to be an expansion of S, a proper choice of M and N is required [6, 7, 9,

10, 11]. In terms of complementary matrices, the previous definitions can also

be written as follows,

1. A system S is a restriction of the system S̃ if and only if MV=0 and N=0.

2. A system S is an aggregation of the system S̃ if and only if UM=0 and

UN=0.
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By using complementary matrices different expanded systems S̃ can be obtained.

Theorem 3.3.1 (S̃, J̃) ⊃ (S,J) if either

(i) MV = 0, N = 0, V tMQV = 0, NR = 0 (3.17)

or

(ii) UM iV = 0, MQM
i−1N = 0, MQM

i−1V = 0

UM i−1N = 0, NR = 0, ∀i ∈ ñ (3.18)

For proof see [54].

In the sequel, we choose Q̃, Q, R̃ and R as identity matrices although only one of

them suffice. Both of the conditions of the aforementioned theorem are verified

by choosing

M = 0, MQ = 0, N = 0, NR = 0 (3.19)

with the state x̃(t) ∈ Rñ. In the sequel, we define the following relations

Ã = UĀV +M, B̃ = V B̄ +N

Q̃ = U tQU +MQ, R̃ = R +NR (3.20)

with UV = I, and Q̃, Q, R̃ and R are the appropriate weighting matrices in

conventional LQR designs. The matrices M , N , MR and NR are real matrices
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of appropriate dimensions.

3.3.2 Contractibility conditions

: A control law u = −K̃x̃ is contractible to control law u = −Kx̄ if and only if

([9])

FM i−1V = 0, FM i−1N = 0 ∀i ∈ ñ (3.21)

Where F is given by

K̃ = KU + F (3.22)

Since we have chosen M = 0 and N = 0, the aforementioned conditions are

satisfied. by Corollary 8.14 in [9] if

MV = 0, N = 0 (3.23)

then, the contracted K can be obtained as:

K = K̃V (3.24)
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3.4 Application to A Nuclear Power Plant Sys-

tem

In what follows, we apply the foregoing decentralized control methodology to a

nuclear power plant model [69, 70]:

3.4.1 System description

The system under consideration is described by the state-space model of the

form (3.8): where the state vector x ∈ ℜ20 and input vector u ∈ ℜ4 are defined

as follows:

x = [xa xb xc]
t

xa = [δP δC1 δC2 δC3 δC4 δC5 δC6]
t

xb = [δTf δTC1 δTC2 δPP δTm δTp δPs]
t

xc = [δTUP δTHL δTIP δTOP δTCL δTLP ]t

and

δP : deviation in reactor power from initial steady-state value

δCi : deviation of normalized precursor concentrations, i=1:6

δTf : deviation of fuel temperature in fuel node

δTC1 : deviation of temperature in the first coolant node
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δTC2 : deviation of temperature in the second coolant node

δPP : deviation of primary system pressure

δTP : deviation of temperature of primary coolant node in the steam generator

δTm : deviation of steam generator tube metal temperature

δPs : deviation of steam pressure from its initial steady-state value

δTUP : deviation of the reactor upper plenum temperature

δTLP : deviation of the reactor lower plenum temperature

δTHL : deviation of hot leg temperature

δTIP : deviation of temperature of primary coolant in the steam generator or

inlet plenum

δTOP : deviation of temperature of primary coolant in the steam generator or

outlet plenum

δTCL : deviation of cold leg temperature

with

u = [δρrod δWFW δWP δQ]t

where

δρrod : reactivity due to control rod movement

δWFW : deviation of feed water flow rate in steam generator

δWP : deviation of primary water flow rate to the steam generator

δQ : rate of heat addition to the pressurizer fluid with electric heater
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Since the system order is high, the matrices A and B are arbitrary expressed in

partitioned form as follows:

A =




A11 A12 A13

A21 A22 A23

A31 A32 A33



B =

[
B1 B2

]t

, (3.25)

where the numerical values are given in Appendix A.

3.4.2 Dynamic behavior

Twenty eigen values of the system are −400.1,−5.777,−2.86±0.07954i−2.37±

3.487i,−1.51 ± 0.589i,

−1.04,−0.676±0.382i−0.715,−0.37±0.103i,−0.286,−0.108, 0.0019,−0.012,−0.043,

and −0.029. We see that there is one pole (0.0019) at right half plane, making

the linearized system unstable.

3.4.3 Permutations

In order to successfully apply the decentralized control methodology, the input

matrix B of a certain system should be in block-diagonal form. The system can

then be decomposed into multiple subsystems with orders equal to the rows of

the corresponding block of the input matrix B. It is obvious that in our case

matrix B is not in the diagonal form. There are four inputs in the system and
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only four non-zero elements in the input matrix B all appearing in different

columns. As such, the B matrix can be transformed to block-diagonal form by

a set of permutations. After performing the permutations, the system described

by (3.8) can be described as

S̄ : ˙̄x = Āx̄ + B̄u (3.26)

Since the columns of input matrix are not shuffled, the input vector remains

unchanged, whereas the re-arranged system state vector x̄ and resultant matrices

Ā B̄ after aforementioned permutations are mentioned in the followings.

x̄ = [x̄1 x̄2 x̄3 x̄4]
T

x̄1 = [δP δC1 δC2 δC3 δC4 ]T

x̄2 = [δPs δC6 δTf δTC1 δTC2]
T

x̄3 = [δTHL δPP δTp δC5 δTf ]T

x̄4 = [δC4 δTIP δTOP δTCL δTLP ]T

and the numerical values of the permuted matrices are given in the Appendix

A.

Since the system has four inputs, and therefore, to attain a maximum degree

of decomposition, we decompose the system into four subsystems with certain

degree of overlaps.To proceed, we first decompose the state vector x̄ in to seven
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components as:

x̄ =

[
x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7

]t

(3.27)

where xi ∈ ℜni , for i = 1, 2, . . . , 7 and n1 = 5, n2 = 2, n3 = 3, n4 = 2, n5 = 3,

n6 = 2 and n7 = 3. This partition of the state x̄ induces a partition of the the

matrix Ā as

Ā =




Ā11 Ā12 Ā13 Ā14 Ā15 Ā16 Ā17

Ā21 Ā22 Ā23 Ā24 Ā25 Ā26 Ā27

Ā31 Ā32 Ā33 Ā34 Ā35 Ā36 Ā37

Ā41 Ā42 Ā43 Ā44 Ā45 Ā46 Ā47

Ā51 Ā52 Ā53 Ā55 Ā55 Ā56 Ā57

Ā61 Ā62 Ā63 Ā64 Ā65 Ā66 Ā67

Ā71 Ā72 Ā73 Ā74 Ā75 Ā76 Ā77




(3.28)

Where the sub matrices have appropriate dimensions. The seven components of

the state vector x̄ are arranged to four overlapping components as follows:

x̃1 =

[
x̄1 x̄2

]t

, x̃2 =

[
x̄2 x̄3 x̄4

]t

x̃3 =

[
x̄4 x̄5 x̄6

]t

, x̃4 =

[
x̄6 x̄7

]t

(3.29)

These four overlapping state vectors components constitute a new state vector

x̃ =

[
x̃1 x̃2 x̃3 x̃4

]T

∈ Rñ, ñ = 26 (3.30)
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The vector x̃ is related to x̄ by a linear transformation

x̃ = V x̄ (3.31)

where V is the ñ× n matrix

V =




I5 05×2 05×3 05×2 05×3 05×2 05×3

02×5 I2 02×3 02×2 02×3 02×2 02×3

02×5 I2 02×3 02×2 02×3 02×2 02×3

03×5 03×2 I3 03×2 03×3 03×2 03×3

02×5 02×2 02×3 I2 02×3 02×2 02×3

02×5 02×2 02×3 I2 02×3 02×2 02×3

03×5 03×2 03×3 03×2 I3 03×3 03×2

02×5 02×2 02×3 02×2 02×3 I2 02×3

02×5 02×3 02×3 02×2 02×3 I2 02×3

03×5 03×2 03×3 03×2 03×3 03×2 I3




(3.32)

with ñ = 26, then V is a 26 × 20 matrix. Ii represents an identity matrix of

order i, 0i×j, represents a i × j zero matrix and the matrix U ∈ R20×26 is

defined as U = V †, the pseudo-inverse of V .

