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CHAPTER 1

INTRODUCTION

This thesis addresses the following controlled system governed by singular differential operator

equations in Hilbert spaces:

Lx = f(x, u, t), u(t) ∈ U a.e. t ∈ I = (a, b), −∞ ≤ a < b ≤ ∞, (1.1)

where L is a self-adjoint extension of the minimal operator L0 (see Chapter 2) generated by a

formally self-adjoint quasi-differential expression l and a positive weight function w satisfying

the equation

ℓx = λwx on I (1.2)

in the Hilbert space H = L2(I, w) of real-valued square integrable functions with respect to the

weight fuctiom w, where u(·) is a measurable control action taking values from the given control

set U , and where the function f is real-valued.

Optimal control theory is a remarkable area of Applied Mathematics, which has been de-

veloped for various classes of controlled systems governed by ordinary differential, functional

differential, and partial differential equations and inclusions; see, e.g., [23, 31] with the vast

bibliographies therein. However, we are not familiar with any developments on optimal control
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of differential operator equations of type (1.1). .

The differential operator equation in (1.1) describes many systems in physics and engineer-

ing. Many problems of mathematics can be also categorized to be of this form. Sturm-Liouville

differential equations, Schrödinger operators and some Dirac systems belong to the long list of

problems that can be studied under the form of (1.1). Weidmann in [45] gives a list of solvable

examples in which he studies different problems described in this form and calculates the resol-

vent, spectral representation, spectrum etc. of the operator L in each of these examples. In [13],

a collection of more than 50 examples of Sturm-Liouville differential equations; many of these

examples are connected with problems in mathematical physics and applied mathematics.

We denote the set of complex numbers and the set of real numbers by the two symbols C and

R respectively. We sometimes write Ax for some operator or a function A and an element x in

the domain of A to mean the image of x under A. In other words, we use Ax to mean A(x) in the

standard convention of notation. We rely on the context to read Ax as the image under A rather

than the product of A and x.

This thesis is organized as follows. Chapter 2 gives a comprehensive account of the operator

equation in (1.1) with concentration on the basic definitions and results that help the reader to

have a clear understanding of the problem we are studying. Our display is no where else to be

found in this arrangement. We believe that this chapter when extended can be a solid launching

pad and a convenient way to whomever interested in pursuing further studies in the theory of

singular differential equations.

In Chapter 3, we introduce the problem of optimal control in general considerations and the

necessary optimality conditions of optimizers of these problems. We define and discuss the opti-

mal control problem and we describe necessary optimality conditions. First with no constraints

on the control set and then with constrained control set deriving necessary optimality conditions
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in the form of the Pontryagin maximum principle (PMP). We also give a historical review on the

development of optimal control theory. This work [2] is a small contribution to the field of opti-

mal control.

In Chapter 4, we formulate, for the first time in the literature, an optimal control problem

for self-adjoint ordinary differential operator equations in Hilbert spaces and derive necessary

conditions for optimal controls to this problem in an appropriate extended form of the Pontrya-

gin Maximum Principle.

Chapter 5 summarizes the work accomplished in this thesis and presents some interesting

problems for further investigation. We think that some of the problems presented in this chapter

can be studied in a Master thesis or even in a PhD dissertation.



CHAPTER 2

SINGULAR ORDINARY

DIFFERENTIAL OPERATORS

The goal of this chapter is to shed some light on the equation (1.1) and its well-developed back-

ground that is necessary to understand the new results introduced in this thesis.

Very general quasi-differential forms, and in particular symmetric ones, have been consid-

ered by Shin [39]. They were rediscovered by Zettl [46] in a slightly different but equivalent

form. Special cases of these very general symmetric quasi-differential expressions have been

used extensively by many authors, see [4, 22, 36, 28, 11, 12, 44].

The development of the theory of symmetric differential operators in the books by Naimark

[32, 33] and by Akhiezer and Glazman [1] is based on the real symmetric form analogous to (2.4).

Although these authors refer to Shin’s more general symmetric expressions they make no use of

them. In [46] it was shown that the techniques in these books can be applied to a much larger

class of symmetric operators generated by these very general differential expressions.

In Section 2.1, we present the basic definitions of the general symmetric quasi-differential

4
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expressions and give some properties and examples. In Section 2.2 we discuss the deficiency

spaces associated to a symmetric operator. The basic theory of the minimal and maximal opera-

tors are presented in Section 2.3. The Glazman-Krein-Naimark (GKN) Theorem that describes

the domains of self-adjoint extensions of the minimal operator is presented in Section 2.4.

2.1 Quasi-Differential Expressions

In this section we summarize some basic facts about general quasi-differential expressions of

even and odd order and real or complex coefficients for the convenience of the reader. For a more

comprehensive discussion of quasi-differential equations, the reader is referred to [46] and to

[18] in the scalar coefficient case and to [29] for the general case with matrix coefficients.

We define the general quasi-differential expression following the development in [46, 18]. To

do so we let I = (a, b) be an interval with ∞ ≤ a < b ≤ ∞, n be an integer greater than 1 and let

Zn(I) := {Q = (qrs)
n
r,s=1 ,

qr,s = 0, a.e. on I, for 2 ≤ r + 1 < s ≤ n,

qr,r+1 6= 0, a.e. on I, q−1
r,r+1 ∈ Lloc(I) for 1 ≤ r ≤ n− 1,

qr,s ∈ Lloc(I), for 1 ≤ r, s ≤ n},

(2.1)

where Lloc(I) denotes the space of all complex-valued functions that are locally (i.e on each

compact subinterval) integrable on I. These matrices, i.e. Zn(I), are called, Shin-Zettl matrices.
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A typical member of this class Q displays the format

Q =









































∗ q12 0 0 · · · 0

∗ ∗ q23 0 · · · 0

...
...

. . .
. . .

. . .
...

∗ ∗ · · · ∗ qn−2,n−1 0

∗ ∗ · · · · · · ∗ qn−1,n

∗ ∗ ∗ · · · ∗ ∗









































where ∗ stands for any locally integrable function that is not on or above the super diagonal of

Q.

Definition 2.1 (quasi-derivatives)

For a fixed choice of Q ∈ Zn(I), let

V0 := {x : I → C, x is measurable}.

The quasi-derivatives x[k] for k = 0, · · · , n, are defined inductively as

x[0] := x, x ∈ V0,

x[k] := q−1
k,k+1

{

(

x[k−1]
)′ −

k
∑

s=1
qksx

[s−1]

}

, x ∈ Vk for k = 1, · · · , n

where qn,n+1 := 1 and

Vk :=
{

x ∈ Vk−1 : x[k−1] ∈ ACloc(I)
}

, for k = 1, · · · , n.

Here the prime marks the ordinary derivative and ACloc(I) is the set of all complex-valued

locally absolutely continuous functions on I, i.e., absolutely continuous on each compact subin-
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terval [α, β] of I which means that for any ǫ > 0 there is δ such that

∑

j

||x(tj+1)− x(tj)|| ≤ ǫ whenever
∑

j

|tj+1 − tj | ≤ δ

for the disjoint intervals (tj , tj+1] ⊂ [α, β]. �

The quasi-derivatives x[k] for k = 0, 1, · · · , n, are defined as certain linear combinations of the

ordinary derivatives x(k), in terms of a prescribed complex n × n matrix Q = Q(t) for t ∈ I, of

Shin-Zettl type, see [19, 14, 19, 33, 46].

Definition 2.2 (quasi-differential expression)

The quasi-differential expression lQ associated with Q is defined by

lQx := inx[n], (i2 = −1),

on the domain D(Q) := Vn. �

Clearly, lQ is a linear map of D(Q) into Lloc(I) and different matrices Q may generate the same

linear map. The definition generalizes classical differential expressions of order n on I defined

as

Mx = pnx
(n) + pn−1x

(n−1) + · · ·+ p1x
′ + p0x (2.2)

with complex coefficients pk ∈ Lloc(I), k = 0, 1, · · · , n − 1, and further pn ∈ ACloc(I) with pn 6= 0

on I. The corresponding domain for M is

D(M) :≡ {x := I → C|x(k) ∈ ACloc(J) for k = 0, 1, · · · , n− 1},

in terms of the ordinary derivatives x(k), so x(n) and also Mx ∈ Lloc(J). To see this, define the
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following n× n matrix Q ∈ Zn(I) by

Q =









































0 1 0 0 · · · 0

0 0 1 0 · · · 0

...
...

. . .
. . .

. . .
...

0 0 · · · 0 1 0

0 0 · · · · · · 0 inp−1
n

−inp0 −inp1 −inp2 · · · −inpn−2 (p′n − pn−1)p
−1
n









































.

That is, Q = (qrs)
n
r,s=1 with

qrs = 0, for (s 6= r + 1 and 1 ≤ r, s ≤ n− 2) or (r = n− 1 and 1 ≤ s ≤ n− 1)

qr,r+1 = 1, for 1 ≤ r ≤ n− 2,

qn−1,n = inp−1
n ,

qn,s = −i−nps, for 1 ≤ s ≤ n− 1,

qn,n = (p′n − pn−1)p
−1
n .

The matrix Q belongs to Zn(I) since p−1
n is locally integrable on I and p−1

n 6= 0 on I. In fact, p−1
n ∈

ACloc(I); because pn ∈ ACloc(I) and pn 6= 0 on I. Indeed, let’s compute the quasi-derivatives x[k]

as follows

x[k] = x(k), for k = 0, 1, · · · , n− 2

and then

x(n−1) =
(

x[n−2]
)′

= inp−1
n x[n−1]

which shows that x[n−1] ∈ ACloc(I) and therefore

D(M) = D(Q).
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Moreover,

x[n] =
(

x[n−1]
)′
+ i−n

{

p0x+ p1x
1 + · · ·+ pn−2x

(n−2)
}

− (p′n − pn−1)p
−1
n i−npnx

(n−1)

=
(

i−npnx
(n−1)

)′
+ i−n

{

p0x+ p1x
1 + · · ·+ pn−2x

(n−2)
}

− i−n(p′n − pn−1)x
(n−1)

= i−n
{

(

pnx
(n−1)

)′
+ p0x+ p1x

1 + · · ·+ pn−2x
(n−2) − (p′n − pn−1)x

(n−1)
}

= i−n
{

p′nx
(n−1) + pnx

(n) + p0x+ p1x
1 + · · ·+ pn−2x

(n−2) − p′nx
(n−1) + pn−1x

(n−1)
}

= i−n
{

pnx
(n) + p0x+ p1x

1 + · · ·+ pn−2x
(n−2) + pn−1x

(n−1)
}

= i−n {Mx} .

Hence,

Mx = inx[n], for x ∈ D(M) = D(A).

On the other hand, it is not possible to simplify the quasi-expression, lQ, or to describe its

domain of definition without reference to all the quasi-derivatives. In [17], necessary and suffi-

cient conditions for the quasi-differential expression lQ to be equivalent to a classical expression

M are given.

The quasi-differential expression,lQ, enjoys many advantages over the classical differential

expression 2.2. Among these advantages, see [46], are: They are more general. Smoothness

conditions on the coefficients are not needed in deriving the Lagrange identity, Definition 2.5.

Definition 2.3

A differential expression M on I ( either classical M or quasi lQ as above) is formally self-adjoint

or Lagrange symmetric if:
∫

I

{M(x1)x̄2 − x1M(x2)}dx = 0

for all x1, x2 ∈ D0(M), where

D0(M) = {x ∈ D(M)| supp(x) ⊂ I}.

In other words, D0(M) is a subset of functions in D(M) whose supports are compact subsets of
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the interior of I. �

Remark 2.4

If M =M is a classical differential expression, 2.2, with smooth coefficients,that is

pk ∈ Ck for k = 0, 1, · · · , n, (2.3)

then M is formally self-adjoint if and only if M coincides with its Lagrange adjoint M+:

M [x] =M+[x] :≡ (−1)n(p̄nx)
(n) + (−1)n−1(p̄n−1x)

(n−1) + . . . p̄0x.

It is known, see [32] or [10, page 1290], that every formally self-adjoint differential expression

M whose coefficients satisfy (2.3) can be expressed in the form

Mx =

[n/2]
∑

k=0

(−1)k
(

akx
(k)

)(k)

+

[(n−1)/2]
∑

k=0

i

[

(

bkx
(k)

)(k+1)

+
(

bkx
(k+1)

)(k)
]

(2.4)

where ak, bk are real-valued function and [x] denotes the largest integer less than or equal to x. In

particular every formally self-adjoint differential expression M with real coefficients satisfying

(2.3) is of even order n = 2m and has the form

m
∑

k=0

(−1)k
(

akx
(k)

)(k)

(2.5)

with ak real-valued function. For m = 1, (2.5) reduces to the Sturm-Liouville operator

−(a1x
′)′ + a0x.

On the other hand it can readily be shown, by ”removing the parenthesis,” that every ex-

pression of the form (2.5) with ak ∈ C∞ is a formally self-adjoint expression. It is sufficient to

verify M = M+ for all x ∈ C∞(I). However, for general M (with non-smooth coefficients), it is

possible to test for Lagrange symmetry only by replacing M by an equivalent quasi-differential
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expression MQ, see [16, Appendix A], and then test for Lagrange symmetry for MQ, as we shall

see below. �

Definition 2.5 (Lagrange Identity)

Let x1, x2 ∈ D(Q) for some given quasi-differential expression lQ. Then we have the following

identity, called Lagrange Identity,

lQ(x1)x2 − x1lQ(x2) =
d

dt
[x1, x2], (2.6)

where

[x1, x2](t) := in
n−1
∑

k=0

(−1)kx
[n−1−k]
1 (t)x

[k]
2 (t), for t ∈ I.

�

It should be noted that

[x1, x2](a) = lim
t→a+

[x1, x2](t) and [x1, x2](b) = lim
t→b−

[x1, x2](t).

If we integrate both sides of (2.6) over a finite interval [α, β] ⊂ I, we have the Lagrange identity

in integral form, also called the Lagrange-Green identity,

∫ β

α

lQ(x1)x2dt−
∫ β

α

x1lQ(x2)dt = [x1, x2]
β
α = [x1, x2](β)− [x1, x2](α). (2.7)

As we will see in Section 2.3, we need to impose the requirement that lQ be formally self-

adjoint. We can do this by demanding that the matrix Q ∈ Zn(I) be Lagrange symmetric. That

is , in addition to the conditions in (2.1), we shall require the following condition

Q = Q+. (2.8)

Here the Lagrange adjoint Q+ of Q ∈ Zn(I) is defined by

Q+ := −Λ−1
n Q∗Λn, (2.9)
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whereQ∗ = Q̄t (the conjugate transpose of Q, as usual), and Λn = (ℓrs) is a certain fixed constant

n× n matrix with −1,+1,−1,+1 . . . down the counter-diagonal and zeros elsewhere, that is ,

ℓrs =















(−1)r, for r + s = n+ 1,

0, otherwise .

