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GAP: a genetic algorithm approach to optimize two-bit decoder PLAs

MUHAMMAD 5. T. BENTENT and SADIQ M. SAITY

PLAs with two-bit decoders at the inputs reguire a smaller area compared with
standard two-level PLASs (Sasao 1984), The number of product rows required for
such PLAs 15 a function of the assignment of pairs of vanables to the decoders.
This paper describes a minimization procedure that uses a genetic algonthm
approach to reduce the size of two-hit decoder PLAs. Results are compared with
those obtained by other approaches such as the Tomezuk and Miller heuristic
(TAMAY (1992} and the simulated annealing technique (Abd-El-Barr and Choy
1993). For large randomly generated test cases and bench-marks, our results are
optimal or very near optimal.

1. Introduction

One very general way to implement a combinational logic function of s-inputs
and mr-outputs is o use 8 ROM of size 2" =< m bils. The # inputs form the address of
the memory and the m outputs are the data contained in that address. Since it is
often the case that only a small fraction of the 2" product minterms are required for
a canonical sum-of-products (SOP) implementation, a large area is wasted by using
a ROM. A PLA is another alternative that has all the generalities of a memory for
the implementation of a combinational logic function. It contains a row of circuit
elements only for those product terms that are actually required to implement a
given logic function. Since PLAs do not contain entries for all possible minterms,
they are wsually more compact than ROMs having the same function.

A PLA consists of an AND plane and an OR plane and realizes a system of m
Panehons (G e X e X T e i X g 0 oot T s R i Rl |
of n variables {x,, x,,..., x,_ . %) The function of the AND plane is to produce the
product terms, and the OR-plane sums the product térms. A matrix notation can be
used to represent a PLA. As an example, given below are three functions and their
equivalent PLA matrix.

Fila.b.c)=abc+abi+abe+abe=p,+ps+pi+p,
Fila b, c)=abt+abc+abe+abc=p.+pa+pa+pm

Fiyla. b, cy=abe+abc=p, +p,
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L.1. Optimization of PLAs

The area of the VLSI layout of a PLA is directly proportional to the size of the
PLA matrix which depends on (@) the number of product terms, () the number of
inputs and (¢) the number of outputs (Mead and Conway 1980). The area of the
layout required to implement a given set of boolean functions can be reduced in
several ways:

(1) by reducing the number of rows. This is possible by deleting any redundant
products terms (Hachtell er af. 1980);

(2) allowing the area used by one column to share the circuit of two columns.
This technique is known as *folding’. In a folded FLA, AND plane inputs
enter from either top or bottom. If two different inputs arriving from
different directions, i.¢. top or bottom, can share a column, then the circuitry
of the two columns is placed in the area of ane, thus reducing the width of
the PLA layout (Hachtell e af 1980);

(3) a PLA may be partitioned into two FLAs whose area sum is less than the
area of the original single PLA (Ullman 1983):

(4) using 2-to-4 decoders whose output is fed to the AND plane of the PLA;
This causes the width of the PLA to remain unchanged, but the number of
product terms is considerably reduced (Sasao 1984).

A PLA implementing functions of n variables will have 2 x n inputs. The number
of inputs to s standard PLA is the same as that of a 2-bit decoder PLA (2= m); where
n is the number of variables in the functions to be implemented. The number of
product rows in a PLA can be far Jess if it receives inputs from decoders, To
illustrate the point, consider the coincidence function given below:

Frivizgm =2 O r) {x G pa)

The above function requires four product terms in a standard PLA. while a single
product row is sufficient if the inputs are fed through 2-bit decoders. This is
illustrated in Fig, |

The number of product rows required for a decoded-PLA is a function of the
assignment of pairs of variables to the decoders. Several attempts have been made to



Optimizarion of rwo-bit decoder PLAs 101

s uu‘ T

lo—a+h
b —a&+h
o— a+b

{a} )
¥ !
B
B
Fi‘ — —])
b Lo el
X ¥, g ¥ £

Figure 1. {a) 2-to-4 decoder; (&) PLA with decoder inputs for coincidence function,
(¢} standard PLA for coincidence function.

find an assignment that will require the smallest number of rows. Sasao addressed
the problem of assigning variables to two-bit decoder PLAs (Sasao 1984). In his
approach, a complete weighted graph of 7 nodes is constructed first (called the
assignment graph). Each node of the assignment graph represents an input variable
x,and the weight of edge (i, /) represents the complexity of the minimized function if
x;and x; are paired. The estimate used is the number of unique product terms that
remain in the near-minimal two-level canonical expression after the variables x; and
x; (and their inverses) are removed. The problem then reduces to assigning to a
decoder the variables x; and x; for each edge (i,7) in a minimum-weight maximum-
cardinality matching of the assignment graph. Chen and Muroga (1988) considered
a more general grouping where multi-bit decoders are used 1o reduce the arca of
decoded-PLAs. Tomczuk and Miller (1992) proposed a heuristic algorithm to find
an efficient pairing, Their heuristic is based on an autocorrelation function of truth
tables of the function fi.f,,.... .. Abd-El-Barr and Choy started from the
assignment produced by Tomezuk and Miller (TMA) and found a better assignment
using simulated annealing. [n this paper, we present a genetic algorithm that finds an
optimal assignment to the inputs of the PLA,

