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ABSTRACT — Successful application of the rich 
collection of classification algorithms to non-
destructive testing signals depends heavily on the 
availability of adequate and representative sets of 
training examples, whose acquisition can often be 
very expensive and time consuming. In this paper, an 
out-of-service pressure vessel known to have lots of 
high temperature hydrogen attach (HTHA) defects is 
used to develop in a cost effective manner a database 
of ultrasonic A-scan signals.  To test how adequate 
and representative these sets of A-scan signals are, a 
basic feature extraction method, coupled with a 
primitive classifier is shown to distinguish accurately 
the hydrogen attack from geometrically similar 
defects.  
 
Index Terms — Nondestructive testing, signal processing, 
classification, feature extraction, ultrasonic A-scan 
database, hydrogen attack. 
 

I. INTRODUCTION 
 

Studies have shown that manual ultrasonic 
inspection can be accurate but highly variable, 
depending on the inspection skills, training and 
emotional status or fatigue of the inspectors [1]. Many 
inaccurate inspections result from faulty instrument 
calibrations, inaccurate probe selection, or inaccurate 
interpretation of inspection results. The human factor 
when combined with variations in instrumentation, 
contribute to a lack of consistency in inspection results 
and interpretations. Considerable advancement in 
research and development in the last few decades has 
enabled nondestructive testing (NDT) to change from a 
"Black Smith" profession to an advanced 
multidisciplinary engineering profession. This has led to 
cost effective solutions of many challenging problems. 
Pipelines for instance, can now be screened without 
disturbing the production using intelligent tools such as 
pigging [2], guided wave ultrasound [3], phased arrays 
[4], etc… 
In addition, the existence of cheap computing 
capabilities has led to the development of NDT 
techniques that rely heavily on the collection and 
processing of huge measurement data that eventually 
enhance operator interpretation. Automated ultrasonic 

detection and classification (AUDC) systems are thus 
becoming increasingly popular [5]. Motivation for the 
use of such systems arises from the need for accurate 
interpretation of large volumes of inspection data, and 
minimizing errors due to human factors. AUDC systems 
consist of three major parts namely pre-processing, 
features extraction, and classification. A number of 
supervised and unsupervised classification algorithms 
[6] such as K-mean clustering algorithm, fuzzy C-
means, and more recently neural networks have been 
proposed for classifying signals. Using a suitable 
training algorithm, these networks can be trained to 
learn the correlation between features in signals and the 
type of reflector. However, the success of all such 
algorithms depends heavily on the availability of an 
adequate and representative set of training examples, 
whose acquisition is often very expensive and can be 
time consuming. For instance, application of ultrasonic 
techniques for high temperature hydrogen attack 
(HTHA) detection [7-9] requires a skilled ultrasonic 
technician with a good understanding of the mechanism 
of HTHA, and the ways it affects the propagation and 
scattering of the ultrasonic wave. 

The objective of this contribution is to create a 
reliable database for HTHA from a retired pressure 
vessel known to have many HTHA defects, and to show 
that advanced signal processing techniques can aid NDT 
technicians to correctly identify HTHA from similar 
defects found in steels.  

 
III. HIGH TEMPERATURE HYDROGEN 

ATTACK 
 

HTHA is a metal degradation phenomenon that is 
well known to occur in  carbon and low steels exposed 
to high partial pressure of hydrogen at elevated 
temperature. The source of hydrogen is the 
hydrocarbons in the flow steam. The damage is caused 
by the seepage of hydrogen that reacts with metal 
carbides to form methane gas. This reaction 
decarburizes steel, produces microcracks, and lowers the 
toughness of steel without necessarily producing a loss 
of thickeness. 

Detection of HTHA is important to assure safe 
operation of pressure vessels and piping systems 
susceptible to such damage. Application of ultrasonic 
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techniques for the detection of HTHA [7-9] requires 
high skilled technician with a good understanding of the 
mechanism of HTHA and how it affects the propagation 
and the scattering of ultrasonic waves. 
     There have been cases in the industry where 
inspectors have either missed HTHA or called it 
incorrectly [9].  Ultrasonic testing for this application is 
therefore not straightforward and requires a logical test 
methodology to detect HTHA.  In the next section, a 
complete description of the data acquisition of ultrasonic 
A-scans obtained from a retired pressure vessel known 
to have many HTHA will be outlined. 

 
II. DATABASE CREATION 

 
An out-of service pressure vessel  shown in Figure 1, 

with wall thickness 33 mm known to have many HTHA 
is used to collect RF A-scan signals for use in the 
Database. The data acquisition system consists of a 
SONATEST Masterscan 340 flaw detector, compression 
wave probes, couplant, and calibration blocks. The flaw 
detector has the capability of displaying and storing up 
to 100 RF A-scan signals. It also can transfer these 
signal to a PC via an RS 232 interface using the 
SONATEST Data Management Software (SDMS). A 
schematic of this data acquisition system is shown in 
Figure 2. 

