

Use of On-line Taxonomies in Creating Global Schemas

Mohammad Shafique Al-Shishtawi and Muhammad Shafique

King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

ABSTRACT: Two approaches for integrating heterogeneous database
schemas based on the concept of a global schema are surveyed. The
first approach relies heavily on manual resolution of various
incompatibilities, particularly semantic, that exist among different
local database schemas. The second handles this resolution
automatically. In this work, usage of an on-line general taxonomy as a
tool for resolving various incompatibilities among component
schemas is introduced. This tool is a part of an on-going research for
developing a new methodology for integrating heterogeneous database
schemas using an on-line general taxonomy. Many advantages offered
by the tool are discussed.

Keywords: Schema integration, semantic resolution, heterogeneous
databases, federated databases, taxonomy

1. Introduction

Dependency on computer support to facilitate organizations’ as well as individuals’ daily
work has become the norm. One of the major facilities computers offer is information
systems. Potentially, these systems are based on different data models, managed by different
incompatible DBMSs and run under different environments. Such systems are referred to as
heterogeneous database systems. Frequently, users may need to access heterogeneous
databases to acquire information. Should these databases satisfy user requests, they must be
integrated. [1]

There are three different approaches for integrating heterogeneous databases: total
integration, partial integration and interoperability [3]. One way of achieving total integration
is via creating a global schema [1]. This work introduces a new methodology of integrating
local schemas. It starts where the procedure discussed in [2] does and applies the concept of
identifying semantically similar entities found in [1] to automate the process of semantic
resolution. Object-oriented concepts are used as a structural framework in the new
methodology. The new methodology combines the advantages of the work upon which it is
based and avoids major disadvantages.

Section 2 presents basic concepts fundamental to this work. Section 3 summarizes a
procedure for building a global schema. In section 4, an automatic way of identifying
semantically similar entities is described. Section 5 introduces the new hybrid methodology.
The last section, section 6, concludes the work.

 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266089591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Basic Concepts

2.1. Integration Process

As mentioned above, users may need to access information stored in autonomous databases.
To achieve this, these databases have to be integrated. There are several problems, however,
raised by autonomy. The major ones are: [1]

� Different data models may be used to model different databases, which may result
in completely different conceptualization of information.

� Changes at any level in individual databases may take place without taking
permission or even notifying database administrators (DBA) of other databases.

� Participation in the global database takes place without any modification to the
local databases. In addition, getting involved in different global activities is totally
up to the local DBA.

� Different kinds of incompatibilities (summarized in the next section) may exist
among data entities. [3]

One approach for integrating heterogeneous databases is based on creating a permanent
global schema. A global schema is basically another schema on top of the local schemas. It
provides an integrated view to global users. It does not, however, provide any control over
local DBAs decisions (an implication of autonomy). [1]

In order to create the global schema, local DBAs (which are assumed to have
comprehensive knowledge about their own databases) are consulted by the global DBA to
solve the syntactic and semantic conflicts among entities in local databases. When the global
schema is completed, each node should copy it locally in order to achieve integration. This
approach suffers from several disadvantages: [1]

� The global schema can be huge in size. Nodes having limited storage may not be
able to participate in the global system.

� Resolving semantic and syntactic differences the way described is very hectic, time
consuming and labor intensive.

� Local database schemes may be changed arbitrarily and these changes must be
reflected on the global schema.

2.2. Incompatibilities

Incompatibilities may occur in the structural representation of data. Moreover, semantic
incompatibilities and data inconsistencies are also very probable. These incompatibilities
occur due to: [3]

� Real world entities are perceived differently by different individuals.
� Individual differences in data modeling skills of schema designers.
� Variations in the semantic richness of data models used for different schema

definitions.

Semantic incompatibilities may take several forms. They include various conflicts. For
example, naming conflicts, identity conflicts, type conflicts, key conflicts, behavioral
conflicts and scaling conflicts. Moreover, data missing from some schemas while existing in
the others is another sort of semantic incompatibility. Furthermore, inter-schema properties
and different abstraction levels may cause semantic incompatibility. Details about semantic
incompatibility may be found in [2] and [3].

Data represented in different local schemas may be quantitatively incompatible.
Reasons include: use of different accuracy levels, asynchronous updates and lack of security.
Detailed description of data incompatibility may be found in [3].