Invoking the conditions in 3.15, the expanded system can be expressed as:

S̃ : ˙̃x = Ãx̃+ B̃sat(u(t)) (3.33)

Ã = V ĀU, B̃ = V B̄ (3.34)



68

Matrix Ã is now expressed as

Ã =




Ā11 Ā12 0 0 0 Ā13 Ā14 Ā15 Ā16 Ā17

Ā21 Ā22 0 0 0 Ā23 Ā24 Ā25 Ā26 Ā27

Ā21 0 Ā22 Ā23 Ā24 0 0 Ā25 Ā26 Ā27

Ā31 0 Ā32 Ā33 Ā34 0 0 Ā35 Ā36 Ā37

Ā41 0 Ā42 Ā43 Ā44 0 0 Ā45 Ā46 Ā47

Ā41 0 Ā42 Ā43 0 Ā44 Ā45 Ā46 0 Ā47

Ā51 0 Ā52 Ā53 0 Ā54 Ā55 Ā56 0 Ā57

Ā61 0 Ā62 Ā63 0 Ā64 Ā65 Ā66 0 Ā67

Ā61 0 Ā62 Ā63 0 Ā64 Ā65 0 Ā66 Ā67

Ā71 0 Ā72 Ā73 0 Ā74 Ā75 0 Ā76 Ā77




(3.35)

The overlapping subsystems Ã1, Ã2, Ã3 and Ã4 are now described in the follow-

ings:

Ã1 =



Ā11 Ā12

Ā21 Ā22


 , Ã2 =




Ā22 Ā23 Ā24

Ā32 Ā33 Ā34

Ā42 Ā43 Ā14




(3.36)

Ã3 =




Ā44 Ā45 Ā46

Ā54 Ā55 Ā56

Ā64 Ā65 Ā66



, Ã4 =



Ā66 Ā67

Ā76 Ā77


 (3.37)

The interconnections among the overlapped subsystems can be easily obtained
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by simple inspection of Ã in (3.35). Interconnection matrices Hi, i = 1, 2, 3, 4

associated with each of the subsystem is given by

H̃1 =




0 0 0 0 0 Ā13 Ā14 Ā15 Ā16 Ā17

0 0 0 0 0 Ā23 Ā24 Ā25 Ā26 Ā27




H̃2 =




Ā21 0 0 0 0 0 0 Ā25 Ā26 Ā27

Ā31 0 0 0 0 0 0 Ā35 Ā36 Ā37

Ā41 0 0 0 0 0 0 Ā45 Ā46 Ā47




H̃3 =




Ā41 0 Ā42 Ā43 0 0 0 0 0 Ā47

Ā51 0 Ā52 Ā53 0 0 0 0 0 Ā57

Ā61 0 Ā62 Ā63 0 0 0 0 0 Ā67




H̃4 =



Ā61 0 Ā62 Ā63 0 Ā64 Ā65 0 0 0

Ā71 0 Ā72 Ā73 0 Ā74 Ā75 0 0 0




The expanded input matrix B̃ is given by:

B̃ =




B̄1 0 0 0

0 0 0 0

0 B̄2 0 0

0 0 0 0

0 0 B̄3 0

0 0 0 0

0 0 0 B̄4




(3.38)
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where B̄i, i = 1, 2, 3, 4 are given in the Appendix. Furthermore, the stabilizabil-

ity check was performed for all the four subsystems which showed that all the

subsystems are stabilizable although non of the subsystems is controllable. After

the expansion of the original system we will now design the static and dynamic

output feedback controls in order to stabilize each subsystem individually, which

later on will be contracted to form the original stabilized system.

3.5 Static Output Feedback Design

We will consider the overall expanded system for the design of the static feedback

controller where all the subsystems will be controlled by local static output

feedback, which is given as

S̃ : ˙̃x(t) = ÃDx̃(t) + B̃Dsat(u(t)) + H̃(t, x̃)

y(t) = C̃Dx̃(t) (3.39)

where, ÃD = diag(A1, . . . , AN),B̃D = diag(B1, . . . , BN),C̃D = diag(C1, . . . , CN)and

H̃ will be the diagonal interconnections as H̃ = diag(H1, H2, . . . , HN).

Also the interconnections bounds (3.5) will be as follows,

h̃t
j(t, x̃)h̃j(t, x̃) ≤ x̃t(

N∑

i=1

α2
i H̃

t
i H̃i)x̃ := x̃tΓtΓx̃ (3.40)
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where ΓtΓ := R̃tΦ̃−1R̃. The pair (ÃD, B̃D) is controllable and the pair (C̃D, ÃD)

is observable, which is the direct result of each subsystem being controllable and

observable. Using the above expanded system we will be designing a decentral-

ized linear controller and a decentralized linear observer that will stabilize the

system. We consider the following linear decentralized controller and observer,

˙̂x(t) = ÃDx̂(t) + B̃Dsat(u(t)) + L̃D(y − C̃D)x̂(t) (3.41)

u(t) = K̃Dx̂(t)

where K̃D = diag(K̃1, . . . , K̃Ñ) and L̃D = diag(L̃1, . . . , L̃Ñ) are the controller

gain matrix and the observer gain matrix, respectively. The closed loop dynam-

ics of the expanded system is,

˙̃x(t) = (ÃD + B̃DK̃D)x̃(t) − B̃DK̃Dx̂(t) + H̃(t) (3.42)

˙̂x(t) = (ÃD − L̃DC̃D)x̂(t) + H̃(t)

where, H̃(t) is the interconnection function for the expanded system. Let

Ãc = ÃD + B̃DK̃D , Ão = ÃD − L̃DC̃D (3.43)

The closed-loop dynamics will be in the form of,

˙̃x(t) = Ãcx̃(t) − B̃DK̃Dx̂(t) + H̃(t) (3.44)

˙̂x(t) = Ãox̂(t) + H̃(t) (3.45)
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For each subsystem, we determine the controller and observer gain matrices KDi

and LDi
. For simplicity in exposition, we focus on the expanded system only

and after completing the design task for the expanded system(S̃), it will be con-

tracted to the actual system(S) using the foregoing overlapping decomposition

technique.

For some matrix Y > 0, define

M̄D = KDY

[
S1 S2

]
=




−BDKD I

0 0

...
...

0 0




, Fc =




W t
c Y H t

1 . . . Y H t
N

• γ1I . . . 0

...
...

. . .
...

