" e

Sadiq M. Sait, Ali S, Benten MST+Scheduling and allocation in high-level synthesis using

PIL: S0026-26%2(96)00001 -5

stochastic techniques *MICROELECTRONICS JOURNAL 27 (8): 693-712 NOV 1996

83712

imited

prarved

515.00

Scheduling and
allocation in high-
level synthesis
using stochastic

techniques

Sadig M. Sait, Shahid Ali and

Muhammad S.T. Benten

Computer Engineering Department, King Fald Usiiversity of Petroltuns and Mineraly,
KFEUPM Box 673, Dhalyane 31261, Saudi Ambia, Tel: 866i3)-8602217, Fax;

RAGF3)-B602366. Fomail: sadig@ecse. kfupm, vdu.za

High-level synchesis is the process of automatically trans-
lating - abstract behavioral medels of digital svstems o
implementable hardware, Operation scheduling and hard-
ware allocation are the two mest important phases in the
synthesis of circuirs from behavioral specificanion. Schedul-
ing and allocation can be formulaced as an opomization
privblem, In this work, 2 unigue approach o scheduling and
allocation problem wsing the genetic algonthm (GA) 55
described. This approach is different from a previous
atempt using GA (Wehn et al., JFIP Working Conference ont
Logic and Arhitectvere Synthesis, Paris, 1990, pp. 47-36} in
many respects. The main contmbutions melude: (1) 2 new
chromesomal representation for scheduling and for owo
<uhp1’<1h|¢|m of allocagion; and {2) two nowvel crossover
operators to generate legal schedules, In addition the appli-
cation of tabu search (T5) o scheduling and allocation 1
also implemented and studied. Two implementations of TS
arc reported and compared. Both genene scheduling and
allocation (GS5A) and rabu scheduling and allocaton [TSA)
have been tested on varous benchmarks and results
obtaned for dag-onented control-data fow graphs are
compared with other implementations in the lieerature. (A
discussion on GSA was presented at the European Diesign
Auvtomation Conference Euro-DAC'?4 in Grenoble,
France, ard TSA at the Internanonal Conference on Elec-
tronics, Cirenits and Syvsiems — ICECS'94 in Cairo, Egypt.)

A nove] interconnect optimization technigue using the GA
is also realized, Copyright @0 1996 Elsevier Science Lid,

1. Introduction
| | igh-level synthesis (HLS) [1] 15 the process

of automatcally translating abstract beha-
vioral maodels of digital systems to implemen-
table hardware. Operation scheduling and
]]}l]’ii‘v‘r’}]]’f Ell]ﬁt‘:}ll‘!{]ﬂ are tl']L‘ DWO TNOst i]t1i](]‘]'|.i-l'|||.
phases in the HLS of circuits from behavioral
descriptions. While scheduling distributes the
execution of operations throughour tme steps,
allocation assigns hardware to operations and
‘n-'".‘llLlL'ﬁ. .'ﬁk”l'.:'l'.";l{.tl”]i] Ul- l]J]Td‘ﬂ-}IrL' {:'L‘”}- jrl{:‘llli;{.’ﬁ
tunctional umt allocation, register allocation and
bus allocation. Allocation determines the inter-
connections required. Early techniques for
H"..'}'Iﬂ_‘ll{lll'ir]g f![]d .I“U"..';lt'if.:lr! Wiere ﬁ'i'li'l]:}il.', H'I.I:{":] 1k
the as-soon-as-possible {ASAT) aleorichm [1, 2].
These techniques tend to minimize schedule
length while ignoring the hardware costs. Since

693

(1)

R

Jaded yoiessay

Administrator
Text Box
Sadiq M. Sait, Ali S, Benten MST�Scheduling and allocation in high-level synthesis using stochastic techniques �MICROELECTRONICS JOURNAL 27 (8): 693-712 NOV 1996 �

Sadig M. Sait et al./Scheduling and allocation in high-level

synthesis

then different technigques have been developed
to minimize hardware costs as well. These tech-
miques are cither constructive, transtormational
or exact. Caonstructive techniques usually use
areedy heunstics which do not guarantee that an

O]Jtinm] solution will be found. Examples of

such a technique are list scheduling [3] and
force-directed scheduling |4]. Transtormational
techmigques alter an exasting schedule to find new
low-cost schedules. Examples of transforma-
tional techniques for scheduling and allocation
are simulated annealing [5, 6], genetic algorithm
|7, 8] and simulated evolution |9). Exact techni-
ques are usually based on integer linear-
programming.

Scheduling and allocation are closely inter-
related, but are usually deale with separately
because of the complexity involved. Optimizing
them separately may give suboptimal resules
because the possibility that the best designs (in
terms of overall cost) may require suboptimum
schedules and/or allocations may not be consid-
cred. Thus, one can combine scheduling and
'l]]Uf. 1t]ﬂ11 1]'|: Aty :11.1.LT1'|P| i UFt'I.'[TI'I?{_ LOS0 ﬁ'l.['_l[_,—
tion that includes both the number of control
H[CE].‘; '.I:[]l'.]. [']'I".‘ |:]H'|'(_{‘|.\'HTC.

This paper describes unique approaches to
schedubing and allocation using genetic algo-
rithm Lf_:r‘*.) and tabu search (TS) for data-
oriented control/data flow graphs (CDEGs).
The renainder of this paper s organized as
tollows. Synthesis process and its complexity are
llustrated in Secton 2. After an introduction to
GA In Scetion 3, genenie scheduling and allo-
cation (GSA) [8, 10] s described in Scetion 4,
Sectiond provides an introduction o TS,
Section & discusses tabu scheduling and alloca-
tion (TSA) [8, 11]. Genetic algorithm for data
path synthesis (DPS) [8] 15 desenbed in
Secoon 7.
scheduling and allocation, and dawa path synth-
esis on vartous benchmarks. Finally, in Section
9 we present conclusions.

