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CHAPTER 1

INTRODUCTION

The Rete-Match algorithm is one of the main algorithms in the Production
Systems field that belongs to the Artificial Intelligence. Although this algorithm is the
fastest known algorithm for many patterns and many objects matching, it still suffers
from considerable amount of time needed due to the recursive nature of the problem.

In this thesis, a parallel version of the Rete-Match algorithm for distributed
memory architectures is designed, implemented, and analyzed. This study is targeted
to be a practical approach to design and implement a reliable, heterogeneous, an
adaptive and efficient message passing version of the Rete-Match algorithm. This new
design is also targeted to utilize run time chances for to exploit higher degree of
parallelism. Moreover, the correctness of the new model is guaranteed by the system
rather than leaving it to the user that was the common practice for most of the
previous attempts to parallelize this algorithm.

The new parallel version of the Rete-Match algorithm for distributed memory
architectures that is presented in this thesis is being referred to as the Lana-Match
model. The Lana-Match Model is an optimistic, message passing, parallel version of
the Rete-Match algorithm that was specially designed to utilize the power of the
parallel distributed memory architecture machines and to address the following

shortcoming that was found with most of the current research:

1



2
1. Most of the work that has been reported toward parallelizing the Rete-Match

algorithm can be classified as pessimistic parallel match and/or parallel-rule firing
models. This means, that the concurrency control mechanisms (CCM) that they
use to control the concurrent matching or concurrent rule firing are based on the
assumptions that these rules or matches will most of the time conflict with each
other. Such a very strict pessimistic CCM prevented most of these approaches
from exploiting very high degree of parallelism and also prevented them from
achieving major speed up.

2. Most of these approaches were either based on shared memory architectures or
were based on special topologies (i.e. tree). That is why most of the reported
results (nine out of twelve) were based on simulated solutions. How well these
simulated ideas perform in practice remains to be seen.

The main idea behind the Lana-Match model is to make one or more copies of
the Rete-Match network and engines running as Slave Processors for a Controller
Processor that maintains a Master Agenda and a Master Fact List. The Controller
assigns every activated rule of its Agenda to different slaves by sending all the facts
that are activating that particular rule to the corresponding slave. This will activate the
rule at the slave, execute the action part and send all the facts that either to be added
or deleted from the Master Fact List back to the Controller. The Controller buffers
the slaves responses and applies them, based on the time stamp of the activation they

were generated from. If an activation was deleted then its generated action commands
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will not be added to the Master Fact List. The final conclusion will be found at

the Master Fact List.

The Lana-Match model was implemented using the C Language Integrated
Production System (CLIPS) and the Parallel Virtual Machine (PVM). This
implementation shows a proportional speedup with respect to the number of
processors. This speed up and the adaptive feature of the Lana-Match represent major
improvement for the performance of the Rete-Match algorithm. Moreover, the
parallel version of this algorithm that is presented in this thesis could be used as a
good starting point to build real cooperating expert systems which are gaining wide
acceptance and interest from major Artificial Intell.igence researchers.

Chapter-2 of this thesis covers the basic concepts and the key terminology that
would be needed to follow the rest of this thesis. It starts with a brief description of
the production system model. This is followed by a detailed description of the Rete-
Match algorithm. Next, the main key concepts and terminology for parallel
computing are described followed by a summary of the main concurrency control
mechanisms. Finally, this chapter is concluded with a comprehensive survey of all the
previous approaches that were reported toward parallelizing the Rete-Match
algorithm.

Chapter-3 contains detailed description of the architecture of the Lana-Match

model followed by a comprehensive analysis of its correctness and complexity.
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Finally, the advantages and the disadvantages of the Lana-Match model are

summarized.
Chapter-4 summarizes comprehensive analysis for the performance of our
implementation of the Lana-Match model. Chapter-5 contains the major contributions

followed by a list of suggested future research topics on this subject.



CHAPTER 2

BACKGROUND

This chapter starts with a brief description of production system followed by a
detailed description of the Rete-Match algorithm. Next, the main key concepts and
terminology for parallel computation and Concurrency Control Mechanisms (CCM)
are described. This chapter is concluded with a comprehensive survey of the previous

approaches that were reported toward parallelizing the Rete-Match algorithm.

2.1 Production Systems

The term "Production System" is a heavily used term in Artificial Intelligence.
Unfortunately this term may mean different things to different people. For example,
Production System is a knowledge representation scheme to knowledge engineers
while it is a programming language (like OPS-2 & OPS-5) for Al programmers. On
the other side of the spectrum, theoreticians define production system as an abstract
computation model. In this thesis, we use the term production system as a
programming paradigm that is being adapted by many contemporary Al programming

languages (i.e. OPS-5, CLIPS,...). This paradigm is based on the original model that

5



6
have been proposed first time by Post [5] and have undergone theoretical and

application-oriented developments [5,18]. It consists of three major parts:-

1. A Rule Base is composed of a set of production rules where every rule has the
form "IF (conditions) THEN (actions)" construct. The conditions part of the rule
generally referred to as the Left Hand Side (LHS) .

2. A Working Memory is a special buffer-like data structure holding the data
operated on by the program. Both the workiné memory and the LHS of the
production rule contains lists of condition elements which are symbolic patterns.

3. AnInterpreter is a program that repeatedly executes the following steps :-

o [Recognize] Determine which production rules evaluate to TRUE
conditions for the current state of the working memory.

o [Select] If there are no such rules STOP; else select one of these rules.

¢ [Act] Perform the action specified by the chosen rule. This will modify the
working memory by adding or deleting some data which could require
another match.

¢ [Repeat] GOTO step (a).

This sequence of operations is called the Recognize-Act cycle. The first step of
this cycle is called the Matching step. The second step is called the Conflict
Resolution step. The third step is called the Act step. The match step tries to find
instance of a class defined by the LHS among patterns in the working memory. This

process is also called instantiating the pattern. The main function of the match step is
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to find the set of all legal instantiations of conditions which is called the conflict set.

The conflict resolution step decides whether the execution of the production system
should halt, and then if not, it chooses one rule to be executed in the act step. There
are several conflict resolution strategies. These include Depth, Breadth, Simplicity,

Complexity, LEX, MEA, and Random strategies [19].

2.2 The Rete-Match Algorithm

Matching is the most time consuming step in the execution of a production
system. It consumes around 90% of the total execution time for each cycle [24]. To
get a feeling for the complexity of the matching processor, imagine a production
system consists of 2000 productions and 4000 facts, where each production has §
condition elements. This production system will perform (4000 X 2000 X 5)
matching operations at each execution cycle. The Rete-Match algorithm was first
described in [19]. A complex version of this algorithm that includes an interpreter
which delays evaluation of pattern as long as possible is presented in a similar report
[24]. An efficient implementation of the algorithm is presented in [18-19]. The Rete-
Match algorithm utilizes the following facts:-

1. At each execution cycle a small fraction of the working memory could be
changed.
2. There are a lot of structural similarities between most of the productions that can

be found in most of the production systems.
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By storing results of matching from previous cycle and using them in subsequent

cycles combined with performing common tests only once, the matching process can
be reduced by %90 [19].

As in Figure 1, the Rete-Match algorithm compiles the condition elements of the
production rules into a tree like network. This network is referred to as the Pattern
Network. Every leaf of this tree has a list of pointers that points to the facts that
matches that pattern. This list of pointers is referred to as the Alpha-Memory. The
other network that joins the leaves of the pattern network to form productions is
referred to as the Join Network. Every node of the join network has a list of pointers
that point to the facts that match the pattern at that stage of the matching. This list is
referred to as the Beta-Memory. The Rete-Match builds these two networks only once
from the LHS of all the Rroductions as these productions are being loaded into the
system. All the LHSs of all the productions will be discarded after the networks are
built. A more complex example network is given in Figure 2.

As in Figure 3, the pattern network and the join network form what can be
described as a black-box system where all changes to the working memory pass to
this black-box in the form of adding and deleting facts instructions from one side of
the box which produce some more facts to be added or deleted from the system from
the other side of the box. The system will be ignited by initial facts entering the
system. Facts will be coming in and out of this box till the system reaches the

equilibrium state in which there is no fact entering in or out of this box [60]. The
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behavior of these functions make what is being referred to as the Rete-Match
algorithm. Appendix A contains detailed English like description of the Rete-Match
Algorithm in terms of description for the Build, Match, Drive, Retract, Conflict

resolution and the Engine functions.

2.3 Parallelism

Dramatic increase in computing power were achieved over the past forty years.
Most of it was largely due to the use of inherently faster electronic components.
Unfortunately, it is evident that this trend will soon come to end because sequential
computers may be approaching a fundamental physical limit on their potential
computational power [3]. The limiting factor is speed of light in the vacuum. It
appears that the only way around this limit (upper-bound) is to use parallelism. The
idea here is that several operations are performed simultaneously, then the time taken
by a computation can be significantly reduced. This is a fairly intuitive concept, and
one to which we are accustomed in any organized society. We know that several
people of comparable skills can usually finish a job in a fraction of the time taken by
one individual. From mail distribution to harvesting and from office to factory work,
our every day live offers numerous examples of parallelism through task sharing
During 1979 to 1996, parallelism has become truly attractive and a viable approach
for the attainment of very high computational speeds. The arguments over single von

Neumann computers versus multiprocessors, not long ago, were settled. Parallel
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computing has always been criticized by referring to Grosch's law, Minsky's

conjecture, and Amdahls's law [9]. Grosch's law states that the computing power of a
single processor increases in proportion to the square of the cost. But this law is no
longer applies to computer systems built with many inexpensive VLSI processors.
Minsky's conjecture claims that because of the communications overhead between n
processors, the actual performance of the parallel computer should be approximated
by log, n instead of n. But this conjecture was formulated in the late 1960s based on
experience with systems containing few processors. Only present experience
overwhelmingly indicates that the actual loss in performance is much less than the

loss predicted by Minsky's conjecture.

Amdahl's law states that the improvement in performance of a parallel algorithm over
a corresponding sequential algorithm is limited by the fraction of algorithm that can
not be parallelized. But Sandia National Laboratories has recently confirmed that
almost linear speed-up has been achieved on 1024 processors hypercube for a number
of practical problems. That's why, in recent years, parallel computing has grown to
the point where computers of various types are both commercially available and
potentially cost effective tools in a number of application areas. Appendix B contains

some of the main characteristics of parallel and distributed processing.



14
2.4 Serializability & Concurrency Control

At the moment we think of having more than one agents to accomplish a task by
sharing resources, a series .of issues will start showing up to be addressed. No matter
what subject domain we are talking about these issues will be similar in nature but
may have different flavor at each domain. Serializability and concurrency control are
the main two issues that have been studied extensively in the operating system and
database subfields of the computer science discipline. In this section, we will
approach this topic from the database point of view only. This is mainly due the
natural similarity between knowledge and database systems. The following are
definitions for few terms that will help us clarify this topic [61].

1. Transaction: A single executing program that would read and write data to and
from the database, into a private work space, where the computation is performed.
These computations will not effect the database until new values are written in to
the database.

2. Atomicity: An atomic operation either occurs in its entirety or does not occur at
all, and if it has occurred, no other operation went on during the time of its
occurrence.

3. Item: The unit of data to which access is controlled. A relation, a tuple or a field
are examples of such units.

4. Schedule: A schedule is the interleaved order of execution of transactions.
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5. Serialization: The scheduling mechanism which forces transactions to run

concurrently in a way that makes it appear as if they ran one at a time (serially).