(2.10)

Then easy computations and using the formulas

Λ−1
n = Λt

n = (−1)n−1Λn,

show that for Q = Q+, the Lagrange-Green identity (2.7) can be written, for all x1, x2 ∈ D(Q)

and each compact interval [α, β] interior to I,

∫ β

α

{lQ(x1)x2 − x1lQ(x2)}dt = [x1, x2](β)− [x1, x2](α).

Thus when Q = Q+ we observe that [x1, x2](t) ≡ 0 for all t in the complement of (supp(x1)∩

supp(x2)) in I. Hence for Q = Q+, we conclude that lQ is formally self-adjoint, in the sense of

Definition 2.3.

The classical expressions (2.4) can be seen as Lagrange symmetric quasi-differential expres-

sions. To clarify these points, we consider the following examples.

Example 2.6

Let n = 2, then (2.4) is

Mx = a0x− (a1x
′)′ + i [(b0x)

′ + b0x
′] = a0x− (a1x

′)′ + (ib0x)
′ + ib0x

′,

with ak 6= 0, k = 0, 1 a.e. on I and a1, b0 are differentiable. We want to construct a matrix Q that

belongs to Z2(I) and

M = lQ.
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So, we begin with

Q =









q11 q12

q21 q22









.

and compute

x[0] = x,

x[1] = q−1
12 (x

′ − q11x) = q−1
12 x

′ − q11q
−1
12 x,

x[2] = (q−1
12 x

′)′ − (q11q
−1
12 x)

′ − q21x− q22(q
−1
12 x

′ − q11q
−1
12 x),

= (q−1
12 x

′)′ − (q11q
−1
12 x)

′ − q21x− q−1
12 q22x

′ + q11q
−1
12 q22x.

Therefore, with the assumption that q−1
12 and q11q

−1
12 are differentiable,

lQ = i2x[2] = (q21 − q11q
−1
12 q22)x− (q−1

12 x
′)′ + (q11q

−1
12 x)

′ + q−1
12 q22x

′,

and solving M = lQ for Q gives

Q =









ib0a
−1
1 a−1

1

a0 − b20a
−1
1 ib0a

−1
1









.

Assuming now that

a−1
1 , ib0a

−1
1 , a0 − b20a

−1
1 ∈ Lloc(I), a0, a1, b0 rea real

gives M = lQ with Q ∈ Z2(I) and Q = Q+ as desired. �

Example 2.7

Let n = 4, then (2.4) is

Mx = a0x− (a1x
′)′ + (a2x

′′)′′ + i [(b0x)
′ + (b1x

′)′′ + b0x
′ + (b1x

′′)′] .
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Following the same process in Example 2.6, we end up with the following matrix.

Q =

























0, 1, 0, 0

0, −ib1a−1
2 a−1

2 , 0

−ib0, a1 − b21a
−1
2 , −ib1a−1

2 , 1

−a0, −ib0, 0, 0

























. (2.11)

A direct computation yields

lQx = {(a2x′′ + ib1x
′)′ − a1x

′ + ib1x
′′ + ib0x}′ + a0x+ ib0x

′.

This expression with

a−1
2 , b1a

−1
2 , a1 + b21a

−1
2 , a0, b0 ∈ Lloc and real

is the quasi-differential analogue of the classical expression (2.4). It reduces to (2.4) with a2, a1, b1

and b0 are sufficiently differentiable. �

The matrices in Examples 2.6 and 2.7 belong to a relatively small subset of the set of all matrices

Q such that Q ∈ Z2(I) and Q = Q+. To see this, we illustrate with some examples.

Example 2.8

The general 2× 2 matrix Q satisfying Q ∈ Z2(I) and the Lagrange symmetry condition Q = Q+

is given by

Q =









a b

c −ā









where b 6= 0 a.e and b, c are real functions. Then lQ is given by

lQx = −[b−1(x′ − ax)]′ − āb−1(x′ − ax) + cx (2.12)

To relate (2.12) to (2.4), let a = ib0a
−1
1 + d, b = a−1

1 , c = (a0a1 − b20)a
−1
1 where a0, a1, b0 and d are
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real functions. Now (2.12) becomes

lQx = [−a1x′ + (ib0 + a1d)x]
′ + (ib0 − a1d)x

′ + (a0 + a1d
2)x. (2.13)

When d = 0 and a1, b0 are differentiable, (2.13) can be written as

lQx = −(a1x
′)′ + a0x+ i{(b0x)′ + b0x

′}.

This is (2.4) for n = 2. When b0 (but not necessarily d) is zero in (2.13) we get the general real

symmetric expression

lQx = [a1x
′ + a1dx]

′ − a1dx
′ + (a0 + a1d

2)x. (2.14)

If a1 and d are differentiable, (2.14) reduces to

lQ = −(a1x
′)′ + [(a1d)

′ + a0 + a1d
2]x. (2.15)

Finally when d = 0 (2.15) reduces to the familiar Sturm-Liouville operator

lQx = −(a1x
′)′ + a0x. �

Example 2.9

Let’s examine the fourth order case. The general matrix, Q, satisfying Q ∈ Z4(I) and the sym-

metry condition Q = Q+ is

Q =

























a b 0 0

c d f 0

g h −d̄ b̄

k −ḡ c̄ −ā

























(2.16)
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with f, h and k real-valued and b, f not zero a.e.Then

lQx = (x[3])′ + āx[3] − c̄x[2] + ḡx[1] − kx (2.17)

where

x[1] = b−1(x′ − ax),

x[2] = f−1
[

(x[1])′ − dx[1] − cx
]

,

x[3] = b̄−1
[

(x[2])′ + d̄x[2] − hx[1] − gx
]

.

Observe that (2.11), which generates the expression (2.4) when n = 4 is a special case of (2.16).

Thus (2.17) represents a much larger class of fourth order symmetric expressions than (2.4).

Even in the case when all entries are real and a = d = g = 0 so that Q has the form

Q =

























0 b 0 0

c 0 f 0

0 h 0 b

k 0 c 0

























we get a more general real fourth-order expression than is normally considered. Letting b = p−1

and f = r−1 we have

lQx = (p((r((px′)′ − cx))′ − hpx′))′ − cr((px′)′ − cx)− kx.

For p = 1 and c = 0 in the last expression, we get the more familiar form

lQx = [(rx′′)′ − hx′]′ − kx. (2.18)

It should be noted, see [21], that Naimark’s development of the even-order real case in [33,

chapter V] is based on conditions that r−1, h, k ∈ Lloc(I). Under these conditions the quasi-
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differential expressions have the form (2.18) not

(rx′′)′′ − (hy′)′ − ky

as stated in [33]. �

2.1.1 Properties of Quasi-Differential Equations

Now, fix Q ∈ Zn(I), let λ ∈ C, w, g ∈ Lloc(I) and consider the following quasi-differential equation

lQx = λwx + g a.e. on I. (2.19)

with w(t) > 0 a.e. on I.

Definition 2.10

A solution of (2.19) is a function x : I → C such that x[k] ∈ ACloc(I) for all k = 0, · · · , n − 1 and

satisfies (2.19) a.e. on I. �

Definition 2.11

Given a vector function G and a matrix function A : I → Cn×n, we define a solution of

Y ′ = AY +G (2.20)

to be a vector function Y : I → Cn such that Y belongs to ACloc(I), component-wise, and satisfies

(2.20) a.e.on I. �

It follows from the definition of lQ that (2.19) is equivalent to (2.20) with

Y =

























x[0]

x[1]

...

x[n−1]

























, A = Q+

















0 · · · · · · 0

...
...

...
...

i−nλw 0 · · · 0

















, and G =

























0

...

0

g

























.
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This means that for a given solution of (2.19) if we form Y,A and G as indicated above, then Y is

a solution to (2.20) and conversely, for A and G of the above form if Y is a solution of (2.20) then

the first component of Y is a solution of (2.19). The proof of following existence and uniqueness

theorem, see [33, 18], takes advantage of this equivalence.

Theorem 2.12

Let Q ∈ Zn(I) and let w, g ∈ Lloc(I) with w(t) > 0 a.e.on I. Then for any λ ∈ C, any t0 ∈ I and

ck ∈ C(k = 0, · · · , n− 1) there exists a unique solution defined on I of the initial value problem

lQx = λwx + g, a.e. on I.

x[k](t0) = ck, k = 0, · · · , n− 1.

Furthermore, if g, ck and all entries of Q are real-valued, then the unique solution is also real.

Proof.

See [33, Chapter V] and [10].

Definition 2.13

Let x1, x2, · · · , xn be functions for which xρ
[σ], σ = 0, 1, · · · , n − 1, ρ = 1, · · · , n exist. Then we

define the Wronskian W =W (x1, x2, · · · , xn) as follows

W = (wrs)
n
r,s=1 where wrs = xs

[r−1], 1 ≤ r, s ≤ n.
�

Theorems 2.15, 2.14 and 2.16 are stated for the sake of completeness. The proofs of these

theorems are given in [46].

Theorem 2.14

The set of all solutions of lQx − λwx = 0 forms an n−dimensional vector space over C. Further-

more, if all entries of Q are real, then the set of real solutions forms an n−dimensional vector

space over R.

Theorem 2.15

Suppose that x1, x2, · · · , xn are solutions of lQx−λwx = 0. If x1, x2, · · · , xn are linearly dependent

on I, then W (t) ≡ 0 for every t ∈ I. If for some t0 ∈ I, W (t0) = 0, then x1, x2, · · · , xn are linearly
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dependent.

Theorem 2.16

Suppose that g ∈ Lloc(I) and x1, x2, · · · , xn are linearly independent solutions of lQx − λwx = 0.

Let t0 ∈ I, and let

vk = (−1)
n+k W (x1, · · · , xk−1, xk+1, · · · , xn)

W (x1, x2, · · · , xn)
.

Then, if lQx = λwx + g, there exist α1, · · · , αn ∈ C such that

x(t) =
n
∑

k=1

αkxk(t) +
n
∑

k=1

xk(t)

∫ t

t0

vk(τ)g(τ)dτ,

for each t ∈ I. Moreover for any choice of the αk, the above formula gives a solution of lQx =

λwx + g.

Definition 2.17 (Regular and Singular Expression)

We say that the expression lQ is regular at a, if a > −∞, Q ∈ Zn([a, b)) and w ∈ Lloc([a, b)).

Similarly one defines regularity at b. The expression lQ is called regular if it is regular at a and

at b. If lQ is not regular at a (resp. b), it is said to be singular at a (resp. b). The expression lQ is

said to be singular if it is singular at a or at b. �

Remark 2.18

The above definition implies that lQ is regular if and only if it is regular at each point t in

I = [a, b]; this is due to the construction of Zn([a, b]) and the assumption on w. On the other

hand, its singularity at a occurs if either a = −∞ or a ∈ R but

∫ c

a

{|qr0,s0(t)| + w(t)}dt = ∞ for some c ∈ (a, b) and for some 1 ≤ r0, s0 ≤ n.
�

Remark 2.19

The expression lQ can be regular at a even though its leading coefficient is zero at a. For example

in (2.18) on I = [a,∞) if h, k are in Lloc(I) and r(t) =
√
t− a for all t ∈ I, then lQ is regular at a

and so the only singular point of lQ is ∞. This case was called weakly singular in the literature.�
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2.2 Deficiency Indices

In this section we define the deficiency indices of symmetric differential operators and state the

basic classification results for them.

Definition 2.20

A linear operator A from a separable Hilbert space H into H is said to be symmetric if it is

Hermitian and its domain D(A) is dense in H, i.e.,

〈Af, g〉 = 〈f,Ag〉 for all f, g in D(A)
�

It is clear that an operator A, with a domain of definition dense in H, is symmetric if and only if

A ⊂ A∗.

Such an operator has associated with it a pair d+, d− where each of d+ and d− is a nonnegative

integer or +∞. The extended integers d+, d− are called the deficiency indices ofA and are defined

as follows.

Definition 2.21

Let A be a symmetric operator and let λ be a non-real complex number and denote by Rλ the

range of (A− λE), E being the identity operator. Define the deficiency space Nλ by

Nλ = R⊥

λ
= H⊖Rλ.

In other words Nλ is the orthogonal complement in H of the range of the operator A − λE. We

also define d+ and d− by

d+ = dim(N+i), d− = dim(N−i). �

For the convenience of the reader we recall a few elementary facts from the abstract theory of

symmetric operators in Hilbert space. These are well-known; for proofs the reader is referred to
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[1, 33].

Lemma 2.22

If λ, µ are both in the upper-half of the complex plane or are both in the lower-half of the plane,

then

dim(Nλ) = dim(Nµ). �

Lemma 2.23

For any non-real number λ, the deficiency spaces Nλ, Nλ̄ of the symmetric operator A are the

eigenspaces of A∗, the adjoint of A, belonging to λ, λ̄ respectively. In other words, for any non-

real complex number λ

Nλ = {f ∈ D(A∗) : A∗(f) = λf}.
�

The next lemma is known as von Neumann’s formula for the domain of the adjoint.

Lemma 2.24

Let A be a symmetric operator. Then for any non-real number λ,

D(A∗) = D(A)⊕Nλ ⊕Nλ̄;

with D(A), Nλ, Nλ̄ linearly independent and the sum is a direct sum. �

Definition 2.25

An operator B with domain D(B) is said to be an extension of an operator A with domain D(A),

and we write A ⊂ B, if

(1) D(A) ⊂ D(B) and

(2) A = BD(A), i.e., A coincides with B if B is restricted to D(A). �

If B and A are symmetric and A ⊂ B, then B∗ ⊂ A∗; but B is symmetric, i.e. B ⊂ B∗; and so we

get

A ⊂ B ⊂ B∗ ⊂ A∗.
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Definition 2.26

An operator A with domain D(A) which is dense in a Hilbert space H is said to be self-adjoint if

A = A∗. �

Lemma 2.27

A symmetric operator A has a self-adjoint extension if and only if its deficiency spaces Nλ and

Nλ have the same dimension, i.e.,

dim(Nλ) = dim(Nλ). �

Definition 2.28

A symmetric operator A is said to be semi-bounded from below if there is a numberM such that,

for all x ∈ D(A), the identity

〈Ax, x〉 ≤M‖x‖2

holds. Similarly A is said to be semi-bounded from above if for all x ∈ D(A) there is a number m

such the inequality

〈Ax, x〉 ≥ m‖x‖2

holds. In the special case when m = 0, A is said to be positive. �

Definition 2.29

Let V be a normed space and A be any linear operator on V . The domain of regularity, Creg(A),

of A is the set

Creg(A) =
{

µ ∈ C : Rµ := (A− µE)−1 exits and bounded
}

.

A point µ ∈ Creg(A) is called a point of regular type. Furthermore, µ is called a regular point

of A if µ ∈ Creg(A) and D(Rµ) = V , in this case Rµ is called the resolvent of the operator A. �

Lemma 2.30

If A is a positive symmetric operator, then the negative semi-axis belongs to its domain of regu-
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larity Creg(A). �

It is should be mentioned that if A is self-adjoint then Creg(A) contains all non-real numbers.

