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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Introduction to Competitive Electricity Markets 

 

During most of twentieth century, consumers used to buy electrical energy from a utility 

that holds the monopoly for the supply of electricity services in the franchise area. In the 

1980s, some economists argued that the monopolistic electric utilities remove the 

incentive to operate efficiently and encouraged unnecessary investments. The economists 

suggested that if companies were allowed to compete freely for the provision of 

electricity that may benefit consumers.  Competing companies would choose different 

technologies in order to maximize their profit and hence the consumers would less likely 

be saddled with the consequences of unwise investments. Thus the introduction of 

competition in the supply of electricity has been accompanied by deregulation and hence 

privatization of some or all components of the industry[1] .  

In an open access electricity market, the price of electricity is determined by the 

Independent System Operator (ISO) or Market Operator (MO) for specific intervals 

during a specific period considering various economical and operational factors. This 

results in uncertainty in electrical market price. In „Fake Markets‟, generators bid to 

supply a fixed amount of a power and the market clearing price is set by the marginal 
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price of the most expensive generator scheduled to serve the forecasted load where as 

demand side does not contribute in the price setting process.  When both suppliers and 

consumers are allowed to operate freely in a competitive market, the intersection of 

supply and demand curves gives the Market Clearing Price (MCP). The profit obtained 

from this competition will be then optimal. This type of market is called a “Real 

Competitive Power Market”. If Demand side participation does not respond to the 

dynamic wholesale prices, generators would have no incentive to bid closer to their 

marginal cost in the electricity markets and so prices could not be set closer to the 

perfectly competitive market price. The absence of Demand Side Participation (DSP) in 

electricity markets may cause the price spikes, shortages, and exercises of market 

power[2, 3].  

Once the Demand Side participates into the market it forms a Double-Sided competitive 

electricity market where in suppliers and consumers submit their supply and demand bids 

in a sealed format to the independent system operator. The ISO then constructs the hourly 

aggregated supply offers and demand bids and determines the Market Clearing Price 

(MCP) and correspondingly supply and demand schedules. The winners of the market 

will be paid (or) pay the MCP for each MW of electric power supplied (or) purchased in 

the market. The main aim of the Suppliers and Load Serving Entities (LSEs) in the 

market is to maximize their profit. The LSEs under double-sided competitive electricity 

market environment are required to compete with the rivals by bidding into the market 

and hence to a certain extent the profits of LSEs depend on their bidding strategies. Thus, 

it is important for LSEs to construct an optimal bidding strategy in order to maximize 

their profit. The main factors which affect the bidding behavior are the demand variation, 
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regulatory constraints; and the bidding behavior of other competitors. Due to special 

nature of electricity the most uncertain factor is the rivals bidding behavior that 

compounds the difficulties in bidding decision process where each player tries to 

maximize their own profits[4]. 

Now, the challenge is how to develop optimal bidding strategies for LSEs. There have 

been several approaches which were proposed to build optimal bidding strategy. The first 

approach is to estimate the Market Clearing Price (MCP) in the next period. The second 

approach is based on game theory and the third is based on the estimation of bidding 

behaviors of the rivals participating in the electricity market. Out of these approaches, 

most of the research to develop optimal bidding strategy is done using the third approach. 

Here the LSEs make use of the available information about rivals such as historical 

bidding data and forecasted load data and then estimate the rivals bidding behavior. LSEs 

face many risks while adopting bidding strategies. If the bidding price is too low then 

there is a risk of not clearing the quantity required which reduces the profit of selling 

electric power to end customers. If the bidding price is too high, then there is a risk of 

paying unnecessary prices for purchasing electricity and end customers may look for 

another LSEs due to high retail prices[5].  
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1.2 Thesis Motivation 

The main purpose of the research is to study how the Demand Side participation affects 

the electricity market without and with transmission constraints. Once the Demand side 

participates into the electricity, what should be the approach to construct an optimal 

bidding strategy for LSEs so as to maximize its profit which is affected by the rivals 

bidding behavior and various risk factors? Also how congestion effects on the feasibility 

of power flow and how should LSEs tackle the problem of congestion? It is necessary to 

find out how the contractual tools are beneficial to manage risks associated with 

congestion and whether they affect the benefits of LSEs. All these questions warrant a 

study about demand side participation and construction of an optimal bidding strategy for 

LSEs. 

 An optimal bidding strategy for LSEs is developed for a pool based double-sided auction 

electricity market with two models. The first model neglects the effect of transmission 

constraints whereas the second model takes into account the impact of transmission 

constraints on the profit of LSEs. The bidding behaviors of rivals are represented as 

stochastic variables of normal probability distributions. The problem is then formulated 

as a multi-objective stochastic optimization model and solved by a Monte-Carlo 

Simulation and Genetic Algorithm (GA). A numerical example involving Generation 

companies (Gencos) and LSEs without transmission constraints is used to illustrate the 

essential features of the proposed model and method. The impact of transmission 

constraints on bidding strategy of LSE is studied using IEEE-30 bus system. The thesis 

also includes the effect of forward contracts on the profit of LSE.  
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1.3  Thesis Objectives 

 

1. To study different bidding options for Load Serving Entity using single block 

bidding per unit time with correlation coefficient. 

2. To study different bidding options for Load Serving Entity using three blocks 

bidding per unit time with correlation coefficient. 

3. To develop an optimal bidding strategy for LSE with risks in pool-based double-

sided competitive electricity. 

4. To study the impact of transmission constraints on bidding options for LSE 

considering single and three block bidding per unit time with correlation 

coefficient tested on IEEE 30 bus system. 
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1.4 Thesis Organization 

 

This thesis is organized as follow 

In the second chapter of the thesis, a literature survey is presented on the basic concepts 

of electricity markets. These concepts discuss what the electricity markets consists of and 

how the electricity markets are run. Different pricing schemes of electricity markets are 

discussed along with different market clearing processes and settlements. The chapter 

also presents a literature survey on Demand Side Participation (DSP). This study 

discusses the importance of DSP within the electricity markets and its effects on the 

market. Accomplishment of DSP with respect to retailers and consumers perspective is 

discussed. A literature review on the impact of transmission constraints on the electricity 

markets is also documented in this chapter. A short discussion about nodal pricing and 

losses in transmission networks is presented. It also discusses about various techniques 

used to manage the transmission risks in centralized electricity markets. Finally, the 

chapter discusses the various approaches of bidding strategies for electricity market 

participants. 

 

Chapter three presents a mathematical model for optimal strategic bidding for LSEs in 

double-sided competitive electricity markets is constructed using Y independent 

Generation Companies (Gencos) and Z independent LSEs. The chapter also documents a 

literature review on Monte-Carlo Simulation and Genetic Algorithm (GA) methods. 

Finally, the procedure for building an optimal bidding strategy for an LSE is documented 

with a flowchart.  
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Chapter four is divided into two parts. The first part presents the simulation analysis of 

constructing bidding strategy of a market model consisting of 3 Gencos and 4 LSEs 

without considering transmission constraints. Various bidding scenarios based on risk 

factors, correlation co-efficient, retail price to end customers and interruptible price to 

end customers are analyzed. Monte-Carlo Simulation and Genetic Algorithm (GA) are 

the two mathematical tools used to determine the optimal bidding strategy for a LSE. The 

second part presents the simulation analysis of an electricity market model which takes 

into account the impacts of transmission constraints. The IEEE-30 bus system model is 

used for the study. The system will be assumed to consist of 6 Gencos and 3 LSEs. At 

first, an Optimal Power Flow (OPF) is conducted without considering the transmission 

constraints. Secondly, OPF with transmission constraints is performed and the impact of 

transmission constraints on the electricity model is studied along with its impact on the 

profit of concerned LSE. Finally, an optimal bidding strategy for IEEE- 30 bus system 

model is developed using Monte-Carlo Simulation and GA. 

 

Chapter 5 includes Conclusion and Future Work. 
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CHAPTER 2  

 

LITERATURE REVIEW 

 

The literature review is divided into the following categories: At first, a survey on the 

electricity markets and pricing settlements will be discussed and secondly, the role of 

demand side participation and its importance in electricity markets is documented.  The 

impact of transmission constraints on electricity markets is discussed and the managing 

of transmission constraints is documented. Finally, a literature survey on the strategic 

bidding approaches for market participants in an electricity market is presented. 

2.1 Introduction 

The electricity markets are based on the premise that electricity can be treated as a 

commodity. However, there are many differences between electricity and other 

commodities. The basic difference is that electrical energy is connected to a physical 

system which functions faster than any other market[6]. This physical system consists of 

generation, transmission, distribution and utilization. The generation and load should 

always be balanced else it would result in the collapse of the system. Such collapses are 

not tolerable as it stops not only the trading system but also the entire region goes without 

power for long periods. The other difference between electricity and other commodity is 

that the power generated by one generator cannot be specified to a particular consumer. It 
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has to be pooled since „the electrical energy produced by different generators is 

indistinguishable‟. This pooling is very economic. The load in the electricity markets 

varies hourly, daily and weekly. This variation in the load has to be met with time to 

time[7, 8]. 

Considering all the factors mentioned above, there is a need of an electricity market 

where in sellers and buyers interact without any interruption. Buyers and sellers interact 

based on the equilibrium in which market clears at a price where supply equals demand. 

The next section presents how the electrical energy trade is organized and the functioning 

of open electricity markets. 

2.2  Open Electricity Markets 

2.2.1  Bilateral Trading 

This type of trading is only between two parties (sellers and buyers). These two parties 

set the price of the transaction independently. Hence there is no official price involved[9]. 

E. Bompard and M. Yuchao addressed the various types and modelling of bilateral 

trading as [10].  

2.2.2 Electricity Pools 

Electricity pools involve a centralized trading of electrical energy where in sellers 

(generators) and buyers (consumers) submit their offers and bids at a certain price for the 

period. Independent System Operator (ISO) or Market Operator (MO) then ranks the 

offer prices of sellers in ascending order and constructs a curve as a function of bid 

quantity. This curve is called supply curve. In a similar way ISO or MO constructs a 

curve as a function of bid quantity by ranking the bid prices of buyers in descending 
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order. This curve is known as demand curve. As shown in figure 2.1, „the intersection of 

this supply and demand curves determines the market equilibrium‟. The accepted bids 

and offers are called the winners of the market. The winners of the market are informed 

about the amount of energy they can supply or draw from the market. The advantage of 

this type of trading is „centralized form of management‟. It not only handles the 

transactions of electrical energy but also the transmission system responsibility [11-13]. 

 

Figure 2.1 Market Clearing Process 

2.3  Electricity Pricing 

The issue of electricity price forecasting has become very essential for utilities in order to 

make decisions, plan bidding strategies, scheduling and for reliable operations [14]. 

Forecasting of electricity market prices is difficult because these prices are highly volatile 

than other financial markets. The reason of high volatility is due to the fact that electrical 

supply and demand, unlike other commodities, should be on real-time balance. The other 

reasons for volatility in electricity market prices may be due to fuel prices, generation 
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problem, transmission constraints, weather problems, bidding strategies of market 

players, losses etc. There are two methods developed by researchers to forecast these 

prices [15]. The first method is „Analysis-based‟ which makes use of the historical data 

of market participants to forecast the future electricity market price. The second method 

is „Simulation-based‟ which makes use of system operation internal data like initial 

offers, constraints of operating system and demand bids to forecast the market price. This 

method is generally used by market operators and large power utilities. This method is 

not practical as it requires the internal data of the system under operation. 

The profit of utilities depends upon the strategy of providing the required energy with 

right price at right time [16]. The various pricing methods used in the electricity markets 

are 

Market Clearing Price (MCP): If there are no transmission constraints in a system then 

MCP is determined by offers and bids submitted by generators and consumers. It‟s the 

only price for the entire market system.  

When transmission constraints are considered the following types of pricing are used 

Locational Marginal Pricing (LMP): It is the cost of supplying „next MW of load‟ to a 

specific location. It takes into account the marginal cost of generation, cost of losses and 

cost of transmission congestion. Optimal power flow (OPF) with transmission constraints 

is conducted to balance the demand at different buses and to determine LMP. LMP is 

different at different buses. It is also known as „Nodal Pricing‟ (NP). 

Zonal Market Clearing Price (ZMCP): This type of pricing comes into picture when 

ISO detects congestion along a transmission path in a zone for a given period. ISO then 
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adjusts the zonal scheduling at the two ends of transmission path which relieves the 

congestion. Thus, a new MCP is determined by OPF at the two ends of the path known as 

ZMCP. 

2.4 Settlement Methods in Electricity Markets 

The settlements for market winners in electricity markets are done based on the rules 

agreed by all market participants. There are two such rules which are economic‟ i.e.  

• Uniform Pricing Rule: Bidders submit sealed bids and MO constructs supply-

demand curves and determines market clearing price at which supply equals 

demand. Market winners are paid a price according to MCP. 

•   Discriminatory Pricing Rule (Pay-As-Bid): Bidders submit sealed bids and 

MO constructs supply-demand curves and determines market clearing price at 

which supply equals demand. Market winners are paid a price according to their 

bids. 

There are various uniform pricing options that are used in electricity markets based on 

offers and bids of suppliers and consumers. They are as follows 

2.4.1 Last Accepted Offer (LAO) or First Rejected Offer (FRO): 

If the demand is inelastic then auction is only adopted for the supply. The supply offers 

are then ranked in increasing order by the ISO and the energy is dispatched at a point 

where ranked offers satisfy the demand. Here, the market uniform pricing can be settled 

either to LAO or FRO. If the energy is dispatched at a point where the block of offer is 

marginally accepted then this block will be the last accepted block and its price will be 

the block price of the offer [17].  
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Figure 2.2 shows uniform pricing options for supply side. 

 

Figure 2.2 Uniform Clearing Prices by supply-side 

2.4.2 Last Accepted Bid (LAB) or First Rejected Bid (FRB) 

When the supply is inelastic the auctions are only for demand. The demand bids are then 

ranked in decreasing order with respect to their price by ISO. The energy is dispatched at 

a point where demand is satisfied as shown in figure 2.3. Here, the market clearing price 

can be settled to either Last Accepted Bid (LAB) or First Rejected Bid (FRB) [17, 18]. 

 

Figure 2.3 Uniform Clearing Prices by Demand-side 
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2.4.3 Double-Sided Auction Electricity Market      

  

For double-sided auctions in electricity markets, the supply offers and demands bids are 

ranked in ascending and descending order respectively until the offer price exceeds the 

bidding price i.e. until demand is satisfied. Figure 2.4 shows the various uniform pricing 

options used in double sided competitive electricity markets. The uniform price can be set 

to any value between bid-offer gaps as shown in the figure 2.4. This settlement would be 

satisfactory for all the market participants. In case of partially cleared block, set this 

partial cleared block price as uniform price. This block can be either an offer or a bid [18, 

19].   

 

Figure 2.4  Uniform Clearing Prices under double-sided auction electricity markets 

 



 15   

 

2.5 Demand Side Participation (DSP) 

Electricity prices in fake markets are decided by the supply side participation. For a 

competitive market, demand side should also be involved to decide the electricity price. 

This type of involvement of both supply and demand sides is possible in real market as 

mentioned in section 2.4.3. In general, the „fully competitive electricity market‟ should be 

open for not only generation companies but also for demand entities. It has been 

documented through research that Demand Side Participation (DSP) makes system 

reliable and optimal. In china the participation of demand side has provided the fast 

progress of power industry reconstruction [20-22].  

2.5.1 Definition of DSP 

One can understand from Demand Side Participation that it is done in order to 

communicate between “wholesale and retail electricity markets” having an objective of 

changing the loads depending upon the wholesale electricity price and the load 

requirement area. There are many ways to define DSP, but its basic function is to make 

the system reliable and profitable to both supply and demand side participants. DSP 

encourages customer to reduce their consumption during the period of high price and 

receive incentives for their participation. 

DSP is not only confined to electricity market but also has other applications like 

ancillary services, reserves and quality control [23-25]. 

The participation of demand side in electricity are for different purposes like price setting 

in electricity markets or contracts, easing transmission constraints of a network, market 

balancing and ancillary services.  
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2.5.2 Importance of DSP 

The effective response of electricity customers is important for following reasons [26-28] 

a. During critical periods of supplying the demand, the active DSP reduce the price 

spikes. 

b. The reduction in the demand by DSP during critical periods brings the market to a 

reliable position by reducing supply from highly expensive generators. 

c.  When there is an insufficient supply, load shedding can increase system 

reliability. 

d. Regulation and spinning reserves may be provided by load which results in low 

cost. 

Demand response benefits in the improvement of electricity production resource 

efficiency. The increased efficiency has variety of benefits as follows: [29].  

1. It creates a sum of amount to benefit the power plants to use the most “costly-to-

run power plants” during the periods of „high demand‟. This drives the prices 

down for all wholesale electricity purchasers. 

2. Customers may earn financial benefits in the form of „incentive payments‟ by 

adjusting their demand with respect to time-varying electricity rates and 

participants may earn benefits by bill savings. 

3. Demand response reduces financial costs and inconvenience to customers by 

reducing consequences of forced outages. This results in operational security and 

adequacy savings. 
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4. „Market performance benefits‟ i.e. demand response mitigates suppliers‟ ability to 

exercise market power by raising power prices. 

2.6 Accomplishment of Demand-Side Participation within Competitive Electricity 

Markets 

The accomplishment of Demand Side Participation in electricity market can be studied in 

the form of two perspectives. 

2.6.1 Retailer’sPerspective 

Retailers should be able to forecast its load behavior and should also be able to predict 

future average electricity prices accurately in order to balance risks associated with 

buying energy between forward contracts and volatile spot markets and offer consumers 

appropriate retail supply contracts. The problem of optimal purchase can be addressed by 

using a stochastic optimization method to purchase allocation-problem for “long-term 

forward market and short-term spot market”. Based on the optimal purchase allocation, a 

method is developed for generating demand-side bids [30]. 

A retailer would ideally like to balance power, it purchased from the day-ahead market or 

by using long-term contracts, exactly with the consumer‟s demand. Due to random 

consumption behavior of demand this situation is not possibly achieved which imposes 

risks on the retailer. The retailer is thus forced to sell the imbalanced power on the spot 

market. The imbalances handling by retailer represents risks as the electrical energy price 

on the spot market is volatile. To avoid such risks, a retailer should forecast the demand 

of its customer precisely which is impossible. The retailer must classify its customers into 

groups having same load profiles and then identity groups and their dependence on 
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meteorological and temporal factors [31, 32]. Also a retailer can focus its efforts in 

marketing toward high profitable customers by predicting load profiles of these 

customers on the basis of its type of its load factor, industrial activity, and its annual 

energy consumption [33]. 

