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ABSTRACT. Image identification involves estimating the properties of an imperfect 
imaging system from an observed image prior to the restoration process.  In this 
paper we present a novel identification technique for multichannel image processing 
using the maximum likelihood estimation (ML) approach.  The image is represented 
as an autoregressive (AR) model and blur is described as a continuous spatial 
domain model, to overcome some major limitations encountered in other ML 
methods.  Cross-spectral and spatial components, which are inherent to multichannel 
imaging systems, are also incorporated in the model to improve the overall 
performance.  Also, it is shown that blur extent can be optimally identified from 
noisy color images that are degraded by uniform linear motion or out-of-focus blurs. 
 The novelty of this approach in identifying the blur of multichannel images is a 
major contribution in producing visually acceptable results which is significant for 

higher processing levels. 
 
 
 
 
 

1. INTRODUCTION 
Multichannel images refer to the type of data obtained from multiple frequency bands, 
multiple time frames, or multiple sensors.  Such images have numerous applications in 
practice, such as, medical diagnosis, forensic sciences, industrial automation, space and 
satellite imagery.  For the sake of terminology, we are going to use the term multichannel 
throughout this paper to refer to an image obtained by an imaging system that uses more than 

one sensor for the same scene. 
   

Processing multichannel images, such as smoothing, restoration, and enhancement is an 
important step before any further use or analysis.  The degradation sources for the single 
channel case, such as noise and blur, apply to the multichannel case, too.  However, an 
additional and important type of degradation that is natural to the multichannel imaging is the 
cross-channel or cross-spectral degradation.  For example, the overlapping in the cutoff 
frequency characteristics of the detectors results in cross-spectral mixing of adjacent spectral 

bands [1]. 
As in the single channel case, the multichannel identification techniques have not received 
much attention as the restoration techniques have.  As a matter of fact, even the restoration 
techniques for multichannel imaging have not received much attention.  Although it seems a 
straightforward extension of the single channel methods, the lack of multichannel image 
processing theories, the complexity of the computation involved, and the consideration of the 

cross-spectral effects between frames make the problem more difficult.  
In general, restoring each channel independently does not necessarily produce useful results 
because of neglecting the information between the channels.  Following this approach, Bescos 
et al. [2] applied conventional restoration techniques to individual color components without 
using the cross-channel information.  Also, Angwin and Kaufman [3] presented adaptive 
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filtering for color images without taking into account the correlation between the color 
components.  This resulted in a suboptimal solution.  Thus, solutions which are optimal for 
the single channel case may be suboptimal for the multichannel image when restored 
independently [1].  One of the successful approaches to overcome this problem is to model 
the correlation between the channels and incorporate it explicitly into the filtering procedure.  
Pavlovic' and Tekalp [4] employed this approach using the Kalman filtering and least squares 
parameter identification of the image parameters.  Ozkan et al. [5] applied this approach to 
Wiener restoration filters.  In an extensive study, Galatsanos [6] presented and applied this 
approach using an efficient and feasible computation algorithms including Wiener, Kalman, 
and least squares techniques, however, blur parameters were assumed to be known.  In [7], a 
multichannel Wiener filter was proposed in both the spatial and frequency domains that 
showed a reduction in computation.  Almost all of these researches deals with restoration 
techniques of multichannel images rather than the identification process.  Up-to-date, 
techniques that study the multichannel identification problem are very limited. Among the 
rare papers in this subject is the work of Pavlovic et al.[8].  Thus, this area needs to be 

extensively studied. 
In this paper we will be considering blur identification of multichannel images using the 
maximum likelihood (ML) parametric approach by modeling the blurring process in the 
continuous spatial domain.  Since this modeling overcame the limitations of the existing ML 
techniques in the monochrome case as demonstrated in [9,10], it is shown here that it also 
behaves similarly in the multichannel one, thus improving the identification and the 

restoration process.  
Considering the two familiar types of blur that can be represented in a closed form parametric 
description in the continuous domain, namely, the 1-D uniform motion blur and the 2-D out 
of focus blur, we will show how to identify the blur extent from noisy color images.  Then, by 
implementing some restoration methods available for multichannel imaging, the identified 
parameters will be used to restore the original image.  Employing the cross-channel 
information will be an important factor in the modeling.  It is shown that incorporation of 

these components produces more accurate results.   
 