2.3 Minimal and Maximal Operators

Symmetric differential expressions generate symmetric differential operators in an appropriate

Hilbert space, in particular the so-called minimal operator. In general this minimal operator is

not self-adjoint but has self-adjoint extensions.

Let n > 1 be an integer, I = (a, b),−∞ ≤ a < b ≤ ∞, Q ∈ Zn(I), Q = Q+ and w be a positive

weight function that is locally integrable on I. Now we consider the quasi-differential expression

w−1lQx = inw−1x[n],

which has the domain D(Q), where

D(Q) =
{

x : I → C : x[k] ∈ ACloc(I), k = 0, · · · , n− 1
}

.

In this section we define the minimal and maximal operators associated with w−1lQ and develop

their basic properties leading to the Glazman-Krien-Naimark (GKN) Theorem. Indeed, w−1lQ

generates a maximal operator L1 on

D1 = D(L1) =
{

x ∈ D(Q) : x and w−1lQx ∈ L2(I, w)
}

,

where

L2(I, w) =

{

x : I → C :

∫

I

|x|2wdt <∞
}
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with the inner product

〈x, y〉 =
∫

I

xȳwdt for x, y ∈ L2(I, w).

It is clear that D1 is a linear manifold in L2(I, w). It is the largest manifold in L2(I, w) on

which the operator can be defined in this way. For, the requirement that the quasi-derivatives

x[k]ACloc(I), k = 0, · · · , n− 1 is necessary in order that the expression w−1lQ shall make sense,

and the requirement that w−1lQ ∈ L2(I, w) is necessary in order that w−1lQ shall define an op-

erator on L2(I, w).

The following lemma called, Patching Lemma, is of great importance in the development of

operators generated by w−1lQ on I.

Lemma 2.31

Let J = [α, β] be a compact set, Q ∈ Zn(J), Q = Q+ and w ∈ Lloc(J) be a positive weight on the

interval J , so the quasi-differential expression w−1lQ generates a maximal linear operator L1 on

D1 ⊂ L2(J,w). Then for arbitrary vectors

ξ ∈ C
n, η ∈ C

n,

there exists an n-vector function y(t) for t ∈ J , with components x[k], k = 0, · · · , n− 1 such that

y(α) = ξ, y(β) = η.

Furthermore, x = x[0] ∈ D1. �

Proof.

See Naimark [33].

Now let D′
0 = D′

0(Q) denote the set of all functions in D1 which vanish outside of a compact
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subinterval, which may be different for different functions, of the interior of I, that is

D′
0 = {x ∈ D1 : supp(x) = [α, β], for some [α, β] ⊂ I} .

Define

L′
0x = L′

0(Q)x = w−1lQx for all x ∈ D′
0.

In other words, L′
0 = (L1)D′

0
or L′

0 ⊂ L1.

Lemma 2.32

(i) If x is in D′
0 and y is in D1, then

〈L′
0x, y〉 = 〈x, L1y〉.

(ii) The operator L′
0 is Hermitian, that is,

〈L′
0x, y〉 = 〈x, L′

0y〉 for all x, y ∈ D′
0.

(iii) The set D′
0 is dense in L2(I, w). �

Proof.

See [18, Section 6].

Lemma 2.32 shows that L′
0 is symmetric and therefore admits a closure. We denote the

closure of L′
0 by L0, i.e.,

L0 = L′
0.

This operator is called the minimal operator generated by w−1lQ on I. Let D0 = D0(Q) be the

domain of L0.
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Lemma 2.33

(i) L0 = L∗
1( the adgoint of L1) and L∗

0 = L1.

(ii) If x is in D0 and a is a regular end point of I, then

x[k](a) = 0, k = 0, 1, · · · , n− 1.
�

Proof.

See [33, 18].

Lemma 2.24 gives the following direct sum of D1

D1 = D0 ⊕N+i ⊕N−i.

where the deficiency spaces N+i and N−i of L0 are defined as

N+i = {x ∈ D(L∗
0) : L

∗
0x = ix}

= {x ∈ D1 : L1x = ix}

=
{

x ∈ D(Q) ∩ L2(I, w) : w−1lQx = ix
}

and

N−i = {x ∈ D(L∗
0) : L

∗
0x = −ix}

= {x ∈ D1 : L1x = −ix}

=
{

x ∈ D(Q) ∩ L2(I, w) : w−1lQx = −ix
}

From this we can conclude that d+, the upper deficiency index, is the maximum number of

linearly independent solutions of

w−1lQx = λx on I (2.21)

in the space L2(I, w) for any λ in the upper half-plane and d−, the lower deficiency index, is the

maximum number of linearly independent solutions of (2.21) in the space L2(I, w) for any λ in

the lower half-plane. By Lemma 2.22, d+ is independent of the particular number chosen in the
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complex upper half plane. Similarly d− does not depend on the particular number λ chosen from

the complex lower half-plane. Thus d+ and d− depend only on the coefficients of Q,w, and I. We

indicate this dependence by writing

d+ = d+(Q,w, I) and d− = d−(Q,w, I).

Since (2.21) has exactly n linearly independent solutions we see that the integers d+, d− must

satisfy the basic inequality

0 ≤ d+, d− ≤ n.

Observe that if lQ is regular on a compact interval I then d+ = d− = n since in this case all

solutions of (2.21) are in L2(I, w). If lQ is real, i.e. the entries of Q are all real-valued, we have

the following lemma.

Lemma 2.34

Let lQ be real. Then the deficiency indices of the minimal operator L0 generated by w−1lQ satisfy

0 ≤ d+ = d− ≤ n.
�

Let c ∈ I be any point in I. Then we have the following result sometimes referred to as

Kodaira’s formula.

Lemma 2.35

d+(Q,w, (a, b)) = d+(Q,w, (a, c)) + d+(Q,w, (c, b))− n.
�

Proof.

See [33, Section 17.5].

It is this theorem that reduces the problem of computing d+ or d− on intervals with two
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singular end points to the case with only one singular end point. We now state the basic clas-

sification result for deficiency indices of general symmetric differential expressions on intervals

with one regular and one singular end point.

Theorem 2.36

Suppose lQ is regular at each point of an interval I = [a, b) but the end point b is singular. Then

the deficiency indices d+, d− of lQ satisfy the inequalities.

(a) If n = 2m (m ≥ 1) is even then

1

2
n = m ≤ d+(Q,w, I), d−(Q,w, I) ≤ 2m = n (2.22)

(b) If n = 2m+ 1 (m ≥ 1) is odd then

(i) when m is even

1
2 (n− 1) = m ≤ d+(Q,w, I) ≤ 2m+ 1 = n,

1
2 (n+ 1) = m+ 1 ≤ d−(Q,w, I) ≤ 2m+ 1 = n.

(2.23)

(ii) when m is odd

1
2 (n+ 1) = m+ 1 ≤ d+(Q,w, I) ≤ 2m+ 1 = n

1
2 (n− 1) = m ≤ d−(Q,w, I) ≤ 2m+ 1 = n.

(2.24)

All these inequalities are best possible.

Proof.

See [18].

Lemma 2.37

If all solutions of

w−1lQx = λx on I (2.25)

are in L2(I, w) for some λ in C then all solutions of (2.25) are in L2(I, w) for any λ in C.(Note that
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λ is allowed to be real in this theorem.) �

Proof.

See [18, Theorem 9.1].

In view of Lemma 2.35, we can restrict ourselves to the case when I has one regular and one

singular end point. Let I = [a, b) where a is a regular and b singular. In summary we may make

the following remarks

(1) If all the coefficients of lQ are real, then lQx = λwx if and only if lQx̄ = λ̄wx̄. From this and

the fact that x ∈ L2(I, w) if and only if x̄ ∈ L2(I, w) it follows that d+ = d− in this case.

(2) Let n = 2m be given; then any integer between m and 2m occurs as the deficiency index of

some symmetric expression, see [36].

(3) The lower bounds for d+, d− given by (2.23) are achieved by simple odd order constant

coefficient expressions lQ.

(4) In [27], it was shown that d+, d− can be different also in the even order complex coefficient

case.

(5) In [22], it was shown that all possibilities not ruled out by Theorem 2.36 and

|d+ − d−| ≤ 1

actually occur.

2.4 Self Adjoint Extensions

Given a Lagrange symmetric (formally self-adjoint) differential expression lQ, i.e. Q ∈ Zn(I), Q =

Q+, and a positive weight function w, we consider self-adjoint realizations of the equation

lQx = λwx on I = (a, b), −∞ ≤ a < b ≤ ∞ (2.26)
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in the Hilbert space L2(I, w). A self-adjoint realization of (2.26) in the Hilbert space L2(I, w) (or

self-adjoint extension of L0) is an operator L satisfying

L0 ⊂ L = L∗ ⊂ L1.

Lemma 2.27, Section 2.2 page 22, asserts that there exits self-adjoint L to L0 if and only if

d+ = d−. Unfortunately, See Section 2.3, this not the case in general. Therefore, we assume that

d = d+ = d−.

The deficiency index d = 0 if and only if L0 = L1, in which case L0 is the only self-adjoint operator

generated by w−1lQ on L2(I, w).

Since D0 is a linear subspace in the Hilbert space D1, we can construct the quotient or identi-

fication D1/D0, consisting of D0−cosets like {x+D0} for each x ∈ D1. This leads to the following

definition.

Definition 2.38

Consider the maximal and minimal operators L1 on D1 and L0 on D0, respectively, as generated

by w−1lQ on L2(I, w). Then define the quotient space

S = D1/D0, �

which is a complex vector space of dimension (d+ + d−) ≤ 2n. Further denote the natural

projection of D1 onto S

P : D1 → S, x→ Px = {x+D0}, (2.27)

and we introduce the notation, for each x ∈ D1,

x̂ = Px, x̂ ∈ S, (where x̂ = {x+D0}). (2.28)
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Self-adjoint extensions of L0 are characterized by describing their domains. The following

theorem is a version of the highly celebrated Glazman-Krein-Naimark (GKN-EZ) as extended

by Everitt and Zettl [19, 15].

Theorem 2.39

Consider the quasi-differential expression

w−1lQx = inw−1x[n]

on the interval I with Q = Q+ ∈ Zn(I) and assume that

0 ≤ d = d+ = d− ≤ n, (for n > 1).

Let L1 on D1 and L0 on D0 be the maximal and minimal operators , respectively, as generated

by w−1lQ on L2(I, w). Then there exists a one-to-one correspondence between the set {L} of all

self-adjoint operators L on D(L), as generated by w−1lQ on L2(I, w), and the set of {L} of all

d−space L in the complex 2d−space S = D1/D0. Namely, take the correspondence L ↔ L given

by the bijection

E : {L} → {L},

defined as

E(L) = P−1L,

where P : D1 → S, as in (2.27). Hence, we conclude that

x ∈ D(L) if and only if x̂ ∈ L,

or that D(L) is precisely the pre-image of L under the natural projection

P : D(L)(⊂ D1) → L ⊂ S,
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that is,

D(L)/D0 = L.

Proof.

See [16, Section II, Theorem 1].

This theorem says that for each set of functions x1, x2, · · · , xd ∈ D1 such that x̂1, x̂2, · · · , x̂d is

a basis for L (that is [xr, xs] = 0 for 1 ≤ r, s ≤ d) the domainD(L) of the corresponding self-adjoint

operator L is

D(L) = {x ∈ D1 : [x, xs] = 0 for s = 1, · · · , d},

or equally,

D(L) = c1x1 + · · ·+ cdxd +D0,

where c1, · · · , cd are arbitrary complex constants. Therefore,

[x, xs] = 0 for s = 1, · · · , d

are d homogeneous linear boundary conditions determining the function x in D(L).

The GKN Theorem (Theorem 2.39) characterizes all self-adjoint realizations of linear sym-

metric (formally self-adjoint) ordinary differential equations in terms of maximal domain func-

tions. These functions depend on the coefficients and this dependence is implicit and compli-

cated. In the regular case an explicit characterization in terms of two-point boundary conditions

can be given. In the singular case when the deficiency index d is maximal the GKN characteriza-

tion can be made more explicit by replacing the maximal domain functions by a solution basis for

any real or complex value of the spectral parameter λ. In the much more difficult intermediate

cases, not all solutions contribute to the singular self-adjoint conditions.

The characterization of self-adjoint extensions is still an active area of research see for exam-
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ple [43, 40, 44, 12].

We conclude this section by giving the following theorem that characterizes the resolvents of

self-adjoint extensions of the operator L0.

Theorem 2.40

For a point of regular type µ, the resolventRµ = (L− µE)
−1

(E the identity operator on L2(I, w))

of an arbitrary self-adjoint extension of the operator L0 is an integral operator whose kernel

satisfies the conditions
∫

I
|K(t, s, µ)|2 ds <∞ for all t ∈ I,

∫

I
|K(t, s, µ)|2 dt <∞ for all s ∈ I.

For an operator L0 with deficiency indices (n, n), the kernel K(t, s, µ) is a Hillbert-Schmidt ker-

nel, i.e., it satisfies
∫

I

∫

I

|K(t, s, µ)|2 dtds <∞.

Proof.

See [33, §19.3].



CHAPTER 3

OPTIMAL CONTROL

Late in 1950s, Pontryagin and his coworkers with their development of the maximum princi-

ple laid down the foundation stone of Optimal Control as a distinct area of research. Optimal

Control theory is an outcome of the calculus of variations, with a history that goes back to over

three hundred years. Optimal Control addresses in a unified way many optimization problems

arising in many scientific fields ranging from mathematics and engineering to biomedical and

management sciences. Aerospace engineering is considered a rich supply of problems beyond

the reach of traditional analytical and computational methods. During the 1960s and 1970s the

American and Russian space programs gave a lot of momentum to the field of Optimal Control.

This chapter is organized as follows. We define and discuss the optimal control problem

in Section 3.1. Sections 3.2 and 3.3 describe necessary optimality conditions. In Section 3.2, we

discuss such conditions with no constraints on the control set. In Section 3.3, we derive necessary

optimality conditions in the form the Pontryagin maximum principle (PMP). A historical review

on the development of optimal control theory is given in Section 3.4.

34
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3.1 The Optimal Control Problem

An optimal control problem (OCP) is typically an optimization problem where the objective is to

find a vector or, more generally, a function u1, called the control, that causes a system to satisfy

some physical constraints and at the same time optimizes a performance criterion. In optimal

control, one seeks a solution to the following problem

minimize J [u, x] := φ0(x(b))

subject to

u(t) ∈ U, a.e.

