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 The problem of sub-channel assignment and power allocation for a multiuser 

Orthogonal Frequency Division Multiplexing (OFDM) system while maximizing the 

total system throughput and satisfying the proportional rates constraint can be modeled as 

a mixed binary integer programming problem. The optimal solution for this problem is 

generally hard to find. In this thesis we develop and evaluate an Ant Colony-based 

optimization (ACO) algorithm to solve the problem and obtain solutions of acceptable 

qualities in terms of total system throughput and compliance with the proportional rates 

constraint, referred to by fairness. The developed algorithm performs joint sub-channel 

assignment and power allocation without making assumptions in regard to the initial 

power allocation. The algorithm performance is evaluated using simulations and is 

compared against several suboptimal deterministic algorithms from the related literature. 

Evaluation indicates that the ACO-based algorithm is able to obtain solutions that 

outperform the considered competing algorithms for most of the typical input parameters 

at the cost of prolonged execution time. In addition, the thesis also proposes a novel 

method to synthesize an optimization problem with a known answer and utilizes this 
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against the optimal solution of the synthesized problem. The thesis includes numerical 

examples depicting the comparisons and highlighting the main features of the proposed 

algorithm. 
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THESIS ABSTRACT (ARABIC) 

 

 الرسالةملخص   

 محمد خلف             :الاسم

   نظمة التقسيم متعامدة التردد ومتعددة الوصولإداة الموارد لأ :عنوان الرسالة

 تقنيات التحسين المستمدة من مستعمرات النمل باستخدام             

  شبكات الحاسوب       :خصصتال

 (م2012  يناير) -هـ  1433صفر   :تأريخ التخرج

 

إن مشكلة توزيع القنوات الفرعية والطاقة لنظام التقسيم المتعامد التردد والمتعدد الوصول لأكثر من 

نتاجية النظام الكلي وتحقق القيود النموذجية من إجمالي الطاقة والإنصاف إمستخدم والتي تعظم 

لأمثل لهذه عموما، من الصعب العثور على الحل ا. تعتبر مشكلة مختلطة ثنائية برمجية وعددية

حل هذه المشكلة ل ن مستعمرة النملخوارزمية تحسي لرسالة نريد تطوير وتقييمهذه ا في .المشكلة

إنتاجية النظام الكلي والامتثال لمعدلات القيد النسبي والحصول على حلول مقبولة الصفات من حيث 

ة معا لكل عية والطاقخصص كل من القنوات الفرإن الخوارزمية المطورة ت. المشار اليها بالانصاف

لقد تم تقييم أداء الخوارزمية . ا يتعلق بتوزيع الطاقة الاوليةفيمافتراضات من دون وضع  مستخدم

إن تقييم خوارزمية  .باستخدام المحاكاة والمقارنة مع عدة خوارزميات من المؤلفات ذات الصلة

تحسين مستعمرة النمل يشير الى أن الخوارزمية قادرة على الحصول على حلول أفضل من 

. بحاجة لفترات طويلة من التنفيذالخوارزميات المنافسة لمعظم معلمات الادخال النموذجية ولكن 

استخدامة لاختبار بالإضافة الى ذلك، تقترح الرسالة طريقة مبتكرة لتوليف وتركيب الحل الافضل و

الأمثلة العددية  تتضمن وكذلك فان الرسالة. نوعية الحلول المستخرجة من الخوارزميات المختلفة

 .التي تصور المقارنات وتسلط الضوء على الملامح الرئيسية للخوارزمية المقترحة

 

 شهادة ماجستير علوم 

 جامعة الملك فهد للبترول والمعادن 

ةالمملكة العربية السعودي الظهران ،
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Chapter 1  

INTRODUCTION 

 Huge research is carried out in the area of Orthogonal Frequency Division 

Multiplexing (OFDM) due to its ability to support high bit rate communication over 

wireless channels [1]. OFDM introduces a solution for intersymbol interference (ISI) [2]. 

Basically, OFDM is a special case of multicarrier modulation where a wideband channel 

is divided into multiple narrowband sub-channels. All sub-channels may be assigned to 

one user at a time as the case for single user OFDM systems, while in Orthogonal 

Frequency Division Multiple Access (OFDMA), sub-channels and time slots are shared 

amongst users. OFDMA is the key technology used in Worldwide Interoperability for 

Microwave Access (WiMAX) and advanced mobile systems such as Long-Term 

Evolution (LTE) [3]. 

 In OFDM, sub-channels are orthogonal to each other which allow simultaneous 

transmission without interference from each other. The existence of inverse Fast Fourier 

Transform (FFT) is the reason behind the wide usage of OFDM systems [4]. OFDM is an 

enhancement over Frequency Division Multiplexing (FDM) which has the advantage of 

flat power profile over time in Time Division Multiple Access (TDMA). 

 The orthogonality of OFDM solves the problem of the frequency-selective fading 

by transforming a wideband frequency-selective channel into a set of parallel flat fading 

narrowband channels [4]. Figure 1.1 shows the OFDM signal and shows how the sub-



2 

 

 

 

channels (sub-carriers) are transmitted at the same time without interfering with each 

other. 

 

Figure ‎1.1: OFDM Signal [4] 

 

 At the same time, OFDMA allows freedom in scheduling. Therefore, recent 

research is directed to OFDMA resource allocation which is the process of assigning sub-

channels, bits, and power to different OFDMA users. The sub-channels are the signals 

that are used to carry the bits, while power is the required energy to transmit the bits 

through the sub-channels [2]. OFDM resource allocation problem is divided into two 

schemes. First one minimizes total assigned power for wired systems with a constraint on 

user data rate; while second one maximizes total data rate for wireless systems with a 

constraint on total assigned power and fairness between users. 
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 The problem of sub-channel and power allocation for a multiuser OFDMA system 

that maximizes the total system throughput while satisfying the constraints of total power 

and fairness can be modeled as a mixed binary integer programming problem [5]. The 

optimal solution is generally hard to find and considered as an NP-hard problem that is 

difficult to tackle. Therefore, solving this problem is the motivation behind this thesis 

work. This problem is described in details in the problem statement section. In addition, 

thesis objectives and thesis contribution are specified in this chapter. 

1.1  PROBLEM STATMENT 

 Assume an OFDMA system with   sub-channels that is serving   users where 

the total system bandwidth   Hz is divided into the   narrowband flat fading sub-

channels. The   sub-channels are distributed over the   users in order to maximize the 

overall network throughput. Therefore the objective function can be stated as follows 

   
         

  
     

 
                  

 

   

 

   

 (‎1.1)          

where      is the     sub-channel power gain relative to noise power as received by the 

    user,          , and          .            to indicate if the sub-channel   

is allocated to the     user. If       , then sub-channel   is allocated to the     user, 

while if       , then sub-channel   is not allocated to the     user.    is the set of sub-

channel indices where       , i.e.               . The problem is subjected to 

three constraints.  

First, the total power constraint is specified by 
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             (‎1.2)          

where        is the total power budget for the system, and      is the power allocation for 

the      sub-channel. Second, the sub-channel allocation    for different users is 

mutually exclusive. Finally, the proportional rates constraint is as follows 

                    (‎1.3)          

where    is the     user bit rate, after the allocation process is completed. The rate,   , is 

computed using  

    
 

 
                 

    

 (‎1.4)          

and the constants   ,   , …, and    are the proportional rates constraint constants. 

 To assess the compliance of the obtained solution with the proportional rates 

constraint specified by equation (1.3), this thesis utilizes the Jian’s fairness index formula 

[6] specified as follows  

     
  

  
 

 

   

     
  

  
 
  

   

   (‎1.5)          

After finding the required power allocations     ’s and computing the user rates   ’s 

using (1.4), then one can evaluate the fairness achieved by substituting in (1.5). A value 
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of one for the fairness index indicates that the proportional rates constraint is 100% 

satisfied while a value of zero indicates that the constraint is not met at all. 

 In this study, Ant Colony-based Optimization (ACO-based) algorithm is used to 

allocate sub-channels and power in a multiuser OFDMA system to obtain solutions of 

acceptable qualities in terms of total system throughput and compliance with the 

proportional rates constraint. 

1.2  Thesis Objectives 

The objectives of this thesis work are as follows: 

 To implement an ACO-based algorithm to solve the optimization problem 

specified by (1.1) while meeting the relevant constraints with refinements. 