• • . . . −γNI




< 0,

Fo =



Wo Po

Po −I


 < 0

W t
c = Y At

D + ADY + (BDKD)t + (BDKD)

Wo = At
DPo + PoAD − PoLDCD − (PoLDCD)t

the following theorem establishes the main design result

Theorem 3.5.1 Consider the following optimization problem for finding the

Controller KDi
and Observer LDi

of each subsystems. To determine Y, Po, KD,
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LD and γi, i ∈ I, from the following optimization problem,

min
N∑

i=1

γi (3.46)

subject to Y > 0, Po > 0


Fc S1 S2

• Wo Po

• • −I



< 0

The optimization problem (3.46) has to be solved by two steps [6]:

Step 1: Maximize the interconnection bounds αi(=
1
γi

) by solving the following

optimization problem,

min
N∑

i=1

γi

subject to Y > 0, Fc < 0 (3.47)

This gives Y and M̄D. The control gain can then be calculated as,

KD = M̄DY
−1 (3.48)

Step 2: Using the KD obtained from Step 1, find Po and ND by solving the
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following optimization problem:

min
N∑

i=1

βi (3.49)

subject to Po > 0 Λ > 0


ΛFc S1 S2

• Wo Po

• • −I



< 0

where Λ = diag(β1I1, . . . , βNIN), Ii denotes the ni × ni identity matrix, and

Wo = At
DPo +PoAD −NDCD − (NDCD)t and ND = PoLD. The matrices Fc and

S1 in Step 2 are obtained from Step 1. The observer gain LD is obtained as:

LD = P−1
o ND (3.50)

Proof: We consider the following Lyapunov function candidate,

V (x, x̄) = xtPcx+ x̄tPox, Pc > 0, Po > 0 (3.51)

The time derivative of V (x, x̄) along the trajectories of (3.45) is given by,

V̇ (x, x̄) =




x

x̄

H




t 


At
cP̄c + P̄cAc −P̄cBDKD P̄c

• At
oP̄o + P̄oAo P̄o

• • 0







x

x̄

H



≤ 0(3.52)

On considering the bounds on the interconnections (3.5), which can be written
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as,




x

x̄

H







−ΓtΓ 0 0

• 0 0

• • I







x

x̄

H



≤ 0. (3.53)

The stabilization of system (3.45) requires that V̇ (x, x̄) < 0 ∀x, x̄ 6= 0. This

entails from (3.52) and (3.53) with P̄c > 0 P̄o > 0 τ > 0 via the S-procedure

[10] that




At
cP̄c + P̄cAc −P̄cBDKD P̄c

• At
oP̄o + P̄oAo P̄o

• • 0



− τ




−ΓtΓ 0 0

• 0 0

• • I



< 0 (3.54)

With Pc = P̄c

τ
Po = Po

τ
, inequality (3.54) is equivalent to




At
cPc + PcAc + ΓtΓ −PcBDKD Pc

• At
oPo + PoAo Po

• • −I



< 0 (3.55)

with Pc > 0 Po > 0. Considering (3.40) and (3.43), and applying the Schur
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complement to inequality (3.55) we get,




Wc −PcBDKD Pc α1H
t
1 . . . αNH

t
N

• Wo Po 0 . . . 0

• • −I 0 . . . 0

• • • −I . . . 0

...
...

...
...

. . .
...

• • • • . . . −I




< 0 (3.56)

Rearranging and scaling columns and rows related to Hi, i ∈ I of (3.56) we

obtain,




Wc H t
1 . . . H t

N −PcBDKD Pc

• −γI . . . 0 0 0

...
...

. . .
... 0 0

• • . . . −γNI 0 0

• • • • Wo Po

• • • • • −I




(3.57)

where γi = 1
α2

i

> 0. The optimization problem now becomes as follows,

min
N∑

i=1

γi subject to (3.57) (3.58)

This selection of the control gain matrix KD and the observer gain matrix LD

does not only stabilize the overall system (3.45) but also simultaneously maxi-
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mizes the interconnection bounds αi.

Since there are coupled terms of matrix variables, Pc and KD, and Po and LD

in the inequality(3.57), the above inequality becomes a BMI. We will transform

the inequality to a form which is affine in the unknown variables. To achieve

this, we introduce variables,

MD = PcBDKD, ND = PoLD (3.59)

Then the optimization problem (3.57) becomes,

min l
N∑

i=1

γi




Wc H t
1 . . . H t

N −PcBDKD Pc

• −γ1I . . . 0 0 0

...
...

. . .
... 0 0

• • . . . −γNI 0 0

• • • • Wo Po

• • • • • −I




< 0

The solution to the above optimization problem gives MD and ND. The con-

troller and observer gain matrices were obtained as in [55] as,

LD = P−1
0 ND
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The controller gain matrix KD can be obtained if the matrix BD is invertible,

KD = B−1
D P−1

C MD

If matrix BD is not invertible, that is, very restrictive, then it becomes very

difficult to obtain the control gain matrix KD from (3.60). To overcome this

we will pre and post multiply the (3.57) by diag(P−1
c , I) and define Y = P−1

c to

obtain the following equivalent conditions:




W t
c Y H t

1 . . . Y H t
N −BDKD I

• −γ1I . . . 0 0 0

...
...

. . .
... 0 0

• • . . . −γNI 0 0

• • • • Wo Po

• • • • • −I




< 0 (3.60)

we retained the representation (3.46) which completes the proof.
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3.6 Dynamic Output Feedback Design

Building on the foregoing design of static output feedback control, we now direct

the attention to the design of the dynamic output feedback controller of the form

K : ż(t) = Akz(t) +Bky(t) (3.61)

u(t) = Ckz(t) +Dky(t)

where, z ∈ ℜnc is the controller state, u(t) ∈ ℜm is the controller output. Sim-

ilarly, for the expanded system (3.39), the dynamic output feedback controller

of the form:

K̃D : żi(t) = Aki
zi(t) +Bki

yi(t) (3.62)

ui(t) = Cki
zi(t) +Dki

yi(t)

with zi(t) ∈ ℜñc with appropriate dimensions and

Ak = blockdiag{Ak1, ..., AkN}, Bk = blockdiag{Bk1, ..., BkN}

Ck = blockdiag{Ck1, ..., CkN}, Dk = blockdiag{Dk1, ..., DkN}
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Appending system (3.39) and controller (3.63), we obtain the closed-loop system:



ẋi(t)

żi(t)


 =



ÃDi

+ B̃Di
Dki

C̃Di
B̃Di

Cki

Bki
C̃Di

Aki






xi(t)

zi(t)




+
∑

j 6=i




ÃDij
0n×np

0np×n 0n×np






xi(t)

zi(t)


 (3.63)

The following theorem will be used for calculating the unknowns in the controller

matrix K̃D:

Theorem 3.6.1 Given system (3.4), such that the pair (Aj, Bj) is stabilizable

and pair (Cj, Aj) is detectable. If there exists a positive definite matrix Kmin <

Im , Kmax > Im and K = Kmax − Kmin, matrices (Ak, Bk, Ck, Dk) of suitable

dimensions such that sat(DkCx(t) +Ckz(t)) is sector bounded in (Kmin, Kmax),

a symmetric positive definite matrix P∈ ℜ2n×2n and a positive scalar ǫ satisfying:

At
oP + PAo + ǫP +

1

2
(F tK − PB)(F tK − PB)t < 0 (3.64)

with:

Ao =



Ai −BiKminDkCi −BiKminCk

BkCi Ak −BkDKminCk


 (3.65)

B =




Bi

BkDi


 , F t =



Ct

iD
t
k

Ct
k



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then the saturated closed-loop system resulting from the interconnections of sys-

tem (3.39)and the controller (3.63) is locally asymptotically stable.

Proof: The interconnection between systems (3.39)and the controller (3.63) is,



ẋ

ż


 =




Ai 0

BkCi Ak






x

z


 +




Bi

BkD


u (3.66)

u =

[
DkCi Ck

]


x

z




Then, if there exists a diagonal positive definite matrices Kmin < Im and

Kmax > Im, matrices (Ak, Bk, Ck, Dk) of suitable dimensions and such that

sat(DkCix(t)+Ckz(t)) is sector bounded in (Kmin, Kmax), a symmetric positive

definite matrix P∈ ℜ2n×2n and a positive scalar ǫ satisfying inequality (3.64),

then it follows the following proposition,

Proposition 3.6.1 .

Assume the existence of a triplet(F,Kmin, Kmax) with Kmin < Im and Kmax ≥

Im, and K= Kmax −Kmin, such that the matrix Ai −BiKminFi is Hurwitz, pair

(F,A) is observable and sat(Fx) satisfies the following sector condition,

(ψ(t, y) −Kminy)
t(ψ(t, y) −Kmaxy) ≤ 0 ∀t ≥ 0, y ∈ S ⊂ ℜm (3.67)
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then the system (3.39) is locally asymptotically stable in S(P,µ) defined by:

S(P, µ) = {x ∈ ℜn;xtPx ≤ µ} , µ > 0

S(P, µ) ⊂ S(F, uKmin

o )

:= S(F, uKmin

o ) = {x ∈ ℜn;−
u0

Kmin

≤ Fi ≤
u0

Kmax

, i = 1, . . . ,m}

Now in order to determine the unknowns of the dynamic output feedback ma-

trix K, an LMI formulation using a linearizing change of variables is presented.

