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Due to current technology scaling trends, digital designs are becoming more sensitive 

to radiation-induced particle hits resulting from radioactivity decay and cosmic rays. A 

low-energy particle can flip the output of a gate, resulting in a soft error if it‘s propagated 

to a circuit output. Thus, soft error tolerance has become an important criterion in digital 

system design. This work is directed to analyze, model and design combinational circuits 

for soft error tolerance. A simulation based method to reduce the soft error failure rate in 

combinational logic circuits is proposed. This method maximizes the probability of 

logical masking when a soft error occurs. This is done by extracting sub-circuits from the 

original multi-level circuit and then re-synthesizing each extracted sub-circuit to increase 

fault masking. After that, the re-synthesized sub-circuits are merged back to the original 

circuit. Therefore, the overall reliability of the original circuit will be enhanced as well. 

We present a two-level synthesis scheme to maximize soft error masking that is applied 

on each extracted sub-circuit. This scheme provides a heuristic that first finds the best 

irredundant set of cubes to cover an extracted sub-circuit minterms. This cover 

maximizes fault masking against single fault especially for minterms with high 
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probability of occurrence. Then, an extra number of cubes can be added as redundant 

cubes to the cover such that they have a significant effect on maximizing error masking. 

Reliability driven fast extraction is also proposed to enhance area overhead of 

synthesized two-level circuits. Experimental results on some MCNC combinational 

benchmarks show that on average, a failure rate reduction of 52% is achieved compared 

to the original circuits. The area overhead on average is found to be 61% of the original 

circuit.  

 

Keywords: fault tolerance, soft errors, transient faults, single event upset (SEU), single 

event transients (SET), nano technology, robust system design, circuit reliability, 

combinational circuits, soft error rate. 
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أنو  حيث. الرقمية أكثر قابمية للأخطاء المستحثة بواسطة الذرات الأيونية مع تقدم تقنية النانو، أصبحت الانظمة
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Chapter 1  

INTRODUCTION 

Reliability with respect to soft errors has become a critical issue in digital circuits. In 

the past few decades, CMOS technology has reached high scaling advancement. This 

advancement is consistent with Moore‘s law [1] which states that the number of 

transistors that can be placed in a chip doubles every 18 months. As CMOS technology is 

improving and reaching the nanometer scale, quantum mechanical effects come into the 

picture generating many challenges for additional scaling of CMOS devices.  This has 

motivated researchers to investigate new technologies for circuit design. Circuits and 

devices based on nanotechnology-based fabrication are expected to offer extra density 

and performance that takes electronic circuits to next higher integration level. According 

to [2], nanoelectronics can operate at very high frequencies (of the order of THz) and 

achieve very high densities (10
12

 devices per cm
2
). Several researchers have presented 

novel successful nanoelectronic devices. These devices include carbon nano-tubes(CNT) 

[3], silicon nano-wires (NW)  [4-5], and quantum dot cells [6].  

Nanoscale devices are limited by several characteristics. The most dominant 

characteristics are the devices‘ higher defect rates and increased susceptibility to soft 

errors. These limiting characteristics are due to two sources [7]: 
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 One source is the inherent randomness and imprecision in the bottom-up 

manufacturing process, which results in a large number of defective devices 

during the fabrication process. 

 The second source is the reduced noise tolerance of these devices which is 

responsible for inducting device malfunctions by external influences like EMI 

(electromagnetic interference), thermal perturbations and cosmic radiations.   

In general, errors can be categorized as either permanent or transient errors. Permanent 

(hard) errors may occur during manufacturing process or during the lifetime of a device. 

Transient (soft) errors can arise due to multiple sources like high-energy particles, 

coupling, power supply noise, leakage and temporal circuit variations. The transient error 

can last for one or many clock cycles. Both types of errors affect the circuit reliability if 

they aren‘t tolerated. Reliability of a circuit can be defined as the ability to function 

properly despite the existence of such errors. It‘s required to improve the tolerance 

against permanent and transient errors in order to enhance circuit reliability.  

In this work, we address the fault tolerance of transient (soft) errors for combinational 

circuits. In the following sections, we will introduce the combinational circuit model as 

well as the nature of transient faults. After that, a glance will be given about this work 

motivation, objectives and contributions. Then we will finish by thesis organization. 
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1.1 Combinational Circuits 

Logic circuits for digital systems may be combinational or sequential. A 

combinational circuit consists of logic gates (AND, OR, NOR, NAND… etc) whose 

outputs at any time are determined by combining the values of the applied inputs using 

logic operations. A combinational circuit performs an operation that can be specified 

logically by a set of Boolean expressions.  Sequential circuits employ storage elements in 

addition to using logic gates. In combinational circuits, the output is a pure function of 

the present input only. This is in contrast to sequential logic, where the output depends 

not only on present input but on the history of the input as well.  

A combinational circuit consists of input variables, output variables, logic gates and 

interconnections. The interconnected logic gates accept signals from the inputs and 

generate signals at the output. The n input variables come from the environment of the 

circuit, and the m output variables are available for use by the environment. Each input 

and output variable exists physically as a binary signal that represents logic 1 or logic 0. 

1.2  Soft Errors in Nano-Scale Circuits 

Transient faults (SET/SEU) are mainly caused by cosmic-ray neutrons or alpha 

particles through the materials of ICs. They can hit either in the combinational logic or 

flip flops of a sequential circuit block. If it happens in the combinational logic, it will 

result in a Single Event Transient (SET) fault. On the other hand, if it happens in the 

memory cell itself, it will result in a Single Event Upset (SEU) fault. Both of SET and 

SEU faults cause a major implication and should be treated properly.  
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Figure 1.1 shows a typical structure for most sequential circuits. In this figure, the first 

latch releases data to combinational logic at the rising or falling clock edge, and then 

combinational logic performs operation. Latch 2 stores result outputs at rising or falling 

clock edge.  

 

Combinational 

Logic
Latch

1

IN OUT
Latch

2

clk

upset 1 upset 2

 

 

Figure 1.1: Upsets hitting combinational and sequential logic. 

 

When a charged particle strikes a sensitive region in a memory cell, such as a drain in 

an OFF transistor, a transient current pulse is generated that can cause a bit flip in the 

memory cell. A memory cell stores two states either logic 0 or 1 values. In each state, two 

transistors are ON and two are OFF. Figure 1.2 illustrates how an energetic particle can 

reverse the state of transistors in the circuit, which results in a bit-flipping.  
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Figure 1.2: Single Event Upset (SEU) effect in an SRAM memory cell. 

 

A single event transient (SET) occurs when a charged particle hits the combinational 

logic, resulting in a transient current pulse. This can change the logic level of a gate. If 

this transient has enough width and magnitude, it can result in an erroneous value to be 

latched. Once it is latched, a single event transient becomes a single event upset (SEU). 

However, there are certain conditions that are to be met for this transient to propagate and 

be latched by the memory element. These conditions are discussed later.  

It is worth to mention that a single SET can produce multiple transient current pulses 

at the output. This is due to the logic fan-out in the circuit. Hence, SETs can produce 

multiple SEUs in the memory elements. 

For more details on how a transient soft error can change the state of transistor, 

consider the NMOS transistor shown in Figure 1.3 (a). The transistor is assumed to be in 

the ON state. During normal operation, a current will flow from the drain to the source 

that makes the transistor ON. If an alpha particle strikes the drain of the NMOS 

transistor, it loses its energy as it travels along the path inside the semiconductor material.  
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Figure 1.3: NMOS transistor hit by ion particle. 
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In this period, the particle ionizes the material around it, which results in the 

generation of electron-hole pairs. If there is no voltage applied to the drain of transistor, 

electrons and holes are recombined. However, since the transistor is in the ON state, 

electrons and holes are separated by the voltage applied on the drain. Consequently, the 

holes are collected by the (p+) substrate and the electrons are collected by the drain.  This 

results in a prompt component of current at the drain in shape of negative pulse; this is 

shown in Figure 1.3 (b).  If this prompt current has a high enough charge, this will lead to 

discharging the voltage at the drain for a very short period of time in order of 100 to 200 

picoseconds [8]. Hence, the state of transistor is changed to OFF in that period of time.  

In the previous generations of CMOS technologies, the sizes of CMOS transistors 

were large enough to neglect the effect of the resulting prompted current. However, with 

device dimensions shrinking to nanometer scale, SET and SEU faults are no longer 

considered a small attenuation. Instead, they will be considered as normal circuit signals. 

Therefore, tolerance of soft and transient errors is no longer limited to specific 

applications like aerospace applications, and they can no longer be ignored. 

In order to give insight into how a particle strike hits in the combinational logic can 

generate wrong values stored in latches, consider the circuit in Figure 1.4. Assume that 

the inputs of the AND gate Al are A = '0' and B = '1'. During normal conditions, the 

output of Al is '0'. Also the output of gate A2 is ' 0'. Therefore, the memory element 

latches a logic value of '0' during normal operation. Let us consider a particle strike at the 

output node of gate Al which results in the change of logic level at the output of Al. The 

particle strike in this case is assumed to have sufficient pulse width and magnitude so that 

it propagates through the gate A2 and gets latched by the memory element. Now we have 
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a wrong value of '1' latched by the memory element instead of ‗0'. This type of error is 

called soft error.  

 

A2

A1

A

B

C
Latch

0

1

0 1

0

(1) (1)

Particle Strike

 

Figure 1.4: Soft error generation due to alpha particle strike. 

 

 

Although the incident alpha particles cause voltage transients, these transients must 

propagate through a certain path to get latched and result in soft errors. This path is called 

critical path. The following are three types of masking that shield the SEUs from 

propagating. 

• Logical Masking 

• Electrical Masking 

• Latching window masking 
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Logical Masking 

 

Logical masking prevents the SET from propagation from fault location to primary 

outputs of circuit because of path gate inputs that stop logical transition of the gate‘s 

output. As shown in Figure 1.5, there is a particle strike at the output of the A1 gate 

which results in a wrong logic of '1' instead of logic '0'. This wrong value is one of the 

inputs of the A2 gate. 

A2

A1

A

B

C
Latch

0

1

1 0

0

(1) 0

Particle Strike

Logically Masked

 

Figure 1.5: Logical masking. 

 

When one of the inputs of A2 gate is tied to logic '0', the output of A2 gate is always 

logic '0' irrespective of the other input. Therefore, this input of A2 gate is called 

controlling input. The transient caused by the alpha particle strike is logically masked. 

Hence a correct value is latched by the following memory element. 
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Electrical Masking 

Electrical masking attenuates or completely masks the SET signal due to electrical 

properties of gates. The voltage transient caused by the particle strike is attenuated as it 

propagates through a series of gates. The transient gets attenuated to an extent where it is 

ignored by the following memory element. 

 

Q

Q
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n2n1

Q

Q
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D
Data

Clock

Out

Particle Strike

1

 

Figure 1.6: Electrical masking [9]. 

 

 

As shown in Figure 1.6 , the voltage pulse generated at the output of the gate n1 

attenuates as it passes through gates n2, n3 and n4. The attenuation is due to the parasitic 

capacitance of succeeding gates. The pulse with duration more than the gate delay 

attenuates as it propagates [9]. 
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Latching Window Masking 

In latching window masking, if a SET doesn‘t arrive ―on time‖ then it will be masked; 

this depends on hold and setup times of the target memory element. This is a timing 

related masking technique. For a voltage transient to get latched by a memory element, 

the pulse should be available exactly at the latching window. The transient is masked if it 

arrives before or after the latching window. As shown in Figure 1.7, the value of 'out' 

changes only when the glitch is available at the latching window. In all the other cases, 

the output is error free. 

Glitch

Clock

o1

Out

o1

Out

Latching window

Pulse not latched

Pulse latched

 

Figure 1.7: Latching window masking [9]. 
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These three mechanisms can prevent some SETs from being latched. However, the 

continuous scaling trends limit the effectiveness of the electrical and latching window 

masking properties.  

1.3  Research Motivation 

With the advancement in technology reaching 0.35 microns and below, systems 

became more susceptible to soft errors. Soft errors induced by ion particles are no longer 

considered a small attenuation and can no longer be neglected. Therefore, techniques are 

needed to tackle soft faults in both combinational and sequential circuits. Many 

techniques were proposed by researchers to enhance circuit reliability against soft errors. 

In this work, a method is proposed to enhance combinational circuits‘ reliability. This is 

achieved by synthesizing the circuit in order to maximize the probability of logical 

masking when a soft error occurs. 

1.4 Problem Statement and Thesis Objectives 

Problem statement is specified as well as the thesis main contributions in the 

following sub-sections. 

1.4.1 Problem Statement 

The general problem statement is: Given a combinational circuit, we would like to 

increase its reliability against transient errors with minimum area overhead. 
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1.4.2 Thesis Objectives 

The objective of this work is to investigate the design of soft error tolerant 

combinational circuits based on maximizing the probability of logical masking when a 

soft error occurs. This is done by extracting small sub-circuits from the original circuit. 

Then for each extracted sub-circuit, the probabilities of its input vectors to occur are 

computed.   Next, developed tool is applied on each extracted sub-circuit to produce a 

new two-level sub-circuit. Logical masking for one fault is maximized in the new two-

level sub-circuit. Finally, the new synthesized sub-circuits are merged back to the original 

circuit. The main work objectives can be summarized as: 

 Design a two-level tool that maximizes fault masking against the occurrence 

of a single fault in a circuit.  Maximizing masking is based on the probabilities 

of sub-circuit input vectors to occur. 

 

 Design a multi-level tool that reduces the area overhead result after applying 

the two-level tool. Applying this multi-level tool is supposed to have low 

impact on the reliability enhancement achieved. 

 

 Design a framework to be used in order to apply the previous two techniques 

on the original circuit. 
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1.5 Thesis Contributions 

To achieve the thesis objectives, the contributions of this thesis can be summarized as 

follows:  

 Implement a tool for extracting sub-circuits from an original multi-level 

circuit, finding inputs don‘t cares, and the probability of care minterms for 

each extracted sub-circuit. 

 Implement a tool for computing soft error reliability for combinational circuits 

based on Monte Carlo simulation [10]. The objective of this tool is to find the 

failure rate of a combinational circuit as more faults are observed in the 

circuit.  

 Develop and implement an algorithm to enhance reliability of combinational 

circuits based on enhancing reliability of each individual sub-circuit. A two-

level synthesis heuristic is proposed and applied on each extracted sub-circuit 

that attempts to find the best cover that maximizes fault masking while 

keeping area overhead minimum.  

 Develop and implement a multi-level tool that reduces the area overhead 

resulting after applying the two-level tool. This should have a low impact on 

fault masking achieved by the two-level tool.  

 Evaluate the proposed approaches in terms of failure rate and area overhead. 
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1.6 Thesis Organization 

The thesis is organized into the following chapters. Chapter 2 starts with a background 

about the current fault tolerance methods. An exploration of different approaches to solve 

this problem at different levels of abstraction will be presented.  

Chapter 3 discusses in detail the proposed two-level technique, namely Algorithm 1, 

which enhances the logical masking of a circuit against a single fault. In Chapter 4, 

detailed discussion is presented on the proposed multi-level technique, namely Algorithm 

2. Chapter 5 describes the simulation framework used to evaluate algorithms proposed in 

Chapter 3 and Chapter 4. Chapter 6 presents the experimental results along with 

discussion. The thesis finally concludes in Chapter 7, where the proposed solutions are 

summarized, with a list of some potential improvements as a future work. 
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Chapter 2  

LITERATURE REVIEW 

 

In this chapter, definitions regarding fault tolerance are reviewed. Then, a survey of 

the current methods to tolerate faults in combinational circuits is presented.  

2.1 Definitions 

In the next few subsections, some terms are defined. Those terms are used to describe 

when electronic systems fail. Throughout the thesis, many of those terms are used. 

2.1.1 Defects, Faults and Errors 

The definitions of defects, errors and faults terms as defined in [11] are presented. 

Defects 

A defect in the electronic system is the unintended difference between the 

implemented hardware and its intended design. Some typical defects in VLSI chips are: 

 Process Defects - missing contact windows, parasitic transistors, oxide 

breakdown. 

 Material Defects – bulk defects (cracks, crystal imperfections), surface impurities. 

 Age Defects – dielectric breakdown, electro-migration etc. 

 Package Defects – contact degradation, seal leaks. 
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Defects occur either during manufacturing or during the use of devices. Repeated 

occurrence of the same defect indicates the need for improvement in the manufacturing 

process or the design of the device. 

Faults 

A representation of a ―defect‖ at the abstracted function level is called a fault. The 

difference between a defect and a fault is rather subtle. They are the imperfections in the 

hardware and function respectively. 

Errors 

A wrong output signal produced by a defective system (or circuit) is called an error. 

An error is an effect whose cause is some ―defect‖. Fabrication defects, fabrication errors 

and physical failures are collectively termed as physical faults [11]. According to their 

stability in time, physical faults can be classified as: 

 Permanent faults: They are those which are always present after their occurrence. 

 Intermittent faults: They are those which exist only during some intervals. 

 Transient faults: They are one-time occurrence (also known as Single Event 

Upsets (SEUs) or Single-Event Transients (SETs)) which are caused by a 

temporary change in some environment factor e.g., due to α-particle radiation etc. 