6. Serializability: A schedule S is said to be serializable if the state of the database

after the successful completion of all of its interleaved transactions will always be

the same as if these interleaved transaction were executed in some serial fashion.

Serializability is the most widely accepted correctness criterion for concurrency

control mechanisms.

7. Concurrency Control Mechanisms: There is a large number of concurrency

control algorithms and proposals in the literature. These mechanisms can be

classified as:

Pessimistic Concurrency Control: it is based on the assumption that many
(if not all) transaction will conflict with each other. Thus it will not permit
a transaction to access a data item if there will be a conflicting. Which
means that the execution of any operation of a transaction follows the
sequence phases: validate, read, compute and write. (only update operation
is considered here because its the one that causes inconsistency problems).
Optimistic Concurrency Control: it is based on the assumption that not too
many transaction will conflict with one another. Thus it will permit a
transaction to access a data item even if there is a conflicting transaction.
Which means that the execution of any operation of a transaction follows
the sequence phases: read, compute, validate and write. Although the

pessimistic approach is the safest which guarantee Serializability
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conditions, the optimistic approach has great potential to allow a higher

level of concurrency.

Locking based Concurrency Control: the main idea of locking-based
concurrency control is to ensure that a shared item is accessible only by
one operation at a time. This is a accomplished by associating a "lock"
with each item. This lock will be set by one of the transactions to prevent
any other transaction from accessing it and will be reset by one of the
transactions at the end of its use. There are two types of lock, Read locks
and Write locks. Two Locks are said to be compatible if and only if both
of them are Read locks. Only compatible locks will be allowed to be
executed concurrently. Although, the basic locking mechanism guarantee
mutual exclusion of accessing the shared item by conflicting transaction,
it does not guarantee Serializability. With some modifications to the basic
locking mechanism, Serializability conditions can be achieved. Two Phase
Locking (2PL) rule is one of the modifications. This rule requires that the
transaction should not release any of its locks until it is certain that it will
not require any other lock. Any schedule generated by 2PL concurrency
control mechanism is serializable [61].

Time stamp based concurrency Control: Time stamp concurrency
mechanisms do not maintain Serializability by mutual exclusion. Instead
they select a prior serialization order and execute transactions accordingly.

This is established by assigning each transaction a unique time stamp at its
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initiation. Uniqueness and monotonicity are the two main properties of

time stamp generation.
e Hybrid Concurrency Control: It is a combination of the Lock and time

stamp based concurrency control mechanisms.

2.5 Previous work on Parallelizing of the Rete-Match Algorithm

The research efforts toward parallelizing the Rete-Match algorithm can be

classified into the following three main categories [32].

2.5.1 Speeding up the match phase by faster sequential algorithm

Charles Forgy [18], encouraged researchers to work on Parallelizing this
algorithm as he was concluding his PHD. thesis "On the Efficient Implementation of
Production System" where he first introduced the Rete-Match algorithm. He also
pointed that since the Rete-Match algorithm is 2 memory limited, this algorithm is not
amenable to uniprocessoror techniques like putting more data paths in the machine,
pipelining the processors, or using special functional unit. His one page conclusion on
Parallelizing this algorithm was the first road sign.

Miranker, D.P. [42] proposed a new version of the Rete-Match algorithm that he
called TREAT. This algorithm resolves the ineffective network updates procedure
that is used by Rete. In TREAT, a modify action is still implemented as a deletion and

an addition, but the state of the network is stored differently. In TREAT network, the
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memory nodes are eliminated. When a new fact is added, an exhaustive search

through the network is made to determine the new rule binding. Minker showed that
in many cases the speed-up obtained in deletion is greater than the loss in addition.
Thus he concluded that TREAT obtain better performance than Rete. Minker and his
group at the University of Texas at Ausin have completed a new, highly optimized,
C-based version of OPS-5 compiler. They reported 4-15-Fold speed-up over the Rete-
Match algorithm.

Highland proposed a new version of Rete-Match algorithm that he called
YES/RETE [32]. The modify action is no longer implemented as deletion followed by
an addition. Instead, a new update-in-place operation is used. The update-in-place
operation directly changes the attributes of a fact. For the instantiation that continue
to exist after a modify action, it does not cause a network update. Only those
instantiation that are affected by the modify action are updated. The YES/RETE
algorithm has been implen.lented in KnowldgeTool and HiPER both from IBM [32] .
The main difference between KnowldgeTool and HiPER is in how the program is
compiled. HiPER achieve 3-11-fold speed-up over KnowldgeTool and regular Rete-

Match algorithm.

2.5.2 Speeding up the match phase by parallel algorithm

Carles Forgy [24] presented a parallel version of the Rete-Match algorithm on a
SIMD machine ( Illiac-IV). The idea of this algorithm can be outlined as follows.

First, divide the set of rules into 64 partitions, corresponding to the number of
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processors in Illiac-IV. Second, for each partition, construct the Rete-Network.

Third, execute the Rete-Match code sequentially on each node.

Annop Gupta [24] (a student of Charles Forgy), presented a paper on Parallelizing
the Rete-Match algorithm on the DADO machine. DADO [57] is a highly parallel
tree-structured architecture designed to execute production system at Colombia
University by Salvatore J. Stolfo and his colleagues. It consists of a very large
number (tens of thousands) of processing elements, interconnected to form a complete
binary tree. Annop Gupta extended Charles Forgy parallel version of the Rete-Match
to the DADO prototype machine and predicted to be able to processor 125
facts/seconds. The DADO machine was just a prototype. Reports on its performance
was given by Stolfo [57, 58]. Speed up of 2-31-fold has been reported.

Researchers at Honeywell CSC proposed a parallel version of Rete-Match
algorithm that is based on translating the Rete-Network into a data-flow graph that
explicitly shows the data dependencies. Similarly, operations performed in the Rete
algorithm are encapsulated into appropriate activities or tasks in the data-flow model
which can then be executed on the 'available physical processing resources [24]. No
performance evaluation is available.

Kemal Oflazer [24] in his thesis showed that the task of partitioning production
system so that work is uﬁiformly distributed is an NP-complete problem. He also
presented a more complex heuristic method for partitioning that relies on data

obtained from actual production system runs. The second part of his thesis proposes a
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new parallel algorithm for performing match for production system and proposed a

parallel architecture to execute it.

The Rete-Network was implemented using a similar kind of dataflow architecture
PESA-I which consists of 32 special purpose processor. The simulator was built using
Pascal. Only small producﬁon systems programs had been simulated. The simulated
results showed that PESA-I obtained a rate of 8000 rule firing per seconds [51].

Anoop Gupta [24] explored parallelizing Rete-Match based production system
programs on a simulated 32-64 shared-memory multiprocessor machine and reported
the following results:-

1. The Rete-Match algorithm is highly suitable for parallel implementation.

2. The amount of speed-up available from parallelism is quite limited, about 10-fold.

3. To obtain the limited speed-up, it is necessary to exploit parallelism at a very fine
granularity.

4. To exploit the suggested source of parallelism, a multiprocessor architecture with
36-64 high performance processors and special hardware support for scheduling
the fine-grain task is desirable.

He concluded his thesis with the following points. His results are based on the
analysis of existing programs (1980-1987) that were written with sequential
implementation in mind which did not reflect the true parallelism which is to be
found in programs written with parallel implementation in mind. However, he does

not expect that this would have a major impact on his resuits.
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Gupta [25] and his colleague implemented a parallel version of the Rete-Match on

the Encore Multimax shared-memory multiprocessors with 16 CPUs. This approach
exploits very fine grained parallelism and speed-up of 2-11-fold was achieved using
13 processor. The Rete-network was partitioned at the node level to obtain fine grain
parallelism.

A simulated version of the Rete-match suitable for message-passing computing
have been proposed by Acharya, Gupta, and Tambe [1], It has been simulated on the
Nectar simulator, which is a message-passing computer with low message overhead.
The simulation results indicated that speed 2-12-fold were achieved for three
programs.

Kelly and Seseviora [30,31] have proposed a distributed version of the Rete-
Match algorithm that they called Drete on a special machine CUPID that was
designed to maximize the performance of Drete. The CUPID has not been
implemented. It was only simulated on the CUPID simulator. The simulation

indicated speed-up similar to Gupta's thesis.

2.5.3 Speeding up Production Systems by Multiple Rules Firing

Pakis [47] simulated a new programming methodology called IRIS to reduce the
software complexity and to improve the parallelism in production system. IRIS
reduces the software complexity by eliminating the explicit control. The simulations

show that 6-90-fold speedup is possible to be achieved using the IRIS methodology.
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Ishida [28] has proposed a simulated parallel programming environment

consisting of analyzer that will determine the inter-instantiation data dependencies
and a set of parallel language construct (i.e. rule-set and focusing mechanism). These
constructs enable the programmer to group production rules into different rule sets
and specify the desired conflict resolution strategy. The simulation indicated that 5.11
to 7.57 fold speedup. However this environment does not provide a mechanism for
determining whether a rule set is a parallel or sequential rule-set. Instead, it is the
programmer's sole responsibility to ensure that the rule instantiations in a parallel
rule-set do not interfere with each other.

Schmloze [52,53] has proposed a simulated asynchronous distributed production
system called PARS with the following advantages:-

1. Tt obtains speed up over parallel match systems by executing multiple rule
instantiations simultaneously.

2. It obtains speed-up over synchronous production systems by eliminating
synchronization bottlenecks.

3. Itis an inexpensive solution for large-scale production system.

For a 32-processor system, PARS is almost as fast as four times. For 8-processor
system, PARS is two times as fast. However the over all speed-ups are not
spectacular.

Miranker et al [40,41] developed a parallel production language CREL which is
syntactically identical to OPS5. A CERL program is correct if and only if all eligible

serial execution paths reach correct terminal state. It is the programmer's sole
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responsibility to write correct a CERL code. As the program increases in size the

programmer’s job becomes unmanageable.

Gamble proposed (not implemented and not simulated) a2 non deterministic
parallel language called SWARM [21]. SWARN is a parallel language that provides
formal methods for specifying production system for coding and verifying production
system. No information is available yet on its performance and capability.

Kuo [35] implemented a Multiple Context Multiple Rule (MCMR) firing model.
The performance of this model was measured on the RUBIC simulator and the Intel
IPSC/2 Hypercube. The RUBIC is a simulator that was written in Common Lisp and
currently running on a Sparc Sun workstation. Speed up of 3.35 to 19.45 fold have
been obtained.

Stolfo et al. [56] implemented a prototype of the PARULEL language using
Common Lisp. PARULEL capture the inherent parallelism in production programs
using parallel production languages. It allows the programmer to develop parallel
solutions and also enjoy actual efficient, parallel execution of the resultant code.
However, it is the programmer's responsibility to write correct code which is hard to

do.



CHAPTER 3

THE LANA-MATCH MODEL

In this chapter, detailed description of the architecture of the Lana-Match Model,
a parallel version of the Rete-Match algorithm for‘ distributed memory architecture, is
presented followed by a comprehensive analysis of its correctness and complexity.
Finally, the chapter is concluded with a summary of our implementation followed

with the advantages and the disadvantages of the Lana-Match model.

