

HIGH RADIX PARALLEL ARCHITECTURE FOR GF(P)
ELLIPTIC CURVE PROCESSOR

Adnan Abdul-Aziz Gutub and Mohammad K. Ibrahim

Computer Engineering Department

King Fahd University of Petroleum and Minerals
Dhahran 31261, SAUDI ARABIA

Email: {gutub,ibrahimm}@ccse.kfupm.edu.sa

ABSTRACT

A new GF(p) cryptographic processor architecture for elliptic
curve encryption/decryption is proposed in this paper. The
architecture takes advantage of projective coordinates to convert
GF(p) inversion needed in elliptic point operations into several
multiplication steps. Unlike existing sequential designs, we show
that projecting into (X/Z,Y/Z) leads to a much better improved
performance than conventional choice of projecting into the
current (X/Z2,Y/Z3). We also propose to use high radix modulo
multipliers which give a wide range of area-time trade-offs. The
proposed architecture is a significant challenger for
implementing data security systems based on elliptic curve
cryptography.

1. INTRODUCTION

Elliptic Curve Cryptosystem (ECC) was proposed by Niel
Koblitz and Victor Miller in 1985 [1,2,3,4,5,6,7,8,9]. Although
critics are still skeptical as to the reliability of this method, to
date, no significant breakthroughs have been made in
determining weaknesses in the algorithm, which is based on the
discrete logarithm problem over points on an elliptic curve. The
fact that the problem appears so difficult to crack means that key
sizes can be reduced in size considerably, even exponentially
[2,5,8], especially when compared to the key size used by other
cryptosystems. This made ECC become a challenge to the RSA,
one of the most popular public key methods known. ECC is
showing to offer equal security to RSA but with much smaller
key size (128-256bits) [2].

Several ECC processors have been proposed in the
literature recently for GF(p) including GF(2k) [4,7,16]. The
design of these processors is based on representing the elliptic
curve points as projective coordinate points [1,4,7,9,16] in order
to eliminate division, hence inversion, operations. It is well
known that adding two points over an elliptic curve would
require a division operation, which is the most expensive
operation over GF(p). There are several projective coordinates
systems candidates. The choice thus far has been based on
selecting the system that has the least number of multiplication
steps, since multiplication over GF(p) is next most time
consuming and common operation in ECC.

In this paper we propose that the choice of the projective
coordinates system should also depend on its inherent
parallelism. High-speed crypto processors are now crucial for
multimedia applications. It is clear that parallelism is one
solution for meeting this requirement. We also propose to use
high radix GF(p) multipliers reported in [15] since they have
better AT characteristics than conventional radix-2 GF(p)
multipliers, and they can lead to wide range of trade-offs
between area and time. They can also be implemented in digit
serial fashion which is more efficient than both unpipelined and
pipelined parallel multipliers for algorithms with repeated
multiplications such that found in ECC. It is worth noting that
using pipelined parallel multipliers is not efficient for ECC
where the multiplication of an iteration cannot commence before
the multiplication operation of the previous iteration is finished.

2. ENCRIPTION AND DECRYPTION

It will be assumed that the reader is familiar with the arithmetic
over elliptic curve. For a good review the reader is referred to
[9]. There are many ways to apply elliptic curves for
encryption/decryption purposes. In it most basic form, users
randomly chose a base point (x, y), lying on the elliptic curve E.
The plaintext (the original message to be encrypted) is coded
into an elliptic curve point (xm, ym). Each user selects a private
key ‘n’ and computes his public key P = n(x, y). For example,
user A’s private key is nA and his public key is PA = nA(x, y).

For any one to encrypt and send the message point (xm, ym)
to user A, he/she needs to choose a random integer k and
generate the ciphertext Cm = {k(x, y) , (xm, ym)+ kPA }. The
ciphertext pair of points uses A’s public key, where only user A
can decrypt the plaintext using his private key.