Partition matrices P and P−1 are defined as,

P =




Y N

N t ⋆


 , P−1 =




X M t

M ⋆


 (3.68)

where X and Y belong to ℜn×n and are symmetric positive definite. By ⋆ we

denote terms which are not used in the linearizing change of variable, but which

are, of course, depending on the matrices appearing in the partition of P and

P−1. This decomposition is general because no specific structure is assigned to

the matrices in partition. Thus it does not reduce the choice for matrix P. Now,

we define matrices,

Π1 =




X In

M t 0


 ,Π2 =



In Y

0 N t


 (3.69)

It can be easily noticed that PΠ1 = Π2 whatever the ⋆ terms are. Define the
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change of variables as:

A = Y(A−BKminDkC)X +NAkM
t +NBkCX −BKminCkCM

t −NBkDKminDk

B = NBk − YBKminDk

C = CkM
t +DkCX

D = Dk (3.70)

Now by pre-multiplying by Πt
1 and by post-multiplying by Π1 in (3.64) and by

using change of variables define in (3.70) we get the following inequality in the

variables (X ,Y ,A,B, C,D), which is an LMI for a fixed ǫ,




Q S −B + CtK

St R −YB − BD + CtDK

KC −Bt −BtY −DtBt +KDC −2Im



< 0 (3.71)

where,

Q = AX + XAt + −BKminC − CtKminB
t + ǫX

R = YA+ AtY − BC − CtB + ǫY

S = At + A−BKminDC + ǫIn (3.72)

In order to have P as positive definite, the following LMI must be added,

Πt
1PΠ1 = Πt

1Π2 =




X In

InY


 (3.73)
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Finally, by using the change of variables S(P,µ) included in S([DkCCk], u
Kmin
o ),




X IN Ct

In Y (DC)t

C DC γ
u2

0

K2

min



≥ 0,∀i = 1, . . . ,m (3.74)

Now, to compute the unknowns in the dynamic output feedback controller

(Ak, Bk, Ck, Dk) from (X ,Y ,A,B, C,D) by the following steps,

Step1. Choose invertible matrices M and N such that MN t = In − XY which

is always possible by (3.73).

Step2. Compute Π1 and Π2 and finally P= Π2Π
−1
1 .

Step3. Compute matrices (Ak, Bk, Ck, Dk) as follows,

Dk = D

Ck = (C −DkCX )M−T

Bk = N−1(B + YBKminDk)

Ak = N−1(A + Y(A−BKminDkC)X )M−T −BkCXM
−T

+ N−1YBKminCk +BkDKminCk (3.75)

The controller matrix (K = {Ak, Bk, Ck, Dk}), calculated for the subsystems will

then be contracted and formed back for the original system using the overlapping

decomposition principle.
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3.7 Simulation Results

Using the numerical data in the Appendix A and the developed control design

algorithms, we proceed to perform MATLAB simulation for the original system

after all the subsystems were taken and the expanded system was contracted by

the overlapping decomposition technique. State trajectories of the of the nuclear

power plant after the static and dynamic feedback control designs were plotted

and compared in Figs. 3.1-3.10.
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Figure 3.1: Trajectories of States x1 (left) and x2 (right)
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Figure 3.2: Trajectories of States x3 (left) and x4 (right)
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Figure 3.3: Trajectories of States x5 (left) and x6 (right)
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Figure 3.4: Trajectories of States x7 (left) and x8 (right)
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Figure 3.5: Trajectories of States x9 (left) and x10 (right)
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Figure 3.6: Trajectories of States x11 (left) and x12
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Figure 3.7: Trajectories of States x13 (left) and x14 (right)
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Figure 3.8: Trajectories of States x15 (left) and x16 (right)
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Figure 3.9: Trajectories of States x17 (left) and x18 (right)
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Figure 3.10: Trajectories of States x19 (left) and x20 (right)
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The corresponding input trajectories of the nuclear power plant after the static

and dynamic Control designs were compared in Figs. 3.11-3.12.
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Figure 3.11: Trajectories of Inputs u1 (left) and u2 (right)
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Figure 3.12: Trajectories of Inputs u3 (left) and u4 (right)

Finally, the trajectory of outputs of the nuclear power plant after the static and

dynamic Control designs were compared in Figs. 3.13-3.14.



90

0 50 100 150 200 250 300 350 400 450
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2
x 10

−3

time t

O
u

tp
u

t 
Y

1

 

 
Static
Dynamic

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

time t
O

u
tp

u
t 
Y

2
 

 
Static
Dynamic

Figure 3.13: Trajectories of Outputs y1 (left) and y2 (right)
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Figure 3.14: Trajectories of Outputs y3 (left) and y4 (right)
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3.8 Conclusion

In this chapter, new results to the output feedback control design were provided

for a class of linear interconnected continuous-time systems subject to input sat-

uration. New schemes based on overlapping design methodology were developed

for both static and dynamic output feedback control structures. In both cases,

the expanded systems were taken for the control design and after completing the

design procedure for the interconnected systems formed by the expanded sys-

tem, they were contracted using the overlapping decomposition method. Finally

the controllers were used for the original system. The theoretical developments

were demonstrated by numerical simulations of a linearized nuclear power plant

model. The simulation results clearly indicate that

• smooth behavior of the closed-loop system trajectories is guaranteed under

overlapping design by either static or dynamic feedback control.

• in cases where static feedback control is superior to dynamic feedback

control, the associated control input has larger magnitudes.
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4.1 Introduction

Water-loop heat pump system has been applied as a kind of energy saving for

centralized air conditioning systems [75]. The main reason is that since it is

considered energy efficient they can move heat from one location within a build-

ing to another location. It is composed of many water source heat pump units

linked by a closed water-piping loop. The water in the loop can be thought as

a heat source/sink for each of the heat pump units and it can store the heat

inside a building and meet the different requirements of cooling and heating of

each heat pump unit during a certain time of period. And the heat from the

inner zone (interior zone or core area) in the building can be transferred to its

outer zone (exterior zone or perimeter area) by the circulation water and heat

recovery can be realized in this way [76].

A heat pump water heater (HPWH) operates on an electrically driven vapor-

compression cycle and pumps energy from the air in its surroundings to water

in a storage tank, thus raising the temperature of the water. HPWHs are a

promising technology in both residential and commercial applications due to

both improved efficiency and air conditioning benefits [77].

Residential HPWH units have been available for more than 20 years, but have

experienced limited success in the marketplace. Commercial-scale HPWHs are

also a very promising technology, while their present market share is extremely

low. Typical disturbances acting on the zones can be classified into two groups:
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(i) diurnal variations such as those that occur in outdoor air temperatures, solar

radiation fluxes and wind velocities and

(ii) internal heat generating sources, viz. lights, occupants and equipments. The

diurnal disturbances (we refer to them as external distances) are preview able

and can be assumed to be known ahead of time with some degree of accuracy

which increases as the preview time is decreased.

On the other hand, the internal heat sources (referred to as internal distur-

bances) are easy to predict since they are related to a building’s operating

schedule. Coupled with the fact that heating, ventilating and air condition-

ing (HVAC) systems (which are used to provide conditioned air to zones) have

large time constants and therefore the effect of disturbances on the plant output

are delayed, it seems appropriate to explore the application of preview control

concepts to improve temperature regulation in buildings. Indoor environmental

spaces or zones in large buildings are subjected to multiple disturbances dur-

ing day-to-day operation. Therefore, good regulation of zone temperature in

the presence of multiple disturbances is a problem of continued interest in the

control of indoor environments of buildings.