2.6.2 Customer’sPerspective 

Consumers subscribe DSP programs due to financial benefits that they can realize from 

these programs. These programs involve a chain of decisions both before and after 

subscribing to a DSP option. Benefits like reduced forced outages may also motivate 

consumers to take part into a DSP option. The decision of a consumer to respond to DSP 

programs depends on the benefits that the consumer can derive from its participation, the 

amount of load its able to modify and length of DSP event [34]. The following are the 

basic strategies for load response during a DSP event: 

Foregoing: It involves curtailing load when prices are high compared to some threshold 

value and service is less than critical point. 

Substitution: It means to substitute electrical energy consumption to an alternative 

resource. 

Shifting: It means the ability to change the amount of energy consumed at any given 

time. „Load shifting‟ can be done by turning off a piece of equipment; switching to 

internal, off-grid power generation sources; or operation of equipment only during off-

peak hours. 
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2.7 Implications of Demand Side Participation 

This section discusses implications of DSP in the electricity markets. In general, it has 

many implications on the market participants and the system as a whole. The retailers and 

large consumers of electricity make profits from the low wholesale electricity prices 

during critical periods due to the response of consumers to time-varying loads. A part of 

this profit must be assigned for the consumers who respond during critical periods of 

demand [35]. The implementation of DSP needs initial cost for the development of 

infrastructure and technology along with transition costs. DSP should be implemented 

only when the benefit derived from DSP is greater than the cost of implementation [36]. 

Moreover, the reduction in the electricity price due to DSP results in reduced scarcity 

rents (revenue obtained minus variable operating cost) to the generators. This scarcity 

rents now relocates to the demand-side. This reduction of rents may lead for generators to 

bid high for off-peak loads so that it can make up for the loss during peak periods. DSP 

encourages consumers who do not mind being disconnected totally or partially during 

emergency periods to serve as a reserve. These consumers would be paid an exercise 

amount with an option fee for their load being disconnected. This type of operation 

would secure the system as a whole and provides the essential economic operation. All in 

all, the concept of DSP provides security during emergency periods and is cost effective 

because it affects only consumers who wish to participate. But DSP has few 

disadvantages like; high cost involved in installing remote switching device makes the 

implementation of DSP limited to large consumers and difficulty to expect the size of 

load that should be reduced during emergency periods [37, 38]. 
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2.8 Electrical Markets and Transmission Networks 

Having studied the electricity markets, electricity pricing and demand side participation, 

it is important to see how the transmission networks are related to the electricity markets. 

It is very much tenable to assume that electricity can be traded as if all the generators and 

loads are connected to a single bus bar. There is a sequence in which electricity is traded 

into the markets. Generators produce the electricity, transmission system transmits it to 

the distribution system and finally distributors distribute it to the consumers. During this 

sequence of operation there may occur power losses and transmission constraints in the 

network. These transmission constraints and losses by a great mean can introduce 

distortions into the market. Thus, the role of system operator in such situations becomes 

very important that it should maintain the energy balance and system security at regular 

intervals [39]. 

2.8.1 Decentralized Market and Transmission Networks 

In decentralized trading or bilateral trading, only sellers and buyers are involved in 

energy transactions. In case of transmission constraints, these parties sign an energy 

trading contract agreeing on a particular quantity to be delivered at a particular time on 

agreed price and any other conditions. System operator must be informed about such 

trading. System operator then maintains the system security and energy balance [40]. In 

order to avoid any interruptions in power transmission between these two parties, the 

advocates of decentralized market suggest that these parties can own the physical 

transmission rights. It is the right to use the transmission system for a particular 

transaction in order to avoid interruption in power through a given transmission link. 

These rights are owned by auction in the market. The parties must decide themselves 
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whether or not the price linked with this rights is justifiable depending on their location 

and situations. Once the party owns this right, they can use them or sell them to other 

parties. This situation might prevent market participants to hoard the transmission 

capacity for enhancing market power. In practice, enforcing this phenomenon is hard 

because the path taken by the power in a network is decided by “physical laws but not by 

the wishes of market participants” [41]. Secondly, the exercise of market power can be 

exacerbated by some participants. Finally, the unused transmission constraints may be 

released very lately that the other market participants find difficulty in readjusting their 

trading positions [42]. 

2.8.2 Centralized Market and Transmission Networks 

In centralized market, producers and consumers submit their supply offers and demand 

bids to the system operator. System operator, after collecting these offers and bids, 

optimally clears the market by taking into account the problem of system security 

imposed due to transmission constraints. These constraints may create congestion in the 

transmission network. To avoid this congestion consumer may be forced to purchase 

power from local generators which may be expensive. This congestion divides the market 

into separate zones resulting in different prices at different locations of a network [43, 

44]. These prices are called “locational marginal prices” since the marginal cost is based 

upon the location where energy is produced or consumed. If these prices are different at 

different buses of a system then these prices are called as nodal prices [45]. Hence, in 

centralized electricity market with transmission constraints the price of electrical energy 

depends on the location or bus where the power is produced or consumed. The role of 

ISO in centralized electricity market is very essential when compared to bilateral trading. 
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ISO needs to achieve the economic efficiency by optimally using the transmission 

constraints [46]. 

Due to differences in the prices at different buses, a surplus called „merchandizing 

surplus‟ may arise. This is always equal to the difference between the prices of producing 

bus and consuming bus multiplied by the flow on the interconnection between two buses. 

As this surplus is due to congestion in transmission network it is also known as 

“congestion surplus”. This surplus is collected by the market operator (MO). However, 

MO should not keep this surplus with it as this encourages congestion or at least no 

proper action to be taken towards reducing transmission constraints. If this surplus is 

returned to the market participants then the concept of nodal marginal prices would go 

blunt which was designed to encourage achieving economic efficiency [47]. The 

settlement of congestion surplus is discussed in section 2.10.2. 

2.9 Losses in Transmission Networks 

Electrical power transmission through an electrical network results in losses. The losses 

are to be supplied by one or more generators and hence these generators expect to be paid 

for their production [48]. Therefore, a mechanism must be designed to take into account 

the cost of losses in the electricity markets. P. O. Oluseyi, et al[49] presents the 

consequences of losses in Nigeria and the modeling of electricity market. 

The prices, that are to be paid to generators because of losses in the network, are shared 

by the loads at different buses. MO decides the price of losses depending upon the power 

flow. There is no particular rigorous method to quantify the cost of losses [50].  
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2.10 Managing Transmission Constraints in Centralized Electricity Markets 

It is unusual for the market participants to purchase all the power required through the 

spot market. In order to avoid fluctuations in electricity prices, which usually occur in the 

spot market, participants sign contract for differences agreeing on delivery of a certain 

quantity and at a certain price at a particular period. It is important to see how 

transmission constraints affect these contracts and what new contractual measures must 

be taken to manage the congestion risk. Losses also do affect the marginal nodal prices 

but this affect is small and is predictable [51]. So, this thesis considers only the effect of 

transmission congestion. 

2.10.1 New Contractual Tools 

In centralized electricity markets, the energy generated and consumed is traded through 

the „pool‟. System Operator receives price for energy consumed at the bus based on its 

nodal price and pays the price for energy produced at the bus depending upon its nodal 

pride. In order to avoid vagaries of the nodal prices, market participants are allowed to 

sign „bilateral contracts‟. When there is no congestion in the network, the nodal prices 

almost remain the same depending upon the location. When congestion occurs in the 

network, different buses have different nodal prices. The contract signed between two 

parties depending upon their nodal prices may result in incompatible expectations. In 

general, this contract which covers only the delivery of energy does not work during 

congestion. In this situation, market participants should not only contract for the energy 

trading but also for “the ability of transmission system to deliver it” [52, 53].  
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2.10.2 Financial Transmission Rights (FTRs) 

In order to avoid the incompatible expectations resulting in the contract for difference, 

the parties signing the contract should also hold financial transmission rights (FTRs). 

FTRs are between two nodes which own the holders of its revenue equal to the product of 

price difference between two nodes and the capacity of flow through that branch. This is 

same as the “congestion surplus” that was discussed in section 2.8.2. The amount derived 

from these rights will be used to settle the contract between two parties. These rights 

completely isolate the risk associated with congestion in the system. In order to own 

these rights, participants need to undergo an auction process where in all generators, 

consumers and speculators can participate in order to gain profit from the locational price 

differences [54]. The highest bidder of this auction will be given FTRs. The bidder at 

maximum can submit the difference between the nodal prices as its bid. These FTRs are 

usually defined from one point of network to any other of the network irrespective of its 

direct connection through a branch. The matter of concern is only „the bus where the 

power is injected‟ and „the bus where power should be extracted‟; the path of power flow 

is of no importance. These rights are known as point-to-point FTRs [55]. 
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2.10.3 Flow-Gate Rights  

In point-to-point FTRs, the rights are defined from point-to-point. Instead of this, rights 

can be linked to a branch or flow-gate in the network. These rights are known as Flow-

Gate Rights (FGRs). The price of these rights is fixed to a value of „langrage multiplier‟ 

or „shadow cost‟ associated with maximum available capacity of flow-gate [56]. If the 

branch is not operating at its maximum available capacity then its langrage multiplier is 

zero. The participants in contract should only own FGRs of congested branches.  Only 

those FGRs can produce revenue which is operating at its highest capacity. The risk 

associated with FGRs is that the congested branches are difficult to be predicted. The 

owner of FGRs never pay money back to the MO since Langrage multiplier is never 

negative [57]. 
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2.11 Strategic Bidding in Electricity Markets 

In double-sided auction competitive electricity markets, market participants face the 

problem of bidding because it‟s their bidding strategy which defines them as either a 

market winner or loser. Whereas, in bilateral trading there is no such strategy but it 

requires the necessity of price negotiation between the parties. Therefore, market 

participants construct their bidding strategy in order to avoid risks and maximize their 

social welfare by trading through pool markets. Hence, Strategic bidding can be defined 

as the process by which the market participants aim to achieve their performance goals by 

developing bids. System operator encourages such competitive bidding processes to 

achieve the cost-minimizing function. While each market participant develops bidding 

strategy using rivals historical data to maximize the profit [58]. Market price and 

electricity trade depend on bidding strategies of market participants. The various factors 

that should be considered when providing the power quantity and price bids are  

a. Load patterns (daily, weekly and seasonal). 

b. Generation technical limits. 

c. Demand prediction. 

d. Previous market clearing prices. 

e. Maintenance of generators and lines etc. 

The winners of market will be paid or pay on the basis of rules agreed in the electricity 

market. It either follows uniform or PAB pricing, discussed in chapter 2, section 2.4.  
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Market participants analyze and construct their bidding strategy using several approaches 

or techniques. The following are the few techniques used by the participants. 

a. Optimization-based technique: In this technique, the rivals in the electricity 

market are modeled stochastically or deterministically using probability 

distribution functions. This approach uses the historical data of rivals participating 

in the market. Then different bidding strategies using various factors such as risk 

factors, retail price, interruptible price and correlation coefficient are studied. 

Finally, optimal bidding strategy is determined from the various designed 

scenarios [59]. 

b. Equilibrium-based approach: In this category, rivals are considered in determining 

game theoretic equilibrium of market[60].  

c. Learning-based approach: In this category, learning algorithms are applied to 

bidding strategy problem. Due to electrical market complexities, it is more 

effective since it learns from the empirical data [61]. 

Technique (a) is used in this thesis wherein Monte-Carlo Simulation and GA tools are 

applied to build an optimal bidding strategy for an LSE. 

2.11.1 Bidding Strategies for Electricity Producers 

Electricity producers can build their optimal bidding strategies in three ways.  

The first way is to believe that its energy offering will not influence market price and thus 

it acts as a price taker. In this case, producer will determine its bidding strategy based on 

the estimation of MCP. Once, it estimates the MCP it will offer the energy at a price little 

cheaper than MCP. Analysis of forecasted load, transmission constraints and behavior of 
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participants will help the producer to estimate the MCP. But, this method will not hold 

for a longer time since the historical data available is very little in the market and also the 

assumption that its behavior will not affect or influence the market is implicit.   

The second way is to believe that supplier‟s strategy of energy offering will influence the 

market but assumes that rivals bids or offers as known from historical data available. This 

method models the rivals stochastically or deterministically into a bi-level optimization 

problem. For the first level, supplier tries to maximize its profit under the constraints and 

for the second level ISO finds an OPF to minimize the system cost. Monte-Carlo 

Simulation and GA tools are applied to find the optimal bidding behavior of the supplier. 

Finally, the third way is to believe that its energy supplying strategy will influence the 

market and considers the bidding strategy of rivals who also tries to maximize their 

profit. In this method, supplier should have the information of rivals generation cost and 

consumers load behaviors. This approach is hard and requires gaming to construct the 

optimal bidding strategy. But, once constructed this method is the most reliable [62, 63]. 

2.11.2 Bidding Strategies for Electricity Consumers 

As mentioned before, Independent Load Serving Entity (LSE) will compete with other 

LSEs and suppliers in double-sided auction electricity market. LSEs submit the offers for 

purchasing electricity through pool trading to ISO.  Like suppliers, the profits of LSEs 

also depend on their bidding strategies to a certain extent. These strategic biddings of 

LSEs might show some significant impacts on electricity markets. Demand Side Bidding 

(DSB) is a strategy that enables the demand to actively participate in the trading of 

electricity [62, 63].  
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Several researchers have developed bidding strategies for LSEs using a day-ahead 

market. Stochastic processes and Nash-cournot techniques are used to model market 

participants. This thesis uses ‘step wise bidding functions and pay-as-bid settlement 

protocols‟ to develop an optimal bidding strategy for LSEs. Last Accepted Bid (LAB) 

pricing rule is used to determine MCP. Bidding behaviors of the market participants 

(rivals) are described by a normal probability distribution function, and a stochastic 

optimization model is used to formulate the issue of constructing optimal strategic 

bidding for LSEs. Monte-Carlo approach is applied to get the corresponding solutions. 

Finally Genetic Algorithm (GA) is applied to get the optimal solution out of Monte-Carlo 

Simulation solutions[64]. 
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CHAPTER 3  

 

MATHEMATICAL MODELING FOR LOAD SERVING ENTITIES 

 

This chapter develops a mathematical model for an LSE in pool-based double-sided 

competitive electricity market. The market uses „step-wise price/quantity bidding 

functions and PAB settlement‟ with LAB pricing rules. The trading for electric power is 

done daily dividing each day into 24 trading periods. Bidding for next 24 periods is done 

before the next day starts [64]. 

3.1 Mathematical Modeling of an LSE in Electricity Market 

Considering two models of electricity market pools without and with transmission 

constraints, a bidding strategy for the LSE is developed. These models consist of Y 

„independent Gencos‟ and Z „independent LSEs‟. One out of the available LSEs, suppose 

X, is considered to build the optimal bidding strategy. Hence the rivals of this LSE are 

Y+Z-1. “Each generation company bid at most Ig blocks for each period; the block price 

must be non-decreasing with the increase of the block number. Each LSE bid at most Id 

blocks for each period, the block price must decrease with the increase of the block 

number. The market operator (MO) receives selling energy bids from Gencos and buying 

energy bids from LSEs and then determines the generation dispatching level of every 

Genco and the demand dispatching level of every LSE for every trading period and also 

the market clearing price (MCP)” [64, 65].  
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Suppose the forecasted load for each type of load is        

Where, X represents the LSE X and                         

The process of bidding for the selected time period will be as follows: 

    
 

     Block quantity for each type of load 

 ̅   
 

    Cleared block quantity for each type of load 

     
 

     Cleared block price for each type of load After Market Clearing Process 

Retail price: It is the price at which LSEs would sell the power to the end customers. Its 

unit is $. The thesis uses retail price as „a’ $ per MW. 

Interruptible price: It is the price that LSEs would pay to the end customers in case of any 

interruption in power supply. Its unit is $. The thesis uses interruptible price as „b’ $ per 

MW. 

The block prices and quantities can be represented as: 

     = (     
 ,      

 ,      
 ….…     

  )         (3.1) 

 ̅    = ( ̅   
 ,  ̅   

 ,  ̅   
  ……. ̅   

   )       (3.2) 

The objective of this model is to find the maximum profit for LSE with optimal bidding 

strategy. Hence the profit of LSE X can be described as 

     ̅   )       ( ̅            ̅  )      (3.3) 
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Where, 

   is the profit of LSE X in one unit time 

   ̅   ) is the retail income  

   ̅  ) is the maintenance cost of distribution system 

 ̅   is the dispatched demand power 

The retail income of the LSE X is equal to the revenue from sold power to end customers 

minus the expense of interrupted power to end customers, illustrated as  

   ̅   ) =    ̅                ̅    )      (3.4) 

Using (3.4) in (3.3) we get 

      ̅         (      ̅   )
 

      ( ̅            ̅  )   (3.5) 

The problem for building an optimal bidding strategy for LSE X is to maximize its profit. 

So to find optimal solution, the risks involved in the market should also be taken into 

account. According to investment theory, the variances of the potential profit can be used 

to evaluate the risks of an investment. Hence the problem is formulated as the following 

stochastic optimization problem [64-66]. 

                        (3.6) 

Subject to: 

        ̅         (      ̅   )
 

      ( ̅            ̅  )   (3.7) 
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∑  ̅   
   

     ̅           (3.8) 

                 (3.9) 

                 (3.10)   

                (3.11) 

                

               (3.12) 

                           

Where,  

     is the expected value of profit   

     is the standard deviation 

   and   are used to represent the degree of risk 

      and        

The above optimization problem cannot be solved directly as the LSE X does not know 

the bidding parameters of rivals before the sealed auction. The bidding parameters of 

rivals can be estimated using the historical bidding data and load forecast. The bidding 

behavior represents a stochastic process can be represented as Bivariate Normal 

Distribution (BND) where each rival form both Gencos and LSEs has to submit block 

bidding with two values containing quantity and price [64-66]. Bidding behavior of 

Gencos has  ̃   
         

 ̃   
    

 ̃   
    and   ̃   

         
 ̃   

    
 ̃   

    which follows the 

bivariate normal distribution defined by the probability density function as 
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(3.13) can be summarized in matrix form as 
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Where,                             

On the other hand, bidding behavioral form of LSEs has  ̃   
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   which follows the bivariate normal distribution and defined by the 

probability density function as 
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(3.15) can be represented in matrix form as  
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+      (3.16)                        

      

Where,                                 

 „ρ‟ is the correlation coefficient. 