694

section 8 presents the results of

2. Synthesis process and problem
illustration

A simplificd example of synthesis is illustrated in
Fig. 1. The behavioral description (Fig.la) is
compiled into an intermediate form (IF) which
is then transformed into optimized IF. The
CDFG shown in Fig. 1b corresponds to this
optimized 1F. MNote that the common subex-
pression 8% T 1s computed only once. Sched-
uled CDFG (Fig. ¢} shows one of the possible
schedules for a miven CDFG. The small circles
correspond to registers. It is assumed that input
values &, T, U7, 7 and I should be available
even after the computation of output values X
and Y. Therefore, the corresponding registers
can not be used. Note that a temporary register
£ 1s used to store 5 % T, whereas the register for
Y is temporarily used to store U % 17, Figure 14

Behavicral Specification Scheduled COFG
=W+ {'S * T'J W s T U
Y=(S*T)+(U*V)

e}

Fig. |, Example of synthesis process

Microelectronics Journal, Vol. 27, No. 8

shows the data path for this schedule after the
allocanion of funcrional units, registers and buses
i performed.

As the transformation of a behavioral specifica-
tion into a structural design, with limited
resources, is an NP-hard problem, one tries to
simplify the search for ethcient approximations
by subdividing the general problem into
subproblems of scheduling and allocation. As
stated earlier, this approach gives suboptimal
results. This 1s because the two subproblems are
highly interdependent. The strong inter-
dependence berween the allocation of resources
and the scheduling of operations into time steps
can be illustrated with the help of the simple
example of Fig.2. The CDFG 15 shown in
Fig. 2a. Figure 2b gives the number of control
steps, the minimum number of registers needed

o o CSs | AEGs | FUs
(=) 4 4 3
@ (OGE 6 TS
& 4 2
(a) (b)
i C()
i ()
: L (o)

Fig. 2, Interdependence berween resource allocation and
scheduling.

and the minimum number of functional units
required for the different schedules of Figs. 2c—2¢,
The example makes it clear how the number of
required control steps is mutually dependent on
the number af available registers and functional
umts, [t also shows how every partial problem is
interdependent within the allocation, namcly,
regster allocation and funcrional unit allocation.

The effect of functional unit allocation and
register allocation on interconnection cost s
llustrated with the help of the example of Fig, 3.
Figure 3a shows a simple CDFG with three
additions and one mulaplication for the beha-
vioral specification given in Fig. 3b. There are
seven variables involved. The number of control
steps for which the vanable s active 15 called its
lifetitne. The lifetime analysis of variables used is
shown in Fig. 3c. Variables with disjoint life-
times can be stored in the same register. Thus
we can form groups of (¢l, v6) or (13, v8) and

Lifetimes
1 2 3
yj ———
v
w3
v
vh
Vi —
wr —
(c)
va =yl +vd
{h} VB =] w2
Vi = vd " w5
VT =2 + v6 IFM{v-i]-i IRE{V.'S.H‘T:||
1 f |
R1:vi1, vé { 2y | *2
R2 - y2 311 +{1I |+E}|aa mL_*_I
R3:v3
R4 :vd
R5 : V5, v7 [Ra(va)][Riiv1. ve) |[Ra(v2)]
(d) (&)

Fig, 3. Effect of funcaonal unit and regster allocation on
ITLEETE O e HOTE COst.

695

Sadig M. Sait et al./Scheduling and allocation in high-level

synthesis

(v, #7) or (¢5, 17}, (For simphcity, it will be
assummed that a register can not be used to store a
new value 1f it 1s involved in an operation during
a particular control step.) The register assign-
ments are shown in Fig 3d. Varables vl and 6
are grouped into register R1 and v5 and ¢7 into
R5. The data path using this assignment s
shown in Fig. 3¢. It can be seen that operation a3
can be assigned to adder 1 or 2. No more inter-
connections are needed 1f 1t is assigned to adder
2, as i1s done in Fig. 3e. Had it been assigned to
adder 1, an extra interconnection from register
R2 to adder 1 would have been necessary which
would also necessitate a multdplexer at one of the
inputs of adder 1. It can also be seen that if vari-
able vb were grouped with #3, an extra inter-
connection and a multiplexer can not be avoided
whether we assign operation a3 to adder 1 or 2,
Grouping v7 with 5 does not require any extra
interconnection as both are produced by adder
2. This clearly illustrates the effect of functonal
umt allocation and register allocation on the
INErconnection cost.

3. GA: an introduction

GA [12] works by emulating the natural process
of evolution as a means of progressing toward
the optimum. The algorithm starts with a
population which consists of several solutions to
the optimizaton problem. A member of a
population is called an individual. A fitness value
is associated with each individual, Each solution
in the population or an individual is encoded as a
string of symbols. These symbols are known as
genes and the solution string is called a chro-
mosome. The values taken by genes are called
alleles, Several pair of individuals {parents) in the
population mate to produce offspring by apply-
ing the genetic operator crossover. Selection of
parents is done by repeated use of a choice
function. A number of individuals and offspring
are passed to a new generation such that the
number of individuals in the new population is
the same as in the old population. A sclection
function determines which strings form the

696

population in the next generation. Each surviv-
ing string undergoes mutation and inversion
with a specified probabilicy,

The overall picture of a GA is as follows.
E.n-'..‘mling is devised for a pmhl{.‘m in hand. A
population of encoded solutions 15 creared,
Fitness of each solution is found using an
evaluation funcaon. Two parents are selected for
crossover which resulss in two t}fﬁpri;]g.
Offspring are then mutated with a very low
pmbabi]il}'. After the crossover s :Lpp]ir:[] a
specified number of tmes, we get a population
t}fn’.‘:tﬁ}}rirtg .';iﬂn;_g with the old population of size
n. A selection funcoon is used o select indivi-
duals from these two populations to obtain the
new }‘.IL‘};‘.ILI]:HH“JH of size n. The above Steps are
then repeated for a specified number of genera-
tions. The best solution in the final p{:pu!:;r.iﬂn 1%
the result of GA.