 Analyze the performance of the ACO-based algorithm and study the effect of 

some of the algorithm input parameters on the quality of the obtained solution. 

 Compare with other algorithms [1, 5, 7, 8] that solve the optimization problem 

specified by (1.1). 

1.3  Thesis Contributions 

The contributions of this thesis work are as follows: 

 Designed and implemented an ACO-based algorithm for solving the resource 

allocation problem in multiuser OFDMA systems while meeting power and 

fairness constraints. 

 Analyzed performance on the presented ACO-based algorithm. 
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 Analyzed performance of several competing methods [1, 5, 7, 8] and comparison 

in terms of overall throughput and meeting constraints. 

 Publications: One conference paper. 



7 

 

Chapter 2  

LITERATURE REVIEW 

 In this chapter, a survey is presented of the algorithms that solve the resource 

allocation problem of multiuser OFDMA systems. After that, a survey of ACO-based 

applications in the literature is presented.  

2.1  OFDMA Resource Allocation Solutions 

 The optimal solution for the problem of sub-channel and power allocation for a 

multiuser OFDMA system that optimizes the overall throughput of the system while 

satisfying the typical constraints is generally hard to find. The problem of multiuser 

OFDMA system is considered as a non-convex optimization problem (NP-hard problem) 

that is difficult to solve. Therefore, many dynamic resource allocation schemes are 

developed for the OFDMA systems to find the solution of either minimizing the overall 

transmit power [2, 9-11] with constraints on the users’ data rate, known as Margin 

Adaptive (MA) problem, or maximizing the sum of users’ data rate [1, 5, 7, 8, 12-15] 

with a total power transmit constraint, known as Rate Adaptive (RA) problem [16]. 

 In the literature, the algorithms that solve the resource allocation problem of 

OFDMA systems can be classified into deterministic algorithms [1, 2, 5, 7, 8, 17-19] and 

stochastic algorithms [9, 10, 12, 13, 20-26]. The deterministic algorithms are the 

algorithms that always have the same solution for the same input parameters, while the 

stochastic algorithms are the algorithms that have different solutions for the same input 
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parameters. In addition, the algorithms are classified based on the resource allocation. 

Some algorithms allocate sub-channels only and make assumptions in regard to the 

power allocation as in [1] and in [7]. Other algorithms allocate power only for an 

assumed or a given sub-channels allocation as in [5] and in [8]. The other algorithms 

allocate both power and sub-channels as [2, 9, 11, 15, 22-25].  

 Lagrange relaxation [2] is the first deterministic algorithm that is used to solve  

this problem. Lagrange relaxation can be defined as a mathematical method for 

simplifying hard optimization problems by relaxing them. Relaxing the problem is done 

by removing the constraints which make the problem hard to solve and adding them to 

the objective functions. In [2], the author tries to minimize the total power consumption 

with limitation on data rate for users who require different data rates. The author relaxes 

the requirement of the number of bits required for the assignment of sub-channels to 

users, by allowing it to be a real number within the interval of zero and the maximum 

number of bits that can be transmitted by each sub-channel. Moreover, linear 

programming is used in [17], [18], and [19] to assign resources. Linear programming 

solves the resource allocation problem through linearizing the function of rate in term of 

power. 

 In [1], the authors study the problem of dynamic multiuser sub-channel allocation 

in the downlink of OFDM systems. They develop a multiuser convex optimization 

problem to find the sub-optimal allocation. They propose a suboptimal adaptive sub-

channel allocation algorithm to solve the problem. The authors’ algorithm assumes equal 

power for all sub-channels and assigns the sub-channels one by one to the users with the 

least capacity. They maximize the smallest capacity of all users. 
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 The study in [7] assigns sub-channels to the users with the least normalized 

capacity over proportional rate constants. The allocation of power in [7] is different from 

the study in [1]. First, the study in [7] assumes equal power for all sub-channels as in [1]. 

Then, water-filling algorithm is used for each user to allocate the power. The allocated 

power for each user is directly proportional to the number of sub-channels allocated to 

that user. 

 In [8], the author focuses on the power allocation problem. The author does the 

allocation of sub-channels and power separately. Firstly, the allocation of sub-channels is 

done based on Rhee algorithm [1], assuming equal power distribution across all sub-

channels. Secondly, the distribution of power over users is done based on solving a set of 

nonlinear equations. Then, water-filling is used for each user to distribute user power 

across user sub-channels to maximize the capacity. 

 In [5], the authors propose a systematic mathematical algorithm that computes the 

optimal power allocation for a given sub-channel allocation scheme. Their solution 

satisfy the proportional rate constraint in the strictest sense depending on the drop of 

weak sub-channels and therefore can provide absolute guarantees for the expected quality 

of service. 

 In addition to the deterministic algorithms, bio-inspired algorithms [9-13, 20-27], 

which are a subset of stochastic algorithms, are also used to solve the problem. Genetic 

algorithm (GA) is one type of the bio-inspired algorithms which is used in [13, 20, 23, 

26, 28] in order to find solutions for the OFDMA resource allocation problem. Moreover, 

the study in [24] uses the GA to solve the joint sub-channel and power allocation problem 
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for Multiple Input Multiple Output OFDMA (MIMO-OFDMA) system. The authors in 

[24] try to maximize the sum of user data rates subject to constraints on total power, bit 

error rate, and proportionality among user data rates. Particle Swarm Optimization (PSO) 

algorithm and Ant Colony-based Optimization (ACO-based) algorithm are newly 

introduced to solve the problem. The PSO is a population-based search algorithm which 

is employed in [9, 12, 14, 15, 25]. At the same time, the ACO-based method is employed 

in [10, 11, 21, 22, 27, 29, 30]. 

 In [9], the authors apply the GA and the PSO for adaptive sub-channel and bit 

allocations to minimize the overall transmit power of a multiuser OFDM system. The GA 

is modified by using a fractional generation gap that helps to converge quickly by taking 

the good genes for the next generation. The algorithms guarantee at least one sub-channel 

to be assigned to each user. 

 In [15], the authors try to solve the problem of bit allocation to maximize data rate 

under the power and bit error rate constraints using the PSO. The authors propose Cloud 

Particle Swarm Optimization (CPSO) algorithm. The CPSO is described as a novel 

evolutionary model with property of cloud model to improve the diversity of population 

and overcome the shortcoming of running into local minimum in the PSO. Also in [25], 

the PSO is employed to allocate sub-channels for users followed by power allocation 

using water-filling algorithm. The study in [25] solves the joint sub-channel and power 

allocation problem. The study maximizes the sum of user’s data rates subjects to 

constraints on total power, bit error rate, and proportionality among user’s data rates. 
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 In [11], the authors use the ACO-based algorithm to solve the bit and sub-channel 

resource allocation problem of single-cell OFDMA systems. The authors’ goal is to 

allocate the sub-channels that minimize the total power consumption and guarantee the 

required minimum bit rate for all users. Results in [11] have shown that the ACO-based 

algorithm outperforms both the genetic algorithm and the modified genetic algorithm that 

uses water-filling algorithm. Moreover, the authors in [22] employ the ACO-based 

algorithm to allocate resources in an OFDMA mesh network to obtain an acceptable 

solution that maximizes throughput under power and Quality of Service (QoS) 

constraints. They propose Ant-Colony-based algorithm that is capable of satisfying 

different requirements and constraints. 

 In [10] and [21], the ACO-based algorithm is used to support the authors’ goal of 

finding one suboptimal solution for OFDMA allocation in a short period of time. In [21], 

the authors show how the ACO-based algorithm can be used to dynamically allocates 

sub-channels that maximize total data rate under power constraints without considering 

the proportionality constraint. In [10], the authors’ target is to find the solution with the 

minimum power consumption. The study does not consider any users’ rate constraints or 

users’ proportionality constraints. Therefore, it finds the solution in a short period of 

time. The results in [21] show that the number of users and sub-channels play a 

significant factor in the time required for finding solutions. Also, the study in [21] shows 

that the execution time increases when the number of ants increases for small fixed 

number of sub-channels and users. For example, the authors use nine sub-channels and 

three users. 
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 Most importantly, none of the previous work in the literature solves the problem 

of maximizing the total system capacity while satisfying users proportional rate 

constraint using the ACO-based algorithm.  

