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ABSTRACT 
 
A new GF(p) cryptographic processor architecture for elliptic 
curve encryption/decryption is proposed in this paper. The 
architecture takes advantage of projective coordinates to convert 
GF(p) inversion needed in elliptic point operations into several 
multiplication steps. Unlike existing sequential designs, we show 
that projecting into (X/Z,Y/Z) leads to a much better improved 
performance than conventional choice of projecting into the 
current  (X/Z2,Y/Z3). We also propose to use high radix modulo 
multipliers which give a wide range of area-time trade-offs. The 
proposed architecture is a significant challenger for 
implementing data security systems based on elliptic curve 
cryptography. 

 
1. INTRODUCTION 

 
Elliptic Curve Cryptosystem (ECC) was proposed by Niel 
Koblitz and Victor Miller in 1985 [1,2,3,4,5,6,7,8,9]. Although 
critics are still skeptical as to the reliability of this method, to 
date, no significant breakthroughs have been made in 
determining weaknesses in the algorithm, which is based on the 
discrete  logarithm problem over points on an elliptic curve. The 
fact that the problem appears so difficult to crack means that key 
sizes can be reduced in size considerably, even exponentially 
[2,5,8], especially when compared to the key size used by other 
cryptosystems. This made ECC become a challenge to the RSA, 
one of the most popular public key methods known. ECC is 
showing to offer equal security to RSA but with much smaller 
key size (128-256bits) [2]. 

Several ECC processors have been proposed in the 
literature recently for GF(p) including GF(2k) [4,7,16]. The 
design of these processors is based on representing the elliptic 
curve points as projective coordinate points [1,4,7,9,16] in order 
to eliminate division, hence inversion, operations. It is well 
known that adding two points over an elliptic curve would 
require a division operation, which is the most expensive 
operation over GF(p). There are several projective coordinates 
systems candidates. The choice thus far has been based on 
selecting the system that has the least number of multiplication 
steps, since multiplication over GF(p) is next most time 
consuming and common operation in ECC.  

In this paper we propose that the choice of the projective 
coordinates system should also depend on its inherent 
parallelism. High-speed crypto processors are now crucial for 
multimedia applications. It is clear that parallelism is one 
solution for meeting this requirement. We also propose to use 
high radix GF(p) multipliers reported in [15] since they have 
better AT characteristics than conventional radix-2 GF(p) 
multipliers, and they can lead to wide range of trade-offs 
between area and time. They can also be implemented in digit 
serial fashion which is more efficient than both unpipelined and 
pipelined parallel multipliers for algorithms with repeated 
multiplications such that found in ECC. It is worth noting that 
using pipelined parallel multipliers is not efficient for ECC 
where the multiplication of an iteration cannot commence before 
the multiplication operation of the previous iteration is finished.   
 

2. ENCRIPTION AND DECRYPTION 
 
It will be assumed that the reader is familiar with the arithmetic 
over elliptic curve. For a good review the reader is referred to 
[9]. There are many ways to apply elliptic curves for 
encryption/decryption purposes. In it most basic form, users 
randomly chose a base point (x, y), lying on the elliptic curve E. 
The plaintext (the original message to be encrypted) is coded 
into an elliptic curve point (xm, ym). Each user selects a private 
key ‘n’ and computes his public key P = n(x, y). For example, 
user A’s private key is nA and his public key is PA = nA(x, y). 

For any one to encrypt and send the message point (xm, ym) 
to user A, he/she needs to choose a random integer k and 
generate the ciphertext Cm = {k(x, y) , (xm, ym)+ kPA }. The 
ciphertext pair of points uses A’s public key, where only user A 
can decrypt the plaintext using his private key. 

To decrypt the ciphertext Cm, the first point in the pair of    
Cm, k(x,  y), is multiplied by A’s private key to get the point:       
nA (k(x, y)). Then this point is subtracted from the second point 
of Cm, the result will be the plaintext point (xm, ym). The 
complete decryption  operations are:  
((xm,ym)+kPA) - nA(k(x,y))=(xm,ym)+k(nA(x,y))-nA(k(x,y))=(xm,ym)
 The most time consuming operation in the encryption and 
decryption procedure is finding the multiples of the base        
point, (x,y). The algorithm used to implement this is discussed in 
the next section. 
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3. POINT OPERATION ALGORITHM 
 
The ECC algorithm used for calculating nP from P is based on 
the binary method, since it is known to be efficient and practical 
to implement in hardware [2,5,7,9,10]. This binary method 
algorithm is shown below: 
 
Define k: number of bits in n and  ni: the ith bit of n  
Input:  P (a point on the elliptic curve). 
Output:  Q = nP (another point on the elliptic curve). 
 
