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Abstract— Tabu Search based cell placement approaches for
VLSI circuit design have shown excellent results when executed
on a single processor. However, they require significant com-
putation time. Of the various acceleration strategies attempted,
parallelization has always exhibited the most potential. The
parallel Tabu Search approach presented in this work can
be classified as a synchronous master-slave p-control, RS and
MPSS strategy. The approach is implemented on a dedicated
Linux-based cluster of workstations, using MPI libraries for
communication. Experimental results for ISCAS’89 benchmark
circuits show excellent performance in terms of scalability &
speed-up.

I. INTRODUCTION & MOTIVATION

Due to its complexity, the VLSI (Very Large Scale Inte-
gration) design process is divided into several intermediate
levels of abstraction. In this work, optimization at the physical
level, in particular the cell placement phase [1], is of concern.
Basically, placement in the process of arranging various cir-
cuit components on a layout surface. Achieving such multi
objective optimization with the sheer complexity of modern
circuit density is an NP-hard problem for which conventional
constructive techniques have often proved inadequate. Iterative
heuristics on the other hand have been a tremendous success in
reaching acceptable solutions for such problems. The primary
advantage of iterative heuristics over conventional constructive
algorithms is their probabilistic ability to escape from local
optima.

Tabu Search heuristic is based on the systematic exploration
of memory functions. It is an aggressive search technique
where for a given solution, a large number of neighbors
are generated, from which the best is chosen. To determine
which of the generated solutions is the best, an evaluator
that is based on the objectives being optimized, and the
historical information that has been accumulated, is used. The
trace of the current solution is controlled by a recent move
history to avoid cycling in the solution space. Use of inten-
sification/diversification in Tabu Search considerably helps in
obtaining superior quality solutions. This is accomplished with
the help of additional memory structures that keep record of
information such as frequencies of moves, elite solutions, etc.
An algorithmic description of a short-term Tabu Search is
given in [2], [3].

Despite the advances in VLSI technology, there are still
a few challenges that pose an obstacle in its rapid devel-
opment. Almost all the steps in VLSI CAD applications,
like synthesis, analysis and verification take large run-times
on single machines even with iterative heuristics. Of the
various acceleration strategies attempted, parallel computing
has always exhibited the most potential. Not only is it possible
to achieve shorter run-times with parallel processing but also
handle larger problem sizes and obtain better quality results
by traversing larger search spaces [4], [5].

This paper is organized as follows: The following section
reviews some previous efforts for parallelizing Tabu Search.
In Section III, the proposed parallel Tabu Search approach is
presented, followed by experimental setup in section V. Ex-
perimental results and discussions are reported in section VI.

II. RELATED WORK

A generic intuitive strategy for achieving parallelization is
to partition the data into small subsets distributed among the
processors [6], [7]. Each processor is responsible for a data
subset and implements a sequential version of the concerned
heuristic over this data subset.

However, for combinatorial optimizations, three types of
parallelization strategies seem to be appropriate [8]. They are

1) The operations within an iteration of the solution method
are parallelized.

2) The search space (problem domain) is decomposed.
3) Multi-search threads with various degrees of synchro-

nization are used.
A taxonomy of Parallel Tabu Search strategies was given

by Crainic et. al [9]. The authors classify parallel Tabu
Search strategies along three dimensions. The first dimension
is Control cardinality, where the strategy is classified either
as 1-control or p-control. The second dimension is Control
and communication type, where the strategy can follow a
rigid synchronization (RS), knowledge synchronization (KS),
Collegial (C), or a Knowledge Collegial (KC) strategy. The
third dimension is Search differentiation where the strategy
can be SPSS (single point single strategy), SPDS (single point
different strategies), MPSS (multiple point single strategy), or
MPDS (multiple point different strategies).
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The first reported studies on the parallelization of Tabu
Search were published in the early 1990s [10], [11], [12].
Based on the above taxonomy, the previous Tabu Search
algorithms have been categorized by [9]. In order to solve the
flow shop sequencing problem by Taillard [10], a mechanism
for parallel implementation of Tabu Search algorithm used
search space decomposition strategy. It is a 1-control, RS,
SPSS algorithm. Another parallelization of Tabu Search for
vehicle routing problem by Garica et. al [11] also uses search
space decomposition strategy. It is also 1-control, RS, SPSS
algorithm. In order to improve parallel Tabu Search using
evolutionary principles, the algorithm presented by Falco et.
al [12] used multi-search thread strategy. It is a p-control, C,
MPSS algorithm. Another parallel Tabu Search algorithm for
the 0-1 multidimensional knapsack problem was put forth by
Nair et. al [13], which used multi-search threads strategy. It
is a p-control, RS, MPDS algorithm. In [14], a parallel Tabu
Search algorithm for voltage and reactive power control in
power systems was proposed. Of the two schemes, one of
them used the domain decomposition strategy, while the other
scheme followed a multi-search threads strategy. The first one
is 1-control, RS, SPSS and the second one is p-control, RS,
MPDS algorithm.