2.2  ACO Applications 

 In addition to the previous resources, the ACO-based method is used for many 

other applications different than the OFDMA [31-55]. The ACO-based method solves the 

travelling salesman problem (TSP) in [31-35]. Furthermore, the ACO-based method is 

applied to the static routing problems as the study in [36] and dynamic routing problems 

as the studies in [37, 38]. Moreover, the ACO-based approach solves the problem of 

virtual-wavelength-path and wavelength allocation in [39]. Additionally, the ACO-based 

algorithm can be applied to continuous domain problems beside to discrete domain 

problems as in [40]. The discrete domain problem is the problem that is defined for a set 

of integer numbers within a set of real numbers, while the continuous domain problem is 

the problem that is defined for all the real numbers in the interval of the set [56]. 

 The studies in [41-45] describe the stages of development in the ant systems and 

describe the ACO-based algorithm in details. They mention and describe a lot of 

applications that have been solved by the ACO-based algorithm such as travelling 

salesman problem, routing in communications networks, and other meta-heuristic 

applications. Also in [46], the author combines the ACO-based algorithm with tree search 

algorithm, called beam search, for the application to open shop scheduling (OSS). The 

results in [46] show that the hybrid algorithm (beam-ACO) outperforms the original 

ACO-based algorithm. Moreover, data mining classification problem is another 
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application that has been solved by the ACO-based algorithm in [47, 48]. Data mining is 

defined as the study of data patterns to apply discovery algorithms and make it automated 

process. 

 Additionally, the ACO-based method is used to solve the sequencing problems in 

[49, 50]. In [49], the authors study a car sequencing problem where the cars need to be 

arranged in assembly line to add features to them. The authors express greedy heuristics, 

local search, and the ACO-based algorithms in their work and apply the algorithms on the 

problem. They compare between the results of them and show that the ACO-based 

algorithm has the best outcome. Another sequencing problem is a just-in-time (JIT) 

sequencing problem [50]. The JIT sequencing problem is required for the production 

systems in the modern manufacturing firms. The author in [50] compares the ACO-based 

algorithm with simulated annealing, tabu search, genetic algorithms, and neural networks 

algorithms. The results confirm that the ACO-based algorithm is better in terms of 

performance and CPU requirements. 

 A bin packing problem (BPP) and a cut stock problem (CSP) are solved by a 

combination of the ACO-based algorithm and simple local search algorithm in [51]. The 

author adds the local search algorithm to improve the performance of the ACO-based 

algorithm. The BPP problem and the CSP problem are classified as NP-hard problems. In 

the BPP, the problem is to combine items into bins of a certain capacity in order to 

minimize the total number of bins. In the CSP, the problem is to cut items from stocks of 

a certain length to minimize the number of stocks. The results in [51] show that the 

hybrid ACO algorithm outperforms the evolutionary programming approach (EP), the 
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hybrid grouping genetic algorithm (HGGA), and the Martello and Toth’s reduction 

procedure (MTP). 

 In [52], the authors solve the resource-constrained project scheduling problem 

(RCPSP) using the ACO-based algorithm. The authors define the RCPSP as an 

“optimization problem to schedule the activities of a project such that the makespan 

of the schedule is minimized while given precedence constraints between the 

activities are satisfied and resource requirements of the scheduled activities per time 

unit do not exceed given capacity constraints for the different types of resources” 

[52]. The RCPSP paper [52] shows that the ACO-based algorithm has the best results on 

average against tabu search, simulated annealing, and genetic algorithms.  

 In [53], the ACO-based algorithm solves another scheduling problem called a 

single machine total weighted tardiness problem (SMTWTP). The SMTWTP is an NP-

hard problem where a single machine processes number of jobs sequentially. The authors 

in [53] use the ACO-based algorithm to find the sequence of jobs that minimizes the sum 

of weighted tardiness. Also in [54], the ACO-based algorithm provides a solution to a 

scheduling problem in industrial in an aluminum casting center. The authors use the 

ACO-based algorithm to get an efficient representation of a continuous horizontal casting 

operation taking into account a number of objects that are important to scheduler [54]. 

 In [55], the authors use the ACO-based algorithm to solve the vehicle routing 

problem (VRP). They modify the ACO-based algorithm to find multiple routes of the 

VRP. The VRP is described as a number of vehicles need to find the minimum cost of 

combined routes from source location to multiple destination locations. The results in 
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[55] show that the ACO-based algorithm work properly for limited list sizes but not for 

large ones. 
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Chapter 3  

METHODOLOGY 

In this chapter, the ACO-based algorithm is discussed. Then a plan for 

implementing the ACO-based algorithm is introduced. Also the basic implementation of 

ACO-based algorithm with OFDMA systems is presented. Then, different enhancements 

are added to the original implementation and described in the sections of this chapter. 

3.1  STUDY OF ANT COLONY BASED OPTIMIZATION 

(ACO-based) ALGORITHM 

 Ant Colony-based Optimization (ACO-based) algorithm is a stochastic algorithm 

which is used to find an optimal solution for combinatorial optimization problems [57]. 

The experiments run by Goss et al. in [58] inspire ACO-based algorithm using a colony 

of real ants [57]. The idea behind the ACO-based algorithm comes from the way ants 

look for their food. The ants’ goal is to find the shortest path to the food source. The ants 

mark their path by depositing a liquid, known as pheromone, on the ground. The 

pheromone concentration is affected by the number of ants as well as the time. As more 

ants pass from the same path, the pheromone concentration will be higher on that path. 

Simultaneously, the time has an inverse effect on the pheromone which is faded with 

time. Paths with higher pheromone will have higher probability to be selected by the ants 

in their next tours.  
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 Figure 3.1 shows the basic flowchart of the ants’ method.  First, ants go 

individually to look for their food. The ants who find the food source will come back to 

their nest to tell the others. Then, the new ants will start to follow the effect of the 

pheromone on the ground to reach the food source. The new ants will deposit the 

pheromone on the ground through the back way to the nest. Therefore, the shortest path 

will have high pheromone after long time. Some ants may get lost and go astray through 

other paths. But the effect of pheromone on these paths will quickly degrade as these 

paths are longer than the selected one and the number of ants passing through them is too 

small. The ants’ algorithm can be summarized as follows 

                                                 

o                          

 While food source not found, 

 Select path with probability ( ) based on the pheromone 

and the ants visibility. 

 The implementation of ACO-based algorithm for any application or problem 

should have the main three loops. The first two loops are important to reach the final 

solution. But the third loop, while loop, is important to achieve the required conditions 

for the application or the problem.  Probability ( ) is calculated based on the application 

or the problem that need to be solved and it has general formula. The formula will be 

discussed in section 3.2 for the resource allocation problem of the OFDMA systems. The 

pheromone concentration and the visibility of the ants will affect the values of the 

probability. 
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Figure ‎3.1: Basic Ants Algorithm 
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 In this thesis work, the ACO-based algorithm for the resource allocation problem 

of a multiuser OFDMA system which maximizes the total system capacity and satisfies 

the proportional rate constraint is designed and implemented in three stages. Each stage 

adds enhancements to the previous one. The solution of stage 3 is the one that deemed to 

fulfill the solution requirements for the resource allocation problem in this thesis, in terms 

of satisfying the respective constraints. Figure 3.2 shows the stages in order with the main 

outline of each one. The stages are described individually in section 3.2, section 3.3, and 

section 3.4. 

Stage 1: Algorithm Version 1

 Basic implementation of ACO-based algorithm for 

OFDMA systems.

 Assignments of sub-channels and users are random 

and not driven by any method.

 Assumes equal power for all sub-channels.

 Presented in section 3.2.

Stage 2: Algorithm Version 2

 Round robin assignments of sub-channels to users.

 Water-filling algorithm is used for power allocation.

 Presented in section 3.3.

Stage 3: Algorithm Version 3

 Final implementation of ACO-based algorithm for 

OFDMA systems.

 Sub-channels are assigned to the users with the least 

normalized data rate over proportional rate constants.

 Presented in section 3.4.
 

Figure ‎3.2: ACO-based Algorithm Main Stages 
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3.2  STAGE 1: BASIC IMPLEMENTATION OF ACO-

BASED ALGORITHM FOR OFDMA PROBLEM 

 In this study, the ACO-based algorithm is implemented to find the maximum total 

system capacity for an OFDMA system. The ACO-based algorithm allocates sub-

channels in a way that each sub-channel can be assigned to only one user to satisfy the 

problem constraints, since sub-channel allocation sets are assumed to be mutually 

exclusive. Each sub-channel is allocated a fixed power equal to         . 