3.1 The Lana-Match Computational Model Architecture

The Lana-Match Model is asynchronous master-slave parallel computational model
that consists of one Controller Processor (CP) and a one or more Slave Processors
(SP). Every SP communicates with the CP through two communication buffers. One
of these buffers is for input and the other is for output. Figure 4 outlines the Lana-

Match model architecture.
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3.1.1 The Controller Processor

The Controller Processor (CP) is a production system that consists of a Master Rete
Network (MRN), a Master Facts List (MFL), a Master Agenda (MA), an Action
Queue and a Master Engine (ME). The Controller Processor is the main console
through which the user can interface with the model. Through this console, the user
can load the rule set, insert initial facts and receive the final facts or conclusions.

a) The Master Rete-Network is the pattern and join networks generated at the
Controller Processor by compiling the rules set. These two networks are created by
the Build function of the Rete-Match algorithm at the CP. At the start-up time, these
two networks are also duplicated on every one of the Slave Processors by compiling
the same rules set on each SP.

b) The Master Facts List. All the facts are maintained in the Master Facts List.
Apart from the initial facts that are inserted directly by the user through the
Controller Processor at the start-up time, all the facts that are inserted or deleted from
the Master Facts List are generated at the Slave Processors. The SP receives a
message from the Controller Processor that contains the facts that activate an
activation. The SP executes the activation and sends back the facts that are need to be
added to (or deleted form) the MFL as a set of action commands. These action
commands are queued at the Action Queue based on their time stamp. Asserting-

facts-to or deleting-facts-from the Master Facts List activates or deactivates rules at
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the Controller Processor, which are then translated to addition (or deletion) of one or

more activation to/from the Master Agenda.

¢) The Master Agenda is a set of activations where every one of these activations

represents a rule instantiation and contains a set of pointers to the rule that it

represents and all of its activating facts. Each activation maintains the following
information:-

1) A time stamp represents the time that this activation was added to the agenda. It
is stamped by the Controller Processor at the creation time.

2) A pointer to the Slave Processor that is currently processing this activation. When
the scheduler assigns this activation to an SP, this pointer is set to point to that SP.
Otherwise it will be set to null.

3) A Pointer to the Action Commands Zone which has all the activation commands
that were generated by executing this activation at the SP.

The Action Commands Zone is just a buffer that is used by the Control Processor
to temporarily store all the additions and deletions to the MFL. In another words, the
Action Commands Zone is nothing more than a waiting zone for the resuits of
executing an activation at a Slave Processor (SP). The reason to buffer the changes
and not to apply them directly to the Master Fact List is mainly because assertion of
facts can deactivate and remove some or all the of its younger activation. Since
activations are executed in parallel, some of the younger activations can be completed
before their elder activations. If an activation is removed from the agenda by one of

its elder activation, this will remove all of the queued changes that were buffered for
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that activation. Allowing activations to execute in parallel and committing the

changes to the Master Agenda based on their time stamps is the Lana-Match model
concurrency control mechanism.

d) The Action Queue guarantees serializability. It is a circular list of slots where
every one of these slots is assigned to a slave processors every time an SP is assigned
to an activation. Each one of these slots has a pointer to the activation that it
represents and its status. The status is set to "ON" while the activation is running on
the SP and it is set to "OFF" whenever the SP completes the execution of that
activation.

¢) The Slave Processor Status Table. Every one of the SP has an entry in the Slave
Processor Status Table (SPST) at the CP. This entry is set to null if the SP is idle,
otherwise it contains the status of the corresponding Slave Processor. The status of an
SP is described by three entities; a pointer to the activation that is currently
executing, the time stamp of that activation, the Slave Processor identification
number.

f) The Master Engine. As in Figure 5, the Master Rete Network, the Master Facts
List, the Master Agenda, the Slave Processor Status Table and the Action Queue are
different data structures that are used by the Master Engine of the model to carry out
the parallel execution of the system. The Master Engine consists of the Main Loop
and different control functions such as finding a free Slave Processor, scheduling an
activation to a Slave Processor, rescheduling a Slave Processor and examining and

committing the action commands in the same sequence as they were created.
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1. Get a Free Slave Processor Function examines the Slave Processor Status Table

and returns the first Slave Processor identification number that points to a null
activation. If there is not any free Slave Processor, this function executes the
Rescheduler repeatedly to search the SPTS and return the first available free SP.
2. Schedule an activation to a Slave Processor: Given an activation and a free
Slave Processor, do the following:-
a) Set the corresponding entry for this Slave Processor at the Slave Processor
Status Table to point to the given activation.
b) Set the time stamp field for this SPTS entry to the time stamp of the given
activation.
¢) Make the activation points to the Slave Processor.
d) Buffer all the facts that activated this activation along with its time stamp
at the input buffer of the Slave Processor.
e) Change the status of the Action Queue entry for that activation to
“Running’.
3. The Rescheduler. At completion, every Slave Processor buffers all the facts
additions and deletions that were generated while its executions along with the
assigned activation time stamp at its output buffer. Every one of these facts additions
and deletion is referred to as an action command. The Rescheduler examines the
output buffer of every SP and matches the time stamp of the coming action command
with the current time stamp that this Slave Processor is pointing to at the Slave

Processors Status Table.
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If these two times match, it means that this message is a correct message and

should be buffered in the action zone of the activation that is being executed at that
particular Slave Processor. Then, the Rescheduler buffers this action command at the
action zone of the activation that is being executed at that particular Slave Processor;
makes this Slave Processor pointing to null to make it free again and marks this
activation as a completed activation. On the other hand, if these two times do not
match, this means that while this Slave Processor is executing the activation, that
activation was deactivated by its elder activations. In this case, the Rescheduler
ignores the message and all other message that are coming from this Slave Processor
with that mismatched time stamp. However, if all the SP output buffers are empty, the
Rescheduler consider that as a free time and tries to utilize this time to examine the
Action Queue and commit completed action commands based on the their time
stamps.

4. Examine & Commit Action Commands Function: This function examines the
Action Queue starting from the beginning. If the first action on the queue is
completed, execute all the action commands that are stored at the Action Zone that is
pointed to by the activation that owns this slot. Next, move forward in the queue and
do the same thing but stop at the first non completed action even if all the activations
that are queued after it were completed. This guarantees that action commands are

committed in the same sequence as they were created.
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5. The Main Loop: The Master engine executes this loop repeatedly until the end of
the Master Agenda.
LOOP until the end of the Master Agenda.
Get a free Control Processor and schedule the top activation of the agenda to it.
Remove this activation from the Master agenda.

END LOOP

3.1.2 The Slave Processors

The Slave Processors are the set of processors that are available for the
Rescheduler to choose from. This set is sometimes referred to as the Slave Processors
pool. Slave processors communicate with the Controller Processor through
asynchronous message passing mechanisms. Every one of these processors has the
full Rete-Match network MRN. It waits for messages from the CP asking to insert
facts into its local agenda. When the CP finished sending all the facts that activates
the activation that was assigned to this SP, these facts instantiate a rule at the Slave
Processor. Then, the Slave Processor fires this rule and buffers all the new generated
facts additions or deletions of facts to/from the MFL. Figure 6,7 and 8 outline the

Lana-Match computational model in an English like description.
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/* THE MASTER ENGINE */
Function Get_a_free_Slave Processor;
Function Schedule an_Activation(p,a);
Function The_Rescheduler;

Function Examine_and_Commit;
Function Remove_an_Activation (a);

/* MAIN */
LOOP Until the end of the Master Agenda
1. Get_a_free_Slave Processor(p);
2. Schedule_an_Activation(a,p);
3. Remove_an_Activation(a) ;
ENDLOOP
End

Function Get_a_free Slave Processor;
1. Examine the Slave Processors Status Table and
returns the first SP that points to Nil;
2. If there is not any, then execute the Reschedular;
End

Function Remove_an_Activation (a)
1. Set Agenda(a) = Nil;

2. Set Command_Zone(a) = Nil;
End

Function Schedule_an_activation(p,a)
1. Set PST(p).proc --> Agenda(a);
2. Set PST(p).time = Agenda(a).timestamp;
3.Send all the facts that activated Agenda(a) to
the Input buffer of the Slave processes p along wit the
Timestamp of a (Agenda(a).timestamp);
4. Set Action_Queue(a) = Running;
End

Figure 6: The Lana-Match Model Outlines (Part 1)
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Function The_Reschedular

1. Examine the output buffer of each Slave Processor;
2. FOR each processor p which completed its
Activation (i);
2.1 Read the fact additions and deletions;
2.2 Read the timestamp;
2.3 IF the timestamp = PST(p).timestamp;
- Write all the facts addition and deletions
that is generated by i to the Command_Zone(a);
- Set PST(i) -> Nil;
- Set Action_Que(a) = Completed;
ENDIF
END FOR
3. Return if at least one Slave Processor was freed;
Otherwise
3.1 Call Examine_and_Commit;
3.2 Call the reschedular;
End

THE SLAVE PROCESS
1. Examine the Input buffer repeatedly when an activation is assigned:-
1.1 Read the facts from the buffer;
1.2 Read the timestamp;
1.3 Insert these facts into its local fact list;
2.FOR each generated Activation
2.1 Execute the Action of the Activation;
2.2 Write all generated facts additions and deletion to the output buffer
of the Slave Processor;
2.3 Write the timestamp of the activation
to the output buffer;
END FOR
End

Figure 7: The Lana-Match Model Outlines (Part 2)




Function Examine_and_Commit
1. Start from the top of the Action Queue;
2. LOOP UNTIL Action_Queue(i+)=Runing;
2.1 Apply Command_zone(i) to the master agenda;
2.2 For each rule activation that is generated;
- Add that activation to the bottom of the master
Agenda with the current timestamp+;
2.3 For each activation that is deleted from the
Agenda;
- Set PST(a) = Nil;
- Remove_activation(a);
- Command_Zone(a) = Nil;
END LOOP

END

Figure 8: The Lana-Match Model Outlines (Part 3)
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3.2 The Correctness of the Lana-Match Model

The correctness of the Lana-Match Model is based on a centralized time stamp
Optimistic Concurrency Control mechanism which is a full proven database
technique [61]. In this thesis, this technique is extended to guarantee the correctness
of parallel execution of production systems. This extension is part of the contribution
of the thesis as an improvement that fills in the gap between database and production
system techniques. This mechanism was implemented as follows: at the creation time,
the CP stamps every activation that it adds to the MA with an increment integer. This
integer number is stored as part of the activation and will be used to identify this
activation and all the results that is generated from it.

In the Lana-Match model, correctness is accomplished by distributing the Master
Agenda to the Slave Processors simultaneously and letting every SP executes its
activation and passes all of its results back to the CP. These results which are either
addition or deletion actions of facts to/from the Master Fact list will not be
committed as the CP receives them. But instead, they will be queued in the Action
Queue. As the Controller Processor (CP) is free (or needs to get a free Slave
Processor), the CP executes the Examine-and-Commit function which examines and
executes the action commands that are queued at the Action Queue starting from the
top of the queue. Then, it executes the completed activations in the same sequence as
they were queued in to the AQ. This sequence is FIFO to reflect the incremental

nature of the time stamp of the activations. The Examine_and_Committ function
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continues in the same fashion and stops at the first non completed activation. This

makes sure that although the results of younger activations were obtained at the SP,
these results will not be committed until all its elder activations were completed. This
guarantees that the final effect to the Master Fact List is done exactly the same as if

the activation were executed sequentially.