µ and   
 represents the mean and variance of the quantity and price for for both Gencos 

and LSEs. 

The correlation coefficient between         with expected values           and 

standard deviations            is their covariance normalized by their standard 

deviation, as follows 

     
        

    
         (3.17) 

3.2 Monte Carlo Simulation Method 

Monte Carlo methods solve a variety of mathematical problems by using continuously 

generated random numbers and probability theory. The solution obtained by this method 

is only the approximate solution to the problem. Thus, Monte-Carlo Simulation can be 

defined as “statistical simulation methods where statistical simulation is defined in quite 

general terms to be any method that utilizes sequences of random numbers to perform the 

simulation”. The basic idea of Monte-Carlo Simulation is that if series of samples are not 
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exactly distributed according to the density function then it is likely that the deviation 

will be small at least for large number of samples. Therefore, mean of arbitrary number 

of samples should be approximately equal to the expectation value [67, 68] . Monte-Carlo 

Simulation can be applied in electricity markets to get the expected behavior of the 

electricity market by investigating how the electricity market will work in a number of 

less or more randomly chosen scenarios. The advantage of this method is that it is quite 

straight forward to include market strategies and market designs. The only disadvantage 

is that it requires a lot of computation[68]. 

In an experiment of double-sided competitive electricity market, expectation value of 

profit for LSE X when it adopts bidding strategy is given by, 

     (
 

 
)∑    

              (3.18)  

Where,  

   is the     random sampling value. 

T is the „total random sampling number‟ 

      is the profit of LSE X of the     random sampling value 

The scatter degree of samples       can be described by standard deviation as 

     √(
 

   
)∑               

         (3.19) 
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If the scatter degree is small, the fluctuation level of the expectation profit is small which 

means bidding strategy has small risks and if the scatter degree is large then the 

fluctuations in the expectation profit will be large resulting in serious or large risks. 

A coefficient called mutation coefficient is used to measure the level of risk relatively 

with the expected value of profit. Mathematically it can be stated as,  

Mutation Coefficient     (
    

    
)               (3.20) 

3.3 Optimization by Genetic Algorithm 

Genetic Algorithm (GA) is a technique for a problem which continuously modifies the 

population of individual solutions. GA, step by step, produces children for the next 

generation using individuals randomly from the current population commonly known as 

parents. This process of evolution will continue towards an optimal level giving an 

optimal solution to a problem. Thus, it can be defined in a general way as “a method to 

solve both constrained and unconstrained optimization problems that is based on natural 

selection, the process that drives biological evolution”. Problems in which objective 

functions are stochastic, non-differentiating, non-linear can be solved by GA [69]. Two 

types of GA are mainly used to find the optimal solution for problems, they are binary 

code GA and real coded GA. Binary coded GA is used to code chromosomes and is 

known to be a popular method. Whereas, real coded GA is more effective in the real 

world when compared to binary coded GA because binary coded GA has problems like 

encoding and decoding [70].  
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The steps in which GA works are  

1. Contribution to next generation by selecting individuals from the current 

population called parents. 

2. Generation of children by combining two parents. 

3. Applying random changes to individual parents to form children. 

 Once the bidding strategies for LSE X are developed, the GA optimization is applied in 

order to get step by step optimized bidding strategy for LSE X[71]. 
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3.4 Procedure for Optimal Bidding Strategy 

The procedure of building optimal bidding strategy for an LSE X in an electricity market 

is listed as follows: 

1. Specify the parameters of rivals‟ probability distribution functions (pdfs) as in 

equations (3.14) and (3.16). 

2. Execute Monte-Carlo simulation as follows: 

a. Specify the random sampling number „T’. 

b. Specify the offering parameters of Gencos   ̃   
  ,  ̃   

   and bidding 

parameters of LSEs   ̃   
 

 ,  ̃   
 

   as in equations (3.14) and (3.16). 

c. Determine the market clearing quantity and market clearing price from market 

clearing process. 

d. Calculate      . 

e. Calculate the expectation profit      and standard deviation      using 

equation (3.18) and (3.19). 

f. Calculate the net profit   using equation (3.6). 

3. Create a genetic algorithm whose population members represent the risk factor α, 

bidding price p, standard deviation     , retail price a and interruptible price b. 

4. Initialize GA population and maximum number of generation, Tgen. 

5. Set GA generation counter tgen = 0. 

6. Regard   as the fitness function of the population members. 

7. Perform the standard GA operators, i.e. parent selection, crossover, mutation, etc. 

8. Set tgen = tgen +1 

9. If tgen < Tgen. go back to 5; otherwise go to 10. 
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10. Find the fittest member of the genetic algorithm as the optimal bidding strategy. 

11. Stop 

The first two steps represent the Monte-Carlo Simulation for the model, while the steps 

from 3 to 10 represent GA optimization.  

Figure 3.1 shows a flowchart for the procedure of optimal bidding strategy of an LSE in 

electricity market. 
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Figure 3.1 Flow chart for Optimal Bidding Strategy 
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CHAPTER 4  

 

SIMULATION AND ANALYSIS 

 

This chapter is divided into two parts. The first part discusses the simulation and analysis 

on building an optimal bidding strategy for an LSE in an electricity market without 

transmission constraints. This market consists of 3 Gencos and 4 LSEs. The second part 

presents the simulation and analysis on optimal bidding strategy for an LSE using IEEE-

30 bus system market model with transmission constraints.  

4.1 Optimal Bidding Strategy without Transmission Constraints 

Consider a model without transmission constraints, with Y=3 Gencos and Z= 4 LSEs as 

shown in figure 4.1. LSE X out of 4 LSEs is selected to build optimal bidding strategy 

which means the number of rivals for LSE X is Y+Z-1 = 6. 

 

Figure 4.1 Single line diagram of a market model with 3 Gencos and 4 LSEs 
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The distribution system maintenance cost function of LSE X is taken as [64-66] 

   ̅             ̅          ̅  
        (4.1)          

   ̅    represents the cost that an LSE X has incurred while maintaining technical and 

administrative actions, including supervision actions, intended to restore the system to a 

state in which it can perform a required function.  

Each market participant is allowed to bid at most 3 blocks (Ig=3 and Id=3) 

For each type of load for LSE X, let the forecasted load be 200MW 

Therefore, total demand for LSE X = 600MW 

Also let,                      [64-66] 

The minimum bidding block price of LSEs determined by MO is          

Table 4.1 shows the estimated parameters for 3 Gencos [64-66]. µ(qty) in Table 4.1 

represents the mean value of bidding quantity with a standard deviation of σ(qty). 

Similarly, µ(prc) represents the mean value of bidding price with a standard deviation of  

σ(prc). Table 4.1 also shows that the bidding prices for Gencos are increasing from one 

block to the another block, i.e. it is $15 for Genco 1 during block 1 then $35 during block 

2 and finally $50 during block 3. The other Gencos also follow the same increasing block 

prices for their supplied capacity. 
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Table 4.1 offering parameters for 3 Gencos 

Genco 

Block1 Block2 Block3 Variance 

µ(qty) 

(MW) 

µ(prc) 

($) 

µ(qty) 

(MW) 

µ(prc) 

($) 

µ(qty) 

(MW) 

µ(prc) 

($) 

σ(qty) 

(MW) 

σ(prc) 

($) 

1 300 15 200 35 400 50 5.5 2.5 

2 200 25 300 45 400 60 5.5 2.5 

3 200 55 400 73 300 95 5.5 2.5 

 

Table 4.2 shows the estimated parameters for 3 LSEs [64-66]. µ(qty) in Table 4.2 

represents the mean value of bidding quantity with a standard deviation of σ(qty). 

Similarly, µ(prc) represents the mean value of bidding price with a standard deviation of  

σ(prc). Table 4.2 also shows that the bidding prices for LSEs are decreasing from one 

block to the another block, i.e. it is $63 for LSE 1 during block 1 then $43 during block 2 

and finally $23 during block 3. The other LSEs also follow the same decreasing block 

prices for their supplied capacity. 

Table 4.2 Bidding parameters for 3 LSEs 

LSE 

Block1 Block2 Block3 Variance 

µ(qty) 

(MW) 

µ(prc) 

($) 

µ(qty) 

(MW) 

µ(prc) 

($) 

µ(qty) 

(MW) 

µ(prc) 

($) 

σ(qty) 

(MW) 

σ(prc) 

($) 

1 100 63 300 43 200 23 5.5 2.5 

2 190 85 230 65 180 48 5.5 2.5 

3 150 93 220 73 230 43 5.5 2.5 
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4.1.1 Pool-based Power Market for Different Participants 

Pool-based power market is built for one unit time to determine market clearing price and 

market clearing quantity for all participants. First, rearrange the offers of Gencos in 

ascending order by the block price and then rearrange the bids of LSEs in descending 

order by block price. After that, dispatch the selling energy bids and buying energy bids 

until the buying price is just less than or equal to selling price. Last Accepted Bid method 

is employed to get the market clearing price and market clearing quantity. The pool-based 

market built for above model is shown in figure 4.2. 

 

Figure 4.2 Market Clearing Process 
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Market clearing price and quantity obtained from pool-based power market gives the idea 

of how to bid in the market to clear required quantity. LSE X should bid above market 

clearing price i.e., $48.056 to be a market winner. Bidding of LSE X decides how much 

quantity it can clear from the market. Different bidding strategies for selected LSE X are 

studied using Monte-Carlo Simulation which calculates expectation profit and standard 

deviation for each bidding strategy of the LSE.  The effect of various factors like 

correlation coefficient, risk factor, retail price and interruptible prices on bidding strategy 

of the LSE will be studied step by step. The building of optimal strategy for the LSE X in 

this thesis is divided into two types of blocks per unit time. 

1. Single bidding block per unit time 

2. Three bidding blocks per unit time  

At first, optimal bidding strategy is constructed using single bidding block per unit time 

then it is constructed for three bidding blocks per unit time. Finally, the strategies are 

compared and the observations are documented. 

  

 

 

 

 

 



 47   

 

Single Block Bidding per Unit time 

The LSE X will bid only single price for all the blocks to clear 600 MW. 

4.1.2 Selection of Correlation Coefficient for Bidding Strategy 

The correlation coefficient represents the relation between two random variables (here, 

quantity and price of Gencos/LSEs) with expected and standard deviation values of price 

and quantity. For an example, as shown in Table 4.3, the first value of correlation 

coefficient represents correlation coefficient of Gencos and the second value of 

correlation coefficient represents the correlation coefficient of LSEs. Negative sign in the 

table shows that the price and quantity are negatively related i.e. price increases as 

quantity is required.  

Initially, the retail price is set to $100 and the interruptible price is set to $75. Maximum 

number of random samplings is set as      . The bidding strategies of rivals are 

described according to equations 3.14 and 3.16 [64-66]. Different combinations of 

correlation coefficients are used with same values but different signs. Table 4.3 shows the 

impact of various correlation coefficients on bidding strategies of LSE X. KED represents 

the relative risk level as represented in equation 3.20. 

 

 

 

 

 



 48   

 

Table 4.3 Impact of Correlation coefficient on bidding strategies 

Correlation 

coefficient 

(ρ) 

MCP ($) 
Expected 

profit ($) 

Standard 

Deviation($) 

Net Profit 

($) 
KED % 

0 and 0 62.939 14322 2184 12671 15.249 

-0.1 and 0.1 63.056 14306 2170.5 12658 15.171 

-0.1 and 0.5 62.949 14316 2176.6 12667 15.204 

-0.9 and 0.9 63.013 14304 2185.5 12655 15.28 

0.9 and -0.9 63.054 14315 2187.2 12665 15.279 

0.5 and -0.1 63.06 14253 2175.1 12610 15.261 

0.1 and -0.1 63.012 14324 2174.3 12673 15.249 

0.1 and 0.1 63.096 14327 2182.6 12676 15.234 

0.5 and 0.5 62.934 14309 2190.7 12659 15.31 

0.9 and 0.9 63.01 14321 2186.6 12671 15.268 

 

The results of various combinations of generator and LSE correlation coefficients show 

that the impact of correlation coefficient was on the market clearing level and standard 

deviation. Out of all the combinations above, this thesis uses -0.1 and 0.1 as the 

correlation coefficient for generators and LSEs. This combination gives low standard 

deviation when compared to other combinations.   
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4.1.3 Impact of Different Bidding Strategies on Expectation Profit and Standard      

Deviation 

Correlation coefficients of generator and LSEs are set to -0.1 and 0.1 respectively. At 

first, the impacts of different bidding strategies on expected profit and standard deviation 

of LSE X when it does not include itself into the pool market is studied. LSE X assumes 

that it clears all the required quantity from the market. This strategy is just to get the clear 

idea how risks and profits of LSE varies with bidding prices and how should it bid when 

it includes itself within in the market. The results obtained are shown in the Table4.4. 

Table 4.4 Profits under different bidding Strategies 

MCP ($) 
MCQ 

(MW) 

Bidding 

Price ($) 

Quantity 

cleared 

(MW) 

Expected 

profit      

($) 

Standard 

Deviation      

($) 

48.056 1070 50 600 25120 2545.2 

48.056 1070 52 600 23920 2504.7 

48.056 1070 54 600 22718 2464.1 

48.056 1070 56 600 21522 2423.7 

48.056 1070 58 600 20324 2383.2 

 

Table 4.4 shows that, as the bidding price increases the expected profit decreases and the 

deviation also decreases. This means, if the LSE can bid high, the risk level of decision 

decreases but it also decreases its expected profit. Thus, LSE should make a compromise 

between expected profit and standard deviation which decides level of risk.  
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4.1.4 The Impact of Different Participation of LSE X into the Pool-Market 

When LSE X involves itself into the pool market by providing bidding blocks, the market 

now consists of 4 LSEs and 3 Gencos. The total amount of load to be cleared is 600MW. 

The impacts of different bidding strategies on expected profit and standard deviation of 

the LSE X, when participating into the market are shown in Table4.5. 

Table 4.5 Different bidding strategies for LSE X 

MCP ($) 
MCQ 

(MW) 

Bidding 

Price ($) 

Quantity 

cleared 

(MW) 

Expected 

profit      

($) 

Standard 

Deviation      

($) 

49.890 1090 50 200 -20872 2575.5 

55.997 1290 56 400 188.26 2442.9 

63.055 1490 64 600 16663 2294.9 

63.007 1490 68 600 14321 2188.4 

 

Table 4.5 shows that when LSE X offer a price of $50 in the pool market it can clear only 

200 MW and its expected profit turns out to be negative. The reason for this is that LSE 

X has to pay the end customers interruptible prices for the un-cleared quantity of 400MW 

which results in loss. Also table 4.5 shows that as the bidding price increases the quantity 

cleared increases to require load, thus, the expected value of profit also increases. The 

deviation decreases with increasing bidding prices resulting in low risks. Once there is no 

interruptible load, with increase in bidding price the estimated profit decreases since the 

gap between the retail price to the end customers and bidding price decreases. 
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4.1.5 Impact of Different Weighting Factor on Bidding Strategies 

LSEs face many risks while adopting bidding strategies because if the bidding price is too 

low then there is a risk of not clearing the quantity required which reduces the profit of 

selling electric power to end customers. If the bidding price is too high, then there is a 

risk of paying unnecessary prices for purchasing electricity. Thus, weighting factor, as a 

measure of degree of risks is taken into account for building optimal bidding strategies 

for LSE. Weighting factor (also known as risk factor) is increased from 0.3 to 0.9 and 

Monte-Carlo Simulation is used to calculate the values of expectation profit and standard 

deviation results in Table4.6. 

Table 4.6 Different Bidding scenarios with respect to weighting factors 

α 

Quantity 

cleared 

(MW) 

Bidding 

Price ($) 

Expected 

profit 

     ($) 

Standard 

Deviation      

($) 

Net 

Profit ($) 
KED % 

0.3 200 50 -20846 2518.6 -8016.9 -12.082 

0.5 400 56 157.62 2422.1 -1123.9 
Not 

feasible 

0.7 600 64 16700 2277.3 11109.2 13.636 

0.9 600 68 14305 2197.1 12655 15.359 

 

Negative values of expected profit and net profit in table 4.6 shows that bidding lower 

price at lower factor of risk will make LSE X undergo loss since the cleared quantity is 

only 200MW and risk factor is very low. Under this situation, LSE X has to pay the end 

customers the interruptible prices for un-cleared quantities i.e. 400 MW. Table 4.6 also 
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shows that, when LSE increases its factor of risk, with increasing bidding prices, the 

profit increases. Thus, LSEs when bidding should always bid high with high factor of risk 

in order to maximize their net profit. KED represents the relative risk level. It becomes 

infeasible i.e. very high when the expected value of profit is very low. 

4.1.6 Optimal Bidding Strategy with Weighting Factor 

The GA optimization is applied to get the optimal bidding strategy among the results 

obtained from Monte-Carlo results of all bidding strategies. The parameters associated 

with GA are specified as Population is 100, mutation probability is 0.1, crossover 

probability is 0.8 and maximum permitted number of iterations is 100 [64-66]. GA 

optimization for weighting factor or risk factor (α) ranging from 0 to 1 is shown in 

Table4.7. 

Table 4.7  Optimal bidding strategy with weighting factor 

α 0.92914 

Bidding Price ($) 63.545 

Cleared Quantity (MW) 600 

Expected Profit ($) 16118 

Standard Deviation ($) 2405.2 

Net Profit ($) 14816 
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Figure4.3 shows the performance of GA while the optimization problem is processed. 

 

 

 

Figure 4.3 Performance of GA 
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4.1.7 Impact of Retail Price on Profit Maximization 

Retail price is the price at which LSEs would sell the power to the end customers. Thus, 

it is a very important factor for a LSE to maximize its profit. LSE X should choose retail 

price such that it should neither be too high resulting end customers to look out for other 

LSEs making LSE X out of business nor the retail price should be too low such that it 

causes LSE X to incur a loss. Using the results obtained from optimal bidding strategy for 

weighting factor, i.e. Table4.7; risk factor/weighting factor is set to 0.92914 and 

interruptible price is set to $75. The values of retail prices are increased from $80 to $140 

with increasing bidding prices. Results obtained from Monte-Carlo Simulation are shown 

in Table 4.8.  

Table 4.8 Effect of retail prices on strategic bidding 

Retail 

Price 

($) 

Quantity 

Cleared 

(MW) 

Bidding 

Price ($) 

Expected 

profit      

($) 

Standard 

Deviation

      ($) 

Net 

profit ($) 
KED % 

80 200 52 -25286        2123.5        -23644      Infeasible 

100 400 56 183.79        2442.3       -2.2978        Infeasible 

120 600 60       31134        2769.9               28732 8.8965 

140 600 64 40738                     3117 37630    7.6514 

 

The reason for negative profit in Table4.8 is due to the dispatch of only 200MW by LSE. 