III. PARALLEL TABU SEARCH FOR PLACEMENT

The parallel Tabu Search approach presented in this work
can be classified as a synchronous master-slave (one master
and remaining slaves), p-control (each process is responsible
for its search), rigid synchronization (RS) (synchronous oper-
ation mode where processes are forced to establish communi-
cation and exchange information at specific points explicitly
defined) and Multiple Point Single Strategy (MPSS) (processes
start with different initial solutions but all follow the same
strategy). In this implementation, a master process runs on one
machine and the slave processes runs on distinct machines.
All processes start with the different initial solutions. After
searching its local neighborhood for some fixed number of
iterations (100 in our case), each slave process reports its
best solution back to the master. The local neighborhood is
obtained by dividing the actual neighborhood size on a single
machine, among the slave processors. The slave processes
maintain their own Tabu lists and apply their aspiration criteria.
The master process selects the overall best among the received
best solutions subject to Tabu conditions. If the stopping
criteria are met then the search stops; otherwise the master
broadcasts the selected solution back to the slaves and the
search continues.

IV. THE PLACEMENT PROBLEM AND COST FUNCTIONS

A. VLSI Standard Cell Placement

The cell placement problem can be stated as follows: Given
a collection of cells or modules with ports (inputs, outputs,
power and ground pins) on the boundaries, the dimensions
of these cells (height, width, etc), and a collection of nets
(which are sets of ports that are to be wired together), the
process of placement consists of finding suitable physical

locations for each cell on the entire layout. By suitable we
mean those locations that minimize given objective functions,
subject to certain constraints imposed by the designer, the
implementation process, or layout strategy and the design
style. The cells may be standard-cells, macro blocks, etc.

In this work, we deal with standard cell design, where all the
circuit cells are constrained to have the same height, while the
width of the cell is variable and depends upon its complexity.
The three design objectives considered are optimization of
power dissipation, delay and wire length. In standard CMOS
technology, power dissipation is a function of the clocking
frequency, supply voltages and the capacitances in the circuit.
The delay of any given path is computed as the summation of
the delays of the nets v1, v2, ..., vk belonging to that path and
the switching delay of the cells driving these nets. Steiner tree
approximation is computed for each net and the summation of
all Steiner trees is considered as the interconnection length of
the proposed solution.

In standard cell placement, cells (or blocks) of fixed heights
are placed in rows. It is the width of these rows that varies
with the proposed solution according to the type and number
of cells placed in the row. An approximation would be to treat
cells as points, but in order to estimate lengths of interconnects
more accurately, widths of cells are taken into account. Heights
of routing channels are estimated using the vertical constraint
graphs constructed during the channel routing phase. With this
information, a fairly accurate estimate of power dissipation,
delay and total wire length can be obtained [1].

B. Cost Functions

Now we formulate cost functions for our three said objec-
tives and for the width constraint.

1) Wire length Cost:: Interconnect Wire length of each
net in the circuit is estimated and then total wire length is
computed by adding all these individual estimates:

Costwire =
∑

i∈M

li (1)

where li is the wire length estimation for net i and M denotes
total number of nets in circuit (which is the same as number
of modules for single output cells).

2) Power Cost:: Power consumption pi of a net i in a
circuit can be given as:

pi '
1

2
· Ci · V

2

DD · f · Si · β (2)

where Ci is total capacitance of net i, VDD is the supply volt-
age, f is the clock frequency, Si is the switching probability
of net i, and β is a technology dependent constant.

Assuming a fix supply voltage and clock frequency, the
above equation reduces to the following:

pi ' Ci · Si (3)

The capacitance Ci of cell i is given as:

Ci = Cr
i +

∑

j∈Mi

C
g
j (4)



where C
g
j is the input capacitance of gate j and Cr

i is the
interconnect capacitance at the output node of cell i.