 

2.1.2 Defect (or Fault) Models 

In order to simulate the effect of faults in the circuit, many fault models have been 

proposed. Those models are presented in different levels of abstraction. Examples of such 
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models are: stuck-at defect (or fault) model, stuck open and stuck-short defect (or fault) 

model, bridging defect (or fault) model and crosspoint defect (or fault) model. In this 

work, a single stuck-at fault model is used. The interested reader can refer to [11] for 

other fault models. In the stuck-at fault model, a fixed value of 0 or 1 is assigned to a 

single line in the circuit. A single line can be an output or an input of a gate. Single stuck 

-at faults are the most famous because they are simple and model many types of defects. 

They are also known as stuck-at-1 and stuck-at-0 faults. 

2.1.3 Failure Rate 

Failure rate of a system represents the regularity at which a system fails. It can be 

defined as the total number of failures within an item population, divided by the total 

time expended by that population, during a particular measurements interval under stated 

conditions [12]. In this study, failure rate is redefined as: the total number of experiments 

in which a circuit fails divided by the total number of performed experiments. 

Mainly, in semiconductor industry, the Failures In Time (FIT) rate is used to represent 

the failure rate of a system. It represents the expected number of failures in one billion 

(10
9
) hours of device operation. In other words, 1000 devices for 1 million hours, or 1 

million devices for 1000 hours each, or some other combination [13-15]. 

2.1.4 Reliability 

The reliability of a system can be defined as the ability to perform specified function 

under stated conditions [16]. For hardware systems, the most common way of evaluating 

reliability is to apply a probabilistic reliability function R(t) that gives the probability that 
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a system is working correctly between time 0 and time t, given certain conditions and 

correct behavior at time 0. 

2.1.5 Fault Tolerance 

A system is fault-tolerant if its programs can be properly executed despite the 

occurrence of faults [17].  The objective of fault-tolerance is either to mask, or to recover 

from, faults once they have been detected [18]. 

 

2.2 Current Fault Tolerance Methods 

In general, two types of techniques are used to reduce soft error failure rate. The first 

one, fault avoidance, in which the defective modules are identified and are replaced by 

other redundant modules through configuration. The second one, fault tolerance, fault-

tolerant techniques are based on the concept of adding redundancy in order to mask faulty 

behavior due to faults, defects or errors. Fault-tolerant techniques attempt to maximize 

the probabilities of the three masking mechanisms, namely, logical, electrical and 

latching window masking.  

Avoidance mechanisms presented in the literature generally exploit fabrication process 

(device-level) to reduce charge collection [19-23]. Error detection circuits[24-25] can be 

used to monitor the outputs of the circuit when an error occurs. If it detects an error, the 

system recovers through rollback and retry to prevent the failures.  

The fault-tolerant techniques work on circuit-level or higher levels of abstractions to 

achieve soft error rate (SER) improvement. Fault-tolerant techniques for combinational 
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circuits can be classified into three major categories: hardware redundancy, synthesis-

based, and physical characteristics based techniques. 

Hardware redundancy methods are based on adding redundant hardware. Multiple 

modules are used to represent the same function in order to maximize masking of errors. 

Multiple copies of either the entire circuit or part of the circuit are used as redundant 

hardware. 

In the synthesis-based techniques, the combinational circuit is restructured in order to 

maximize masking properties of the circuit. Logical masking is the main masking 

property to be maximized. 

The physical characteristics based techniques attempt to reduce SER based on the 

physical characteristics to maximize the electrical masking. 

In this section, a survey of the current fault-tolerant methods to tolerate SEU/SET in 

combinational circuits are discussed.  

2.2.1 Hardware Redundancy Techniques 

Von Neumann’s Multiplexing 

Designing of reliable systems by using redundant unreliable components was initiated 

by John von Neumann in the 1950s [26]. He proposed a multiplexing technique in which 

a processing unit is replaced by multiplexed units. Two stages are used to implement a 

unit: the executive stage and the restorative stage. The executive stage represents the 

basic function of the unit, while the restorative stage is used to correct some of the faulty 

values of the gates caused by errors in the executive stage. In the executive stage, unit is 
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replaced by N multiplexed units which have N copies of every input and output of the 

unit. The inputs randomly pair to feed the N units. Consider the case when the processing 

unit is a single 2-input NAND gate, with N=4, Von Neumann multiplexing is shown in 

Figure 2.1. The unit U represents a random permutation of the input signals. The two 

inputs of each NAND gate are selected randomly from the first and second inputs X and Y 

respectively. The restorative stage is made using the same technique as in the executive 

stage. However, the outputs of the executive stage are duplicated and used as inputs for 

the restorative stage. Note that, this approach will invert the result if it‘s used only once, 

thus, two steps are required. By defining some critical level Δ such that 0 < Δ < 1/2, if the 

number of lines carrying a positive state (logic 1) is larger than (1- Δ).N, he considers it 

as a positive state of the bundle, if it was less than Δ, he interprets it as negative state 

(logic 0). In cases where the number of positive state lines does not meet either of these 

criteria, then the output is not decided, and so a fault will occur.  

Giving a probability of failure ε for each gate, Von Neumann‘s structure requires a 

large amount of redundancy and a low error rate for individual gates. For deep logic with 

a gate failure probability ε = 0.01 and N = 100, it is shown in [27] that a circuit failure 

probability in the order of 10
-6 

can be obtained. This required amount of redundancy is 

huge and is considered impractical. In order to reduce this large amount of redundancy, 

the works in [28-29] combine NAND multiplexing with reconfiguration.  
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Figure 2.1: Von Neumann‘s logic for 2-input NAND gate with N = 4. 

 

Triple Modular Redundancy (TMR) 

Triple Modular Redundancy is one of the most well-known techniques to tolerate 

soft/hard errors in combinational circuits [16]. It‘s a special case of the NMR system. An 

NMR system (also known as M-of-N system) is a system that consists of N modules and 

needs at least M of them for proper operation. TMR is a system where M=2 and N=3, 

which consists of three functionally identical copies of the original circuit that feed a 2-

out-of-3 majority voter as shown in Figure 2.2. If 2 modules out of 3 produce expected 

correct results, then the majority of the modules produces correct results, and so the error 

in the third module will be masked. However, TMR suffers from high overhead in terms 

of area and power (more than 200%).   

In such a structure, M=2 and N=3 and voter selects the majority vote. If a single voter 

is used, that voter becomes a critical point of failure and the reliability of the TMR 

structure is limited by that of the final arbitration unit (i.e., voter), which makes the 

approach difficult in the context of highly integrated nano-systems [20]. Despite this 
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limitation, TMR is heavily used in practice especially when single faults are needed to be 

protected. Even in the case of multiple faults, some of these faults could be masked due 

to electrical and logical masking in each module. 

 

Module

Module

Module

VOTER

 

 

 

Intervowen Redundant Logic and Quadded Logic 

Pierce[30] suggested another scheme called intervowen redundant logic. This scheme 

considers two types of faults 0  1 and 1  0 faults. The error correction mechanism in 

interwoven redundant logic depends on asymmetries in the effects of these two types of 

binary errors. The effect of a fault depends on the value of the input and the type of gate. 

Consider a NAND gate, for an instance. If the value of one of the inputs is 0 while it 

should be 1, the output of NAND gate will be 1 regardless of the values of other inputs. 

In this case the output will be stuck at 1. On the other hand, if an input value is 1 while it 

Figure 2.2: A Triple Modular Redundant (TMR) structure. 
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should be 0, the output will depend on other inputs and the output will not be stuck. The 

type of faults that cause the output to be stuck is considered as critical; the other type is 

subcritical in the sense that its occurrence alone does not cause an output error. Hence, 

alternating layers of NAND (or NOR) gates can correct errors by switching them from 

critical to subcritical. 

 

Quadded logic [31-32] is an ad hoc configuration of the interwoven redundant logic. It 

requires four times as many circuits, interconnected in a systematic way, and it corrects 

errors and performs the desired computation at the same time. A quadded circuit 

implementation based on NAND gates replaces each NAND gate with a group of four 

NAND gates, each of which has twice as many inputs as the one it replaces. The four 

outputs of each group are divided into two sets of outputs, each providing inputs to two 

gates in a succeeding stage. The interconnections in a quadded circuit are eight times as 

many as those used in the non-redundant form. In a quadded circuit, a single critical error 

(1  0) is correctable after passing through two stages of logic and a single sub-critical 

error (0  1) will be corrected after passing a single stage. In quadded logic, it must be 

guaranteed that the interconnect pattern at the output of a stage differ from the 

interconnect patterns of any of its input variables. While quadded logic guarantees 

tolerance of most single errors, errors occurring at the last two stages of logic may not be 

corrected. Figure 2.3 shows an example of a quadded logic circuit. 
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Figure 2.3: Quadded logic example: (a) original circuit, (b) quadded logic circuit. 
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Partial Error Masking Scheme Based on TMR 

In [33], a partial error masking scheme is proposed based on TMR shown in Figure 

2.4. It targets the nodes with the highest soft error susceptibility. Two reduction heuristics 

are used to reduce soft error failure rate, namely, cluster sharing reduction and dominant 

value reduction.  Instead of triplicating the whole logic as in TMR, only the nodes with 

highest soft error susceptibility are triplicated, the rest of nodes are clustered and are 

shared among the triplicated logic. The dominant value reduction heuristic exploits the 

fact that the logic 0 and logic 1 soft error susceptibility of certain primary outputs is 

highly skewed. Such outputs are identified and the triplication is replaced by duplication. 

The 2-out-of-3 majority is replaced by AND (OR) logic.  

 

Figure 2.4: Partial error masking scheme as proposed in [33]. 
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Fault Tolerant Based on History Index of Correct Computation 

A more recent technique based on TMR is proposed in [34]. A history index of correct 

computation (HICC) module is used to select the correct result. Instead of using merely 

majority voting to transmit results, HICC module uses the history indices of redundant 

units to transmit the correct computation. It represents a measure of a hardware unit‘s 

reliability. The most reliable unit is the unit with the highest history index. The 

computations of other redundant units that implement the same function are ignored.  

Figure 2.5 shows an example that demonstrates the concept of the HICC module. In 

the figure, an ALU module is triplicated as units A, B, and C. The result selector decides 

the unit with the correct result based on stored history index of each unit. The unit with 

the highest index is considered to be the most reliable unit, and its result is transmitted. 

When all units have the same history index value, a bitwise majority voting is used to 

decide the result. After that, the history index of each unit is incremented by 1 if its result 

is identical to the result of majority; otherwise it‘s decremented by 1. The HICC logic is 

distributed within the modules themselves. Hence, unreliable modules are identified 

simultaneously in real time and are ignored.   
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Figure 2.5: HICC module [34]. 

 

Defect-Tolerant N
2
 Transistor Structure 

In [35], a defect tolerant technique that adds redundancy at the transistor level of the 

circuit is proposed. The N
2
 structure is a generalization of the quadded-transistor 

structure. In the quadded-transistor structure, each transistor, A, is replaced by a structure 

that implements either the logic function (AA) + (AA) or the logic function 

(A+A)(A+A). In such structure, any single transistor defect is tolerated. However, in the 

N
2
 structure, N blocks are connected in series such that each block contains N parallel 

transistors. If number of defects is less than or equal to (N-1), N
2
 structure guarantees the 

tolerance of all those defects. It was shown that this technique achieves higher defect 

tolerance compared to gate level based techniques such like quadded logic and TMR. 
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2.2.2 Synthesis-Based Fault Tolerance Techniques  

Localized Circuit Restructuring Tolerant Technique 

In [36], logic masking of errors is increased by taking the advantage of conditions 

already present in the circuit, such as observability don‘t cares. Two techniques are used 

to improve reliability: don‘t care-based resynthesis and local rewriting. In the first 

method,   high-impact nodes are identified. A node has high impact if many observable 

faults flow through it. High-impact nodes are used to select areas of the circuit for 

restructuring, in which a vulnerable node is replicated by adding a single gate. Local 

rewriting is also used to optimize small sub-circuits to obtain overall area improvements. 

In the first method, logic masking is increased by getting benefit from redundancy 

already present in the circuit. Covering relationships are identified among existing nodes. 

Given two nodes x and y, x covers y if and only if x is 1 or a don‘t-care whenever y is 1. 

Node x is defined to be an anti-cover of node y if y is 1 or a don‘t-care whenever x is 1. 

An impact measure is defined and calculated for each node. High impact nodes are 

selected to be redesigned. For a high-impact node x, other nodes which node x covers or 

anti-covers are found.  Given a node y covered by x, redundant logic is added by 

transforming node x into OR(x,y). Similarly, if x is an anti-cover of y, node x is 

transformed into AND(x,y). When x is replaced by AND(x,y) all errors that flip x from 0 

to 1 will be masked. Likewise, all 1 to 0 errors will be masked by OR(x,y). Covering 

relation can be implied from nodes‘ signatures. For a node n, a signature is defined as the 

sequence of logic values observed at n due to a sequence of K input vectors. Thus, the 

signature partially specifies the Boolean function of n. For example, suppose x has a 
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signature sig(x) = 11000 and sig(y) = 11001. By definition, x is an anti-cover of y, 

because y is 1 whenever x is 1. Therefore, x can be replaced by AND(x,y). And so, all 0-

to-1 flips at the third and fourth inputs will be masked. However, if y is replaced by 

OR(x,y) then all 1-to-0 flips of the first two bits will be masked. Since signatures do not 

fully capture Boolean functions, SAT solver is used to verify replication of nodes. 

Reliability-Driven Don’t Care Assignment Method 

In [37], two algorithms are proposed to improve input error resilience. They focus on 

input error due to propagated failures from previous blocks. Both algorithms determine 

0/1 assignments for the most critical DC terms. Consider the correct input vector for a 

circuit is 0100, if a fault happens that fails the third input, the 0110 vector will be applied 

to the logic circuit. If the implementation is identical for these two vectors, then the error 

will be masked. If 0110 is a don‘t care, then the assignment of this minterm to either 0 or 

1 will determine the masking of an error on the third input of the 0100 vector. Given a 

circuit with a set of don‘t care minterms, the output after applying proposed algorithms is 

the circuit with new on-set minterms, new off-set minterms, and new don‘t cares set. The 

new on-set contains the original on-minterms plus don‘t cares assigned to on-minterms. 

The new off-set contains the original off-minterms plus don‘t cares assigned to off-

minterms. Finally, the new don‘t care set contains the don‘t cares that are left unassigned. 

Assignment process uses Hamming-distance metrics; don‘t care minterm is assigned to 1 

if the number of neighboring 1‘s is greater than 0‘s, if the neighboring 0‘s are greater 

than 1‘s, it will be assigned to 0. If 0‘s and 1‘s are neutral, then don‘t care minterm is left 

unassigned. 
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Redundancy Addition and Removal Technique 

In [38], a framework is proposed based on redundancy addition and removal for soft 

error rate (SER) reduction. It performs a series of wire addition and removal by searching 

for redundant wires in the circuit. It will go through an iterative process trying to keep 

wires/gates with higher masking impact and to remove wires/gates with higher error 

impact; this will be guided using some metrics. The masking impact takes into account 

the three masking mechanisms. 

2.2.3 Physical Characteristics Based Fault Tolerance Techniques 

Many methods found in literature attempt to reduce SER based on the physical 

characteristics to maximize the electrical masking and latching-window masking. Gate 

resizing strategy [39] reduces SER by modifying the W/L ratios of transistors in gates. To 

achieve significant improvement in SER, potentially large overheads in area, delay, and 

power are introduced. In [40], a related method is introduced, which uses optimal 

assignments of gate sizes, threshold voltages, supply voltages, and output capacitive 

loads to get better results while keeping overheads smaller. Nevertheless, the design 

complexity is increased in this method in addition to the possibility of making circuit 

hard to optimize at physical design. Another scheme [41] focuses on the selection of flip-

flop from a given set. It increases the probability of preventing faulty transients from 

being registered by selectively lengthening latching-windows associated with flipflops, 

but it doesn‘t consider logical masking and electrical masking. A hybrid approach [42] 

combines flip-flop selection with gate resizing to achieve SER improvement. 
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A more recent technique is presented in [43] that attempts to increase electrical 

masking. In this method the impact of using reliability-aware logic synthesis to reduce 

both the pulse width and the drain area of a circuit is analyzed. The idea here is to replace 

highly vulnerable cells with alternative cells or logical functions to reduce overall 

vulnerability of a circuit. The pulse width and drain area are used in this study as the 

reliability metrics to rank cells. The strategy is as follows: circuits are synthesized to a 

given cell library, then, the frequently used and highly vulnerable cells are identified; 

those identified cells are removed from library and are replaced with alternative 

implementations. Thus, an improved cell library is created.  

In [44], a circuit simplification method is proposed for error tolerant applications. In 

some applications such as images, video, audio and graphics many faulty versions of a 

chip can be used. In this work, the original combinational circuit is given with a defined 

error threshold, and the minimum area simplified circuit version is derived such that the 

error it produces is within the given threshold. 
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Chapter 3  

TWO-LEVEL LOGIC SYNTHESES FOR 

SOFT ERROR TOLERANCE 

 

In this chapter, we will introduce a novel technique to increase combinational circuit 

reliability and hence fault tolerance. The technique is based on maximizing the 

probability of logical masking when a soft error occurs. This is done by extracting small 

sub-circuits from the original circuit. Then, for each extracted sub-circuit, the 

probabilities of its care input vectors are computed.   Next, two-level logic synthesis for 

soft error tolerance is applied on each extracted sub-circuit. Logical masking for single 

fault is maximized in the synthesized two-level sub-circuit. Finally, the new synthesized 

sub-circuits are merged back to the original circuit 

A two-level synthesis scheme is presented to maximize soft error masking. This 

scheme provides a heuristic that first finds the best irredundant set of cubes to cover an 

extracted sub-circuit minterms. This set of cubes is constructed such that fault masking 

for single fault is maximized especially for minterms with high probability of occurrence. 
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Then, an extra number of cubes can be added as redundant cubes to the cover such that 

they have significant improvement on maximizing error masking.   