LSE should pay end customers interruptible prices for the unsupplied 400MW. Also 

Table4.8 shows as retail price increases the profit of the LSE X increases and also 
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increases the deviation. The increase in profit is due increased gap between bidding price 

and retail price. The high retail prices will encourage LSE to bid high in the market to 

dispatch more power from the market to gain high profits. The increase of retail price 

may also cause the consumers to choose the other LSEs which offers low retail price. 

4.1.8 Optimal Bidding Strategy with Retail Prices 

In order to decide whether the increased retail price which gives LSE a large profit is 

optimal or not, GA optimization is performed with retail price ranging from $80 to$140 

with same GA parameters as in section 4.1.6. The results obtained for different 

parameters are shown in Table4.9. 

Table 4.9 GA with retail prices as variable member 

α 0.97366 

Retail price ($) 128.18 

Bidding Price ($) 63.689 

Quantity Cleared (MW) 600 

Expected Profit ($) 33644 

Standard deviation ($) 2366.9 

Net profit ($) 32683 

 

The results obtained from GA optimization shows $128.18 would be the optimum retail 

price with 0.97366 weighting factor and $63.689 as bidding price. The values of expected 
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profit and net profit also seen in the Table 4.9 which are increased when compared to 

those values in Table4.7 due to increase in retail price. 

4.1.9 Impact of Interruptible Price on Profit Maximization 

The interruptible prices are the prices which LSE should pay to the end customers in case 

of interruption in power supply to the customers. Generally, LSEs signs interruptible 

contracts with end customers which allow LSEs to be secured in case of failing to supply 

its entire customer load. All they need to do is to pay the agreed financial compensation 

to the customers. 

Values of risk factor and retail price are set to the values obtained in Table4.9. By 

increasing the values of Interruptible price and bidding prices run the Monte- Carlo 

Simulation.  

Table 4.10 Strategic bidding with various interruptible prices 

Interruptible 

price ($) 

Quantity 

Cleared 

(MW) 

Bidding 

Price 

($) 

Expected 

profit      

($) 

Standard 

Deviation

      ($) 

Net profit 

($) 
KED % 

55 200 52 -7633.5        2718.7       -7504.1       -35.61 

65 400 56 13463        2827.6               13034 21.003 

75 600 60 36040        2929.3                35013 8.1281 

85 600 64 33644        3048.5                32678 9.0608 

95 600 68      31246        3202.3              30338   10.249 
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From table 4.10 initially, the profit is negative because only 200MW were cleared and the 

LSE has to pay end customers interruptible prices for the un-cleared 400MW, which is a 

loss for LSE. The results from Table4.10 also shows that as interruptible prices to end 

consumers increases the deviation increases and the net profit of a LSE increases to a 

point where in there is no interruptible load. Once, there is no interruptible load, the 

effect of interruptible prices goes off and profit decreases due to high bidding prices 

which reduces the gap between retail price and bidding price. Thus, LSE will tend to bid 

high in the market to dispatch more power in order to avoid high interruptible prices to be 

paid to end customers in case of failing to provide power to end customers. 

4.1.10 Optimal Bidding Strategy by GA with Retail and Interruptible Price 

GA optimization is applied with interruptible price ranging from $55 to $95 using same 

GA parameters as in section 4.1.6. Table4.11 shows the optimal GA values obtained. 

Table  4.11 GA Optimization with Interruptible Price as a variable member 

α 0.90831        

Retail price ($) 139   

Interruptible price ($) 66.52 

Bidding Price ($) 60.859        

Quantity Cleared (MW) 600 

Expected Profit ($) 41486 

Standard deviation ($) 2279.7 

Net profit ($) 37415 
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Table 4.11 shows the GA optimization with weighting factor, retail price and 

interruptible price taken into account. The optimum interruptible price obtained is 

$60.859. The values of expectation profit and net profit are increased when compared to 

Table 4.9. 

4.1.11 Comparison Analysis 

Table 4.12 shows a comparison of three scenarios of bidding strategies as discussed in 

tables 4.7, 4.9 and 4.11. In Scenario1, the retail and interruptible prices are fixed to 100 

and 75 respectively. The net profit using Monte-Carlo Simulation method was found to 

be $14816. In scenario2, the retail price was changed to $128.18 by the optimization 

process where as the interruptible price was still fixed to $75 and the net profit increased 

$ 32683. Finally, in scenario3 retail price and interruptible price were changed to $139 

and $66.52 respectively by optimization process. The profit in scenario3 increased to 

$37415. 
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Table 4.12  Optimal Bidding Comparison 

Factors Scenario 1 Scenario 2 Scenario 3 

Retail price ($) 100 128.18 139 

Interruptible price($) 75 75 66.52 

α 0.92914 0.97366 0.90831 

Bidding price ($) 63.545 63.689 60.859 

Quantity Cleared (MW) 600 600 600 

Expected profit ($) 16118 33644 41486 

Standard deviation ($) 2405.2 2366.9 2279.7 

Net profit ($) 14816 32683 37415 

 

As the scenario3 involves high profit and low deviation with low risk value it should be 

preferred for optimal bidding strategy for single block bidding per unit time. 
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4.1.12 Comparison with Previous Work 

Table 4.13 shows the comparison between different scenarios found in literature survey 

[71] (highlighted) and the scenarios obtained in table 4.12. Last Accepted Offer (LAO) 

pricing rule without correlation coefficient was applied while building the optimal 

bidding strategy for an LSE in literature survey. This thesis uses Last Accepted Bid 

(LAB) pricing with correlation coefficient to develop an optimal bidding strategy for an 

LSE. The table 4.13 shows that an LSE applying LAB pricing rule with correlation 

coefficient has low deviation from its expected profit and thus the net profit is more 

deterministic and high (as seen in scenario 3 of table 4.12).  

Table 4.13 Optimal Bidding Comparison in Previous work 

Factors Scenario 1 Scenario 2 Scenario 3 

Retail price 

($) 
100 100 138.33 128.18 139.54 139 

Interruptible 

price($) 
75 75 75 75 80.755 66.52 

α 0.85817 0.92914 087991 0.97366 0.81715 0.90831 

Bidding price 

($) 
56.477 63.545 58.321 63.689 56.633 60.859 

Quantity 

Cleared (MW) 
600 600 600 600 600 600 

Expected 

profit ($) 
20479 16118 41657.059 33644 42808.217 41486 

Standard 

deviation ($) 
2441 2405.2 2411.4 2366.9 2336 2279.7 

Net profit ($) 17228 14816 36944 32683 35408 37415 
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Three Block Bidding Per Unit Time 

The LSE will bid single price for each block in increasing order to clear 600MW. 

4.1.13 Profits with Different Bidding Strategies 

Initially, the retail price is set to $[100, 80, 55] and the interruptible price is set to $[75, 

35, 15]. Maximum number of random samples is set to      . Describe the bidding 

strategies of rivals according to equations 3.14 and 3.16 [64-66]. When LSE X involves 

itself into the pool market by providing bidding blocks, the market now consists of 4 

LSEs and 3 Gencos. The total amount of load to be cleared is 600MW. The impacts of 

different bidding strategies by LSE X on expected profit and standard deviation, when 

participating into the market are shown in Table4.14. 

Table  4.14 Different bidding strategies for LSE X 

Bidding Prices 

($) 
MCP ($) 

Quantity    

Cleared (MW) 

Expected Profit 

($) 

Standard 

Deviation ($) 

[52,50,48] 51.973 200 -1255.2 2873 

[56,52,50] 51.893 400 9515 2759.9 

[62,60,52] 59.888 400 7106.4 2624.8 

[62,60,54] 53.985 600 9685.3 2593.3 

 

Table 4.14 shows that when LSE X offer a price of $[52, 50, 48] in the pool market it can 

clear only 200 MW and its expected profit turns out to be negative. Table 4.14 also shows 

that as the bidding price increases the quantity cleared increases to require load and 
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interruptible load no more exists, thus, the expected value of profit also increases. The 

deviation decreases with increasing bidding prices resulting in low risks. Once there is no 

interruptible load, with increase in bidding price the estimated profit decreases since the 

gap between the retail price to the end customers and bidding price decreases. 

4.1.14 Impact of Different Weighting Factor on Bidding Strategies 

LSEs face many risks while adopting bidding strategies because if the bidding price is too 

low then there is a risk of not clearing the quantity required which reduces the profit of 

selling electric power to end customers. And if the bidding price is too high, then there is 

a risk of paying unnecessary prices for purchasing electricity. Thus, weighting factor, as a 

measure of degree of risks is taken into account for building optimal bidding strategies 

for LSE. Increasing risk factor from 0.3 to 0.9 and using Monte-Carlo Simulation for the 

calculation of expectation profit and standard deviation results in Table4.15. 

Table 4.15 Different Bidding scenarios with respect to weighting factors 

α 
Bidding 

Prices ($) 

Quantity 

Cleared 

(MW) 

Expected 

Profit ($) 

Standard 

Deviation 

($) 

Net 

Profit 

($) 

KED % 

0.3 [52,50,48] 200 -1258.5        2893.3       -2402.8 Infeasible 

0.6 [56,52,50] 400 9513.8 2781.1 4825.7 28.056 

0.9 [62,60,54] 600 9684.9 2602.8 8455.3 26.875 

 

Negative values of expected profit and net profit in table 4.15 shows that when bidding 

lower price at lower factor of risk will make LSE X undergo loss since the cleared 
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quantity is only 200MW and risk factor is very low. Under this situation, LSE X has to 

pay the end customers the interruptible prices for un-cleared quantities i.e. 400 MW. 

Table 4.15 also shows that, when LSE increases its factor of risk, with increasing bidding 

prices, the profit increases. Thus, LSEs when bidding should always prefer to bid high 

with high factor of risk in order to maximize their net profit. KED represents the relative 

risk level. It becomes infeasible i.e. very high when the expected value of profit is very 

low. 

4.1.15 Optimal Bidding Strategy with Weighting Factor 

 The GA optimization is applied to get the optimal bidding strategy among the results 

obtained from Monte-Carlo results of all bidding strategies. The parameters associated 

with GA are specified as Population is 100, mutation probability is 0.1, crossover 

probability is 0.8 and maximum permitted number of iterations is 100 [64-66]. GA 

optimization for risk factor ranging from 0 to 1 is shown in Table4.16. 

Table 4.16  Optimal bidding strategy with weighting factor 

α 0.96699 

Bidding price ($) [ 61.789,59.577,57.223] 

Expected Profit ($) 7228.8 

Quantity Cleared (MW) 600 

Standard Deviation ($) 2365.8 

Net Profit ($) 6904.9 
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4.1.16 Impact of Retail Price on Profit Maximization 

Using the results obtained from optimal bidding strategy for weighting factor, i.e. 

Table4.16, risk factor is fixed to 0.96699 and interruptible price is fixed to $[75,35,15]. 

The values of retail prices are increased from $[100, 80, 55] to $[140, 100, 75] with 

increasing bidding prices. The results obtained from Monte-Carlo Simulation are 

documented in Table 4.17. 

Table 4.17 Strategic bidding with various interruptible prices 

Retail Price 

($) 

Quantity 

Cleared 

(MW) 

Bidding 

Price ($) 

Expected 

Profit ($) 

Standard 

Deviation 

($) 

Net 

profit 

($) 

KED% 

[100,80,55] 200 [52,50,48] -1257.7        2919.6            -1312.5 -232.15 

[110,90,65] 400 [56,52,50] 13928        3113.3               13366 22.352 

[120,100,75] 400 [62,60,52] 15137        3267.5              14529   21.587 

[140,100,75] 600 [64,60,54] 18744                      3543 18008    18.902 

 

The reason for negative profit in Table4.17 is due to the dispatch of only 200MW by 

LSE. LSE should pay end customers interruptible prices for the unsupplied 400MW. Also 

Table4.17 shows as retail price increases the profit of the LSE X increases and also 

increases the deviation. The increase in profit is due increased gap between bidding price 

and retail price. The high retail prices will encourage LSE to bid high in the market to 

dispatch more power. But the increase of retail price may also cause the consumers to 

choose the other LSEs which offers low retail price. 
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4.1.17 The Optimal Bidding Strategy with Retail Prices 

In order to decide whether the increased retail price which gives LSE a large profit is 

optimal or not, GA optimization is performed with retail price ranging from $[100, 80, 

55] to$[140, 100, 75] with same GA parameters as in section 4.1.15. The results obtained 

for different parameters are shown in Table4.18. 

Table 4.18 GA with retail prices as variable member 

α 0.90128 

Retail price ($) [138.04,96.83,74.37] 

Bidding Price ($) [62.169,59.143,52.538] 

Quantity Cleared (MW) 600 

Expected Profit ($) 19657 

Standard deviation ($) 2147.2 

Net profit ($) 17362 

 

The results obtained from GA optimization shows $[138.04, 96.83, 74.37] would be the 

optimum retail price with 0.90128 weighting factor and $[62.169, 59.143, 52.538] as 

bidding price. The values of expected profit and net profit also seen in the Table 4.17 

which are increased when compared to those values in Table 4.16 due to increased retail 

price. 
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Figure4.4 shows the performance of GA while the optimization problem is processed. 

 

 

 

 

Figure 4.4 Performance of GA 
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4.1.18 Impact of Interruptible Price on Profit Maximization 

Generally, LSEs signs interruptible contracts with end customers which allow LSEs to be 

secured in case of failing to supply its entire customer load. All they need to do is pay the 

agreed financial compensation to the customers. 

The values of risk factor and retail price are set to the values obtained in Table4.18. 

Monte- Carlo Simulation is performed by increasing the values of Interruptible price with 

bidding prices.  

Table 4.19 Strategic bidding with various interruptible prices 

Interruptible 

price ($) 

Quantity 

Cleared 

(MW) 

Bidding Price 

($) 

Expected 

Profit ($) 

Standard 

Deviation 

($) 

Net 

profit 

($) 

KED % 

[75,35,15] 200 [52,50,48] 6382.1        3807.3        5376.2        59.656       

[85,45,25] 400 [56,52,50] 18942                         3987 16678 21.049 

[95,55,35] 600 [62,60,54] 24598                         4172 21757 16.961 

 

From table 4.19 initially, the profit is low because only 200MW were cleared and the 

LSE has to pay end customers interruptible prices for the un-cleared 400MW. The results 

from Table4.19 also show that that as interruptible prices to end consumers increases the 

deviation increases and the net profit of a LSE increases to a point where in there is no 

interruptible load. Once, there is no interruptible load, the effect of interruptible prices 

goes off and profit decreases due to high bidding prices which reduces the gap between 

retail price and bidding price. Thus, LSE will tend to bid high in the market to dispatch 
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more power in order to avoid high interruptible prices to be paid to end customers in case 

of failing to provide power to end customers. 

4.1.19 Optimal Bidding Strategy by GA with Retail and Interruptible Price 

GA optimization is applied with interruptible price ranging from $[75, 35, 15] to $[95, 

55, 35]. The GA parameters are same as those used in section 4.1.15. 

Table4.20 shows the optimal GA values obtained. 

Table 4.20  GA optimization with Interruptible Price as a variable member 

α 0.90469 

Retail price ($) [139.6,93.344,72.183] 

Interruptible price ($) [83.955,41.16,24.861] 

Price ($) [62.015,59.996,52.034] 

Quantity Cleared (MW) 600 

Expected Profit ($) 24117 

Standard deviation ($) 2280.7 

Net profit ($) 21521 

 

Table 4.20 shows the GA optimization with weighting factor, retail price and 

interruptible price taken into account. The optimum interruptible price obtained is 

$[83.955, 41.16, and 24.86]. The values of expectation profit and net profit are increased 

when compared to Table 4.18. 
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4.1.20 Comparison Analysis 

Table 4.21 shows a comparison of three scenarios of bidding strategies from tables 4.16, 

4.18 and 4.20. In Scenario1, the retail and interruptible prices are fixed to [100, 80, 55] 

and [75, 35, 15] respectively. The net profit using Monte-Carlo Simulation method was 

found to be $6904.9. In scenario2, the retail price was changed to $[138.04, 96.83, 74.37] 

by the optimization process where as the interruptible price was still fixed to $[75, 35, 

15] and the net profit increased to $ 17362. Finally, in scenario3 retail price and 

interruptible price were changed to $[139.6, 93.344, 72.183] and $[83.955, 41.16, 

24.861] respectively by optimization process. The profit in scenario3 increased to 

$21521. 

Table 4.21  Optimal bidding comparison 

Factors Scenario 1 Scenario 2 Scenario 3 

Retail price(a) 

($) 
[100,80,55] [138.04,96.83,74.37] [139.6,93.344,72.183] 

Interruptible 

price(b) ($) 
[75,35,15] [75,35,15] [83.955,41.16,24.861] 

α 0.96699 0.90128 0.90469 

Bidding price 

($) 

[61.789,59.577,57.22

3] 

[62.169,59.143,52.538

] 

[62.015,59.996,52.034

] 

Quantity 

Cleared (MW) 
600 600 600 

Expected 

profit ($) 
7228.8 19657 24117 

Standard 

deviation ($) 
2365.8 2147.2 2280.7 

Net profit ($) 6904.9 17362 21521 
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As the scenario3 involves high profit and low deviation with low risk value it should be 

preferred for optimal bidding strategy for three blocks bidding per unit time. 
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4.1.21 Comparison between Single Block Bidding and Three Block Bidding per 

Unit Time 

Table 4.22 gives a complete comparison analysis for optimal bidding strategies for single 

block bidding (table 4.12) and three block bidding (table 4.21) per unit time in a double-

sided competitive electricity markets.  

Table 4.22 Comparison Analysis between SBB and TBB per unit time Optimal Bidding Strategies 

Factors 

Scenario 1 Scenario 2 Scenario 3 

TBB SBB TBB SBB TBB SBB 

a ($) 
[100,80,55

] 
100 

[138.04,96.8

3, 

74.37] 

128.18 

[139.6,93.3

44, 

72.183] 

139 

b ($) [75,35,15] 75 [75,35,15] 75 

[83.955,41.

16 

,24.861] 

66.52 

α 0.96699 0.92914 0.90128 0.97366 0.90469 0.90831 

Bidding 

price ($) 

[61.789,59

.577, 

57.223] 

63.545 

[62.169,59.1

43, 

52.538] 

63.689 

[62.015,59.