To decrypt the ciphertext Cm, the first point in the pair of
Cm, k(x, y), is multiplied by A’s private key to get the point:
nA (k(x, y)). Then this point is subtracted from the second point
of Cm, the result will be the plaintext point (xm, ym). The
complete decryption operations are:
((xm,ym)+kPA) - nA(k(x,y))=(xm,ym)+k(nA(x,y))-nA(k(x,y))=(xm,ym)
 The most time consuming operation in the encryption and
decryption procedure is finding the multiples of the base
point, (x,y). The algorithm used to implement this is discussed in
the next section.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266089277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3. POINT OPERATION ALGORITHM

The ECC algorithm used for calculating nP from P is based on
the binary method, since it is known to be efficient and practical
to implement in hardware [2,5,7,9,10]. This binary method
algorithm is shown below:

Define k: number of bits in n and ni: the ith bit of n
Input: P (a point on the elliptic curve).
Output: Q = nP (another point on the elliptic curve).

1. if nk-1 = 1, then Q:=P else Q:=0;
2. for i = k-2 down to 0;
3. { Q := Q+Q ;
4. if ni = 1 then Q:= Q+P ; }
5. return Q;

Basically, the binary method algorithm scans the
bits of n and doubles the point Q k-times. Whenever, a particular
bit of n is found to be one, an extra operation is needed. This
extra operation is Q+P.

As can be seen from the description of the above binary
algorithm, adding and doubling elliptic curve points are the most
basic operations in each iteration. As mentioned earlier, the
points operations over elliptic curve requires inversion [9]. As in
the crypto processor in [6,16], inversion is eliminated using
projective coordinates as elaborated in the next section.

4 PROJECTIVE COORDINATES IN GF(P)

The projective coordinates are used to eliminate the need for
performing inversion. For elliptic curve defined over GF(p), two
different forms of formulas are found [1,9] for point addition and
doubling. One form projections (x,y)=(X/Z2,Y/Z3) [9], while the
second projects (x,y)=(X/Z,Y/Z) [1].
 The two forms procedures for projective point addition of
P+Q (two elliptic curve points) is shown below:

P=(X1,Y1,Z1);Q=(X2,Y2,Z2);P+Q=(X3,Y3,Z3); where P ≠ ±Q

(x,y)=(X/Z2,Y/Z3) (X,Y,Z) (x,y)=(X/Z,Y/Z) (X,Y,Z)
λ1 = X1Z2

2 2M λ1 = X1Z2 1M
λ2 = X2Z1

2 2M λ2 = X2Z1 1M
λ3 = λ1 - λ2 λ3 = λ2 - λ1
λ4 = Y1Z2

3 2M λ4 = Y1Z2 1M
λ5 = Y2Z1

3 2M λ5 = Y2Z1 1M
λ6 = λ4 - λ5 λ6 = λ5 - λ4
λ7 = λ1 + λ2 λ7 = λ1 + λ2
λ8 = λ4 + λ5 λ8 =λ6

2 Z1Z2-λ3
2λ7 5M

Z3 = Z1Z2λ3 2M Z3 = Z1Z2λ3
3 2M

X3 = λ6
2 - λ7λ3

2 3M X3 = λ8λ3 1M
λ9 = λ7λ3

2 – 2X3 λ9 = λ3
2 X1Z2 - λ8 1M

Y3 = (λ9λ6 - λ8λ3
3)/2 3M Y3 = λ9λ6 - λ3

3 Y1Z2 2M
 ----- -----
 16 M 15M

Similarly, the two forms of formulas for projective point
doubling is shown below:

P = (X1,Y1,Z1); P+P = (X3,Y3,Z3)