3.3 The Lana-Match Model Complexity Analysis.

The expected speed-up (SP) is equal to the sequential execution costs over the
parallel execution costs. In another words, the SP is the ratio between the number of
time units that are required for the sequential execution of all the activations of the
Master Agenda on a single node and the number of time units that are required for
parallel execution of all activations on more than one node. To calculate the
sequential execution costs, let :

e N, the number of activations that were actually fired.
e N; the average number of facts per a rule instantiation.
o T, the average time that is needed to match a fact through the pattern
network
and to drive it through the join network.
o T; the average time that is required to fire a rule.
Thus, the total time that is needed to evaluate the Left-Hand-Side of a rule T

Tiws =N¢*Th 1)
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Then, the time that is needed to fire a rule equals to the total time that is needed to

evaluate the Left-Hand-Side Ty ;s and the Right-Hand-Side T; Thus, the total
execution time for a rule Tp,,. would be calculated as follows.
True = Nf*TntTs )
This makes the total execution time on a single node (Tseq) equals to the total
execution time of all the activations that are fired during the exaction of the
production system.
Tseq =N, [N*Ty;+ T €)
On the other hand, to calculate the parallel execution cost Tparallel let ,
e TI the time that is needed to evaluate the Left-Hand-Side for each rule once at the
Controller Processor.
Tl =Na*T s 4)
e T, the time that is needed to re-evaluate the Left-Hand-Side for each rule that is
assigned to all the SPs and let Ns be the number of Slave Processors.
T,= T;/Ns 5)
e T3 the time that is needed to fire all the rules in parallel. Firing all the rules in
parallel.
T3 =N,*T¢#/Ns (6)
e T, the average time that the CP needs to send all the facts for one activations to
an SP and to receive all the generated results from executing that activation.

Comunication Cost =N, *T, @)
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e This makes the parallel execution costs as follows

Terater = Ty + T2 + T3 + Comunication Cost (8)

Performance speedup is achieved when the sequential execution costs is greater

than the parallel execution costs. In another words Tpriiet < Teeq - This relation could
be expanded as follows:-

No*Tw + NJ*¥To/N; + NJ*T/Ns + N*T. <N, * (T + T) )

This relation can be simplified as follows:

To/ (Ne1) + N/ (N D) Te < T (10)

However, T, is almost constant and (Ng/N,-1) is almost one. Thus, from this
relation we can conclude that the Lana Match model performs its best speed up when
the average time that is required to fire a rule T is much greater than the average time
that the CP needs to send all the facts for one activations to an SP and to receive all

the generated results from executing that activation.

3.4 Implementing the Lana-Match Model using PVM and CLIPS

The two main ingredients to implement the Lana-Match model are a Rete-Match
based production system package and a message passing communication mechanism.
Appendix C, of this thesis summarize possible implementation alternatives for this
model. In this thesis, we decided to implement the Lana-Match Model using CLIPS

and PVM.
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The C Language Integrated Production System (CLIPS) [59-60] that was

developed at NASA's Johnson Space Center during 1985-1993 started receiving a
widespread acceptance throughout the public and private sectors to be one of the most
powerful Rete-Match based production system packages. It has more than 5000 users
including NASA sites and branches, numerous federal bureaus, govemment
contractors, more than 200 universities and many companies. Because of its
portability, extensibility, capabilities and low-cost for both the executable and the
source code, it was decided to implement the Lana-Match Model using the C
Language Integrated Production System (CLIPS). The Parallel Virtual Machine
(PVM) [8,10] permit a network of heterogeneous UNIX computers to be used as a
single large parallel computers while handling all communications and reliability
details. It provides a more efficient, powerful, reliable, popular parallel programming
environment. The development of PVM started 1989 at Oak Ridge National
Laboratory (ORNL). It was ported to almost every known UNIX machine. The PVM
system is composed of two parts; a demon that resides on all the computers of the
virtual machine and a library of PVM interface routines. These routines are user
callable routines for message passing, spawning processors, coordinating tasks, and
modifying the virtual machine. For its portability and popularity, it was decided to
use PVM to implement the Lana-Match Model in this thesis. To implement the Lana-
Match model using CLIPS & PVM on a UNIX based environment, the following

three steps were taken:
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Creating the Controller Processor: XCLIPS which is an Xwindow version of

CLIPS was modified to become the Controller Processor. This is accomplished by
creating all the data structures that are needed by the CP such as the SPST, AQ,
ME, etc. and modifying its agenda to become the Master Agenda, the fact list to
become the Master Fact List and the engine to become the Master Engine.
Modifying the engine is accomplished by transforming the firing mechanism to
make it schedule the activations to the SPs and copy every activation to the
assigned SP input buffer. Finally, the ME was made to repeatedly check the
output buffers of all of its slaves and take the passed action commands and queue
them in the Action Queue to be processed in the same sequence that their
activations were originally created on.

Creating the Slave Processor Code: A copy of CLIPS was modified to become the
Controller Processor. This was accomplished by changing the behavior of the
Line Command procedure of the package from waiting for a user response to
make it check repeatedly its local input buffer for messages from the CP.
Moreover, this copy was modified to write the final results to its output buffer as
Action Commands rather than applying it to its local fact list.

Creating the communication infrastructure: Both of these copies need to be
modified to make the CP run as a PVM master and the SP to run as a slave or
(worker using PVM terminology). This modification includes defining and

building all the needed buffers and the necessary communication mechanisms.
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3.5 Advantages of the Lana-Match Model

The Lana-Match model enjoys the following main advantages:-

1. The Lana-Match model is Adaptive. The Lana-Match model is a very adaptive
approach in which adding a Slave Processor is accomplished easily just by
copying the Rete-Match network on that node and declaring that node to be ready
for the CP.

2. Heterogeneity. The Lana Match Model was designed to be a very heterogeneous
model. It was designed to allow heterogeneity at three levels. First, at the network
level since the Slave Processors and the Control Processors can be executed on
any network as long as they can communicate via message passing. Second, at the
production system level since the Slave Processor and the Control Processor can
be implemented using any production system as long as it can be modified to
communicate with the Controller Processor. However, the Controller Processor
needs to be developed using a production system package that is based on the
Rete Match algorithm. Third, at the node (or the processor) level, heterogeneous
nodes that can communicate through message passing mechanism.

3. Practicality. The main motivation for developing the Lana-Match model is to
take a practical approach to develop a parallel version of the Rete-Match
algorithm that can lead to a real implementation. This need raised as we noticed
that most of the research that was reported in this area was either based on a

shared memory architecture or was based on a special architecture. Moreover, it
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was also noticed that nine out of twelve of the previous approaches to this study

were based on simulation rather than real implementation [24-26, 28-35, 40-45] .
Therefore, we thought a practical real implementation approach is highly needed
for this algorithm.

. Exploits Run Time Parallelism. The Lana-Match Model was designed to exploit
run time parallelism opportunities which are more fruitful than compile time
analysis that was taken by ten out of the twelve reported studies in this area.
Compilation time analysis does not utilize many of the parallelism opportunity
that can be utilized at the run time. As an example, let us say that we have only
one rule to fire and 10000 run time instantiations for that rule. In this case,
compilation time analysis does not foresee any chance for parallelism while it is
obvious that there are, at least, 10000 chances for parallelism (assuming the
instantiations are independent).

. Reliability. The Lana-Match model was designed to have a great immunity form
losing a node on the network. This is mainly true because the Slave Processors do
not store any status. They are only created to be assigned tasks to execute and at
the end, they are destroyed. It is perfectly true, that the system can start with N
processors and end with less processors without effecting the final results.
However, the model is not immune from the death of the CP (i.e. if the CP crush
the model will be dead and will leave all the SPs behind it).

. No Interaction From the Programmer. The Lana-Match model does not leave

any responsibility on the programmer to develop parallel production systems that
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are as correct as their sequential versions. But instead, the Lana-Match model asks

the programmer to write only a set of rules and leave all the rest to be addressed
by the system.

7. Filled In the Gap Between Database and Knowledge Base Concurrency
Control Mechanism. In this thesis, we demonstrated this by showing the
applicability of some of the techniques of distributed database serializability
theory and concurrency control mechanisms to solve the parallel rule firing

production systems.

3.6 Disadvantages of the Lana-Match Model.

The Lana-Match Model could be criticized with the following concemns:-

1. The Controller Processor Can be a Memory Intensive Processor. Since the
Lana-Match Model utilizes the optimistic concurrency control mechanism, it
requires high memory to store intermediate results before committing changes.
However, this cost is well justified at the database area and we think it is also well
justified in our approach by the speed up that it delivers.

2. The Controller Processor Can Be a Bottle-neck. For extremely large
production systems where the Controller Processor can not keep up with the Slave
Processors, some of the Slave Processors can be kept waiting. One approach to

address this issue is to utilize the heterogeneity feature of the model that allows
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different computers and networks to be used for implementation by executing the

Controller Processor on a more powerful node while executing the Slave
Processors on less powerful nodes. Another approach is to execute more than one

Slave Processors at one node.

. Redundant Execution of the Rules. Since the CP sends facts to the SPs to

activate rules, some facts may activate more than the targeted rule. This mean we
activated the same rule more than once. This contributes to the redundant

execution of the rules and increases the execution time.



CHAPTER 4

RESULTS AND ANALYSIS

This chapter contains a comprehensive analysis of the performance of our
implantation of the Lana-Match model. It was measured in an environment that
consists of more than 500 Sun workstations that are connected through FDDI (i.e has
around 100MB/Second throughput). Clusters of 2, 4, 8, 16, 32 and 64 workstations
were used to measure the Lana-Match performance. Most of these workstations were
Sun SPARCstation 10 model with few SPARC stations LX model. Although this
network was not dedicated for these tests, all of the measurements were taken when
the network was almost dedicated during weekend.s and after working hours. The total
elapse time for the sequential execution of the Rete-Match algorithm was measured
by running the rules on the original implementation of CLIPS on a SPARC station 10
workstation. This time is measured as the difference between the system time when
CLIPS start processing the agenda and the system time when it complete it. The total
elapsed time of the Lana-Match model was measured as the difference between the
system time when the CP starts scheduling the first activation of the Master Agenda
and the system time when the CP commit all the Action Commands of the last

activation of the Master Agenda. The CP was running on a SPARC station 20
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workstation while the SP's were running mostly on Sun SPARC stations 10

workstation.

In section 3.3, the thoratical analysis of the Lana Matching model conclude that
the average time that is required to fire a rule T; and the average time that is required
by the CP to send all the facts for one activations to a SP and to receive all the
generated results from executing that activation T,, were identified as the two mauin
parameters that influence the performance of the Lana-Match model. The Lana
Matching Model perform its best when T is much larger than T,. (i.e Ty >> T,). The
following five test cases were designed to study the impact of these parameters on the
over all performance of this implementation of the Lana-Match model and to identify
the best conditions at which the Lana-Match performs the best.

e Case-1: Totally Independent Light Action Instantiations, T, is much greater than

T..

e (Case-2: Totally Independent Heavy Action Rules, T is much smaller than T,.
e (Case-3: Enabling Dependent Rules with Additions, T is larger than T..
e Case-4: Enabling Dependent Rules with few Additions and Deletions, this is

similar to case-3, Tylarger than T,.

e Case-5: Enabling Dependent Rules with many Additions and Deletions, this is

similar to case 3 and case 4, except that T¢larger than T
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4.1 Case 1: Totally Independent Light Action Instantiations

Light Actions instantiations are rules that the majority of their actions (i.e. RHS)
requires very little CPU time. In another words, Light Action Instantiations are those
ones with the average number of time units that are required to fire a rule T; is very
small. Five tests were designed with 1000, 3000, 5000, 7000 and 9000 of totally
independent Light Action instantiations.