2. MODELING AND FORMULATION 
Following the AR image and observation models formulations given in [4,8,11], we consider 
here the multichannel modeling where the image and observation models for the pth channel 

are represented as 
 

s p(m,n) = cpq(k, l) sq (m - k,n - l)
Rpq

∑
q=1

N

∑ + wp (m,n)
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respectively,   where N  is the  number  of  spectral  channels,  c  represent  the  model 

coefficients  coupling  the   and q channels,  

pq(k,l)

pthth
Rpq

m,n)p (m,n)
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s p

  denotes  the  support of the coefficients 
c, s is  the  undistorted  image for the q channel and w is the zero 

mean white  Gaussian  noise for the     channel.   Equations (1) and (2) can be written in a 
matrix form as 

pq(k,l)
q (th
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where,, r,w , and v are the lexicographic order of the corresponding terms in 

equations (1) and (2), C and H
s pppp

pqpqrepresent the appropriate ordering of the model and blur 
coefficients, respectively.  Further, we may write the set of equations (3) and (4) in 

lexicographic orders to get 
 

  s = Cs +w         (5) 
r = Hs +v        (6)   

 
where now, the  vectors r NM2 ×1,s,v , and ware the lexicographic order of s, r, w, and 

v, for,
ppp

pp = 1,2,..., N and q = 1,2,... , N , respectively, and where Cis the image model matrix 
and  H is the degradation or blur matrix, and both are block matrices of size (.  

Following the procedure used to derive the PDF of the observed image for the single channel 
case [9,12], we may now express the PDF of   r ,which is also Gaussian, as 
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where now, the vector Θ represents the unknown parameters, hi, j (k,l),cij (m,n),σvij

2 ,σ wi

2
r .   P r 

is the covariance matrix of block structure where elements of each block of P rr are computed 
as  

 
Prr

ij (k,l) = E[ri (m,n)r j(m + k,n + l)]     (8)   
 

for i j N, , ,...,= 1 2  where N  is the number of channels.  Notice that the matrix of  P rr  is not 
Toeplitz because of the structure of  C ,  where cross-spectral components are not the same 

in each channel.  However, each block element of  P rr  is a Toeplitz matrix and P rr
ij = [P rr

ij ]t.  
We may now express P rr in terms of C and H as 

 
P rr = E[rrt ]

= E[{H (I - C )-1w +v}{H (I - C )-1w +v}t ]

P rr

   (9)   

 
which can be simplified as 

 
= H( I - C) −1Pww( I - C )−tH t +P vv    (10)   

 
2.1 Maximum Likelihood Estimator 

The maximum likelihood estimate is obtained by maximizing the LF  [10,12].   Using (7) and 
(10), dropping all terms independent of Θand simplifying, the ML identification problem can 

be expressed as 
 

 

L(Θ) = − log{p(r ;Θ)}

= −{log(P rr ) + r tP rr
−1r}

      (11)   

 
The parameters that maximize the LF can be obtained by equating all the partial derivatives 
of the LF to zero.  However, this optimization problem is so extensive because of the number 

 



of unknowns involved.  Therefore some simplifications are necessary.  We will make the 
assumption that the model coefficients,    c   and   ij (m,n)σwi

2   ,   are estimated using the least  

square procedure.  Also, the observation noise,    σv ij

2

r

     , will be  estimated as the  variance of 

a uniform region in the different channels.  Further, we make the following practical 
assumption.  We assume that the cross channel blur is not significant.  This means that 
although the channels exhibit cross-correlation, the contribution of the blur to this correlation 
is minimal or negligible.  The major contributor to the cross-correlation is the image signal.  

Our experimental results demonstrate this. 
To be able to compute the conditional likelihood function, we make use of the structure of 

P r and apply the Toeplitz-to-circular approximation through the  DFT  for each block 
element of P.  Thus, the CLF can be written in the frequency domain as rr
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Following the formulation used in [9,10], we first express the blur PSF as a function of 

parameters Θ = [θ1, θ 2, . .. , θn]p

hp (x,y)

 in the continuous domain for channel , as 
 

 = hp(x, y;Θ)    for  (x, y) ∈ℜ p (Θ)
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where   ℜ   denotes the PSF support for channel p.   The observed image in continuous 
domain can be written as 

 

       (14) 

 
by sampling at the points (x,y) = (m∆x,n∆y)y

m,n)
, where the two intervals  ∆ and ∆  denote the 

horizontal and vertical sampling distances, respectively,( denotes discrete spatial domain 
coordinates, and  

x

r p(m,n) are the observed samples of  r p(x, y)

Pr pr q
( i,

.  This accuracy in this form 
of modeling overcomes the bandliminting assumption of the discrete model.   Also, it will 

enable us to differentiate with respect to the variable appearing in the integration limits for 
estimating the blur extent.  We may now write the cross-correlation components, j)
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 is  the  cross-correlation  function  of  the 
ideal continuous domain image s. Then, taking the DFT of (15), we have 
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where   Sr prq (k, l)  represents the DFT of  Pr pr q
( i, j)  which denotes the samples of  Pr pr q

(x, y), 
and  Hp (k,l)  denotes the samples of the continuous Fourier transform of  h  for the p (x,y;Θ)

pth
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Thus, the power spectrum for each channel reduces to  

2
+ σv p

2
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The key point here is to incorporate the  cross-spectral components and to include them in the 

computation of the power spectrum of the ideal image, Ss psq
(k, l)

Ss psp
(k,l) =

σwp

2 + Cpq(m, n)Ssp sq
(k,l)