ẋ(t) = f(x(t), u(t), t), x(a) = x0 t ∈ I = [a, b]



















































(OCP)

In (OCP), the variable x(t), called the state (or phase) variable, at instant t is an element of

a Banach space X , called the state-space. The function φ0 is real-valued on X and is assumed

to be differentiable; though this assumption can be relaxed (cf. [31]). The set U constitutes a

metric space and the control u is required to be an element of U at any instant of time t in the

closed interval I almost everywhere. The function f : (x, u, t) → X is a function of X ×U × I into

X .

A deeper look at (OCP) tells that a typical optimal control problem is governed by a dynamical

system that itself is to be managed by the controls u while constrained point-wisely in U . The

control input steers a system from a prescribed initial state, x(a) = x0, to some final state in an

optimal manner; that is maximizing or minimizing a certain performance criterion.

1”u” was chosen because it is the first letter of the Russian word ”upravlenie” meaning ”control”.
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3.1.1 Dynamical Systems

The ordinary differential equation

ẋ(t) = f(x(t), u(t), t), x(a) = x0, t ∈ I (3.1)

is an important part of the optimal control problem. It describes the underlying physical aspects

of the system. Here t is the independent variable, usually called time. Systems where the func-

tion f does not depend explicitly on time are called autonomous. Systems can also be classified

into linear and nonlinear depending on whether f is linear or nonlinear.

A solution x(·) of (3.1) is called a response of the system corresponding to the control u(·) for

the initial condition x(a) = x0. Precisely, a solution to (3.1) is define as follows.

Definition 3.1

A solution x(·) to the differential equation (3.1) is a function x : I → X that is Fréchet differen-

tiable for a.e. t ∈ I and satisfies (3.1) and the following formula, called Newton-Leibniz.

x(t) = x(a) +

∫ t

a

f(x(s), u(s), s)ds, for all t ∈ I. (3.2)

�

It is well known that for X = Rn, x(t) is a.e. differentiable on T and satisfies the Newton-

Leibniz formula if and only if it is absolutely continuous on I. However, for infinite-dimensional

spaces X even the Lipschitz continuity may not imply the a.e. differentiability. On the other

hand, there is a complete characterization of Banach spaces X , where the absolute continuity

of every x : I → X is equivalent to its a.e. differentiability and the fulfillment of the Newton-

Leibniz formula. This is the class of spaces with the so-called Radon-Nikodym property (RNP).
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Definition 3.2 (Radon-Nikodym property)

A Banach space X has the Radon-Nikodym property if for every finite measure space (Ξ,Σ, µ)

and for each µ-continuous vector measure m : Σ → X of bounded variation there is g ∈ L1(µ; Ξ)

such that

m(E) =

∫

E

g d µ for E ∈ Σ.
�

It is important to observe that the latter list contains every reflexive space and every weakly

compactly generated dual space, hence all separable duals. On the other hand, the classical

spaces l∞, L1[0, 1], and L∞[0, 1] don’t have the RNP.

Throughout this chapter, we shall assume that the function f is continuous in x, u, t and

continuously differentiable with respect to x.

3.1.2 Admissible Controls

The system under consideration, (3.1), is assumed to be controllable. In other words, the system

is equipped with controllers that direct its behavior over the course of its progression. These

controllers are the control variables u. In optimal control problems the control variables are

confined to belong to a specific control region U , which might be any set of a metric space. In

many applications, the region U is chosen to be closed and bounded. The physical meaning of

this choice is usually obvious. For example, the amount of temperature, current, voltage, fuel

injected in an engine, etc. can be taken as control variables and clearly these quantities cannot

take on arbitrary large values.

The choice of a control region and the control variables lead to the following definition.

Definition 3.3

An admissible control u(·) is a measurable function defined on some interval [a, b] and satisfies

the point-wise constraint
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u(t) ∈ U a.e. t ∈ [a, b].
�

Sometimes, we will refer to the collection of all admissible control-trajectory pairs, denoting

it by A, to mean the set generated by the controls u(·) in the sense of Definition 3.3 and the

corresponding trajectories in the sense of Definition 3.1.

3.1.3 Performance Measure

A performance measure (also called effectiveness criterion or cost functional) is a mathematical

expression designed in a way that gives a quantitative assessment of the system performance

and indicates, when optimized, a desirable behavior from the system. The performance measure

is chosen to translate the physical requirement of the system into mathematical terms.

In general, the performance measure J is a functional from A to R and may be defined as

J [u, x] := φ(x(b)), (3.3)

where φ : X → R is a real-valued function. This form is called the Mayer form and the endpoints

of I, although can be considered as free variables, will be fixed. It will be assumed that both φ

and φx are continuous.

The performance measure may also be written in Lagrange form as,

J [u, x] :=

∫ b

a

l(x(t), u(t), t)dt. (3.4)

Here l : X × U × I → R is a real-valued function and is assumed to be continuous together with

its derivative with respect to x.
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A more general form of the cost functional is the so-called Bolza form. This form combines a

terminal term and an integral term as follows

J [u, x] := φ(x(b)) +

∫ b

a

l(x(t), u(t), t)dt. (3.5)

Mathematically, these forms are equivalent. Introducing a new state variable x̃ = x+ y such

that

ẏ(t) = l(x(t), u(t), t) for all t ∈ I, and y(a) = 0

transforms the cost functional from Lagrange form (3.4) to Mayer form (3.3) with

φ(x̃(b)) = y(b).

On the other hand, Mayer form (3.3) can be readily seen as Lagrange form (3.4) with

l(x(t), u(t), t) =
1

b− a
φ(x(b)) for all t ∈ I.

Lastly, Bolza form (3.5) can be written in either Mayer or Lagrange form using the above tech-

niques. Conversely both forms (3.3) and (3.4) can be seen as special cases of Bolza form (3.5)

with l ≡ 0 in the first and φ ≡ 0 in the second.

3.1.4 Constrained OCP

Different kinds of extra constraints may be imposed on OCP that restrict both the state and the

control variables. In an optimal control problem, point constraints, path constraints or isoperi-

metric constraints can be enforced as equality or inequality constraints.

• POINT CONSTRAINTS or terminal constraints are sometimes used to force the optimal

trajectory to belong to a specific set at the terminal time. These may occur as inequality
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constraints like

ψ(x(b)) ≤ 0,

or as equality constraints like

ψ′(x(b)) = 0.

• ISOPERIMETRIC CONSTRAINTS. An isoperimetric constraint is one that involves the inte-

gral of a given functional over part or all of I.

∫ b

a

h(x(t), u(t), t)dt ≤ C.

A problem with isoperimetric constraints can be equivalently transformed to one with ter-

minal constraints in the same manner we transformed the Lagrange form of the cost func-

tional to the Mayer form.

• PATH CONSTRAINTS. Equality or inequality type constraints can be used to restrict the

state and control variables over the entire interval I or any nonempty subinterval. For

example a path constraint may be introduced as

Ψ(x(t), u(t), t) ≤ 0, t ∈ I.

Definition 3.4 (Feasible control-trajectory pair)

An admissible control u is said to be feasible if

1. the corresponding trajectory x is defined over the entire interval I, and

2. both of u and x satisfy all the (point and path) constraints over I.

The pair (u, x) is then called a feasible pair. �

Before we discuss the optimality conditions, we give the following definition for a global opti-

mal solution to the (OCP).
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Definition 3.5 (Global Optimal Pair)

A feasible pair (ū(·), x̄(·)) to (OCP) and any other physical constraints is said to be optimal if

J [ū, x̄] ≤ J [u, x] for all (u, x) ∈ A.
�

Although many difficulties are to be expected when studying the existence problem of an

optimal solution or even a feasible one, we will assume the existence of such an optimal pair

(ū(·), x̄(·)). We shall discuss in this section different approaches to describe optimality condi-

tions which any optimal pair must satisfy.

To draw a more complete picture of the development of optimal control and to walk in the

footsteps of the pioneers of the field, we shall give, in Section 3.2, a brief description of the

optimality conditions developed by Euler and Lagrange more than three hundreds years ago.

In Section 3.3, we give a precise statement of one version of the Maximum Principle, one for

continuous-time systems with smooth dynamics in infinite-dimensional spaces.

3.2 Euler-Lagrange Equations

For simplicity and to focus on the methodology instead of the technicalities arising when working

in infinite dimensions, we will consider the following version of the optimal control problem

(OCP) with X = R
n, U = R

m.

minimize J (u) :=

∫ b

a

l(x(t), u(t), t)dt (3.6)

subject to ẋ(t) = f(x(t), u(t), t); x(a) = x0 (3.7)
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with a fixed initial time a and terminal time b. The difference between (OCP) and (3.6, 3.4) is

that there is no restrictions on the control variables (i.e. the control set U is the whole Rm).

Theorem 3.6 (Euler-Lagrange Conditions)

Consider the problem (3.6)-(3.7) for u ∈ C[a, b], with fixed endpoints a < b, where l and f are

continuous in (x, u, t) and have continuous first partial derivatives with respect to x and u for all

(x, u, t) ∈ Rn × Rm × [a, b]. Suppose that u∗ is a minimizer for the problem, and let x∗ ∈ C1[a, b]

denote the corresponding response. Then, there is a vector function p∗ ∈ C1[a, b] such that the

triple (u∗, x∗, p∗) satisfies the system

ẋ(t) = f(x(t), u(t), t); x(a) = x0 (3.8)

ṗ(t) = −lx(x(t), u(t), t) − fx(x(t), u(t), t)
⊤p(t); p(b) = 0 (3.9)

0 = lu(x(t), u(t), t) + fu(x(t), u(t), t)
⊤p(t). (3.10)

for a ≤ t ≤ b. These equations are known collectively as the Euler-Lagrange equations, and 3.9

is often referred to as the adjoint equation (or the costate equation).

Before we consider any examples, let’s discuss the following remarks

• The above conditions consist of m algebraic equations (3.10), together with 2 × n ODEs

(3.8,3.9) and their respective boundary conditions. These boundary conditions are split,

i.e., some are given at t = a and others at t = b. Such problems, known as two-point

boundary value problems, are more difficult to solve than initial-value problems.

• If f(x(t), u(t), t) = u(t) with n = m, then (3.10) gives

p̄(t) = −lu(x̄(t), ū(t), t)
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and from (3.9) we have the Euler equation

d

dt
lu(x̄(t), ˙̄x, t) = lx(x̄(t), ˙̄x, t),

together with the boundary conditions

[lu(x̄(t), ˙̄x, t)]t=b .

This shows that Euler-Lagrange equations include the optimality necessary conditions de-

rived for problems of the calculus of variations.

• It is convenient to introduce the Hamiltonian function H : Rn×Rn×Rm×R → R associated

with the optimal control problem (3.6,3.7) as

H(x, p, u, t) = l(x, u, t) + p⊺f(x, u, t). (3.11)

Therefore, Euler-Lagrange equations (3.8-3.10) can be rewritten as

ẋ(t) =Hp; x(a) =x0 (3.12)

ṗ(t) =−Hx; p(b) =0 (3.13)

0 =Hu, (3.14)

for t ∈ [a, b]. Note that a necessary condition for the triple (ū, x̄, p̄) to be a local minimum of

J is that ū(t) be a stationary point of the Hamiltonian function with x̄(t) and p̄(t) at each

t ∈ [a, b]. In some cases, one can express u(t) in terms of x(t) and p(t) from (3.14), and then

substitute into (3.12,3.13) to get a two-point boundary value problem in the variables x and

p.
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Example 3.7

Consider the optimal control problem

minimize J (u) :=

∫ 1

0

[

1

2
u2(t)− x(t)

]

dt (3.15)

subject to ẋ(t) = 2 [1− u(t)] ; x(0) = 1. (3.16)

The Hamiltonian function for this problem

H(x, p, u, t) =
1

2
u2 − x(t) + 2p(t)(1− u).

Any candidate solution (ū, x̄, p̄) to this problem must satisfy the Euler-Lagrange equations.

That is

ẋ(t) =Hp = 2 [1− ū(t)] ; x(0) =1

ṗ(t) =−Hx = 1; p̄(1) =0

0 =Hu = ū(t)− 2p̄(t).

The adjoint equation gives

p̄(t) = t− 1,

and from the last condition Hu = 0 we have

ū(t) = 2(t− 1).

Finally, substituting ū into (3.16) gives

˙¯(t)x = 6− 4t; x̄(0) = 1.
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By integrating, we get

x̄(t) = −2t2 + 6t+ 1.

It is worth noting that H is constant along (ū, x̄, p̄). Indeed, we have

H(x̄(t), p̄(t), ū(t), t) = −5.
�

We conclude this section by giving a brief account of optimality sufficient conditions, called

Mangasarian Sufficient Conditions, for the problem (3.6,3.7).

Theorem 3.8 (Mangasarian Sufficient Conditions)

Consider the problem (3.6)-(3.7) for u ∈ C[a, b], with fixed endpoints a < b, where l and f are

continuous in (x, u, t) and have continuous first partial derivatives with respect to x and u , and

are convex in x and u for all (x, u, t) ∈ Rn × Rm × [a, b]. Suppose that (u∗, x̄, p̄) satisfies the

Euler-Lagrange equations (3.8-3.10). Suppose also that

p̄(t) ≥ 0, for a ≤ t ≤ b. (3.17)

Then ū is a global minimizer for the problem (3.6,3.7).

Remark 3.9

In the case where f is linear in (x, u), the result holds without any sign restriction on p̄, i.e.

without (3.17).

Example 3.10

In Example 3.7, the integrand is convex in (u, x) on R2, and the right-hand side of (3.16) is linear

in u and independent of x. Moreover the candidate solution

ū(t) = 2(t− 1), x̄(t) = −2t2 + 6t+ 1, p̄(t) = t− 1
�

satisfies the Euler-Lagrange equations (3.8-3.10) for each t ∈ [0, 1]. So ū(t) is a global minimizer

for the problem irrespective of the sign condition (3.17) due to the linearity of (3.16) (see Remark
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3.9).

For more on sufficient conditions in optimal control theory, we refer the reader to [38] and

[26] and the references therein.

3.3 Pontryagin Maximum Principle

Our goal in this subsection is to derive necessary optimality conditions in the form of the Pon-

tryagin maximum principle for the problem (OCP) where the governing dynamic system is an

ordinary differential equation in infinite-dimensional spaces that explicitly involve constrained

control inputs u(·) as follows:

ẋ = f(x, u, t), u(t) ∈ U a.e. t ∈ [a, b]. (3.18)

The system (3.18) is of smooth dynamics, which means that f is continuously differentiable

with respect to the state variable x around an optimal solution to be considered. Despite

this assumption, the control system (3.18) and optimization problems over its feasible controls

and trajectories essentially involve non-smoothness due to the control geometric constraints

u(t) ∈ U a.e. t ∈ [a, b] defined by control sets U of a general nature. For instance, it is the case

with the simplest/classical optimal control problems with U = {0, 1}.

Now given an optimal solution (ū(·), x̄(·)) to (OCP), we assume the following to be true

throughout this subsection.