(x,y)=(X/Z2, Y/Z3) (X,Y,Z) (x, y) = (X/Z, Y/Z) (X,Y,Z)
λ1 = 3X1

2 + aZ1
4 4M λ1 = 3X1

2 + aZ1
2 2M

Z3 = 2Y1Z1 1M λ2 = Y1Z1 1M
λ2 = 4X1 Y1

2 2M λ3 = X1Y1λ2 2M
X3 = λ1

2
 - 2λ2 1M λ4 = λ1

2 - 8λ3 1M
λ3 = 8Y1

4 1M X3 = 2λ4λ2 1M

λ4 = λ2 - 2X3 Y3=λ1(4λ3-λ4)–8(Y1λ2)2 3M

Y3 = λ1λ4 -λ3 1M Z3 = 8 λ2
3 2M

 ------ -----
 10M 12M

The squaring calculation over GF(p) is very similar to the
multiplication computation. They both are noted as M
(multiplication). It is worth noting that any EC crypto processor
must implement the procedures of projective coordinates
efficiently since they are the core steps of the point operation
algorithm of ECC.

5. PROPOSED ARCHETICTURE

The architecture of the new processor is shown in Figure 5. This
architecture can be used to implement ECC based on either of
the two projective coordinate forms discussed in section 4.
Unlike existing designs, which use a single multiplier, the new
architecture has four multipliers to meet the high data rate
demands of applications such as multimedia.

As will be explained now, four multipliers are sufficient to
exploit the full parallelism inherent in projective coordinates. As
can be seen from Figures 1 and 2, the corresponding critical path
of each dataflow diagram is effectively of 4 GF(p)
multiplications and of 3 GF(p) multiplications, respectively.
Here the time of GF(p) addition and subtraction is ignored since
it is very small compared to multiplication. Therefore, the lower
bound of the minimum computation time to perform one elliptic
point operation in the calculation of nP is 7 GF(p)
multiplications. It can be easily seen from Figures 1 and 2 that
performing four multiplications in parallel will meet this lower
bound. Furthermore the utilization of the four multipliers is very
high. As can be seen from Figures 1 and 2, all the four
multipliers will be used in all of the steps. Similar comments can
be made to the data flow in Figures 3 and 4.

6. COMPARSION WITH EXSITING DESIGN

In existing designs, a single multiplier is used to perform all the
multiplications needed. The reason is that using more than one
single multiplier is perceived to be too expensive.

Comparing the two projective forms, projecting (x,y) to
(X/Z2,Y/Z3) requires a less number of multiplications than
projecting into (X/Z,Y/Z). The later uses one less multiplication
operation in adding two different elliptic points, however, it uses
two more multiplication operations in doubling an elliptic point.
For sequential implementation, i.e. using a single multiplier,
projecting (x,y) into (X/Z2,Y/Z3) has always been the candidate of
choice for implementing ECC since it has the minimum number
of multiplication operations. The crypto processor proposed in
[16] is based on such a choice.

Although the proposed architecture can implement the
procedures of both projective coordinate forms, the above
analysis of the critical paths of both projective coordinates in
section 5 indicates that for parallel implementation, projecting
(x,y) to (X/Z,Y/Z) requires less number of cycles and hence it is
faster than projecting (x,y) to (X/Z2,Y/Z3). As can be observed
from Table 1, using our proposed architecture with projection of
(x,y) to (X/Z,Y/Z) is compared with two different
implementations adopting the projection (x,y) to (X/Z2,Y/Z3),
using a single multiplier hardware (existing design [16]), and the
proposed architecture in Figure 5. The time required by our
design in projecting (x,y) to (X/Z,Y/Z) is less than one third the
time of the sequential implementation in [16] and 23% faster
than using projection (x,y) to (X/Z2,Y/Z3). What is more
significant observation from Table 1 is that the using the
proposed architecture with projections (x,y) to (X/Z,Y/Z) is not
only faster for parallel impregnation but it also leads to a better
AT2 performance than both alternatives.