4. Scheduling and allocation using GA

In order to formulate scheduling and allocaton
as an opumization problem, a suitable cost
function 15 required. The optimization techni-
que will then attempt to optinnze the value of
this function. Since we want to optimize sche-
duling and allocation tasks jointly we need w
ncorporate both tme related and hardware
related terms in our cost function. The cost
function C that will be optimized by the genetic
algorithm is given and explained below:

=
P P

Fu

o ;'\'r:.\ -+ :H"’ri-!: ® ‘\:H':_t + i"'l'.‘hu- x .'\\.'-l._“._

®MNg 4+ Wox N

(1)

where W s the weight assigned and N is the
number. The subscripts cs, reg, bus, fu and ic
correspond to control steps, registers, buses,
functional units and interconnections,

The algorithm starts with a specified upper
bound on the number of control steps. Durning
the optimization process the operations are

Microelectronics Journal, Vol. 27, No. 8

assigned to contrel steps and funcoonal wnits.
Each functional unit has two inputs labeled as |
and 2. Besides assignment of operations to
control steps and functional units, varables are
assigned to functional unit inputs. Constants are
always assigned to the same input as this helps in
optimizing the number of interconnections. The
number of registers and buses are optimized.
Allocation of variables to registers and dara
transfers to buses is not actually made. The
numbers of registers and buses as given by the
final solution are oprimal for the given schedule.
Only 2 compromised estimation of the inter-
connection cost 1s used,

4.1 Chromosome

(GAs work on the coding of the problem rather
than on the actual problem. This coding is
known as chromosomal representation. Devising
a good coding is particularly necessary for better
design space exploration by the GA. A given
high-level specification of the description of the
circuit 15 compiled using fex and yaec Unix unh-
tes. A CDFG 15 then obwmined from the
compiled version. Any schedule should satisty
the precedence constraints implied by CDFG.

Since we want to combine scheduling and allo-
cation into one optimizaton problem, the
coding has to reflect this. This can be done only
to a certain extent. Finding an encoding for all
the parameters is nearly impossible as there are
too many constraints. The coding that 1s adopted
is shown in Fig. 4. Each gene has three values—
control step number, functional unit number
and the number of the functional unit input to
which the left variable of the operation 15
assigned. The first row in the figure gives the
operation number to which the above three
values correspond. This coding will be manipu-
lated by the genetic operators. Figure 4 corre-
sponds to the schedule shown in Fig. 5. It is
necessary to see why this coding is good enough
to optmize scheduling and allocation tasks.
With this representation the three subproblems
are solved completely, namely, control step

Op Num 1 2 F A4 E ET R
CtrlStep |1 |1 (3 [2|2([2([4[3|5
FuncUnit |3 (1 |2]|1|12|3 (3|32
Flhamput | B3 3|22 X L12|L
Fig. 4. Chromosome.
Op Num

1 Q =~ Eune Unit
3 @z\t;jﬁ

e

& 73

]

Fig. 5. Schedule corresponding to the chromosome of
Fig. 4.

assignment, functional unit assignment and
functional unit input assignment. Given this
information, the exact number of registers and
buses can be found, whereas only a fair estima-
tion of interconnection cost can be obtained.
The chromesome in [7] has operation number
inn depth-first order and alleles corresponding to
mobility values (see below) that are filled
constructively. Special genes at the end of the
chromosome give the number of cach type of
functional unic,

4.2 Initial population

A good imtial population is necessary for proper
functioning of the GA reported in this research.
(:As work by adopting good structures from the
population o generate better individuals.,

697

Sadiqg M. Sait et al./Scheduling and allocation in high-level

synthesis

Therefore, inttal population should be as diverse
as possible. In this implementation the members
of the initial population are created by using the
following four scheduling schemes: (1) as soon
as possible (ASAP) scheduling [13}; (2) as late as
possible (ALAP) scheduling; (3) mobility-down
variation of ASAP; and (4) mobility-up variation
of ALAP.

ASAP scheduling assigns the operations in the
carlicst possible control steps, whereas ALAP
scheduling assigns the operations in the latest
possible control steps. For a given limit on
control steps, maobility of each operation, which
is the difference between ASAP and ALAP
control step values, 15 caleulated. The term
mobility-down scheduling as used here means
that operations are scheduled in ASAP manner
within their mobility range taking care of the
precedence constraints. Note that in a CDFG,
mobility is used from upper nodes to lower
nodes, If we reverse this sequence, we will get
mobility-up scheduling. Functional units for
cach control step are assigned sequentially and
randomly perturbed in the end. Assignment of
the left variable to the functional unit input is
done randomly.,

4.3 Choice function

The first step to get a new generation is to select
parents on which genetic operators are to be
applied. The selection of parents is an important
step which affects the population in the new
generation. Selection of fittest parents leads to
premature convergence. Thus an appropriate
choice function is required. This depends on
how the fitness of a member of the population is
calculared.

4.3.1 Fitness calculation

The GA works natnally on the maximization
problem whereas our cost function has to be
mmimimized. Thus the cost minimizaton problem
is converted to a fitness maximization problem as
follows, The maximum cost ., 1n the entire
population is determined and each cost ¢ is

698

subtracted from this value o get the fitness f; of
individual i. Fieness scaling is used to avoid
premature convergence. One method 1s linear
scaling [12]. Linear scaling runs into problems in
later runs of the GA when most of the fitness
values are close to each other and some lethal
members have very low fitness values, This leads
to negative fitness values. To avoid this situation
sigma (o) truncation was proposed [12]. All the
fitness wvalues are prerccsscd to calculate
modified fitness values {7 as follows:

_)II: '_llrl.' = ';.f;xl., = (:mult = "T:' [2]'

where @ 15 the standard deviation of the popula-
ton and Cpye 15 the multiplying constant
between one and three. The negative values
{f: <) are arbitranly set to zero. After this
truncation, linear scaling can proceed withour
the danger of negative results.