Thus the temperature control of indoor environmental spaces in buildings is a

practical problem of interest almost everywhere. Most of the indoor spaces are

temperature controlled by the heating, ventilating and air-conditioning (HVAC)

systems. The physical system of HVAC have a network distribution like modular

structure which is repeated as many times as there are zones. the zones here are
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Figure 4.1: Schematic of multi-zone space heating system

the collection of spaces with identical heating/cooling requirements in a building.

This is the reason for considering them as good candidates for decentralized

control.

In this chapter, we consider a multi-zone space heating system(MZSH) shown

in 4.1 for our chapter.The MZSH consists of a boiler which is used to supply the

water at moderately warm temperatures (between 16-32◦C) to the evaporative

heat exchangers of the heat pumps. Each zone is installed with its own heat

pump. The heat pump, working on the compression refrigeration cycle, receives

the heat energy from the source water and elevates this energy to a higher

temperature and delivers it to the condenser coil of the heat pump. A circulating

fan and ductwork arrangement is used to extract the heat from the condenser
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coil and deliver it to the zone through the diffuser as shown in the figure. Thus

the zone air is heated to offset the heating load acting on the zone due to cold

ambient temperatures. Although two zones are shown in Fig. 4.1, it is obvious

that the same arrangements hold for other zones in building with large number

of zones. There has been some work done on modeling the field operating

performance of space heating systems of the type shown in Fig. 4.1, which are

also known as water-loop heating systems, done in [80, 81] however these studies

do not address control issues. The approaches for control studies of HVAC

systems have been usually centralized control as in [82]. As for the concept of

decentralized control is concerned, it is used in practical HVAC systems [83] but

only in a limited sense.

We present the design of decentralized H∞ controller when the inputs of the

MZSH are subjected to saturation using the idea of homotopy method presented

in [79]. Our design method follows the work done using decentralized H−∞

control of large scale systems [84, 85]. The MZSH model in this chapter is taken

from [78], in which they had developed a bilinear model and linearized it about

the operating points. The model is shown in section II and the control design

in the following section with the simulation results in section IV.
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4.2 Modeling the Multi-Zone Space Heating Sys-

tem

The MZSH can be characterized, as shown in Fig. 4.1, having three stations:

• Station 1: boiler, where the input is u1(t)(= v3) to control output y1(t)

via controller c3,

• Station 2: zone-1, where the input u2(t)(= [v1 v4]
T ) to control output y2(t)

via controller c1, c4,

• Station 3: zone-2, where the input u3(t)(= [v2 v5]
T ) to control output y3(t)

via controller c2, c5

It is obvious that this constitutes a decentralized control problem of an intercon-

nected system and it is the primary goal of this chapter to address the control

design issues. In what follows, we provide the main relationships that govern the

dynamics of the multi-zone space heating system. Using the energy conserva-

tion principle and identifying the energy that flows to and from each component

of the MZSH, a bilinear model of the same is developed. If Tb is the boiler

temperature and cb its thermal capacity, the energy balance on the boiler is,

cbTb = v3v3max(1 − αTb/Tbmax) −mbcpw(Tb − Tl1) −mbcpw(Tb − Tl2) − ab(Tb − Te)(4.1)
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where the rate of heat in the boiler is equated with the net energy input from

the combustion chamber,

v3v3max(1−αTb/Tbmax) , minus the rate of the energy withdrawn from the boiler,

mbcpw(Tb − Tl1), and mbcpw(Tb − Tl2), minus the condition losses of the boiler

exterior surfaces to the surroundings, ab(Tb − Te), see Table 5.2 for definitions

of the symbols.

The heat pump can be modeled by two state equations describing the heat

energy flows in the evaporator and the condenser. For heat pump-1 we have,

cl1Ṫl1 = −v4v4max(P1 − 1) +mbcpw(Tb − Tl1) − al1(Tl1 − Te)

ch1
Ṫh1

= −v4v4maxP1 − v1v1maxζ(Th1
− Tz1

) − ah1
(Th1

− Te)

P1 = 1 + (P1max − 1)(1 − (Th1
− Tz1

)/∆T1max) (4.2)

where, P1 is the COP of the heat pump-1.

It can be noticed from (4.2) that the rate of heat stored in the evaporator is

equated to the energy withdrawn by the compression cycle, energy added by the

source water and jacket losses to the surrounding space. Similarly in the same

set of equations, the rate of heat stored in the condenser is equated to the energy

input from the compression cycle, heat supplied to the zone air and conduction

losses to the surroundings.
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To describe the time rate of change in zone-1 temperature, Tz1
, we use,

cz1
Ṫz1

= −v1v1maxζ(Th1
− Tz1

) − az1
(Tz1

− Tp) − az12
(Tz1

− Tz2
) (4.3)

where the rate of heat stored in zone-1 air mass is equated to the heat supplied

by the condenser, heat losses to outdoor air temperature from the enclosure

surfaces, and the heat loss or gain to the adjacent zone (that is, zone-2). The

state equations describing the heat pump-2 and the zone-2 are, For heat pump-2

we have,

cl2Ṫl2 = −v5v5max(P2 − 1) +mbcpw(Tb − Tl2) − al2(Tl2 − Te)

ch2
Ṫh2

= −v5v5maxP2 − v2v2maxζ(Th2
− Tz2

) − ah2
(Th2

− Te)

P2 = 1 + (P2max − 1)(1 − (Th2
− Tz2

)/∆T2max)

cz2
Ṫz2

= −v2v2maxζ(Th2
− Tz2

) − az2
(Tz2

− Tp) − az12
(Tz1

− Tz2
) (4.4)

It can be observed that combining (4.2 and 4.4) together constitute a seventh

order bilinear model of the MZSH. To attend for the decentralized control design,

these equations were linearized at the operating points shown in Table 5.1 and

the ensuing linear state model can be cast into the form:

∆ẋ(t) = A∆x(t) +Bsat(∆u(t)) + E∆d(t)

∆y(t) = C∆x(t) (4.5)
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where

∆x(t) =

[
∆Tb ∆Tl1 ∆Th1

∆Tz1
∆Tl2 ∆Th2

∆Tz2

]T

∆u(t) =

[
∆v3 ∆v1 ∆v4 ∆v2 ∆v5

]T

∆d(t) =

[
∆Te ∆Tp

]T

(4.6)

where the ∆′s represent the small variations about the operating point of the

states (temperatures), control inputs (energy inputs and mass flow rates) and

the external disturbances(step changes in ambient temperatures). The numerical

values of the respective matrices are presented in the simulation section.

4.3 H∞ Control Design

Since it is observed that all physical systems are subject to nonlinearities we

consider the same in our problem for designing the H-infinity controller for

MZSH. These nonlinearities affect the stability and performance of the system.

The input of the system is bounded so that the saturating nonlinearity does

not affect the design and performance of the decentralized control design of

the system. Recall in MZSH that the inputs that are the flow rates have been

given certain bounds where, if the inputs go beyond the limit of these bounds

the system tends to saturate at the min/max level and the performance is not

affected.
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For simplicity in exposition while carrying out the design the H∞ controller for

the MZSH when the inputs are subject to saturation, we cast model (4.6) in

what follows as an interconnected system of the form:

ẋi = Aixi +Bjsat(ui) + Eiwi

zi = C1ixj +D11iwi +D12isat(ui)

yi = C2ixi +D21iwi (4.7)

where xi ∈ ℜni is the state, wi ∈ ℜri is the disturbance input, zi ∈ ℜpi is

the controlled output, sat(u) ∈ ℜmi is the saturated input and yi ∈ ℜqi is the

measurement output. The matrices

Ai, Bi, Ei, C1i, C2i, D11i, D12i, D21i

are constant and of appropriate dimensions for each subsystem. The saturation

function sat(ui) is for ui ∈ ℜmi and is defined as,

sat(ui) =





uimax ui ≥ uimax,

ui uimin < ui < uimax,

uimin ui ≤ uimin

(4.8)

where ujmin and ujmax are chosen to correspond to actual input limits either by

measurement or by estimation. Input saturation can also be applied as upper

and lower limits of input constraints as ujmin and ujmax, respectively. It is also

assumed that the pair (Aj, Bj) is a controllable pair and (Cj, Aj) is an observable
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pair for all j ∈ I := 1, 2, . . . , N .