996, 

52.034] 

60.859 

Quantity 

cleared 

(MW) 

600 600 600 600 600 600 

     ($) 7228.8 16118 19657 33644 24117 41486 

     ($) 2365.8 2405.2 2147.2 2366.9 2280.7 2279.7 

Net 

profit 

($) 

6904.9 14816 17362 32683 21521 37415 
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Table 4.22 shows that for single block bidding (SBB) per unit time the profits turn out to 

be maximum in all the scenarios when compared to three block bidding per unit time. 

The reason for such difference is that in SBB, the retail price at which LSE sells the 

electric power to the end customer is only one price e.g. $139 in scenario 3 for supplying 

600 MW whereas for three block bidding (TBB) per unit time it changes from one block 

to another block e.g. $[139.6, 93.344, 72.183] in scenario 3 for supplying 600 MW in the 

order of 200MW for each block. The advantage of SBB optimal bidding strategy is that it 

can draw high profits but the disadvantage is that if the single price did not clear the 

market level then the LSE is out of business and should pay the end customers the 

interruptible prices for unsupplied load as per agreement, which is a loss. Whereas for 

TBB the profit might be less when compared to SBB but it has the advantage of clearing 

block quantities in the market. It‟s on the LSE to select either of the strategies but before 

that it should ensure itself of the electricity market process and forecasted load. 

Researchers of electricity market adopt TBB or more than three block bidding per unit 

time [64-66].   
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4.2 Optimal Bidding Strategy with Transmission Constraints 

In previous sections of this chapter, the optimal bidding strategy for LSE was developed 

by neglecting the transmission constraints. This section includes the effect of 

transmission constraints on the electricity model. An IEEE-30 bus system is considered 

to study the effect of transmission constraints on the electricity market and bidding 

strategies of the LSE. The same pricing rule and price settlement process with step-wise 

price/ quantity biddings are employed. Once the optimal power flow is performed for 

IEEE-30 bus system, Monte-Carlo Simulation and GA are applied to find the optimal 

bidding strategy for LSE taking into account the effect of transmission constraints. The 

optimal bidding strategy is developed using three ways. The first strategy does not 

include contracts whereas the second strategy includes forward contract only with one 

generator and finally the third strategy is to contract with more than one generator. The 

strategies were constructed based on Single Block Bidding (SBB) and Three Block 

Bidding (TBB) as described in previous sections.  

4.2.1 Electricity Market Model 

Consider an IEEE-30 bus system with 6 Gencos and 3 LSEs for electricity pool market. 

One out of the 3 LSEs, suppose LSE at bus 27, is chosen to build optimal bidding 

strategy. 
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The participants in the pool market are distributed at different buses as shown in table 

4.23 and figure 4.5. 

Table 4.23 Market participants in IEEE-30 bus system 

Market Participants Bus No. 

Genco#1 1 

Genco#2 2 

Genco#3 22 

Genco#4 27 

Genco#5 23 

Genco#6 13 

LSE#1 7 

LSE#2 15 

LSE#3 27 

 

 

LSE at bus no. 27 is chosen to build the optimal bidding strategy. 
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Figure 4.5 Single Line Diagram of the IEEE-30 Bus test system 
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In general, cost function of a generator is given by the following polynomial 

                     (4.2) 

Table 4.24 shows the generator cost functions of each generator. 

Table 4.24 Generator Cost Functions 

Gen 

Block1 Block2 Block3 

a 

 
 

    
  

B 

 
 

   
  

c($) 

a 

 
 

    
  

b 

 
 

   
  

c($) 

a 

 
 

    
  

b

 
 

   
  

c($) 

G1 0.02 21.5 0 0.02 49 0 0.02 59 0 

G2 0.02 20.5 0 0.02 39 0 0.02 69 0 

G3 0.02 19.5 0 0.02 47 0 0.02 59 0 

G4 0.02 22.5 0 0.02 41 0 0.02 79 0 

G5 0.02 23.5 0 0.02 45 0 0.02 74 0 

G6 0.09 85 0 0.09 90 0 0.09 95 0 

 

Each Genco has the maximum capacity of 60 MW while the forecasted load of each LSE 

is 30 MW. Each generation company can bid at most Ig blocks for each period; the block 

price must be non-decreasing with the increase of the block number. Each LSE can bid at 

most Id blocks for each period, the block price must decrease with the increase of the 

block number. 

Suppose each market participant is allowed to bid at most 3 blocks (Ig=3 and Id=3). 
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Table 4.25 shows the estimated parameters of generators. Table 4.25 also shows that the 

bidding prices for Gencos are increasing from one block to the another block, i.e. it is $22 

for Genco 1 during block 1 then $50 during block 2 and finally $60 during block 3. The 

other Gencos also follow the same increasing block prices for their supplied capacity. 

 

Table 4.25 Offering Parameters of Gencos 

Genco 

Block1 Block2 Block3 Variance 

MW $ MW $ MW $ MW $ 

1 12 22 24 50 24 60 5.5 2.5 

2 12 21 24 40 24 70 5.5 2.5 

3 12 23 24 42 24 80 5.5 2.5 

4 12 85 24 90 24 95 5.5 2.5 

5 12 24 24 46 24 75 5.5 2.5 

6 12 20 24 48 24 60 5.5 2.5 
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Table 4.26 shows the estimated bidding parameters of LSEs. Table 4.26 also shows that 

the bidding prices for LSEs are decreasing from one block to the another block, i.e. it is 

$100 for LSE 1 during block 1 then $70 during block 2 and finally $60 during block 3. 

The other LSEs also follow the same decreasing block prices for their supplied capacity. 

Table 4.26 Bidding Parameters of LSEs 

LSE 

Block1 Block2 Block3 Variance 

MW $ MW $ MW $ MW $ 

1 10 100 10 70 10 60 5.5 2.5 

2 10 100 10 50 10 20 5.5 2.5 

 

For this model, at first, OPF is run without transmission constraints and the expectation 

profit, standard deviation and net profit are calculated in the same manner as in chapter 5 

using Monte-Carlo Simulation. Then OPF is run with transmission constraints[72]. The 

nodal prices and quantity cleared at different buses are examined. Finally, optimal 

bidding strategy was developed for LSE 3 using SBB and TBB. This optimal bidding 

strategy was developed including and excluding forward contracts. 
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The bus data, line data and generation data for IEEE-30 bus system with 6 generators is 

mentioned in Appendix A of this thesis. At first, OPF program is performed without 

transmission constraints. The results of OPF without transmission constraints are given in 

Appendix B. This flow determines the nodal prices at different buses and the load cleared 

at the bus. As shown in figure 4.6, without any transmission line limits, 30 MW of load is 

cleared at bus 27. Generator at bus 27 does not produce any MW since it is the costliest 

generator. Thus, without transmission constraints, the other generators which are less 

costly than generator at bus 27 transmit MWs to the load at bus 27. The nodal price is 

found to be $79.134 at bus 27.  The various generations of generators and line flows are 

shown in the OPF bus data and OPF branch data without transmission constraints in 

Appendix B. 

 

Figure 4.6 Flow of the lines to bus 27 without transmission constraints 
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The different bidding strategies adopted by LSE at bus 27 with retail price $150 and 

interruptible price $110 are shown in Table 4.27. 

Table 4.27 Bidding Strategy without transmission constraints 

Bidding Prices ($) 
Quantity Cleared 

(MW) 
Expected Profit ($) 

Standard Deviation 

($) 

80 30 2286.7 6451.3 

90 30 1970.1 6021.9 

100 30 1654.4 5709.4 

 

LSE 3 should bid higher than the nodal price at bus 27 to clear 30 MW of load. Table 

4.27 shows that if LSE bids higher than nodal price, it clears 30 MW but further increase 

in bidding price reduce the gap between bidding price and retail price. This reduction in 

gap reduces its expected profit. 

The optimal power flow program for the electricity market model with transmission 

constraints is performed. The power flow limits on each line of an IEEE-30 bus system 

are shown in the line data for an IEEE-30 bus system in Appendix A. The results of OPF 

with transmission constraints are given in Appendix C. Generator at bus 27, is an 

expensive generator for producing power.  When there were no transmission constraints, 

generator at bus 27 does not produce because low cost generators were able to transmit 

power to bus 27. As shown in figure 4.7, due to transmission limits on the lines (line 22 

to 24 and line 24 to 25) of the network, the flow to bus 27 is limited. Thus, the low cost 
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generators are unable to transmit power to bus 27. The remaining MWs are produced by 

the generator at bus 27. This generator produces 5.04 MW and thus the nodal price at this 

bus is set by this generator and is found to be $ 85.906. The various generations of 

generators and line flows are shown in the OPF bus data and OPF branch data with 

transmission constraints in Appendix C. 

 

 

 

Figure 4.7  Flow of the lines to bus 27 with transmission constraints 

 

The thesis develops strategic bidding for LSE at bus 27 using SBB and TBB per unit time 

with three cases, i.e. 

1. When LSE at bus 27 does not undertake bilateral contract. 

2. When LSE at bus 27 undertake a contract with one of the available generators 

3. When LSE at bus 27 undertake contracts with more than one available generators 
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Single Bidding Block per Unit Time 

The LSE at bus 27 will bid only a single price for the all the blocks to clear 30MW. 

No Bilateral Contract 

Considering SBB per unit time and does not involve any contracts, the bidding strategies 

of LSE at bus 27 can be constructed step by step as in the chapter 5. 

4.2.2 Profits with Different Bidding Strategies with Different Weighting Factors 

Initially, the retail price is set to $150 and the interruptible price is set to $110. Maximum 

number of random sampling is set as       . The bidding strategies of rivals are 

described according to equations 3.14 and 3.16. Risk factor is increased from 0.3 to 0.9 

and Monte-Carlo Simulation is used for the calculation of expectation profit and standard 

deviation. The impact of different bidding strategies on     and      of the LSE X is 

shown in Table 4.28. 

Table 4.28 Profits with Different Bidding Strategies 

α 
Bidding 

Prices ($) 

Quantity 

Cleared 

(MW) 

Expected 

Profit ($) 

Standard 

Deviation ($) 
Net Profit ($) 

0.3 80 0 -3089.7 6338.5 -5363.8 

0.6 90 30 1972.4 5951.5 1197.2 

0.9 100 30 1656.2 5686 921.94 
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It is observed from the table 4.28; if the bidding price is less than the nodal price then 

LSE will not clear any quantity and is out of business with loss. If it‟s bidding price is 

greater than the nodal price then it clear all the quantity and the profit increases. Once the 

load is cleared the high bidding prices will reduce the profit because the gap between 

bidding price and retail price reduces. Also it shows that LSE should prefer high 

weighting/risk factor to maximize profit. 

4.2.3 Optimal Bidding Strategy with Weighting Factor 

The GA optimization is applied to get the optimal bidding strategy among the results 

obtained from Monte-Carlo results of all bidding strategies. The parameters associated 

with GA are specified as Population is 100, mutation probability is 0.1, crossover 

probability is 0.8 and maximum permitted number of iterations is 100. GA optimization 

for risk factor ranging from 0 to 1 is shown in Table 4.29. 

Table 4.29 Optimal Bidding Strategy with Weighting Factor 

α 0.99885 

Bidding Price ($) 99.662 

Cleared Quantity (MW) 30 

Expected Profit ($) 1665.4 

Standard Deviation ($) 2133.7 

Net Profit ($) 1657 
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4.2.4 Impact of Retail Price on Profit Maximization 

Retail price is the price at which LSEs would sell the power to the end customers. Thus, 

it is a very important factor for a LSE to maximize its profit. LSE X should choose retail 

price such that it should neither be too high such that end customers look out for other 

LSEs making LSE X out of business nor the retail price should be too low such that it 

causes LSE X to incur a loss. Using the results obtained from optimal bidding strategy for 

weighting factor, i.e. Table4.29; weighting factor (also known as risk factor) is fixed to 

0.99885 and interruptible price is fixed to $110. The values of retail prices are increased 

from $150 to $180 with increasing bidding prices. Results obtained from Monte-Carlo 

Simulation are shown in Table 4.30.  

Table 4.30 Impact of Retail Price on Profit Maximization 

Retail 

Price ($) 

Quantity 

Cleared 

(MW) 

Bidding Price ($) 
Expected 

Profit ($) 

Standard 

Deviation 

($) 

Net profit 

($) 

150 0 80 -3040.4        5409.9       -3045.4 

160 30 90 2286.7        6387.6        2276.7 

180 30 100 2598.2        6687.1        2587.6 

 

Table 4.30 shows that when the bidding price is less than the nodal price then LSE will 

not clear any quantity and is out of business with loss. Table 4.30 also shows as retail 

price increases the profit of the LSE increases and also increases the deviation. . The 

increase in profit is due to increased gap between bidding price and retail price. The high 
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retail prices will encourage LSE to bid high in the market to dispatch more power. The 

increasing of retail price may cause the consumers to choose the other LSEs which offers 

low retail price. 

4.2.5 The Optimal Bidding Strategy with Retail Prices 

In order to decide whether the increased retail price which gives the LSE a large profit is 

optimal or not, GA optimization is applied with retail price ranging from $150 to$180 

with same GA parameters used in section 4.2.3. The results obtained for different 

parameters are shown in Table4.31. 

Table 4.31  Optimal Bidding Strategy with Retail Prices 

α 0.98235 

Retail price ($) 178.77 

Bidding Price ($) 88.163 

Quantity Cleared (MW) 30 

Expected Profit ($) 2932.1 

Standard deviation ($) 2282.4 

Net profit ($) 2755.6 
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4.2.6 Impact of Interruptible Price on Profit Maximization 

The values of risk factor and retail price are fixed to the values obtained in Table 4.31. 

Monte- Carlo Simulation is performed by increasing the values of Interruptible price. 

Table 4.32 Impact of Interruptible Price on Profit Maximization 

Interruptible 

price ($) 

Quantity 

Cleared 

(MW) 
Bidding Price ($) 

Expected 

Profit ($) 

Standard 

Deviation 

($) 

Net profit 

($) 

90 0 80 -2472.7                6649 -2546.4 

100 30 90 2860.6        6718.5        2691.6 

110 30 100 2531.3        6977.5        2381.1 

 

Table 4.32 shows that, when the bidding price is lower than nodal price at bus 27, the 

quantity cleared is 0 MW and LSE at bus 27 should pay end customers an interruptible 

price of $110. Thus, in this case profit is negative. Also it can be observed form Table 

4.32 that as bidding prices increases there is no effect of interruptible prices because the 

required 30 MW are fully cleared. In general, high interruptible prices force LSE to bid 

higher to dispatch the required quantity. 
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4.2.7 Optimal Bidding Strategy by GA with Retail and Interruptible Price 

GA optimization is applied with interruptible price ranging from $90 to $110 with same 

GA parameters used in section 4.2.3. Table 4.33 shows the optimal GA values obtained. 

Table 4.33  Optimal Bidding Strategy by GA with Retail and Interruptible Price 

α 0.97481 

Retail price ($) 179 

Interruptible price ($) 92.442 

Bidding Price ($) 88.02 

Quantity Cleared (MW) 30 

Expected Profit ($) 2921.6 

Standard deviation ($) 2407.5 

Net profit ($) 2684.8 
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4.2.8 Comparison Analysis 

Table 4.34 shows the comparison of three scenarios of bidding strategies discussed in 

tables 4.29, 4.31 and 4.33. In Scenario1, the retail and interruptible prices are fixed to 

$150 and $110 respectively. The net profit using Monte-Carlo Simulation method was 

found to be $1657. In scenario2, the retail price was found to be $178.77 by the 

optimization process where as the interruptible price was still fixed to $110 and the net 

profit increased $ 2755.6. Finally, in scenario3 retail price and interruptible price were 

found to be $179 and $92.442 respectively by optimization process. The profit in 

scenario3 increased to $2527.2. 

Table 4.34  Comparison Analysis 

Factors Scenario 1 Scenario 2 Scenario 3 

Retail price ($) 150 178.77 179 

Interruptible price($) 110 110 92.442 

α 0.99885 0.98235 0.97481 

Bidding price ($) 99.662 88.163 88.02 

Quantity Cleared (MW) 30 30 30 

Expected profit ($) 1665.4 2932.1 2933.4 

Standard deviation ($) 2133.7 2282.4 2207.5 

Net profit ($) 1657 2755.6 2527.2 

 

As the scenario3 involves high profit (less than scenario 2 with high risk) and low 

deviation with low risk value it should be preferred for optimal bidding strategy for single 

block bidding per unit time. 
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Bilateral Contract with One of the Available Generators 

The results of different variations in the prices of LSE at bus 27 due to variations in the 

production of generators at different buses are shown in table 4.35. Generators at bus 13 

and at bus 23 were selected for optimal bidding strategy for LSE at bus 27. The reason 

for selecting only generators at bus 13 and at bus 23 is that the absence of these 

generators makes the generator at bus 27 to produce more MW which results in high 

prices (i.e., $93.813 if generator at bus 13 produces only 12 MW and $94.256 if the 

generator at bus 27 produces only 12 MW) as shown in table 4.35. So, in order to avoid 

such high prices, LSE at bus 27 may consider signing a contract with generators at bus 13 

and at bus 23. As in case2, LSE at bus 27 has to undertake contract only with one 

generator, it would be generator at bus 13 since it provides more MW (i.e. 25 MW) to 

LSE at low prices when compared to generator at bus 23. In case3, LSE is allowed to 

contract with more than one generators available i.e. generators at bus 13 and at bus 23. 

The comparative results are shown in section 4.36. The contract settlements for these two 

parties are shown in Appendix D.  
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Table  4.35 Variations in prices at bus 27 due to variations in production at different generator buses 

Generator 
G1 

(MW) 

G2 

(MW) 

G13 

(MW) 

G22 

(MW) 

G23 

(MW) 

G27 

(MW) 

Load at 

bus 27 

(MW) 

Nodal 

Price at 

bus 27 

($) 

G1 12 60 60 59.3 46.18 18.58 30 91.185 

 36 60 60 38.9 50.34 11.29 30 87.033 

 60 57.14 60 36 39.13 5.04 30 85.906 

G2 60 12 60 59.4 46.17 18.74 30 91.213 

 60 36 60 39 50.32 11.39 30 87.05 

 58.01 60 60 36 37.66 5.62 30 86.012 

G13 60 60 12 55.68 36.08 33.18 30 93.813 

 60 60 36 45.54 46.34 9.37 30 86.686 

 60 57.14 60 36 39.13 5.04 30 85.916 

G22 60 60 60 12 52.28 12.83 30 90.150 

 60 57.14 60 36 39.13 5.04 30 85.906 

 37.22 36 59.29 60 45.47 18.20 30 91.117 

G23 60 56.26 57.94 36 12 35.64 30 94.256 

 60 58.59 60 36 36 6.69 30 86.205 

G27 60 52.83 60 36 36 12 30 87.159 

 51.39 36 60 36 36 36 30 95.00 

 36 36 50.85 36 36 60 30 99.89 

 

All generations are in MW and prices are in $. 