4.3.2 Sample space

Based on the scaled fitness value a probability is
calculated for each individual. This 1s multiplied
by the size of the population n to get expected
number of times an individual should be selected
{¢;) as parent:

a=(fil3 fi] xn (3)
=1

A sample space is defined based on e, values. It
consists of an array of records with two ficlds—
a member identification number field and a
probability field. For example, if ¢, = 2.6, then
individual j will receive three slots (7, 1.0),
(j: 1.0) and (y,00.6) in the sample space. Assume
that there is a total of m slots in the sample space.
To select a parent a random number is generated
berween 1 and s oand the individual corre-
sponding to that slot is selected as parent with
the probability of that slot, This process is repe-
ated until a parent 15 selected. According to this
scheme the fitter individual will get more slots in
the sample space and have a high chance of being
selected, Note that the scheme still maintains

Microelectronics Journal, Vol. 27, No. 8

Liivvrﬁit}f in the population because the selection
is random over the sample space.

4.4 Crossover

The nodes in CDFG have precedence
constraints that should not be violated when the
crossover operator is applied. In [7], a simple
LW l'.lﬁ]]'l:[CTrOs5OVEeET rﬂ“ﬂ\il’_[i i}}]'l'll:_}l:].'iﬁ(:(].
ASAP scheduling was proposed. 'T'hiq technique
CAn ‘[]T(}Lil]". {6 i]L[]H]f_ i "u’qrh][|:] ATL](‘J'I'I:S_;LT l'|:'.| in t]'IL
specified control step limit and is thus believed
to take longer to find good schedules. Note that
schtdu]mg 15 performed each time the crossover
is applied. We opted to have a crossover that
would always give a valid schedule rather than a
crossover where scheduling has o be done
separately. Given the coding as described in an
carlier section, it 1s a difficult proposition to be
resolved. If we fix the order of nodes in the
chromosome, a simple one or owo point cross-
over will result in an invalid offspring chromo-
some, The following schemes developed in this
research alleviate the above problems and always
generare valid offspring,

4.4.1 Alternating crossover

The term altermating crossover as used here
means that given the same order of genes in both
PHTL‘]'I‘L'H, ‘n.‘v'L".t:ll'{l'.: LCNCs i"]'ﬂ'.lﬁ'l I.E'IL' Wi parn‘.ntﬁ in
the alternating sequence such that whenever
there 15 a violation of precedence constraint we
take the gene from the other parent but maintain
the alternating sequence, It 15 found that if we
put the genes in the reverse depth-first order
such thar successors are always on the left-hand
side of their predecessors, we can use the alter-
nating crossover to generate valid offspring. It
works because whenever we take a node that is
L hL" S-I:'I]l'_'dtl](_'l'.] :1]] l'.'.l'l:1 ity SLHCCCS50TS AT :_'l]'l'{::ld‘}"
scheduled and thus we can check for any viela-
LS,

A working example of the altemating crossover
15 shown in Fig. 6. Figure 6a shows the two
selected parents (p; and ps) for crossover and
Fig. 6b shows the resulung offlspring (es) with

(@)
@
@

3 c
B . ¢
) + (o
p: D B C E A pp: DB CE A
3 2 2 41 4 2 3 21
(=)

]

o6 B B C E A
a2 221
3 Py P2 Py Pz P4

(b)

Fig. 6. Alterneting crossover example with o scheduling
violations: (i) parents; (b} offspring

genes labeled with the parent tag from which 1t 1s
taken. It can be seen that there are no scheduling
violations in this example, An example which
results in such a wvieladon is shown in Fig. 7.
Figure 7a shows two parents. As indicated in
Fig. 7b, during crossover we take alternating
genes from cach parent. At one point we can not
take a gene from parent 1 so this gene is taken
from parent 2, but the alternating sequence is
maintained and the next gene is also taken from
parent 2.

4.4.2 Order crossover

It is found that alternating crossover 13 not able
to mherit good structures from the parents. The
main reason for this is that it works bottom up

698

Sadiq M. Sait et al./Scheduling and allocation in high-level

synthesis

Py S D A B P2 C D A B
34 2 1 & 20 9

(a)

1 i~ SR |
Tum: p ps P
@ 3 1 Pz P P2
4
(b)

Fig. 7. Alternatng crossover example with schedule viola-
tiens: (a) parents; (b olfzpring,

and things become constrained for upper opera-
tons. Thus the chance of nuxing the genes
becomes less. For this reason we started looking
f‘[‘}]' a |::"(."1.‘EL"T.' CTORROVET {]F{fT}]EU!’. [_,l:_'[' s reimnove
the restnction on the order of the genes in the
chromosome. A simple order crossover works as
follows. A cross point is randomly generated and
genes on the left side of one p:m:m.arn:: copicd to
offspring in those positions. The other parent is
scanned from left to nght and these genes are
stored 1 the remaining positions of the offspring
it that order (Fig, 8). This ensures that no genes
are duplicated or missed.

Using this simple order crossover will of course

give inwvalid schedules. The technique we adopted
to avold invahid schedules is as follows. The cross

700

Cross point
Parent 1: 5 4 1 2 & 3
Parant 2: 1 & 4 3 5 2
COffspring: 5 4 1 6 3 2

Fig. 8 Sumple erder crossover.

pont is randomly generated and left genes of one
parent are copied to the offspring. This deter-
mines the schedule for some operations. Given a
schedule for some operatons in CDFG, the
ASAP schedule for the remaming operations can
be determined. Those genes from the other parent
which do not violate the precedence constraints
are copied to the offspring and those which do
violate are taken from the first parent. The ASAP
values are used to check any violations. An
example of this is shown in Fig. 9. The cross point
is between the third and fourth genes of parent p;.
The lefe three genes (A, C, F) from parent p; arc

copied to the nﬁnr.-nng and the ASAP schedule for
the remaining genes as induced by genes (A, C, F)
is determined. Since none of the remaining genes

from the other parent violate the precedence

constraints they are copied without any trouble.
This crossover is able to group together good
structures in an offspring which 1s passed from
gﬂi]el'ﬂ“ﬂ[] Ly gﬂ[]UTHE1t31!.

