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Genetic scheduling of task graphs

MUHAMMALD 5. T. BENTENT and SADIOQ M. SAITH

A genctic algorithm for scheduling computational task graphs is presented, The
problem ol assigning tasks (o processing elements as a combinatorial optimization
is formulated, and a heuristic based on a genetic algorithm is presented. The
abjective Tunction to be minimized is the *time on completion” of all tasks. Results
are compared with those published in the literature and with randomly generated
task graphs whose optimal schedules are known g priori.

1. [Introduction

scheduling heuristics find applications in many engmeering problems such as
silicon compilation (Paulin and Knight 1987), parallel processing (Kasahara and
Marita 1984), signal processing (Ashford and Bier 1990), robot dynamics (Chen er g/,
I985). and many others. This paper presents the solution to the scheduling problem
using a genetic approach. As an example, we consider the problem of mapping lasks
of & computational algorithm to processing elements. Similar formulations can also
be used in other applications. This task assignment plays a very important role in
determining the performance of computational algorithms.

Computational algorithms can conveniently be expressed in terms of task graphs
(Garey er al. 1978). A task graph expresses computation in terms of its constituent
computational units, which may be simple arithmetic operations or complex
procedures, and the precedence relations among them, namely, G(I", —, p). where:

{a) I'(T,. T, ..., T.) is the set of tasks (corresponding to nodes of the graphi;

(A) — is the set of edges which represent the precedence relationship between
tasks:

(e} (T} is the task size, which might be the execution time of the task T on a
single processing element p.

In this representation, data transfer times between tasks are assumed Lo he
negligibly short and are therefore ignored. This kind of task graph is referred to as o
task graph with no communication costs,

To take advantage of parallelism. it is desired to assign {map) the partially-
ordered computational tasks to different processing clements of the system such that
the schedule length of the task graph is minimized. This problem is extremely
difficult to solve and is generally intractable. It belongs to the class of strong” NP-
hard problems (Garey er al 1978). Even relaxed or simplified sub-problems
constructed by imposing restrictions on the scheduling problem fall into the class of
NP-hard problems. The difficulty of obtaining a minimum schedule depends on the
number of processing clements. their connectivity, the topology of the task graph,
and the uniformity of task processing times.
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The mapping of such task graphs has been studied extensively and several clever
heuristics have been proposed (Anger e al. 1990, Hironori and Marita 1984, Hwang
et al. 1989, Kasahara and Narita 1984). Hu (1961) presented a linear time solution
for the case where task processing times are all equal and the task graph is tree
shaped. Coffman and Graham (1972) proposed an O{n?) solution to graphs with
arbitrary precedence relations, but restricting the number of processing elements to
two,

One of the most efficient heuristics for scheduling task graphs with no communi-
cation is ‘list scheduling’. In this technique a list consisting of ready-to-run tasks is
maintained, and no processing clement is allowed to remain idle if there is some
ready-to-run task that can be executed on it. Whenever a task is added to, or deleted
from, the set of ready-to-run tasks, these tasks are sorted in order of priority, so that
when a processing element becomes availuble, 1t is assigned the task at the head of
the list.

Most scheduling heuristics, including list scheduling, are prionty based, and they
differ only in the way each algorithm assigns priorities to the tasks. The task
prierity, for example, could be the latest (or earliest) starting time of the task. Some
well-known heuristics are the CP (critical path) method (Coffman 1972), HLFET
(highest levels first with estimated times), and SCFET (smallest co-level first with
estimated times} (Adam er of. 1974). An improved version of the CP method of
HLFET, called CP/MISF (critical path/most immediate successors first), and an
optimization algorithm called DF/IHS (depth first/implicit heuristic search), was
proposed by Hironori and Narita [ 1954),