Consider that LSE 3 would sign a contract with generator at bus 13 for the supply of 25 

MW at bus27. The contract price is a compromise between these two parties and an 

average price of $78 is always the best contract price. LSE 3 also owns the Financial 

Transmission Rights (FTRs) between bus 13 and bus 27 at a price equal to difference in 

nodal prices of bus 13 and bus 27  i.e., $15.789. Contract details are shown in Appendix 

D. The bidding strategy for LSE at bus 27 with a single contract is obtained step by step 

from following sections. 
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4.2.9 Profits with Different Bidding Strategies 

The impact of different bidding strategies on     and      of the LSE X is shown in 

Table 4.36 

Table 4.36 Profits with different bidding strategies 

Bidding Prices 

($) 

Quantity Cleared 

(MW) 

Expected Profit 

($) 

Standard Deviation 

($) 

80 25 1665.3 8320.1 

90 30 2357.9 8242.3 

100 30 2309.5 8223.7 

 

Table 4.36 shows that at least a quantity of 25 MW will be cleared at bus 27 even though 

the price is less than nodal price at bus 27. This is because of contract between generator 

at bus 13 and LSE at bus 27. The remaining will be cleared by LSE using its bidding 

strategies where its bidding prices are greater than nodal prices. In this case, LSE will not 

be exposed to any kind of loss. 
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4.2.10  Impact of Different Weighting Factor on Bidding Strategies 

The impact of different Weighting or risk factor on bidding strategies of the LSE X is 

shown in Table 4.37 

Table 4.37 Impact of Different Weighting Factor on Bidding Strategies 

α 
Bidding 

Prices ($) 

Quantity 

Cleared 

(MW) 

Expected 

Profit ($) 

Standard 

Deviation ($) 
Net Profit ($) 

0.3 80 25 1665.3 8320.1 1665.3 

0.6 90 30 2357.9 8242.3 1882.2 

0.9 100 30 2309.5 8223.7 1811.76 

 

Table4.37 shows that increasing risk factor, with increasing bidding prices, increases the 

net profit of LSE. The contract of 25 MW always results in profit even though the 

bidding price is less than the nodal price. For the LSE, to clear remaining 5 MW from the 

market, it should bid high with high factor of risk. 

4.2.11 Optimal Bidding Strategy with weighting Factor 

GA optimization with weighting factor ranging from 0 to 1 is applied to get optimum 

value for weighting factor. The parameters used for GA are the same used before. The 

optimized solution of GA is shown in Table 4.38 
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Table 4.38 Optimal Bidding Strategy with Weighting Factor 

α 0.99171 

Bidding price ($) 98.746 

Quantity Cleared (MW) 30 

Expected Profit ($) 2372.0 

Standard Deviation ($) 2026.7 

Net Profit ($) 2284.0 

 

4.2.12 Impact of Retail Price on Profit Maximization 

Using the results obtained from optimal bidding strategy for weighting factor, i.e. 

Table4.38; risk factor is fixed to 0.99171 and interruptible price is set to $110. The values 

of retail prices are increased from $150 to $180 with bidding prices. The results obtained 

from Monte-Carlo Simulation are shown in Table4.39 

Table 4.39 Impact of Retail Price on Profit Maximization 

Retail 

Price ($) 

Quantity 

(MW) 

Bidding 

Price ($) 

Expected 

Profit ($) 

Standard 

Deviation 

($) 

Net profit 

($) 

150 25 80    1571.1        8389.5 1571.1 

160 30 90 2712.4        8648.8   2595.0 

180 30 100 3285.3        8846.7 3188.3 
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Table4.39 shows as retail price increases the profit of the LSE increases and also 

increases the deviation. The increase in profit is due to increased gap between bidding 

price and retail price. The high retail prices will encourage LSE to bid high in the market 

to dispatch more power. The increasing of retail price may cause the consumers to choose 

the other LSEs which offers low retail price. 

4.2.13 The Optimal Bidding Strategy with Retail Prices 

GA optimization with retail prices ranging from 150 to 180 is applied to get optimum 

value for retail price. The parameters used for GA are the same used before. The 

optimized solution of GA is shown in Table 4.40. 

Table 4.40  Optimal Bidding Strategy with Retail Prices 

α 0.98735 

Retail price ($) 179.41 

Bidding Price ($) 87.263 

Quantity Cleared (MW) 30 

Expected Profit ($) 3291.5 

Standard deviation ($) 2235.9 

Net profit ($) 3132.0 
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4.2.14 Impact of Interruptible Price on Profit Maximization 

The values of risk factor and retail price are set to the values obtained in Table4.40. By 

increasing the values of Interruptible price the Monte- Carlo Simulation is performed.  

Table 4.41 Impact of Interruptible Price on Profit Maximization 

Interruptible 

price ($) 

Quantity 

(MW) 

Bidding Price 

($) 

Expected 

Profit ($) 

Standard 

Deviation 

($) 

Net profit 

($) 

90 25 80 2405.1                8665 2405.1 

100 30 90   3322.7        8866.6 3127.9 

110 30 100 3253.6 8639.3 3103.1 

 

Table 4.41 shows that as bidding prices increases there is no effect of interruptible prices 

because the required 30 MW are cleared. In general, high interruptible prices force LSE 

to bid higher to dispatch the required quantity. 

4.2.15 Optimal Bidding Strategy by GA with Retail and Interruptible Price 

GA optimization with interruptible price ranging from 90 to 110 is applied to get 

optimum value for interruptible price. The parameters used for GA are the same used 

before. The optimized solution of GA is shown in Table 4.42 
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Table 4.42  Optimal Bidding Strategy by GA with Retail and Interruptible Price 

α 0.957 

Retail price ($) 179.22 

Interruptible price ($) 93.989 

Bidding Price ($) 87.76 

Quantity Cleared (MW) 30 

Expected Profit ($) 3311.3 

Standard deviation ($) 2207.5 

Net profit ($) 2789.2 

 

4.2.16 Comparison Analysis 

Table 4.43 shows the comparison of three scenarios discussed in tables 4.38, 4.40 and 

4.42 three scenarios can be studied as shown in table 4.19. In Scenario1, the retail and 

interruptible prices are fixed to $150 and $110 respectively. The net profit using Monte-

Carlo Simulation method was found to be $2284.0. In scenario2, the retail price was 

changed to $179.41 by the optimization process where as the interruptible price was still 

fixed to $110 and the net profit increased to $ 3132.0. Finally, in scenario3 retail price 

and interruptible price were found to be $179.22 and $93.989 respectively by 

optimization process. The profit in scenario3 increased to $2789.2. 
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Table 4.43 Comparison Analysis 

Factors Scenario 1 Scenario 2 Scenario 3 

Retail price ($) 150 179.41 179.22 

Interruptible price 

($) 
110 110 93.989 

α 0.99171 0.98735 0.957 

Bidding price ($) 98.746 87.263 87.76 

Quantity Cleared ($) 30 30 30 

Expected profit ($) 2372.0 3291.5 3311.3 

Standard deviation 

($) 
2026.7 2235.9 2207.5 

Net profit ($) 2284.0 3132.0 2789.2 

 

As the scenario3 involves high profit (less than scenario 2 with high risk) and low 

deviation with low risk value it should be preferred for optimal bidding strategy for single 

block bidding per unit time. 
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4.2.17 Comparison of SBB with and without Contract 

Table 4.44 shows comparison of SBB with and without contract from tables 4.43 and 

4.34. 

Table 4.44 Comparison of SBB with and without contract 

Factors 

Scenario 1 Scenario 2 Scenario 3 

SBB with 

Contract 

SBB 

without 

Contract 

SBB 

with 

Contract 

SBB 

without 

Contract 

SBB with 

Contract 

SBB 

without 

Contract 

Retail price 150 150 179.41 178.77 179.22 179 

Interruptible 

price 
110 110 110 110 93.989 92.442 

α 0.99171 0.99885 0.98735 0.98235 0.957 0.97481 

Bidding price 98.746 99.662 87.263 88.163 87.76 88.02 

Expected 

profit 
2372.0 1665.4 3291.5 2932.1 3311.3 2933.4 

Standard 

deviation 
2026.7 2133.7 2235.9 2282.4 2407.5 2207.5 

Net profit 2284.0 1657 3132.0 2755.6 2789.2 2527.2 

 

It is observed from table 4.44 that the profit obtained by LSE 3 at bus 27 while 

constructing optimal bidding strategy with contractual tools is more when compared to 

optimal bidding strategy without contracts. Hence LSEs at buses should undertake 

contracts in order to avoid price fluctuations at nodes and also to maximize their profit 
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Bilateral Contracts with More than One Available Generators 

When LSE at bus 27 undertakes bilateral trading of 26 MW with generator at bus 13 for 

$78 and a trade of 4 MW with generator at 23 for $82 then the optimal bidding strategy 

using SBB for LSE at 27 is shown in table 4.45. The settlement of contracts is shown in 

Appendix D. In scenario1, retail price and interruptible price are fixed to $150 and $110 

respectively. The net profit in scenario 1 was found to be $2124.2. In scenario2, the 

optimal retail price was found to be $179.41 and interruptible price is fixed to $110 and 

net profit was found to be $ 29654. In scenario3, the optimal retail and interruptible 

prices were found to be $179.22 and $ 93.989 with a net profit of $2775.5. 

Table 4.45 optimal bidding strategy using forward contracts with two generators 

Factors Scenario 1 Scenario 2 Scenario 3 

Retail price ($) 150 179.41 179.22 

Interruptible price ($) 110 110 93.989 

α 0.99171 0.98735 0.957 

Quantity Cleared (MW) 30 30 30 

Expected profit ($) 2160.0 3291.5 3036.6 

Standard deviation ($) 2160.3 2090.5 2070.2 

Net profit ($) 2124.2 29654 2775.5 

 

The table 4.45 shows that the profit obtained from contracting with more than one 

available generator increases the profit of LSE at bus 27 when compared to no contract 

and contract with only one out of available generators analysis. This increase in profit is 

due to no high bidding prices involved and low price contracts provided by the 

generators. 
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Three Block Bidding per Unit Time 

The LSE at bus 27 will bid different prices for each block to clear 30 MW. 

No Bilateral Contract 

Considering TBB per unit time and does not involving any contracts, the bidding 

strategies of LSE at bus 27 can be constructed step by step in same way as done for SBB. 

Without transmission constraints Nodal Price at bus 27 was found to be $79.134.  

4.2.18 Profits with Different Bidding Strategies 

Initially, the retail price is set to $[150,120, 100] and the interruptible price is set to 

$[110, 85, 70]. Maximum number of random samples are set to        and the 

bidding strategies of rivals are described according to equations 3.14 and 3.16 [64-

66].The expectation profit and standard deviation for different bidding strategies by LSE 

at bus 27 when transmission constraints are neglected are given by the table 4.46. 

Table 4.46 Profits with Different Bidding Strategies 

Bidding Prices ($) 
Quantity Cleared 

(MW) 
Expected Profit ($) 

Standard 

Deviation ($) 

[100,60,50] 10 -904 5082.7 

[100,80,70] 20 316.6 4580 

[100,90,80] 30 1098.3 4402 

[120,90,80] 30 888.6 4179 

 

The quantity is cleared depending upon the bidding price per block. Table 4.26 shows 

initially the profit of LSE is negative because the quantity cleared when bidding with 
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$[100, 60, 50] is only 10 MW. The LSE has to pay the end customers the interruptible 

price for the un-cleared quantity i.e. 20 MW according interruptible contracts. Table 4.26 

also shows that as the bidding prices increases the profit of LSE increases. Once the total 

quantity is cleared interruptible load will have no effect on the profit of LSE. If the 

bidding prices are further increased then the profit of LSE will decrease since the gap 

between retail and bidding price decreases. 

Nodal price at bus 27 with transmission constraints was found to be $85.906. 

4.2.19 Profits with Different Bidding Strategies and Weighting Factors 

The expectation profit and standard deviation for different bidding strategies with 

different weighting factors for LSE at bus 27 when transmission constraints are taken into 

account are given by the table 4.47. 

Table 4.47 Profits with Different Bidding Strategies 

α 
Bidding 

Prices ($) 

Quantity 

Cleared 

(MW) 

Expected 

Profit ($) 

Standard 

Deviation ($) 
Net Profit ($) 

0.3 [100,60,50] 10 -902.6 5112.5 -1323.6 

0.6 [100,90,80] 20 206.1 4395.6 -254 

0.9 [120,100,90] 30 678.4 3932.6 217.3 

 

Negative values of expected profit and net profit in table 4.47 show that when bidding 

lower price at lower factor of risk will make the LSE at bus 27 undergo loss since the 
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cleared quantity is only 10MW and risk factor is very low. Table 4.47 also shows that, 

when LSE increases its factor of risk, with increasing bidding prices, the profit increases. 

Thus, LSEs when bidding should always prefer to bid high with high factor of risk in 

order to maximize their net profit. 

4.2.20 Optimal Bidding Strategy with Weighting Factor 

The GA optimization is applied to get the optimal bidding strategy among the results 

obtained from Monte-Carlo results of all bidding strategies. The parameters associated 

with GA are specified as Population is 100, mutation probability is 0.1, crossover 

probability is 0.8 and maximum permitted number of iterations is 100. GA optimization 

for risk factor ranging from 0 to 1 is shown in Table 4.48. 

Table 4.48 Optimal Bidding Strategy with Weighting Factor 

α 0.99539 

Bidding price ($) [117.53, 95.249,88.879] 

Quantity Cleared (MW) 30 

Expected Profit ($) 747.05 

Standard Deviation ($) 2450.8 

Net Profit ($) 724.87 
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4.2.21 Impact of Retail Price on Profit Maximization 

Using the results obtained from optimal bidding strategy for weighting factor, i.e. Table 

4.48; risk factor is fixed to 0.99539 and interruptible price is fixed to $[110, 90, 75]. The 

values of retail prices are increased from $[150,120,100] to $[180,160,140] with bidding 

prices. Results obtained from Monte-Carlo Simulation are shown in Table 4.49 

Table 4.49 Impact of Retail Price on Profit Maximization 

Retail Price 

($) 

Quantity 

(MW) 
Bidding Price ($)  

Expected 

Profit ($) 

Standard 

Deviation 

($) 

Net profit 

($) 

[150,120,100] 10 [100,60,50] -904.17        5098.1       -923.51 

[160,140,120] 20 [100,90,80] 531.84        5083.6        505.95 

[180,160,140] 30 [120,100,90] 1833.3        5181.1        1800.9 

 

The reason for negative profit is same as mentioned in section 4.2.19. Table4.49 shows as 

retail price increases the profit of the LSE increases. This encourages LSE to bid high 

with high retail price in order to maximize the overall profit. The increasing of retail price 

may cause the consumers to choose the other LSEs which offers low retail price. 

4.2.22 Optimal Bidding Strategy with Retail Prices 

The GA optimization is applied to get the optimal bidding strategy among the results 

obtained from Monte-Carlo results of all bidding strategies. The parameters associated 

with GA are specified as Population is 100, mutation probability is 0.1, crossover 
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probability is 0.8 and maximum permitted number of iterations is 100. GA optimization 

for retail price ranging from [150,120,100] to [180,160,140] is shown in Table 4.50. 

Table 4.50  Optimal Bidding Strategy with Retail Prices 

α 0.97178 

Retail price ($) [177.07, 153.37,132.31] 

Bidding Price ($) [109.84, 94.991,88.041] 

Quantity Cleared (MW) 30 

Expected Profit ($) 1700 

Standard deviation ($) 2133.2 

Net profit ($) 1504 

 

4.2.23  Impact of Interruptible Price on Profit Maximization 

The values of risk factor and retail price are fixed to the values obtained in Table 4.50. 

By increasing the values of Interruptible price with bidding price Monte- Carlo 

Simulation is applied and the results are shown in table 4.51. 

Table 4.51 Impact of Interruptible Price on Profit Maximization 

Interruptible 

price ($) 

Quantity 

(MW) 
Bidding Price ($) 

Expected 

Profit ($) 

Standard 

Deviation 

($) 

Net profit 

($) 

[90,65,50] 10 [100,60,50]     -215.05        5437.2       -362.42 

[100,75,60] 20 [100,90,80] 942.92        5221.1        768.97 

[110,85,70] 30 [120,100,90]   1650.8        5009.9        1462.8 
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It can be observed form Table4.51 that as interruptible prices to end consumers decrease 

the net profit of a LSE. Also it can be observed form Table 4.51 that as bidding prices 

increases there is no effect of interruptible prices because the required 30 MW are cleared 

which means there is no interruptible load. In general, high interruptible prices tend LSE 

to bid higher to dispatch the required quantity. 

4.2.24 Optimal Bidding Strategy by GA with Retail and Interruptible Price 

The GA optimization is applied to get the optimal interruptible price. The GA parameters 

are same as used before. Table 4.52 shows the optimal value of interruptible price. 

Table 4.52  Optimal Bidding Strategy by GA with Retail and Interruptible Price 

α 0.97481 

Retail price ($) [178.04,158.14,133.79] 

Interruptible price ($) [88.714,74.476,59.116] 

Bidding Price ($) [117.7, 92.422,88.459] 

Quantity Cleared (MW) 30 

Expected Profit ($) 1827.9 

Standard deviation ($) 2107.5 

Net profit ($) 1662.8 
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4.2.25 Comparison Analysis 

Table 4.53 shows the comparison of three scenarios discussed in tables 4.48, 4.50 and 

4.52. In Scenario1, the retail and interruptible prices are fixed to $[150, 100, 75] and 

$[110, 85, 70] respectively. The net profit using Monte-Carlo Simulation method was 

found to be 724.87. In scenario2, the retail price was changed to $[177.07, 153.37, 

132.31] by the optimization process where as the interruptible price was still fixed to 

$[110, 85, 70] and the net profit increased to $1504. Finally, in scenario3 retail price and 

interruptible price were changed to $[178.04, 158.14, 133.79] and $[88.714, 74.476, 

59.116] respectively by optimization process. The profit in scenario3 increased to 

$1662.8. 