4.5 Functional unit violation
Functional umit and funcrional unit input
assigniments are also taken from the same parent.
One can easily see that sometimes this will result
in concurrent assignment of the same functonal
umit to two or more operations in the same
control step. One way to resolve this situation 1s
to include a violation term in the cost function
of eq. (1}. The cost function then becomes;
C = Wy % Nig 4+ Weg % Nig + Won X Noe
+ Wi x Ny + W x N, + W x N

i il

(4)

fu

where viol refers to violation. The other way
around is to reassign the functional units for

Microelectronics Journal, Vol. 27, No. 8

B CNOINONC
oA AN
S RoIcHCWa
roRTE

ECRYMC

ONONE.
g o
N\VA
B8]
5 ®

CFIDG B E
24451 2

3 6 1 Z2:ASAP
p1 pe

(b)

Fig. 9. Example of order crossover talored for scheduling:
{a) parents; (b) offspring.

violating operations only. The advantage that one
can think of for the firse scheme is that one would
expect the functional unit assignment to improve
genetically. But if there are too many violations
then it will undermine any genctic improvement.
This is indeed the case as found by experiments.
Thus the second scheme looks practical and is
used in our current implementation.

4.6 MNormalization of functional unit
assignment

Besides functional unul violanon there 15 one
More pmh]trm that is to be handled when we
apply the crossover operator. Suppose that the

maximum number of functional units in one or
both parents is three. The crossover can produce
an offspring that uses only two functonal units.
Since we inherit the assignments from the
parents unless there is a violation, it may happen
that some operations are assigned to funcnonal
unit 3 whereas the maximum number of func-
tional units used in offspring is only two. This
means that one or both of the functional units
arc free in the control steps corresponding to
those operations. Thus the functional unit
assignments for these operations are performed
again within the maximum range.

4.7 Mutation

Three types of mutation operators are used in
the present implementation. Control step muta-
tion is the most important type of mutation. An
operation is selected randomly. An attempt 1s
made to move it either up or dovwn: The direc-
tion 1s generated randomly. 1 it does not result
in any violation, its control step valuc is changed.
Control step mutation has very far-reaching
effects. It can produce a better schedule and
reduce the number of functional unies, buses and
registers. The second type of mutation is the
functional unit assignment mutation. An opera-
tion is selected randomly and a new functional
untt number is generated. If this one is not used
by any other operation in that control step then
the functional unit assignment of the operation is
changed to this one, otherwise another mutation
attempt is made. [n both cases mutation attempts
are made a limited number of tumes. The last
tvpe of mutation is the functional unit input
mutation. An operation is selected randomly and
if 1t 15 a commutative operation then the assign-
ment of its left variable to the funcrional unit
input is changed. The last two tvpes of mutation
help in reducing the estimated number of inter-
connecrions.

4.8 Selection

Crossover 18 applied on the population with a
specified rate. After the applicanion of crossover
15 complete, we get an increased population

701

Sadiqg M. Sait et al./Scheduling and allocation in high-level
synthesis

consisting of parents and offspring. We opted to
have a fixed population size. Thus the next step
is to transfer some of the individuals among
parents and offspring to the next generation.
This is done by a selection function based on
fitness value. We create another sample space in
the same manner as discussed in Section 4.3 for
the increased population. Thus the selection
function 1s the same as the choice function. This
is applied as many nmes as population size to get
the new population. It is found that good results
can be obtained if this scheme 1s combined with
one or more of the following schemes: (1)
always selecting the best individual in the popu-
lation; (2) selecting a speafied quantity of the
best individuals; and (3) selecting some specified
quantity randomly. These schemes help in
improving the search and maintaining the diver-
sity in the population, which is necessary for
scarch space exploration, and avoids premature
convergence to the local optimum.

B. TS: an introduction

A general iterative technique, called tabu search
{TS] was proposed by Glover [14,15] for find-
g good solutons to combinatoral optiniza-
tion pmb]cms_ This rechmique is conceptually
simple and elegant. It is a higher level heuristic
which can be supenmposed on any procedure
which works by making moves to go from one

trial solution to another, It has also proven itsclf

tar be very useful in providing good solutions for
many NP-hard problems in a reasonable amount
of time. Examples include VLSI placement |16]
and circuit partitioning [17].

Like simulated annecaling, TS does not resort to
pure randomization to conquer intractabilicy,
nor does it take the conservatve approach that a
proper rate of descent will lead us to a good local
optimum which may be close o a global one,
TS5 wses a flexible atrribute-based memory
structure to exploit historical search information
more thoroughly than by techniques using rigid
memory structures (such as branch-and-bound

702

and A* search) or by memoryless systems (such
as simulated annealing). Using these memory
structures, TS employs a mechanism of control
which constrains and frees the scarch process.
These correspond to tabu restrictions and
aspiration criteria. TS takes the aggressive
exploration approach which seeks to make the
best move possible subject to available choices,
performance and certain constraints.

5.1 Tabu restrictions

TS5 goes from one trial solution to another by
making moves. It makes several candidate moves
and selects the move producing the best solution
among all candidate tmoves for current iteration.
This best candidate solution may not improve the
current solution. With this strategy, it 1s possible
to reach the local optimum, ascend, and then
come back to local optimum in case of a mini-
mization problem. Thus there is a possibility of
cycling back to the same state. Tabu restriction s
a device to avold such eyeling by making selected
attributes of these moves tabu (forbidden) to
avond move reversals. Tabu restrictions allow the
search to go beyond the points of local optimality
while sull making the best possible move in each
iteration. Selecting the best move (which may or
may not improve the current solution) is based an
the supposition that good moves are more likely
to reach the optimal or near-optimal solutions.
The set of admissible solutions achieved through
different moves form a candidate lise, TS selects
the best solution from the candidate list. Candi-
date list size is a trade-off between quality and
performance.