For system (4.7), we seek a decentralized output feedback controller of the form,

˙̂xi = Âix̂i + B̂iyi

ûi = Ĉix̂i + D̂iyi (4.9)

where x̂i ∈ ℜn̂i , is the state of the ith local controller, and Â, B̂, Ĉ, D̂ are the

constant matrices to be determined.

To proceed further, we need the following definition to express linear saturating

feedback controllers on a convex hull:

L(H1, H2) = (x̂, y) ∈ Rn+p : |H1ix̂+H2iy| ≤ 1, i ∈ [1, 2m] (4.10)

where H1i and H2i represent the ith row of matrices H1 and H2respectively, and

H1, H2 are the auxiallry feedback matrices. We can note that L(H1, H2) is the

region where the system does not saturate. Let V be a set of m ×m diagonal

matrices whose diagonal elements are either 1 or 0. There are 2m elements in

V and elements in V are represented as Vi, i ∈ [1, 2m] and denote V −
i = I − Vi.

Clearly V −
i ∈ V if Vi ∈ V.

The following lemma is used for providing the convex covering of saturating

non-linearities.

Lemma 4.3.1 Lemma For (x̂i, yi) ∈ L(H∞,H∈)
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sat(x̂i, yi) ∈ co Vi(Ĉix̂i + D̂iyi) + V −
i (H1x̂i +H2yi), i ∈ [1, 2m]

Therefore by Lemma, the saturating input can be expressed as,

sat(ui) =
2m∑

i=1

ηiVi(Ĉix̂i + D̂iyi) + V −
i (Ĉix̂i + D̂iyi) (4.11)

for some scalar 0 ≤ ηi ≤ 1, i ∈ [1, 2m].

Appending the controller (4.9) to system (4.7) yields the closed-loop system:

ẋi = (Ai +BiD̂iC2i)xi +BiĈix̂i + (E +BiD̂iD21i)w (4.12)

˙̂x = B̂C2x+ Âx̂+ B̂D21w

z = (C1i +D12iD̂iC2i)xi +D12iĈix̂i + (D11i +D12iD̂iD21i)w

we collect the state x̂i and coefficient matrices Âi, B̂i, Ĉi, D̂i as,

x̂ =

[
x̂T

2 x̂T
3 . . . x̂T

n

]T

, ÂD = diag

[
Â1 Â2 . . . Ân

]

B̂D = diag

[
B̂1 B̂2 . . . B̂n

]
, ĈD = diag

[
Ĉ1 Ĉ2 . . . Ĉn

]

D̂D = diag

[
D̂1 D̂2 . . . D̂n

]
(4.13)
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Define the matrices,

B =

[
B1 B2 . . . Bn

]

C2 =

[
CT

21 CT
22 . . . CT

2n

]T

D12 =

[
D121 D122 . . . D12n

]

D21 =

[
DT

211 DT
212 . . . DT

21n

]T

(4.14)

then the closed loop system can be described as,

ẋ = (A+B2D̂DC2)x+B2ĈDx̂+ (E +B2D̂DD21)w

˙̂x = B̂DC2x+ ÂDx̂+ B̂DD21w

z = (C1 +D12D̂DC2)x+D12ĈDx̂+ (D11 +D12D̂DD21)w (4.15)

we write the matrices Â, B̂, Ĉ, D̂ in one single matrix,

FD =



ÂD B̂D

ĈD D̂D


 (4.16)
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and introduce the notations,




Ā Ē B̄

C̄1 D̄11 D̄12

C̄2 D̄21




=




A 0
... E

... 0 B

0 0
... 0

... I 0

. . . . . .
... . . .

... . . . . . .

C1 0
... D11

... 0 D12

. . . . . .
... . . .

... . . . . . .

0 In̂
... 0

...

C2 0
... D21

...




(4.17)

Then system (4.15) can be written in compact form as,

˙̄x = Āclx̄+ B̄clw, x̄ =
[
xT x̂T

]

z = C̄clx̄+ D̄clw (4.18)

Ācl = Ā+ B̄FDC̄2, B̄cl = Ē + B̄FDD̄21

C̄cl = C̄1 + D̄12FDC̄2 , D̄cl = D̄11 + D̄12FDD̄21 (4.19)

The following preliminary result is recalled [87]:

Lemma 4.3.2 The following statements are equivalent.

• A is a stable matrix and ||C(sI − A)−1B +D||∞ < γ.
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• There exists a positive-definite matrix P which satisfies the LMI:




ATP + PA PB CT

BTP −γI DT

C D −γI



< 0 (4.20)

To apply this lemma to the closed loop system (4.19), we define,

F(Q, P̄ ) =




ĀT P̄ + P̄ Ā P̄ Ē C̄1
T

ĒT P̄ −γIr D̄T
11

C̄1 D̄11 −γIp




+




P̄ B̄

0

D̄12



Q

[
C̄2 D̄21 0

]

+

[
C̄2 D̄21 0

]T

QT




P̄ B̄

0

D̄12




T

< 0 (4.21)

where Q=FD. A simple consideration of (4.21) reveals that it bilinear matrix

inequality (BLMI) [87]. In general, there has been no practical method for

solving BMIs, especially for interconnected [88, 89, 90]. In this chapter, we

adopt the idea of the homotopy method in the matrix inequality approach [79].

The main idea is that we initially consider a centralized H∞ controller. An

updating rule then attempts to reduce the off-diagonal term and converts the

controller gradually from the centralized one to a decentralized one. At each

step of the procedure, a linear matrix inequality (LMI) is obtained by suitably

fixing one of the two matrix variables and subsequently solved. When the BMI

problem is a feasible one, we can expect that there always exists a centralized
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H∞ controller for which the algorithm converges and presents a desired solution.

To find such a suitable centralized H∞ controller, this chapter suggests random

search in the parametrized set of H∞ controllers [91] with a proper dimension.

A preliminary step is to consider

Fo =



Ao Bo

Co Do


 (4.22)

as a constant matrix of same size as FD which we assume that it can be obtained

by applying one of the H∞ control design methods [92, 93]. The main control

design result is summarized by the following theorem:

Theorem 4.3.1 System (4.7) is stabilizable with the disturbance attenuation

level γ via a decentralized controller (4.9) composed of n̂i-dimensional local con-

trollers if and only if there exists a matrix FD in (4.16) and a positive definite

matrix P̄ such that,

H(FD, P̄ ) < 0 (4.23)

H(FD, P̄ ) =





F(Fo, P̄ ) λ = 0

F(FD, P̄ ) λ = 1
(4.24)

Applying the idea of homotopy method [84], we introduce a real number λ ∈
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[0, 1] and consider the matrix function,

H(FD, P̄ , λ) = F((1 − λ)Fo + λFD, P̄ ) (4.25)

Remark 4.3.1 We note that the term in (4.23) defines a homotopy interpolat-

ing a centralized H∞ controller and a desired decentralized H∞ controller for the

attenuation level γ.

Equivalently stated, the solution to problem (4.23) amounts to that of finding

a solution to the family of problems

H(FD, P̄ , λ) < 0 λ ∈ [0, 1] (4.26)

Remark 4.3.2 We note that λ in (4.23) defines the initial solution P̄0 of the

LMI H(Fo, P̄ ) ≡ H(FDo, P̄ ) < 0 where Fo in (4.22) given initial estimator based

on a centralized H∞ control theory. This constitutes an important step of the

homotopy method.