Table 4.53  Comparison Analysis 

Factors Scenario 1 Scenario 2 Scenario 3 

Retail price 

($) 
[150,120,100] [177.07 153.37,132.31] [178.04,158.14,133.79] 

Interruptible 

price ($) 
[110,85,70] [110,85,70] [88.714,74.476,59.116] 

α 0.99539 0.97178 0.97481 

Bidding price 

($) 

[117.53,95.249,88.87

9] 
[109.84,94.991,88.041] [117.7, 92.422,88.459] 

Expected 

profit ($) 
747.05 1700 1827.9 

Standard 

deviation ($) 
2450.8 2133.2 2107.5 

Net profit ($) 724.87 1504 1662.8 
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As the scenario3 involves high profit and low deviation with low risk value it should be 

preferred for optimal bidding strategy for three blocks bidding per unit time. 

Bilateral Contract with One of the Available Generators 

Consider that LSE 3 would sign a contract with generator at bus 13 for the supply of 25 

MW at bus27. The contract price is a compromise between these two parties and an 

average price of $78 is always the best contract price. LSE 3 also owns the Financial 

Transmission Rights (FTRs) between bus 13 and bus 27 at a price equal to difference in 

nodal prices of bus 13 and bus 27  i.e., $15.789. Contract details are shown in Appendix 

D. The bidding strategy for LSE at bus 27 with a single contract is obtained step by step 

from following sections. 

4.2.26 Profits with Different Bidding Strategies 

Monte-Carlo Simulation is performed to find the profits with different bidding strategies 

with weighting factor ranging from 0.3 to 0.9 as shown in table 4.54. 

Table 4.54 Profits with Different Bidding Strategies 

α 
Bidding Prices 

($) 

Quantity 

Cleared (MW) 

Expected 

Profit ($) 

Standard 

Deviation ($) 

0.3 [100,60,50] 28 1235.3 5155.5 

0.6 [100,90,80] 29 1321.1 4400.6 

0.9 [100,95,90] 30 1387.7 4297.0 

 

Table 4.54 shows that at least a quantity of 25MW will be cleared at bus 27 even though 

the price is less than nodal price at bus 27 by forward contracts. The remaining will be 
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cleared by LSE using its bidding strategies where its bidding prices are greater than nodal 

prices. In this case, LSE will not be exposed to any kind of loss. 

4.2.27 Optimal Bidding Strategy with Weighting Factor 

GA optimization is performed with weighting factor ranging from 0 to 1. The parameters 

used for GA are the same used before. 

Table 4.55 Optimal Bidding Strategy with Weighting Factor 

α 0.99911 

Bidding price ($)  [118.8, 97.286,88.411] 

Quantity Cleared (MW) 30 

Expected Profit ($) 1289.9 

Standard Deviation ($) 2452.2 

Net Profit ($) 1285.2 

 

4.2.28 Impact of Retail Price on Profit Maximization 

Using the results obtained from optimal bidding strategy for weighting factor, i.e. Table 

4.55; risk factor to is fixed to 0.99911. The values of retail prices are increased from 

$[150,120,100] to $1[180,160,140] with bidding prices. Results obtained from Monte-

Carlo Simulation are shown in Table 4.56. 
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Table 4.56 Impact of Retail Price on Profit Maximization 

Retail Price 

($) 

Quantity 

(MW) 
Bidding Price ($)  

Expected 

Profit ($) 

Standard 

Deviation 

($) 

Net profit 

($) 

[150,120,100] 28 [100,60,50] 1236.1        5081.7        1230.5 

[160,140,120] 29 [100,90,80] 1825.9        5048.9        1819.8 

[180,160,140] 30 [100,95,90] 2541.7        5594.9        2534.4 

 

Table4.56 shows as retail price increases the profit of the LSE increases. This encourages 

LSE to bid high with high retail price in order to maximize the overall profit. The 

increasing of retail price may cause the consumers to choose the other LSEs which offers 

low retail price. 

4.2.29 The Optimal Bidding Strategy with Retail Price 

GA optimization is performed with retail prices ranging from [150,120,100] to 

[180,160,140]. The parameters used for GA are the same used before. 

Table 4.57  Optimal Bidding Strategy with Retail Prices 

α 0.99321 

Retail price ($) [179.93,143.29,139.91] 

Bidding Price ($) [109.85,97.142,88.841] 

Cleared Quantity (MW) 30 

Expected Profit ($) 2312.6 

Standard deviation ($) 2439.1 

Net profit ($) 2261.2 
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4.2.30 Impact of Interruptible Price on Profit Maximization 

The values of risk factor and retail price are set to the values obtained in Table 4.57. 

Monte- Carlo Simulation is applied by increasing the values of Interruptible price along 

with bidding price. Table 4.58 shows the results obtained. 

Table 4.58 Impact of Interruptible Price on Profit Maximization 

Interruptible 

price ($) 

Quantity 

(MW) 
Bidding Price ($) 

Expected 

Profit ($) 

Standard 

Deviation 

($) 

Net profit 

($) 

[90,65,50] 28 [100,60,50] 2161.2        5397.5        2109.8 

[100,75,60] 29 [100,90,80] 2253.9        5115.4        2203.8 

[110,85,70] 30 [100,95,90] 2367        5254.4        2315.2 

 

Table 4.58 shows that as bidding prices increase the effect of interruptible prices decrease 

because the required 30 MW are cleared which means there is no interruptible load. In 

general, high interruptible prices force LSE to bid higher to dispatch the required 

quantity. 

4.2.31 Optimal Bidding Strategy by GA with Retail and Interruptible Price 

GA optimization is performed with interruptible prices ranging from [90,65,50] to 

[110,85,70]. The parameters used for GA are the same used before. 
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Table 4.59  Optimal Bidding Strategy by GA with Retail and Interruptible Price 

α 0.96248 

Retail price ($) [178.88,153.89,135.24] 

Interruptible price ($) [84.347,75.056,56.611] 

Bidding Price ($) [100.23,94.056,89.025] 

Quantity Cleared (MW) 30 

Expected Profit ($) 2275.6 

Standard deviation ($) 2407.5 

Net profit ($) 2014.0 

 

4.2.32 Comparison Analysis 

Table 4.60 shows a comparison analysis of three scenarios discussed in tables 4.55, 4.57 

and 4.59 the comparison done is shown in table 4.36. In Scenario1, the retail and 

interruptible prices are fixed to $[150, 100, 75] and $[110, 85, 70] respectively. The net 

profit using Monte-Carlo Simulation method was found to be $1285.2. In scenario2, the 

retail price was changed to $[179.93, 143.29, 139.91] by the optimization process where 

as the interruptible price was still fixed to $[110, 85, 70] and the net profit increased $ 

2261.2. Finally, in scenario3 retail price and interruptible price were changed to 

$[178.88, 153.89, 135.24] and $[84.347, 75.056, 56.611] respectively by optimization 

process. The profit in scenario3 increased to 2014.0. 
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Table 4.60  Comparison Analysis 

Factors Scenario 1 Scenario 2 Scenario 3 

Retail price 

($) 
[150,120,100] [179.93,143.29,139.91] [178.88,153.89,135.24] 

Interruptible 

price ($) 
[110,85,70] [110,85,70] [84.347,75.056,56.611] 

α 0.99911 0.99321 0.96248 

Quantity 

Cleared 

(MW) 

30 30 30 

Bidding price 

($) 
[118.8,97.286,88.411] [109.85,97.142,88.841] [100.23,94.056,89.025] 

Expected 

profit ($) 
1289.9 2312.6 2275.6 

Standard 

deviation ($) 
2452.2 2439.1 2407.5 

Net profit ($) 1285.2 2261.2 2014.0 

 

As the scenario3 involves high profit (less than scenario 2 with high risk) and low 

deviation with low risk value it should be preferred for optimal bidding strategy for single 

block bidding per unit time. 
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4.2.33 Comparison of TBB with and without Contract 

Table 4.61 shows comparison of TBB with and without contract discussed in tables 4.53 

and 4.60. 

Table 4.61 Comparison of TBB with and without Contract 

Factors 

Scenario 1 Scenario 2 Scenario 3 

TBB 

with 

Contract 

TBB 

without 

Contract 

TBB with 

Contract 

TBB 

without 

Contract 

TBB with 

Contract 

TBB 

without 

Contract 

a ($) 
[150,120,

100] 

[150,100,

75] 

[179.93,14

3.29,139.9

1] 

[177.07 

153.37,132.3

1] 

[178.88,15

3.89,135.2

4] 

[178.04,15

8.14,133.7

9] 

b ($) 
[110,85,7

0] 

[110,85,7

0] 

[110,85,70

] 
[110,85,70] 

[84.347,75.

056,56.611

] 

[88.714,74.

476,59.116

] 

α 0.99911 0.99539 0.99321 0.97178 0.96248 0.97481 

Bidding 

price 

($) 

[118.8,97

.286,88.4

11] 

[117.53,9

5.249,88.

879] 

[109.85,97

.142,88.84

1] 

[109.84,94.9

91,88.041] 

[100.23,94.

056,89.025

] 

[117.7, 

92.422,88.

459] 

     

($) 
1289.9 747.05 2312.6 1700 2275.6 1827.9 

     

($) 
2452.2 2450.8 2439.1 2133.2 2407.5 2407.5 

Net 

profit 

($) 

1285.2 724.87 2261.2 1504 2014.0 1662.8 
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It is observed from the  table 4.61 that the profit obtained by LSE 3 at bus 27 while 

constructing optimal bidding strategy with contractual tools is more when compared to 

optimal bidding strategy without contracts. Hence LSEs at buses should undertake 

contracts in order to avoid price fluctuations at nodes and also to maximize their profit.  

4.2.34 Comparison of TBB and SBB with One Contract 

Table 4.62 shows the comparison between SBB and TBB per unit time involving bilateral 

contracts with one of available generators discussed in tables 4.43 and 4.60.  

Table 4.62 Comparison of TBB and SBB with Contract 

Factors 

Scenario 1 Scenario 2 Scenario 3 

TBB with 

Contract 

SBB with 

Contract 

TBB with 

Contract 

SBB 

with 

Contract 

TBB with 

Contract 

SBB 

with 

Contract 

a ($) 
[150,120,1

00] 
150 

[179.93,143.

29,139.91] 
179.41 

[178.88,153.

89,135.24] 
179.22 

b ($) [110,85,70] 110 [110,85,70] 110 
[84.347,75.0

56,56.611] 
93.989 

α 0.99911 0.99171 0.99321 0.98735 0.96248 0.957 

Bidding 

price 

($) 

[118.8,97.2

86,88.411] 
98.746 

[109.85,97.1

42,88.841] 
87.263 

[100.23,94.0

56,89.025] 
87.76 

     
($) 

1289.9 2372.0 2312.6 3291.5 2275.6 3311.3 

     
($) 

2452.2 2026.7 2439.1 2235.9 2407.5 2407.5 

Net 

profit 

($) 

1285.2 2284.0 2261.2 3132.0 2014.0 2789.2 
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The comparison shows that for single block bidding per unit time the profits turn out to 

be maximum in all the scenarios when compared to three block bidding per unit time. 

The reason for such difference is that in SBB the retail price at which LSE sells the 

electric power to the end customer is only one price e.g. $179.22 for scenario 3 for 

supplying 30 MW whereas for TBB it changes from block to block e.g. 

$[178.88,153.89,135.24] for supplying 30 MW in the order of 10MW for each block. The 

advantage of SBB optimal bidding strategy is that it can draw high profits but the 

disadvantage is that if the single price did not clear the market level then the LSE is out 

of business from the market and can clear the quantities only agreed on contracts. Thus it 

should pay the end customers the interruptible prices for the whole load as per agreement 

which is a loss. Whereas for TBB the profit might be less when compared to SBB but it 

has the advantage of clearing block quantities in the market according to its block 

bidding. It‟s on the LSE to select either of the strategies but before that it should ensure 

itself of the electricity market process and forecasted load. Researchers of electricity 

market adopt TBB or more than three block bidding per unit time to construct bidding 

strategies of market participants.   

Bilateral Contracts with More than One Available Generators 

When LSE at bus 27 undertakes bilateral trading of 26 MW with generator at bus 13 for 

$78 and a trade of 4 MW with generator at 23 for $82 then the optimal bidding strategy 

using SBB for LSE at 27 is shown in table 4.63. The settlement of contracts is shown in 

Appendix D. In scenario1, retail price and interruptible price are fixed to $[150,120,100] 

and $[110, 85, 70] respectively. The net profit in scenario 1 was found to be $1357.6. In 

scenario2, the optimal retail price was found to be $[179.93, 143.29, 139.91] and 
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interruptible price is fixed to $[110, 85, 70] and net profit was found to be $ 2260. In 

scenario3, the optimal retail and interruptible prices were found to be $[178.88, 153.89, 

135.24] and $ [84.347, 75.056, 56.611] with a net profit of $2172.9. 

Table 4.63 Optimal bidding strategy using forward contracts with two generators 

Factors Scenario 1 Scenario 2 Scenario 3 

Retail price ($) [150,120,100] [179.93,143.29,139.91] [178.88,153.89,135.24] 

Interruptible 

price ($) 

[110,85,70] [110,85,70] [84.347,75.056,56.611] 

α 0.99911 0.99321 0.96248 

Expected profit 

($) 1360 

2291.3 
2340.1 

Standard 

deviation ($) 2452.2 

2291.6 
2340.4 

Net profit ($) 1357.6 2260 2172.9 

 

 

4.2.35  Comparison of TBB and SBB with More than One Contract 

Table 4.64 shows the comparison of TBB and SBB with more than one contract from 

tables 4.63 and 4.55. 
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Table 4.64 Comparison of TBB and SBB with More than One Contract 

Factors 

Scenario 1 Scenario 2 Scenario 3 

TBB with 

Contract 

SBB 

with 

Contract 

TBB with 

Contract 

SBB 

with 

Contract 

TBB with 

Contract 

SBB 

with 

Contract 

a ($) [150,120,100

] 150 

[179.93,14

3.29,139.9

1] 179.41 

[178.88,153.

89,135.24] 
179.22 

b ($) 
[110,85,70] 110 [110,85,70] 110 

[84.347,75.0

56,56.611] 93.989 

α 
0.99911 0.99171 0.99321 0.98735 0.96248 0.957 

     
($) 1360 2160.0 2291.3 3291.5 2340.1 3036.6 

     

($) 2452.2 2160.3 2291.6 2090.5 2340.4 2070.2 

Net 

profit 

($) 1357.6 2124.2 2260 29654 2172.9 
2775.5 

 

The comparison shows that for single block bidding per unit time the profits turn out to 

be maximum in all the scenarios when compared to three block bidding per unit time. 

The reasons for such differences are same as mentioned in section 4.1.21. Out of all the 

comparisons made in Tables 4.44, 4.61, 4.63 and 4.64, the optimal bidding strategy 

constructed for LSE at bus 27 provides maximum profit when it undertakes bilateral 

trading with generators at bus 13 and at bus 23. The reason for this is that bilateral trading 

avoids the risk of price fluctuations that may occur due to transmission constraints in the 

network.  
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CHAPTER 5  

 

CONCLUSION AND FUTURE WORK 

 

5.1 Conclusion 

The thesis presents a literature review on electricity markets, electricity pricing rules and 

pricing settlements. Literature survey on demand side participation and its importance are 

documented. Different perspectives on accomplishment of DSP with respect to market 

participants were studied. The effects of transmission constraints on electricity market 

and the techniques used to manage transmission constraints are also documented. Finally, 

the various approaches of strategic bidding of market participants were discussed. 

An optimal bidding strategy for LSEs is developed for a pool based double-sided auction 

electricity market covering two models. The first model neglects the effect of 

transmission constraints whereas the second model takes into account the impacts of 

transmission constraints on the profit of LSEs. In this market, sealed auction with pay-as-

bid (PAB) settlement and step-wise bidding protocols are used. The bidding behaviors of 

rivals are represented as stochastic variables of normal probability distributions. The 

problem is then formulated as a multi-objective stochastic optimization model and solved 

by a Monte-Carlo Simulation and Genetic Algorithm (GA).  



 119   

 

When there are no transmission constraints for a market model of 3 Gencos and 4 LSEs, 

the results obtained conclude that an LSE competing in double-sided electricity market 

should bid high and increase its retail price to the end customers in order to maximize its 

profit. Bidding high will reduce its profit but also reduces its risks of bidding-decision. 

Retail prices must not be increased so highly that customers may opt for other LSEs. LSE 

may also reduce its risk of bidding –decision by having higher proportion of important 

type of load customers. A comparative study is done to show the importance of TBB per 

unit time. It is shown that three block bidding (TBB) per unit time is more preferable than 

single block bidding (SBB) because TBB can clear the block quantities block wise with 

decreasing prices. Whereas, in SBB if market clearing price is greater than the single bid 

price then LSE will not clear any quantity from the market.  

The techniques to manage transmission constraints are documented in the thesis.  When 

the effects of transmission constraints are considered in the electricity model of IEEE-30 

bus system, forward contracts are undertaken with generators at bus 13 and at bus 23 

while building an optimal bidding strategy. At first, Optimal bidding strategy was 

constructed without forward contracts and then with forward contracts. The profit drawn 

from the bidding strategy constructed by considering contract between LSE at bus 27 and 

generators at bus 13, bus 23 was more profitable than bidding strategy without contracts. 

The reason for this increased profit was contract signed at low price increased the gap 

between retail price and a guarantee of clearing all MWs form contracted generators. A 

comparative study with TBB per unit time and SBB per unit time using forward contracts 

was done and the results shows that TBB per unit time bidding strategy is more effective 

than SBB per unit time. 
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5.2 Future Work 

The further issues that can be addressed on building optimal bidding strategy are 

 The effect of generator failure on the electricity market and on the profit of LSE 

can also be studied. 

 Further study could include the impact of investing in generation and transmission 

by an LSE on strategic bidding.  

 Management of ancillary services by an LSE in electricity markets can be studied.  

 The bidding strategy can also be developed by using fuzzy theory and game 

theory approach and a comparative study can be done. 