All of the above methods ignore the overhead of passing data between tasks.
This paper addresses the problem of mapping computational tasks to multiple
processing ¢lements that would vield a minimal schedule while including the cost of
communication between the processing elements. Computational algorithms will be
represenied by task graphs as G{I', —, u, c) where o T, Ty is 2 measure of the size of
the data sent from task T, upon its completion, to its immediate successor task T,
The time to transfer (7', T') data units depends on the communication media and
the inter-connectivity of the processing clements, If the time to transfer a unit of
data between two direetly-connected processing elements p and g 15 r(p. ), then, if
Lasks T and T are mapped 1o the processing elements p and g, respectively, then the
time to transfer o 77, 777 data units is given by rip. ) x el T, T7) units. Therefore the
execution of T cannol begin until #(p, gh=c(T, T') time unils have elapsed after
execution of T, Note that if p=g then r(p, g)=0; therefore if tasks T and T are
assigned to the same processing element, then the time to transfer data between them
is zero and T can bhegin exccution immediately after the completion of T.
Scheduling of T° and 77 on non-directly connected processing elements will invalve a
multiplication factor equal to the number of intermediate elements that must relay
the resulls of task T to task T,

The evaluation of the shortest distance from the entry node to the completion of
a task, that is, the earliest completion time (ECT), and from the beginning of a task
to the exit node, that is, the latest starting time (LST), 1s the basis for defining task
priorities. This measure indicates which task is more critical than others when the
objective function to be minimized is the computation time, Computation of the
ECT and LST is straightforward in G(I", -~ g). However, the evaluation of the ECT
and LST are very difficult to obtain for precedence graphs with communication
costs, that is. for G{I", — u, ¢). The reason is that no information is available
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beforehand on how paths of the graph are affected by communication reguirements,
This depends on the mapping of tasks to processing elements and the system inter-
connectivity. Only those tasks that are mapped to the same processing elements need
not account for the communication cost. Therefore, the length of a path is difficult
to evaluate before the mapping takes place. The exact values of the ECT and LT
depend on determining the optimum finishing time of the computation G177, —. . ¢}
which 15 our NP-hard problem (Al-Maasrani 1993),

Prastein (1987) proved that by laking communication into consideration, the
problem of scheduling arbitrary precedence graphs on two directly-connected
processors is NP-hard. The problem of minimizing the total execution time and
communication costs for non-precedence-constrained tasks has been investigated in
distributed computing systems (Lo 1984, 1988). Other attempts have been made to
find optimal schedules for restricted forms of the G(I', —, u, ¢} model. Anger et al.
(19907 showed that when there are enough identical processors with identical links,
that is #ip, ¢) is the same for all p and g (except when p=g). and when
communication delays are no longer than the shortest task processing time, then
there is a linear-time optimal algorithm that can solve the scheduling problem.
However, this applies only to forests in-trees task graphs on contention-lree media.
Scheduling heuristics based on the pure use of local priority algorithms for the
model with communication tasks have been proposed by Hwang er al. (1989}, This
heuristic is processor driven and uses ETF as the local priority. Some efforts have
been made o wse the global information. El Rewini and Lewis (1990) used a
variation of the ‘task level’ and included the effect of the task communication as a
priority measure, The level ol a task 15 modified 10 add up all the communication
edge values along the longest path from the task node to the exit node, As a result,
the level of a task is taken to be the path from the task to any exit node
accumulating the highest possible summation of task times and communication
edges. El Rewini and Lewis' (1990) results suggest that the use of such measures
increases the chance of obtaining better schedules by -5 tmes. Finally, Al-Maasran
(19493) propoesed a new global-priority scheduling algorithm based on the evaluation
of task finish times in the reverse task graph. Analysis of his results shows the
superiority of the heuristic over others reported as shorter finish times are achieved
with a stable topology-independent performance.

Optimization methods applied to solve the scheduling problem include branch-
and-bound techniques (Kasahara and MNarita [984), and the simulated annealing
algorithm (Shield 1987). Other approaches based on clustering techniques have also
been reported (Kim and Browne 1988, Sarker and Hennessy 1986). This paper
presents a new approach which maps tasks to processing elements based on the
genetic algorithm (Holland 19735). This approach, like simulated annealing, is a
paradigm for examining a state-space. It produces good solutions through simulta-
neous consideration and manipulation of a set of possible solutions.

2. Problem statement

Given a set of n computational tasks, the precedence relation among them, m
identical processing elements, their inter-connectivity, and the number of data units
transferred between tasks, the problem is to determine a schedule with a minimum
execution time (scheduling length).