Now our problem is to make the homotopy path to connect (FD0, P̄0) at λ=0

to (FD, P̄ ) at λ=1 in 4.26. Let M be a positive integer and consider (M+1)

points λk = k/M , k=0, 1, 2, . . . ,M . in the interval [0,1] to generate the family

of problems,

H(FD, P̄ , λk) < 0 k = 0, 1, 2, . . . ,M. (4.27)
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If the problem at the kth point is feasible, we denote the solution by (FDk, P̄k).

Then we compute the solution (FD(k+1), P̄k+1) of H(FD, P̄ , λk) < 0 by solving it

as an LMI with one of the two variables being fixed as FD = FDk or P̄ = P̄k. If

the family of the problems H(FD, P̄ , λk) < 0 k = 0, 1, 2, . . . ,M , are all feasible,

a solution to the BMI 4.23 is obtained at k=M. If it is not the case, that is,

H(FD, P̄ , λk+1) < 0 is not feasible for some k when we set FD = FDk and when

P̄ = P̄k, we consider more points in the interval [λk, 1], by increasing M and

repeat the procedure from the solution of (FDk, P̄k) at λ = λk.

The above idea is described in the following algorithm for computing the decen-

tralized H∞ controller:

1. Compute Fo using an existing method and them solve LMI H(Fo, P̄ ) < 0

to obtain P̄0. Initialize M to a certain positive integer, and set a certain

upper bound for the same.

2. Set k=0; FDk := 0 and P̄k := P̄0.

3. Set k=k+1 and λk = k/M . Compute a solution of FD ofH(FD, P̄k−1, λk) <

0. If it is feasible, set FDk = FD and compute a solution of P̄ ofH(FDk, P̄ , λk) <

0. Then set P̄k = P̄ and go to step 5. If H(FD, P̄k−1, λk) < 0 is not feasible

go to step 4.

4. Compute a solution of P̄ of H(FD(k−1), P̄ , λk) < 0. If it is feasible, set

P̄k = P̄ and compute a solution of FD of H(FD, P̄k, λk) < 0. Then set

FDk = FD and goto step 5.
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5. If k < M , goto step 3,. If k=M, the obtained pair (FDM , P̄M) is a solution

of the BMI 4.23.

When the BMI (4.23) is feasible, the convergence of the above algorithm to the

solution FD depends on the choice of Fo which is not unique and defines the

starting point of the homotopy path described by (4.25).

Remark 4.3.3 At each of steps 3 and 4, it is better to solve two LMIs obtained

by fixing one of the two variables of the BMI.

Remark 4.3.4 The above algorithm can only be applied when a initial central-

ized H∞ controller is of the dimension of n̂ =
∑N

i=1 n̂i is obtained. However

it is not so easy to compute such a centralized H∞ controller if n̂ < n. To

overcome this problem we consider to use a n-dimensional centralized H∞ con-

troller, which can be obtained easily, to compute a decentralized H∞ controller

of the dimensions n̂ < n. This can be done by augmenting the matrix FD as,

F̂D =




ÂD 0
... B̂D

∗ −Il
... ∗∗

. . . . . . . . . . . .

ĈD 0
... D̂D




(4.28)

where the notations ∗, ∗∗ are any sub matrices and Â, B̂, Ĉ, D̂ were defined in

([81]). Using this we can apply the same algorithm and the solution of decen-

tralized H∞ controller can be obtained.
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4.4 Simulation Results

In what follows, we apply the foregoing algorithm to the decentralized control of

multi-zone space heating system. The numerical values of the systems matrices

are given below, and associated parameters and the operating points are given

in the Appendix B:
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A =




−19.5250 7.9880 0 0 7.9880 0 0

28.3610 −29.7590 1.1340 0 0 0 0

0 1.1340 −9.5290 −8.1300 0 0 0

0 0 3.6350 −5.0540 0 0 0.2364

28.3610 0 0 0 −29.7590 1.1340 0

0 0 0 0 1.1340 −10.5460 9.1470

0 0 0 0.2659 0 4.0900 −5.6850




B =




80.6980 0 0 0 0 0 0

0 0 −92.4420 0 0 0 0

0 −160.1030 133.2840

0 71.5860 0 0 0 0 0

0 0 0 0 0 0 −96.5860

0 0 0 0 0 0 − 148.0330 137.4280

0 0 0 0 0 066.1890 0




,

C =

[
CT

1 CT
2 CT

3

]T

, E =

[
E1 E2

]T

C1 =

[
1 0 0 0 0 0 0

]
, C2 =

[
0 0 0 1 0 0 0

]
,

C3 =

[
0 0 0 0 0 0 1

]
, E1 =

[
1.7740 0.2642 0.2642 0 0.2642 0.2642 0

]T

,

E2 =

[
0 0 0 1.1818 0 0 1.3296

]T
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The simulation results of using the homotopy method are as follows: Step1 of

the algorithm gives value of F0 and P0 for all subsystems

F01 =




−19.8719 1.4407

0.0575 0




F02 =




−30.9386 −16.9757 32.2599 0 0

−3.6802 −22.2408 16.0523 0 0

2.9130 20.9935 −36.6634 1.0e− 006 ∗ 0.1834 0

0.0243 −0.2154 −0.1855 0 0

−0.1340 −0.0608 −0.2756 0 0




F03 =




−25.5197 −1.3077 −10.2320 0 0

−0.7631 −9.3958 8.8478 0 0

−1.8488 5.1291 0.9583 1.0e− 006 ∗ 0.1834 0

0.0669 −0.1450 0.0549 0 0

−0.0206 −0.0220 −0.1132 0 0




P̄01 = 1.3752e− 8 , P̄02 =




2.8664 1.9192 4.6518

1.9192 2.7990 4.5402

4.6518 4.5402 11.9037




P̄03 =




1.0300 0.1483 0.3654

0.1483 0.4933 0.0579

0.3654 0.0579 0.6297



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In Step 2 we set k=0; and P̄k = P̄0 (respectively for each subsystem)with the

integer value of M=8. In Step 3 it showed infeasibility so we go to step 4 and

solve for P̄ for all subsystems. Computing solutions for P̄ and FD in step 4 we

get,

P1 = 0.0174 , P2 =




0.0546 −0.0040 0

−0.0040 0.1124 0

0 0 0.0263




P3 =




0.0200 0.0053 0.0067

0.0053 0.1330 0.1689

0.0067 0.1689 0.3733




And FD for each subsystem computed was,

FD1 = −0.1666 , FD2 =




−0.0035 −0.0033 0.0117

−0.0054 0.0043 0.0176

−0.0154 −0.0055 0.0243




FD3 =




−0.0051 −0.0007 0.0236

−0.0074 0.0026 0.0139

−− 0.1340 −0.0608 −0.2756




The optimal H∞ performance of the three subsystems are given by γ∗1=1.1818,
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γ∗2=2.1316 and γ∗3=1.7936.

These results were compared with a LQR feedback controller designed for each of

the 3 subsystems individually with the weighting matrices having the following

values,

Q1 = 2 R1 = 5

Q2 = 2 ∗ eye(3) R2 = 5 ∗ eye(2)

Q3 = Q2 R3 = R2

The following are the simulation plots for the same
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Figure 4.2: Trajectories of states x1 (left) and x2 (right)
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Figure 4.3: Trajectories of states x3 (left) and x4 (right)
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Figure 4.4: Trajectories of states x5 (left) and x6 (right)
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Figure 4.5: Trajectories of states x7 (left)
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Figure 4.6: Trajectories of Outputs y1 (left) and y2 (right)
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Figure 4.7: Trajectories of output y3 (left)
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Figure 4.8: Trajectories of inputs u1 (left) and u2 (right)
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Figure 4.9: Trajectories of inputs u3 (left) and u4 (right)
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Figure 4.10: Trajectories of input u5 (left)
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4.5 Conclusion

In this chapter, we have addressed the problem of temperature control design

in a multi zone space heating system (MZSH) as an interconnected dynamical

system subject to external disturbances and input saturation. The design of de-

centralized H∞ controllers have been accomplished using a homotopy method.