This case is demonstrated by Example 1 in Figure 9. It consists of one rule which
requires a pair of facts to instantiate it and performs a simple action that consists of a
simple PRINT statement that prints "Hello World". The performance of the Lana-
Match model was measured for this case by instantiating the given rule 1000, 3000,
5000, 7000 and 9000 times by inserting 1000, 3000, 5000, 7000 and 9000 pairs of
facts at the start-up time respectively. Figure 10 shows that the time that is required to
execute these instantiations on clusters of 2, 4, 8, 16, 32 and 64 processors.

Figure 11 concludes that the Lana-Match model requires more time than the
sequential version of the Rete-Match algorithm if the majority of the actions of the
rules has light action as its RHS. This result is mainly due to big difference between
the communication costs and the saving of parallelization. In another words, T, <<

T,. Table 1 and Table 2 show the actual measured data for this case.
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EXAMPLE 1

(defrule R1 " This is the only rule for case-1 !!!!"
(pointl ?x ?y)
(point2 ?y %)
=>

( printout t "Hello world !!!!!" crlf')

)

(deffacts startup "Initially insert 1000, 3000, 5000, 7000 and 9000 pair of
facts for Test-1, Test-2, Test-3, Test-4, and Test-5"
(pointl 1 2)
(point2 2 1)
(pointl 1 3)
(point2 3 1)
(pointl 1 4)
(point2 4 1)

Figure 9 : Example of case 1
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4.2 Case 2: Totally Independent Heavy Action Instantiations

Heavy Actions instantiations are rules that the- majority of their actions (i.e. RHS)
requires a lot of CPU time. In another words, Light Action Instantiations are those
one with the average number of time units that are required to fire a rule Ty is very
large. Five tests were designed with 1000, 3000, 5000, 7000 and 9000 of totally
independent Light Action instantiations.

This case is demonstrated by Example 2 in Figure 12. It consists of one rule
which requires a pair of facts to instantiate it and performs a heavy action on its RHS
that consists of busy waiting of a WHILE loop statement. This WHILE statement rule
makes the firing of the rule uses more CPU time. The performance of the Lana-Match
model was measured for this case by conducting five different tests. These tests
instantiated the given rule 1000, 3000, 5000, 7000 and 9000 times by inserting 1000,
3000, 5000, 7000 and 9000 pairs of facts at the start-up time respectively. Figure 13
shows that the time that is required to execute these instantiations on clusters 2, 4, 8,
16, 32 and 64 processors.

Figure 14 concludes that the Lana-Match model does achieve a significant speed
up with respect to the number of processors in situations where the rule set consists of
a very large number of independent rules were every rule has a heavy action to

perform. Table 3 and Table 4 show the actual measured data for this case.
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EXAMPLE 2

(defrule R1 " This is the only rule for case-2 !!!!"
(pointl ?x ?y)
(point2 %y 7x)
=>

( printout t "Hello world 111" crif)

(while (> (* ?y 7x) 0)(+ ?x ?y)(bind ?y (- ?y 1)))

)

(deffacts startup "Initially insert 1000, 3000, 5000, 7000 and 9000
Paris facts for Test-1, Test-2, Test-3, Test-4 and Test-5"

(point] 1 2) (point2 2 1)

(pointl 1 3) (point2 3 1)

(point] 1 4) (point2 4 1))

Figure 12 : Example of case 2
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4.3 Case 3: Enabling Dependent Rules with Additions

Enabling Dependent Instantiations are rules that activates each others in a chained
fashion in which executing an activation generates additions of facts that instantiate
more activation on the agenda.

This case is demonstrated by Example 3 in Figure 15. It consists of four rules
where the execution of these rules forms a chain of four consecutive instantiation
sequence. The first rule requires a pair of facts to instantiate it which then inserts a
pair of facts that instantiates the second rule (i.e. R2). Next, the execution of the
second rule inserts a pair of facts that instantiates the third rule (i.e. R3) and so forth.
The performance of the Lana-Match model was measured for this case by conducting
five tests. These tests instantiate these four rules 1000, 3000, 5000, 7000 and 9000
times by inserting 1000, 3000, 5000, 7000 and 9000 pairs of facts respectively. Figure
16 shows that the time that is required to execute these instantiations on clusters 2, 4,
8, 16, 32 and 64 processors.

Figure 17 concludes that the Lana-Match model does achieve a significant speed
up with respect to the number of processors. However, this speed up is not as big as
the speed up in Case 2 which is manly due to the increase on the communication
costs and the increased work for the CP. Table 5 and Table 6 show the actual

measured data for this case.
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EXAMPLE-3

(defrule R1 " This is the first rule" (pointl ?x ?y)(point2 %7y 7x)
=> (assert (point3 ?x ?y) (Point4 ?y ?x) )
(while (> (* ?y ?x) 0)(+ ?x ?y)(bind ?y (- ?y 1))) )

(defrule R2 "This is the second rule" (point3 ?x ?y )(point4 ?y 2
) => (assert (point5 ?x ?y) (Point6 ?y 7x))
(while (> (* %y 7x) 0)(+ ?x ?y)(bind ?y (- ?y 1))) )

(defrule R3 "This is the third rule " (point5 ?x ?y ) (point6 ?y ?x)
=> (assert (point7 ?x ?y) (Point8 %y ?x) )
(while (> (* ?y 7x) 0)(+ ?x ?y)(bind ?y (- ?y 1))) )

(defrule R4 " This is the forth rule " (point7 ?x ?y ) (point§ ?y ?x)

(while (> (* ?y ?x) 0)(+ 7x ?y)(bind ?y (- 7y 1)) )

(deffacts startup "Initially insert 2000, 5000, 7000 and 9000 pair of
facts for Test-1, Test-2, Test-3, and Test-4"
(pointl 1 2)(point2 2 1)....etc)

(point2 2 1)

Figure 15: Example of case 3
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4.4 Case 4: Enabling Dependent Rules with Few Additions and

Deletions

This case is an extension to case 3, in which Enabling Dependent Instantiations
activates each others in a chained fashion by additions and deletions of facts that
instantiate more or deactivate some of the activations from the agenda. However, the
percentage of additions and deletion is %50 of the total number of the other actions.

This case is demonstrated by Example 4 in Figure 18. It consists of four rules
where the execution of 50% of these rules does not add nor delete facts. However, the
other %50 cause additions and deletions of activations from the Agenda. The
performance of the Lana-Match model was measured for this case by conducting five
tests. These tests instantiate these four rules 1000, 3000, 5000, 7000 and 9000 times
by inserting 1000, 3000, 5000, 7000 and 9000 pairs of facts respectively. Figure 19
shows that the time that is required to execute these instantiations on clusters 2, 4, 8,
16, 32 and 64 processors.

Figure 20 concludes that the Lana-Match model performance decrease when
communication costs increase between the CP and the SPs. In this case, the gain is
almost negligible. This is mainly due to the increase of Tc. Table 7 and Table 8 show

the actual measured data for this case.



EXAMPLE-4

(defrule R1 " This is the first rule" (pointl” ?x ?y) (point2 %y ?x) =>
(assert (point3 ?x ?y) (Point4 ?y ?x) ) ( retract (point8 ?x ?y) (Point9 ?y 7))
(while (> (* 7y 7x) 0)(+ ?x ?y)(bind %y (- ?y 1))) )

(defrule R2 "This is the second rule " (point3 ?x ?y) (pointd 2%y ?x) =>
(assert (point5 ?x ?y) (Point6 ?y ?x) ) (retract (point3 ?x ?y) (Point4 ?y 7x) )
(while (> (* ?y ?x) 0)(+ ?x ?y)(bind %y (- 7y 1))) )

(defrule R3 "This is the third rule " (pointS ?x ?y)(point6 %y %x)=>
(while (> (* %y 7x) 0)(+ ?x ?y)(bind % (- %y 1))) )

(defrule R4 " This is the forth rule "
(while (> (* ?y ?x) 0)(+ ?x ?y)(bind %y (- ?y 1)) )
(deffacts startup "Initially insert 1000, 3000, 5000, 7000 and 9000 pair of

facts for Test-1, Test-2, Test-3, Test-4, and Test-5"
(pointl 1 2)(point2 2 1)....etc

Figure 18: Example of case 4



65

"Wl ], PAANSBIA] [BNJOY ¢ UOHIIP PuUE SUOHIPPE MO} PIM safny yuapuadoq Susqeury 16y 2anSig

S10SS9001d 9AE|S JO JOqWINN
08 09 oy 0¢ 0
| | | | 0
19V 0006 — — — T —.._\r 002
1OV 000 - - -- | | | T %M
prvyooose | ...
ovoooe —--—| T .. T008
-+ 000}
PvO000l —| ______ 1 0021
I N o 1 1] )
- 0091
suoljsjep (s)ouny,
pue suoljippe Moj YIiM sajny Juspuadaq buljgqeus




66

"dnpaads ‘ uons|ap pue suolIppe Mmo| Yyum sajny juspuadeq Bulqeus ;g amsiy

$J0SS9204d JO JaqUINN

PY 0006 —
VY 000L——
¥V 0005

PY 000€ —
Py 0004 —

000

N L
| L - 00°€

: 00°S

009
dnpaad
uonajep PooEs

pue suopippe moj yjim sajny juapuadaq Buijqeus




67

6L°L gyl 09°'L €e'e y¥'S 9
SL°L 6e’L S 052 ov'e [4
oL’L €L 134 ] 00°C JA &4 9l
80°1 ve'L XA vl 18°L 8
90°'L W'l 14 3] Sl 9ty L4
€0’} Vo'l 0'} v0'L 60°) [4
00°) 00°') 00’1 00°'L 00’} 2
19V 0006] 39V 0002] 39V 000S| 39V 000E] 39V 000}
"y #se2 10} paje|nojes eep dnpoads :g e|qel
6S¢Cl 8S. 60S 091 (4] 9
60t) 08 £SS £0¢ S8 (4%
1S€L GS8 209 6S¢ 111] 9L
c8tL 106 0S9 £S¢ (413 8
0¥ 1001 1174 LoV 02 \4
o9vi S0Li €SL 1414 95¢ (4
(4341 12741 c08 €05 9.¢ l
IOV 0006] IOV 000Z] 39V 000S]| PV 000€] IOV 0001

"y 8seD Ul paINSesW oW} jenjdy :/ ojqel




68

4.5 Case 5 : Enabling Dependent Rules with Many Additions and

Deletions

This case is an extension to case-3, in which Enabling Dependent Instantiations
activates each others in a chained fashion by additions and deletions of facts that
instantiate more or deactivate some of the activations from the agenda. However,
ALL actions consist of additions and deletions of activations.

This case is demonstrated by Example 5 in Eigure 21. It consists of four rules
where the execution of ALL of these add and delete facts to/from the agenda. The
performance of the Lana-Match model was measured for this case by conducting five
tests. These tests instantiate these four rules 1000, 3000, 5000, 7000 and 9000 times
by inserting 1000, 3000, 5000, 7000 and 9000 pairs of facts respectively. Figure 22
shows that the time that is required to execute these instantiations on clusters 2, 4, 8,
16, 32 and 64 processors.