 The assignment of sub-channel   to the     user depends on the probability of 

assigning them to each other. The assignment probability is calculated based on the 

density of using the assignment and the desirability of the assignment itself. The density 

of selecting the assignment of sub-channel   to user   is called trail intensity and is 

denoted by   
    . The desirability of selecting the assignment of sub-channel   to user   

is based on the rate of this assignment,       , where         
 

 
        

      

 
       . Assignments with higher rates are more desirable to be selected. 

Therefore, the probability of assigning sub-channel   to user  ,   
 , is calculated as 

follows 

  
    

   
               

     
     

 
            

 
    

 (‎3.1) 

  is the set of available sub-channels.   and   are constants to control the influence of 

the trail intensity and the desirability respectively, where     and     [58]. The trail 

intensity,   
    , is calculated as follows 
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  (‎3.2) 

where   
     is the new value of the trail intensity and   

       is the old value of the 

trail intensity.   is the evaporation coefficient that is used to reduce the values of the trail 

intensity over time. This will avoid any possibilities of getting stuck in local optima.    
  

is the amount of increase in the trail intensity of the assignment of sub-channel   to user 

 .    
  is updated as follows 

   
        

 

               

 (‎3.3) 

where     
  is the amount of trail intensity updated for the ants that succeed in the 

assignment.     
  is calculated as follows 

    
                       

                                       
                                                                           

  (‎3.4) 

where   is a constant.    is the total assigned rate by the     ant which assigns sub-

channel   to user  .    is calculated by finding the total system capacity of the     ant 

where       
 

 
    

 
   

      

 
           

 
   . 

 In this implementation, the allocations are chosen based on the probability of the 

assignment of sub-channel   to the     user. The selection of sub-channel   and user   

will be random and not driven by any method. Therefore, the assignments will be chosen 

from      matrix where       , and    is the number of available sub-channels. 

The pseudo code for the basic implementation of ACO-based algorithm is presented in 
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Figure 3.3. The probability (   
 ) and the trail intensity (  

    ) will be calculated using 

equations (3.1) and (3.2), respectively. For more clarification of how the basic 

implementation works, Figure 3.4 shows the flow chart of the implemented algorithm. 

Most important, version 1 of the algorithm is concerned with finding the solution of the 

resource allocation problem for the OFDMA systems that maximizes the total system 

throughput without satisfying any proportional rate constraint. 

 The               parameter used in Figure 3.3 and Figure 3.4 is used to 

specify the lowest level of fairness to be achieved amongst users. The use of this variable 

will take effect mainly in version 1 of the algorithm because the assignments of sub-

channels to users in this version are random and not driven by any method. Therefore, the 

fairness between users will not be affected. The fairness will be controlled at the end of 

the assignments; if the fairness condition satisfied, then the assignments are taken. If not, 

then they are rejected. The               variable is mainly used to show the relation 

between the total system capacity and the fairness between users. Therefore, this variable 

will not affect the other versions of the algorithm. The         variable in both figures, 

i.e. Figure 3.3 and Figure 3.4, is used to save the best solution which is found by the 

algorithm.        is used to save the sub-channels allocations based on the         

variable. 
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ACO-based Algorithm Version 1: 

0) Initialization 

a. Initialize   to number of sub-channels,   to number of users,        to the 

system total power,                        , and               
b.                               

                     
                 where   

     and             are the trail intensity 

and the final sub-channel allocation for each sub-channel   to the user  , 

respectively. 

c.                               
d.             

1)                         

a.                       

i. Initialize             
ii.                                       where        

is the sub-channel allocation for each assignment of sub-channel   

to user   of the     ant. 

iii.            
1. Initialize                        

2. Calculate                      where        

 
 

 
        

      

 
         

3. Assign sub-channel   to user   where   and   are randomly 

generated using    
  specified by (3.1), where     and 

   . 

4.         
5.          

iv. Calculate           where  

       
 

 
        

      

 
           

   

v. Calculate fairness ( ) such that 

     
  

  

 
         

  

  
   

         

vi. If (               ) 
1. If                             

a.                      

b.                               
          

b.                                      
                     

 

 
Figure ‎3.3: ACO-based Algorithm Version 1 
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Initialization:

fairnessLevel

maxRate =0

CycleNo = 0

ΩFinal=0

T =1
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CycleNo == 

TotalCyclesNo
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End
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CycleNo ++

AntNo = 0

Calculate R(k,n) for all n in A and k=1 to K

Select an assignment (i,j) with probability P 

calculated by (3.1)

Set A = A-{j}

 Ω(i,j)=1

Calculate R(k) for all k=1 to K

Calculate Fairness (F) specified by (1.5)
F ≥ fairnessLevel

Yes

No

sum(R(k)) > 

maxRate

maxRate = sum(R(k)) 

ΩFinal = Ω
Yes

Update T based 

on (3.2)
Yes

No

 

Figure ‎3.4: Flow Chart of ACO-based Algorithm Implementation 
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3.3  STAGE 2: ROUND ROBIN ASSIGNMENT WITH 

WATER-FILLING ALGORITHM 

 Fairness amongst users, in terms of satisfying the proportionality rate constraint, 

is one of the major objectives that need to be achieved in this thesis. In the ACO-based 

algorithm version 1, users’ assignments are random and not driven by any method. 

Therefore, the fairness between users will not be affected. The fairness will be evaluated 

at the end of the assignments; if the minimum fairness level is achieved, then the 

assignments are considered, otherwise they are rejected. 

 Therefore, some enhancements should be added to improve the fairness between 

users and guarantee the maximum possible users’ data rate (total system capacity). To 

increase the rate, the ACO-based algorithm version 2 whose pseudo code is shown in 

Figure 3.5 uses water-filling algorithm for power allocation to increase the total system 

capacity as the studies in [5, 7, 8]. Water-filling algorithm assigns more power to the sub-

channels with the higher gain. Simultaneously, the fairness is enhanced in the ACO-based 

algorithm version 2 by enhancing the assignments of sub-channels to users. In the ACO-

based algorithm version 2, the sub-channels are assigned to the users in a round robin 

fashion which enhances the fairness between users and the effect of               

parameter is reduced.  
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ACO-based Algorithm Version 2:  

0) Initialization 

a. Initialize   to number of sub-channels,   to number of users,        to the 

system total power,                        , and               

b.                              
                                 

                   where   
    ,            , and                are the 

trail intensity, the final sub-channel allocation, and the final power allocation for 

each sub-channel   to the user  , respectively. 

c.                               

d.             
1)                         

a.                       

i. Initialize                              ,              

ii.                                                where 

       and        are the sub-channel allocation and power allocation 

for each assignment of sub-channel   to user   of the     ant. 

iii.            
1. Calculate                          using water-filling 

algorithm by distributing (                      ) on the 

available sub-channels.  

2. Calculate                      where 

                

 
 

 
                                             

3. Assign sub-channel   to user (          ) where   is 

randomly generated using    
           specified by (3.1), 

where    . 
4.         
5.               

                                   

6.                   

7.                                     

8. If               then             , else 

             

iv. Calculate           where  

       
 

 
                         

   

v. Calculate fairness ( ) such that      
  

  

 
         

  

  
   

         

vi. If (               ) 
1. If                             

a.                      

b.                                         

b.                                      
                     

 Figure ‎3.5: ACO-based Algorithm Version 2 



27 

 

 

 

3.4  STAGE 3: FINAL IMPLEMENTATION 

 The main problem in this thesis work is to find a solution for the resource 

allocation problem of OFDMA systems that maximizes the total system capacity while 

satisfying the proportional rate constraint using the ACO-based algorithm. Version 1 and 

version 2 of the ACO-based algorithm did not satisfy the proportional rate constraint. 

Therefore, the assignments of the sub-channels to the users should be driven to satisfy the 

maximum fairness based on the proportional rate constraint. In order to achieve this 

objective, the ACO-based algorithm version 3 in Figure 3.6 assigns the sub-channels to 

the users with the least normalized data rate over proportional rate constants. This 

enhanced the fairness amongst users. 