For each extracted sub-circuit, either the on-phase or the off-phase is synthesized and 

used to implement the circuit. The phase which has minterms with higher probability of 

occurrence is implemented.  

According to our knowledge, none of the previous techniques has presented the 

introduction of maximizing fault masking according to covering cubes for extracted sub-

circuits. 

 

3.1 Extracting Sub-Circuits  

The proposed method involves synthesizing small extracted sub-circuits from the 

original circuit, and by enhancing the reliability of such extracted sub-circuits, the overall 

reliability of the original circuit will be enhanced as well. In this section, we will explain 

how sub-circuits are extracted from an original multi-level circuit. 

The input of this phase is a multi-level circuit, and the output will be a set of smaller 

sub-circuits, such that each extracted sub-circuit has a single output, and a maximum 

number of inputs M. The value of M should not exceed 15 in order to synthesize the sub-

circuit in a feasible time. As the extracted sub-circuits will be synthesized individually, 

each extracted sub-circuit should have one output, maximum M inputs, and it should have 

no fan-outs to other circuits, since the structure of the sub-circuit will be changed after 

synthesis.   
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Extraction of sub-circuits is done as follows: starting from primary outputs of the 

original circuit, keep adding gates into sub-circuits, level by level until reaching the 

maximum number of inputs for a sub-circuit M, and without adding fan-out gates. Each 

extracted sub-circuit is then converted into a two-level circuit in the PLA format using 

the SIS tool [45]. The algorithm of extracting sub-circuits is shown in Figure 3.1. 

 

 

inputs: original circuit, maximum number of inputs M. 

1. Initialize E as the collection of extracted sub-circuits. 

2. Add all primary outputs of the original circuit into List1. 

3. while ( List1 is not empty ) { 

3.1. O = get the next element in List1. 

3.2. Initialize e as the structure of the new extracted sub-circuit. 

3.3. Starting from O, go back in reverse order in the original circuit, and add gates to 

e under the following conditions: 

- Prune branching when reaching a fan-out gate or primary input. 

- Terminate adding gates to e when reaching M. 

3.4. Add extracted sub-circuit e to E. 

3.5.  For every input i of e sub-circuit: 

      - if (i isn‘t included in List1  AND  i  isn‘t a primary input ) 

  Add i to the end of List1. // i will be the output of a new sub-circuit 

 }   // end while 

4. Return (E). 

 

Figure 3.1: Extracting sub-circuits‘ algorithm. 
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3.2 Adding Controllability Don’t Care Conditions 

To increase flexibility, and to optimize area as well, controllability don‘t care 

conditions (CDCs) for each sub-circuit can be used. CDCs are defined as the input 

patterns that are impossible to occur at the inputs of a circuit. A windowing method with 

simulation is developed. The reader can refer to [46-48] for other techniques to compute 

don‘t cares.  

To find CDCs, a window is constructed for each extracted sub-circuit. It contains the 

sub-circuit gates in addition to L levels of gates. The additional gates are added by going 

back traversal starting from the inputs of the sub-circuits. Figure 3.2 shows an example of 

1-level window. The shaded nodes in the figure represent the extracted sub-circuit, and 

the un-shaded nodes represent the additional nodes added for one level. 

CDCs conditions are found using simulation as follows: for each sub-circuit, a 

window circuit is extracted from the original circuit. Then, all possible input patterns of 

the window circuit are simulated using a developed simulator. For each input pattern, the 

observed input vector on the inputs of sub-circuit is added to the care set for this sub-

circuit. Don‘t care set can then be easily found by removing care set vectors from all 

possible input vectors for the sub-circuit. If the number of primary inputs of the original 

circuits is small; i.e., less than 25, the window can be constructed starting from the output 

of sub-circuit, and then back traversing until reaching the primary inputs of the original 

circuit. In such case, we can apply all possible input combinations on the inputs of the 

window, and we can get all possible CDCs of sub-circuit of interest. However, if the 
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number of primary inputs is large, we can construct a window by adding levels so that we 

have a feasible number of inputs. 

O

 

Figure 3.2: Example of 1-level window. 

 

A key observation about CDCs in this case, is that they are compatible, i.e., they can 

be derived for each sub-circuit and used independently. Optimizing a sub-circuit using 

the derived CDCs won‘t have any effect on other extracted sub-circuits. After finding 

CDCs for each extracted circuit, they can be added to the pla file of the sub-circuit. 
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3.3 Proposed Design Level Approach 

In order to reduce the soft error effect, the proposed two-level design level approach 

protects the highly probable input patterns by selecting the best fault masking cover and 

then by adding extra redundant cubes. By keeping other input patterns with low 

probability without adding redundancy, the area overhead is kept minimal. 

3.3.1 Finding Care Minterms’ Probabilities 

The proposed method is based on care minterms‘ probabilities. An assignment of n 

Boolean variables is called a minterm. The positive and negative minterms correspond to 

the assignment, for which a function takes a value of 1 and 0, respectively. The union of 

positive and negative minterms is called the care minterms.  

The set of care minterms for each extracted sub-circuit is already found in the stage of 

finding CDCs; i.e., all possible input patterns for a sub-circuit except the CDCs. The 

probability of each care minterm to occur for each extracted sub-circuit is calculated 

using simulation. A set of all care minterms combinations for all extracted sub-circuits is 

constructed, and then a set of random input patterns are applied on the primary inputs of 

the original circuit, and for each care minterm, the probability for this minterm to occur is 

calculated. This is done by dividing the number of times a minterm occurs in simulations 

over the number of used input patterns. The input patterns can be the all possible 

combinations if the number of primary inputs of original circuit is feasible; otherwise, a 

number of random simulations are used. 
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3.3.2 Two-Level Fail Rate Estimator 

In this section, a tool is described which estimates the failure rate of a two-level circuit 

for a single fault based on the fault model explained in Chapter 5. This tool will be used 

later in the proposed scheme. This tool goes over all minterms; on and off minterms, and 

calculates the number of faulty wires for each minterm. The algorithm for estimating the 

failure rate of a two-level circuit is shown in Figure 3.4 . A faulty wire is a wire such that 

if its value changes due to an error, its faulty value will not be masked. The way to find 

the number of faulty wires for on-minterms is different than that for off-minterms as will 

be explained in the coming example. The estimated failure rate for a two-level circuit for 

a single fault can be estimated according to the following equation: 

                        
                                  

             
 (1) 

pm is the probability of a minterm m and fm is the number of faulty wires for minterm 

m. The division over 2 is due to the number of stuck-at faults that may occur on a wire. 

Consider a circuit with the following cover: (101-, 1-01, and --10). The 

implementation of this cover is shown in Figure 3.3. Suppose the on-minterms are: (0010, 

1011, and 1010) and off-minterms are: (1111, and 0100).  

The 0010 minterm is covered by only one cube (--10); the faulty wires considering 

wires‘ numbering in Figure 3.3 are as follows: wire 4 is faulty since the minterm is 

covered by only one cube (cube 3), that is, if an error hits it will not be masked by any 

other inputs of the OR gate, since all other inputs will be zero. All input wires to cube 3 

are faulty, namely wires 11, 12 and 18 since an error in any of these wires will change the 
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value of the AND gate and make it zero. Since no other cube covers this minterm, the 

zero value of AND will not be masked, and it will propagate to output causing a false 

output. The fan-out wires 15 and 17 are also faulty, because an error in any of them will 

fail an input value for the cube. The output of the OR gate (wire 1) is always faulty, since 

there is no masking for it. Hence, the total number of faulty wires for 0010 minterm is 7. 

Cube 3

Cube 2

Cube 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

I1

I2

I3

I4

 

Figure 3.3: Failure rate estimator example. 

 

The 1011 minterm is also covered by one cube only (101-). The wires 1, 2, 5, 6, 7 and 

14 are faulty wires as explained before. The fan-out wire 13 is also faulty. If we consider 

the fan-out wire 15; the correct value on it is 1. If an error hits and changed its value to 0 

then the value of cube 1 will be zero. However, the second input of cube 2 will be one, 

and so, all inputs of cube 2 are ones. Therefore, the fault in wire 15 is masked, because 

the change in its value makes another cube (cube 2) to be 1. The total number of faulty 

wires for 1011 minterm is 7. 
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The 1010 minterm is covered by two cubes, namely 101- and --10 cubes. In this case, 

none of the OR gate inputs will be faulty; since an error in any of those cubes output will 

be masked by the other one. Also, none of the two cubes inputs are faulty. However, 

there are faulty wires due to fan-outs. The fan-out wire 15 is faulty in this case, since an 

error will cause both values of cubes to be zero. The total number of faulty wires for 1010 

minterm is 2. 

The way to find the faulty wires for off-minterms is different. For off-minterms, the 

output should be zero, and no covering is considered in this case. If an error hits in any of 

the OR inputs, it causes one of the inputs to be logically one; and it can‘t be masked. 

However, fault masking can be considered at the inputs of each AND gate. If an input of 

the AND gate is zero, then an error in any of the other inputs will be masked, since the 

value of AND gate will be zero.  

Considering the off-minterm 1111, the output and input wires of the OR gate are 

always faulty and so the wires 1, 2, 3 and 4 are faulty. Consider cube 1, since the second 

input is zero, then the other inputs of the AND gate are not faulty. However, the second 

input wires are faulty, namely, wires 6 and 14. For cube 2, wires 9, 16 and 15 are faulty. 

In cube 3, wires 12, 18 and 17 are faulty. The total number of faulty wires for 1111 

minterm is 12. 

For the off-minterm 0100, the wires 1, 2, 3 and 4 are faulty. For cube 1, all of the three 

inputs are zeros and hence none of the input wires of this cube is faulty, because an error 

in any input will be masked by the two other zero inputs of the AND gate. In cube 2, two 

inputs are zeros, the first and the third inputs and hence none of the input wires of this 
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cube is faulty, because an error in any input will be masked by at least one other zero 

input of the AND gate. For cube 3, only the first input is zero, and so the wires 11 and 15 

are faulty. The total number of faulty wires for 0100 minterm is 6. 

Table 3.1 shows summary of minterms faulty wires along with their probabilities. The 

estimated failure rate for this circuit can be calculated as follows:  

   
                                      

    
        

 

Table 3.1:  Summary of failure rate estimator example.  

 Minterm Probability Number of faulty 

wires 

On 

Minterms 

0010 0.1 7 

1011 0.2 7 

1010 0.5 2 

Off 

Minterms 

1111 0.07 12 

0100 0.13 6 
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inputs: cover S, on-set and off-set minterms with their probabilities.  

1. TotalFailureRate = 0. 

2. For every m in the on-set minterms: 

2.1. // Find Fm ; the number of faulty wires.  

2.1.1. Fm = 1.  // Due to the output wire of circuit. 

2.1.2. C = set of cubes ϵ S that cover the on-minterm m. 

2.1.3. if (|C| = 1){ 

- IC = number of cube inputs.  

- NC = number of inverted cube inputs. 

- Fm = Fm  +  2 * NC  +  IC - NC .   // Faults due to inputs of cube.  

- Fm = Fm + 1.  // Due to the output of the cube. 

- For every fan-out wire that feeds the cube, add 1 to Fm if it‘s faulty.  

// A fan-out wire is faulty if its error doesn‘t change another cube value to 1. 

} 

else{  // the cover S has multiple cubes. 

- V = common inputs between cubes in C. 

- For every input i in V: 

 if ( i is inverted)  Fm  = Fm + 2. 

 if ( i is faulty fan-out) Fm  = Fm + 1.      

} 

2.2. Pm =  probability of m to occur. 

2.3. TotalFailRate = TotalFailRate + Fm * Pm. 

 

3. For every m in the off-set minterms: 

3.1. // Find Fm ; the number of faulty wires. 

3.1.1. Fm = |S| + 1.   // Due to the inputs and output of the OR gate. 

3.1.2. FanOuts = {}.  // processed fanouts. 

3.1.3. For every cube ci in the cover S: 

Z = number of zero inputs of ci after applying minterm m. 

if (Z = 1){ 

 l = the zero input in cube ci. 

 if ( l is not fan-out) 

  { if ( l is inverted)  Fm = Fm + 2.    else  Fm = Fm + 1. }    

 else{  // l  is fan-out. 

  Fm = Fm + 1.   // Due to zero input l. 

  if ( l is not inverted )  

   { if (l   FanOuts)  Fm = Fm + 1, add  l  to  FanOuts. } 

  else{  // l is inverted. 

   if ( l is fanning out from primary input only)  k = 1. 

   else if ( l is fanning out from inverter output only)  k = 2. 

   else if ( l is fanning out from primary input and inverter)  k = 3. 

   if ( k = 1 )   Fm = Fm + 1.  // Due to inverter input. 

   if (l   FanOuts)  { Fm = Fm + k. , add  l  to  FanOuts. } 

  } 

 }  

} 

3.2. Pm =  probability of m to occur. 

3.3. TotalFailRate = TotalFailRate + Fm * Pm. 

4. Return (TotalFailureRate). 

Figure 3.4: Two-level failure rate estimator algorithm.  
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3.3.3 Finding Covering Cubes 

In this section, the method for selecting covering cubes for each extracted sub-circuit 

is presented. The inputs of this phase are a pla file that contains the minterms of a sub-

circuit in addition to the CDCs, and a file that contains the probabilities of sub-circuit 

care minterms.  All prime cubes can be found using ESPRESSO tool. The goal here is to 

find a set of cubes that covers all minterms and gives better reliability with minimal area 

overhead. Finding an exact solution is computationally complex and infeasible especially 

if the number of generated prime implicants is large. However, a heuristic is developed 

which is a greedy algorithm.  

The idea here is to maximize error masking for minterms with high probability of 

occurrence. Selecting the phase to implement either on or off is very important. It 

depends on the percentage of minterms each phase covers. The phase with higher 

probability of occurrence is better to implement. The probability of a phase can be 

calculated easily by summing the probability of its minterms. Selecting covering cubes is 

done for the phase of circuit with the higher probability.  

Some cubes are mandatory to be selected, which are the essential cubes, so these 

cubes (if exist) will be selected first. After that, all other cubes will be assigned a weight; 

this weight represents how much a cube is improving error masking. The cube with the 

highest weight is selected if it covers new minterms, otherwise the next highest weight 

cube will be selected and so on.    

To illustrate the idea, consider the K-map shown in Figure 3.5 for an extracted circuit 

with four inputs, where 1 represents an on-set minterm and x represents a don‘t care 
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input. The function of the circuit has four primary implicants, namely -100, 11-0, 1-10, 

and 101-. We need at least two cubes (implicants) to cover all on-minterms. Following 

are some possible covers that can be used: [(-100, 1-10), (11-0, 1-10)]. Table 3.2 shows 

the covering for a set of cubes to the on-minterms. The first column contains the on-

minterms, the second column contains the probability for each minterm to occur at the 

inputs of the circuit, and the last three columns show the minterms covered by each cube.   

 

 

 

Table 3.2: Selected cubes covering for example 1. 

Minterm 
Minterm 

Probability 
-100 11-0 1-10 

1010 0.23   1 

1100 0.045 1 1  

1110 0.68  1 1 

 

Although the two covers contain two cubes, there is a difference in reliability. 

Considering the two cubes i.e., -100 and 1-10, each minterm is covered by only one cube. 

And so, for each minterm, if an error hits in the logic of any cube it will not be masked, 

00 01 11 10 

x x x  

x x x  

1   1 

 x x 1 

00 

01 

11 

10 

Figure 3.5: K-map for example 1. 

AB 

CD 
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and it will be propagated to the output. In the second implementation i.e., 11-0 and 1-10, 

the minterms 1010 and 1100 are also covered by one cube, but the minterm 1110 is 

covered by the two cubes. That is, for the 1110 minterm, if an error hits in the logic of 

one cube, it will be masked by the other cube.  

Figure 3.6 (a, b) shows the logical circuit for implementations 1 and 2.  In 

implementation 1, each minterm is covered by only one cube, and so, if an error hits and 

changes the output of the covering cube, this error will not be masked. The 1010 minterm 

is only covered by the cube (1-10). The number of faulty wires for this minterm is 8. The 

1100 minterm is only covered by the cube (-100) with 8 faulty wires. The 1110 minterm 

is also covered by one cube (1-10) and has 7 faulty wires. In the second implementation, 

the number of faulty wires for minterms 1010 and 1100 are 8. Consider the minterm 1110 

in implementation 2, since this minterm is covered by the two cubes, if a single error hits 

in any cube, it will be masked by the other cube, except for fan-outs that are feeding both 

cubes. Figure 3.7 shows the faulty wires for the 1110 minterm in implementation 2, they 

are 4 wires, one of them is due to output wire which can‘t be masked in all cases, the 

second is due to fan-out of the first input, and the remaining two are due to fan-out of the 

fourth input, which is an INVERTER. The faulty wires for minterm 1110 are reduced 

from 7 to 4. Considering the large probability of 1110 minterm, this reduction has a high 

impact on reducing the failure rate of the circuit.  
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Figure 3.6: Different implementations for example 1. 