The computation or the set of tasks I” is represented as a task graph G{I', —, u, ©).
The directed acyclic graph (DAG) G is assumed to have one entry node and one exit
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node. [Lis also assumed that all nodes can be reached from entry and exit nodes. An
example of a task graph is given in Fig. l{a). Each node in Fig. | is labelled by
T u(T), where T, represents the task number and jf T)) the task processing time. Arcs
dirceted from node N, to N; represent the partial ordering constraint that task T;
precedes task T, The weight of the arc between nodes N; and N, is (T, T)). and
represents the number of data units passed between tasks T; and T If the tasks T,
and T; are scheduled on directly-connected processing elements (say p and g,
respectively). then task T, has to wait for r(p. )= (T, T time units before
beginning to execute on the processing element g. The value of rip, ¢) for any two
processing elements p and g in 8 system depends on its topology and represents the
cost of transferring a unit of data from p to g.

Assuming a fully connected system such as the one shown in Fig. 1(4), two
possible schedules are given in Fig, 1ie). In the first schedule, note that task T,
assigned o processing element p, cannot begin execution immediately after T,
because it has to wait for the completion of task T, Since task T, is assigned to
another processing element, Ty has to wait for two units of time before beginning
execution on p,. In the second schedule both T and 75 are assigned to run on the
same processing element py. therefore T, can begin exccution immediately after
completion of 1.

We assume contention-free media. that is, the communications channel between
processing clements 15 assumed to have sufficient capacity o serve all transmissions
without delay. Therefore, issues related to routing and queuing are ignored. We also
assume lhat processing clements are identical, although a similar technigue can be
extended to non-identical ones.

2.1, Problem fornudation

This paper formulates the problem of mapping tasks to processing elements as a
combinatorial problem. There are m" possible assignments of m or less processing
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Figure 1. (@) Task graph; (h) topology of processing elements; (¢) possible schedules.
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elements to execule n lasks of a task graph. The search space for determining the
optimal assignment is very large, which rules out any greedy or brute-force
technique, and as the number of tasks increases the search space of possible
assignments grows exponentindly. In the next section, a genetic algorithm will be
used to solve this combinatorial optimization problem. This approach, like simu-
lated annealing, s a paradigm for examining a state-space. It produces good
solutions through simultaneous consideration and muanipulation of a set of possihle
solutions.

3. Genetic scheduling algorithm

Genetic algorithms (GAs) are powerful domain-independent search mechanisms
which emulate the natural process of cvolution as a means of progressing towards
the optimum (Helland 1973). They have been applied in solving various optimiza-
tien problems, including those in VLST physical design (Cohoon and Paris 1987,
Shahookar and Mazumder 1990).

In the GA approach, at any given instance a number of possible solulions, called
the ‘population’, exist, Their number, denoted by N, depends on the problem
instance, the size of the problem, and the available memory. Each individual in the
population is a string of symbols, These symbols are known as ‘alleles’ and the string
made up of these alleles is termed ‘chromosome’. The chromosome represents a
possible solution to the optimization problem. During each iteration {generation),
the individuals in the current population arc evaluated using some measure of
‘fitness”, Based on the fitness value, two individuals al a time (called *parents™) are
sclected () from the population. The more ‘fit' the individual the higher the
probability of it being selected. Then genctic operations are applied on the selected
parents to generate new individual solutions called ‘offsprings’. These genetic
operalors combine the features of both parents. Common operators are crossover
and mutation. They are derived by analogy from the biological process of evolution,
To apply genetic algorithms as an adaptive search strategy, the problem must be
mapped into a representation suitable for genctic search. First we shall see how an
assignment (schedule) is mapped to a string. Then, we will discuss the basic
aperators applied in search for an optimum schedule. The structure of the genetic
algorithm emploved is given in Fig 2.

3.1, String encoding £

One of the most important steps in genetic algorithms 15 to represent the solution
as 4 string of symbols. This encoding must be amenable to genetic operations.