Figure 23 concludes that the Lana-Match model is not suitable when
communication costs is very high between the CP 'and the SPs. In this case the gain is
almost negligible. This is mainly due to the large of Tc. Table 9 and Table 10 show

the actual measured data for this case.
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EXAMPLE-5

(defrule R1 " This is the first rule” (pointl- ?x ?y)(point2 %y %) =>
(assert (point3 ?x ?y) (Pointd %y 7x) ) ( retract (point8 ?x ?y) (Point9 7y 7x) )
(while (> (* 7y 7x) 0)(+ ?x ?y)(bind %y (- 7y 1))) )

(defrule R2 "This is the second rule " (point3 ?x ?y)(point4 ?y ?x) =>
(assert (point5 ?x ?y) (Point6 ?y ?x) ) (retract (point3 ?x ?y) (Point4 ?y ?7x) )
(while (> (* ?y 7x) 0)(+ ?x ?y)(bind %y (- ?y 1))) )

(defrule R3 "This is the third rule " (pointS ?x % ) (point6 %y 7x)=>
(assert (point5 ?7x ?y) (Point6 ?y ?x) ) (retract (point3 ?x ?y) (Point4 ?y 7x) )
(while (> (* %y ?7x) 0)(+ ?x ?y)(bind ?y (- %y 1))) )

(defrule R4 " This is the forth rule " (point7 7x ?y) (point8 %y %) =>
(while (> (* %y 7x) 0)(+ 7x ?y)(bind ?y (- 7y 1))) )
(deffacts startup "Initially insert 1000, 3000, 5000, 7000 and 9000 pair of

facts for Test-1, Test-2, Test-3, Test-4, and Test-S"
(pointl 1 2)(point2 2 1)....etc)

Figure 21: Example of case 5
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

The parallel version of the Rete-Match algorithm that is presented in this thesis for
distributed memory architecture is proven to be a very practical approach which is
reliable, relatively easier to implement, heterogeneous, scaleable and low
communication message passing version of the Rete-Match algorithm. It utilizes run
time chances for parallelism to exploit very high degree of parallelism. Another
important feature of the model is that its correctness is guaranteed by the system rather
than leaving it to be handled by the user, unlike most of the other attempts. The C
Language Integrated Production System (CLIPS) and Parallel Virtual Machine (PVM)
based implementation show that the Lana-Match model does achieve a significant
speed up with respect to the number of processors in situations where the rule set
consists of a very large number of independent rules where every rule has a heavy
action to perform. On the other hand, the Lana-Match model requires more time than
the sequential version of the Rete-Match algorithm if the majority of the actions of the
rules has light action as its RHS. In another words, Ty << T.. The Lana-Match model

is not suitable when communication costs is very high between the CP and the SPs that
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is mainly due to the large Tc. However, very large number of independent heavy

actions rule are becoming common in some of the new production based system. This
makes the speed up and the adaptive feature of the model make the results of this
thesis represent major improvement to the Rete-Match algorithm.

More work and analysis is needed to automate or provide utilities that would help
balance the load between the Controller Processor and the Slave Processors. The
Lana-Match model has enough flexibility to make it balance its load. In this thesis, it is
recommended to always keep the Controller Processor on the fastest node on the
network and match its speed by distributing enough slave processors on different
nodes. However, investigating the distribution of the load in a more systematic manure

is recommended.

5.2 Directions for Future Research

The Lana-Match model can still gain some more improvement by further
investigation of some of the following suggestions:-

1. Cooperating Knowledge Base System: The Lana-Match model can easily be
extended to build cooperating knowledge base systems which are gaining more
interest these days as a more realistic model for realizing how a group of experts
cooperate to address a single problem. This is accomplished by eliminating the
Controller Processor of the Lana-Match model which transforms the Lana-Match

model into a non-master/salve version. The new yielding version can then be
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further modified to address many of the issues that need to be addressed by

cooperating knowledge base systems. We believe that most of the issues that
probably need to be addressed have already been addressed in this thesis.

. Study the Impact of HeNCE: As was explained in Appendix D, HeNCE which
was built on the top of PVYM could be an excellent tool for building the Lana-
Match model. It would be worthwhile to investigate the benefits and/or drawbacks
of replacing PVM with HeNCE as a building tool for the Lana-Match model.
However, we anticipate that, replacing PVM with HeNCE would make the model
benefit from the following planed features that FleNCE's researchers are planing to
address with the new versions of HeNCE:- fault tolerance, processor migration,
shadow execution facilities, toolkits for graphical assembly of concurrent
application from skeleton templates, hierarchical visualization of application
execution and concurrent debugging facilities.

. Implement a Heterogeneous Model of the Lana-Match Model: Although the
heterogeneity of the Lana-Match model is one of its main features, this feature was
not utilized. In this thesis, we think that it would be worthwhile to implement and
evaluate heterogeneous parallel versions of this model; either using heterogeneous
knowledge bases systems languages, heterogeneous computers, and/or
heterogeneous computer network.

. Fine Grain Parallelization of the Controller Processor: As was explained earlier,
the Controller Processor can benefit from most of the fine grain improvements

ideas and research that are suggested to improve the performance of the Rete-



76
Match algorithm. We think it would be worthwhile to try to speed up the

Controller Processor of the Lana-Match model using some of these fine grain

parallelization suggestions.



Appendix A

The Rete-Match Details

The Rete-Match state machine can be described by describing the Build, Match,
Drive, Retract, Conflict resolution and the Engine functions. The behavior of these
function diatribes what is being referred to as the Rete-Match algorithm. Figure-1
outlines the Rete-Match machine.

The Rete-Match Functions

1) Build Function

Objective:
To build the Pattern Network and the Join Network.

Description:

The build performs the following tasks on each LHS of each production:-
Determine the location of each variable within the pattern.
Check the semantic of using these variables and report errors if exist.
analyze LHS to determine where variables are being bound.
For every field in a pattern, generates a pattern network expression.
For every pattern in the LHS, generates a join network expression.
Integrate information and expressions generated into the pattern network
and the join network. As, much as possible, all expressions generated in
should be integrated in the pattern network.
7. Take advantages of the potential to share common expression a among

pattern and joins.

IS el

2) Match Function

Objective:

Search the pattern network to find all the patterns that match the inserted fact and
store this fact at the Alpha memory of the leaf (end node) of every successfully
matched pattern.

Description:
Search the pattern network (tree) in a Depth First Search fashion.
1. Set a marker at the first field of the fact and set a pointer at the root of
the pattern network.
2. If the pattern node intended to match a single field



78
Then
If no expression is associated with the pattern node
then increment the fact marker and go one node down
else if (evaluate expression of this node with the current field)
Then
increment the fact marker and go one node down
then Backtrack because of unsuccessful match.
3. If (successful match) then
Store this fact in the Alpha memory of the leaf node
Call Drive function to drive this fact to all the join nodes connected
to this leaf pattern node.
3) Drive Function

Objective:
Update the join network when ever an added fact has successfully matched a
pattern the pattern network.

Description

Notes:

1. When a new fact is being asserted in the join network, the Drive function
handles high-level updating of the join network.

2. All Pattern nodes enter the join nodes from the RHS, but all join nodes enter
other
other join nodes from the LHS.

3. If the join was entered from the LHS, the partial match is stored in the Beta
memory of the join. Partial matches entering from the RHS are already stored
in the Alpha memory of the pattern network.

Algorithm
1. If the join being updated is a terminator join (i.e. the last join of a rule)
Then
Add an activation to the Agenda.
2. If the join being updated is a single entry join
Then
If LHS entry form a pattern node
Then
A copy of the alpha partial match is made and sent to the child joins of
the current join using the Drive function recursively.
If LHS is from a NOT join node
Then
If (the count of facts matching the condition element) > 0
Then Increment the counter
Else Set the counter = 1
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Remove this partial match from all the descendent join
3. If (the join being updated is a double entry join) Then
If No expression is associated with the node
Then EXP_VALUE =TRUE
Else EXP_VALUE = CALL_FUNCTION COMPARE
IfEXP_VALUE =TRUE
THEN
If +RHS & +LHS THEN
Send the concatenation of the Alpha and the Beta memory
to all child joins of the current join using the Drive

If +RHS & -LHS & Partial match is entering from the LHS Then
IF At the end of all memory comparison, count =0
Create a new partial match by adding this fact to the
match in the Beta memory
If +RHS & -LHS & Partial Match is entering from the RHS Then
If count > 0 Then Count = Count + 1
Else
Count=1
Remove all partial matches that contain this fact from
all the descendent join of the current node.
FUNCTION COMPARE
If the join was entered from the RHS
Then
Compare the entering partial match to each partial match in the B-Mem
If the join was entered from the KHS
Then
Compare the entering partial match to each partial match in Alpha-Mem.
END COMPARE

4) Retract Function
Objective:
Update the join network when ever a deleted fact has successfully matched a

pattern in the pattern network.

Description
It performs the opposite function as the Drive function.
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5) Conflict Resolution Function

Objective:

Place a new activation on the agenda based on the current conflict resolution
strategy The agenda is the list of the rules which have their conditions
satisfied and have not yet being executed.

Description

Newly activated rules are placed above all rules of lower salience and above
all rules of higher salience. Among rules of equal salience, the current
conflict resolution strategies is used. The current conflict resolution rules is
any one of the following:-

1) Depth Strategy : Newly activated rule is placed on the top of rules of the same
salience.

2) Breadth strategy: Newly activated rule is placed below all rules of the same
salience.

3) Simplicity Strategy: Among rules of the same salience, newly activated rule is
placed on the top of all rules with equal or higher number of comparisons that
must be performed on the LHS.

4) Complexity Strategy : Among rules of the same salience, newly activated rule
is placed on the top of all rules with equal or lower number of comparisons
that must be performed on the LHS.

5) Recency Strategy : Among rules of the same salience, newly activated rule is
placed based on its recency.

6) Index strategy: Among rules of the same salience, newly activated rule is
placed based on its index.

7) Random Strategy : Among rules of the same salience, newly activated rule is
placed randomly.

6) Engine Function
Objective:

Fire all rules until the agenda is empty, or rule execution errors occurred.



Description
While the agenda is not empty
Perform all the actions of the RHS of the rule on the top of the agenda.
(add a fact or delete a fact)
Remove this activation from the top of the agenda.
Refresh the agenda.
End While.
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Appendix B

Characteristics of Parallel and Distributed Processing

No matter what sort of parallelism we are studying (i.e. massively or regular), there
are some characteristics that are shared among all the parallel processing approaches.
These characteristics are important in understanding and classifying these approaches.
Following, is a list of most of the common characteristics[9]:

1. Granularity

The granularity of a parallel computer is the size of the units by which work is
allocated to processors. It determines the size of the processors of the machine and
affects the number of processors. There is always a trade-off between the size and the
number of processors. Parallel computers can be classified into three grain sizes:

a) Coarse-Grain Parallel Computers (CGPC):CGPC have small number of
large and complex processors. Cray computers (i.e. 2,XMP and YMP) are
good examples of coarse-grain parallel computers.

b) Medium-Grain Parallel Computer (MGPC): MGPC use inexpensive but
powerful microprocessors, such as National Semiconductor's 3200,
Motorola's MC6800 and M88000 series. Most commercial parallel
computers systems marked today can be considered as medium-grain
parallel computers. Encore Computer's bus based Multimax, BBN's
Butterfly, and Intel's iPSC hypercube are examples of medium-grain
parallel computers.

c) Fine-Grain Parallel Computers (FGPC): FGPC use large number of small
and simple processors. The connection machine of Thinking Machines
Corporation, the STRAN and MPP of Goodyear Aerospace are examples
of fine-grain computers.

2. Throughput (or bandwidth)
It's the rate at which communication can take place between any two processors or a
processor and a memory element.