At the placement phase, only the interconnect capacitance
Cr
i can be manipulated while C

g
j comes from the properties

of the cell library used and is thus independent of placement.
Moreover, Cr

i depends on wire length of net i, so equation 3
can be written as:

pi ' li · Si (5)

The cost function for total power consumption in the circuit
can be given as:

Costpower =
∑

i∈M

pi =
∑

i∈M

(li · Si) (6)

3) Delay Cost:: Delay cost is determined by the delay
along the longest path in a circuit. The delay Tπ of a path
π consisting of nets {v1, v2, ..., vk}, is expressed as:

Tπ =
k−1
∑

i=1

(CDi + IDi) (7)

where CDi is the switching delay of the cell driving net vi and
IDi is the interconnect delay of net vi. The placement phase
affects IDi because CDi is technology dependent parameter
and is independent of placement.

The delay cost function can be written as:

Costdelay = max{Tπ} (8)

4) Width Cost:: Width cost is given by the maximum of
all the row widths in the layout. We have constrained layout
width not to exceed a certain positive ratio α to the average
row width wavg , where wavg is the minimum possible layout
width obtained by dividing the total width of all the cells in
the layout by the number of rows in the layout. Formally, we
can express width constraint as below:

Width− wavg ≤ α× wavg (9)

5) Overall Fuzzy Cost Function:: Since, we are optimiz-
ing three objectives simultaneously, we need to have a cost
function that represents the effect of all three objectives in
form of a single quantity. We propose the use of fuzzy logic
to integrate these multiple, possibly conflicting objectives into
a scalar cost function. Fuzzy logic allows us to describe the
objectives in terms of linguistic variables. Then, fuzzy rules
are used to find the overall cost of a placement solution [15].
In this work, we have used following fuzzy rule:

IF a solution has
SMALL wire length AND
LOW power consumption AND
SHORT delay
THEN it is an GOOD solution.
The above rule is translated to and-like OWA fuzzy operator

[16] and the membership µ(x) of a solution x in fuzzy set
GOOD solution is given as:

1.0
C i/O i
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g i
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Fig. 1. Membership functions

µ(x) =























β ·min
j=p,d,l

{µj(x)}+ (1− β) · 1

3

∑

j=p,d,l

µj(x);

if Width− wavg ≤ α · wavg,

0; otherwise.
(10)

Here µj(x) for j = p, d, l, width are the membership values
in the fuzzy sets LOW power consumption, SHORT delay, and
SMALL wire length respectively. β is the constant in the range
[0, 1]. The solution that results in maximum value of µ(x) is
reported as the best solution found by the search heuristic.

The membership functions for fuzzy sets LOW power con-
sumption, SHORT delay, and SMALL wire length are shown
in Figure 1. We can vary the preference of an objective j in
overall membership function by changing the value of µj .
The lower bounds Oj for different objectives are computed as
given in Equations 11-14:

Ol =

n
∑

i=1

l∗i ∀vi ∈ {v1, v2, ..., vn} (11)

Op =

n
∑

i=1

Sil
∗

i ∀vi ∈ {v1, v2, ..., vn} (12)

Od =

k
∑

j=1

CDj + ID∗

j ∀vj ∈ {v1, v2, ..., vk} in path πc

(13)

Owidth =

∑n

i=1
Widthi

# of rows in layout
(14)

where Oj for j ∈ {l, p, d, width} are the optimal costs for
wire-length, power, delay and layout width respectively, n is
the number of nets in layout, l∗i is the optimal wire-length of
net vi, CDi is the switching delay of the cell i driving net
vi, IDi is the optimal interconnect delay of net vi calculated
with the help of li, Si is the switching probability of net vi, πc
is the most critical path with respect to optimal interconnect
delays, k is the number of nets in πc and Widthi is the width
of the individual cell driving net vi.

V. EXPERIMENTAL SETUP

The experimental setup consists of the a homogenous cluster
of 7 machines, x86 architecture, Pentium-4 of 2 GHz clock
speed, and 256 MB of memory. These machines are connected
by 100Mbit/s ethernet switch. Operating system used in Linux



7.3 (kernel 2.4.7-10). The paradigm for parallel environment
used is MPI (Message Passing Interface). MPICH, a portable
implementation of MPI standard 1.1 is used. In terms of
GFlops, the maximum performance of the cluster, with NAS
Parallel Benchmarks was found out to be 1.6 GFlops, (using
NAS’s LU, Class A, for 8 processors). Using this same
benchmark for a single processor, the individual performance
of one machine was found out to be 0.3 GFlops. The maximum
bandwidth that was achieved using PMB was 91.12 Mbits/sec,
with a latency of 68.69 µsec per message.