In our problem, each selution or schedule can be encoded as a string containing
n alleles, where # is the number of tasks.The enceding divides cach allele into two
fields T; and p.; T, 1=j=n, and p, 1=k=m. Field p, specifies the processing
element number and field T; specifies the task that is assigned to 11, For example, for
our first schedule in Fig. 1(¢) we have the encoding [(T;, p,), (T, po) (T3, 23,
(Ts. pa). (Ts pid)

Since the permutation of these alleles also represents the same schedule, it is
convenient to keep the elements of the string sorted on the order of task indices. This
makes the string amenable to genetic operators. If we keep the alleles sorted on the
task indices, since it is not required to store the indices, the string [p,, Pay Pa. P30 5]
is sufficient to represent our schedule,
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Frocedure {Genetic Algorithe, For Scheduling)
No= Population size, {*# Of possible solutions at any instance.™)
Ny= Numpber of generations. (*2& O 1terations.*)
No= Number of offsprings. (*Tn be generated by crossover,™)
Ney= Number of mutated parents,
Fu= Mutation probability,
P — =[N, (*Construct initial population P.*)
Far j =110 N,
Evaluante o[ P[7]) {*Evaluate fitness of P which 157
("the reciprocal of length of schedule. )
EndFor
For i =1t N,
For 7 =1 Lo &NV,
(T, y}— $LF) [ Probability of parent selected s propostional oo ita ftoess. )
affzpring[7] — @{r 4l (*Generate offspring by simple crossever.®)
Evaluate o{cffzpring|f])
EndFor
For-j = 1to N, [(™With probability P, apply mulation.®)
mutatedy] — iyl
Evaluate o E'.'ul.lt.“'.:'.n-:||j'_i:l
EndFoe

o= Setect( P, offspong, mutated) | *Select best N solutions from parents. offaprings*)
{*and mutated parents. *)
EndFor
Return highest scoring confguration in P
End

Figure 2,  Genetic algorithm for scheduling.

3.2 Papulation constructor =2

The quality of final solution depends upon the size of the population and how
the initial population is constructed. One possibility is to ignore the communication
cost and use a priority-based constructive heuristic to find the initial assighment,
Another possibility is to begin with a random assignment. The technique adopled to
construct the initial population randomly is explained below,

To construct an initial set of solutions for a task graph with » tasks, N, random
permutations of numbers from | to # are generated. The number in each random
permutation represents the task number of the task graph, Then tasks are assigned
to processing elements uniformly, the first % tasks in our permutation are assigned 1o
processing element p, the next & tasks to processing element ps. and so on. This is
referred to in the literature as pre-scheduling (Benten 1989). For example, let the
given graph contain nine nodes and let there be three processing elements. I one of
the random permutations is [7, 1, 8 3, 4, 9. 5 6, 2], then the assignment of
processing elements will be [(7, p 3 (1, gy ) (B p ) (3, pa) (4 pad (9 1) (5, pa) (6, py)
(2, 7)), that is, the first three tasks are assigned to p,, the next three to p, and the
last three to py. Sorting our assignment on tasks, the equivalent assignment is [(1, p,}
(2, 0 (30 pad (4 p2) (5. pad (6, pad (7, 20 (8, ) (9, p5)). Therefore, our chromosome
representation, or the solution string, i [P, Pi. Pa Pae Py Pas Prs Pra P2)- Note that
when the algorithm performs crossover the distribution of tasks to processing
elements will no longer be uniform.

3.3 Crossover operator |
Crossover is the main genetic operator. [t operates on two parents, one called the
“target’ parent and the other called the “passing’ parent, and generates an offspring.
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Crossover is an inheritance mechanism where the offspring inherits the character-
istics of the parents.

A simple crossover operation performs the “cut-paste-and-patch’ operation. 11
consists of choosing a random cut point and generating the offspring by combining
the segment of one parent (string) to the left of the cut point with the segment of the
other parent to the right of the cut point. Our string encoding function £ 1s such that
this simple technigue produces valid solutions or legal schedules.