1.  if nk-1 = 1, then Q:=P else Q:=0; 
2.  for i = k-2 down to 0; 
3.   { Q := Q+Q ; 
4.      if ni = 1 then Q:= Q+P ; } 
5.  return Q; 
 
Basically, the binary method algorithm scans the  
bits of n and doubles the point Q k-times. Whenever, a particular 
bit of n is found to be one, an extra operation is needed. This 
extra operation is Q+P.  

As can be seen from the description of the above binary 
algorithm, adding and doubling elliptic curve points are the most 
basic operations in each iteration. As mentioned earlier, the 
points operations over elliptic curve requires inversion [9]. As in 
the crypto processor in [6,16], inversion is eliminated using 
projective coordinates as elaborated in the next section. 
 

4 PROJECTIVE COORDINATES IN GF(P) 
 
The projective coordinates are used to eliminate the need for 
performing inversion. For elliptic curve defined over GF(p), two 
different forms of formulas are found [1,9] for point addition and 
doubling. One form projections (x,y)=(X/Z2,Y/Z3) [9], while the 
second projects (x,y)=(X/Z,Y/Z)  [1].  
  The two forms procedures for projective point addition of 
P+Q (two elliptic curve points) is shown below: 
 

P=(X1,Y1,Z1);Q=(X2,Y2,Z2);P+Q=(X3,Y3,Z3); where P ≠ ±Q 
 

(x,y)=(X/Z2,Y/Z3) (X,Y,Z)  (x,y)=(X/Z,Y/Z) (X,Y,Z) 
λ1 = X1Z2

2 2M λ1 = X1Z2 1M 
λ2 = X2Z1

2 2M λ2 = X2Z1 1M 
λ3 = λ1 - λ2  λ3 = λ2 - λ1  
λ4 = Y1Z2

3 2M λ4 = Y1Z2 1M 
λ5 = Y2Z1

3 2M λ5 = Y2Z1 1M 
λ6 = λ4 - λ5  λ6 = λ5 - λ4  
λ7 = λ1 + λ2  λ7 = λ1 + λ2  
λ8 = λ4 + λ5  λ8 =λ6

2 Z1Z2-λ3
2λ7 5M 

Z3 = Z1Z2λ3 2M Z3 = Z1Z2λ3
3 2M 

X3 = λ6
2 - λ7λ3

2 3M X3 = λ8λ3 1M 
λ9 = λ7λ3

2 – 2X3  λ9 = λ3
2 X1Z2 - λ8 1M 

Y3 = (λ9λ6 - λ8λ3
3)/2 3M Y3 = λ9λ6 - λ3

3 Y1Z2 2M 
 -----  ----- 
 16 M  15M 
 
Similarly, the two forms of formulas for projective point 
doubling is shown below: 

P = (X1,Y1,Z1); P+P = (X3,Y3,Z3) 
 

(x,y)=(X/Z2, Y/Z3)  (X,Y,Z) (x, y) = (X/Z, Y/Z)  (X,Y,Z) 
λ1 = 3X1

2 + aZ1
4 4M λ1 = 3X1

2 + aZ1
2 2M 

Z3 = 2Y1Z1 1M λ2 = Y1Z1 1M 
λ2 = 4X1 Y1

2 2M λ3 = X1Y1λ2 2M 
X3 = λ1

2
 - 2λ2 1M λ4 = λ1

2 - 8λ3 1M 
λ3 = 8Y1

4 1M X3 = 2λ4λ2 1M 

λ4 = λ2 - 2X3  Y3=λ1(4λ3-λ4)–8(Y1λ2)2 3M 

Y3 = λ1λ4 -λ3 1M Z3 = 8 λ2
3 2M 

 ------  ----- 
 10M  12M 
 
The squaring calculation over GF(p) is very similar to the 
multiplication computation. They both are noted as M 
(multiplication). It is worth noting that any EC crypto processor 
must implement the procedures of projective coordinates 
efficiently since they are the core steps of the point operation 
algorithm of ECC. 
 

5. PROPOSED ARCHETICTURE 
 
The architecture of the new processor is shown in Figure 5. This 
architecture can be used to implement ECC based on either of 
the two projective coordinate forms discussed in section 4. 
Unlike existing designs, which use a single multiplier, the new 
architecture has four multipliers to meet the high data rate 
demands of applications such as multimedia.  