 

 

C

D

B
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Figure 3.7: Faulty wires in example 1 for minterm 1110 for second implementation. 

 

To compare between the two different implementations, the failure rate for each one 

of them can be estimated using equation (1). By ignoring failure rate due to off-set 

minterms, the failure rate due to on-set minterms for the two implementations can be 

calculated as follows: 
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According to estimated failure rates, the second implementation reduces the failure 

rate dramatically. This is due to the extra covering for the minterm 1110 which has a very 

high probability of occurrence.    

To find the covering cubes, the essential cubes are found first and added to the cover. 

An essential cube is defined as a cube that covers at least one minterm that is not covered 

by any other prime cube. Essential cubes are mandatory, and they are added to the cover 

first. After that, cubes are added according to their weight. At each time, cubes‘ weights 

are calculated and the cube with the maximum weight is added to the cover if it covers 

new uncovered minterms. This process terminates when all minterms are covered. If 

there are no essential cubes, the cube that covers more minterms (considering their 

probabilities) is added first. After covering all minterms, the redundant cubes are 

removed from the cover, since at this stage we want a cover that has no redundant cubes. 

Redundant cubes can be added in the next stage explained in the next sub-section. This is 

important since not all redundant cubes have the same effect on error masking. 

Since we want -by adding a new cube- to decrease the number of faulty wires 

considering probabilities of minterms, the weights for cubes will be calculated as follows. 

Each not selected cube will be assigned a weight that represents the enhancement on fault 

masking, i.e., decreasing of faulty wires. For each minterm, a weight is calculated due to 

each cube, then for each cube, the weights of all minterms are summed. For a cover S, 

minterm M, and cube C, Fold represents the number of faulty wires in the cover S for M, 

and Fnew represents the number of faulty wires in cover S with the new cube C added to 

the cover. The weight of the minterm M can be calculated as:  
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  (2) 

All not selected cubes will be assigned a weight using equation (2). If the minterm M 

is covered by cube C, and is not covered by any cube in the cover S, a very small value is 

used for weight. This condition is needed when the function has no essential implicants. 

In such case, the first cube to be selected will be the cube with the highest probability of 

occurrence.  The value is very small so that it will not affect selecting a cube according to 

covering, and selection will be based on higher probability of occurrence. However, if the 

minterm M is covered by at least one cube in the cover S, the weight is assigned the value 

(          )/      . This value represents the masking improvement that cube C will 

add regarding minterm M. 

Calculating Fold and Fnew is done using the same way used in the two-level estimator 

when finding the number of faulty wires for on-minterms. According to the value of WM 

for each minterm, and by assuming that the probability of a minterm to occur is Mp, the 

weight of a cube is as follows: 

          

               

 (3) 

Consider the k-map for a circuit in Figure 3.8. The covering matrix for all prime 

implicants is built first as shown in Table 3.3. Initially, the cover set is empty, i.e., Cover 

= [ ]. The essential cube ( 011- ) will be added first to the cover, Cover = [ 011- ]. Then, 

the weight for each of the remaining cubes is calculated. The cube ( -111 ) will have the 

highest weight, since for now only two minterms are covered (0111 and 0110).  The cube 
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( -111 )  covers one of them, and so it will decrease the number of faulty wires. Hence, 

Cover = [ 011- , -111 ]. The next selected cube is ( 1--1) and Cover = [ 011- , -111 ,  1--

1]. At this stage, all minterms are covered. By checking redundancy, it‘s clear that the 

cube (-111) is redundant. The final cover will be: Cover = [ 011- ,  1--1 ].  

 

 

Figure 3.8: K-map for example 2. 

 

 

Table 3.3: Cubes covering for example 2. 

Minterm 
Minterm 

Probability 
011- -111 1-0- 1--1 10-- 

0111 0.1 1 1    

0110 0.1 1     

1101 0.4   1 1  

1111 0.2  1  1  

1001 0.1   1 1 1 

1011 0.01    1 1 
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3.3.4 Adding Redundant Cubes 

After finding an irredundant set of cubes that cover all minterms, a set of redundant 

cubes can be added to the cover to increase fault masking. Adding redundant cubes is 

done according to maximum weight also. A specified number of redundant cubes can be 

added to the cover, or a weight threshold can be specified for adding a redundant cube. In 

this work, a threshold is specified, such that the algorithm keeps adding redundant cubes 

as long as the added cube satisfies the threshold. The threshold represents the total failure 

rate improvement for the sub-circuit resulting from adding a redundant cube. The weight 

for each cube is calculated as explained in the previous sub-section.  

Suppose that the cube with the maximum weight is CMAX, S is the covering set before 

adding CMAX , and S1 is the cover after CMAX is added to the cover, FS is the estimated 

failure rate of S, and FS1 is the estimated failure rate of S1. Then, the cube is added to the 

cover as a redundant cube if it satisfies the following:   (FS - FS1  > Thr ). We have used 

0.01 as a suggested value for Thr. The threshold value represents how much a redundant 

cube will decrease the failure rate of a circuit. FS and FS1 are computed using the two-

level single fault failure rate estimator given in Figure 3.4. Following on the previous 

example, three cubes can be used as redundant cubes (-111 , 1-0-, and 10--). If the cube 

1-0- is added as a redundant cube, the minterms 1101 and 1001 will be covered by 2 

cubes. Those minterms have high probability of 0.5. If the cube -111 is used, minterms of 

total probability of 0.3 will be covered by 2 cubes. Using the cube 10--, minterms of total 

probability of 0.11 will be covered by 2 cubes. Hence, the redundant cubes sorted 

according to their weights are: 1-0- , -111 and 10--. It‘s worth to mention that cube -111 

was selected as the highest weight cube after the essential in the previous phase (finding 
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cover). Now, another cube has the maximum weight. This emphasizes the need of 

deleting redundant cubes in the previous phase, and then adding extra redundant cubes 

according to their weight. 

3.3.5  Duplicate One Cube Phase 

For some extracted sub-circuits, the phase with the higher probability of occurrence 

produces only one cube. This case happens when a phase produces only one prime 

implicant. In such case, this cube will not help in reliability. Consider a circuit with a 

very high off-set probability with the implementation shown in Figure 3.9(a). Most of the 

time the NAND will produce logic 0; if any error hits at the inputs, there is no way for a 

fault to be masked, and it will generate a faulty output. To increase the reliability in such 

case, this single cube can be duplicated. Figure 3.9 (b) shows the duplication scheme, in 

which two copies of the cube are used to feed an AND gate. The fault masking in the 

duplication scheme will be as follows. Consider first the off-set minterms which have the 

higher probability. If an error hits at any NAND gate logic either inputs or output, it will 

be masked by the other NAND gate, since we have an AND gate at output. Regarding the 

opposite phase, on-set phase, masking only occurs at the inputs of NAND gates.  

(a) (b)
 

Figure 3.9: Duplication of one cube off-phase. 
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However, if the higher probability phase is the on-set, and it produces only one cube, 

i.e., one AND gate, then the logic is duplicated using an OR gate. Figure 3.10 (a) shows 

an implementation of on-phase with one cube only, and the duplication scheme is shown 

in Figure 3.10(b). 

(a) (b)
 

Figure 3.10: Duplication of one cube on-phase. 

 

3.3.6 Algorithm 1: Two-Level Circuit Synthesis 

Each extracted sub-circuit will be synthesized using Algorithm 1 which is shown in 

Figure 3.11. Algorithm 1 represents a two-level synthesis technique that uses a heuristic 

to increase fault masking for high probability input vectors for an extracted circuit.  

In Figure 3.11, inputs are: the minterms of ON and OFF phases with their 

probabilities, don‘t care minterms, and the threshold for adding redundant cubes. First, 

the algorithm will determine the phase to implement. This is done by computing the 

probability of each phase, and selecting the phase with higher probability of occurrence. 

Next, all prime implicants according to minterms of selected phase are computed using 

Espresso tool. The essential primes are computed and added to the cover S.  
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inputs: on-set and off-set minterms with their probabilities, don‘t cares, threshold Thr. 

1. PON   = summation of probabilities of all On-set minterms. 

POFF = summation of probabilities of all Off-set minterms. 

2. if  (PON  >  POFF)  SM = On-set minterms else SM = Off-set minterms.  

3. Initialize the cover S = {}. 

4. Using SM: 

4.1. Find all prime implicants (cubes) P using Espresso tool. 

4.2. Find all essential cubes (if exist) and add them to the cover S. 

5. while (not all minterms in SM are covered by S) { 

Calculate weight for each not selected prime implicant in P using eqn. 3 using SM  

minterms. 

Select the highest weight cube C that covers new minterms in SM that are not 

covered by S. 

Add cube C to the cover S. 

} // end while 

6. For every cube ci in the cover S:    // remove redundant cubes 

if (each minterm covered by ci is covered by at least one other cube in S) 

delete cube ci from the cover S. 

7. while (true) {       // add redundant cubes 

Calculate weight for each not selected prime implicant in P using eqn. 3. 

R = the prime cube with highest weight. 

FS  =  estimated failure rate of the cover S using eqn.1. 

FS1 =  estimated failure rate of the cover S + R using eqn.1. 

if  ( FS - FS1  > Thr ) add the R cube to the cover S else Go to step 8. 

}  // end while 

8. Initialize synthesized circuit new.  

9. if ( |S| = 1)     // if the cover S produces only one cube; duplicate. 

if  (PON  >  POFF)  new = cube (AND) gate is duplicated using an OR gate.  

else new = cube (NAND) gate is duplicated using an AND gate.   

else{    // the cover S contains multiple cubes 

if  (PON  >  POFF)  new = implement S cubes as AND gates feeding an OR gate. 

else new = implement S cubes as AND gates feeding a NOR gate. 

} 

10. Return (new). 

Figure 3.11: Algorithm 1- Two-level tool to enhance fault tolerance. 
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Then, cubes are added to the cover according to a weight metric. A weight for each 

cube not included in the cover is calculated, and the cube with the highest weight is 

selected and added to the cover if it covers newly uncovered minterms, otherwise, the 

next highest weighted cube is selected and so on. This process of adding cubes is 

terminated when all minterms (of the selected phase) are covered.  After that, the 

redundant cubes are removed from cover. In the next step, a set of cubes are added as 

redundant cubes to increase fault masking. Redundant cubes are added according to their 

weights; adding redundant cubes process is terminated when the decreasing of failure rate 

for a circuit resulting from a redundant cube is less than the redundancy threshold. 

Finally, the implementation of the new circuit is formulated according to the type of 

selected phase. Duplication is applied when the cover produces only one cube. 

 

3.3.7 Complexity of Algorithm 1 

The complexity of Algorithm 1 is mainly controlled by the number of inputs of an 

extracted circuit. Complexity can be explored as follows: 

 Number of prime implicants has an upper bound of O(3
k
/k) [49], where k is the 

number of circuit inputs. 

 Computing the weight of a cube needs traversing all minterms; it has a 

complexity of O(M), where M is the number of minterms, which is O(2
k
). 

 The time consuming step in Algorithm 1 is finding the cover:  

o Covering all minterms step has two nested loops. The outer loop 

terminates when all minterms are covered; it has a complexity of O(C), 
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where C is the number of covering cubes. The inner loop goes through all 

generated prime cubes and computes a weight for each cube; it has a 

complexity of O(3
k
/k *M). The complexity of covering all minterms is  

O(3
k
/k  * M * C). 

o The complexity of removing redundant cubes is O(C
2  

* M
 
), where C is 

the number of covering cubes.  

o The complexity of adding redundant cubes is (R * 3
k
/k  * M), where R is 

the number of extra redundant cubes 

Usually the number of extra redundant cubes is small (R << C), the complexity of 

finding cover is O(3
k
/k  * M * C). The upper bound of C is O(3

k
/k). Therefore, the upper 

bound of the complexity of Algorithm 1 is O(3
k
/k  * 2

k
 * 3

k
/k) =  O( 18

k
/(k

2
) ). As the 

value of k is 15 at maximum, this time complexity is feasible.     

 

3.4 Conclusion 

In this chapter, we have introduced a novel technique, presented in Algorithm 1, to 

increase combinational circuit reliability and hence fault tolerance. This technique relies 

on enhancing fault masking for each extracted sub-circuit, and hence the overall fault 

masking of the original circuit is improved as well. We introduce a heuristic to find a 

two-level cover that maximizes fault tolerance especially for input patters with high 

probability of occurrence for each extracted sub-circuit.  
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We found that the selection of phase to implement is very important, since selecting a 

phase with very low probability to occur will have negligible improvement. Most of 

extracted sub-circuits from our experiments either have a very high on-phase probability 

or a very high off-phase probability. In such cases, selecting the phase with the higher 

probability is effective.  

According to our knowledge, none has presented the introduction of finding covers for 

extracted circuits that maximizes fault masking. 
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Chapter 4  

 

MULTI-LEVEL LOGIC SYNTHESIS FOR 

SOFT ERROR TOLERANCE 

 

 

In this chapter, we will investigate the effect of multi-logic synthesis transformations 

on soft error masking. We will restrict ourselves to the fast extraction algorithm [50]. Fast 

extraction is a very efficient extraction method; it‘s based on the extraction of double-

cube divisors along with their complements and single cube divisors with two literals. To 

minimize area, single cube and double cube divisors with highest area weights are 

selected. In this chapter, we will use fast extraction to minimize area of circuits‘ obtained 

in Chapter 3, but by avoiding extracting cubes that have a negative impact on reliability.  
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4.1 Fast Extraction for Area Optimization 

Fast extraction transformation involves extracting two types of cubes: double-cube 

divisors and single-cube divisors. Double-cube divisors are cube-free multiple cube 

divisors having exactly two cubes. Suppose we have the following Boolean function 

written as sum-of-products: 

                   

Table 4.1 shows all possible double-cube divisors that can be extracted from this 

function along with their bases. For instance, if the first double cube is to be extracted, 

the multi-level network of the function f will be as follows: 

         

            

If number of literals is used as an approximation of area cost, then a saving of 4 

literals (12 - 8) is obtained.   

Table 4.1: Double-cube divisors along with their bases for f = ade + ag + bcde + bcg. 

Double-cube divisors Base 

d e + g  a , b c 

a + b c g , d e 

a d e + b c g {}- 

a g + b c d e {} 
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 Single-cube divisors of interest are those with two literals only; for previous function 

f, two single cube divisors can be extracted: bc and de. If bc is extracted then the multi-

level network of the function f will be as follows: 

       

                  

Area saving in this case will be zero. Single cubes with two literals can have a positive 

area weight if it‘s included in more than two cubes. 

Figure 4.1 shows the fast extraction algorithm used to get multi-level networks with 

optimized area. It extracts all possible double and single cube divisors and calculates the 

area weight for each cube. The cube with the highest area weight will be extracted. Then, 

the same algorithm will be applied recursively on the resulting multi-level network until 

no positive area weight cubes can be extracted. The area weight for a single cube divisor 

s can be simply calculated according to the following equation: 

        

Where k is the number of cubes containing the single cube s. However, the area weight 

of a double-cube divisor d is calculated using the following formula: 

               + c 

Where p is the number of bases including complement bases, l is the number of literals in 

cube d, B is the total number of literals in all bases, and c is the number of cubes 

containing the complement of double-cube divisors with two literals. 
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Repeat  

Select a double-cube divisor d that has a maximum area weight Wdmax. 

Select a single-cube divisor s having a maximum area weight Wsmax. 

If  Wdmax   >  Wsmax  

Select d. 

Else 

Select s. 

W = max (Wdmax , Wsmax) . 

If W > 0 then substitute selected divisor. 

Re-compute weights of affected single-cube and double-cube divisors.    

Until ( W <= 0) 

 

Figure 4.1: Fast Extraction algorithm for area optimization [50]. 

 

4.2 Fast Extraction for Reliability 

In this section, we will investigate using fast extraction for reliability. The objective 

here is to obtain area improvement but with a low impact on reliability.  The effect on 

fault masking of both single and double cubes will be studied.  

To study the effect of single-cube extraction on masking, consider the Boolean 

function f1 = abc + abd + abe + kg. The single-cube that can be extracted is ab, with 

area weight of 1. The multi-level network after extracting ab, will be as follows: 

     

               

Figure 4.2 (a) shows the logic network for the original function f1, and Figure 4.2 (b) 

shows the logic network for f1 after extracting the single-cube ab. Considering the case 

for on-set minterms covered by more than one cube, the masking won‘t be affected in the 
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cubes from which the single-cube was extracted. That is, if a fault hits in the logic of one 

cube, it‘s still masked by other cubes that cover the same input minterm. For on-minterms 

covered by only one cube, suppose that S is the set of cubes from which the single-cube 

divisor is extracted. Two cases can be analyzed: The first one, if the covering single cube 

is among cubes in S. The other case, if the single cube is not contained in S. In the first 

case, the circuit behavior against single faults won‘t be affected. The faults in other cubes 

are masked by the covering cube, and the faults in the covering cube are not tolerated. In 

the second case, extracting the single-cube divisor won‘t affect masking behavior as the 

covering cube is not included in S, and so, faults in the logic of other cubes will be 

masked by the output of the covering cube.  