As an example, let the passing parent be [py, pyi. P20 P1e Pae Pa- | 21 P o] and the
target parent be [pa, Pa. Pro P2o Pa P2a| P2 P2e p3l 1E the crossover paint is chosen
after Lhe fifth allele, then the offspring produced will contain the alleles from the left
of the crossover point of the passing parent and those from the right of the target
pareni. Qur new assignmenl of tasks to processing elements will thus be represented
by the offspring produced. given by [P, Pr Pos Pas P30 P2 P2 P Pk

Several crossover aperators were attempted. but the simple crossover techmque
explained above was found to be genetically effective and computationally cheap.
This simple crossover technique tends to preserve some of the characteristics of the
parent chromosomes, and always produces valid schedules. Note that without lorss
of generality. tasks can be re-numbered in such a way that the index of the parent
task is always less than the index of its children, Tasks in the same level are also
sorted, with Lhe lefi-most one taking the lowest index. In this case the above simple
crossover operator will yield an offspring schedule that uses the target parent’s
assignment of the upper part of the task graph combined with the passing parent’s
assignment of the lower part of the graph.

34, Mutarion function

Mutation produces incremental random changes in the offspring generated by
the crossover. In our case. a simple mutation mechanism is the pair-wise swap of
assignment of tasks to processing elements. That s, if task T, was assigned to
processing element p, and task T, to processing element p,, then after mutation Lask
T will be assigned to p, and task T; to processing clement g,

Mutation is not applied to all members of our population, bul is applied
probabilistically to some members. For a given assignment, two tasks are randomly
chosen and their assignments are swapped as cxplained above.

Mutation is importanl because crossover alone will not help to obtain a good
solution, Crossover i3 only an inheritance mechanism. The mutation aperator
generates new characteristics, If the new offsprings perform well, then the configur-
ations containing them are retained and these spread throughout the population.
The mutation rate controls the rate at which new genes are introduced into the
population for trial, If the mutation rate is low then many genes that would have
been good arc never tried out. If the mutation rate is high then there will be too
much randem disturbance, causing the offsprings to lose resemblance to their
parents, and The algorithm will lose its ability to learn from the history of the search,

3.5, Fitmess function o

The fitness function, also known as the scoring function of a solution, is the
objective function of this combhinatorial optimization problem that we want to
maximize. 1L is obviously the reciprocal of the clapsed execution time of the task
graph using a piven processing element task assignment. Hence, the assignment thal
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has the smallest elapsed execution time represents the most fit individual of the
population, For a given wssignment of rasks 1o processing elements, this value is
expressed as the maximum of the sum of the time required to execute all the tasks
assigned 10 a given processing clement, plus the idle time of that element,

L b
¢7'= max { ¥ T+ idleij) | (1
2

from = LN ey,

To compute the time to completion the following procedure is used. First, the
given graph is levelled in such g way that no task and its parent (or child) appear in
the same level. This can be accomplished by the insertion of dummy nodes between
tasks that will make the level of the child of 4 node one more than s parent. In this
case the number of nodes from entry to exit along all paths will be the same. Dummy
nodes are assigned to dummy processing clements and their tasks take zero time 1o
execute, Then at each level. the time 1o complete the tasks at that level for the partial
schedule is determined. In case more than one node in a given level is assizned to the
same processing clement, the order of execution of these tasks is such that sizes of
gaps between lasks s reduced. Note that for such nodes there are no precedence
constraints since they are in the same level of the levelled graph. It must ke
mentioned that dummy nodes are assigned task numbers which are greater than the
maximum task index in the original task graph. Since crossover and mutation are
applied to only the first o alleles of the chromosome, addition of dummy nodes does
not increase the search space for the best schedule,

4. Results and discussion
4.1, Implementertion tssues

The genetic algorithm was coded in the © language with a little over 600 lines of
code. The core of the genetic algorithm does not exceed 200 lines and consists of a
procedure to level the task graph. a short crossover routine and # similar-mutation
procedure. There is also a function that calculates the fitness function o, The
pragram reads in a lask graph represented by a data set that consists of numbered
tasks and their associated costs, parents. and the cost of communication with these
parcnts. The data alse designates the start node and the exit nodde of the task graph.
The program then begins by levelling the task graph and adding any reguired
dummy nodes as described earlier, and generales an initial set of sjze N, processing
clements assigned to the tasks. The number of processing elements in @ run-time
input parameter that is supplied by the user. For the random graphs gencrated for
our experiment the value af N,=n was a reasonable choice for [0<n<d40 and
3= =,