Table 1. Comparison between the different designs

Procedure
of

Projecting
(x,y) to

Hardware

Design

Number of
Multipliers

(A)

Avg. Number of
Multiplication

Cycles
(T)

AT2

Existing [16] 1 18 324 (X/Z2,Y/Z3)
Figures 3, 4 4 6.5 169

(X/Z,Y/Z) Proposed 4 5 100

A final comment about the implementation of our
proposed architecture is that we propose to use digit serial
implementation of the high radix multiplication
algorithms proposed in [15] in our architecture. Digit serial
computation is more suitable for the elliptic curve crypto
algorithm discussed above since the computation of elliptic point
doubling, addition and the algorithm of computing multiples of
the base point is such that the multiplication of one stage must
be completed before starting the multiplication of the subsequent
stage. Therefore even if a pipelined bit-parallel multipliers is
used, the throughput of such a multiplier can not be exploited
since the next multiplication operation can not commence until
the multiplication operations in the previous stage has
completed. As with regard to the GF(p) modulo adder, it is to be
implemented in bit parallel fashion since the area is not
significant compared to the multiplier and minimizing the
addition time will reduce the overall multiply-add cycle time.

7. CONCLUSION

A novel GF(p) elliptic curve cryptographic processor is
proposed in this paper. It does not need a GF(p) inverse module,
because the inverse operation is converted into consecutive
multiplication steps using a method known as projective
coordinates. It is also shown that for parallel implementation
projection of (x,y) to (X/Z,Y/Z) leads to a better implementation
than the usually selected projection (x,y) to (X/Z2,Y/Z3).

8. ACKNOWLEDGMENT

The authors would like to thank King Fahd University of
Petroleum And Minerals for its support of this research work.

9. REFERENCES

[1] Miyaji A., “Elliptic Curves over FP Suitable for
Cryptosystems”, Advances in cryptology- AUSCRUPT’92,
Australia, December 1992.
[2] Stallings, W. “Cryptography and Network Security:
Principles and Practice”, 2nd Ed., Prentice Hall, NJ, 1999.
[3] Chung, Sim, and Lee, “Fast Implementation of Elliptic
Curve Defined over GF(pm) on CalmRISC with MAC2424
Coprocessor”, Workshop on Cryptographic Hardware and
Embedded Systems, CHES 2000, Massachusetts, August 2000.
[4] Okada, Torii, Itoh, and Takenaka, “Implementation of
Elliptic Curve Cryptographic Coprocessor over GF(2m) on an
FPGA”, Workshop on Cryptographic Hardware and Embedded
Systems, CHES 2000, Massachusetts, August 2000.
[5] Crutchley, D. A., “Cryptography And Elliptic Curves”,
Master Thesis under Supervision of Prof. Gareth Jones,
submitted to the Faculty of Mathematics at University of
Southampton, England, May 1999.
[6] Orlando, and Paar, “A High-Performance Reconfigurable
Elliptic Curve Processor for GF(2m)”, Workshop on
Cryptographic Hardware and Embedded Systems, CHES 2000,
Massachusetts, August 2000.
[7] Stinson, D. R., “Cryptography: Theory and Practice”,
CRC Press, Boca Raton, Florida, 1995.
[8] Paar, Fleischmann, and Soria-Rodriguez, “Fast Arithmetic
for Public-Key Algorithms in Galois Fields with Composite
Exponents”, IEEE Transactions on Computers, Vol. 48, No. 10,
October 1999.
[9] Blake, Seroussi, and Smart, “Elliptic Curves in
Cryptography ”, Cambridge University Press: New York, 1999.
[10] Hankerson, Hernandez, and Menezes, “Software
Implementation of Elliptic Curve Cryptography Over Binary
Fields”, Workshop on Cryptographic Hardware and Embedded
Systems, CHES 2000, Massachusetts, August 2000.
[11] G. A. Orton, M. P. Roy, P. A. Scott, L. E. Peppard, and S.
E. Tavares. “VLSI implementation of public-key encryption
algorithms”, Advances in Cryptology -- CRYPTO '86, volume
263 of Lecture Notes in Computer Science, pages 277-301, 11-
15 August 1986. Springer-Verlag, 1987.
[12] Scott, Norman R., “Computer Number Systems and
Arithmetic”, Prentice-Hall Inc., New Jersey, 1985.
[13] Tocci, R. J. and Widmer, N. S., “Digital Systems:
Principles and Applications”, Eighth Edition, Prentice-Hall Inc.,
New Jersey, 2001.
[14] Ercegovac, M. D., Lang, T., and Moreno, J. H.,
“Introduction to Digital System”, John Wiley & Sons, Inc., New
York, 1999.
[15] Mekhallalati, M, Ibrahim, M K, & Ashur, A, “Radix
Modular Multiplication Algorithm”, Journal of Circuits and
Systems, and Computers, Vol.6, N0.5, pp547-567,1996.
[16] Orlando, and Paar, “A scalable GF(p) elliptic curve
processor architecture for programmable hardware”,
Cryptographic Hardware and Embedded Systems, CHES 2001,
May 14-16, 2001, Paris, France.