As will be explained now, four multipliers are sufficient to 
exploit the full parallelism inherent in projective coordinates. As 
can be seen from Figures 1 and 2, the corresponding critical path 
of each dataflow diagram is effectively of 4 GF(p) 
multiplications and of 3 GF(p) multiplications, respectively. 
Here the time of GF(p) addition and subtraction is ignored since 
it is very small compared to multiplication. Therefore, the lower 
bound of the minimum computation time to perform one elliptic 
point operation in the calculation of nP is 7 GF(p) 
multiplications. It can be easily seen from Figures 1 and 2 that 
performing four multiplications in parallel will meet this lower 
bound.  Furthermore the utilization of the four multipliers is very 
high. As can be seen from Figures 1 and 2, all the four 
multipliers will be used in all of the steps. Similar comments can 
be made to the data flow in Figures 3 and 4. 
 

6. COMPARSION WITH EXSITING DESIGN 
 
In existing designs, a single multiplier is used to perform all the 
multiplications needed. The reason is that using more than one 
single multiplier is perceived to be too expensive.  

Comparing the two projective forms, projecting (x,y) to 
(X/Z2,Y/Z3) requires a less number of multiplications than 
projecting into (X/Z,Y/Z). The later uses one less multiplication 
operation in adding two different elliptic points, however, it uses 
two more multiplication operations in doubling an elliptic point. 
For sequential implementation, i.e. using a single multiplier, 
projecting (x,y) into (X/Z2,Y/Z3) has always been the candidate of 
choice for implementing ECC since it has the minimum number 
of multiplication operations.  The crypto processor proposed in 
[16] is based on such a choice.  



Although the proposed architecture can implement the 
procedures of both projective coordinate forms, the above 
analysis of the critical paths of both projective coordinates in 
section 5 indicates that for parallel implementation, projecting 
(x,y) to (X/Z,Y/Z) requires less number of cycles and hence it is 
faster than projecting  (x,y) to (X/Z2,Y/Z3). As can be observed 
from  Table 1, using our proposed architecture with projection of 
(x,y) to (X/Z,Y/Z) is compared with two different 
implementations  adopting the projection (x,y) to (X/Z2,Y/Z3), 
using a single multiplier hardware (existing design [16]), and the 
proposed architecture in Figure 5. The time required by our 
design in projecting (x,y) to (X/Z,Y/Z) is less than one third the 
time of the sequential implementation in [16] and 23% faster 
than using projection (x,y) to (X/Z2,Y/Z3). What is more 
significant observation from Table 1 is that the using the 
proposed architecture with projections (x,y) to (X/Z,Y/Z) is not 
only faster for parallel impregnation but it also leads to a better 
AT2 performance than both alternatives. 

 
Table 1. Comparison between the different designs  

Procedure 
of 

Projecting 
(x,y) to 

 
Hardware 

Design 

 
Number of 
Multipliers 

(A) 

Avg. Number of 
Multiplication 

Cycles 
(T) 

 
AT2 

Existing [16] 1 18 324 (X/Z2,Y/Z3) 
Figures 3, 4 4 6.5 169 

(X/Z,Y/Z) Proposed  4 5 100 
 

A final comment about the implementation of our 
proposed architecture is that we propose to use digit serial 
implementation of the high radix multiplication 
algorithms proposed in [15] in our architecture. Digit serial 
computation is more suitable for the elliptic curve crypto 
algorithm discussed above since the computation of elliptic point 
doubling, addition and the algorithm of computing multiples of 
the base point is such that the multiplication of one stage must 
be completed before starting the multiplication of the subsequent 
stage. Therefore  even if a pipelined bit-parallel multipliers is 
used, the throughput of such a multiplier can not be exploited 
since the next multiplication operation can not commence until 
the multiplication operations in the previous stage has 
completed. As with regard to the GF(p) modulo adder, it is to be 
implemented in bit parallel fashion since the area is not 
significant compared to the multiplier and minimizing the 
addition time will reduce the overall multiply-add cycle time.  
 

7. CONCLUSION 
 
A novel GF(p) elliptic curve cryptographic processor is 
proposed in this paper. It does not need a GF(p) inverse module, 
because the inverse operation is converted into consecutive 
multiplication steps using a method known as projective 
coordinates. It is also shown that for parallel implementation 
projection of (x,y) to (X/Z,Y/Z) leads to a better implementation 
than the usually selected projection (x,y) to (X/Z2,Y/Z3). 
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Fig 1. Projecting (x,y) to (X/Z,Y/Z) adding two points data flow 

 
 

 
Fig 3. Projecting (x,y) to (X/Z2,Y/Z3) adding points data flow 

 
Fig 2. Projecting (x,y) to (X/Z,Y/Z) doubling a point data flow 

  
 

 
Fig 4. Projecting (x,y) to (X/Z2,Y/Z3) doubling a point data flow 

 
 

 
Fig 5. Proposed elliptic curve processor architecture 
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