 2

2.3. Semantic Knowledge Acquisition Process

In order to integrate different schemes, relationships among entities in different schemes has
to be established. This, however, is hampered by different incompatibilities discussed above.
To solve this problem, these incompatibilities must be resolved. This, in turn, requires
collecting and incorporating missing or implied semantic knowledge for all entities present in
different schemes. [3]

The process of semantic knowledge acquisition can either be done manually or be
automated. The manual process is hectic and labor intensive. The automatic process, on the
other hand, is much easier. As complete semantic knowledge is acquired and stored, the
problem of identifying semantically similar entities, possibly represented differently, is
greatly simplified. [1]

2.4. Linguistic Concepts

It is possible to identify the semantic relationships among terms using linguistic theory. In
order to utilize the linguistic theory automatically in a system, one may need the help of good
user interfaces, and on-line dictionaries and thesauruses. The user interface should effectively
guide the user, with the help of on-line dictionaries, to determine the semantic relationships
among system entities. Basically, these entities are referred to by various linguistic terms.
These terms are called access terms. Therefore, the problem reduces to determining the
semantic relationships among these access terms. [1]

2.4.1. Semantic Relationships

Based on the semantic content, one may unify words in a taxonomy. Two semantic
relationships are of particular importance: hypernymy and synonymy. Hypernyms are more
general words. That is, words with broader meaning. Hyponyms, on the other hand, are words
with more specific meaning (opposite of hypernyms.) Synonyms can either be strong or weak.
Strong synonyms are equivalent from the semantic point of view. They can be substituted for
each other in a sentence without changing its meaning. Weak synonyms can also be
substituted for each other but with some change in the meaning of the sentence. [1]

2.4.2. Imprecision

Frequently, systems will contain information related to user requests but does not precisely
match them. This imprecision is a result of users and system designers perceiving the real
world differently. In order to deal with that properly, it is necessary to quantify the similarity
between two terms. [1]

A measure used to define the degree of similarity between two terms is called the
semantic distance metric (SDM). If all pairs of terms are connected by some combination of
hypernym-hyponym and synonym links in a taxonomy structured as a tree, the SDM is the
weighted count of the links in the path between any two terms. The path is supposed to be the
shortest path between the two terms. Well known algorithms can be used to find the shortest
path. [1]

In our work, two terms are considered semantically similar if the SDM between them
has a value of one. Higher values simply indicate that that the terms are less similar.

 3

3. Building a Global Schema

3.1. Translating Local Schemas into Component Schemas

The first step toward integration is to translate local schemas of local databases into schemas
represented in a common data model (CDM). CDM schemas are referred to as component
schemas [4]. Component schemas are needed for several reasons: [2]

� Homogenize data models
� Present an integrated view of information about different entities
� Store the implicit/explicit semantic knowledge underlying assumptions obtained

during the knowledge acquisition process described above

Four parameters for each component schema have to be derived from the corresponding
local database. These parameters are: [3]

1. The set of all distinguishable entities (objects) defined in a local database
2. The matrix specifying the relationships among the set of local objects
3. The semantic knowledge collected for each property for each object
4. The mapping knowledge which is required to construct instances of a set of objects

from data stored in the local database

3.2. Deriving the Global Schema

After deriving local object schemas, it is possible to derive the global schema. This requires
deriving four parameters from the corresponding parameters derived for each component
schema. More precisely, the following four global parameters should be derived: [3]

1. The set of objects in the global schema (global objects) and their properties
2. The matrix determining the relationships among global objects. There are three steps

involved:
� Automatic derivation based on the matrices derived for local schemas
� Manual derivation of missing relationships
� Consistency checking of the global schema

3. The semantic knowledge of global objects
4. The mapping knowledge from the global schema to various component schemas

4. Automatic Identification of Semantically Similar Entities

The objective is to automatically identify semantically similar access terms used in databases,
i.e., the names used in a database schema. To achieve that, an abstract view of access terms of
all local databases has to be created and structured in a hierarchy. At the lowest level of the
hierarchy are entry-level terms that correspond to access terms existing in local databases. At
each higher level in the hierarchy, some of the lower level entries are abstracted to form what
is called a summary schema. Summary schemas are not exact representation of their children.
They retain, however, most of the semantics contained in the children. This structure was
introduced to facilitate the processing of the summary schemas model (SSM) described in [1].