(m ,n)

, which can be obtained from 
the AR model of (1 ) as 
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where  C  are the DFT of  the  correlation  coefficients  computed  using a least 

squares procedure.   For example,  for the RGB color image, the power spectrum for the red 
channel is fully  computed  using the power spectrum of the red spectral component including 

the  power spectra  of  the  green and blue components.   Now,  we need to compute the 
derivative of  the CLF for each channel as 
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Here,  the  derivative  of  the  power  spectrum  component,    ,  can be 

computed depending on the particular parametric form of the unknown PSF.  For example, 
for a uniform motion blur, [9,10] 
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 is given by Also, for the out-of-focus blur, 
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2.2 Implementation of the ML Estimator 
The multichannel estimation procedure can be described by the following algorithm: 

1) Estimate { and cpq (m,n)}σwi

2 for the different channels using least squares procedure 

σv
2 from a uniform region in the different channels 2)  Estimate 
3)  Compute Ss psp

(k, l)

H p(k,l)

 using (19) and employing the cross spectral components. 

4) Use the parametric form of the specific PSF, namely uniform blur or out-of focus blur, and 
set the parameter,Θ, to some initial values. 

DO UNTIL  convergence criterion is satisfied 
2

  using (22) or (24) depending on the parametric form chosen. 5)  Compute 
6)  Given σv

2 , compute Sr pr p (k,l) using (18). 
7)  Compute the value of CLF using (12). 

8 ( Compute the derivative of the CLF with respect to the unknown parameter using 
     (20) and either (21) or (23).  Again depending on the parametric form chosen. 

9) Update Θ using a gradient based numerical optimization technique. 
END UNTIL 

3. EXPERIMENTAL RESULTS 
Using the above described procedure for blur identification, several experiments were 
successfully conducted on color images that were blurred by uniform linear motion or out-of-
focus blur.  Here, we present the results uniform motion blur experiments that were conducted 
using the original color image of " TANK" as in Figure 1.   We blurred this image by uniform 

motion blur of size a =10 and additive noise equivalent to  SNR=40 dB as shown in Figure 2. 
The identified parameter was computed without cross spectral correlation (i.e. independent 

channels) and the blur extent estimated was about a=7.5 for each channel.  The blur extent 
estimated by the above multichannel procedure, i.e. including the cross spectral components, 

was estimated as a=9.  The restoration results using the estimated parameters of the two 
cases are shown in figures 3 and 4, respectively.  We note here that we are dealing with PSF 

that is expressed as a function of one parameter.  The identified parameter a was computed 
for each channel while including the cross-spectral components of the other channels.  

 



Clearly, since the channels were blurred with the same PSF, we should expect the estimated 
extent a to be the same in all channels.   

To test the performance of this method with noise, we blurred the " TANK " image with a 
uniform motion blur of extent a=10 and separately added Gaussian noise that corresponds to 

SNR of 10, 20, 30, 40, and 50 dB.  The blur extent we estimated using both the independent 
identification method and the multichannel approach described here.  The results are shown in 
Table1.  We observe that the multichannel approach gives better results than the independent 
identification.  Obviously, this improvement is due to the inclusion of the cross-spectral 

components.  Although at low SNR levels the improvement is moderate, the fact that cross-
spectral component incorporation produce better results is still valid. 

 
4. CONCLUSION 

To summarize, we may say that the novel approach outlined in this paper is very useful in 
identifying blur extents of uniform motion or out-of-focus degradations and can be used 

satisfactory for SNR levels more than 20dB.  This contribution is very important in the field 
of image restoration since multichannel identification techniques are few and limited in 

performance.  
 
 

 



 
 

    
Figure 1. The original color "TANK" image.   Figure 2.  The blurred "TANK" image with  

        uniform motion blur of extent a=10 
 
 
 
 

    
Figure 3.  The restored "TANK" image      Figure 4. The restored " TANK" image using  

 using the identified parameter of a=7.5     the identified parameter of a=9 including 
 without including the cross-spectral    the cross-spectral correlation.  

correlation 
 

 (Note: The images appear here in gray levels due to printing limitations.  Full color images can be seen in the  
CD-ROM version of the proceedings) 

 



Table 1.  The identified blur extents for the TANK image that was degraded by uniform
motion blur of size    =10 at different noise levels.  The independent blur identification
and the multichannel blur identification  refer to estimating the blur from each channel
without and with cross-spectral components, respectively.

Independent blur identification Multichannel blur identification

Channel R Channel G Channel B Channel R Channel G Channel B

10 7.1 7 7.1 7.5 7.5 7.6

 

20 7.2 7.3 7.2 8.2 8.1 8.1

30 7.3 7.3 7.3 8.5 8.5 8.5

40 7.5 7.4 7.5 9 8.9 9

50 7.8 7.8 7.9 9.3 9.3 9.4

SNR
(dB )

a
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