 The ACO-based algorithm version 3 uses water-filling algorithm as in version 2 

of the algorithm. Additionally, the ACO-based algorithm version 3 uses water-filling 

algorithm after each assignment of sub-channel   to user   to redistribute the total power 

of user   on   user’s sub-channels as the study in [7].  

 This version (version 3) represents the final implementation of the ACO-based 

algorithm that finds a solution for the resource allocation problem in the OFDMA 

systems that maximizes the total system capacity while satisfying the proportional rate 

constraint. Therefore, most of the parametric studies and the comparisons will be done 

for the ACO-based algorithm version 3. 
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ACO-based Algorithm Version 3:  

0) Initialization 

a. Initialize   to number of sub-channels,   to number of users,        to the 

system total power,                        , and               

b.                               
                                 

                   where   
    ,            , and                are the 

trail intensity, the final sub-channel allocation, and the final power allocation for 

each sub-channel   to the user  , respectively. 

c.                               

d.             
1)                         

a.                       

i. Initialize                               

i.                                                where 

       and        are the sub-channel allocation and power for each 

assignment of sub-channel   to the user   of the     ant. 

ii.            
1. Find user   such that                  , where     

2. Calculate                 using water-filling algorithm to 

distribute (                      ) on the available sub-

channels. 

3. Calculate             where         
 

 
        

                   

4. Assign sub-channel   to user   where   is randomly 

generated using    
  specified by (3.1), where    . 

5.         
6.                                         

7.          

8.                   

9. Calculate the new        for all the   sub-channels that are 

assigned to user   by redistributing the total power of user   on 

the sub-channels of user   using water-filling algorithm. 

iii. Calculate           where  

       
 

 
                         

   

iv. Calculate fairness ( ) where      
  

  

 
         

  

  
   

         

v. If (               ) 
1. If                             

a.                      

b.                                         

b.                                      
                     

 Figure ‎3.6: ACO-based Algorithm Version 3 
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Chapter 4  

RESULTS AND DISCUSSIONS 

 In this chapter, we will discuss the results for some simulations that have been 

performed. First, we will describe the simulation parameters and we will state the 

justification for such choice. Then, a detailed discussion of the findings is given for the 

implemented algorithms in Chapter 3. 

4.1 SIMULATION PARAMETERS 

 In this study, simulations are performed for the same OFDMA system in [5]. The 

channel model is consisting of 6 independent Rayleigh multipaths. The study assumes a 

maximum delay spread of 5 µs and maximum doppler of 30 Hz. The total system 

bandwidth is assumed as 1 MHz and the total sub-channels are assumed as 64. We 

assume a total of 1 Watt for total system power. The power spectral density for noise is 

equal to -65 dBW per Hz. 

 The ACO-based algorithm parameters are selected based on some parametric 

studies that match the usage of the parameters in the literature [11]. In the simulations, 

constants   and   in (‎3.1) are assumed to be 1. This will make the effect of the trail 

intensity similar to the effect of the desirability. The constant   in (‎3.4) is assumed to be 

100. 
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4.2 SIMULATION RESULTS 

 First, some parametric studies are performed on the ACO-based algorithm to 

study the effect of the ACO-based algorithm parameters on the total system capacity and 

to select the suitable parameters for the simulations. First parametric studies are done on 

version 1 of the ACO-based algorithm to study the effect of both the fairness level and 

the evaporation coefficient against the total system capacity. We select version 1 of the 

algorithm because the allocations of the sub-channels to the users are totally random 

where the users are not selected before the sub-channels as in the other two versions. 

Moreover, version 1 aims to allocate the sub-channels and the power that maximize the 

total system capacity without ensuring any type of fairness between users. Therefore, we 

did not make the study for version 2 and version 3 of the ACO-based algorithm because 

the allocations in these two versions are driven to satisfy some fairness between users as 

discussed in section 3.3 and section 3.4. 

 Figure 4.1 shows the result of the study of total system capacity in (bit/s/Hz) 

against the fairness level for the OFDMA system in section 4.1 for      users and 

     sub-channels. The proportional rate constants (PRCs) are equal, i.e.,    

             . The number of cycles and the number of ants are equal to 100, while 

  is equal to 0.8. The simulation is performed for one channel realization (only one gain 

matrix) because we need to study the effect of the ACO-based algorithm parameters on 

the results for the same gain matrix. The other ACO-based algorithm parameters are the 

same as in section 4.1. Figure 4.1 shows that there is a trade-off between the total system 

capacity and the fairness. The result shows that there is no solution with fairness level 

higher than 0.8. This is because version 1 of the ACO-based algorithm assigns the sub-
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channels to the users in order to maximize the total system capacity without ensuring any 

fairness between users. Therefore, the best choice of               that maximizes the 

total system capacity is from 0.1 to 0.3. 

 The effect of the evaporation coefficient ( ) is shown in Figure 4.2 for the 

OFDMA system and the ACO-based algorithm parameters in section 4.1 for      

users and      sub-channels. The PRCs are equal, i.e.,                 . The 

              is equal to 0.2 to ensure the maximum total system capacity, while the 

number of cycles and the number of ants are equal to 100. Also, the simulation is 

performed for one channel realization. Figure 4.2 shows that as the value of the 

evaporation coefficient increases, the total system capacity increases since the trail 

intensity of good solutions will be high for high values of evaporation coefficients. At the 

same time, the trail intensity of good solutions will be low for low values of evaporation 

coefficients which allow the bad solutions to be selected. Based on the literature [11, 57], 

the best value of   is 0.8. This value matches good results in Figure 4.2. Therefore, we 

use   to be 0.8 for the other simulations. 
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Figure ‎4.1: System Capacity versus Fairness Level 

 

Figure ‎4.2: System Capacity versus Evaporation Coefficient ( ) 
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 Other parametric studies are performed for the same OFDMA system in section 

4.1 for      users and      sub-channels. The PRCs are equal, i.e.,          

       . The channel realization is one where the study is performed 100 times for the 

same channel gain matrix and then the average of the results is taken.  Based on the 

previous parametric studies,                   and      . The parametric study is 

done to show the effect of the number of ants and the number of cycles on the total 

system capacity. This study is done for ACO-based algorithm version 3. Figure 4.3 shows 

the effect of the number of ants on the total system capacity for a given number of cycles, 

while Figure 4.4 shows the effect of the number of cycles on the total system capacity for 

a given number of ants. Both figures (Figure 4.3 and Figure 4.4) show that as the number 

of ants or the number of cycles increase, the total system capacity saturates. In Figure 4.3, 

the total system capacity has the highest value for 90 cycles and for ants higher than 70. 

At the same time, the total system capacity has the highest value for 90 ants and cycles 

higher than 80. Therefore, the best configurations for the number of cycles and the 

number of ants are 100 cycles and 100 ants to make sure that we have the maximum total 

system capacity. This configurations match the configurations used in the literature [11]. 
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Figure ‎4.3: System Capacity versus Number of Ants 

 

Figure ‎4.4: System Capacity versus Number of Cycles 
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 A number of simulations are performed for the three versions of the ACO-based 

algorithm for different PRCs. In the simulations, the results of each version are compared 

with the results of the algorithms in [1, 5, 7, 8]. 

 First, the simulations are performed for version 1 of the ACO-based algorithm for 

the same OFDMA system in section 4.1 for      sub-channels and users vary from 2 

to 16. The simulations are performed for 1000 channel realizations where the algorithms 

are applied on 1000 different channel gain matrix, and then the average results are taken. 

Based on the previous parametric studies,                   and      . Also, the 

number of cycles and the number of ants are 100. The other simulation parameters are the 

same as the parameters in section 4.1. The simulation results of the ACO-based algorithm 

version 1 are shown in Figure 4.5 to Figure 4.10. The PRCs for Figure 4.5 and Figure 4.6 

are equal, i.e.,                 . The PRCs for Figure 4.7 and Figure 4.8 are not 

equal, i.e.,                                   for          . Finally, 

                                   for           are the PRCs for Figure 

4.9 and Figure 4.10.  

 The simulations evaluate the total system capacity in (bit/s/Hz) and the fairness 

index against the number of users. The simulations are preformed for three different 

PRCs parameters to study the effect of the PRCs on the fairness index between users. 