(A1) the state space X is Banach;

(A2) the control set U is a Souslin subset (i.e., a continuous image of a Borel subset) in a complete

and separable metric space;

(A3) there is an open set O ⊂ X containing x̄(t) such that f is Frèchet differentiable in x with
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both f(x, u, t) and ∇xf(x, u, t) continuous in (x, u), measurable in t, and norm-bounded by

a summable function for all x ∈ O, u ∈ U, and a.e. t ∈ [a, b];

(A4) the function φ0 is Frèchet differentiable at x̄(b) .

Note that the control set U may depend on t in a general measurable way, which allows one

to use standard measurable selection results; see, e.g., the book [3] with the references therein.

The Hamilton-Pontryagin function for (3.18) is defined as

H(x, p, u, t) := 〈p, f(x, u, t)〉 with p ∈ X∗.

We now give the following version of the maximal principle due to [31, p. 238].

Theorem 3.11 (maximum principle for smooth control systems)

Let (ū(·), x̄(·)) be an optimal solution to problem (OCP) under the assumptions (A1)-(A4). Then

the following maximum conditions holds:

H(x̄(t), p(t), ū(t), t) = max
u∈U

H(x̄(t), p(t), u, t) a.e. t ∈ [a, b], (3.19)

where an absolutely continuous mapping p : [a, b] → X∗ is a trajectory for the adjoint system

ṗ = −∇xH(x̄, p, ū, t) a.e. t ∈ [a, b] (3.20)

with the transversality condition

p(b) = −∇φ0(x̄(b)). (3.21)

A solution (adjoint arc) to system (3.20) is understood in the integral sense similarly to (3.2), i.e.,

p(t) = p(b) +

∫ b

t

∇xH(x̄(s), p(s), ū(t), s)ds, t ∈ [a, b],
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with ∇xH(x̄, p, ū · t) = 〈p,∇xf(x̄, ū, t)〉.

Proof.

Let {ū(·), x̄(·)} be an optimal solution to problem (OCP), and let p(·) be the corresponding solu-

tion to the adjoint system (3.20) with the boundary/transversality condition (3.21). We are going

to show that the maximum condition (3.19) holds for a.e.t ∈ [a, b]. Assume on the contrary that

there is a set T ⊂ [a, b] of positive measure such that

H(x̄(t), p(t), ū(t), t) < sup
u∈U

H(x̄(t), p(t), u, t) for t ∈ T.

Then using standard results on measurable selections under the assumptions made, we find a

measurable mapping v : T → U satisfying

△vH(t) := H(x̄(t), p(t), v(t), t) −H(x̄(t), p(t), ū(t), t) > 0, t ∈ T.

Let T0 ⊂ [a, b] be a set of Lebesgue regular points (or points of approximate continuity) for the

function H(t) on the interval [a, b], which is of full measure on [a, b] due to the classical Denjoy

theorem. Given τ ∈ T0 and ε > 0, consider a needle variation of the optimal control built by

u(t) :=















v(t), t ∈ Tε := [τ, τ + ε) ∩ T0,

ū(t), t ∈ [a, b]\Tε.

Now let x(·) be the corresponding solution to u(·) in the sense of (3.2) and denote

∆ū(t) := u(t)− ū(t), ∆x̄(t) := x(t) − x̄(t), ∆J [ū] := φ0(x(b))− φ0(x̄(b)).

The perturbed control u(·) differs from the ū(·) only on the small time set Tε, where u(t) ∈ U a.e.;

the name “needle variation” comes from this.
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Since φ0 is assumed to be Frechet differentiable at x̄(b), we have the representation

∆J [ū] = φ0(x(b))− φ0(x̄(b)) = 〈∇φ0(x̄(b)),∆x̄(b)〉+ o(||∆x̄(b)||).

Using integration by parts which holds for Bochner integrals, one gets

∫ b

a 〈p(t),△ ˙̄x(t)〉dt = 〈p(t),△x̄(t)〉|ab −
∫ b

a 〈ṗ(t),△x̄(t)〉dt,

= 〈p(b),△x̄(b)〉 − 〈p(a),△x̄(a)〉 −
∫ b

a
〈ṗ(t),△x̄(t)〉dt.

Since ∆x̄(a) = 0, we have the following identity

〈p(b),△x̄(b)〉 =
∫ b

a

〈ṗ(t),△x̄(t)〉dt +
∫ b

a

〈p(t),△ ˙̄x(t)〉dt.

Because of (3.21), we arrive at

△J [ū] = −
∫ b

a

〈ṗ(t),△x̄(t)〉dt−
∫ b

a

〈p(t),△ ˙̄x(t)〉dt + o(||△x̄(b)||).

Let us transform the second integral above. Using the equation

△ ˙̄x = f(x̄(t) +△x̄(t), ū(t) +△ū(t), t)− f(x̄(t), ū(t), t),

the definition of the Hamilton-Pontryagin function H(x, p, u, t), and (A3), we have

∫ b

a
〈p(t),△ ˙̄x(t)〉dt =

∫ b

a
[H(x̄(t) +△x̄(t), p(t), ū(t) +△ū(t), t) −H(x̄(t), p(t), ū(t), t)] dt

=
∫ b

a
[H(x̄(t), p(t), ū(t) +△ū(t), t)−H(x̄(t), p(t), ū(t), t)] dt

+
∫ b

a

〈

∂H(x̄(t),p(t),ū(t),t)
∂x ,△x̄(t)

〉

dt+
∫ b

a o(||△x̄(t)||)dt.
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Now Letting

△uH(x̄(t), p(t), ū(t), t) := H(x̄(t), p(t), u(t), t)−H(x̄(t), p(t), ū(t), t),

we come to the following increment formula

△J [ū] = −
∫ b

a
△uH(x̄(t), p(t), ū(t), t)dt −

∫ b

a

〈

∂△uH(x̄(t),p(t),ū(t),t)
∂x ,△x̄(t)

〉

dt

−
∫ b

a
o(||∆x̄(t)||)dt+ o(||∆x̄(b)||).

Let’s assume, for the time being, that there exists a constant K > 0 independent of (τ, ε) such

that

‖△x̄(t)‖ ≤ Kε for all t ∈ I. (3.22)

Then we have

o(||△x̄(b)||) = o(ε),

∫ b

a

o(||△x̄(t)||)dt = o(ε), and

−
∫ b

a

〈

∂△uH(x̄(t),p(t),ū(t),t)
∂x ,△x̄(t)

〉

dt ≤
∫ τ+ε

τ

∣

∣

∣

〈

∂△Hv(x̄(t),p(t),ū(t),t
∂x ,△x̄(t)

〉∣

∣

∣ dt

≤ Kε
∫ τ+ε

τ

∥

∥

∥

∂△Hv(x̄(t),p(t),ū(t),t
∂x

∥

∥

∥ dt = o(ε),

The choice of τ ∈ T0 as a Lebesgue regular point of the function △vH(t) and the construction of

the Bochner integral yield

∫ τ+ε

τ

△vH(t)dt = ε [H(x̄(τ), p(τ), v(τ), τ) −H(x̄(τ), p(τ), ū(τ), τ)] + o(ε).

Thus we get the representation

△J [ū] = −ε [H(x̄(τ), p(τ), v(τ), τ) −H(x̄(τ), p(τ), ū(τ), τ)] + o(ε),

which implies that △J [ū] < 0 along the above needle variation of the optimal control ū(·) for all ε >
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0 sufficiently small. This clearly contradicts the optimality of ū(·).

To complete the proof we have to show that (3.22) is valid. To do so, we notice first that for

the trajectory increment △x̄(t) we have

△x̄(t) = 0 for all t ∈ [a, τ ].

Denote by l the uniform Lipschitz constant for f(·, v(t), t) whose existence is guaranteed by (A3).

For simplicity we suppose that l is independent of t although the assumptions made allow it to

be summable on [a, b] with no change of the result. Since △x̄(τ) = 0, and by (3.2) we have

△x̄(t) =
∫ t

τ

[f(x̄(s) +△x̄(s), v, s)− f(x̄(s), ū(s), s)] ds, τ ≤ t ≤ τ + ε.

Denoting

△vf(x̄(s), ū(s), s) := f(x̄(s), v, s) − f(x̄, ū(s), s),

we have

||△x̄(t)|| =
∫ t

τ
||f(x̄(s) +△x̄(s), v, s)− f(x̄(s), ū(s), s)||ds

≤
∫ t

τ
||△vf(x̄(s), ū(s), s)||ds+ l

∫ t

τ
||△x̄(s)||ds.

Using the notation

α(t) :=

∫ t

τ

||△vf(x̄(s), ū(s), s)||ds and β(t) := ||△x̄(t)||,

the above estimate can be written as

β(t) ≤ α(t) + l

∫ t

τ

β(s)ds, τ ≤ t ≤ τ + ε,
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which yields by the classical Gronwall lemma that

||△x̄(t)|| ≤
(∫ t

τ

||△vf(x̄(s), ū(s), s)||ds
)

el(t−τ) ≤ Kε

for t ∈ [τ, τ + ε], whereK = K(v) is independent of ε and τ . It remains to estimate △x̄(t) on the

last interval [τ + ε, b], where it satisfies the equation

△ ˙̄x(t) = f(x̄(t) +△x̄(t), ū(t), t− f(x̄(t), ū(t), t with ||△x̄(τ + ε)|| ≤ Kε

the solution of which is understood in the integral sense (3.2). Since

||△x̄(t)|| ≤ ||△x̄(τ + ε)||
∫ t

τ+ε
||f(x̄(s) +△x̄(s), ū(s), s)− f(x̄(s), ū(s), s||ds

≤ Kε+ l+
∫ t

τ+ε
||△x̄(s)||ds, τ + ε ≤ t ≤ b,

we again apply the Gronwall lemma and arrive, by increasing K if necessary at the desired

estimate of ||△x̄(t)|| on the whole interval [a, b].

Example 3.12

Consider the following problem

minimize

∫ 1

0

x1(t)dt (3.23)

subject to ẋ1(t) = u(t), x1(0) = 1, (3.24)

u(t) ∈ [−1, 1]. (3.25)

First, we write the problem in Mayer’s form by introducing an additional state variable x2 which

satisfies the equation

ẋ2(t) = x1(t), x2(0) = 0.
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The problem (3.23-3.25) now can be cast as

minimize J [u] = x2(1) (3.26)

subject to ẋ1(t) = u(t), x1(0) = 1, ẋ2(t) = x1(t), x2(0) = 0, (3.27)

u(t) ∈ [−1, 1]. (3.28)

Note that X = R2, U = [−1, 1], I = [0, 1], x ≡ (x1 x2)
T ∈ R2, f ≡ (u x2)

T ∈ R2 and φ0(x(t)) =

x2(t). The Hamilton-Pontryagin function for this problem is

H(x, p, u, t) = pT · f, p = (p1 p2)
T ∈ R

2;

That is

H(x, p, u, t) = p1u+ p2x1.

This is a linear function in u, and therefore the control ū that maximizes H is

ū(t) =































1, if p̄1(t) > 1,

−1, if p̄1(t) < 1,

undefined, if p̄1(t) = 0.

According to (3.20) and (3.21), p satisfies

˙̄p1(t) = −p̄2(t), p̄1(1) = 0,

˙̄p2(t) = 0, p̄2(1) = −1,

and therefore

p̄1(t) = t− 1,

p̄2(t) = −1,















for all t ∈ [0, 1].
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x̄1(t)

x̄2(t)

1

1
2

0

Figure. 3.1: Potential Optimal State Trajectory for Example 3.12.

But p1(t) ≤ 0 for all t ∈ [0, 1], which dictates that ū(t) = −1. This gives through (3.27)

x̄1(t) = 1− t,

x̄2(t) = − 1
2 t

2 + t,















for all t ∈ [0, 1].

The control ū, the response trajectory (x̄1, x̄2) and the adjoint arc (p̄1, p̄2) constitute a candidate

for an optimal solution to Example 3.12 with optimal value to the cost function J [ū] = 1/2.

Figure 3.1 shows x̄1 and x̄2 in the x1x2−plane. In Figures 3.2 and 3.3, the graphs of potential

optimal state and adjoint trajectories x̄1, p̄1 and x̄2, p̄2. �

3.4 A Historical Note

Optimal control had its origins in the calculus of variations in the 17thcentury (Fermat, Newton,

Leibnitz, and the Bernoulis). Johann Bernoulli in 1696 challenged the mathematicians of his era

to solve the brachistochrone problem. Five mathematicians responded to the challenge: Leib-

nitz, l’Hospital, Tschirnhaus, Newton and Johann’s brother Jakob Bernoulli. In 1697, Bernoulli

published all the solutions. The calculus of variations was developed further in the 18thcentury

by Euler and Lagrange and in the 19thcentury by Legendre, Jacobi, Hamilton, and Weierstrass.

In the early 20thcentury, Bolza and Bliss put the final touches of rigor on the subject. In 1957,

Bellman gave a new view of Hamilton-Jacobi theory which he called dynamic programming. Mc-
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t

x̄1, p̄1

1

1

−1

0

x̄1(t) = 1− t

p̄1(t) = t− 1

Figure. 3.2: Potential Optimal State and Adjoint Trajectories (x̄1 and p̄1) for Example 3.12.

shane (1939) and Pontryagin(1962) extended the calculus of variations to handle control variable

inequality constraints, the latter announcing his elegant maximum principle [35]. The truly en-

abling element for use of optimal control theory was the digital computer, which became avail-

able commercially in the 1950’s. In the late 1950’s and early 1960’s Lawden, Leitmann, Miele,

and Breakwell demonstrated possible uses of the calculus of variations in optimizing aerospace

flight paths using shooting algorithms, while kelley and Bryson developed gradient algorithms

that eliminated the inherent instability of shooting methods. Also in the early 1960’s Simon,

Chang, Kalman, Bucy, Battin, Athans, and many others showed how to apply the calculus of

variations to design optimal output feedback logic for linear dynamic systems in the presence of

noise using digital control. Clarke [6, 7], Vinter [25, 42] and Mordukhovich [30, 31] studied more

general forms of the optimal control problem with a relaxation of the differentiability conditions
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1

−1

0

x̄2(t) = − 1
2 t

2 + t

p̄2(t) = −1

Figure. 3.3: Potential Optimal State and Adjoint Trajectories (x̄2 and p̄2) for Example 3.12.

necessary in the classical results. For more on the history of optimal control, we refer the reader

to [5, 41, 37].

The Pontryagin maximum principle is the central result of optimal control theory. In the

half-century since its appearance, the underlying theorem has been generalized, strengthened,

extended, reproved and interpreted in a variety of ways. Clarke in [8] discusses the evolution

of the Pontryagin maximum principle, focusing primarily on the hypotheses required for its

validity and giving necessary conditions for optimal control problems formulated in terms of

differential inclusions. More recently Clarke [9] reviews one of the principal approaches to ob-

taining the maximum principle in a powerful and unified context, focusing upon recent results

that represent the culmination of over thirty years of progress using the methodology of nons-

mooth analysis. A short history of the discovery of the maximum principle in optimal control

theory by Pontryagin and his associates is presented by Gamkrelidze in [20]. The reader, with

further interest in Pontryagin maximum principle, can visit the well-designed course in [24].