VI. RESULTS AND DISCUSSION

In this work, ISCAS’89 benchmarks circuits are used. These
contain a set of circuits with various sizes, in terms of number
of gates and paths. The results of various circuits using a
sequential Tabu Search [17] on a single processor (a single
machine from the cluster) are tabulated in Table I. Here
‘WL’, ‘P’ and ‘D’ are the wire length, power and delay costs
respectively, whereas the aggregate fuzzy cost is denoted by
(µ) and ‘T’ is the execution time in seconds.

TABLE I
RESULTS FOR ISCAS’89 CIRCUITS FOR ONE PROCESSOR

Circuit Gates Paths WL P D µ T
s298 136 150 4545 863 127 0.726 56
s386 172 205 6520 1582 188 0.683 104
s641 433 687 12176 2834 659 0.799 1865
s832 310 240 17878 4016 355 0.651 160
s953 440 583 25771 4041 202 0.670 391

s1196 561 600 35690 10777 316 0.676 752
s1238 540 661 38913 11473 358 0.639 755
s1488 667 557 54786 13670 651 0.620 538
s1494 661 558 52209 12880 565 0.631 541
c3540 1753 668 168831 59724 695 0.693 3843
s9234 5844 512 938313 170119 969 0.689 10717

s15850 10470 512 2921966 228512 1831 0.683 20192

We now report the results obtained from the proposed
parallel Tabu Search heuristic. Table II shows the execution
times as well as the corresponding speed-ups for 2, 4, and
6 processors. As can be seen, there is almost linear speed-
up in most of the cases with minor variations. A significant
observation is that in case of larger circuits, excellent results
are obtained in terms of scalability and speed-up. For instance,
in case of s15850 having 10470 gates, the execution time is
reduced from 20,192 seconds down to 3,441 seconds when
using 6 processors resulting in speed-up of 6.03.

As mentioned above in Section III, the neighborhood size
is divided among the slave processors. Since the number of
neighbor solutions generated at each slave is reduced with the
increasing number of processors, the quality of the solution
decreases. The reason for this degradation is that each slave
has a lower number of possible moves to make and hence
search pool is reduced. It is observed that the percentage of
quality degradation ranges from 5% in case of larger circuits
to 10% in case of smaller circuits as compared to that obtained
by sequential Tabu Search strategy.

TABLE II
RUNTIMES (SEC) AND SPEEDUPS OF PROPOSED PARALLEL TABU SEARCH

ON 2,4 AND 6 PROCESSORS VERSUS TABU SEARCH ON A SINGLE

PROCESSOR.

Circuit Proc=1 Proc = 2 Proc = 4 Proc = 6
s298 56 34 (1.65) 19 (2.95) 15 (3.73)
s386 104 56 (1.86) 29 (3.58) 21 (5.47)
s641 1865 962 (1.94) 503 (3.71) 308 (6.05)
s832 160 87 (1.83) 44 (3.64) 26 (6.15))
s953 391 201 (1.95) 104 (3.76) 62 (6.30))

s1196 752 401 (1.87) 200 (3.76) 130 (5.78)
s1238 755 390 (1.93) 199 (3.79) 123 (6.14)
s1488 538 283 (1.90) 144 (3.73) 93 (5.78)
s1494 541 287 (1.88) 144 (3.75) 93 (5.81)
c3540 3843 2020 (1.90) 986 (3.89) 621 (6.18)
s9234 10717 5547 (1.93) 2759 (3.88) 1777 (6.03)

s15850 20192 10621 (1.90) 5294 (3.81) 3441 (6.07)

VII. CONCLUSIONS

In this work, we presented a parallel Tabu Search strategy
for VLSI standard cell placement. The proposed strategy be-
longs to p-control, RS, MPSS class. The experimental results
exhibit excellent scalability and almost linear speed-ups as
the number of processors increase. However, we observed a
trade-off between the reduction in runtime and the quality of
placement solution. In most cases, a speed-up of 5 to 6 was
obtained at the cost of 5-10% degradation in quality.
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