Numerical simulations are presented and compared with an improved decentral-

ized method based on linear quadratic theory. It is observed from the plots

that

• The states trajectories corresponding to the temperatures of the boiler Tb,

the evaporator and condenser temperature of heat pump-1 Tl1 and Th1

have required relatively small time to settle (less than 2 sec) based on

decentralized H∞ control.

• The states trajectories corresponding to the temperature of zone-2 Tz2 and

the condenser of heatpump-2 Th2 took a bit longer duration for settling

(around 4.5 sec) decentralized H∞ control.

• From the output trajectories, it is quite clear that the decentralized H∞

control design gives better and faster settling to the boiler and zone-1

temperatures as compared to the improved decentralized method based

on linear quadratic theory.

• The situation is reversed in the case of zone-2 where improved decentral-

ized method based on linear quadratic theory yields results.
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• In general, the developed decentralized H∞ control demands less cost than

the improved decentralized method based on linear quadratic theory



Chapter 5

Conclusion and Future Work

In conclusion new results to the output feedback control design were

provided for a class of linear interconnected continuous-time systems subject

to input saturation. Schemes based on overlapping design methodology were

developed for both static and dynamic output feedback control structures. In

both cases, the expanded systems were taken for the control design and after

completing the design procedure for the interconnected systems formed by the

expanded system, they were contracted using the overlapping decomposition

method. Finally the controllers were used for the original system. The theoret-

ical developments were demonstrated by numerical simulations of a linearized

nuclear power plant model.

Also we have addressed the problem of temperature control design in a multi

zone space heating system (MZSH) as an interconnected dynamical system sub-

121
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ject to external disturbances and input saturation. The design of decentralized

H∞ controllers have been accomplished using a homotopy method. Numerical

simulation are presented and compared with an improved decentralized method

based on linear quadratic theory. Suggestions for future work would be

• Designing controllers for the non-linear systems subject to saturation.

• Desig and analysis for systems presenting saturation and delays.

• Stability analysis and control design for systems subject to saturation using

H2 control.

• LTI interconnected systems when subject to input and output saturations,

together.
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5.1 Appendix A

5.1.1 Original data of the nuclear power plant

A11 =




−400 0.0125 0.0305 0.111 0.301 1.14 3.01

13.125 −0.0125 0 0 0 0 0

87.5 0 −0.0305 0 0 0 0

78.125 0 0 −0.111 0 0 0

158.125 0 0 0 −0.301 0 0

46.25 0 0 0 0 −1.14 0

16.875 0 0 0 0 0 −3.01




A12 =




−1781 −13700 −13700 0.111 411 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




, A13 = [0]6×7

A21 =




0.0756 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



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A22 =




−0.16466 0.16466 0 0 0 0 0

0.05707 −24403 0 0 0 0 0

0.05707 23262 −23832 0 0 0 0

0.0207 −0.0207 0.0103 0 0.634 −0.509 0

0 0 0 0 −53657 307017 0.3372

0 0 0 0 0.53819 −0.76642 0

0 0 0 0 1.349 0 −0.2034




A23 =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 2.3832

0.240 −0.279 −0.130 −0.116 0.0235 0.121

0 0 0.2238 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




, A31 = [0]6×7

A32 =




0 0 0.33645 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1.45 0

0 0 0 0 0 0 0




A33 =




−0.33645 0 0 0 0 0

2.5 −2.5 0 0 0 0

0 1.45 −1.45 0 0 0

0 0 0 −1.45 0 0

0 0 0 1.48 −1.48 0

0 0 0 0 0.516 −1.516



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B1 =




106 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0




T

B2 =




0 0 0 0 0 0 0 0 0 0

0 0 0 −0.03843 0 0 0 0 0 0

0 0 0 0 0 0 0.0016 0 0 0

−0.0062 0 0 0 0 0 0 0 0 0




T
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5.1.2 Permuted data

Ā11 =




−400.0000 0.0125 0.0305 0.1110 0.3010

13.1250 −0.0125 0 0 0

87.5000 0 −0.0305 0 0

78.1250 0 0 −0.1110 0

158.1250 0 0 0 −0.3010




Ā12 =




0 30 −1781 −13700 −13700

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




Ā13 =




0 0 0 1.140 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




, Ā21 =




0 0 0 0 0

0 0 0 0 0

16.8750 0 0 0 0

0.0756 0 0 0 0

0 0 0 0 0




Ā22 =




−0.2034 0 0 0 0

0 −3.0100 0 0 0

0 0 −0.1647 0.1647 0

0 0 0.0571 −2.4403 0

0 0 0.0571 2.3262 −2.3832




Ā23 =




0 1.3490 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




, Ā24 =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 2.3832

0 0 0 0 0




   
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Ā33 =




−2.5000 0 0 0 2.5000

0 −5.3657 3.0702 0 0

0 0.5382 −0.7664 0 0

0 0 0 −1.1400 0

0 0 0 0 −0.3365




Ā34 =




0 0 0 0 0

0 0.2238 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




, Ā41 = [0]5×5

Ā42 =




0 0.027 0 −0.0207 00103

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




Ā43 =




−0.2790 0.6340 −0.5090 0 0.2400

1.4500 0 0 0 0

0 1.4500 0 0 0

0 0 0 0 0

0 0 0 0 0




Ā44 =




0 −0.1300 −0.1160 0.0235 0.1210

0 −1.4500 0 0 0

0 0 −1.4500 0 0

0 0 1.4800 −1.4800 0

0 0 0 0.5160 −0.5160






129

B̄ = diag(B̄1, B̄2, B̄3, B̄4)

B̄1 =




106

0

0

0

0




, B̄2 =




−0.03843

0

0

0

0




,

B̄3 =




0.0016

0

0

0

0




, B̄4 =




−0.00062

0

0

0

0




5.2 Appendix B

5.2.1 Table showing System operating points.

Table 5.1: System Operating Points.
Temperature ◦ C operating point
Tb0 27.266
Tl10 25.584
Th10

29.843
Tz10

21.966
Tl20 25.512
Th20

27.944
Tz20

20.662
Te0

20.0
Tp0

-2.0
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5.2.2 Table showing design parameters of the MZSH sys-

tem.

Table 5.2: Design parameters of the MZSH system.
Variable Symbol Magnitude,Units
Zone-1 heat loss coeff. az1

122.935 W/◦C
Zone-2 heat loss coeff. az2

138.32 W/◦C
Evaporator heat loss coeff. al1 = al2 12.29 W/◦C
Condensor heat loss coeff. ah1

= ah2
12.29 W/◦C

Boiler heat loss coeff. ab 12.29 W/◦C
Interzone heat loss coeff. az12

12.29 W/◦C
Thermal capacity of the zones cz1

= cz2
374.48 kJ/◦C

Thermal capacity of the evaporator cl1 = cl2 167.44 kJ/◦C
Thermal capacity of the condensors ch1

= ch2
167.44 kJ/◦C

Thermal capacity of the boiler cb 594.55 kJ/◦C
Max. air flowrate of water v1max = v2max 1.575 kJ/s
Burner capacity v3max 5.86 kJ/s
Heat pump capacity v4max = v5max 3.8 kJ/s
Mass flow rate of water mb 0.3151 kJ/s
Specific heat of water cpw 4.186 kJ/s
Heat exchanger coeff. ζ = ζ1 = ζ2 0.6 kJ/kg ◦C
Max. coeff. of performance P1max = P2max 3.5
Max. temperature differential ∆T1max = ∆T2max 45◦ C
Max. temperature of the boiler Tbmax 60 ◦C
Boiler flu loss coeff. α 0.1
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