CHAPTER 4

OPTIMAL CONTROL OF

SINGULAR

DIFFERENTIAL OPERATORS IN

HILBERT SPACES

In this chapter we formulate, for the first time in the literature, an optimal control problem for

self-adjoint ordinary differential operator equations in Hilbert spaces and derive necessary con-

ditions for optimal controls to this problem in an appropriate extended form of the Pontryagin

Maximum Principle.

Section 4.1 is an introductory one where the problem under study is presented. In Sec-

tion 4.2 we give a brief introduction to the theory of self-adjoint differential operator equations,

highlighting the main landmarks that show remarkable features these systems have, which are

largely used in what follows. This is based is the seminal work by Akhiezer and Glazman [1],

57
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Naimark [33], Weidmann [45], and Zettl [46], [47] among others.

In Section 4.3 we obtain new existence results for self-adjoint differential operator equations,

which play a crucial role in the proof of the Maximum Principle of Theorem 4.1 given in Sec-

tion 4.4.

4.1 Introduction

This chapter addresses the following controlled system governed by singular differential opera-

tor equations in Hilbert spaces:

Lx = f(x, u, t), u(t) ∈ U a.e. t ∈ I = (a, b), −∞ ≤ a < b ≤ ∞, (4.1)

where L is a self-adjoint extension of the minimal operator L0 (see Section 4.2) generated by a

formally self-adjoint differential expression lQ and a positive weight function w satisfying the

equation

lQx = λwx on I (4.2)

in the Hilbert space H = L2(I, w) of real-valued square integrable functions, where u(·) is a

measurable control action taking values from the given control set U , and where the function f

is complex-valued. The inner product 〈·, ·〉 and the norm ‖ · ‖ on H are defined, respectively, by

〈x1, x2〉 :=
∫

I

x1(t)x2(t)w(t)dt,

‖x‖2 :=

∫

I

|x(t)|2w(t)dt.
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In what follows we assume that the expression l := lQ in (4.2) is of even order 2n, with Q ∈

Z2n(I), Q = Q+ and Q is real, see Definition 2.2. Recall (cf. [33]) that l is given in the form

l(x) =

n
∑

i=0

(−1)i(rix
(i))(i)

with real-valued coefficients ri ∈ Ci[I] for all i = 0, . . . , n. Recall that the expression l is regular

if the I is finite and

r−1
n , rn−1, . . . , r0 ∈ L(I, w),

i.e., these functions are integrable on the whole interval I. Otherwise l is called singular. Fur-

thermore, the endpoint a is regular if a > −∞ and if r−1
n , rn−1, . . . , r0 ∈ L((a, β), w) for all β < b;

otherwise a is singular. The regularity and singularity of the other endpoint b is defined sim-

ilarly. Observe that the expression l is regular if and only if both endpoints a and b have this

property.

We now fix a point c such that a < c < b and consider the following optimal control problem

of the Mayer type for controlled equation (4.1):

minimize J [u, x] = φ(x(c)) over (u, x) ∈ A. (4.3)

Here the cost function φ is real-valued and the set A is the collections of admissible pairs

(u(·), x(·)) with measurable controls u(·) satisfying the pointwise constraint u(t) ∈ U a.e. t ∈ I

and the corresponding solutions x(·) to (4.1) described by

x(t) =

∫

I

K(t, τ)f(x(τ), u(τ), τ)dτ , t ∈ I (4.4)

see Section 4.2 for more details. If b is regular, we may take c = b. Although any state variable

x must satisfy boundary conditions; being an element of D; see Section 4.2, particularly Theo-

rem 4.2). Since no additional constraints are imposed on x(·) at t = b, problem (4.3) is labeled a
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free-endpoint problem of optimal control. Any admissible pair (u, x) ∈ A are called feasible solu-

tion to the control problem (4.3). A feasible solution (ū, x̄) is (globally) optimal for this problem

if

J [ū, x̄] ≤ J [u, x] whenever (u, x) ∈ A.

Optimal control theory is a remarkable area of Applied Mathematics, which has been de-

veloped for various classes of controlled systems governed by ordinary differential, functional

differential, and partial differential equations and inclusions; see, e.g., [23, 31] with the vast

bibliographies therein. However, we are not familiar with any developments on optimal control

of differential operator equations of type (4.1).

To proceed further, take an arbitrary admissible control u(·) and define the operator Fu on H

by

Fu(x) := f(x(·), u(·), ·) on I. (4.5)

The main goal of this chapter is deriving necessary optimality conditions for a fixed optimal

solution (ū(·), x̄(·)) to problem (4.3). Involving this optimal pair and operator (4.5), we impose

the following standing assumptions:

(H1) Fu maps H into H and there exists an open set O ⊂ H containing x̄ such that the func-

tions (x, u) 7→ Fu(x) and (x, u) 7→ F ′
u(x) are continuous on A and the operators F ′

u(x̄) are

uniformly bounded for all admissible controls u.

(H2) For each admissible control u the operator Fu is weakly continuous.

(H3) For each admissible control u the operator Fu is monotone, i.e.,

〈Fu(x1)− Fu(x2), x1 − x2〉 ≤ η‖x1 − x2‖2, for all x1, x2 ∈ H,

where η ∈ R independent of u.

(H4) There exists a real number γ > η, assumed to be positive without loss of generality, such
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that

〈Lx, x〉 ≥ γ‖x‖2 for any x ∈ D,

where D is the domain of L to be defined in Section 4.2.

(H5) For every needle variation u (see Section 4.4) of ū on measurable sets Iǫ ⊂ I of measure ǫ

we have

‖Fu(x̄)− Fū(x̄)‖ = o(ǫ).

(H6) The function φ is Fréchet differentiable at the point x̄(c).

(H7) The control set U in (4.1) is a Souslin subset (i.e., a continuous image of a Borel subset) of

some Banach space.

To formulate the main result, we introduce the appropriate counterpart of the Hamilton-Pontryagin

function for system (4.1) defined by

H(x, p, u, t) := (p+ P (φ(x(c))K(c, t))) f(x, u, t), p ∈ D1 (4.6)

where P is a projection operator onto the range of L0 to be discussed in Section 4.2; see particu-

larly Lemma 4.4 therein.

Theorem 4.1 (Maximum Principle)

Let (ū(·), x̄(·)) be an optimal solution to problem (4.3) under the assumptions imposed in (H1)–

(H7). Then there exists an adjoint arc p ∈ D1 such that

H(x̄(t), p(t), ū(t), t) = max
u∈U

H(x̄(t), p(t), u, t) a.e. t ∈ I, (4.7)

L1(p) = −∇xH(x̄(t), p(t), ū(t), t) a.e. (4.8)
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and the following transversality condition is satisfied:

[p, xi]
b
a = −φ′0(x̄(c))xi(c), i = 1, . . . , d, (4.9)

where D1 is the domain of the operator L1, and where the functions xi, i = 1, . . . , d determine the

domain D in the sense of Theorem 4.2.

4.2 Self-Adjoint Differential Operator Equations

The expression l in (4.2) generates various operators on H. Among these operators we single out

the minimal operator L0, the maximal operator L1, and self-adjoint operators L lying between.

The maximal operator L1 is defined by

D1 = D(L1) : = {x ∈ H : x[0], x[1], . . . , x[2n−1] ∈ ACloc(I) and x[2n] ∈ H},

L1(x) : = l(x), x ∈ D1,

where x[i] is the ithquasi-derivative related to l and given by

x[i] : =
dix

dti
, i = 0, . . . , n− 1,

x[n] : = rn
dnx

dtn
,

x[n+i] : = rn−i
dn−ix

dtn−i
− d

dt

(

x[n+i−1]
)

, i = 1, . . . , n.

Denote by ACloc(I) the set of real-valued functions, which are absolutely continuous on every

compact subinterval of I. Let L0 := L∗
1 with D0 := D(L0), where L∗

1 is the adjoint of L1 uniquely

defined due to the fact that D1 is dense in H. It is shown in [33] that D0 ⊂ D1, that D0 is dense

in H, and that L∗
0 = L1, which implies in turn that L0 is a symmetric closed operator.

Pick an arbitrary complex number ν with Im(ν) 6= 0 and denote the range of (L0 − νE) by

Rν , where E is the identity operator on H. The orthogonal complement of clRν in H is called the

deficiency space of L0 corresponding to ν and is denoted by Nν . It is shown in [33] that Nν is the
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eigenspace of L1 corresponding to the eigenvalue ν̄ and that D1 is decomposed as

D1 = D0 ∔Nν ∔Nν̄ . (4.10)

It is also shown in [33] that the equality

Dim (Nν) = Dim (Nν̄)

holds, where the dimension of Nν , Dim (Nν), is called the deficiency index of L0 on I and is

denoted by d. We have in fact that 0 ≤ d ≤ 2n.

A self-adjoint realization of the the equation (4.2) in H is any linear bounded operator L

satisfying the relationships

L0 ⊂ L = L∗ ⊂ L1.

These self-adjoint realizations are distinguished from one another by their domains. Naimark

[33] established the following decomposition

D = D0 ∔ span {φ1, φ2, . . . , φd} (4.11)

of the domain of L via an arbitrary orthonormal basis

φ1, φ2, . . . , φd

in the deficiency space Nν of L0. Observe thatD1 is always a 2d−dimensional extension ofD0 and

that D is a d−dimensional extension of D0. It follows furthermore that D1 is a d−dimensional

extension of D.

The fundamental Glazman-Krein-Naimark (GKN) Theorem [16] characterizes these domains

as follows.
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Theorem 4.2

(GKN characterization of domains). Let d ∈ N be the deficiency index of L0. A linear

submanifold D of D1 is the domain of a self-adjoint extension L of L0 with deficiency index d if

and only if there exist functions x1, x2, . . . , xd in D1 satisfying the following conditions:

(i) x1, x2, . . . , xd are linearly independent modulo D0;

(ii) [xi, xj ]
b
a = 0, i, j = 1, 2, . . . , d;

(iii) D = {x ∈ D1 : [x, xi]
b
a = 0, i = 1, 2, . . . , d}.

The bracket [·, ·]ba in Theorem 4.2 is called the Lagrange bracket and is defined for any x, z ∈

D1 and t ∈ I by

[x, z] (t) :=
n
∑

i=1

{

x[i−1](t)z[2n−i](t)− x[2n−i](t)z[i−1](t)
}

. (4.12)

It is worth mentioning that the limits in (4.12) as t → a+ and as t → b− exist and are denoted,

respectively, by

lim
t→a+

[x, z] (t) = [x, z] (a), lim
t→b−

[x, z] (t) = [x, z] (b).

We can also write the expression

[x, z]
t1
t0

= [x, z] (t1)− [x, z] (t0)

and observe the validity of the Lagrange identity

∫ b

a

l(x)zdt−
∫ b

a

xl(z)dt = [x, z]
b
a for any x, z ∈ D1. (4.13)

Recall that the operator

Rν := (L− νE)
−1

is known as the resolvent operator of L with respect to the complex number ν. It follows from

assumption (H4) that the mapping L is one-to-one and zero is a regular point of L. This im-

plies that the resolvent R0 = L−1 exists as a bounded operator defined on the whole space H.
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Furthermore, it is an integral operator with the kernel K, see Lemma 2.40, satisfying

∫

I

|K(τ, t)|2 w(τ)dτ <∞ and

∫

I

|K(τ, t)|2 w(t)dt <∞.

Thus for any function y ∈ D we can be write

y = R0f =

∫

I

K(τ, t)g(τ)w(τ)dτ a.e. t ∈ I, (4.14)

where g is some element of H.

Lemma 4.3

Let L0 be a minimal operator generated by l, as before. Then under Assumption (H4) the range

of L0, R0, is a closed subspace of L2(I, w). �

Proof.

Let {yk} ⊂ R0 be a convergent sequence to y. Then there exists a sequence {xk} in D0 such that

L0xk = yk. By Assumption (H4), L0, being the restriction of L onD0, is bounded below; therefore,

‖xj − xi‖2 ≤ (1/γ)〈L0(xj − xi), xj − xi〉 = 〈yj − yi, xj − xi〉 → 0,

which shows that {xk} is Cauchy and therefore convergent. So xk → x with x ∈ H. But L0 is a

closed operator; implying that x ∈ D0 and furthermore, L0x = y. This shows that y belongs to

R0 and concludes the proof of this lemma.

Next we define the projection operator P onto the range R0 of L0. First observe from the

domain decomposition (4.11) and from Lemma 4.3 that

H = R̃ = R0 ⊕R⊥
0 ,

where R̃ is the range of L, and where R⊥
0 is the corresponding d−dimensional subspace of H . Let
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{zi}di=1 be an orthonormal basis of R⊥
0 , and let {xi}di=1 ⊂ D be such that Lxi = zi for i = 1, . . . , d.

It is clear that {xi}di=1 is linearly independent modulo D0. Finally, define P on H as

P (y) := (E −Q)y, y ∈ H, (4.15)

where Q is the projection onto R⊥
0 given by

Q(y) =

d
∑

i=1

〈y, zi〉zi, y ∈ H. (4.16)

By the fundamental Theorem 4.2, we may assume that

D = D0 ∔ span({x1, x2, . . . , xd}). (4.17)

Take further g ∈ H with Lx = g. Then we have the equalities

Lx = Lx0 +

n
∑

i=1

αiLxi = Lx0 +

n
∑

i=1

αizi,

Lx = g = P (g) +Q(g).

Both elements Lx0 and P (g) belong to R0, while
∑n

i=1 αizi and Q(g) belong to R⊥
0 . Since the sum

in (4.11) is in fact a direct sum, it gives us therefore that

Lx0 = P (g) and

n
∑

i=1

αizi = Q(g).

We summarize our discussions in the following lemma, which justifies the well-posedness of the

projection operator P that appears in the construction of the Hamilton-Pontryagin function (4.6)

used in our main result.
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Lemma 4.4

Let Lx = g with g ∈ H, and let

x = x0 +

n
∑

i=1

αixi with x0 ∈ D0.

Then we have the representation of x0 via the projection operator:

x0 = R0(P (g)). �

4.3 Existence of Solutions to Operator Equations

In this section we derive new results on the existence of solutions of the primal operator equation

(4.1) in the domain D and of the adjoint equation (4.8) in the domain D1. Besides of their own

independent interest, the results obtained are important for the proof of our main Theorem 4.1

on the Maximum Principle.

We begin with the following lemma, which can be also seen as a consequence of the existence

result from [34, Theorem 15]. Although throughout this chapter all the assumptions (H1)–(H7)

are imposed to hold, the reader can see from the proofs that only parts of these assumptions are

used in the results below.