Tabu restrictions arc enforced by a tabu list
which stores the move attributes to avord move
reversals. Tabu list has an associated size. Tt can
be visualized as a window on accepted moves.
The moves which tend to undo moves within
this window are forbidden (Fig, 10).

5.2 Aspiration criteria
The aspiration level component of TS introduces
diversification in the search. It temporanly over-

Microelectronics Journal, Vol. 27, No. 8

Accapled Moves m
4-"’1"‘;"
2000000000600 0|

-‘_T.h“msh._hn

Fig. 10. Tabu list can be visualized as a window over
accepted moves,

rides the tabu status if the move 1s sufficiently
good. If 2 move 1s made tabu in iteration i and its
reversal comes in iteration §, where § < j + ¢, then
it is possible that the reverse move may take the
search into a new region because of the effects of ¢
intermediate moves. The aspiration criterion
must make sure that reversal 1s leading to a solu-
tion which is better and is not the same as the
previous one, otherwise cycling can occur.

The simplest aspiration criterion is to override
the tabu status if the reversal pmduccﬁ a solution
better than the best obrained thus far. Anotcher
approach 1s to use the same ateribute of the move
which is used to identify che tabu status and
associate an aspiration level value with it. The
reversal has to do betrer than chis historical
aspiration level, Tt 1s found to be useful in some
applications to give aspiration level a tenure that
p::ruﬂtr]s the tenure of the tabu list. This means
that the aspiration level of the selected auribute
1s updated whenever that move 1s made abu and
whenever the aspiration level criterion is passed.

6. Scheduling and allocation using TS

TS implementation for scheduling and allocation
in HLS of digital systems will be discussed in this
section. As mentioned earlier, this is a transfor-
mational technique. The main tasks to formulate
scheduling and allocarion for TS are as follows:
(1) starting with a proper imtial solution; (2)
defining a neighborhood for a given solution: (3)
generation of moves; (4) formulation and main-
tenance of tabu list; (5) defining a proper aspira-
tion level criterion; (6) hnding a good tabu hist
size; and (7) an efficient way to accept moves.
We wall discuss these one by one in the remain-
der of this section.

6.1 Initial, current and best solution

Although in theory the initial solution can be
any feasible soluton, it 15 found that TS may
take longer if gven a poor minal feasible solu-
tion. We may start with the ASAP or ALAP
schedule with a specified limit on the number of
control steps. In both of these scheduling tech-
niques only a few operations can be disturbed or
rescheduled in the beginning of the search.
Thus, it 15 found to be better to use either
mobilitv-up or mobility-down scheduling [8].
These scheduling schemes have been discussed
earlier. In the final implementation mobility-up
scheduling 1s used for the mitial solution. As TS
i.]rl'.}l'.:L'L'd.ﬁ Wi kl_'{.‘P (R H] .‘i-ﬂ]lltiﬂ]"l:ﬂ = LM ih'. tl'I:L‘
carrent solution and the other is the best solu-
tion found so far. The best soluton found in »
iterations is the output of TS, where n is speci-
fied by the user.

6.2 Generation of moves

Given a solution s, the generation of moves in
the neighborhood of this solution s an impor-
tant step in TS, The following three kinds of
moves are defined for this purpose: (1) moves
based on changing the control step of an opera-
tion; (2) moves based on changing the funcrional
unit assignment; and (3) moves based on chan-
ging the funcdonal unit nput assignment of
variables.

The first move is intended to optimize the
number of control steps, functional units, regis-
ters and buses, whereas the last two are intended
for the optumization of interconnections. Prob-
abilities are assigned for each of these moves in
accordance with the importance of cach move
toward optimizing the cost. Thus move type is
selected probabalistically and N, moves of that
type are generated, where N, is the number of
candidate meoves. The solutions obtained by
each move are evaluated using eq. (1).

The maoves are g{_‘ncrat-::d such that the new

solutions are always feasible, but some or all of
the moves may be tabu or mav not pass the

703

Sadiqg M. Sait et al./Scheduling and allocation in high-level

synthesis

aspiration criterion. In terms of first type of
move, a feasible solution means thae the prece-
dence constraints are never violated. An opera-
tion is moved up or down where the direction is
generated randomly. Functonal unic changes are
only performed if there are free functional units
for the control step in which that operation is
scheduled. Functional unit input changes are
performed only for commutative operations.

Another way of generating neighborhood solu-
tions is by making more than one type of move.
This approach has less chances of finding the
global optimum as the solution may be disturbed
too much and, in fact, it might not be in the
neighborhood of the present solution, Thus this
approach 1s hot used.

The algorithin proceeds as discussed in Section
4.

6.3 Tabu lists

Formulation of the tabu list is one of the main
steps in mapping a problem for TS, Since we
have three types of moves, the decision needs to
be made whether to use one tabu list or three
tabu lists. It has been suggested by Glover [18]
that when the solution depends on mulaple
parameters it is appropriate to use more than one
tabu list, Mamntaming multiple tabu lists helps in
generating search paths with different character-
1501C5.

In the present implementation we used three
tabu lists — one for each type of move. TS
continues for the maximum number of ﬁ.l_'l{"Ci_ﬂ_Cd
iterations, #. Since separate tabu lists are main-
tained, we need to count how many tmes the
particular type of move is performed. This
number corresponds to the iteration number for
that type of move. When the sum of iterations
for three types of moves becomes n, TS stops.
Artributes used for storing the control step move
in the tabu list are discussed next. A owo-
dimensional array o Tabulist 15 maintuned for
the tabu hist. The first dimension corresponds to

704

the total number of operations and the second
dimension corresponds to the possible control
steps to which an operation can be assigned. Ifan
operation op; 1s moved from (sav) control step cs;
Lo 4 new l:.(]l'ltﬂ}] _\E.L].:.‘ u."_'u_“ Wi store th{ current
iteration number corresponding to the control
step moves oo Tabulist Jop]les]. Note that the
reverse move 15 stored as this makes it easier t©
check the tabu status of future moves,

Similarly, one-dimensional arrays fuTabuList and

JulnpTabulist are maintained for other tvpes of

moves. The dimension comresponds to the
number of operations. If the effected operation
m such moves is (say) op; then the iteraton
number for that type of move is stored in

_fuTrzbqusr[up] or fulnpTabuList{op;]. All these

recordings of tabu status are found effectve and
good re .mlt.a are obrained.