Cube 2

Cube 1

Cube 4

Cube 3

a
b
c

d

e

f1 Cube 2

Cube 1

Cube 3

a

b

c

d

e

f1

ab

(b)
(a)

k

g Cube 4

k

g

 

Figure 4.2: Single-cube extraction example: (a)  f1 = abc + abd + abe + kg,  (b)  t = 

ab ,  f1 =  tc + td + te + kg. 

 

To analyze the effect of extracting a single-cube divisor on off-minterms, consider the 

off-minterm abcdekg = 0011100. In Figure 4.2 (a), if this minterm is applied, then any 

single fault hitting at the inputs of the AND gates is tolerated since each cube has two 



63 

 

 

 

zero inputs. After extracting the single-cube divisor as shown in Figure 4.2 (b), each cube 

from 1 to 3 has two inputs, and only one of them is zero. In this case, single faults at zero 

inputs of these cubes are not tolerated. Thus, the circuit becomes worse in term of 

reliability. And so, the off-minterms in which circuit reliability maybe affected are those 

minterms that make both extracted literals to be zeros. In each cube from which the 

single-cube divisor is extracted, masking at the inputs is affected if only two inputs are 

zeros, and those inputs are the ones extracted in the single-cube divisor. Based on 

previous discussion, for a single-cube divisor s, a reliability weight can be defined as 

follows:  

          
    

   
 

 

   

 

 n is the number of off-minterms that make both extracted literals of single cube to be 

zeros. Pm is the probability of off-minterm m. C is the set of cubes from which the single-

cube divisor is extracted. Cm is the set of cubes from C such that if minterm m is applied, 

the cube will have only two zero inputs, and those inputs are the ones extracted in the 

single-cube divisor.   

Extracting double-cube divisors has a different impact on fault masking. Consider the 

Boolean function f2 = ab + ac + de, with the double-cube divisor (b + c). The multi-level 

network after extracting (b + c) will be as follows:  
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Figure 4.3 (a) shows the logic network for the original function f2, and Figure 4.3 (b) 

shows the logic network for f2 after extracting the double cube b + c. Considering the 

case for on-set minterms covered by more than one cube, fault masking according to 

covering is different than that in the original implementation. To illustrate the difference, 

suppose m1 is a minterm that is covered only by cube1 and cube2. In the original 

implementation, if an error hits in the logic of any cube, it will be masked by the other 

cube except if the error hits in the shared input a.  However, in the second 

implementation, masking of errors according to covering can only occur at the inputs of 

OR gate (b + c). It‘s clear that none of the errors at inputs or output of AND1 are 

tolerated. Note that the error on input a will not be masked in both implementations. And 

so, in this case, we are adding two extra faulty lines, namely, the output of AND1 and its 

second input.  In another case, suppose m2 is a minterm that is covered by cube3 and at 

least one of the cubes; cube1 and cube2. In this case, fault masking isn‘t affected since 

m2 is covered also by another cube outside the extracted double cube base cubes, and so, 

if an error hits in any of the AND gates; AND1 and AND2 or their inputs, it will be 

masked by the other AND.  

To analyze the affect on on-minterms covered by only one cube, suppose that S is the 

set of cubes from which the double-cube divisor is extracted. If the single cube isn‘t 

among cubes S, masking behavior is not affected after extracting the double-cube divisor. 

The faults in other cubes are masked by the covering cube, and the faults in the covering 

cube are not tolerated. If the single cube is contained in S, masking behavior is also not 

affected. The faults in the covering cube logic are not tolerated, and the faults in other 
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cubes logic are masked by the covering cube. Regarding off-minterms, masking 

properties for extracted cubes if they have multiple zero inputs are still preserved.  

 

Cube 2

Cube 1

Cube 3

a

b

c

d

f2

(a)

AND2
d

f2

AND1
a

b

c

(b)

e e

 

Figure 4.3: Double-cube extraction example:  (a)  f2 = ab + ac + de,   (b) t = b+c ,     

f2 =  a t + d e. 

 

To test the previous analysis, both implementations were simulated using minterms 

with probabilities as specified in Table 4.2. In this table, four on-minterms are provided 

with their probabilities. We assume that the probability of other on-minterms is 0.1, and 

the probability of off-minterms is 0.1. This table shows that the probability of minterm 

11100 has the main effect on failure rate of the multi-level implementation. As the 

probability of this minterm increases, the failure rate of the multi-level implementation 

becomes worse.  This can be generalized as follows: failure rate of a multi-level circuit 

resulting from extracting a double-cube depends on the probability of minterms that are 

covered only by cubes from which the double-cube is extracted.  
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Table 4.2: Failure rate for two implementations of  f2 = ab + ac + de  for different 

minterms probabilities. 

Minterms Covered By Minterms’ Probabilities 

11000 cube1 only 0.77 0.01 0.01 0.25 0.15 0.05 0.01 

11100 cube1, cube2 0.01 0.01 0.01 0.05 0.35 0.65 0.77 

11011 cube1, cube3 0.01 0.77 0.01 0.25 0.15 0.05 0.01 

00011 cube3 only 0.01 0.01 0.77 0.25 0.15 0.05 0.01 

Failure 

Rate 

Original 0.23 0.05 0.18 0.14 0.13 0.11 0.09 

After extracting 

double cube 
0.25 0.06 0.22 0.18 0.22 0.2 0.22 

 

To analyze the case which involves extracting a double-cube along with its 

complement, three cases can be considered: D112, D222, D223. An example for the D112 

case is a double-cube (a+b) with its complement  a’b’. An example of the D222 case is a 

double-cube (ab + a’b’) with its complement  (ab’ + a’b). An example of the D223 case is 

a double-cube (ab + a’c) with its complement  (ab’ + a’c’). For the cases D222 and D223, 

it‘s impossible for a minterm to be covered by the two cubes from which a double-cube 

divisor is extracted neither its complement cubes. Hence, fault masking will not be 

affected if the double-cube divisor is extracted in these two cases. For the D112  case, 

consider the Boolean function  f3 = ac + bc + abd. The double-cube divisor that can be 

extracted is (a + b).  The multi-level network after extracting (a + b) along with its 

complement (a’b’) will be as follows: t = a + b ,  f3 =  t c + t’ d. Figure 4.4 (a) and (b) 

show the logic network for f3 before and after extracting the double-cube respectively. As 

discussed before, if a minterm is covered by both cubes ac and bc (cube 1 and cube2), 

fault masking for this minterm will be highly affected by extraction.   
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For minterms covered by only one cube, two cases can be considered: a case for a 

minterm covered by one of the cubes cube1 or cube2, and a case of a minterm covered by 

cube3.  In both cases, masking behavior is not changed since only AND gate will produce 

logic 1. However, the number of faulty wires may slightly increase in the multi-level 

network depending on the value of the minterm. Nevertheless, minterms covered by both 

cubes (cube1 and cube2) are the main minterms for which masking behavior is changed. 

Regarding off-minterms, the same analysis discussed before can be applied here. 

Cube 3

a

c

b

c
Cube 2

Cube 1

a

b

d

f3

d

c
AND 2

AND 1

a f3

b

(a) (b)  

Figure 4.4: Double-cube extraction with complement example: (a)  f3 = ac + bc + 

abd,   (b) t = a + b ,  f3 =  tc + t’d. 

 

As the objective is to improve area cost with low impact on reliability, double-cube 

divisors should be extracted such that this objective is satisfied. Each double-cube divisor 

can have a reliability weight in addition to the area weight. For a double-cube d with 

bases b1, .. , bn, the reliability weight can be calculated as follows:     
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Rbi  is the probability of minterms covered only by cubes from which base bi is 

extracted. According to this weight, a double-cube divisor will not be extracted if its 

reliability weight is larger than a certain threshold.  

To justify the proposed weight, consider the following Boolean function: x = abf + 

adef + cde.  Two double cubes can be extracted: (b + de) and (af +c). If (b + de) is 

extracted then the multi-level circuit will be as follows:                          . 

If (af +c) is selected then the multi-level circuit will be as follows:                  

       . Table 4.3 shows the failure rate for the x, x1, and x2 implementations for 

different minterms‘ probabilities. In this table, two on-minterms are provided with their 

probabilities. We assume that the probability of other on-minterms is 0.1, and the 

probability of off-minterms is 0.1. According to suggested reliability weight, the weight 

of (b + de) double cube is the probability of the minterm 110111, and the weight of (af 

+c) is the probability of 101111. The table shows that extraction of the double-cube with 

lower weight gives better circuit. And so, the proposed reliability weight chooses the 

cube with better reliability. The weight function reflects the negative impact on reliability 

resulting from extracting the double-cube divisor.  

Table 4.3: Failure rate for two implementations of  x = abf + adef + cde for different 

minterms probabilities. 

Minterm Covered by Minterms Probabilities 

110111 abf  and adef 0.1 0.3 0.4 0.5 0.7 

101111 adef  and  cde 0.7 0.5 0.4 0.3 0.1 

Failure 

Rate 

x 0.084 0.094 0.081 0.09 0.083 

x1 0.11 0.122 0.145 0.17 0.178 

x2 0.18 0.168 0.142 0.124 0.1 
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4.3 Algorithm 2: Enhancing Area for Reliability Optimized 

Two-Level Circuits 

Given a reliability optimized two-level circuit, Algorithm 2 - shown in Figure 4.5- can 

be used to find a multi-level implementation with less area overhead and with low impact 

on reliability. Algorithm 2 is a modified version of the original fast extraction algorithm. 

Instead of extracting the single-cubes and double-cubes according to area weight only, 

the reliability weight is taken into consideration.  

Algorithm 2 finds the set of all possible double-cube divisors; the area and reliability 

weights are calculated for each of them. A set of double-cube divisors D with reliability 

weight less than a threshold is constructed. Among double-cube divisors in D, the best 

double cube d to be extracted is the one with highest area weight. For all possible single-

cube divisors, the set of single-cube divisors S with reliability weight less than a 

threshold is constructed. Among single-cube divisors in S, the best single-cube s to be 

extracted is the one with highest area weight. The cube among s and d with larger area 

saving is selected to be extracted. The same process is repeated until no area 

improvement can be achieved.  
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inputs: two-level circuit, Threshold. 

Repeat  

Find all double-cube divisors D with Reliability Weight < Threshold.  

Select a double-cube divisor d from D that has a maximum Area weight Wdmax. 

Find all single-cube divisors S with Reliability Weight < Threshold.  

Select a single-cube divisor s having a maximum Area weight Wsmax. 

If  Wdmax   >  Wsmax  

Select d. 

Else 

Select s. 

W = max (Wdmax , Wsmax). 

If W > 0 then substitute selected divisor. 

Re-compute weights of affected single and double cube divisors.    

Until ( W <= 0) 

Figure 4.5: Algorithm 2. 

 

 

4.4  Framework of Enhancing Fault Tolerance Using 

Algorithms 1 and 2 

Algorithm 1 discussed in Chapter 3 is used to enhance fault masking for an extracted 

sub-circuit. It results in a two-level circuit in which masking against single fault is 

maximized. Algorithm 2 improves area overhead of reliability optimized two-level 

circuits. It has low impact on reliability enhancement achieved using Algorithm 1. The 

following framework should be applied in the design procedure, as shown in Figure 4.6: 

1. Given a combinational circuit represented in a multi-level network of gates. 

2. Extract sub-circuits.  

3. Find CDCs and probabilities of care minterms for the extracted circuits. 

4. Re-synthesize each extracted circuit using Algorithm 1. 
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5. Apply Algorithm 2 on each two-level synthesized circuit to enhance area 

overhead. 

6. Merge the re-synthesized circuits into the original circuit.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Framework of Algorithm 1 and Algorithm 2. 

 

Given a combinational circuit represented in 

a multi-level gates  

Extract sub circuits 

Re-synthesize extracted circuits using Algorithm 

1 by introducing redundant cubes 

Apply Algorithm 2 on each two-level 

synthesized circuit to enhance area overhead 

Find CDCs and probabilities of care minterms for 

the extracted circuits 

 

 

 

 

 

 

 

Extract sub circuits 

Merge the re-synthesized sub circuits into the 

original circuit 
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4.5 Conclusion 

In this chapter, fast extraction algorithm is explored to enhance area for reliability 

optimized two-level circuits. It‘s found that this algorithm with some modifications can 

be used effectively to achieve this objective. In addition to area weight, reliability weight 

is also used in selecting single-cube and double-cube divisors. This technique is proposed 

as Algorithm 2. Algorithm 2 ensures that the selected single-cube and double-cube 

divisors will have a low negative impact on reliability.  
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Chapter 5  

 

 

SIMULATION ENVIRONMENT AND 

FRAMEWORK 

 

To show the impact of our proposed algorithms in Chapters 3 and 4, a reliability 

evaluator based on Monte-Carlo simulation is implemented. In this chapter, we will 

describe the simulation environment that our reliability evaluator uses to report fault 

tolerance measurement of benchmark combinational circuits. In the following sections, 

we will describe how to measure combinational circuit reliability. Some assumptions 

regarding fault tolerance evaluator has been made and listed too. After that, a stuck-at 

fault model is chosen and the fault injection mechanism is described. 
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5.1 Measuring Combinational Circuit Reliability 

Comparing the reliability of original combinational benchmark circuits with their re-

synthesized versions, using our methods, or with other techniques is done by measuring 

the failure rate per injected faults. Knowing that reliability is inversely proportional to 

failure rate, varying the number of faults injected to the combinational benchmark 

circuits and measuring the failure rate for each injected fault is an effective way to 

measure their fault tolerance (or reliability). Logically, circuits‘ reliability starts from 

100% when no faults occur and decrease as the number of faults increases. In other 

words, the failure rate grows as the number of faults increases. 

To evaluate circuit failure rate probability, a simulation-based reliability model as the 

one used in [51] is often adopted. However, since we eventually plot the failure rate 

against the number of injected faults, we modified it according to our need as it will be 

explained in the next section. 

 

5.2 The Simulation Framework of Reliability Evaluator 

The goal of our implemented reliability evaluator is to measure the failure rate of 

combinational circuits as the number of injected faults grows. It is done by using Monte-

Carlo simulation methods. For each circuit, we find the failure rate by injecting faults for 

a certain number of iterations and counting the number of success and failed iterations. 

The framework of getting the failure rate of a circuit is stated in the following points: 
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 For every number of faults F from 1 to N, where N is the maximum number of 

faults to be injected: 

o Set the number of failed iterations, k, to zero. 

o For each iteration i from 1 to T, where T is the maximum number of 

iterations: 

 Generate a random input vector, where the length of the vector is 

the same as the number of inputs in the circuit. 

 Simulate the circuit to get fault free original output by applying the 

generated random vector and store the output response in O, where 

the length of O is the same as the number of outputs in the circuit. 

 Inject F number of faults in the circuit randomly. 

 Simulate the circuit to get the faulty output response and store it in 

OF, where the length of OF is the same as the number of outputs in 

the circuit. 

 If the output response O is different from OF, then k is 

incremented. Otherwise it is successful. 

o Repeat for next i. 

o Calculate the failure rate when F faults are injected, denoted by RF, by 

    
 

 
.  

 Repeat for next F. 
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5.3 Assumptions 

There are few assumptions made in our reliability evaluator as follows: 

 As we are experimenting the effect of soft errors, the number of injected faults 

should be small. In reality, they are measured by FIT (failure in each 10
9
 hours of 

operation. 

 The number of iterations, T, is 10000. 

 The faults are injected randomly at the gate level of a circuit. 

 Only logical masking is considered by our evaluator. Neither electrical masking 

nor timing masking is considered. 

 

5.4 Fault Model and Fault Injection Mechanism 

In our work, we assume a stuck at fault model. When we inject faults at any line, it can 

be either stuck-at-1 (i.e. connected to Vdd) or stuck-at-0 (i.e. connected to ground). Fault 

injection happens at the gate level of the circuit randomly, a list of all lines in a circuit is 

constructed and at each time a random line is selected. A line can be a gate input, gate 

output, or a fan-out line. In case of a stuck-at-1 fault, the line at which the fault is injected 

is replaced by an OR-gate with a fault indicator input Fi set to 1. When a stuck-at-0 fault 

is injected, the line at which the fault is injected is replaced by an AND-gate with a fault 

indicator input Fi set to 0. This is shown in Figure 5.1. 
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Figure 5.1: Fault injection mechanism. 
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Chapter 6  

RESULTS, DISCUSSION AND 

FINDINGS 

 

In this chapter, we will discuss the results for some experiments that have been 

performed. First, we will describe the experiment we choose to perform and the 

justification for such choice. Then, a detailed discussion of the findings is given for 

Algorithm 1 described in Chapter 3 and Algorithm 2 described in Chapter 4. 

6.1 Experiments 

Several experiments have been performed for different MCNC combinational circuits. 

The circuits m3, bench1, test1, test4, ex1010, apex3, apex4, exp, misex3, cps, spla, 

duke2, table3 and table5 are the ones chosen for our experiments. Table 6.1 shows the 

number of primary inputs, primary outputs, and the area for each benchmark circuit. 

Section 6.2 explains how area is calculated for benchmark circuits. 

For each circuit, several versions are implemented and experimented. The original 

version was obtained by synthesizing the pla circuit using SIS tool to get a multi-level 
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circuit. This is done using “script.rugged” script. Then, different versions were obtained 

by applying the framework discussed in Chapter 4.  

Table 6.1: primary inputs, primary outputs and area for benchmark circuits. 