Lemma 4.5

Equation (4.1) has at least one solution in D for any feasible control u(·). �

Proof.

By assumption (H2) the proof is complete if we show that there exists a ρ > 0 such that the

inequality

〈L(y)− Fu(y), y〉 > 0
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holds for all y ∈ D with ‖y‖ = ρ. To proceed, take y ∈ D and then compute

〈L(y)− Fu(y), y〉 = 〈L(y), y〉 − 〈Fu(y)− Fu(0), y〉 − 〈Fu(0), y〉.

Using assumption (H4) on L, assumption (H3) on Fu, and the classical Cauchy-Schwartz in-

equality give us

〈L(y)− Fu(y), y〉 ≥ γ‖y‖2 − η‖y‖2 − ‖Fu(0)‖‖y‖

= (γ − η)‖y‖2 − ‖Fu(0)‖‖y‖.

Now choosing ρ > ‖Fu(0)‖/(γ − η) and taking into account that γ > η, we get

〈L(y)− Fu(y), y〉 > 0 for all y ∈ D,

which completes the proof of the lemma.

The result of Lemma 4.5 can be treated as the justification of controllability of the primal

differential operator system (4.1) with measurable controls.

The next lemma plays a crucial role in justifying the existence of solutions to boundary value

problem for the adjoint system (4.8), which is the main result of this section; see Theorem 4.7

below.

Lemma 4.6

Let h1 ∈ H be such that

〈h1z, z〉 ≤ η‖z‖2 for all z ∈ H,

where η is taken from assumption (H3). Let d ∈ N be the deficiency index of L0, and let the

functions x1, . . . , xd are taken from (4.17). Then for any h2 ∈ H and for arbitrary real numbers

αi, i = 1, . . . , d, the equation

(L1x)(t) = h1(t)x(t) + h2(t), t ∈ I

[x, xi]
b
a = αi, i = 1, . . . , d















(4.18)
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admits a solution in the domain D. �

Proof.

Let {ξ1, . . . , ξd} be a linearly independent set in D1 modulo D. Construct the following quadratic

matrix

A :=

























[ξ1, x1]
b
a [ξ2, x1]

b
a . . . [ξd, x1]

b
a

[ξ1, x2]
b
a [ξ2, x2]

b
a . . . [ξd, x2]

b
a

...
...

. . .
...

[ξ1, xd]
b
a [ξ2, xd]

b
a . . . [ξd, xd]

b
a

























and check that this matrix is invertible. Indeed, otherwise there exists a nonzero vector u such

that Au = 0. This gives

d
∑

j=1

(

[ξj , xi]
b
a

)d

i=1
uj =











d
∑

j=1

ujξj , xi





b

a







d

i=1

= 0,

and thus we arrive at the equality





d
∑

j=1

ujξj , xi





b

a

= 0 for all i = 1, . . . , d

implying by Theorem 4.2 that
∑d

j=1 ujξj ∈ D. The latter contradicts the fact that the functions

ξj , j = 1, . . . , d, are linearly independent modulo D.

Using the invertibility of A−1, define β = (β1, . . . , βd) by

β := A−1α,

with α = (α1, . . . , αd)
T and choose x̃ ∈ D to be a solution of

Lx̃ = h1x̃+

d
∑

i=1

βi (h1ξi − L1ξi) + h2. (4.19)
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Then we see that the element

x := x̃+

d
∑

i=1

βiξi

is certainly a solution to (4.18). It remains to show that equation (4.19) admits a solution in D.

To proceed, we define the function

F (z) := h1z + h3 for any z ∈ D,

where h3 :=
∑d

i=1 βi (h1xi − Lxi) + h2. The function F is obviously weakly continuous, and

furthermore we have

〈Lz − F (z), z〉 = 〈Lz − h1z − h3, z〉 = 〈Lz, z〉 − 〈h1z, z〉 − 〈h3, z〉

> γ‖z‖2 − η‖z‖2 − ‖h3‖‖z‖ = (γ − η) ‖z‖2 − ‖h3‖‖z‖.

This ensures the existence of a solution to (4.18) in D by [34, Theorem 15] with

ρ >
‖h3‖
γ − η

,

which completes the proof of this theorem.

Now we are ready to establish the existence of solutions to the adjoint system (4.8), (4.9) in

the required domain D1.

Theorem 4.7 (existence of solutions to the adjoint system)

The adjoint equation (4.8) with the boundary conditions (4.9) admits a solution in D1.

Proof.

Let r ∈ R, and let O be a neighborhood of x̄ from (H1). Taken any x ∈ O and observe from (H3)

that

〈Fū(x̄+ rx) − Fū(x̄), rx〉 ≤ ηr2‖x‖2.



71

Dividing by r2 both sides of this inequality and taking the limit as r → 0 give us

〈

lim
r→0

Fū(x̄ + rx) − Fū(x)

r
, x

〉

≤ η‖x‖2,

which yields, by the Fréchet differentiability of Fu at x̄, that

〈F ′
ū(x̄)x, x〉 ≤ η‖x‖2.

The latter estimate allows us to complete the proof of the theorem by putting there

h1 := F ′
ū(x̄) and h2 := P (φ(x(c))K(c, ·))F ′

ū(x̄)

and applying finally Lemma 4.6.

4.4 Proof of the Maximum Principle

This section is devoted to the proof of our main result on the Maximum Principle for optimal

solutions to problem (4.3) under the standing assumption formulated in Theorem 4.1. The proof

is based on the results on the primal and adjoint operator equation presented in the previous

sections and the optimal control techniques developed below. We split the proof into several

steps.

Given two feasible controls ū(t), u(t) ∈ U a.e. and taking the corresponding solutions x̄(·), x(·)

of system (4.1) defined by (4.14), we write the increments

∆ū(t) : = u(t)− ū(t),

∆x̄(t) : = x(t) − x̄(t),

∆J [ū] : = φ(x(c)) − φ(x̄(c)).

The first lemma in this section justifies the increment formula for the cost functional J needed
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in what follows.

Lemma 4.8

In the notation above we have the increment formula

∆J [ū] = −〈p+ P (Ǩc(·)),∆uF
′
ū(x̄)∆x̄〉 − 〈p+ P (Ǩc(·)),∆uFū(x̄)〉

+o(‖∆x̄‖) + o(|∆x̄(c)|),
(4.20)

where K is the kernel of the resolvent operator R0, Ǩc := φo(c)K(c, ·), P is the projection onto

the range of L0 defined in (4.15), and

∆uFū(x̄) := Fu(x̄)− Fū(x̄). �

Proof.

By (H6), the cost function φ is Fréchet differentiable at x̄(c); thus we have

∆J [ū] = φ(x(c)) − φ(x̄(c)) = φ′0(x̄(c))∆x̄(c) + o(|∆x̄(c)|). (4.21)

If xi ∈ D1, i = 1, . . . , d, are the functions that determine L by Theorem 4.2), then every x ∈ D can

be written as

x = x0 +

d
∑

i=1

βivi

with some x0 in D0. For any arcs x ∈ D and any p ∈ D1 satisfy the primal and adjoint systems

(these solutions exist due to Lemma 4.5 and Theorem 4.7, respectively) we have

[p, x]ba = [p, x0]
b
a +

d
∑

i=1

βi[p, xi]
b
a

= φ′0(x̄(c))x0(c)− φ′0(x̄(c))

[

x0(c) +

d
∑

i=1

βixi(c)

]

= φ′0(x̄(c))x0(c)− φ′0(x̄(c))x(c).
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This gives there the representation

φ′0(x̄(c))∆x̄(c) = φ′0(x̄(c))∆x̄0(c)− [p,∆x̄]ba. (4.22)

Now using the Lagrange identity (4.13) and elementary transformations implies that

[p,∆x̄]ba = 〈Lp,∆x̄〉 − 〈p, L∆x̄〉

= 〈Lp,∆x̄〉 − 〈p, Fu(x)− Fū(x̄)〉

= 〈Lp,∆x̄〉 − 〈p, Fu(x)− Fū(x)〉 − 〈p, Fū(x) − Fū(x̄)〉

= 〈Lp,∆x̄〉 − 〈p,∆uFū(x)〉 − 〈p, F ′
ū(x̄)∆x̄〉+ o(‖∆x̄‖)

= 〈Lp,∆x̄〉 − 〈p, F ′
ū(x̄)∆x̄〉 − 〈p,∆uFū(x) −∆uFū(x̄)〉 − 〈p,∆uFū(x̄)〉+ o(‖∆x̄‖)

= 〈Lp,∆x̄〉 − 〈p, F ′
ū(x̄)∆x̄〉 − 〈p,∆uFū(x̄)〉 − 〈p,∆uF

′
ū(x̄)∆x̄〉+ o(‖∆x̄‖)

= 〈(L1 − F ′
ū(x̄))p,∆x̄〉 − 〈p,∆uFū(x̄)〉 − 〈p,∆uF

′
ū(x̄)∆x̄〉+ o(‖∆x̄‖).

Employing further the solution representation (4.14), we get

φ′0(x̄(c))∆x̄0(c) = φ′0(x̄(c))(x0(c)− x̄0(c))

= φ′0(x̄(c))

[

∫ b

a

Kc(s)P (Fu(x)− Fū(x̄))(s)w(s)ds

]

=

∫ b

a

Ǩc(s)P (Fu(x) − Fū(x) + Fū(x)− Fū(x̄))(s)w(s)ds

=

∫ b

a

Ǩc(s)P (∆uFū(x) + F ′
ū(x̄)∆x̄)(s)w(s)ds + o(‖∆x̄‖)

=

∫ b

a

Ǩc(s)P (F
′
ū(x̄)∆x̄+∆uFū(x)−∆uFū(x̄) + ∆uFū(x̄))(s)w(s)ds + o(‖∆x̄‖)

=

∫ b

a

Ǩc(s)P (F
′
ū(x̄)∆x̄+∆uF

′
ū(x̄)∆x̄ +∆uFū(x̄))(s)w(s)ds + o(‖∆x̄‖)

= 〈Ǩc(·), P (F ′ū(x̄)∆x̄)〉+ 〈Ǩc(·), P (∆uF
′
ū(x̄)∆x̄)〉+ 〈Ǩc(·), P (∆uFū(x̄))〉+ o(‖∆x̄‖)

= 〈F ′
ū(x̄)P (Ǩc(·)),∆x̄)〉+ 〈P (Ǩc(·)),∆uF

′
ū(x̄)∆x̄〉+ 〈P (Ǩc(·)),∆uFū(x̄)〉+ o(‖∆x̄‖).
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Substituting the obtained expressions for [p,∆x̄]ba and φ′0(x̄(c))∆x̄0(c) into (4.22) yields

φ′0(x̄(c))∆x̄(c) = 〈F ′
ū(x̄)P (Ǩc(·)),∆x̄)〉+ 〈P (Ǩc(·)),∆uF

′
ū(x̄)∆x̄〉+ 〈P (Ǩc(·)),∆uFū(x̄)〉

−〈(L1 − F ′
ū(x̄))p,∆x̄〉+ 〈p,∆uFū(x̄)〉+ 〈p,∆uF

′
ū(x̄)∆x̄〉+ o(‖∆x̄‖)

= 〈−Lp+ F ′
ū(x̄)p+ F ′

ū(x̄)P (Ǩc(·)),∆x̄)〉+ 〈p+ P (Ǩc(·)),∆uF
′
ū(x̄)∆x̄〉

+〈p+ P (Ǩc(·)),∆uFū(x̄)〉+ o(‖∆x̄‖)

Taking finally formula (4.21) into account, we arrive at

∆J [ū] = 〈−Lp+ F ′
ū(x̄)p+ F ′

ū(x̄)P (Ǩc(·)),∆x̄)〉+ 〈p+ P (Ǩc(·)),∆uF
′
ū(x̄)∆x̄〉

+〈p+ P (Ǩc(·)),∆uFū(x̄)〉+ o(‖∆x̄‖) + o(|∆x̄(c)|)

and thus complete the proof of the lemma.

Note that the derivation of the increment formula in Lemma 4.8 is different from the usual

way know in control theory (compare, i.e., [31, Lemma 6.43]) in the sense that we take advantage

of the well-developed theory of the differential operator equations under consideration. The

next two lemmas are designed to estimate the trajectory increments in both functional ∆x̄ and

pointwise ∆x̄(c) form by building a single needle variation u(·) of the reference control ū(·).

To proceed, fix a set Iǫ ⊂ I of finite measure ǫ, take a measurable mapping v such that

v(t) ∈ U a.e. t ∈ Iǫ, and define u(t), t ∈ I, as follows:

u(t) =















v(t), t ∈ Iǫ,

ū(t), t 6∈ Iǫ.

(4.23)

Lemma 4.9

Let ∆x̄ = ∆x̄(·) be the increment of x̄(·) corresponding to the needle variation (4.23) of ū(·). Then

we have the functional trajectory increment estimate

‖∆x̄‖ = o(ǫ). (4.24)
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Proof.

The semi-boundedness assumption of the operator L in (H4) and the monotonicity property of

Fu in (H3) lead us to the relationships

γ‖∆x̄‖2 ≤ 〈L∆x̄,∆x̄〉

= 〈Fu(x) − Fū(x̄),∆x̄〉

= 〈Fu(x) − Fu(x̄) + Fu(x̄)− Fū(x̄),∆x̄〉

= 〈Fu(x) − Fu(x̄),∆x̄〉+ 〈∆uFū(x̄),∆x̄〉

≤ η‖∆x̄‖2 + ‖∆uFū(x̄)‖‖∆x̄‖.

Employing further assumption (H5) ensures that

(γ − η)‖∆x̄‖ ≤ ‖∆uFū(x̄)‖ = o(ǫ),

and thus we arrive at (4.24).

Lemma 4.10

The following pointwise trajectory increment estimate holds:

|∆x̄(c)| = o(ǫ).
�

Proof.

By using the pointwise representation of the trajectory (4.4) corresponding to the needle varia-
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tion ū(·), we have

|∆x̄(c)| = |x(c)− x̄(c)|

=

∣

∣

∣

∣

∫

I

Kc(s)(Fu(x) − Fū(x̄))(s)w(s)ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

I

Kc(s)(∆uFu(x)−∆xFū(x̄))(s)w(s)ds

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Iǫ

Kc(s)(∆uFu(x))(s)w(s)ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

I

Kc(s)(∆xFū(x̄))(s)w(s)ds

∣

∣

∣

∣

.

The second term of the above inequality can be split into

∣

∣

∣

∣

∫

I

Kc(s)(∆xFū(x̄))(s)w(s)ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

I

Kc(s)F
′
ū(x̄)(s)∆x̄(s)w(s)ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

I

Kc(s)o(ǫ)w(s)ds

∣

∣

∣

∣

.