6.4 Aspiration level criteria

After all the candidate moves of a particular tvpe
are generated for iteranon ity for that kind of
move, the best of these is selected, which may
not be becter than the current solution. I it is
not tabu, it s accepted, The accepted move
becomes the current solution for the next iera-
tion. The tabu list size (T,,.) 15 an 1mportant
parameter i TS, In the present implementation
the magic number seven 1s used for T, and is
the same for all three lists. Since woe store the
wteration number in order to check the tabu
status, a move is abu if the difference of ir and
stored iteration number 15 less than or equal o
Tipe. If 10 15 tabu, its aspiration level is checked as
deseribed below.

A common aspiration level {AL) criterion is used
for all the three moves. ALs are associated with
cach of the operations and are inidalized to infi-
nity. If a move m; affects an operation ep; and ny
15 tabu (forbidden), the AL{op,) value 1s checked
against e(m,), the cost of the solution achieved by
move my, Ife(ny) < AL(op,), the move is accepred
and ALjep) is set to e(m) — 1. Otherwise
another set of the same type of candidate moves

Microelectronics Journal, Vol. 27, No. 8

15 generated. A maximum limit on regenerations
15 specified after which a new type 1s selected for
candidate moves. Note that the AL of an opera-
tion is updated only when it overndes the tabu
status of that operation. Thus aspiration level is
not the best historical value. It may allow one to
go to a previous solution reached by a tabu
move, but this can happen only once. Thus
cycling is avoided. This aspiration level eriterion
mves more freedom to explore the search space
and 1s found to be cffectve for scheduling and
allocation.

6.5 Alternative implementation

In an alternative implementation we tested
with separate tabu hist sizes for each type of
move. Two AL criteria were used — one for
the control step moves and the second for
other types of moves. For control step moves
there is a separate AL for each operation for
cach of its possible control steps. The AL
corresponding to an operation for a particular
control step 15 one less than the cost of the
soluton obtained when that operation was last
assigned to that control step. It is updated each
time a move is accepted and is thus not a
historical walue. It serves to override tabu
status to explore new search paths. The AL for
an operation to the other two moves 15 one
less than the interconnection cost obrained
when one of these moves was last apphed to
that operation. The wvalue of mnterconnection
cost 1s used for the AL because these owo
moves are intended to optimize interconnec-
tion cost, In this implementation a candidate
list is prepared and consists of solutions
reached through non-tabu moves of the same
type or, if tabu, they passed the corresponding
aspiration criterion. The best among these s
selected. The candidate list size is kept
between five and ten.

Although both implementations were able to
find good solutions, it should be noted that
aspiration criteria are more strict in the second
implementation than the first one. The first

mmplementation 15 not strict in selecting moves
and the aspiration criterion is easy to pass.
Because of the use of the candidate list strategy
the second implementation is able to find good
solutions more quickly than the first, An
instance where the sccond implementation has
achieved a better resulc than the first imple-
mentation 15 that of the diserete cosine transform
benchmark for seven control step limits with a
pipelined muluplier option.

7. Data path synthesis using GA

Interconnection of registers, buses, multiplexcrs
and ALUs s called data path and the process of
forming such an interconnection 1s called data
path synthesis (DPS), Allocanon using a GA as
described in previous sections has only done part
of the actual allocanon, Functional wmts are
allocated to operations, and variables involved in
the operation are assigned to the functional unit
imputs. Numbers of registers, buses and inter-
connections are optimized In an attempt to solve
scheduling and allocation as a combined
problem. The minimum number of registers and
buses for the given schedule is known. The
interconnection cost 1s only optinuzed, We still
do not know the exact data path. Mappings of
variable to register and dara transfer to bus still
need to be done. Both these mappings have a
profound effect on the interconnection cost
Different mappmgs will give different inter-
connection costs and this can also be formulared
as an optimization problem. This is the subject
of this section.

After we map the variables to registers and data
transfers to buses, we have the following infor-
mation at our disposal about the high-level
description from which we started.

s An operation is scheduled during which
(:{]I'.Iti'l'.'.ll Ht'{_‘P.

¢ An operation is performed on which func-
tional unit.

705

Sadiqg M. Sait et al./Scheduling and allocation in high-level

synthesis

e A variable goes to which input of the func-
tional unit.

e A variable 15 stored in which register during
any specific control step.

e A data rransfer is performed on which bus,

(Once we know all this information we can easily
generate the data path for the given high-level
description.

The architecture used for optimizing the
number of interconnectons is shown in Fig. 11.
Outputs of functional units and registers are
connected to buses. Muluplexers are provided
at the inputs of functional units and registers if
the input comes from more than one bus. A
direct connection 1s provided in case the input
comes from only one bus, The interconnection
cost 15 estmated by number of multiplexer
inputs. In the remainder of this section the
tormulation of the problem for the genetic
algorithm is described [8]. As mentioned carlier,
two mappings are to be performed. A chromo-
some needs to be devised that can incorporate
both these mappings. The fitness of each indi-

vidual is based on finding the exact number of

interconnections, which inveolves caleulating the
total number of multiplexer inputs. A suitable
initial population has to be created. Choice and
selection functions are somewhar similar, as
discussed in Sections 4.3 and 4.8, A crossover
operator which produces valid mappings is to
be found. A suitable mutation function s

o £ bus 1

bus 2
bus 3

A A

t

Fig. 11, Architecture on which the data path is mapped.

706

r::qk]ir-::d. In the !-n||t:\f'-:ing sections we address
these problenis.