4.1. Taxonomy

The SSM requires a general hierarchical taxonomy with disambiguated definition of words
where homographs and polysemy are resolved [1]. The taxonomy should be on-line and
should combine information found in traditional dictionaries and thesauruses. It makes use of
three types of semantic links: synonyms, hypernyms, and hyponym. Hypernym and hyponym
links are reciprocal and construct the hierarchy. Synonym links, on the other hand, are
symmetric and travel across the hierarchy between subtrees and leaf nodes. Building such a

 4

taxonomy is an achievement by itself. Therefore, it is sufficient to make use of any existing
taxonomy (or a combination of them) and augment them if necessary. [1]

4.2. Creating a Hierarchy of Summary Schemas

As mentioned above, a summary schema is a group of access terms abstracted from existing
terms in local databases. The terms used in a summary schema are hypernyms of the access
terms. To simplify the matter, it is assumed that database schema access terms are the leaf
nodes and internal nodes are summary schemas. Each internal node summarizes the schemas
of its children. The whole hierarchy is five levels high (top level is level one) which makes it
easier to traverse. [1] Figure 1 below shows an example of a summary schema.

Volition

Possessive Relations

Acquisition Payment

Earnings Gain Pay

Interest Pension

Level 1 (Summary Schema)

Level 2 (Sections)

Level 3 (Heads)

Level 4 (Subheads)

Level 5 (Local DB Schema) Wage Salary

Figure 1: A Sample Summary Schema

Initially, local DBAs have to do some effort mapping all local access terms to entry-
level terms in the taxonomy. They are given the capability of automatically looking up terms
in the taxonomy where they can select the proper definition of a term. This capability
simplifies much the effort they have to make. The remaining effort for constructing (and later
maintaining) the hierarchy is simply automatic. [1]

For each entry-level in the hierarchy, a “subhead” is determined via a hypernym link.
Subheads contain, in their list of synonyms, pointers to various entry-level nodes. Similarly,
hypernym links connect higher levels to their next lower level. List of hyponym links at each
higher level, will point to hyponym terms. Hypernyms, as such, represent the summary
schemas and hyponyms are more concrete or accurate terms. [1]

5. The Integration Methodology

This section introduces a new methodology for integrating heterogeneous database
component schemas. The shaded area of Figure 2 below shows the scope of this work. The
approach combines three main ideas:

1. Integrating heterogeneous database component schemas based on building a global
schema structure.

2. Identifying semantically similar entities with the aid of an existing on-line
taxonomy.

3. The general framework of object oriented systems.

 5

L o c a l
s c h e m a 1

L o c a l
S c h e m a n

L o c a l
S c h e m a 2

C o m p o n e n t
S c h e m a n

C o m p o n e n t
S c h e m a 2

C o m p o n e n t
S c h e m a 1

G lo b a l S c h e m a

E x te rn a l
S c h e m a 1

E x te rn a l
S c h e m a m

E x te rn a l
S c h e m a 2

D B 1 D B nD B 2

In te g ra t io n M e th o d o lo g y

Figure 2: Current Work Fills in the Shaded Area

By putting together these ideas, the new methodology automates the major steps that
used to be done manually. These steps have been described briefly in section 3.2.

In section 3 above, it is mentioned that local DBAs have to create four different
parameters. With the proposed methodology, local DBAs have to do much simpler work.
They have to determine various objects in each database, map them to the corresponding
terms in the on-line taxonomy and fill in the missing or implied semantic knowledge. In
addition, this task is also simplified by the availability of on-line dictionaries and thesauruses
that can be referenced before defining objects in the local object schema. This should reduce
semantic incompatibilities to minimum.

After each local DBA translates his database into the CDM form, he has to map each
object (represented by a term in the CDM schema) to the corresponding entry in the
taxonomy.

Starting with all objects of all local databases, the global DBA has to extract various
sets of equivalent objects. Each set of equivalent objects will be represented by only one
object in the global schema.

Determination of equivalent objects is simple. If two objects were mapped to two
different entries in the taxonomy and it happens that these two entries are synonyms, then
these two objects belong to one equivalent set of objects.