The genetic algorithm beging by computing the fitness of the initjal set of
assignments which will be referred to as the parent sel. Using this population. a set
of offspring processing element assignments are obtained by crossing pairs of the
parent set N times. Another set of offsprings of sixe N, 15 also computed by
mutating the parent set. Upon completion of computing the fitness of the newly
generaled sets, the three sets are sorted and the best N, values form the new
population of the next generation. This process is repeated until a user-specified
condition is satisfied. In our experiment the program teriunates if there is no
impravement in the avera ge fitness of the population for the last 10 x » generations
or when the optimal value is reached (see Fig. 9,
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Figure 3. Random Gantt chart

The program has been run on several platforms that include 4 MIPS Decstation,
Sun 10 and an Alpha Decstation with numerous examples.

For task praphs intended for execution on dedicaled VL5I sysiems, or parallel
processors such as the Hypercube or a CM* machine, preliminary experiments have
shown that the order of execution times were reasonably good, given the size of the
search space. Finally, the implementation includes o subroutine tht produces the
Ganitt chart as well as the task graph which are output in PIC format.

4.2, Solution guality

It is natural to ask how good is the solution generated by the genctic heuristic!
Assume that §, is the solution generated by our heuristic algorithm developed for
the mimimization problem. IF 5* is the oplimum solution, a measure of the error (£)
made by the heuristic is the relative deviation of the heuristic selution from the
optimal solution, that is
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Figure 4. Random task graph corresponding to Gantt chart of Fig. 3.
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Figure 5. Solution string after each iteration of the most fit individual generated by the
genetic algorithmn for the random task graph of Fig. 4.
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Unfortunately, it is not easy to measure the error, singe §* is not known. The
problem of computing 8%, as seen above, is as hard as finding the optimum solution
itself! Therefore, we have lo resorl to other techniques for judging the quality of
solutions generated by our heuristic algorithms.

One method to alleviate the above problem is to artificially generate test inputs
for which the optimum solution is known a priori, We generated random schedules
whose minimal finish time is known, and from these schedules we constructed the

Figure 6. Levelled task graph from Al-Mouhamed (1990
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Figure 7. Task graph from Al-Maasrani (1993),

required lask graphs. The procedure to generate random tasks for which the optimal
finish time 13 known a priord is as follows.

We assume that the number of processing elements and the time to completion 1s
given. The time interval between zero and finish time is divided randomly into slices,
that is. we have generated a random Gantt chart, Each slice corresponds to a task
and its width represents the time to completion of that lask on the given processing
clement. To generate random task graphs we have to generale nodes and edges.
Each slice corresponds to a node (task) in the task graph. Next, edges are added
between tasks (nodes) as follows. Several pairs of tasks (say T, and T)) are chosen
randomly, and if the finish time of task T; in our Gantt chart is before the starting
time of task T, an arc is added between them in the task graph, A communication
cost is assigned to this arc. whose value 15 equal to or less than the separation
between the finish time of task T, and start time of T, I T; and T; are on the same
processing element then any arbitrary cost s assigned to this edge.

Mow that we know the best solution for our task graph, we use this task graph as
input to our genetic heuristic.

An example Gantt chart is shown in Fig. 3. The two tasks T, and T, are selected,
and since they are assigned to the same processing element, an edge with an
arbitrary cost (18) is added between them. For tasks T and Ty, the difference in the
finish time of T, and start time of T, is 2 units, so an cdge with a cost of 2 units or
less may be added between these nodes, The generated random graph corresponding
Lo the random Gantt chart is given in Fig. 4.

The solution string of each iteration of the most fit individual gsenerated by the
genetic algorithm for the random task graph of Fig. 4 is given in Fig. 5. Note that
the first 19 alleles correspond to 19 tasks of the task graph. The remaining nine
alleles correspond to the dummy nodes added to level the graph to ease the
computation of time ro completion. Observe that the assignment produced by our
genetic procedure is different from the original one, although the time to completion
pbtained is the same.