Fig 1. Projecting (x,y) to (X/Z,Y/Z) adding two points data flow

Fig 3. Projecting (x,y) to (X/Z2,Y/Z3) adding points data flow

Fig 2. Projecting (x,y) to (X/Z,Y/Z) doubling a point data flow

Fig 4. Projecting (x,y) to (X/Z2,Y/Z3) doubling a point data flow

Fig 5. Proposed elliptic curve processor architecture

Y2Z1 Z1
2 Y1Z2 Z2

2

Y2 Z1 Y1 Z2

λ4

λ9λ6

λ5 λ1

Y2Z1
3 X2Z1

2 Y1Z2
3 X1Z2

2

X2 X1

λ4 + λ5 λ4 - λ5 λ1 - λ2 λ1+λ2

λ2

 λ3λ8 λ6
2 λ3Z2 λ3

2

 λ8 λ6 λ3
Z2

 λ3
3λ8 λ3Z1Z2 λ7λ3

2

Z1

3λ7λ3
2-2λ6

2 λ6
2-λ7λ3

2
 λ6 λ9

(λ9λ6 - λ3
3λ8)/2

 Y3 Z3 X3

3X1 X1 aZ1 Z1 Y1

 3X1
2 aZ1

2 Z1
2 Y1

2

3X1
2+aZ1

4

4X1

λ1

Z3 Y3 X3

2Y1Z1 aZ1
4 8Y1

4 4X1Y1
2

2Y1

Z1

λ3 λ2

λ1
2

λ1
2-2λ2

λ2–2X3

λ2

λ4

λ1λ4

λ1

λ3

λ1λ4-λ3

Y1 X1 Y1 Z1 X1 3X1 Z1 aZ1

Y1X1 Y1Z1 3X1
2 aZ1

2

3X1
2 + aZ1

2

λ2

λ1 Y1

Y1X1λ2 Y1λ2 λ2
2 λ1

2

λ1
2-8λ3

λ4

λ3

4λ3-λ4

λ4

λ5λ1 (Y1λ2)2 8λ2
3 2λ4λ2

8λ3

λ1 8λ2

λ5

2λ2

λ5λ1-8(Y1λ2)2

Y3 Z3 X3

Y1Z2 Y2Z1 X2Z1 X1Z2

λ2 λ1

Z2

Y1 Z2 Y2 Z1 X2 Z1 X1 Z2

λ5-λ4λ1+λ2 λ1-λ2

λ4 λ5

λ6 λ3

Z2λ3 λ6
2

 Z1Z2 λ3
2

Z1
Z2
λ3

λ7

λ1λ3
2

 Z2λ3
3

 Z1Z2λ6
2 λ7λ3

2

λ1 λ7

λ6
2Z1Z2-λ7λ3

2

λ3
2X1Z2 -λ8

λ8

Y1Z2λ3
3

 Z1Z2λ3
3

 λ9λ6 λ3λ8

Y1 Z1 λ6 λ9 λ8

λ3

λ6λ9-λ3
3λ1Z2

Z3 Y3 X3