5.1. The Taxonomy: A New Look

The basic building block of the new approach is the existence of an on-line general taxonomy.
The taxonomy will be used by all DBAs as a pool of their knowledge about their databases. It
will serve as a tool for resolving various incompatibilities among objects participating in the
federation.

Describing the taxonomy as “general” means that each object used within the databases
participating in the federation will have a corresponding entry in the taxonomy. Moreover,
needed properties and meta-properties of the objects will also have corresponding entries in
the taxonomy. Other objects in the world do not really have to exist in the taxonomy.

The on-line taxonomy described in section 4.1 will be used. It has to be extended,
however, to suite the new approach. One major extension is to consider the taxonomy

 6

hierarchy as a hierarchy of classes rather than just simple hierarchy of terms. Each term is
represented as a class in the hierarchy. Since the taxonomy is general, there will be classes for
all objects, properties and meta properties. Figure 3 below shows the general form of an entry
(a class) in the taxonomy.

Each class represents a level of abstraction of some real world object. Some of the
classes are linked to other classes via cross links. Such links denote that the linked classes are
synonyms.

Each class will contain various class variables. These variables correspond to properties
of the objects represented by this class. In each class, there will be class methods that are used
to achieve compatibility among compatible classes.

Precise definition of each term in the taxonomy must exist in the corresponding class.
This will aid local DBAs in determining the classes that best represent their objects.

As each term represents a real world entity, the term will possess properties that
correspond to properties of the real world entity it represents. The properties of a term are
modeled as properties (instance variables) of the corresponding class in the hierarchy. Some
of the properties may be inherited from the term’s ancestors (hypernyms).

Term
Property 1
Property 1

Property N

Method 1
Method 2

Method M

Figure 3: A Class in the Taxonomy

5.2. Capturing Semantic Knowledge

In our work, it is assumed that all needed properties of a term (a real world entity) will be
modeled in the corresponding class. This assumption is reasonable since the number of
properties is finite for any entity. Having this assumption, properties of any object in some
component schema will be a subset of the properties of the corresponding class.

Methods can also be included in the classes. Methods of a class may be its own or
inherited from an ancestor. These methods can be used to achieve compatibility among
incompatible properties.

The problem of identifying semantically similar entities is now simple. Our work
considers two entities to be semantically similar if there exist a synonym link between them in
the taxonomy hierarchy. It is not necessary to first check the equivalence among the
properties of the two objects as suggested in section 3. If two objects are found to be
equivalent this way, then they must be representing the same real world state (see 3.2). If they
do, then their sets of properties must be equivalent. Some or all of them might be
incompatible, however.

 7

5.3. Achieving Semantic Mapping among Objects

If two properties are equivalent but incompatible, then they must be made compatible.
Remember that two properties are compatible if and only if their meta properties are equal.
Moreover, two meta properties are equal if and only if their meta values are equal. If the two
properties are incompatible due to some meta property, then a transformation has to be
defined to make the two meta values compatible. In the new methodology, this can easily be
done via methods defined in the classes representing the meta properties.

5.4. An Example

To illustrate the power of this tool and to facilitate its analysis, we take the very same
schemas, schema objects and properties presented in Reddy et al. [3] use them with this tool.
We will be able to get a result equivalent of that in [3]. To simplify building the example,
schemas, objects, and object properties and meta-properties found in [3] are mentioned below:

Local Schemas and Objects
Local Schema 1 = {Emp, Faculty, Dept}
Local Schema 2 = {Employee, Visiting-Prof, Professor}
Local Schema 3 = {Temporary-Staff, V-Prof, Division}

Objects and Properties
Emp = {Emp-Id, Emp-Sal, Dept-Name}
Faculty = {Fac-Id, Fac-Pay, Fac-Specialization}
Dept = {Dept-Budget}
Employee = {E-Id, E-Sal, Div-Name, E-Rank}
Temporary-Staff = {TS-Id, Working-Hours, Wages}
Staff = {Staff-Id, Staff-Sal}

Properties and Meta-Properties
Emp-Sal = {Currency, Periodicity-of-Pay}
Dept-Budget = {Currency, Periodicity-of-Grant}

The following objects were found to be equivalent in [3]:
{Emp, Employee}
{Dept, Division}
{Visiting-Prof, V-Prof}

Figure 4 shows the super class/ subclass information found in [3].