Circuits 
Primary 
Inputs 

Primary 
Outputs 

Original 

apex4 9 18 3010 

bench1 9 9 1487 

cps 24 102 1728 

duke2 22 29 632 

ex1010 10 10 4712 

exp 8 18 430 

m3 8 16 358 

misex3 14 14 1020 

spla 16 46 555 

table3 14 14 1171 

table5 17 15 1333 

test1 8 10 1189 

test4 8 30 3083 

apex3 54 50 2302 

 

 

Several experiments to test Algorithm 1 described in Chapter 3 are implemented and 

experimented as follows: 

 Original circuit: in this version, circuit is implemented as a multi-level 

network. 

 Espresso version: in this version, the extracted sub-circuits are synthesized 

using Espresso tool, the phase (on or off) with the higher probability is selected 

to implement the sub-circuit. 
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 Irredundant Two-level synthesis: extracted sub-circuits are synthesized using 

the proposed two-level synthesis algorithm (Algorithm 1), such that the cover 

of the sub-circuit contains irredundant cubes. The phase with higher 

probability is implemented. No duplication is used in this version. 

 Redundant threshold 0.05: two-level synthesis algorithm (Algorithm 1) is used 

with redundant cover. The redundancy threshold is 0.05. The phase with higher 

probability is implemented. No duplication is used in this version. 

 Redundant threshold 0.01: Algorithm 1 is used with redundant cover. The 

redundancy threshold is 0.01. No duplication is used in this version. 

 Redundant threshold 0.005: Algorithm 1 is used with redundant cover. The 

redundancy threshold is 0.005. No duplication is used in this version. 

 Redundant threshold 0.01 - Duplication: Algorithm 1 is used with redundant 

cover. The redundancy threshold is 0.01. Duplication is used in this version. 

 

To test Algorithm 2, the following experiments are implemented: 

 Original circuit: in this version, circuit is implemented as a multi-level 

network. 

 Algorithm 1 - threshold 0.01: Algorithm 1 is used with redundant cover. The 

redundancy threshold is 0.01. Duplication is used. 

 Fx for area: original version of fast extraction (fx) is applied on the sub-circuits 

used in the experiment Algorithm 1 - threshold 0.01. 
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 Algorithm 2 with 0.3-threshold: Algorithm 2 is applied on the sub-circuits used 

in the experiment (Algorithm 1 - threshold 0.01) with a threshold of 0.3. 

 Algorithm 2 with 0.1-threshold: Algorithm 2 is applied on the sub-circuits used 

in the experiment (Algorithm 1 - threshold 0.01) with a threshold of 0.1. 

Each of the experiments for each circuit follows the framework of Figure 6.1 (In 

Algorithm 1 experiments, Algorithm 2 phase is not applied). The original benchmark 

circuit in pla format is taken and converted into a multi-level circuit. Then, sub-circuits 

are extracted along with their windows. The corresponding window circuit for each 

extracted circuit will be used to find the Controllability Don‘t Care conditions (CDC‘s). 

If the number of primary inputs of the circuit is feasible (less than 25) the window circuit 

for each extracted sub-circuit will start from the output of the sub-circuit and go back 

traversal until reaching the primary inputs of the circuit. In such case, all possible don‘t 

care inputs will be calculated. If the number of primary inputs is greater than or equal 25 

the number of window inputs will be limited to 20.  Next, the On and Off minterms are 

found for each extracted sub-circuit. The probabilities of occurrence for all On and Off 

minterms are also found using a developed simulator. After that, Algorithm 1 is applied 

on each sub-circuit taking On and Off minterms along with their probabilities as 

arguments. Algorithm 2 can be applied on each sub-circuit resulting after applying 

Algorithm 1. Finally, the re-synthesized sub-circuits are merged back to the original 

circuit. Ultimately, the new re-synthesized circuit is accepted as an argument by our 

evaluator described in Section 5.2.  
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Get the original combinational benchmark as pla file.

Apply espresso then ―script.rugged‖ on the pla file to get a multi-level 

circuit using SIS tool.

From the multi-level bench circuit: Extract sub-circuits and 

corresponding window circuits

     For each extracted circuit:

 Find Controllability Don‘t Cares (CDCs).

 Find On-set minterms.

 Find Off-set minterms.

Apply Algorithm 1 on each sub-circuit.

Apply Algorithm 2 on each sub-circuit resulting after applying 

Algorithm 1.

Merge all synthesized sub-circuits back to the original circuit.

Use proposed evaluator to get the failure rate of circuit per injected 

number of faults.
 

Figure 6.1: Framework of experiments. 
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6.2 Calculating the Area Overhead 

Techniques involving adding redundancy to enhance reliability often pay the price in 

terms of area. To estimate the area, each resulting circuit is mapped to the mcnc.genlib 

library. The total size of gates is found using SIS tool using the command ―map -m 0‖. 

Table 6.2 shows the used library to estimate the size of circuits. 

Table 6.2: Size of gates. 

Gate Size 

NOT 1 

NAND2  2 

NAND3 3 

NAND4 4 

NOR2 2 

NOR3 3 

NOR4 4 

AND2 3 

OR2 3 

XOR 5 

XNOR 5 

AOI21 3 

AOI22 4 

OAI21 3 

OAI22 4 

 

6.3 Algorithm 1 Results 

In this section, we will apply different versions of Algorithm 1 to the circuits as stated 

in Section 6.1. The resulting findings are discussed particularly for bench1 and for the 

remaining circuits in the next few sections. 
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6.3.1 Case Study: Bench1 Benchmark 

The combinational circuit bench1 is picked to discuss general results. Figure 6.2 

shows the failure rate results for the different versions specified in Section 6.1. It shows 

the failure rate of bench1 circuit by applying Algotithm1. It is compared to the original 

circuit. Also it is compared to circuit failure rate after applying espresso on extracted sub-

circuits. It‘s clear that applying espresso on the extracted sub-circuits to get a two-level 

implementation results in a more reliable circuit compared to the original version. This is 

due to synthesizing the phase with higher probability of occurrence. However,   

Algorithm 1 results outperform espresso results since we carefully select the minimum 

cover which maximizes fault masking, and then we add extra cubes to the cover to mask 

faults for not masked minterms.  

If the results of non-redundant version are compared with the espresso version results, 

a significant improvement can be noticed. In the non-redundant version, the minimum 

sets of cubes are selected to maximize fault masking. Extra cubes can be added to the 

cover in the redundant versions, such that an additional improvement on fault masking is 

obtained. This is controlled by the threshold. The price of this improvement is a larger 

area. The redundant versions show that as we decrease the threshold value, we obtain 

better failure rate. The 0.05 threshold does not improve failure rate compared to the 

irredundant version. However, the 0.01 value improves the failure rate significantly. The 

0.005 value also adds more improvement. The last version which includes duplication 

improves failure rate significantly compared to Redundant threshold 0.01 version. This is 

due to the significant number of sub-circuits that were duplicated.  
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To complete the picture, Figure 6.3 compares the area of the implementation of the 

discussed curves. It shows that the area of the implemented circuit increases as we add 

redundant cubes to the cover in the redundant versions, which is a logical expected price 

paid to enhance fault masking. Espresso version adds an area overhead of 26% compared 

to the original circuit. The irredundant version overhead is 37%. The area overhead of the 

redundant version with thresholds 0.05 is very close to the irredundant version. The 0.01 

version adds a significant area overhead of 60%. The 0.005 version also adds more area 

overhead of 76%. However, the overhead of duplication using 0.01 is 76%. Using 

duplication in this case has significant increase in area overhead compared to the version 

with no duplication, and this explains the significant improvement obtained using 

duplication.  In fact, duplication effect depends on the benchmark circuit itself. It depends 

on how many generated sub-circuits with only one cube. 
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Figure 6.2: Failure rate vs Faults for bench1. 
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Figure 6.3: Size of bench1 experiments. 

  

1487 

1867 

2030 2060 

2374 

2622 2617 

0 

500 

1000 

1500 

2000 

2500 

3000 

S
iz

e 

Circuits 

bench1 



88 

 

 

 

6.3.2 Other Benchmarks Results 

Simulation results illustrating failure rate for other benchmark circuits are given from 

Figure 6.4 to Figure 6.16. The failure rate curves for all versions are shown except for the 

version with threshold 0.05, since its results are very close to the irredundant version 

results. The results for 0.05-threshold version are shown in the next sub-section in the 

aggregated tables. 

 

 

Figure 6.4: Failure rate vs Faults for m3. 
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Figure 6.5: Failure rate vs Faults for test1. 
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Figure 6.6:  Failure rate vs Faults for test4. 
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Figure 6.7: Failure rate vs Faults for ex1010. 
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Figure 6.8: Failure rate vs Faults for misex3. 
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Figure 6.9: Failure rate vs Faults for exp. 
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Figure 6.10:  Failure rate vs Faults for apex4. 
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Figure 6.11: Failure rate vs Faults for duke2. 
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Figure 6.12: Failure rate vs Faults for spla. 
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Figure 6.13: Failure rate vs Faults for cps. 
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Figure 6.14: Failure rate vs Faults for table3. 
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Figure 6.15: Failure rate vs Faults for table5. 
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Figure 6.16: Failure rate vs Faults for apex3. 
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As shown in the previous results, using Algorithm1 with different versions provides 

significant improvement in term of failure rate. Each version improves the failure rate 

significantly compared to Espresso version. However, the apex3 benchmark experiments 

didn‘t show a significant improvement compared to Espresso version. This is due to the 

large number of primary inputs of this benchmark. This causes the size of window 

circuits corresponding to extracted sub-circuits to be limited to a certain depth in the 

original circuit, and not reaching the primary inputs of the circuit. And so, not all possible 

don‘t cares will be calculated. This will limit the flexibility to select between different 

covering cubes to cover a sub-circuit minterms.  

6.3.3 Aggregated Results and Conclusions 

In this sub-section, we report the aggregated results from combinational benchmark 

circuits using Algorithm 1. Results of failure rate for benchmark circuits by injecting 1, 5, 

and 10 faults are shown in Table 6.3, Table 6.4 and Table 6.5. In those tables, the amount 

of reduction (-ve sign in the table) compared to the original circuits in terms of failure 

rate is stated and averaged among all circuits. For each circuit, the failure rate of all 

Algorithm 1 experiments explained in section 6.1 is reported. 

From these tables, we can draw the following conclusions: 

 By injecting 1 fault, the best failure rate reduction without using duplication is 

60% for 0.005 threshold. This is followed by 55% failure rate reduction for 0.01 

threshold, 49% failure rate reduction for 0.05 threshold, 46% failure rate for 

irredundant version, then 36% failure rate reduction for Espresso version. The 

failure rate reduction using duplication with 0.01 threshold is 62%. 
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 By injecting 5 faults, the best failure rate reduction without using duplication is 

53% for 0.005 threshold using Algorithm 1. This is followed by 49% failure rate 

reduction for 0.01 threshold, 41% failure rate reduction for 0.05 threshold, 39% 

failure rate for irredundant version, then 30% failure rate reduction for Espresso 

version. The failure rate reduction using duplication with 0.01 threshold is 56%.  

 

 By injecting 10 faults, the best failure rate reduction without using duplication is 

45% for 0.005 threshold using Algorithm 1. This is followed by 41% failure rate 

reduction for 0.01 threshold, 33% failure rate reduction for 0.05 threshold, 31% 

failure rate for irredundant version, then 24% failure rate reduction for Espresso 

version. The failure rate reduction using duplication with 0.01 threshold is 48%. 

The area for each experiment in each circuit is shown in Table 6.6. The most area 

overhead on average compared to the original area is 86% for 0.005 threshold. This is 

followed by 79% for 0.01 threshold with duplication, 70% for 0.01 threshold without 

duplication, 50% for 0.05 threshold, 47% for irredundant version, and then 38% for 

Espresso version.  

The overall averages derived from the previously mentioned tables are shown in Table 

6.7. We can say that on average, the best failure rate reduction is 55% for the 0.01 

duplicate version. This is followed by 52% for 0.005 threshold, 48% for 0.01 threshold, 

41% for 0.05 threshold, 38% for irredundant version, and then 30% for Espresso version. 
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Based on the results in this sub-section, we can draw the following conclusions: 

 As we decrease the value of redundancy threshold in Algorithm 1, as we obtain a 

better circuit in terms of failure rate, but with a larger cost in terms of area 

overhead. 

 Effectiveness of duplication depends on the circuit itself. Some circuits show a 

significant improvement using duplication like test1, bench1, cps, table3 and 

table5 circuits. 

 Using Redundancy threshold of 0.01 with duplication is recommended since it 

reduces the failure rate dramatically by 55% on average when compared to 

original circuit. However, the area overhead is 79% on average. 

 Larger circuits in terms of area have better failure rates reductions, since the 

number of extracted circuits will be larger and there will be more room for 

maximizing fault masking. 

 Circuits with large number of primary inputs have limited failure reductions, since 

we can‘t calculate all possible don‘t cares for extracted sub-circuits in a feasible 

time. 
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Table 6.3: Failure rate results for MCNC combinational benchmark circuits - Injecting 

1 fault. 

Circuits Original 
Comparison 

Espresso 

Algorithm 1 - Redundancy Threshold 

Irredundant 0.05 0.01 0.005 
0.01-

Duplicate 

apex3 0.119 0.054 0.051 0.051 0.047 0.043 0.042 
apex4 0.093 0.060 0.046 0.045 0.044 0.034 0.036 

bench1 0.131 0.094 0.081 0.076 0.062 0.056 0.051 

cps 0.166 0.115 0.098 0.089 0.077 0.070 0.067 

duke2 0.152 0.086 0.078 0.070 0.064 0.062 0.063 
ex1010 0.083 0.058 0.046 0.042 0.035 0.029 0.028 

exp 0.185 0.112 0.090 0.087 0.071 0.066 0.067 

m3 0.152 0.080 0.072 0.071 0.062 0.060 0.059 

misex3 0.087 0.054 0.042 0.040 0.036 0.033 0.034 

spla 0.163 0.102 0.094 0.090 0.085 0.079 0.076 

table3 0.108 0.074 0.063 0.061 0.049 0.048 0.038 
table5 0.123 0.080 0.063 0.063 0.050 0.045 0.034 
test1 0.136 0.100 0.092 0.087 0.077 0.065 0.058 

test4 0.130 0.090 0.074 0.071 0.061 0.054 0.056 

        
Circuits Original 

Comparison 
Espresso 

Algorithm 1 - Redundancy Threshold 

Irredundant 0.05 0.01 0.005 
0.01-

Duplicate 

apex3 0% -55% -57% -57% -61% -63% -65% 

apex4 0% -36% -50% -52% -53% -63% -61% 

bench1 0% -28% -38% -42% -52% -57% -61% 

cps 0% -31% -41% -46% -54% -58% -60% 

duke2 0% -44% -49% -54% -58% -60% -59% 

ex1010 0% -30% -44% -49% -58% -65% -66% 

exp 0% -39% -51% -53% -62% -64% -64% 

m3 0% -47% -53% -54% -59% -61% -61% 

misex3 0% -38% -51% -54% -58% -62% -61% 

spla 0% -37% -42% -45% -48% -52% -53% 

table3 0% -32% -41% -44% -55% -56% -65% 

table5 0% -35% -49% -49% -59% -63% -72% 

test1 0% -27% -33% -36% -44% -52% -57% 

test4 0% -31% -43% -46% -53% -59% -57% 

Average 0% -36% -46% -49% -55% -60% -62% 
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Table 6.4: Failure rate results for MCNC combinational benchmark circuits - Injecting 

5 faults.  

Circuits Original 
Comparison 

Espresso 

Algorithm 1 - Redundancy Threshold 

Irredundant 0.05 0.01 0.005 
0.01-

Duplicate 

apex3 0.467 0.248 0.227 0.228 0.205 0.204 0.193 

apex4 0.379 0.276 0.233 0.226 0.191 0.177 0.169 

bench1 0.503 0.381 0.347 0.345 0.285 0.259 0.208 

cps 0.595 0.431 0.397 0.372 0.337 0.326 0.281 

duke2 0.567 0.377 0.325 0.312 0.270 0.252 0.259 

ex1010 0.357 0.247 0.210 0.198 0.166 0.138 0.130 

exp 0.632 0.444 0.403 0.368 0.299 0.274 0.294 

m3 0.540 0.328 0.302 0.294 0.271 0.248 0.267 

misex3 0.378 0.234 0.194 0.192 0.162 0.156 0.160 

spla 0.594 0.417 0.409 0.395 0.350 0.331 0.329 

table3 0.430 0.317 0.258 0.252 0.218 0.211 0.180 

table5 0.476 0.346 0.285 0.262 0.219 0.195 0.169 

test1 0.513 0.414 0.375 0.370 0.311 0.285 0.235 

test4 0.494 0.362 0.322 0.303 0.269 0.248 0.243 

        
Circuits Original 

Comparison 
Espresso 

Algorithm 1 - Redundancy Threshold 

Irredundant 0.05 0.01 0.005 
0.01-

Duplicate 

apex3 0% -47% -51% -51% -56% -56% -59% 

apex4 0% -27% -38% -40% -50% -53% -55% 

bench1 0% -24% -31% -31% -43% -48% -59% 

cps 0% -28% -33% -38% -43% -45% -53% 

duke2 0% -34% -43% -45% -52% -56% -54% 

ex1010 0% -31% -41% -45% -53% -61% -64% 

exp 0% -30% -36% -42% -53% -57% -54% 

m3 0% -39% -44% -46% -50% -54% -51% 

misex3 0% -38% -49% -49% -57% -59% -58% 

spla 0% -30% -31% -34% -41% -44% -45% 

table3 0% -26% -40% -41% -49% -51% -58% 

table5 0% -27% -40% -45% -54% -59% -65% 

test1 0% -19% -27% -28% -39% -45% -54% 

test4 0% -27% -35% -39% -46% -50% -51% 

Average 0% -30% -39% -41% -49% -53% -56% 
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Table 6.5: Failure rate results for MCNC combinational benchmark circuits - Injecting 

10 faults. 