In the next section we present the genetic algorithm preliminaries. The various
functions of the genetic algorithm are then elaborated. Results obtained by our
algorithm are compared with those produced by the algorithms of Tomeruk and
Miller (1992) and Abd-El-Barr and Choy (1993).

2. Genetic algorithm for PLA reduction

Genetic algorithms (GAs) are search algorithms that emulate the natural process
of evolution as a means of progressing toward the optimum (Holland 1975). They
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have been applied in solving various oplimization problems including those in VLSI
physical design (Cohoon and Paris 1987, Shahookar and Mazumder 1990),

In the GA approach, at any given instant a number of possible solutions, called
the popularion, exists, Their number, denoted by N,. depends on the problem
instant, the size of the problem, and the available memory. Each individual in the
population is a string of symbols. These symbols are known as genes and the string
made up of genes is termed a chromoseme, The chromosome represents a possible
solution 1o the optimization problem. During cach iteration {generation), the
individuals in the current population are evaluated using some measure of fitness.
Based on the firmess values, two individuals at a time (called puarents) are selected
from the population. The fitter individuals have a higher probability of being
sclected. Then genetic operators are applied on the selected parents to generate new
individual solutions called offsprings, These genetic operators combine the features
of both parents. Commaon operators are crossover and muiation. They are derived by
analogy from the biclogical process of evolution. The structure of the genetic
algorithm is given in Fig. 2. First, we see how a solution can be mapped to a string,
Then we discuss the basic operators applied in scarching for an oplimum assignment
to PLA inputs.

Procedure [Geactic Algorithm_For PLA_Beduction)

No= Population Size, [* 4 of possible solutions at any instance, *)
."'.'y: Mumher of Geperations [ # of iterations. ™)

No= Number of Offsprings, {* To be generated by erossover, *)

o= Mutation Probability.

Construet Population] ¥, ) [* Randomly generate initial population *)

For 7 = 1 ta N,
Evalunte Fetness( Population |_-"I."J,] I
{* Reciprocal of # of rows given by cspressa *)
EndFar
For i =T o\
For y= 1 ta N,
Loviy) = Choose_puarents
| " Probability of parent selected is proportional to its fitness *)

offspring|j| «— Generate.af fspringlz.y) (* By crossover (PMX)*)

For j = 1 to &
With probability B, Apply Mutation(Population[f])
EndFor

Evaluate Fitness{offspringli])
EndFor
Popalation — Select{ Population, offspring, M)
(* Select best N, solutions from parents aned oflsprings *)
EndFor
Return highest scorfug configuration in Population
End

Figure 2. Genetic algorithm for 2-10-4 decader PLA reduction.
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String encoding ©

Any string of length » containing unique input variables [x,,x;.....x,] repre-
: possible solution. Since the decoder function is symmetric, the string can be
ghi of as contaiming »/2 pairs, A permutation of these /2 pairs or a
ermutation of the pair itself {interchange of the two elements of the pair) does not
= a different solution. Thus a chromosome can be thought of as a sct of #/2
elements, each element itself being a setl of two unique input variables. The number
such unique sets of n/2 elements is very large (n!/2°-k!. where k=| n/2 ).
refore, for large values of # {(greater than 10} a systematic procedure must be
pplied 1o search for the solution space to obtain the best assignment. For example.
n=6 a possible solution represented as a set of sets is {{x;. 0], [xs 2]
.1:3}} The corresponding string is the sequence [x;, Xy, X3 X5, Xe. X3

2.2. Fitness function o

~ The fitness function, also known as the scoring function, depends on the numbet
product rows required by each assignment to implement the given function. This
s obtained with the help of espresso (Brayton et al. 1984). Espresso takes (1) a PLA
trix and (2) the pairings (or assignment), as input and returns a reduced PLA.
2 reciprocal of the number of rows of the reduced PLA is the fitness of an
lividual in the population.

- Papulation constructor =

The initial population is randomly chosen from all possible unique assignments,
e size of the population depends on the size of the PLA matrix, t.¢, the number of
~inputs, outputs, and product terms. For the examples presented, typical values of
- N,=10and N, =10 are used.