First, a taxonomy should be selected. Figure 5 shows the parts of the selected taxonomy
significant to this example.

Second, translation of local schemas to CDM component schemas takes place. The
result of translating schema 1, schema 2 and schema 3 to the CDM is shown in Figure 6.

 8

Staff

Employee Temporary-Staff

Faculty

Professor

Visiting-Professor

Figure 4: Super class/Subclass Information in Reddy et al.

Staff

Employee Temporary-Staff

Faculty

Professor

Visiting-Professor

{Id, Salary}

{Id, Salary,
Department Name}

{Id, Working Hours,
Wages}

{Spcialization}

Organization

Division Department
{Id, Budget}

Periodicity of Pay

Daily Weekly Monthly Yearly
Budget

Periodicity of Grant

Daily Weekly Monthly Yearly

Figure 5: Parts of the Taxonomy for the Example.

 9

Em p-Id
Em p-Sal
Dept-Nam e Dept-Nam e

Dept-Budget

Period icity-of-G rant
CurrencyFac-Id

Fac-Pay
Fac-Specia lization

Em p

Dept

Faculty
Budget

TS-Id
W orking-Hours
W ages

Budget

Periodicity-of-G rant
Currency

Tem porary-S taff Division

V-Prof

Budget

E-Id
E-Sal
D iv-Nam e
E-Rank

Div-Nam e
Budget

Period icity-of-G rant
Currency

Em ployee Division

V-Prof

Budget

Com ponet Schem a 1

Professor

Com ponet Schem a 2

Com ponet Schem a 3

Legend:
: Inheritance Relationship
: Aggregation Relationship

Figure 6: Translated Schemas

Local DBAs in the next step will identify component schema access terms and find
proper taxonomy terms corresponding to them. The access terms identified in each
component schema and the corresponding taxonomy terms to which they are mapped are
mentioned below:

“Component Schema 1.Emp” mapped to “Employee”
“Component Schema 1.Faculty” mapped to “Faculty”
“Component Schema 1.Dept” mapped to “Department”

“Component Schema 2.Employee” mapped to “Employee”
“Component Schema 2.Visiting-Prof” mapped to “Visiting Professor”
“Component Schema 2.Professor” mapped to “Professor”
“Component Schema 2.Div” mapped to “Division”

“Component Schema 3.Temporary-Staff” mapped to “Temporary Staff”
“Component Schema 3.V-Prof” mapped to “Visiting Professor”
“Component Schema 3.Division” mapped to “Division”

Missing or implied semantic knowledge is then explicitly stored. Examples of this
knowledge include: “Currency” and “Periodicity of Pay” of the “Salary” property of
“Employee”, and “Currency” and “Periodicity of Grant” of the “Budget” property of
“Department”.

The global DBA can then determine equivalent objects. The global DBA should be able
to determine the same sets of equivalent objects mentioned above. Since “Component Schema
1.Emp” and “Component Schema 2.Employee” are both mapped to the same taxonomy term,

 10

“Employee”, their equivalence is obvious. Similarly, “Component Schema 2.Visiting-Prof”
and “Component Schema 3.V-Prof” are obviously equivalent. “Component Schema 1.Dept”,
“Component Schema 2.Div” and “Component Schema 3.Division” are also equivalent since
the access terms are either mapped to the same taxonomy term or to synonymous taxonomy
terms.

The global DBA should now select an access term for each set of equivalent access
terms. The following may be selected as representative access terms:
“Employee” represents “Component Schema 1.Emp” and
“Component Schema 2.Employee”
“Department” represents “Component Schema 1.Dept”,
“Component Schema 2.Div” and
“Component Schema 3.Division”
“Visiting Professor” represents “Component Schema 2.Visiting-Prof” and
“Component Schema 3.V-Prof”

“Component Schema 1.Faculty” and “Component Schema 3.Temporary-Staff” are the
only two access terms without equivalents. Their representative access terms are “Faculty”
and “Temporary Staff” respectively.

Finally, compatibility methods are to be defined. In this example, it is assumed that
“Department.Budget” is granted five times a year in Rupees while “Division.Budget” is
granted once a year in terms of Dollars. Here, the meta-properties “Periodicity of Grant” and
“Currency” have different meta-values. To achieve compatibility, an HCM (Horizontal
Compatibility Method) have to be defined in “Division” class. The method has two formal
parameters that are assigned proper values when used. In this example, it is assumed that $1 =
30 Rupees. Hence, “PoG” and “Rate” will be assigned the values: 1/5 and 30 respectively.
Figure 7 shows an outline of the method.