First simulation is performed for equal PRCs where                  to maximize 

the overall rate while trying to achieve equal rate for all users [7]. The other two 

simulations are performed for different PRCs between users to study the ability of the 

ACO-based algorithm to attain the fairness between users based on different PRCs and to 

study the effect of high values of PRCs on it. 
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 The results in Figure 4.5, Figure 4.7, and Figure 4.9 show that as the number of 

users increases, the total system capacity increases; because the opportunity of having 

better reordering of assignments increases. The results in Figure 4.6, Figure 4.8, and 

Figure 4.10 show that as the number of users’ increases, the fairness index decreases due 

to the difficulty of achieving better fairness between users. 

 From the results, we notice that the PRCs affect the fairness index. The fairness 

index in Figure 4.8 is worse than that in Figure 4.6 due to the difference in the PRCs. 

Also, the results show that as the difference in the PRCs increases, the fairness decreases 

since the fairness index in Figure 4.10 is worse than that in Figure 4.8. The difference in 

the PRCs between users will increase the gap between them and reduce the fairness 

index. Therefore, the fairness index will decrease when the difference in the PRCs 

increased.  

 Moreover, the results in Figure 4.5, Figure 4.7, and Figure 4.9 show that the 

ACO-based algorithm has the highest total system capacity when compared to Rhee [1], 

Mohanram [7], Shen [8], and Mahmoud [5] algorithms. Also, the results in Figure 4.6, 

Figure 4.8, and Figure 4.10 show that the ACO-based algorithm has the lowest fairness 

index. From the results, we notice the relation and the trade-off between the total system 

capacity and the fairness. The results in Figure 4.6 for Rhee [1], Mohanram [7], and 

Mahmoud [5] algorithms show high value of fairness index almost equal to 1, while the 

ACO-based algorithm has the lowest value of fairness index. At the same time, the results 

of Rhee [1], Mohanram [7], and Mahmoud [5] algorithms in Figure 4.5 show much lower 

total system capacity than that of the ACO-based algorithm. 
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Figure ‎4.5: Comparison of total system capacity versus number of users for ACO-based 

algorithm version 1 and other algorithms for                  

 

Figure ‎4.6: Comparison of fairness index versus number of users for ACO-based 

algorithm version 1 and other algorithms for                  
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Figure ‎4.7: Comparison of total system capacity versus number of users for ACO-based 

algorithm version 1 and other algorithms for                                 
  for           

 

Figure ‎4.8: Comparison of fairness index versus number of users for ACO-based 

algorithm version 1 and other algorithms for                                 
  for           
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Figure ‎4.9: Comparison of total system capacity versus number of users for ACO-based 

algorithm version 1 and other algorithms for                        
             for           

 

Figure ‎4.10: Comparison of fairness index versus number of users for ACO-based 

algorithm version 1 and other algorithms for                        
             for           

 

2 4 6 8 10 12 14 16
1.6

1.8

2

2.2

2.4

2.6

2.8

3

Number of Users K

S
y
s
te

m
 C

a
p
a
c
it
y
 (

b
it
/s

/H
z
)

 

 

Mohanram

Rhee

Mahmoud

Shen

ACO

2 4 6 8 10 12 14 16
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Users K

F
a
ir
n
e
s
s
 I
n
d
e
x

 

 

Mohanram

Rhee

Mahmoud

Shen

ACO



40 

 

 

 

 Second, the simulations are performed for version 2 of the ACO-based algorithm 

for the same OFDMA system in section 4.1 for      sub-channels and users vary from 

2 to 16. The simulations are performed for 1000 channel realizations. Based on the 

previous parametric studies,                   and      . Also, the number of 

cycles and the number of ants are 100. The other simulation parameters are the same as 

the parameters in section 4.1. The simulation results of the ACO-based algorithm version 

2 are shown in Figure 4.11 to Figure 4.16. The PRCs for Figure 4.11 and Figure 4.12 are 

equal, i.e.,                 . The PRCs for Figure 4.13 and Figure 4.14 are not 

equal, i.e.,                                   for          . Finally, 

                                   for           are the PRCs for Figure 

4.15 and Figure 4.16. 

 The results show that the total system capacity of version 2 of the ACO-based 

algorithm is becoming 10% less than that of version 1 for     and as low as 24% for 

     and equal PRCs. At the same time, the fairness index is 35% higher for     

and equal PRCs. But it still low for different PRCs in Figure 4.14 and Figure 4.16. The 

fairness becomes higher in version 2 due to the process of leading the assignments of 

sub-channels to users in a round robin fashion. The enhancement on the fairness for 

different PRCs is still not much since version 2 does not include the PRCs in its 

assignments. Moreover, Figure 4.12 shows that the fairness index of version 2 of the 

ACO-based algorithm is 8% higher than that of Shen [8] algorithm for    . 
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Figure ‎4.11: Comparison of total system capacity versus number of users for ACO-based 

algorithm version 2 and other algorithms for                  

 

Figure ‎4.12: Comparison of fairness index versus number of users for ACO-based 

algorithm version 2 and other algorithms for                  
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Figure ‎4.13: Comparison of total system capacity versus number of users for ACO-based 

algorithm version 2 and other algorithms for                                 
  for           

 

Figure ‎4.14: Comparison of fairness index versus number of users for ACO-based 

algorithm version 2 and other algorithms for                                 
  for           
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Figure ‎4.15: Comparison of total system capacity versus number of users for ACO-based 

algorithm version 2 and other algorithms for                        
             for           

 

Figure ‎4.16: Comparison of fairness index versus number of users for ACO-based 

algorithm version 2 and other algorithms for                        
             for           

  

2 4 6 8 10 12 14 16

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

Number of Users K

S
y
s
te

m
 C

a
p
a
c
it
y
 (

b
it
/s

/H
z
)

 

 

Mohanram

Rhee

Mahmoud

Shen

ACO

2 4 6 8 10 12 14 16
0.5

0.6

0.7

0.8

0.9

1

Number of Users K

F
a
ir
n
e
s
s
 I
n
d
e
x

 

 

Mohanram

Rhee

Mahmoud

Shen

ACO



44 

 

 

 

 Most importantly, the simulations of the final implemented ACO-based algorithm 

(version 3) are performed for the same OFDMA system in section 4.1 for      sub-

channels and users vary from 2 to 16. The simulations are performed for 1000 channel 

realizations. Based on the previous parametric studies,                   and 

     . Also, the number of cycles and the number of ants are 100. The other simulation 

parameters are the same as the parameters in section 4.1. The simulation results of the 

ACO-based algorithm version 3 are shown in Figure 4.17 to Figure 4.22. The PRCs for 

Figure 4.17 and Figure 4.18 are equal, i.e.,                 . The PRCs for Figure 

4.19 and Figure 4.20 are not equal, i.e.,                                   for 

         . Finally,                                    for           

are the PRCs for Figure 4.21 and Figure 4.22. 

 The results show that version 3 of the ACO-based algorithm enhances the fairness 

at the expense of the total system capacity. The total system capacity of version 3 

becomes 3% less for     and as less as 9% for      than that of version 2 for equal 

PRCs. The fairness of version 3 for equal PRCs is almost one as shown in Figure 4.18. 

The fairness index for different PRCs in Figure 4.20 is good as it is higher than 0.9. 

Moreover, the fairness index in Figure 4.22 is high for users less than 10. 

 The results in Figure 4.17, Figure 4.19, and Figure 4.21 show that version 3 of the 

ACO-based algorithm has the highest total system capacity when compared with the 

other algorithms in [1, 5, 7, 8]. Additionally, the ACO-based algorithm version 3 has 

fairness index equal to that of the other algorithms in [1, 5, 7, 8] and better than them for 

users higher than 10 excluding Mahmoud [5] algorithm as shown in Figure 4.18. 

Mahmoud [5] algorithm is designed to have 100% of fairness between users. But the total 
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system capacity of Mahmoud [5] algorithm is 4% less than that of the ACO-based 

algorithm. 

 The results in Figure 4.20 show that the ACO-based algorithm has the highest 

fairness when compared with Rhee [1], Mohanram [7], and Shen [8] algorithms. The 

results in Figure 4.22 show that the fairness index of Mohanram [7] algorithm is 1% 

better than that of the ACO-based algorithm for users less than 6. At the same time, the 

fairness index of Shen [8] algorithm is 3% better than the fairness of the ACO-based 

algorithm for      users. 