Circuits Original 
Comparison 

Espresso 

Algorithm 1 - Redundancy Threshold 

Irredundant 0.05 0.01 0.005 
0.01-

Duplicate 

apex3 0.713 0.418 0.401 0.403 0.368 0.347 0.340 

apex4 0.620 0.479 0.406 0.398 0.346 0.323 0.304 

bench1 0.739 0.607 0.559 0.556 0.490 0.448 0.367 

cps 0.8407 0.6704 0.6471 0.6065 0.5558 0.5376 0.481 

duke2 0.7934 0.6031 0.5363 0.5085 0.4701 0.4432 0.442 

ex1010 0.572 0.415 0.373 0.349 0.308 0.261 0.247 

exp 0.861 0.680 0.625 0.605 0.485 0.465 0.475 

m3 0.792 0.523 0.484 0.484 0.451 0.406 0.435 

misex3 0.600 0.421 0.361 0.342 0.288 0.288 0.284 

spla 0.8199 0.6556 0.6304 0.6176 0.5744 0.532 0.541 

table3 0.6596 0.5204 0.4551 0.4449 0.3834 0.3614 0.327 

table5 0.7274 0.5604 0.486 0.4472 0.3881 0.352 0.309 

test1 0.762 0.651 0.610 0.592 0.530 0.487 0.424 

test4 0.735 0.576 0.538 0.524 0.470 0.425 0.418 

        
Circuits Original 

Comparison 
Espresso 

Algorithm 1 - Redundancy Threshold 

Irredundant 0.05 0.01 0.005 
0.01-

Duplicate 

apex3 0% -41% -44% -44% -48% -51% -52% 

apex4 0% -23% -35% -36% -44% -48% -51% 

bench1 0% -18% -24% -25% -34% -39% -50% 

cps 0% -20% -23% -28% -34% -36% -43% 

duke2 0% -24% -32% -36% -41% -44% -44% 

ex1010 0% -28% -35% -39% -46% -54% -57% 

exp 0% -21% -27% -30% -44% -46% -45% 

m3 0% -34% -39% -39% -43% -49% -45% 

misex3 0% -30% -40% -43% -52% -52% -53% 

spla 0% -20% -23% -25% -30% -35% -34% 

table3 0% -21% -31% -33% -42% -45% -50% 

table5 0% -23% -33% -39% -47% -52% -58% 

test1 0% -15% -20% -22% -30% -36% -44% 

test4 0% -22% -27% -29% -36% -42% -43% 

Average 0% -24% -31% -33% -41% -45% -48% 
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Table 6.6: Area overhead for combinational benchmark circuits. 

Circuits Original 
Comparison 

Espresso 

Algorithm 1 - Redundancy Threshold 

Irredundant 0.05 0.01 0.005 
0.01-

Duplicate 

apex3 2302 4622 4769 4782 5239 5532 5461 

apex4 3010 4446 4959 4983 5478 5932 5762 

bench1 1487 1867 2030 2062 2374 2622 2639 

cps 1728 2183 2264 2371 2660 2829 2844 

duke2 632 841 904 934 1046 1150 1073 

ex1010 4712 6777 7537 7695 8995 9957 9573 

exp 430 567 592 610 728 796 732 

m3 358 537 564 564 601 691 605 

misex3 1020 1369 1473 1516 1710 1854 1728 

spla 555 692 700 710 830 910 859 

table3 1171 1445 1579 1597 1804 1966 1924 

table5 1333 1644 1783 1873 2138 2391 2301 

test1 1189 1492 1589 1624 1903 2091 2124 

test4 3083 4171 4535 4628 5287 5776 5577 

        
Circuits Original 

Comparison 
Espresso 

Algorithm 1 - Redundancy Threshold 

Irredundant 0.05 0.01 0.005 
0.01-

Duplicate 

apex3 0% 101% 107% 108% 128% 140% 137% 

apex4 0% 48% 65% 66% 82% 97% 91% 

bench1 0% 26% 37% 39% 60% 76% 77% 

cps 0% 26% 31% 37% 54% 64% 65% 

duke2 0% 33% 43% 48% 66% 82% 70% 

ex1010 0% 44% 60% 63% 91% 111% 103% 

exp 0% 32% 38% 42% 69% 85% 70% 

m3 0% 50% 58% 58% 68% 93% 69% 

misex3 0% 34% 44% 49% 68% 82% 69% 

spla 0% 25% 26% 28% 50% 64% 55% 

table3 0% 23% 35% 36% 54% 68% 64% 

table5 0% 23% 34% 41% 60% 79% 73% 

test1 0% 25% 34% 37% 60% 76% 79% 

test4 0% 35% 47% 50% 71% 87% 81% 

Average 0% 38% 47% 50% 70% 86% 79% 
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Table 6.7: Overall averaged failure rate results for benchmark circuits. 

Circuits Original 
Comparison 

Espresso 

Algorithm 1 - Redundancy Threshold 

Irredundant 0.05 0.01 0.005 
0.01-

Duplicate 

1 0% -36% -46% -49% -55% -60% -62% 

5 0% -30% -39% -41% -49% -53% -56% 

10 0% -24% -31% -33% -41% -45% -48% 

Average 0% -30% -38% -41% -48% -52% -55% 

 

 

6.4 Algorithm 2 Results 

In this section, we will apply Algorithm 2 to combinational benchmark circuits 

resulting after applying Algorithm 1. The aggregated results are reported and discussed in 

this section. The experiments for Algorithm 2 specified in Section 6.1 are implemented. 

Results of failure rate for benchmark circuits by injecting 1, 5, and 10 faults are shown in 

Table 6.8 , Table 6.9 and Table 6.10. In those tables, the amount of failure rate increase 

after applying Algorithm 2 compared to Algorithm 1 with 0.01 threshold version using 

duplication is stated and averaged among all circuits.  

From these tables, we can draw the following conclusions: 

 By injecting 1 fault, the best failure rate increase is 7% for 0.1 threshold using 

Algorithm 2. This is followed by 11% failure rate increase for 0.3 threshold, then 

16% failure rate increase for fx for area experiment. 
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 By injecting 5 faults, the best failure rate increase is 5% for 0.1 threshold using 

Algorithm 2. This is followed by 8% failure rate increase for 0.3 threshold, then 

13% failure rate increase for fx for area experiment. 

 By injecting 10 faults, the best failure rate increase is 6% for 0.1 threshold using 

Algorithm 2. This is followed by 8% failure rate overhead for 0.3 increase, then 

11% failure rate increase for fx for area experiment. 

The area for each experiment in each circuit is shown in Table 6.11. The most area 

reduction on average is 13% for fx for area experiment. This is followed by 11% for 0.3 

threshold using algorithm 2 then 10% for 0.1 threshold. 

The overall averages of failure rate overhead derived from the previously mentioned 

tables are shown in Table 6.12. We can say that on average, the best failure rate increase 

is 6% for 0.1 threshold using Algorithm 2. This is followed by 9% failure rate increase 

for 0.3 threshold, then 13% failure rate increase for fx-area experiment. 

Based on the results in this section, we can draw the following conclusions: 

 Using Algorithm 2 with 0.1 threshold, we can get around 10% reduction in area 

compared to area obtained after applying Algorithm 1. However, the failure rate 

can increase by 6%. 

 Using Algorithm 2, we can get better circuits in terms of reliability than using the 

original fx algorithm to optimize area. However, original fx gives better circuits in 

terms of area. 
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Table 6.8: Failure rate results for combinational benchmark circuits using Algorithm 2 

- Injecting 1 fault.  

Circuits 
Algorithm 1 - 

Threshold = 0.01 
fx-Area 

Algorithm 2 -  Threshold 

0.3 0.1 

apex3 0.042 0.066 0.061 0.051 

apex4 0.036 0.039 0.038 0.037 

bench1 0.051 0.056 0.054 0.052 

cps 0.067 0.070 0.069 0.068 

duke2 0.063 0.069 0.064 0.063 

ex1010 0.028 0.033 0.030 0.030 

exp 0.067 0.074 0.072 0.071 

m3 0.059 0.070 0.070 0.069 

misex3 0.034 0.040 0.039 0.036 

spla 0.076 0.084 0.080 0.079 

table3 0.038 0.045 0.043 0.040 

table5 0.034 0.042 0.039 0.037 

test1 0.058 0.060 0.059 0.059 

test4 0.056 0.063 0.062 0.061 

     
Circuits 

Algorithm 1 - 
Threshold = 0.01 

fx-Area 
Algorithm 2 -  Threshold 

0.3 0.1 

apex3 0% 57% 46% 23% 

apex4 0% 8% 6% 4% 

bench1 0% 11% 7% 3% 

cps 0% 4% 3% 1% 

duke2 0% 10% 2% 1% 

ex1010 0% 14% 6% 5% 

exp 0% 11% 8% 6% 

m3 0% 19% 19% 17% 

misex3 0% 16% 13% 6% 

spla 0% 11% 5% 3% 

table3 0% 19% 13% 6% 

table5 0% 21% 13% 8% 

test1 0% 3% 1% 1% 

test4 0% 13% 11% 10% 

Average 0% 16% 11% 7% 

 



111 

 

 

 

Table 6.9: Failure rate results for combinational benchmark circuits using Algorithm 2 

- Injecting 5 faults. 

Circuits 
Algorithm 1 - 

Threshold = 0.01 
fx-Area 

Algorithm 2 -  Threshold 

0.3 0.1 

apex3 0.193 0.278 0.254 0.247 

apex4 0.169 0.192 0.177 0.172 

bench1 0.208 0.223 0.216 0.210 

cps 0.281 0.305 0.295 0.290 

duke2 0.259 0.298 0.283 0.279 

ex1010 0.130 0.153 0.148 0.140 

exp 0.294 0.315 0.304 0.299 

m3 0.267 0.280 0.280 0.278 

misex3 0.160 0.178 0.170 0.164 

spla 0.329 0.356 0.344 0.335 

table3 0.180 0.193 0.191 0.189 

table5 0.169 0.196 0.176 0.175 

test1 0.235 0.256 0.249 0.240 

test4 0.243 0.263 0.261 0.255 

     
Circuits 

Algorithm 1 - 
Threshold = 0.01 

fx-Area 
Algorithm 2 -  Threshold 

0.3 0.1 

apex3 0% 44% 32% 28% 

apex4 0% 14% 5% 2% 

bench1 0% 7% 3% 1% 

cps 0% 8% 5% 3% 

duke2 0% 15% 9% 7% 

ex1010 0% 18% 14% 8% 

exp 0% 7% 3% 2% 

m3 0% 5% 5% 4% 

misex3 0% 11% 7% 3% 

spla 0% 8% 5% 2% 

table3 0% 7% 6% 5% 

table5 0% 16% 4% 3% 

test1 0% 9% 6% 2% 

test4 0% 8% 7% 5% 

Average 0% 13% 8% 5% 
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Table 6.10: Failure rate results for combinational benchmark circuits using Algorithm 2 - 

Injecting 10 faults. 

Circuits 
Algorithm 1 - 

Threshold = 0.01 
fx-Area 

Algorithm 2 -  Threshold 

0.3 0.1 

apex3 0.340 0.470 0.444 0.417 

apex4 0.304 0.338 0.331 0.330 

bench1 0.367 0.402 0.395 0.391 

cps 0.481 0.519 0.502 0.493 

duke2 0.442 0.504 0.467 0.456 

ex1010 0.247 0.280 0.263 0.260 

exp 0.475 0.513 0.510 0.497 

m3 0.435 0.460 0.460 0.459 

misex3 0.284 0.314 0.311 0.308 

spla 0.541 0.573 0.554 0.549 

table3 0.327 0.354 0.351 0.340 

table5 0.309 0.336 0.312 0.310 

test1 0.424 0.441 0.435 0.430 

test4 0.418 0.457 0.451 0.445 

     
Circuits 

Algorithm 1 - 
Threshold = 0.01 

fx-Area 
Algorithm 2 -  Threshold 

0.3 0.1 

apex3 0% 38% 31% 23% 

apex4 0% 11% 9% 8% 

bench1 0% 10% 8% 6% 

cps 0% 8% 4% 3% 

duke2 0% 14% 6% 3% 

ex1010 0% 13% 7% 5% 

exp 0% 8% 7% 5% 

m3 0% 6% 6% 5% 

misex3 0% 11% 10% 8% 

spla 0% 6% 2% 1% 

table3 0% 8% 7% 4% 

table5 0% 9% 1% 0% 

test1 0% 4% 2% 1% 

test4 0% 9% 8% 6% 

Average 0% 11% 8% 6% 

 



113 

 

 

 

Table 6.11: Area reduction for combinational benchmark circuits using Algorithm 2. 

Circuits 
Redundant-

0.01 
fx-Area 

Algorithm 2 -  Threshold 

0.3 0.1 

apex3 5461 3512 3739 3896 

apex4 5762 5083 5132 5214 

bench1 2639 2429 2436 2471 

cps 2844 2591 2649 2682 

duke2 1073 912 958 972 

ex1010 9573 8262 8341 8489 

exp 732 638 663 672 

m3 605 538 542 553 

misex3 1728 1546 1570 1580 

spla 859 757 771 785 

table3 1924 1749 1756 1787 

table5 2301 2102 2131 2141 

test1 2124 1976 1994 2001 

test4 5577 4917 4946 5018 

     
Circuits 

Redundant-
0.01 

fx-Area 
Algorithm 2 -  Threshold 

0.3 0.1 

apex3 0% -36% -32% -29% 

apex4 0% -12% -11% -10% 

bench1 0% -8% -8% -6% 

cps 0% -9% -7% -6% 

duke2 0% -15% -11% -9% 

ex1010 0% -14% -13% -11% 

exp 0% -13% -9% -8% 

m3 0% -11% -10% -9% 

misex3 0% -11% -9% -9% 

spla 0% -12% -10% -9% 

table3 0% -9% -9% -7% 

table5 0% -9% -7% -7% 

test1 0% -7% -6% -6% 

test4 0% -12% -11% -10% 

Average 0% -13% -11% -10% 
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Table 6.12: Overall averaged failure rate overhead for benchmark circuits using 

Algorithm 2. 

Injected 
Faults 

Algorithm1-
0.01 

fx-Area 
Algorithm 2 -  Threshold 

0.3 0.1 

1 0% 16% 11% 7% 

5 0% 13% 8% 5% 

10 0% 11% 8% 6% 

Average 0% 13% 9% 6% 
 

 

6.5 Overall Results Using Algorithm 1 and Algorithm 2 

In this section, the overall results of our technique including applying Algorithm 1 and 

Algorithm 2 compared to the original circuits is presented. The results are in terms of 

failure rate and area overhead. Two versions are used: 

 Original: In this version, the original benchmark circuit is used. 

 Proposed: In this version, the resulting circuit after applying Algorithm 1 followed 

by Algorithm 2 on the original circuit is used. A threshold of 0.01 with duplication 

is used for Algorithm 1. Algorithm 2 is applied using a threshold of 0.1. 

Table 6.13 shows the failure rate results of the proposed version compared to the 

original version for all used benchmarks. In this table, fixed number of faults is injected 

in both versions: 1, 5 and 10 faults. On average, results show that the proposed version 

reduces failure rate by 59% if one fault is injected, 53% if 5 faults are injected and 45% if 

10 faults are injected. Table 6.15 shows the area overhead of the proposed version 
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compared to the original one. It shows that proposed version adds an area overhead of 

61% on average compared to original version. 

In the previous results, for each circuit, we are comparing the original circuit with the 

proposed circuit by finding the failure rate for a fixed number of faults. However, another 

comparison that can be made is by making the number of injected faults proportional to 

circuit area. For instance, if we inject one fault in the original circuit, and the area of the 

new proposed circuit is twice the original, then we inject 2 faults in the new circuit. 

According to area overhead shown in Table 6.15, we can derive the number of faults that 

should be injected for synthesized circuits if k faults are injected in the original circuit. 

Table 6.14 shows the failure rate results if a fixed number of faults are injected in the 

original version: 1, 5 and 10 faults. The number of faults injected in the proposed version 

is proportional to its area compared to original area. On average, results show that the 

proposed version reduces failure rate by 24% if one fault is injected in the original 

version, 31% if 5 faults are injected and 24% if 10 faults are injected. 
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Table 6.13: Overall results of failure rate for benchmark circuits using fixed number of 

faults 1, 5 and 10. 