 Optimal bidding strategy can be developed for a micro-grid in the competitive 

electricity markets. 
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APPENDIX A 

 

Bus data for IEEE-30 bus system 

Bus 

No. 
Type 

Voltage Load 

Magnitude (pu) Angle  P (MW) Q (MVAR) 

1 3 1 0 0 0 

2 2 1 0 5.04 2.96 

3 1 1 0 22.32 11.16 

4 1 1 0 8.83 1.86 

5 1 1 0 0 0 

6 1 1 0 0 0 

7 1 1 0 30 12 

8 1 1 0 13.95 13.95 

9 1 1 0 0 0 

10 1 1 0 6.74 2.34 

11 1 1 0 0 0 

12 1 1 0 13.01 8.72 

13 2 1 0 0 0 

14 1 1 0 7.21 1.86 

15 1 1 0 30 12 

16 1 1 0 4.07 2.09 

17 1 1 0 10.46 6.75 

18 1 1 0 3.72 1.05 

19 1 1 0 11.04 3.95 

20 2 1 0 2.56 0.82 

21 2 1 0 3.39 2.17 

22 1 1 0 0 0 

23 1 1 0 22.32 11.16 

24 1 1 0 10.11 7.79 

25 1 1 0 0 0 

26 1 1 0 4.06 2.67 

27 2 1 0 30 7.5 

28 1 1 0 0 0 

29 1 1 0 2.79 1.05 

30 1 1 0 10.6 1.9 
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Line Data for IEEE-30 bus system 

Line 

No. 
From To R (p.u.) X(p.u.) B(p.u.) 

Flow limit 

(MW) 

1 1 2 0.02 0.06 0.03 130 

2 1 3 0.05 0.19 0.02 130 

3 2 4 0.06 0.17 0.02 65 

4 3 4 0.01 0.04 0 130 

5 2 5 0.05 0.2 0.02 130 

6 2 6 0.06 0.18 0.02 65 

7 4 6 0.01 0.04 0 90 

8 5 7 0.05 0.12 0.01 70 

9 6 7 0.03 0.08 0.01 130 

10 6 8 0.01 0.04 0 32 

11 6 9 0 0.21 0 65 

12 6 10 0 0.56 0 32 

13 9 11 0 0.21 0 65 

14 9 10 0 0.11 0 65 

15 4 12 0 0.26 0 65 

16 12 13 0 0.14 0 65 

17 12 14 0.12 0.26 0 32 

18 12 15 0.07 0.13 0 32 

19 12 16 0.09 0.2 0 32 

20 14 15 0.22 0.2 0 16 

21 16 17 0.08 0.19 0 16 

22 15 18 0.11 0.22 0 16 

23 18 19 0.06 0.13 0 16 

24 19 20 0.03 0.07 0 32 

25 10 20 0.09 0.21 0 32 

26 10 17 0.03 0.08 0 32 

27 10 21 0.03 0.07 0 32 

28 10 22 0.07 0.15 0 32 

29 21 22 0.01 0.02 0 32 

30 15 23 0.1 0.2 0 16 

31 22 24 0.12 0.18 0 16 

32 23 24 0.13 0.27 0 16 

33 24 25 0.19 0.33 0 16 

34 25 26 0.25 0.38 0 16 

35 25 27 0.11 0.21 0 16 

36 28 27 0 0.4 0 65 

37 27 29 0.22 0.42 0 16 

38 27 30 0.32 0.6 0 16 

39 29 30 0.24 0.45 0 16 

40 8 28 0.06 0.2 0.02 32 

41 6 28 0.02 0.06 0.013 32 
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Generation Data of IEEE-30 bus system 

 

 

 

 

 

 

 

 

 

 

 

 

Gen 

No. 

Bus 

No. 
Pg(MW) Qg(MVAR) Qmax(MVAR) Qmin(MVAR) Pmax(MW) 

Pmin 

(MW) 

1 1 23.54 0 60 -15 60 0 

2 2 60.97 0 60 -15 60 0 

3 22 21.59 0 60 -15 60 0 

4 27 26.91 0 60 -15 60 0 

5 23 19.2 0 60 -15 60 0 

6 13 37 0 60 -15 60 0 
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APPENDIX B 

 

OPF Bus data without transmission constraints 

Bus 

No. 

Voltage Generation 
Load Lambda 

($/MVA-hr) 

Mag (pu) Angle 
P 

(MW) 

Q 

(MVAR) 

P 

(MW) 

Q 

(MVAR) 
P Q 

1 1.060 0 60 -0.22 0 0 71.768 0.001 

2 1.058 -0.911 60 24.50 5.04 2.96 72.435 0 

3 1.031 -2.989 - - 22.32 11.16 74.285 0.654 

4 1.032 -3.211 - - 8.83 1.86 74.490 0.615 

5 1.037 -2.953 - - 0 0 73.948 0.489 

6 1.028 -3.838 - - 0 0 75.114 0.637 

7 1.019 -4.123 - - 30 12 75.503 0.984 

8 1.022 -4.185 - - 13.95 13.95 75.465 0.781 

9 1.035 -4.335 - - 0 0 74.785 0.644 

10 1.039 -4.592 - - 6.74 2.34 74.614 0.650 

11 1.035 -4.335 - - 0 0 74.785 0.644 

12 1.038 -2.990 - - 13.01 8.72 74.318 0.599 

13 1.060 1.389 60 19.03 0 0 73.272 0 

14 1.023 -4.328 - - 7.21 1.86 74.876 1.093 

15 1.019 -4.736 - - 30 12 75.716 1.169 

16 1.030 -4.013 - - 4.07 2.09 74.40 0.905 

17 1.030 -4.664 - - 10.46 6.75 74.893 0.927 

18 1.011 -5.534 - - 3.72 1.05 76.603 1.416 

19 1.011 -5.774 - - 11.04 3.95 76.734 1.451 

20 1.017 -5.537 - - 2.56 0.82 76.278 1.283 

21 1.051 -4.467 - - 3.39 2.17 74.022 0.184 

22 1.056 -4.419 36 26.29 0 0 73.793 -0.001 

23 1.051 -4.469 41.67 24.05 22.32 11.16 74.227 0.002 

24 1.037 -5.949 - - 10.11 7.79 75.758 0.764 

25 1.033 -9.660 - - 0 0 78.433 0.626 

26 1.013 -10.140 - - 4.06 2.67 80.028 1.694 

27 1.044 -11.656 0 30.11 30 7.5 79.134 -0.001 

28 1.024 -4.764 - - 0 0 76.243 0.461 

29 1.023 -12.898 - - 2.79 1.05 81.303 0.616 

30 1.013 -13.711 - - 10.6 1.9 82.693 0.836 

  Total:     257.67     123.76     252.22     118.75   
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OPF Branch data without transmission constraints 

Line 

No. 
From To 

From Bus Injection 

P(MW)     Q(MVAr) 

To  Bus Injection 

P(MW)   Q(MVAr) 

Loss (I^2 * Z) 

P(MW)  Q(MVAr) 

1 1 2 27.82 -7.35 -27.68 4.42 0.143 0.43 

2 1 3 32.18 7.13 -31.69 -7.45 0.491 1.87 

3 2 4 28.19 5.71 -27.74 -6.61 0.451 1.28 

4 3 4 9.37 -3.71 -9.36 3.75 0.010 0.04 

5 2 5 21.10 5.08 -20.89 -6.41 0.216 0.86 

6 2 6 33.34 6.34 -32.72 -6.64 0.626 1.88 

7 4 6 29.86 3.35 -29.78 -3.01 0.085 0.34 

8 5 7 20.89 6.41 -20.66 -6.93 0.225 0.54 

9 6 7 9.38 7.13 -9.34 -8.07 0.042 0.11 

10 6 8 18.58 10.74 -18.53 -10.56 0.044 0.17 

11 6 9 4.39 -3.46 -4.39 3.52 0.000 0.06 

12 6 10 2.51 -1.98 -2.51 2.03 0.000 0.05 

13 9 11 0.00 -0.00 0.00 -0.00 -0.000 0.00 

14 9 10 4.39 -3.52 -4.39 3.55 0.000 0.03 

15 4 12 -1.59 -2.35 1.59 2.37 0.000 0.02 

16 12 13 -60.00 -14.10 60.00 19.03 0.000 4.94 

17 12 14 10.14 1.30 -10.02 -1.04 0.116 0.25 

18 12 15 25.74 1.78 -25.31 -0.98 0.433 0.80 

19 12 16 9.52 -0.06 -9.44 0.23 0.076 0.17 

20 14 15 2.81 -0.82 -2.79 0.83 0.018 0.02 

21 16 17 5.37 -2.32 -5.34 2.38 0.026 0.06 

22 15 18 6.60 0.14 -6.55 -0.05 0.046 0.09 

23 18 19 2.83 -1.00 -2.83 1.01 0.005 0.01 

24 19 20 -8.21 -4.96 8.24 5.02 0.027 0.06 

25 10 20 10.93 6.15 -10.80 -5.84 0.131 0.31 

26 10 17 5.15 9.22 -5.12 -9.13 0.031 0.08 

27 10 21 -9.60 -14.48 9.69 14.67 0.084 0.20 

28 10 22 -6.32 -8.81 6.39 8.97 0.076 0.16 

29 21 22 -13.08 -16.84 13.12 16.93 0.041 0.08 

30 15 23 -8.49 -12.00 8.70 12.42 0.208 0.42 

31 22 24 16.49 0.39 -16.20 0.05 0.293 0.44 

32 23 24 10.65 0.48 -10.51 -0.20 0.134 0.28 

33 24 25 16.60 -7.64 -16.01 8.66 0.590 1.03 

34 25 26 4.12 2.76 -4.06 -2.67 0.058 0.09 

35 25 27 11.89 -11.42 -11.61 11.96 0.280 0.54 

36 28 27 32.06 -3.20 -32.06 7.17 0.000 3.96 

37 27 29 6.45 1.78 -6.36 -1.61 0.090 0.17 

38 27 30 7.22 1.70 -7.06 -1.40 0.162 0.30 

39 29 30 3.57 0.56 -3.54 -0.50 0.030 0.06 

40 8 28 4.58 -3.39 -4.57 1.35 0.015 0.05 

41 6 28 27.64 -2.79 -27.49 1.86 0.145 0.44 

      Total:      5.449      22.69 

 



 126   

 

APPENDIX C 

 

OPF Bus data with transmission constraints 

Bus 

No. 

Voltage Generation 
Load Lambda 

($/MVA-hr) 

Mag (pu) Angle 
P 

(MW) 

Q 

(MVAR) 

P 

(MW) 

Q 

(MVAR) 
P Q 

1 1.060 0 60 -0.22 0 0 71.768 0.001 

2 1.058 -0.911 60 24.50 5.04 2.96 72.435 0 

3 1.031 -2.989 - - 22.32 11.16 74.285 0.654 

4 1.032 -3.211 - - 8.83 1.86 74.490 0.615 

5 1.037 -2.953 - - 0 0 73.948 0.489 

6 1.028 -3.838 - - 0 0 75.114 0.637 

7 1.019 -4.123 - - 30 12 75.503 0.984 

8 1.022 -4.185 - - 13.95 13.95 75.465 0.781 

9 1.035 -4.335 - - 0 0 74.785 0.644 

10 1.039 -4.592 - - 6.74 2.34 74.614 0.650 

11 1.035 -4.335 - - 0 0 74.785 0.644 

12 1.038 -2.990 - - 13.01 8.72 74.318 0.599 

13 1.060 1.389 60 19.03 0 0 73.272 0 

14 1.023 -4.328 - - 7.21 1.86 74.876 1.093 

15 1.019 -4.736 - - 30 12 75.716 1.169 

16 1.030 -4.013 - - 4.07 2.09 74.40 0.905 

17 1.030 -4.664 - - 10.46 6.75 74.893 0.927 

18 1.011 -5.534 - - 3.72 1.05 76.603 1.416 

19 1.011 -5.774 - - 11.04 3.95 76.734 1.451 

20 1.017 -5.537 - - 2.56 0.82 76.278 1.283 

21 1.051 -4.467 - - 3.39 2.17 74.022 0.184 

22 1.056 -4.419 36 26.29 0 0 73.793 -0.001 

23 1.051 -4.469 41.67 24.05 22.32 11.16 74.227 0.002 

24 1.037 -5.949 - - 10.11 7.79 75.758 0.764 

25 1.033 -9.660 - - 0 0 78.433 0.626 

26 1.013 -10.140 - - 4.06 2.67 80.028 1.694 

27 1.044 -11.656 0 30.11 30 7.5 79.134 -0.001 

28 1.024 -4.764 - - 0 0 76.243 0.461 

29 1.023 -12.898 - - 2.79 1.05 81.303 0.616 

30 1.013 -13.711 - - 10.6 1.9 82.693 0.836 

  Total:     257.30        122.15      252.22        118.75   
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OPF Branch data with transmission constraints 

Line 

No. 
From To 

From Bus Injection 

P(MW)     Q(MVAr) 

To  Bus Injection 

P(MW)       

Q(MVAr) 

Loss (I^2 * Z) 

P(MW)   

Q(MVAr) 

1 1 2 28.30 -7.62 -28.15 4.70 0.149 0.45 

2 1 3 31.70 7.24 -31.23 -7.61 0.478 1.82 

3 2 4 27.42 6.01 -26.99 -6.97 0.430 1.22 

4 3 4 8.91 -3.55 -8.90 3.59 0.009 0.03 

5 2 5 20.60 5.25 -20.39 -6.62 0.208 0.83 

6 2 6 32.23 6.74 -31.64 -7.15 0.590 1.77 

7 4 6 28.12 3.90 -28.05 -3.60 0.076 0.30 

8 5 7 20.39 6.62 -20.18 -7.15 0.217 0.52 

9 6 7 9.87 6.92 -9.82 -7.85 0.043 0.12 

10 6 8 17.94 10.70 -17.90 -10.54 0.041 0.17 

11 6 9 4.32 -2.59 -4.32 2.64 0.000 0.05 

12 6 10 2.47 -1.48 -2.47 1.52 0.000 0.04 

13 9 11 0.00 -0.00 0.00 -0.00 -0.000 0.00 

14 9 10 4.32 -2.64 -4.32 2.67 0.000 0.03 

15 4 12 -1.07 -2.37 1.07 2.39 0.000 0.02 

16 12 13 -60.00 -14.07 60.00 19.01 0.000 4.94 

17 12 14 10.27 1.13 -10.15 -0.87 0.119 0.26 

18 12 15 26.34 1.20 -25.89 -0.36 0.452 0.84 

19 12 16 9.31 0.63 -9.24 -0.47 0.073 0.16 

20 14 15 2.94 -0.99 -2.92 1.01 0.020 0.02 

21 16 17 5.17 -1.62 -5.15 1.67 0.022 0.05 

22 15 18 6.36 0.77 -6.32 -0.68 0.043 0.09 

23 18 19 2.60 -0.37 -2.59 0.38 0.004 0.01 

24 19 20 -8.45 -4.33 8.47 4.39 0.027 0.06 

25 10 20 11.16 5.51 -11.03 -5.21 0.130 0.30 

26 10 17 5.34 8.49 -5.31 -8.42 0.028 0.08 

27 10 21 -9.95 -12.76 10.03 12.93 0.073 0.17 

28 10 22 -6.51 -7.78 6.57 7.92 0.067 0.14 

29 21 22 -13.42 -15.10 13.45 15.17 0.037 0.07 

30 15 23 -7.55 -13.41 7.78 13.87 0.228 0.46 

31 22 24 15.97 -0.92 -15.70 1.33 0.278 0.42 

32 23 24 9.03 2.59 -8.92 -2.38 0.103 0.21 

33 24 25 14.51 -6.75 -14.05 7.54 0.454 0.79 

34 25 26 4.12 2.76 -4.06 -2.67 0.058 0.09 

35 25 27 9.94 -10.29 -9.72 10.70 0.211 0.40 

36 28 27 28.91 -3.16 -28.91 6.38 0.000 3.23 

37 27 29 6.45 1.78 -6.36 -1.61 0.091 0.17 

38 27 30 7.22 1.70 -7.06 -1.40 0.162 0.30 

39 29 30 3.57 0.56 -3.54 -0.50 0.030 0.06 

40 8 28 3.95 -3.41 -3.93 1.36 0.012 0.04 

41 6 28 25.10 -2.81 -24.98 1.80 0.120 0.36 

      Total:      5.083      21.08 
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Branch Flow Constraints 

Line No. 
From 

Bus 

From MW  End 

MW 
Limit 

To MW      End 

MW 

To  

Bus 

31 22 17.598 16 16 15.75 - 24 

33 24 17.453 16 16 15.95 - 25 
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APPENDIX D 

 

SETTLEMENT OF CONTRACTS 

Case2. When LSE at bus 27 undertake a contract with one of the available generators: 

LSE at bus 27 pays                    to MO for extracting 25 MW at bus 27. 

Generator at bus 13 receives                     from MO for injecting 25 MW 

at bus13. 

LSE at bus 27 pays                         to Generator at bus 13 to settle the 

contract for difference. 

LSE at bus 27 collects                             from MO for the FTRs it 

owns between bus 13 and bus 27. 

Thus, LSE at bus 27 pays       for 25 MW which is equivalent to a price of          

Case3. When LSE at bus 27 undertake contracts with more than one available generator: 

1. Between LSE at bus 27 and generator at bus 13 

 

LSE at bus 27 pays                     to MO for extracting 26 MW at bus 27. 

Generator at bus 13 receives                     from MO for injecting 26 MW 

at bus13. 

LSE at bus 27 pays                         to Generator at bus 13 to settle the 

contract for difference. 
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LSE at bus 27 collects                             from MO for the FTRs it 

owns between bus 13 and bus 27. 

Thus, LSE at bus 27 pays       for 26 MW which is equivalent to a price of      

     

 

2. Between LSE at bus 27 and generator at bus 23  

 

LSE at bus 27 pays                   to MO for extracting 4 MW at bus 27. 

Generator at bus 13 receives                   from MO for injecting 4 MW at 

bus13. 

LSE at bus 27 pays                       to Generator at bus 13 to settle the 

contract for difference. 

LSE at bus 27 collects                          from MO for the FTRs it owns 

between bus 13 and bus 27. 

Thus, LSE at bus 27 pays      for 4 MW which is equivalent to a price of          
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NOMENCLATURE 

 

Abbreviation            Full form 

Genco     Generation Company 

LSE     Load Serving Entity 

ISO     Independent System Operator 

MO     Market Operator 

MCP     Market Clearing Price 

PAB     Pay-As-Bid 

SBB     Single Bidding Block  

TBB     Three Bidding Block 

GA     Genetic Algorithm 

DSP     Demand Side Participation 

LAO     Last Accepted Offer 

FRO     First Rejected Offer 

LAB     Last Accepted Bid 

FRB     First Rejected Bid 

OPF     Optimal Power Flow 

LMP     Locational Marginal Price 

ZMCP     Zonal Market Clearing Price 

NP     Nodal Price 

FTRs     Financial Transmission Rights 

FGRs     Flow Gate Rights 
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