LT
{2
|l

- 24. Crassover operator
Crossover is the main genetic operator, It operates on lwo individuals and
- generates an offspring. It is an inheritance mechanism whereby the offspring inherits
:characteristics of the parents. A simple crossover operation is as follows, it
ooses a random cut point and generates the offspring by combining the segment of
e parent (string) to the left of the cut point with the segment of the other parent Lo
: right of the cut point.
In our case the clements of the sets are treated as an ordered sequence. Two such
: juences of two parents are selected. The above simple technique is not directly
'x:-@'pp]u:ahle here because some variables to the left of the cut point in one parent may
~ also exist in the right substring of the second parent. Several other crossover
Htwhmqucs have been reported in the literature that can be applied: One commonly
‘-used technique in such situations is the partially mapped crossover (PMX) technigue
ookar and Marzumder 1990),
~ The PMX crossover is implemented as follows: two parents are selected (say | and
and a random cut point is chosen. The entire right substring of parent 2 1s copied to
ffspring. Next, the left substring of parent 1 is scanned from the left. gene by
o the point of cut. If a gene does not exist in the offspring, then it is copied Lo
Tfspnng However if it already exists in the offspring, then its position in parent 2
mined and the gene from parent 1 in the determined position 1s copied.
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As an example, consider the two parents [H2X4X5XaXq| X3x5x,] and
[ ¥y 6505 X352 X, X5 xg]. Let the crossover position be after 5, Then the offspring due to
PMX is [y xyxax; Xq]xg xaxc],

2.5, Mutation function

Mutation produces incremental random changes in the offspring generated by
the crossover. In our case, a simple mutation mechanism is the pairwise swap.
Mutation is important because crossover alone will not help to obtain a good
solution. Crossover is only an inheritance mechanism. The mutation operator
generates new characteristics. 1T the new offsprings perform well, then the configur-
ations containing them are retained and these spread throughout the population.
The mutation rate controls the rate at which new genes are introduced into the
population for trial. If mutation rate is low then many genes that would have been
good are never tried oul. If mutation tate is high then there will be too much
random disturbance, causing the offsprings to lose resemblance to their parents and
the algorithm will lose its ability to learn from the history of the search.

The structure of a genetic algorithm is given in Fig. 2. The algorithm starts with an
initial set of random configurations N . the size of which is always fixed. Following
this, a mating pool is established in which pairs of individuals from the population are
chosen. The prabability of choosing a particular pair for mating is proportional to the
individuals fitness value. A roulette wheel technique is used where individuals with
higher fitness value have a greater chance of being selected for crossover (Goldberg
1989). N, new oflsprings are generated hy applying crossover. The offsprings
generated are next evaluated on the basis of fitness, and a new generation is formed by
selecting the best N individuals from both the parents and the offsprings. Mutation is
then applied with a fairly high probability to the entire new population except the best
individual. In our experiments, we observed that only crossover with ne mutation
produces no optimal results. The above procedure is executed N, times, where N, is
the number of generations. After a fixed number of generations (V). the fittest
individual, i.e. the one with highest fitness value is returned as the desired solution.

3. Discussion and results

The results obtained by applying GA to randomly generated circuits are
tabulated in Table 1. In all cases, the results obtained are better than those obtained

Fmal rows

PLA Initial
circuit L FowWs 54 GA Optimal
I 10 65 2 19 19
2 12 427 & 62 G0
3 12 150 16 i4 33
4 12 a3 124 122 121
5 12 276 4n 37t 37
6 & 16 b &t 8
7 & 54 - 19 19

Table 1. Table comparing the results of GA and SA (T mdicates GA =oplimal).




Optimization of two-bir decoder PLAy 105

Final rows

PLA Initial

circuit n TOWs TZM S5A GiA
I 4 16 9 3 b
2 4 16 7 b 3
3 b 64 20 19 15
4 6 G4 30 28 Pkt
5 b 256 &7 67 &4
i & 236 102 a7 G5

Table 2. Table comparing the results obtained from the TZM heuristic, simulated anncaling
on TZM results and the genetic algorithm approach.

by applying simulated annealing alone. In most cases they are optimal. Table 2
shows the results obtained by executing (w) the TMA heuristic, () simulated
annealing on TMA results, and {¢) the genetic algorithm,

The TMA approach requires that the PLA be given as a completely specified
truth table. The 8A approach of Abd-El-Barr and Choy (1993) iterates on the
constructive solution provided by TMA and therefore has a similar requirement.
Our algorithm does not have any such requirement. It starts from a population of
randomly generated possible solutions and systematically searches the solution space
for an optimal assignment.

4. Conclusions

In this paper, we have presented a new lechnique to optimize decoded PLAs,
Experiments on large randomly generated circuits and other bench-marks obtained
show that the procedure is very effective in reducing the number of product rows
required. The results obtaingd arc comparable or better than some earlier
approaches.
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