The method shown in Figure 7 will be invoked whenever the global data item
“Department.Budget” is queried and the local data item “Division.Budget” has data to
participate.

In this example, it is assumed that an “Employee” is paid his “Salary” in Rupees and a
“Faculty” in Dollars. Since the “Salary” property is defined in both “Employee”, the super
class, and “Faculty”, the subclass, (see Figure 5) a VCM (Vertical Compatibility Method) is
needed to resolve the conflict. If interest is in the “Salary” of the “Faculty”, the VCM should
be defined in “Employee” as shown in Figure 8. In Figure 8, “Rate” is given the value 1/30
since $1 is assumed to be equal to 30 Rupees.

Method: DivisionBudget-to-DepartmentBudget (PoG, Rate);

RETURN Budget.value × PoG × Rate
end;

Figure 7: HCM Method Resolving the Budget Conflict

Method: EmployeeSalary-to-FacultySalary (Rate);

RETURN Salary.value × Rate
end;

Figure 8: VCM Method Converting Employee Salary to Faculty Salary

 11

6. Conclusion

In this work, various concepts of particular importance to the subject of integrating
heterogeneous database schemas have been presented. Integrating heterogeneous database
schemas using global schema approach has been briefly discussed. Identifying semantically
similar entities and resolving conflicts among them has been illustrated. Using an on-line
general taxonomy as a tool for resolving incompatibilities is discussed. The taxonomy is a
“by-product” of the on-going research for developing a new methodology for integrating
heterogeneous database schemas.

Acknowledgments

The authors would like to express their deep appreciation to King Fahd University of
Petroleum and Minerals for providing the necessary facilities to accomplish this work.

References
[1] Bright, M, Hurson, A and Pakzad, S. Automated resolution of semantic heterogeneity in Multidatabases.

ACM Transactions on Database Systems, Vol. 19, No. 2, June 1994, pp. 212-253.
[2] Pitoura, E, Bukhares, O and Elmagarmid, A. Object orientation in multidatabase systems. ACM

Computing Surveys, Vol. 27, No. 2, June 1995, pp. 144-195.
[3] Reddy, M, Prasad, B, Reddy, P and Gupta, A. A methodology for integration of heterogeneous

databases. IEEE Transactions on Knowledge and Data Engineering, Vol. 6, No. 6, December 1994, pp.
920-933.

[4] Sheth, A and Larson, J. Federated database systems for managing distributed, heterogeneous, and
autonomous databases. ACM Computing Surveys, Vol. 22, No. 3, September 1990, pp. 183-236

Bibliography
[1] Batini, C and Navathe, S. A comparative analysis of methodologies for database schema integration.

ACM Computing Surveys, Vol. 18, No. 4, 1986, pp. 323-364.
[2] Batini, C. A methodology for database schema integration in the entity relationship model. IEEE

Transactions on Software Engineering, Vol. SE-10, No. 6, 1984.
[3] Bertino, E and Martino, L. Integration of heterogeneous database applications through an object-

oriented interface. Information Systems, Vol. 14, No. 5, 1989.
[4] Frog, J. Converting Relational to Object-Oriented Databases. ACM SIGMOD RECORD, Vol. 26, No 1,

1997, pp. 53-58.
[5] Kim, W and Seo, J. Classifying schematic and data heterogeneity in multidatabase systems. Computer,

Vol. 24, No. 12, Dec. 1991, pp. 12-18.
[6] Larson, J. A theory of attribute equivalence in databases with application to schema integration. IEEE

Transactions on Software Engineering, Vol. 15, No. 4, April 1989.
[7] Reddy, M, Prasad, B and Reddy, P. A Model for resolving semantic incompatibilities in integrating

heterogeneous databases. Proceedings of International Conference on Management of Data, December
1989.

[8] Reddy, M. Heterogeneous distributed database management systems: modeling and managing
heterogeneous data. Ph.D. Thesis, School of Mathematical and Computational Information Sciences,
University of Hyderabad, India, 1990.

 12