 
Figure 1: An out-of-service pressure vessel 

 

 
Figure 2: Data acquisition system used 

After calibrating the flaw detector, the probe is 
placed on the outer wall of the 33 mm pressure vessel. A 
snapshot of the flaw detector screen is shown in Figure 
3, where 5 HTHA defects are shown to be located 
within the pressure vessel wall thickness. The time-base 
of the flaw detector is zoomed to the region of defect 5 
to isolate its A-scan signal from the rest of the defects. 
The result is shown in Figure 4. 
               
   1       Five HTHA defects   3           4       5 

 
 

Figure 3: Snapshot of the flaw detector screen showing 5 
HTHA defects located along the wall thickness. 

 
The probe is now moved randomly around the 

detected defect to record as many A-scan signals as 
possible to cover all possible measurements that can be 
obtained for this defect when different operators are 
performing the test. Next, another HTHA defect is 
detected and all possible A-scan signals are recorded in 
a similar manner. 

 

 
 

Figure 4: A snapshot of the flaw detector screen showing one 
HTHA defect 

 
This process is carried on, and each time the A-scan 

signals are transferred to a directory in the Laptop 
using the SDMS software to create a HTHA databank 
of 400 A-scan signals. 

To test the adequacy and the representativeness of 
the developed HTHA database, two other 400-A-scans 
databases of geometrically similar defects are created. 
These defects are lamination (LAM), and an artificial 
defect that consists of a flat-bottom hole (FBH).  
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IV. TESTS 
 
The pre-processing stage here consists of removing 

the DC components, and normalizing all the signals to 
have the same energy. The feature extraction stage is 
based on the principal component analysis (PCA) 
technique [10]. This technique is used abundantly in all 
forms of analysis that range from neuroscience to 
computer graphics. This technique is a simple and a 
non-parametric method of extracting relevant 
information from confusing data sets. With minimal 
additional effort, PCA provides a roadmap for reducing 
a complex data set to a lower dimension in order to 
reveal the hidden, simplified structure that often 
underlies it. This hidden information is called feature. 
Next, the extracted features are presented to a priori 
trained classifier based on nearest-neighbor criteria to 
decide on which class the inputted A-scan signal 
belongs to.  

The databases are organized in 4 sub-groups 
containing 100 A-scans each as shown in Fig.5. 

 

 
Figure 5: Organization of each database in 4 sub-groups 

of 100 scans each. 
 

 
 The AUDC system is first trained using 20 sets of 

A-scan for each class, and then tested by a set of 10 A-
scans. The training sets are therefore picked randomly 
from each sub-group (from 100 A-scans), whereas, the 
testing sets are picked randomly from the remaining 80 
A-scans of the same sub-group. This results in 
approximatively 12106.1 ×  independent possible tests. 
The AUDC system is tested 500 times and the worst 
classification result is shown in the confusion matrix 
shown in Table I below. 

 
 
 
 
 
 

Classified as   

Worst test LAM HTHA FBH 

LAM 9 0 1  

HTHA 2 7 1 

 

True class 

FBH 1 ٠  9 

 
Table I: Worst confusion matrix after 500 tests. 

 
The worst case scenario is that for instance, out of 10 
measurements, the lamination defect is detected and 
identified 9 times and missed once for the FBH. 
Similarly, the HTHA defect is detected and identified 7 
times and missed twice for lamination, and once for 
FBH defect. Alternatively, it can be seen that LAM and 
FBH have 90% classification accuracy, whereas, HTHA 
has only 70% classification accuracy. The overall 
classification accuracy can be obtained by averaging the 
diagonal elements. Here 83.33% is obtained.  

 
 

 

Figure 6: Overall classification accuracy for the three 
defects (average 99.46%). 

 
The overall classification accuracy (average of the 

diagonal elements of the confusion matrix) is not 
affected much when the system is subjected to different 
tests. For 100 independent tests, the overall 
classification accuracy is shown in Figure 6. The 
average over these tests is 99.46%. For HTHA defect, 
the classification accuracy versus the number of tests is 
shown in Figure 7, which averages to 98.4%. 
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Figure 7: classification accuracy for the HTHA 
(average=98.4%). 

 
 
 
 

V. CONCLUSION 
 

In this contribution, it is shown that with a 
commercial flaw detector, a reliable database can be 
created. HTHA is accurately classified among 
geometrically similar defects using simple feature 
extraction technique coupled with a primitive classifier. 
Thus, it is shown that the availability of reliable 
database is vital for any AUDC system to give accurate 
results that can aid unskilled NDT operator to 
distinguish between challenging defects such as HTHA 
and defects such as stringers commonly found in 
pressure vessel and piping systems. 
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