 From the results, it is clear that the ACO-based algorithm finds a solution to the 

resource allocation problem of OFDMA systems that outperforms the considered 

competing algorithms [1, 5, 7, 8] for most of the typical input parameters at the cost of 

prolonged execution time. 
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Figure ‎4.17: Comparison of total system capacity versus number of users for ACO-based 

algorithm version 3 and other algorithms for                  

 

Figure ‎4.18: Comparison of fairness index versus number of users for ACO-based 

algorithm version 3 and other algorithms for                  
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Figure ‎4.19: Comparison of total system capacity versus number of users for ACO-based 

algorithm version 3 and other algorithms for                                 
  for           

 

Figure ‎4.20: Comparison of fairness index versus number of users for ACO-based 

algorithm version 3 and other algorithms for                                 
  for           
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Figure ‎4.21: Comparison of total system capacity versus number of users for ACO-based 

algorithm version 3 and other algorithms for                        
             for           

 

Figure ‎4.22: Comparison of fairness index versus number of users for ACO-based 

algorithm version 3 and other algorithms for                        
             for           
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 Moreover, the same studies in Figure 4.17 and Figure 4.18 are repeated for 30 and 

10 ants to study the effect of small number of ants on the results of the comparison with 

the other algorithms [1, 5, 7, 8]. Figure 4.23 and Figure 4.24 show the results for 30 ants. 

The results in Figure 4.23 show that the difference between the total system capacity of 

the ACO-based algorithm and Mohanram [7] algorithm is less than the difference in 

Figure 4.17. The results of the ACO-based algorithm in Figure 4.23 is 0.5% better than 

the results of Mohanram [7] algorithm for 16 users, while the results of the ACO-based 

algorithm in Figure 4.17 is 2% better than the results of Mohanram [7] algorithm for the 

same number of users. The fairness results in Figure 4.24 are similar to that in Figure 

4.18. The results of the study for 10 ants are shown in Figure 4.25 and Figure 4.26. The 

fairness results in Figure 4.26 are the same as the other results in Figure 4.18 and Figure 

4.24. The difference between the results of the ACO-based algorithm and Mohanram [7] 

algorithm in Figure 4.25 is less than that in Figure 4.23 where the results of the ACO-

based algorithm is almost the same as Mohanram [7] algorithm for 14 and 16 users. 

 

 

 

 

 

 

 



50 

 

 

 

 

Figure ‎4.23: Comparison of total system capacity versus number of users for ACO-based 

algorithm version 3 and other algorithms for                  and 30 ants 

 

Figure ‎4.24: Comparison of fairness index versus number of users for ACO-based 

algorithm version 3 and other algorithms for                  and 30 ants 
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Figure ‎4.25: Comparison of total system capacity versus number of users for ACO-based 

algorithm version 3 and other algorithms for                  and 10 ants 

 

 

Figure ‎4.26: Comparison of fairness index versus number of users for ACO-based 

algorithm version 3 and other algorithms for                  and 10 ants 
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 Based on the previous results, table 4-1 compares the last version of the ACO-

based algorithm with the other algorithms in [1, 5, 7, 8]. The table shows the advantages 

and disadvantages of each algorithm. 

 

 

Table ‎4-1: Comparison between Algorithms 

 
Advantages Disadvantages 

Mohanram [7] - Allocates sub-channels to the 

users with the least data rate over 

proportional rate constants.  

- Uses water-filling algorithm 

after each assignment to 

redistribute the user’s power on 

the assigned sub-channels. 

- Gets solution in a short time 

(0.013sec*). 

- Initially assumes equal power for 

all sub-channels. 

- The allocated power for each 

user is proportional to the number 

of sub-channels allocated to that 

user. 

Rhee [1] - Gets solution in a short time 

(0.0067sec*). 

- Does sub-channels allocations 

only. 

- Assumes equal power for each 

sub-channel. 

- Water-filling algorithm is not 

used. 

- Sub-channels are assigned to the 

users with the minimum data rate 

without taking care of the 

proportional rate constraint. 
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Mahmoud [5] - Does power allocations for a 

given sub-channels allocations to 

ensure 100% of fairness between 

users. 

- Does not make assumptions 

about power as Rhee [1] and 

Mohanram [7] algorithms. 

- Computes the optimal power 

allocations and uses water-filling 

algorithm. 

- Satisfies the proportional rate 

constraint in the strictest sense. 

- Gets solution in a short time 

(0.11sec*). 

- Does not make sub-channels 

allocations. 

Shen [8] - Does only power allocations for 

a given sub-channel allocations. 

- Finds the optimal power 

allocation and uses water-filling 

algorithm. 

- Gets solution in a short time 

(0.14sec*). 

- Does not make sub-channels 

allocations. 

- Does not satisfy the proportional 

rate constraint for the general 

case because it assumes high and 

comparable sub-channel gains 

across the system bandwidth [5]. 

ACO - Does both sub-channels and 

power allocations. 

- Does not make any assumptions 

about the power and uses water-

filling for power allocations. 

- Looking comprehensively to 

find the best solution. 

- Allocates sub-channels to the 

users with the least data rate over 

proportional rate constants. 

- Gets solution in a long time 

(809sec*). 

* For OFDMA system in section 4.1 with 64 sub-channels and 16 users. 
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 In the literature, most of the methods that solve the resource allocation problem of 

multiuser OFDMA systems find a suboptimal solution. None of the previous work 

compares its suboptimal solution with a reference solution like an optimal solution. 

Therefore, we will propose a novel method to synthesize an optimization problem with a 

known answer. The optimal solution will be our reference to compare our solution (by 

the ACO-based algorithm) and the other solutions in [1, 5, 7, 8] with it. 

 The optimal solution is synthesized by modifying the channel gain matrix. The 

process of synthesizing the required optimal solution is described as follows: 

1. Get the maximum channel gain for each sub-channel. 

2. Use water-filling algorithm to distribute the total power over the obtained sub-

channels in step 1. 

3. Assign the set of maximum channel gains to the users in a certain order (e.g. in 

round-robin manner). 

4. Compute the users rates and the proportional rate constraints based on the 

following parameters: 

a. Channel gains obtained in step 1. 

b. Power allocation obtained in step 2. 

c. Channel assignments obtained in step 3. 

  

 The proportional rate constants is defined in [5] as “the desired capacities 

resulting after solving the sub-channel and power allocation problem follow some 

specified ratios” [5]. The proportional rate constants are estimated as a result of dividing 

the users’ rates by one of the user’s rate. 
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 In order to evaluate the quality of the solutions, we normalize the solutions by the 

optimal solution. Then we find the distance between the normalized solutions and the 

normalized optimal solution which is the difference between them. Finally, we evaluate 

the standard deviation and the average distance for the distances. The standard deviation 

is used to give an idea about the distribution of the distances for each algorithm. The 

average distance is used to estimate the closeness of the solutions to the optimal solution. 

The average distance is the sum of the distances for each algorithm divided by the 

number of distances. Also, we evaluate the difference in the allocations of each algorithm 

and the allocations of the optimal solution which known as the distance in allocations. 

The distance in allocations is a result of the number of differences between the 

allocations of each algorithm and the allocations of the optimal solution divided by 2. 

The number of differences is the sum of the XOR of the allocation matrix of the optimal 

solution and the other algorithm that need to be studied. 

  In the simulations, the ACO-based algorithm and the algorithms in [1, 5, 7, 8] are 

applied on the new gain matrix specified by step 3. The solutions of the algorithms are 

compared with the optimal solution. The comparison is based on the average and 

standard deviation of the distance between the optimal solution of the synthesized 

problem and of the solutions obtained by other algorithms. Also, a distribution graph of 

each algorithm in [1, 5, 7, 8] is shown against both the optimal solution and the ACO-

based algorithm, i.e. version 3, results. In addition, a graph for the distance in allocations 

is shown for Rhee [1] algorithm, Mohanram [7] algorithm, and the ACO-based 

algorithm. 
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 In the performed simulations, two cases are used for the comparison with the 

optimal solution. One is small for     users. The other is large for      users. The 

cases are studied for the same OFDMA system in section 4.1 for      sub-channels. 

The simulations are performed for 20 channel realizations without averaging to show the 

distribution of the solutions and the distance between them clearly. The ACO-based 

algorithm parameters are the same as the parameters in section 4.1 with 

                  and      . Also, the number of cycles and the number of ants 

are 100.  

 Table 4-2 shows the results of the comparison for small size case. The ACO-

based algorithm has the best average distance followed by Mohanram [7] algorithm. 