3. Latency

It is the total time required for a message to go from source to destination.
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4. Architectural Style
Parallel computers architecture can be divided into four styles:-

a)

b)

Von Neumenn-based style: It consists of interconnecting two or more Von
Neumann type uniprocessors in variety of configurations. This style is
also referred to as control-driven. Most of the parallel computers
developed to date are still based on this style. Parallel computers based on
this style are classified according to how they processor the program
instructions and data streams as follows:-

e Single Instruction Single Data ( SISD): SISD parallel computers are
the traditional Von Neumann uniprocessoror. It's based on extending
the horizontal microprogramming concept, which enable us to
interconnect multiple uniprocessors and control them simultaneously
and synchronously with very long instruction word (VLIW).

e Multiple Instruction Single Data (MISD): At any given time ,
consecutive instructions of a program are in different stages of
execution by advancing through pipelines of functional units in
staggered fashion, one function at a time. This style include vector-
array processors, pipelines processors, associative and orthogonal
Processors.

e Single Instruction Multiple Data (SIMD): In this style the N processors
may be assumed to hold identical copies of a single program, each
processor’s copy being stored in its local memory. The processors
operate synchronously, at each step, all processors execute the same
instruction, each on different datum.

e Multiple Instruction Multiple Data (MIMD): This style can support
multiple instruction streams by pipelines or separate complete
processors. This style is further classified depending how processors
and memories are connected.

Dataflow style: It is based on the concept of executing program
instructions as soon as their operands are ready instead of following the
sequence dictated by the ordering of program instruction as in the Von
Neumann style. It is also referred to as data-driven.

Reduction style: It is based on the concept of carrying out instructions
when results are needed for other calculations. Programs are viewed as
nested applications and execution proceeds by successively reducing
innermost applications according to the semantics of their respective
operators unit there are no further application. This style is referred to as
demanded-driven.
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d) Hybrid of dataflow and reduction: In this style, processors work first on

the instruction demanded of them if the corresponding operands are ready.

If the operands are not available the processor demand them from other
processors while working on lower priority items.

S. Memory System

The memory system in parallel computers can be divided into two main categories:-
a) Distributed Memory System: in this case every processor has it's own local
memory. Processors could be communicating through messages passing. b) Shared
Memory System: in this case a single memory is shared by the N processors. Through
this memory processors communicate and exchange data.



Appendix C

Parallel Production Systems Correctness

This is a quick summary for the different correctness mechanisms that were used
by the previous efforts to address the issue of providing parallel versions of the Rete-
Match algorithm. These approaches can be grouped into two main categories:-

1. Parallel Match Algorithms
Parallel match algorithms category [32] exploits fine-grained parallelism using
either one of the following two techniques:-
e Partitioning the Rete-Network and mapping the partitions onto the
Multiprocessors.
e Breaking up the memory nodes and allocating them to different processors.

The main advantage of these techniques is that there is no correctness issue to be
addressed. However, one major issue still needs to be addressed very carefully by
these two techniques. This issue is concerned with the efficient partitioning of the
network. But unfortunately, even if the network was partitioned efficiently, these
techniques are still suffering from the following drawbacks:-

a) Partitioning the network is done at the compile time for the rules which make
these techniques very static. It also prevent them from utilizing run time
opportunity for parallelism. This makes these techniques not very useful in
situations where the set of rules change dynamically, like expert systems that
adapt machine learning concepts. Another simpler case that demonstrate the short
coming of these techniques, assume we have only one rule to fire and few
thousands of facts that can instantiate few thousands instantiation of this rule.
Although that this is a good case for parallelism, these techniques can never
utilize the few thousands of chances to fire these rules in parallel.

b) Reported results for these techniques, concluded that the parallel speed up that can
be achieved is less than 10-folds regardless of the number of processor used. This
makes this techniques suffer from limited (or no) scalability.

c) These techniques do not handle the Small Cycle problem which refers to the fact
that most of the production system programs affect only few nodes at each cycle.
This simply make most of the available processors with not enough work to do.
Although, this fact can be changed by writing parallel production system
programs, but still this approach can not utilize the parallel feature of production
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system. That is what make researchers prefer the multiple parallel rule fire
approach.

2. Multiple Parallel Rule Firing Algorithms

On the other hand, multiple rule firing algorithms category [32] attempts to increase
the availability of parallelism by parallelizing not only the match phase, but all phases
of the inference cycle. It parallelize the act phase which elevate the Small Cycle
problem. It also executes different inference phases concurrently which reduce the
variance in processing time. However, the correctness of the algorithm is the main
issue to be addressed by any multiple rule firing algorithm designers. The correctness
of multiple rule firing algorithm is guaranteed by ensuring that the parallel version of
this algorithm is equivalent to the sequential version of this algorithm. Researchers
also identified two criterion that ensure this equivalence. These criterion’s are the
Compatibility and the Conversion criterion’s. The following is a brief description and
methods that were used to guarantees these criterion’s.

First. The C ibility Criteri

Selecting a set of rules that can be fired concurrently, based on the dependency these
rules share, is the hart of these two criterion’s. This means that, a set of rules
instantiations is allowed to fire concurrently if they do not interfere with each other
(i.e. firing a rule instantiation in that set does not prevent other instantiations from
being fired). This is true if there are no inter-instantiations data dependency. A set of
nonintervention rule instantiation is called a set of compatible rule instantiations.
Firing a set of compatible rule instantiations concurrently would reach a state which is
reachable if they are executed in some sequential order. But how can we determine
rule dependencies?
There are several approaches with varying degree of computational costs and storage
requirements to determine rules dependencies. However, all the reported approaches
are based on analyzing the data dependency graph that represent the rules set.
A data dependency graph G where every is a Rule Instantiation (RI) that belongs to
the rule set and every is a dependency relation that can exist between any two Rule
Instantiations. The data dependency graph is constructed by first analyzing the data
dependencies between different pairs of rule instantiations and find out all the
dependency relations that exist between them and then combining the result into a
graph using some preset dependency conditions.
There are three types of dependency-relations that can exist between any two different
pair of rule instantiations. The following is a brief description of each one of these
relations:-
1) Inhibiting Dependency: Rule Instantiation RIi is said to inhibit RIj written
RIi=>RIj if firing RIi adds or deletes facts that will make Rlj is no longer
satisfied (i.e. Deactivate it).
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2) Output Dependency: Rule Instantiation Rli and RIj are said to have output
dependencies written RIi <>Rlj if firing RIi would delete facts that were added by
firing RIj.
3) Enable Dependency: Rule Instantiation Rli is said to enable RIj written RIi URJj
if firing RIi adds or deletes facts that will make Rj satisfied (i.e. Activate it).
Constructing the data dependency graph from the above dependency relations, one
can use either of the following two dependency conditions:-
Pairwise Condition approach
Determining the set of compatible rules can be achieved using the following Pairwise
Conditions on the set of Rule Instatiotions:-
Rule Instantiation RIi and RIj are compatible if the following conditions are
satisfied:-
i) RIi does not inhibit RIj.
i) RIj does not inhibit RIi.
iii) RIi and RIj do not have output dependencies.
Although the pairwise condition guarantee that ALL sequential execution orders to be
equivalent to the parallel execution but it is very expensive to implement.

The Cyclic Condition approach
The strict requirements of the Pairwise Condition which requires that ALL sequential
execution order to be equivalent to the parallel execution is relaxed at the cyclic
condition which requires only the existence of a sequential execution that is
equivalent to the parallel execution to capture more parallelism. The cyclic condition
can be summarized as follows:-

A set of Rule Instantiations are compatible if they have no data dependency cycle.
Rule instantiations RI1, RI2, RI3 ,RI4.... and RIn form a data dependency cycle if

RI1 =RI2=>RI3=RI4=>.............. =RIn=RI1

Determining the compatible rules is done by partitioning the rule set into sets that do
not form data dependency cycle.

Since the compatibility criterion has a local view of the execution (i.e. within one
cycle), the compatibility criterion is not sufficient to guarantee the correctness of the
final solution. Thus the rule instantiation that may turns out to be right in one cycle
may turn out to be wrong in later cycle, which can make the system reach erroneous
conclusion. Therefore, the compatibility criterion is complemented by the another
criterion called the Conversion Criterion. This criterion guarantee that all execution
cycle converges to the right solution.

There are two approaches to guarantee the conversion criterion. The first of these
approach is based on a deterministic execution model while the other approach is
based on a non-deterministic computational model. Every one of these approaches is
described next:
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1. Using a Non Deterministic Computational Model: Building a parallel non
deterministic computational model is based on dividing the rule set into different
groups either manually [32], using context analysis or using a specialized
languages. Next, different conflict resolution strategies is applied to each one of
these sets. The correctness of the partitioning is left to be the programmer
responsibility. Some of the reported approaches [32] give the programmer some
utilities that can help him to guarantee the correctness of his partitioning. Other
approaches do not. Although the non deterministic model sounds fascinating
theoretically, developing and testing expert system using this approach is a
nightmare.

2. Using a Deterministic Execution Model: Programmers who develop expert system
using a deterministic computational model help the system by applying a set of
rules that describe the relations among every pair of the rule set. These rules about
the rules set are referred to as the Mete-Rule. These mete-rules explain to the
system the relations between the rules and which rules can be executed with each
other and which can not. It is the programmer’s responsibility to develop and test
his mete-rule. Although this approach sounds easy and more realistic for small
expert systems, it is extremely difficult for large scale expert systems. Another
drawback for this approach is that it does not exploit run time parallelism.



Appendix D
The Lana-Match Model Implementation Alternatives

As the old saying goes, "There are many ways to skin a cat", there are many way to
implement the Lana-Match Model. The two main ingredients to implement the Lana-
Match model are:-

1. A Rete-Match Based Production System Package

Selecting a Rete-Match based production system depends on the platforms and
network environment that your implementation would be running on. The source
code and enough knowledge of the implementation details of the selected package are
also needed. The selected package would be used to implement the Controller
Processor and also to implement the Slave Processor. This is accomplished by
transforming a copy of the selected package into a Slave Processor and another copy
into a Controller Processor. Transforming the selected package into a Slave Processor
requires modifying it to receive assertion commands form the Controller Processor
and also to translate all the assertions and deletions of facts that are generated from
firing in rules into action commands to be send pack to the controller. On the other
hand, transforming the selected package into a Controller Processor would involve
major modifications to the selected package. These modifications include, changing
the agenda into the Lana-Match Master Agenda, adding a Scheduler and a
Rescheduler. They also include changing the package engine into the Lana-Match
Main loop. The following is a list of the possible alternatives for selecting a Rete-
Match based production system package:-

a) Do It Yourself!

The first option that might seems attractive is to develop a Rete-Match based
production system package. However, this is not the best alternative. From
experience, it was noticed that, on the average, a one man year would be needed to
develop such a package. Using or buying an of- the-shelve Rete-Match based package
is a better alternative.

b) Using OPS-5

The first Rete-Match package that was ever developed is OPS-2. This package was
developed by Dr. Forgy [18]. It was implemented initially using LISP. However a C
version of this package is also available. OPS-2 was modified later on to be the OPS-
5 which was very popular package during 1970-1990.

¢) Using CLIPS
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The C Language Integrated Production System (CLIPS) [59-60] that was developed
at NASA's Johnson Space Center during 1985-1993 started receiving a widespread
acceptance throughout the public and private sectors to be one of the most powerful
Rete-Match based production system packages. CLIPS has more than 5000 users
including NASA sites and branches, numerous federal bureaus, government
contractors, 200 universities and many companies. Because of its portability,
extensibility, capabilities and low-cost for both the executable and the source code,
we decided to implement the Lana-Match Model using the C Language Integrated
Production System (CLIPS).