Using further the assumed continuity of F ′
u(x̄) and Lemma 4.9 ensure the estimates

∣

∣

∣

∣

∫

I

Kc(s)F
′
ū(x̄)(s)∆x̄(s)w(s)ds

∣

∣

∣

∣

≤ ‖Kc‖‖F ′
u(x̄)∆x̄‖ ≤ ‖Kc‖‖F ′

u(x̄)‖‖∆x̄‖ = o(ǫ),

∣

∣

∣

∣

∫

I

Kc(s)o(ǫ)w(s)ds

∣

∣

∣

∣

= o(ǫ),

which show in turn that

|∆x̄(c)| = o(ǫ).

and thus justify our claim.

Lemmas 4.9 and 4.10 enable us to rewrite the increment formula (4.20) of Lemma 4.8 as

∆J [ū] = −〈p+ P (Ǩc(·)),∆uFū(x̄)〉 − 〈p+ P (Ǩc(·)),∆uF
′
ū(x̄)∆x̄〉+ o(ǫ). (4.25)

Now all the ingredients required for the justification of the Maximum Principle in Theo-

rem 4.1 (namely, Lemmas 4.8, 4.9, and 4.10) are ready, and we can proceed with the completion

of the proof.
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Completion of the proof of the Maximum Principle. Let (ū, x̄) be an optimal solution to

problem (4.3), and let p be the corresponding solution to the adjoint system (4.8) satisfying the

boundary/transversality conditions (4.9). Let us show that the maximum condition (4.7) is also

satisfied for (ū, x̄). To proceed, we argue by contradiction and suppose that there exists a set

T ⊂ I of positive measure such that

H(x̄(t), p(t), ū(t) < sup
u∈U

H(x̄(t), p(t), u(t)) > 0, t ∈ T.

Following the proof of [31, Theorem 6.37] by using the theory of measurable selections and taking

into account assumption (H7), we conclude that there is a measurable mapping v : T → U such

that

∆vH(t) := H(x̄(t), p(t), v(t), t) −H(x̄, p(t), ū(t), t) > 0, t ∈ T. (4.26)

Now let T0 ⊂ I be a set of Lebesgue regular points of the function H on I. It is well known that

the set T0 is of full measure on I. Taking any τ ∈ T0 and ǫ > 0, consider a needle variation of

type (4.23) built by

u(t) :=















v(t), t ∈ Iǫ := [τ, τ + ǫ) ∩ T0,

ū(t), t ∈ I \ Iǫ.

The increment formula for the cost functional (4.25) corresponding to ū and u gives us

∆J [ū] = −
∫ τ+ǫ

τ
∆vH(t)w(t)dt +

∫ τ+ǫ

τ
∆vF

′
ū(x̄(t))∆x̄(t)w(t)dt + o(ǫ)

Assumption (H1) and Lemma 4.9 ensure that

∫ τ+ǫ

τ

∆vF
′
ū(x̄(t))∆x̄(t)w(t)dt = o(ǫ)

due to the estimate
∫ τ+ǫ

τ

∆vF
′
ū(x̄(t))∆x̄(t)w(t)dt ≤ ‖∆vF

′
ū(x̄)‖∆x̄‖.



78

Since τ is a Lebesgue regular point of ∆vH , we have

−
∫ τ+ǫ

τ

∆vH(t)w(t)dt = −ǫ [∆vH(τ)] + o(ǫ),

which implies therefore that

∆J [ū] = −ǫ [∆vH(τ)] + o(ǫ).

This shows by (4.26) that ∆J [ū] < 0 along the above needle variation u(·) for all ǫ > 0 sufficiently

small, which contradicts the optimality of the reference control ū(·) for problem (4.3) and thus

completes the proof of Theorem 4.1.

4.5 Illustrating Example

In this section we give an example to illustrate the discussion and results above.

Example 4.11

Consider the following quasi-differential expression

lx = −(1/t)(tx′)′, on I = [0, 1].

Here n = 2 and w = t. This expression is singular since 1/t is not integrable at 0. We now solve

the quasi-differential equations

−(1/t)(tx′)′ = 0.

The solution space is spanned by the set {y1 := 1, y2 := ln(t)}. The expression in the Hilbert space

H generates a minimal operator L0. The set {y1, y2} is linearly independent modulo D0. Fur-

thermore, both functions belong to the Hilbert space H = L2([0, 1], t) and their quasi-derivatives

are locally absolutely continuous; namely

1[0] = 1, 1[1] = t · (1)′ = 0, ln(t)[0] = ln(t), ln(t)[1] = t · (ln(t))′ = 1 ∈ ACloc([0, 1]).
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Hence both of y1 and y2 are in D1, the domain of the maximal operator L1. This shows that d,

the deficiency index of L0, is equal to 2. The range of L0, R0, is a closed subspace of H by Lemma

4.3 and

H = R0 ⊕R⊥
0 .

The space R⊥
0 is 2−dimensional subspace in H. The set {y1, y2} is a linearly independent set in

R⊥
0 . In fact, any solution of the eigenvalue problem

lx = 0, (4.27)

which belongs to D1 is a member of R⊥
0 . To see this let z be a solution of (4.27) and y ∈ R0 then

there exits x ∈ D0 such that y = L0x = lx. Therefore,

〈y, z〉 = 〈lx, z〉 = 0.

Thus z is orthogonal to R0; that is z ∈ R⊥
0 .

Now let L, with domain D, be a self-adjoint extension of L0. We now solve the following two

boundary value problems

−(1/t)(tx′)′ = 1,

x[1](0) = 0,

3x[1](1) + 2x[0](1) = 0,































, and

−(1/t)(tx′)′ = ln(t),

x[1](0) = 0,

3x[1](1) + 2x[0](1) = 0,































,

giving the solutions z1 = 1− t2/4 for the first, and z2 = t2/4(1− ln(t))− 5/8 for the second. These

functions belong to D; because a solution of a second-order quasi-differential equation subject

to this type of boundary conditions is a member of D, see formula (10.4.59) in [48]. In addition,

both of them are not in D0; since z1(1) 6= 0 and z2(1) 6= 0, see [33, IV, §17.4]. This means that z1
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and z2 are linearly independent modulo D0. Hence, we have the decomposition

D = D0 + span({w1, w2}),

where

w1 = α1z1 + β1z2, w2 = α2z1 + β2z2, with αk, βk, k = 1, 2 ∈ R.

The two functions w1 and w2 are the ones mentioned in Theorem 4.2. Also, we have the decom-

postion for D1

D1 = D + span({w3, w4}).

where

{w3 := 2, w4 :=
√
2(2 ln t+ 1)}

is an orthonormal set given by {y1, y2} through Gram-Schmidt process.

We define now the projection operator, P : D0 → R0, that appears in the Hamilton-Pontryagin

function (4.6) as follows.

Px = (1−Q)(x), x ∈ D0,

where Q : span({w1, w2}) → R⊥
0 = span({w3, w4}) is defined as

Qx = 〈x,w3〉w3 + 〈x,w4〉w4.

We now turns our attention to dynamical system that governs our optimal control (4.3), that

is,

−(1/t)(tx′)′(t) = u(t), t ∈ I a.e. |u(t)| ≤ 1,

x[1](0) = 0,

3x[1](1) + 2x[0](1) = 0.
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We solve the equation −(1/t)(tx′)′(t) = u(t) using the method of variation of parameters to

obtain the solution

y(t) = a1 + a2 ln t+

∫ t

c

v1(τ)u(τ)dτ + ln t

∫ t

c

v2(τ)u(τ)dτ,

where c ∈ (a, b], a1, a2 are arbitrary scalars, see Lemma 2.16, and

v1(t) = − ln t, v2(t) = 1.

The two functions v1 and v2 are essential in construction of the kernel, K(c, s), of the resolvent

of D appeared also in (4.6) in the following manner, see [33, Theorem 1, §19.2].

K(c, τ) =















∑2
k=1 yk(c)hk(τ), c ≤ τ

∑2
k=1 yk(c) [hk(τ) + vk(τ)] , c ≤ τ















+

2
∑

k=1

yk(c)h̄k(τ).

where h1 and h2 are the solutions of the following system









[y1, w1]
b
a [y2, w1]

b
a

[y1, w2]
b
a [y2, w2]

b
a

















h1

h2









=









[y1, w1]av1 [y2, w1]av2

[y1, w2]av1 [y2, w2]av2









An optimal solution (ū(·), x̄(·)) to the problem

minimize J [u, x] := φ0(x(1))

subject to

− (1/t)(tx′)′(t) =u(t), t ∈ I a.e. |u(t)| ≤ 1,

x[1](0) =0,

3x[1](1) + 2x[0](1) =0.
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satisfies, according to Theorem (4.8),

H(x̄(t), p(t), ū(t), t) := max
u∈U

(p(t) + P (φ(x̄(c))K(c, t))) u a.e. t ∈ I,

where p : I → C such that p[0], p[1] ∈ ACloc([0, 1]), p,−(1/t)(tp′)′ ∈ L2([0, 1], t) and

(1/t)(tp′)′ = ∇xH(x̄(t), p(t), ū(t), t) a.e.

with the transversality conditions

[p, w1]
b
a = −φ′0(x̄(c))w1(c),

[p, w2]
b
a = −φ′0(x̄(c))w2(c). �



CHAPTER 5

CONCLUSIONS AND FURTHER

RESEARCH

In this thesis we formulated, for the first time in the literature, an optimal control problem

for self-adjoint ordinary differential operator equations in Hilbert spaces and derived necessary

conditions for optimal controls to this problem in an appropriate extended form the Pontryagin

Maximum Principle. Our treatment to derive the Pontryagin Maximal Principle relied heavily

on the well-developed theory of quasi-differential expressions and the operators they generate in

an appropriate Hilbert space. The reader can see this in our version of the Hamilton-Pontryagin

function (4.6) which involves the projection onto the orthogonal complement of the range of a

minimal operator L0 associated with l and the kernel function of the resolvent of its self-adjoint

extension, well one of them anyway. The work we developed in this thesis was accepted for pub-

lication [2].

We believe that this work opens a door to more work of potential significance on many levels.

The following is a list of some problems that we think are worth investigating.
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◮ (Equality and Inequality Constraints)

The first, and quite natural, problem is to consider a constrained end-point problem rather

than a free-end point one. Namely, the problem

minimize J [u, x] := φ0(x(c))

subject to

Lx = f(x, u, t) a.e., t ∈ I = (a, b), −∞ ≤ a < b ≤ ∞

u(t) ∈ U a.e.,

φk(x(c)) ≤ 0 for k = 1, · · · ,m,

φk(x(c)) = 0 for k = m+ 1, · · · ,m+ r,























































































where φk, k = 0, · · · ,m + r are real-valued functions. Under Assumptions (H1)–(H7) and

that only φm+k, k = 1, · · · , r are continuous around x̄(c) and Fréchet differentiable at x̄(c),

we conjuncture that Theorem 4.1 stands true with the following transversality conditions

[p, xi]
b
a = −

m+r
∑

k=o

µkφ
′
k(x̄(c))xi(c), i = 1, · · · , d,

where µk, k = 0, · · · ,m+ r are multipliers satisfying

(µ0, · · · , µm+r) 6= 0

µk ≥ 0 for k = 0, · · · ,m,

µkφk(x̄(c)) = 0 for k = 1, · · · ,m.

◮ (Matrix Quasi-Differential Expressions)

Let I = (a, b) be an interval with ∞ ≤ a < b ≤ ∞, n,m be positive integers. For a given

set S, Mn,m(S) denotes the set of n×m matrices with entries in S. If n = m, we write also
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Mn(S) and if m = 1 we write Sn. Let

Zn,m(I) := {Q = (Qrs)
n
r,s=1 ∈Mn(Mm(Lloc(I))),

Qr,s = 0, a.e. on I, for 2 ≤ r + 1 < s ≤ n,

Qr,r+1 invertible a.e. on I, Q−1
r,r+1 ∈Mm(Lloc(I)) for 1 ≤ r ≤ n− 1}.

Let Q ∈ Zn,m(I). We define

V0 := {x : I → C
m, x is measurable}.

The quasi-derivatives x[k] for k = 0, · · · , n, are defined inductively as

x[0] := x, x ∈ V0,

x[k] := Q−1
k,k+1

{

(

x[k−1]
)′ −

k
∑

s=1
Qksx

[s−1]

}

, x ∈ Vk for k = 1, · · · , n

where qn,n+1 := Im, the m×m identity matrix, and

Vk :=
{

x ∈ Vk−1 : x[k−1] ∈ (ACloc(I))
m
}

, for k = 1, · · · , n.

Finally we set

lQx := inx[n] (x ∈ Vn).

The expression lA is called the quasi-differential expression with matrix coefficients asso-

ciated with Q. This is a linear operator from Vn to (Lloc(I))
m, see [28].

An interesting extension of our work is to study the optimal control for operators generated

by this generalized quasi-differential expression. Aside from the technicalities expected,

we believe that our findings in this thesis can be extended to cover problems defined in

terms of matrix quasi-differential expressions.
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◮ (Numerical Aspects)

As it is clear from our discussion in Chapter 4. We are interested in solving the equation

Lx = f

with L an arbitrary self-adjoint extension of L0. Numerical methods such as the Galerkin

method proves to be effective and more natural for solving such equations, see e.g. [11].

We see promising prospects in exploring numerical methods specially designed to facilitate

the optimal control problem under consideration in this thesis.

◮ (Differential Inclusions)

Let X be a Banach space, and let I := [a, b] be a time interval of the real line. Consider a

set-valued mapping F : X × T ⇉ X and define the differential/evolution inclusion

ẋ(t) ∈ F (x(t), t) a.e. t ∈ [a, b] (5.1)

generated by F , where ẋ(t) stands for the time derivative of x(t). By a solution to the above

inclusion (5.1) we understand a mapping x : I → X , which is Fréchet differentiable for

a.e.t ∈ I and satisfies (5.1) and the Newton-Leibniz formula

x(t) = x(a) =

∫ t

a

ẋ(τ)dτ for all t ∈ I,

where the integral is taken in the Bochner sense.

The study of optimal control for dynamic/evolution systems governed by differential inclu-

sions and their finite difference approximations in appropriate Banach spaces is appealing

because these models capture more conventional problems of optimal control described by

parameterized differential equations. The success in this regards, see [42, 31], is encour-
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aging to reformulate our problem as an inclusion. This idea, though attractive, needs a lot

of work in developing the theory to handle a problem of the form

Lx ∈ F a.e. t ∈ I.

where L is a self-adjoint operator extending a minimal operator L0 generated by a quasi-

differential expression, or maybe a more general form of the one we considered, in a Hilbert

space or even in a Banach space.

◮ (Optimal Control of Operator Equations)

A last, but definitely not least, problem is the study optimal control problems for operator

equations in the form

Ax(t) = f(x, u, t) t ∈ I a.e.,

where A is a general linear operator defined on a Banach space X . Many interesting

questions are in order. Among these are: what is a solution of this equation look like? how

to define the Hamilton-Pontryagin function? What kind of assumptions we need to impose

on A to develop necessary optimality conditions?
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