We also used as examples some Lusk graphs available in the literature, For the
task graph given by Al-Mouhamed (1990) (see Fig. &) the predicted lower bound on
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ssigll

Figure 8. Random sample task graphs.

finish tme was 35 with seven processors. Our heuristic produced a time-to-
completion of 38 with seven processors and 39 with only three processors. The three-
processor assignment solution expressed as our encoded string is [ po. fa Pre Pos Pos
Po: For Pis Piv Pas P Pos Pis Pos Pzs Por 2q)- For another example taken from
Al-Maasrani (1993) (see Fig. 7) our heuristic provided a finish time of 46 units,
better than the finish lime obtained by other constructive heuristics which are as
follows: PD/ETF (33 units), LST (50 units), GD/HLETF (50 units), and GIY/
HLETF* (47 units). The assignment of this selution expressed as our encoded string
18 [ P20 Pas Pos Prs Pos Pos Pas Prs Pas Pos Pus Pos Pav Pas Prs Pas Pil-

For all the task graphs, our results were equal to or better than those produced
by other approaches. A sample of randomly generated task graphs whose optimal
time to completion is known are shown in Fig. 8. The Table compares the solution



Genetic scheduling of 1ask graphs 413

obtained using the genetic heuristic with the optimal. [t also lists solutions obtained
using a straight ETF scheduling algorithm. The quality of solution in all cases is well
within 80% of the optimal, and the average quality is within 90% of the optimal.
The time to execute the genetic procedure on an Alpha Decsystem 30007400 is of the
order of seconds, The Table also shows the number of generations required. and the

Solu- One pro-
Graph ] " o T fiea N, tiong ETF  ccssor
mazl 149 7 i3 3% 3 K1ty 92 44 T2
sslg? n 5 n4 o7 21 456 0-87 E30 2446
sslgh 26 3 a4 54 2 128 1+{H) 147 206
sslell 25 7 63 a3 £7 502 100 103 262
s52pl 40 6 ] |04 57 g6l 083 157 335
s52o3 6 A @] [ (4 26 503 083 141 290
5204 17 i 40 41 3 317 0-08 72 |22
sa3pd 27 6 106 113 15 TR (-94 | 86 244
ss3gl | 26 7 52 03 & 334 (B0 103 214
ssdg] 25 3 129 [33 5 328 (97 245 09
ssedpT 40 7] 99 L17 48 E48 085 197 3T
ssdul | 36 7 &2 44 44 10E0 0-87 L49 324
s3agl 30 3 128 Lit 20 483 0-94 241 276
ss3g7 K1) ] 103 114 43 LA 087 207 375
ss5g9 21 5 ) it 4 320 97 113 181
sshgl2 28 7 i1 T4 15 543 089 [20 258

Companng the results of the genetic algorithm with optimal values.

2.2 T T T T T T T
‘mazl.dat' —
tealgl dak! --—
"selgb.dag' -
b '‘gslgllidac’ — |
R ‘zalgd.dat' -
‘=sigd.dat’ --—--
‘sadgl.dac’t -
*s53gl.dat’ -
1.8 tssigd.datt e |
= raabgl? . dagr —
L6 l 4
|
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i Dy | TQE B
1
L% 4
1 . ; |
] 509 100 BOO
Figure 8. Flat of number of gencrations versus (Average T/ T oima)-
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single processor execulion tme to demonstrate the possible gains and speed-up that
can be achieved. Note that for the task graph ssdgl the ETF algonthm may slow
down the execution of 1his task graph on a multiprocessor if its solution is used. The
Table also shows several cases where the optimal, or very near optimal, scheduling
assignment is achieved.

Figure 9 shows the improvement in the average fitness of the population from
one generation Lo the next. This graph clearly shows that our genetic heunistic
converges towards an optimal selution,

5. Conclusions

This paper has applied a genetic algorithm to find a minimal schedule assignment
of tasks to processing elements on multiprocessing systems. The algorithm is
topology-independent and can be applied to schedule tasks on dedicated VLSI
circuits, Hypercubes, Grid-connected or randomly-connected mulliprocessors. This
lechnigue can also be applied to schedule task graphs with no communication costs,
in job-shop scheduling problems, load balancing in operating systems for multipro-
cessors, and in optimization of other combinatorial problems. Expeniments on large,
randomly generated task graphs show that the procedure is very effective in
determining the minimal tme to completion. In all cases tested, results oblained are
comparable or better than earlier approaches.
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