Integrating CLIPS with external functions or application is one of the most
important feature that we used heavily to implant the Lana-Match Model. To help us
explain the Lana-Match implementation, this section summarizes how to add external
functions to CLIPS and how to pass argument to them and return values from them.
All external functions must be described to CLIPS (as in figure-8 ) so they can be
properly accessible by CLIPS programs. User-Defied function are described to CLIPS
by modifying the function UserFunctions. This Function is found at the CLIPS source
file main.c. The following is a C code fragment that explain this. The same regular C
return() function mechanism is used to pass argument from the external function to
back CLIPS. The returned argument should have the type of the external functions.
The first step an external function should do to receive arguments from CLIPS is to
determine the number of argument that have been passed from CLIPS to the external
function. RtnArgCount() is the function that return an integer number that tells how
many argument with which this external function was called. ArgCountCheck()
function can be used to for error checking if a function expects minimum, maximum,
or exact number of arguments and ArgRangeCheck() function can be used for error
checking if a function expects a range of arguments. The next step is to receive that
argument from CLIPS. Depending on the argument type, the argument can be
received by any one of the functions that are described at table-2. In this thesis, most
of the argument that we passed were either string or integer.

d) Many Other to Come

There are also many other packages that probably did not become as popular as OPS-
5 nor CLIPS but they can still be used to build the Lana-Match Model. Many
packages are still under development or is being used on a limited scale. The main
issue here is the availability and the ease of the source code of the package.

UserFunction()

{

/* */
/* Declare your C function if necessary */

/* */

int DefineFunction(function_name,function_type,function_pointer,
actualfunctionname);
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char *function_name, *function_type, *actualfunctionname;
int (*function_pointer); }
2. A Message Passing Communication Mechanism

Having identified a Rete-Match based production system package to be transformed
into Controller Processor and Slave Processors, the next step is to decide on the
communication methods for these deferent processors. Many alternatives are
available depending on wither these processor will be executed concurrently on a
single faster CPU or they will distributed over more then one CPUs. If these
processors (CP & SPs) will be executed concurrently on a single CPU, the regular
Inter Processor Communication (IPC) mechanism can be used (i.e. Pipes, FIFOs-
Named pipes, Message Queues and Sockets). If these processors will be executed on
different CPUs, Remote Procedure Calls (RPC), Transmission Communication
Protocol / Internet Protocol (TCP/IP), Parallel Virtual Machine (PVM), Portable
Parallel Programming Paradigm (P4), HeNce or Linda can be used. Every one of
these approaches has its advantages and its disadvantages depending on the
environment that the implemented Lana-Match Model is targeted to be executed on.
The following is a brief summary of each of these approaches and a quick summary
to the advantages and disadvantages of these approaches:-

Inter Processor Communication (IPC) Level: regular Inter Processor
Communication [55] mechanisms are the best alternatives, if the Control Processor
and the Slave Processors are targeted to be executed concurrently on a single CPU.
These mechanism are based on exchanging information across the Kernel. For Unix
environment these IP mechanisms could be Pipes, FIFO named pipes, Message
Queues and Sockets. However, sockets based mechanisms are the best form of the
IPC mechanisms because they also allow access to the IP layer which make the code
easier to be changed to run on different CPUs.

Transmission Communication Protocol /Internet Protocol (TCP/IP) Level: if the
Control Processor and the Slave Processors are targeted to be executed on one or
more CPUs that are networked using Transmission Communication Protocol /Internet
Protocol (TCP/IP) [62], direct interfaces to TCP/IP protocol can be implemented to
provide communication links between these processors. Interfaces to the TCP/IP
protocol are sometimes referred to as the Network IO/ Socket interfaces. Sockets are
generalizations of the a Unix like file access mechanisms that can be used to establish
a communication links between a Control Processor and a Slave Processor. These
links are accomplished by the following sequence:- create a socket using the "socket"
system call, bind this socket to local addresses using the "bind" system call., connect
this socket to a destination addresses using the "connect" system call, sending
messages through the sockets can be done using the "write, written, send, or sendto"
system calls, receiving data though the socket can done using "read, readv, recvfrom,
or recvmsg" system calls and when finished, the socket needs to be closed. In addition
to these system calls, different Unix versions provide different system calls and
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library routines that perform useful functions related to network(e.g. "getpeername” to
determine the address of the peer to which a socket is connected, "getsockname"
returns the local address associated with a socket, "setsockopt and getsockopt” to
set/get socket options, ... etc) . The main difference between a system call and a
library routine is that system calls functions pass control back to the computer
operating system, while library routines are just like regular programming procedures.
The socket interface is becoming a very popular- and is widely supported by many
vendors. Vendors who do not offer socket facilities in their operating system often
provide a socket library routines that makes it possible for programmers to write
applications using socket calls even through the underlying operating system uses a
different set of system calls. The socket interface level is a very efficient lower level
approach. However, it requires more development and maintenance costs since the
programmer needs to develop and maintain all the code necessary to guarantee correct
and reliable communications using the given socket system calls and library routines
primitives.

Remote Procedure Call (RPC) Level: Remote Procedure Call [7] is a higher level
approach than the socket based approach. It gains its power from the Protocol
Description Language (PDL) and the RPCGIN compiler. In this approach, only the
data structure that is needed to exchange data between the Control Processor and the
Slave Processor and the different functions that would be operating on them are
needed to be described using the Protocol Description Language. These data
structures and functions are referred to as the as the communication protocol. The
RPCGIN compiler is used to translate PDL into lower level communication calls to
establish the communication mechanism. This simple abstraction makes dealing with
the complexity inherited in socket programming more manageable. However, this
approach is still suffering from a few problem areas such as: transparency and global
variables.

PVM & P4 Level: in addition to hiding the detail of the underling network, the
Parallel Virtual Machine (PVM) [10] and the Portable Programs for Parallel
Processors (P4) [8,10] permit a network of heterogeneous UNIX computers to be
used as a single large parallel computers while handling all communications and
reliability details. Thus, PVM and P4 provide a more efficient, powerful and reliable
parallel programming environment. The main differences between PVM and P4 are
the origin, the efficiency, and the popularity. The development of PVM started 1989
at Oak Ridge National Laboratory (ORNL) while the P4 was developed at the
Argonne National Laboratory during 1990. Although P4 is more efficient than PVM,
PVM is the most popular parallel programming environment. It has been ported to
almost every known machine. Moreover, most of the vendors considered PVM to be
the standard parallel programming environment. For its portability and popularity, we
decided to use PVM to implement the Lana-Match Model in this thesis. Parallel
Virtual Machine (PVM) is a software that permits a network of heterogeneous Unix
computers to be used as a single large parallel computer. The large computation
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problem can be solved by using the aggregate power of many computers. Under
PVM, a user can define a collection of serial, parallel, and vector computers appears
as one large distributed-memory computer. PVM also supports heterogeneity at the
application, machine, and network level. In other word, PVM allows application tasks
to exploit the architecture best suited to their solution. It also handles all data
conversion that may be required if two computers use different integer or floating
point representations. Finally, the virtual machine created by PVM can be
interconnected by variety of different networks.

The PVM system is composed of two parts. The first part is a daemon, called
pvmnd3 that resides on all the computers making up the virtual machine. When a user
wants to create a new virtual machine, he first creates a virtual machine by starting up
the PVM. The PVM application can then be started from a regular UNIX prompt on
any of these hosts. Multiple users can define multiple overlapping virtual machines
and each user can execute several PVM application on the same PVM machine
simultaneously. The second part of the system is a library of PVM interface routines
which are user callable routines for message passing, spawning processors,
coordinating tasks, and modifying the virtual machine. Application programs must be
linked with this library to use PVM. To create a virtual machine the pvm_mytid()
reeds to be called to enroll the main processor on its first call and generate a unique
task id (tid). After registering this processor with the PVM, the pvm_spawn() is used
to start n copies of an executable file task on the virtual machine. Finally, pvm_exit()
is used to remove this processor from PVM. However, this will not kill this processor,
but instead the processor will continue as a regular Unix processor. On the other hand,
pvm_kill(tid) kills the task that is identified by a given task id (tid). Sending a
message is composed of three steps in PVM. First, a send buffer must be initialized
by calling pvm_initsend(). Second, the message must be "packed" into this buffer
using any of the pvm_pk*() routines. Third, the complete message then should be sent
to the other processor by calling the pvm_send(). Two steps would be needed to
receive a message through PVM. The first step is to receive the data using pvm_rec().
The second is to unpack the data using the pvm_upk*() routines. The message should
be unpacked the same way as it was packed. It is important to notice that what we
presented here is a very brief summary for PVM. PVM is capable of a lot more
functions. For full information on PVM, please refer to the post script copy of all the
PVM documentation that are given with this thesis distribution software. After
installing the Lana-Match software, these documents can be found at
{SLANA _RETE/pvm/docs }  directory. However the information that PVM
functions that we described in this section is the most frequently used functions.
which we also heavily used to implement the Lana-Match Model.

HeNCE and Linda Level: On the top of PVM and P4, two more advanced parallel
programming environments are also available. These environments are HeNCE and
Linda. Heterogeneous Network Computing Environment (HeNCE) [6] is an active
research project. A prototyped of HeNCE is currently available. HeNCE is an X-
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window based software environment designed to assist scientist in developing parallel
programs that run on a network of computers. It provides the programmer with even
higher level of abstraction than PVM. In HeNCE, the programmer explicitly specifies
parallelism of a computation by drawing graphs. The nodes in a graph represent user
defined subroutines and the edges indicate parallelism and control flow.

The HeNCE programming environment consists of a set of graphical tools which
aid in the creation, compilation, execution and analysis of HeNCE programs. The
main components consist of a graph editor for writing HeNCE program, a building
tool for creating executable, and a trace tool for analyzing and debugging a program
run. These tools are integrated into a window based programming environment.
Researchers are also planning to include fault tolerance, processor migration, shadow
execution facilities, toolkits for graphical assembly of concurrent application from
skeleton templates, hierarchical visualization of application execution and concurrent
debugging facilities. Depending on the fulfillment of HeNCE promises, we think that
HeNCE would be the better alternative to implement the Lana-Match Model when
HeNCE become available. Linda is a new concurrent programming mechanism that
was introduced by Gelemter[9] as the forth basic concurrent programming
mechanism. It differs from the three basic kinds concurrent programming mechanism
of the time (i.e. monitors, message-passing and remote operations) in requiring that
messages should be added in tuple from to an environment called tuple space where
they exist independently until a processor chooses to receive them. This abstract tuple
space environment form the bases for Linda. In this model, a processor generates an
object called a tuple and place it in a globally shared collection of tuple space.
Theoretically, the object remains in the tuple space forever unless it is removed by
another processor. Linda consists mainly of the following four operations:-

out(t) : This function adds a tuple t to the tuple space.
in(t) : This function search for a tuple in the tuple space.
eval(t) : This function is similar to out(t) with exception that the tuple argument to
eval is evaluated after adding t to the tuple space.

e rd(t) : This function is similar to in(t) except that the matched tuple remains in the
tuple space.

Currently two compatible prototype implementations of Linda are available on the
top of P4. The first implementation takes advantages of the shared memory
architecture, and the other implementation utilizes the resources of networked
machines. In this thesis, we see a Linda based model to be more suitable for shared
memory architecture. Thus, we don not recommend the use of Linda to implement the
Lana-Match model. However, we think that the Linda model can play a major role in
Parallelizing the Rete-Match algorithm for shared memory architecture.
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