Circuits 
1 Fault 5 Faults 10 Faults 

original proposed original proposed original proposed 

apex3 0.119 0.051 0.467 0.247 0.713 0.417 

apex4 0.093 0.037 0.379 0.172 0.620 0.330 

bench1 0.131 0.052 0.503 0.210 0.739 0.391 

cps 0.166 0.068 0.595 0.290 0.841 0.493 

duke2 0.152 0.063 0.567 0.279 0.793 0.456 

ex1010 0.083 0.030 0.357 0.140 0.572 0.260 

exp 0.185 0.071 0.632 0.299 0.861 0.497 

m3 0.152 0.069 0.540 0.278 0.792 0.459 

misex3 0.087 0.036 0.378 0.164 0.600 0.308 

spla 0.163 0.079 0.594 0.335 0.820 0.549 

table3 0.108 0.040 0.430 0.189 0.660 0.340 

table5 0.123 0.037 0.476 0.175 0.727 0.310 

test1 0.136 0.059 0.513 0.240 0.762 0.430 

test4 0.130 0.061 0.494 0.255 0.735 0.445 

       
Circuits 

1 Fault 5 Faults 10 Faults 

original proposed original proposed original proposed 

apex3 0% -57% 0% -47% 0% -42% 

apex4 0% -60% 0% -55% 0% -47% 

bench1 0% -60% 0% -58% 0% -47% 

cps 0% -59% 0% -51% 0% -41% 

duke2 0% -59% 0% -51% 0% -43% 

ex1010 0% -64% 0% -61% 0% -55% 

exp 0% -62% 0% -53% 0% -42% 

m3 0% -55% 0% -49% 0% -42% 

misex3 0% -59% 0% -57% 0% -49% 

spla 0% -52% 0% -44% 0% -33% 

table3 0% -63% 0% -56% 0% -49% 

table5 0% -70% 0% -63% 0% -57% 

test1 0% -57% 0% -53% 0% -44% 

test4 0% -53% 0% -48% 0% -39% 

Average 0% -59% 0% -53% 0% -45% 
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Table 6.14: Overall results of failure rate for benchmark circuits using fixed number of 

faults 1, 5 and 10 at the original version. 

Circuits 

1 Fault at original 5 Faults at original 10 Faults at original 

Fail Rate 
original 

proposed Fail Rate 
original 

proposed Fail Rate 
original 

proposed 

Faults 
Fail 

Rate 
Faults 

Fail 
Rate 

Faults 
Fail 

Rate 

apex3 0.119 2 0.1059 0.467 8 0.3655 0.713 17 0.5981 

apex4 0.093 2 0.0795 0.379 9 0.2705 0.620 17 0.4801 

bench1 0.131 2 0.0897 0.503 8 0.3300 0.739 17 0.5555 

cps 0.166 2 0.1270 0.595 8 0.4168 0.8407 16 0.6832 

duke2 0.152 2 0.1231 0.567 8 0.4037 0.7934 15 0.6107 

ex1010 0.083 2 0.0598 0.357 9 0.2332 0.572 18 0.4204 

exp 0.185 2 0.1363 0.632 8 0.4312 0.861 16 0.6660 

m3 0.152 2 0.1313 0.540 8 0.3920 0.792 15 0.5778 

misex3 0.087 2 0.0728 0.378 8 0.2524 0.600 15 0.4139 

spla 0.163 1 0.0847 0.594 7 0.4366 0.8199 14 0.6645 

table3 0.108 2 0.0782 0.430 8 0.2839 0.6596 15 0.4632 

table5 0.123 2 0.0746 0.476 8 0.2590 0.7274 16 0.4531 

test1 0.136 2 0.1072 0.513 8 0.3660 0.762 17 0.6208 

test4 0.130 2 0.1148 0.494 8 0.3694 0.735 16 0.6054 

          

Circuits 

1 Fault at original 5 Faults at original 10 Faults at original 

Fail Rate 
original 

proposed Fail Rate 
original 

proposed Fail Rate 
original 

proposed 

Faults 
Fail 

Rate 
Faults 

Fail 
Rate 

Faults 
Fail 

Rate 

apex3 0% 2 -11% 0% 8 -22% 0% 17 -16% 

apex4 0% 2 -15% 0% 9 -29% 0% 17 -23% 

bench1 0% 2 -31% 0% 8 -34% 0% 17 -25% 

cps 0% 2 -24% 0% 8 -30% 0% 16 -19% 

duke2 0% 2 -19% 0% 8 -29% 0% 15 -23% 

ex1010 0% 2 -28% 0% 9 -35% 0% 18 -27% 

exp 0% 2 -26% 0% 8 -32% 0% 16 -23% 

m3 0% 2 -14% 0% 8 -27% 0% 15 -27% 

misex3 0% 2 -16% 0% 8 -33% 0% 15 -31% 

spla 0% 1 -48% 0% 7 -27% 0% 14 -19% 

table3 0% 2 -28% 0% 8 -34% 0% 15 -30% 

table5 0% 2 -39% 0% 8 -46% 0% 16 -38% 

test1 0% 2 -21% 0% 8 -29% 0% 17 -19% 

test4 0% 2 -12% 0% 8 -25% 0% 16 -18% 

Average 
  

-24% 
  

-31% 
  

-24% 
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Table 6.15: Area overhead for combinational benchmark circuits using proposed 

technique compared to original circuits. 

Circuits Original Proposed Overhead 

apex3 2302 3896 69% 
apex4 3010 5214 73% 

bench1 1487 2471 66% 
cps 1728 2682 55% 

duke2 632 972 54% 
ex1010 4712 8489 80% 

exp 430 672 56% 
m3 358 553 54% 

misex3 1020 1580 55% 
spla 555 785 41% 

table3 1171 1787 53% 
table5 1333 2141 61% 
test1 1189 2001 68% 
test4 3083 5018 63% 

  

Average 61% 

 

 

6.6 Comparison Results 

In this section, a comparison between Algorithm1 results and the reliability driven 

don‘t care assignment technique described in Chapter 2 is reported. Four versions are 

used to compare with reliability driven don‘t care assignment technique[37]: 

 Algorithm1-Irredundnat: No duplication is used. 

 Algorithm1-0.01: In this version, Algorithm1 is applied on extracted sub-

circuit using a threshold value of 0.01. No duplication is used. 

 Algorithm1-0.005: In this version, Algorithm1 is applied on extracted sub-

circuit using a threshold value of 0.005. No duplication is used. 
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 Ranking-based Don‘t Care: In this version, the ranking-based DC assignment 

algorithm proposed in [37] is used. This algorithm is applied on each extracted 

sub-circuit using a fraction value of 0.6. 

To perform the comparison, a fixed number of faults (10 faults) are injected in circuits 

of Algorithm1-Irredundnat version. For the other versions, the number of injected faults 

is proportional to the area in each version if 10 faults are injected in the irredundant 

version. Failure rate results of the previous experiments are shown in Table 6.16. The 

results show that the ranking-based DC assignment technique gives higher failure rates 

and higher area overhead compared to Algorithm 1. On average, it increases the failure 

rate by 14% compared to Algorithm 1 implementation with 0.05-threshold, 14% 

compared to 0.01 threshold and 7% compared to the Irredundant version.  

The area increase is reported in Table 6.17. It‘s shown that on average, a 5% area 

increase is added when using ranking-based DC assignment algorithm compared to 

Algorithm 1 with 0.05-threshold, 15% compared to 0.01 threshold and 33% compared to 

the Irredundant version. Algorithm 1 shows better failure rate results compared to 

ranking-based DC assignment algorithm results with less area overhead. This is due to 

carefully selecting cubes to cover minterms according to probability of minterms instead 

of blindly assigning don‘t cares to either on-set or off-set. 
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Table 6.16: Failure rate results for Ranking-based Don‘t Care comparison. 

Circuits 

Algorithm1-
Irredundant 

Algorithm1-
0.01 

Algorithm1-
0.005 

Ranking-based DC Failure Rate Increase  

Faults 
Failure 

Rate 
Faults 

Failure 
Rate 

Faults 
Failure 

Rate 
Faults 

Failure 
Rate 

Irred. 
Thr- 
0.01 

Thr- 
0.005 

apex3 10 0.401 11 0.395 12 0.398 10 0.417 4% 5% 5% 

apex4 10 0.406 11 0.377 12 0.379 15 0.448 10% 18% 18% 

bench1 10 0.559 12 0.540 13 0.539 13 0.584 4% 8% 8% 

cps 10 0.647 12 0.625 12 0.599 11 0.673 4% 12% 12% 

duke2 10 0.536 12 0.526 13 0.527 10 0.582 9% 10% 10% 

ex1010 10 0.373 12 0.341 13 0.341 13 0.380 2% 12% 12% 

exp 10 0.625 12 0.544 13 0.552 13 0.653 5% 18% 18% 

m3 10 0.484 11 0.468 12 0.452 23 0.522 8% 15% 15% 

misex3 10 0.361 12 0.340 13 0.341 16 0.445 23% 30% 30% 

spla 10 0.630 12 0.634 13 0.639 11 0.651 3% 2% 2% 

table3 10 0.455 11 0.413 12 0.409 11 0.483 6% 18% 18% 

table5 10 0.486 12 0.451 13 0.432 11 0.546 12% 26% 26% 

test1 10 0.610 12 0.581 13 0.583 13 0.626 3% 7% 7% 

test4 10 0.538 12 0.540 13 0.503 15 0.595 11% 18% 18% 

        
Average 7% 14% 14% 

 

Table 6.17: Area overhead of Ranking-based DC compared to Algorithm 1 versions. 

Circuits 
Algorithm1-
Irredundant 

Algorithm1-
0.01 

Algorithm1-
0.005 

Ranking-
based DC 

Area Increase  

Irred. Thr- 0.01 
Thr- 

0.005 

apex3 4769 5239 5532 4875 2% -7% -12% 

apex4 4959 5478 5932 7234 46% 32% 22% 

bench1 2030 2374 2622 2623 29% 10% 0% 

cps 2264 2660 2829 2448 8% -8% -13% 

duke2 904 1046 1150 947 5% -9% -18% 

ex1010 7537 8995 9957 10061 33% 12% 1% 

exp 592 728 796 769 30% 6% -3% 

m3 564 605 691 1317 134% 118% 91% 

misex3 1473 1710 1854 2355 60% 38% 27% 

spla 700 830 910 796 14% -4% -13% 

table3 1579 1804 1966 1802 14% 0% -8% 

table5 1783 2138 2391 1981 11% -7% -17% 

test1 1589 1903 2091 2101 32% 10% 0% 

test4 4535 5287 5776 6710 48% 27% 16% 

    

Average 33% 15% 5% 
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6.7 Proposed Technique with TMR 

In this section, we integrate our proposed method with TMR technique. That is, 

instead of using the original circuit in each module in TMR, we use the circuit after 

applying our technique using Algorithm 1 and 2. Two versions are used in this section: 

 TMR-original: In this version, the original circuit is triplicated. 

 TMR-proposed: In this version, the circuit resulting after applying Algorithm1 

with threshold 0.01(with duplication) and Algorithm2 with 0.1 threshold is 

triplicated. 

Fixed number of faults (10 faults) is injected in the TMR-original version. The number 

of faults injected in the TMR-proposed version is proportional to its area compared to 

TMR-original version. Table 6.18 shows the failure results of the previous two 

experiments. It shows that TMR-proposed failure rates show a significant reduction 

compared to TMR-original. This reduction is 27% on average. This is due to the decrease 

in the probability for two modules to fail. The area overhead is reported in Table 6.19. 

It‘s shown that on average, a 57% area overhead is added when using the proposed circuit 

instead of the original circuit in the TMR structure. 
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Table 6.18: Failure rate results for TMR experiments. 

Circuits 

TMR -Original TMR - Algo1 -Algo2 Failure 
Rate 

Reduction  
Injected 
Faults 

Failure 
Rate 

Injected 
Faults 

Failure 
Rate 

apex3 10 0.1365 17 0.1171 -14% 

apex4 10 0.0604 17 0.0443 -27% 

bench1 10 0.1196 16 0.0622 -48% 

cps 10 0.2301 15 0.1994 -13% 

duke2 10 0.212 15 0.1852 -13% 

ex1010 10 0.0557 18 0.0255 -54% 

exp 10 0.2465 15 0.181 -27% 

m3 10 0.2275 15 0.2043 -10% 

misex3 10 0.0967 15 0.0818 -15% 

spla 10 0.2956 13 0.2556 -14% 

table3 10 0.1061 15 0.0731 -31% 

table5 10 0.1364 16 0.0711 -48% 

test1 10 0.1161 17 0.0773 -33% 

test4 10 0.1161 16 0.0773 -33% 

 
   

Average -27% 

 

Table 6.19: Area overhead for TMR experiments. 

Circuits TMR -Original TMR - Algo1 -Algo2 Overhead 

apex3 7191 11929 66% 

apex4 9174 15710 71% 

bench1 4551 7476 64% 

cps 5919 8626 46% 

duke2 2111 3106 47% 

ex1010 14181 25534 80% 

exp 1383 2116 53% 

m3 1165 1759 51% 

misex3 3156 4771 51% 

spla 1995 2640 32% 

table3 3599 5421 51% 

table5 4080 6445 58% 

test1 3635 6088 67% 

test4 9488 15228 60% 

  

Average 57% 
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Chapter 7  

CONCLUSION AND FUTURE 

WORK 

Recently, systems became more subjected to higher manufacturing defects and higher 

susceptibility to soft errors due to the exponential decrease in device feature size. 

Currently, soft errors induced by ion particles are no longer limited to specific field such 

as aerospace applications. This raises the challenge to come up with techniques to tackle 

transient or soft error effects in both combinational and sequential circuits in general. In 

this work, we have analyzed, modeled and designed combinational circuits to increase its 

immunity to radiation induced transient faults or soft errors. 

We have introduced a novel idea to increase combinational circuit reliability and 

hence fault tolerance. This idea is based on extracting sub-circuits from the original 

multi-level circuit and re-synthesizing each extracted sub-circuit to increase fault 

masking. After that, the re-synthesized sub-circuits are merged back to the original 

circuit. Therefore, the overall reliability of the original circuit will be enhanced as well. 

We have presented a two-level synthesis scheme to maximize soft error masking that is 

applied on each extracted circuit, presented as Algorithm 1. This scheme provides a 

heuristic that first finds the best irredundant set of cubes to cover an extracted sub-circuit 



124 

 

 

 

minterms such that fault masking for single fault is maximized especially for minterms 

with high probability of occurrence. Then, an extra number of cubes can be added as 

redundant cubes to the cover such that they have a significant effect on maximizing error 

masking.    

Algorithm 1 experimental results show that the best failure rate reduction compared to 

the original circuit is found to be 55% on average using 0.01 threshold with duplication, 

52% reduction for 0.005 threshold, 48% reduction for 0.01 threshold without duplication,  

41% reduction for 0.05 threshold and 38% for the irredundant version. The area overhead 

is on average 79%, 86%, 70%, 50% and 47% respectively. Hence, a threshold of value 

0.01 with duplication is recommended. This value provides the best tradeoff between area 

overhead and improved fault tolerance.  

A technique based on modification of the fast extraction algorithm, presented as 

Algorithm 2, has been proposed to enhance area overhead to optimized circuits obtained 

by Algorithm 1. Algorithm 2 results show that we can get around 10% reduction in area 

compared to area obtained after applying Algorithm 1, with a failure rate increase by 6%. 

The final results after applying Algorithm 1 followed by Algorithm 2 are reported. 

Algorithm 1 is used with the recommended threshold of 0.01 with duplication. Algorithm 

2 is used with 0.1 threshold. If a fixed number of faults are injected in both the original 

circuit and the new re-synthesized circuit, an average failure rate reduction of 52% is 

obtained compared to original circuit. However, if the number of injected faults in the 

new re-synthesized circuit is proportional to area compared to original area, an average 



125 

 

 

 

failure rate reduction of 26% is obtained compared to the original circuit. An average 

area overhead of 61% is added compared to the original circuit. 

7.1 Summary of the Contributions 

The contributions of this thesis can be summarized as follows:  

 Implemented a tool for extracting sub-circuits from an original multi-level 

circuit, finding inputs don‘t cares, and the probability of care minterms for 

each extracted sub-circuit. 

 Implemented a tool for  computing soft error reliability for combinational 

circuits based on Monte Carlo simulation [10]. The objective of this tool is to 

find the failure rate of a combinational circuit as more faults are observed in 

the circuit. The Monte Carlo based simulation tool has been developed using 

C# [52] in Windows system to assess the soft error reliability of the resulting 

synthesized circuits.  

 Developed and implemented an algorithm to enhance reliability of 

combinational circuits based on enhancing reliability of each individual 

circuit. A two-level synthesis heuristic has been proposed and applied on each 

extracted sub-circuit that attempts to find the best cover that maximizes fault 

masking while keeping area overhead minimum. 

 Implemented a multi-level tool based on the fast extraction algorithm that 

reduces the area overhead resulting after applying the two-level tool. 

 Evaluated the proposed approaches in terms of failure rate and area overhead. 
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7.2 Future Work 

In our work, only the logic masking property was considered to maximize fault 

masking. As a future work, the latching window masking property can be taken into 

account as well. This can help in reducing the area overhead resulting from adding more 

redundant cubes. In other words, if a fault in a certain sub-circuit can be masked 

according to latching window property, then no need to add redundant cubes for that sub-

circuit. 

An enhancement for the reliability driven don‘t care assignment technique[37] can be 

done as a future work too. By getting benefit from probabilities of care minterms, don‘t 

cares can be assigned to either on or off based on the probabilities of neighboring 

minterms. If the neighboring on-minterms have higher probability of occurrence, a don‘t 

care is assigned to on-set. Otherwise it‘s assigned to off-set. If the probability of 

occurrence for on and off neighboring minterms are close to each other, a don‘t care isn‘t 

assigned to any phase.   
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