Also, the table shows that Rhee [1] algorithm has the highest standard deviation and the 

worst average distance. The distributions of the results are shown in Figure 4.27 to Figure 

4.30. The comparison of the allocations of the algorithms against the allocation of the 

optimal solution is shown in Figure 4.31. For Shen [8] and Mahmoud [5] algorithms, the 

comparison of allocations are not stated because they use the same allocations of Rhee 

[1] algorithm. Figure 4.31  shows that the allocations of the ACO-based algorithm are 

more similar to the allocations of the optimal solution than the allocations of Rhee [1] 

and Mohanram [7] algorithms. 
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Table ‎4-2: Comparison with Optimal Solution for Small Size System 

Algorithm \ Metric Standard Deviation Average Distance 

Mohanram [7] 0.0225 0.0182 

Rhee [1] 0.0323 0.0252 

Mahmoud [5] 0.0231 0.0189 

Shen [8] 0.0249 0.0208 

ACO 0.0048 0.0069 

 

 
Figure ‎4.27: Distribution of the Results of Mohanram Algorithm versus the Results of 

ACO Algorithm and the Optimal Solution for Small Case 
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Figure ‎4.28: Distribution of the Results of Rhee Algorithm versus the Results of ACO-

based Algorithm and the Optimal Solution for Small Case 

 

Figure ‎4.29: Distribution of the Results of Mahmoud Algorithm versus the Results of 

ACO-based Algorithm and the Optimal Solution for Small Case 
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Figure ‎4.30: Distribution of the Results of Shen Algorithm versus the Results of ACO-

based Algorithm and the Optimal Solution for Small Case 

 

Figure ‎4.31: Different Allocations from the Optimal Solution for Small Case 
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 The results of the comparison with the optimal solution of the synthesized 

problem for the large size case of      are shown in Table 4-3 and in Figure 4.32 to 

Figure 4.36. The results in Table 4-3 show that the ACO-based algorithm has the worst 

average distance and Mohanram [7] algorithm has the best average distance. At the same 

time, the allocations of the ACO-based algorithm in Figure 4.36 are more similar to the 

optimal solution than the allocations of Mohanram [7] and Rhee [1] algorithms. 

Moreover, some of the solutions of the ACO-based algorithm are better than the solutions 

of the other algorithms in [1, 5, 7, 8] and some are worst as shown in Figure 4.32 to 

Figure 4.35. This is due to two reasons. The first one is due to the reorganization of the 

gain matrix to get the optimal solution. Some users in the original gain matrix don’t have 

sub-channels with the maximum gain values compared to the other users. This will lead 

to zero proportional rate constants which will prevent the algorithms from work. 

Therefore, the gain matrix has been reorganized to ensure at least one sub-channel with 

the maximum gain for each user. This reorganization matches the way of allocations of 

Rhee [1] and Mohanram [7] algorithm. As a result, Rhee [1] and Mohanram [7] 

algorithms will select these sub-channels that matches the allocations in the optimal 

solution and they will have a better solutions. The second reason is the power allocation. 

Rhee [1] algorithm uses equal power for each allocation. Also, Mohanram [7] algorithm 

firstly assume equal power for each allocation. Then for each user, it redistributes the 

total user power on the user’s allocated sub-channels using water-filling algorithm. For 

Shen [8] and Mahmoud [5] algorithms, they use water-filling algorithm to distribute the 

total power on the final allocation of Rhee [1] algorithm. While in the ACO-based 

algorithm, water-filling algorithm is used initially to distribute the power on the sub-
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channels of each user before selection. Therefore, each sub-channel is selected with its 

power. Then, the power of each user will be redistributed again as in Mohanram [7] 

algorithm on the user’s sub-channels. As a result, the first power allocations waste power 

on users with weak sub-channels and reduce the available power for the strong sub-

channels. This reason plays a significant part in making the solutions of the ACO-based 

algorithm worst than the other algorithms even when the allocations are more similar to 

the optimal solution as shown in the results. Therefore, Figure 4.37 shows the results of 

the algorithms in [1, 5, 7, 8] with the ACO-based algorithm against the maximum 

available capacity. To evaluate the maximum capacity, we find the assignments with the 

highest gains across all users and sub-channels where the sub-channels are mutually 

exclusive. Then, we distribute the system power on the assignments using water-filling 

algorithm. The simulation is performed for 1000 channel realization and equal PRCs, i.e., 

                . Also, it is performed for      sub-channels and users vary 

from     to     . The other parameters are the same as the parameters for the large 

size case. The results show that the ACO-based algorithm has the closest results to the 

maximum. Then Mohanram [7] algorithm followed by Mahmoud [5] algorithm. Rhee [1] 

algorithm followed by Shen [8] algorithm have the farthest results from the maximum 

capacity. 
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Table ‎4-3: Comparison with Optimal Solution for Large Size System 

Algorithm \ Metric Standard Deviation Average Distance 

Mohanram [7] 0.0107 0.0105 

Rhee [1] 0.0110 0.0107 

Mahmoud [5] 0.0108 0.0107 

Shen [8] 0.0108 0.0107 

ACO 0.0058 0.0152 

 

 

Figure ‎4.32: Distribution of the Results of Mahanram Algorithm versus the Results of 

ACO-based Algorithm and the Optimal Solution for Large Case 
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Figure ‎4.33: Distribution of the Results of Rhee Algorithm versus the Results of ACO-

based Algorithm and the Optimal Solution for Large Case 

 

Figure ‎4.34: Distribution of the Results of Mahmoud Algorithm versus the Results of 

ACO-based Algorithm and the Optimal Solution for Large Case 
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Figure ‎4.35: Distribution of the Results of Shen Algorithm versus the Results of ACO-

based Algorithm and the Optimal Solution for Large Case 

 

Figure ‎4.36: Different Allocations from the Optimal Solution for Large Case 
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Figure ‎4.37: Comparison with Maximum Capacity
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Chapter 5  

CONCLUSION AND FUTURE DIRECTIONS 

 In this chapter, the thesis work is concluded where the results are summarized. 

Then, the possible future work is stated. 

5.1 CONCLUSIONS 

 Orthogonal Frequency Division Multiple Access (OFDMA) is the core radio 

transmission technology for Worldwide Interoperability for Microwave Access 

(WiMAX) and Long-Term Evolution (LTE) [3]. OFDMA is introduced to solve the 

problem of Frequency Division Multiple Access (FDMA). OFDMA is able to exploit 

both multiuser and frequency diversity gains due to its high spectrum and power 

efficiency. Therefore, huge research is based on OFDMA and OFDM. In this thesis work, 

the Ant Colony-based Optimization algorithm (ACO-based) is used to solve the resource 

allocation problem of a multiuser OFDMA system and obtain solutions of acceptable 

qualities in terms of total system throughput and compliance with the proportional rates 

constraint, referred to by fairness. 

 Three versions of the ACO-based algorithm are implemented to achieve the thesis 

main objective. The first two versions have the best results of total system capacity with 

very low fairness between users when compared to the results of Rhee [1], Mohanram 

[7], Shen [8], and Mahmoud [5] algorithms. At the same time, the final implementation 
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of the ACO-based algorithm (version 3) has the best results of total system capacity with 

high fairness between users. 

 Moreover, an optimal solution for a synthesized problem is compared the solution 

of the ACO-based algorithm version 3 in addition to the solutions of the other algorithms 

in [1, 5, 7, 8]. The ACO-based algorithm has the best results for small number of users. 

At the same time, the ACO-based algorithm has the worst average distance from the 

optimal solution for large number of users. In both cases, the sub-channels allocations of 

the ACO-based algorithm are more similar to the sub-channels allocations of the optimal 

solution than the other algorithms in [1, 5, 7, 8]. Therefore, the algorithms are compared 

with the maximum possible capacity that any algorithm can reach. The results show that 

the ACO-based algorithm is the closest algorithm to the maximum capacity. 

5.2 FUTURE DIRECTIONS 

This work led to many ideas and many possible future directions. They are as follows: 

1. Investigation of how to reduce the execution time of the ACO-based algorithm. 

2. Investigation of use of some other bio-inspired algorithms and iterative heuristic 

algorithms such as fish and bee algorithms. 

3. Investigation of how to improve the allocations of other algorithms in the 

literature. 
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