7.1 Initial population

Since we have to perform two types of mapping,

the chromosome has to incorporate both these

mappings., Thus the chromosome has two parts
one for the vanable to register mapping and

the other for data transfer to bus mapping.

7.1.1 Chromosome part for variable to register
mapping

Given the lifetime analysis of the variables, the
left-cdge algorithm [19] can be used to map all
variables to registers optimally for the @ven
schedule. (It should be mentioned here that if a
variable 1s regenerated then mulaple lifetimes are
kept for each regeneration as it may help in
optimizing the number of interconnections.)
One problem with the left-edge algorithm is that
it does not take the interconnection cost into
consideration while grouping variables. This is
because the left-edge algonthm considers left
edges in the sorted order. This problem 15 1llu-
strated in Fig. 12, Lifetimes are shown in
Fig. 12a. Assume that sorted order 15 qu, 3
vy). The lefi-edge algorithm will give the
grouping of Fig. 12b. Another grouping is given
in Fig. 12¢. It may happen that the grouping of
Fig. 1Z¢ may result in fewer interconnections
than the grouping of Fig. 12b. Thus there 15 a
P‘.:I"i%lh]!![\r ﬁiﬂ miterc l:}]'l'l!i(h{]i'l COSE U]_‘rtll]uzatﬁﬂll
by considening various optimal (in terms of
number of registers) groupings,

I}
ba, ¢

We can utilize this fact to create an initial popu-
lation for this part of the chromosome. Given

%3 Ri:vl,v3

v Rz : w2, vd (b)
va
A1 w2, va

i RAz: w1, va {e)

(a)

Fig. 12. Grouping vanables into regiscers.

Microelectronics Journal, Vol. 27, No. 8

the lifetime analysis we can perturb the order of
scgments that starts from the same control step.
This will not affect the sorted order of the left
edges. Applying the lefi-edge algorithm on this
configuration one can get a different grouping,
In this way, the initial population for this part of
the chromosome is created.

7.1.2 Chromosome part for data transfer to bus
mapping

A list of daca transfers for the scheduled CDFG
can be made using depth first search. All data
transfers during control step (say) ¢ can take place
on any available bus, but only one data transfer
can take place on any bus at one ume. As
mentioned carlier, different mappings will give a
different number of interconnectaons. An easy
way to make a chromosome out of this situation
is to think of any bus as consisting of segments
tor ¢ach of the control steps as shown in Fig. 13,
Data transfers can be assigned to segments or
slots, A list of data transfers is made and the bus
chromaosome is filled with the particular index to
the data transfer list. Some slots will remain
empty, meaning that there is no data transfer on
that bus during that particular control step.

To create the nital population a sample chro-
mosome is prepared. This can be done by noting
that data transfers can be assigned to buses by
using the left-edge algorithm. Data transfers in
cach column of the sample chromosome
(Fig. 14) can be interchanged randomly to
generate an iitial population.

7.1.3 Complete chromosome

The complete chromosome is shown in Fig. 15.
The left part is the bus chromosome and the
right part is the register chromosome. One can

e Bus 1
ke Bus 2
A Bus 3

cs#1 cs#2 cs#a csitn

Fig. 13, Structure of the bus chromosome,

intarchange
1 2 . —19 . pys 4
o o 3 MRS . ey WL R R o
g 14 15 2] 5 Bus 3
cs#1 os#2 osed CS#N

ind=x to data fransfer [kt

Fig. 14, Sample bus chromosome.

I Busa chromosama I Reglster chromozsome

Fig. 15. Complete chromosome.

think of the register chromosome as hooked to
the bus chromosome, Crossover 15 D]ll‘:.-' ;]pplicd
to the bus chromosome whereas mutation s
applied on both bus and register chromosomes.
One should chink of the bus chromosome as if
all buses are put next to cach other one after
another,

7.2 Fitness calculation

The first step in calculating the fitness value for
cach individual is to calculate the number of
multiplexer/bus mputs. We keep the following
information for each data transter:

(1) Funcoonal unit involved.

(2) The functonal unit input to which 1t goes,
(3) The type of tansfer (input or output).

{(4) The control step in which it tkes place.

(5) Repister in which the variables involved are
stored or to be stored.

(6) Bus on which it will take place.

Given this information, one can calculate the
number of nlultlph:\t_‘r-bux inputs required.
Since this 15 also a minmmizaton problem, the
number of multplexer inputs 15 subtracted by a
specified maximum number of interconnections.

707

—

Sadig M. Sait et al./Scheduling and allocation in high-level

synthesis

The resulting numbers for different individuals
will not be far apart, so they are mulaplied by a
large number to create some difference berween
them. Following this, sigma truncaton and
linear scaling is applied as usual to obtan the
final fitness value. The sample space is created
and choice and selection functions wake the same
form as discussed 10 Section 4.3,

7.3 Crossover

As mentioned earlier, crossover 1s only applied
to the bus part of the chromosome. A necessary
property for the crossover operation is that the
data transfers should not change their control
step during crossover operation. With reference
to Fig. 14, 1t means thac they should remain in
the same column. Another required property for
the crossover 15 that the data transfers should not
be duplicated or missed.

Dhifferent crossovers were considered that failed
to satisty one or both of these properties, Simple
one or two point crossover will change the dara
transfer control steps as well as duplicate them.
Order crossover or partially mapped crossover
(PM2C) [12] will not duplicate data transfers buc
will change the control steps.

It is seen that cycle crossover has an interesting
property that can be utilized here. In cycle
crossover an offspring inherits genes from one
parent or the other in the same position as the
corresponding parent, An example of a cycle
crossover 1s illustrated in Fig. 16. There are owo
cycles: 3-1-6-3 in parent 1 and 4-2-5-4 in
parent 2, We randomly start with parent 1.
During the first cycle, offspring 1 get genes 3, 1
and 6, and offspring 2 gets genes 1, 6 and 3. For
the second cycle we start with parent 2. During
this cvcle, offspring 1 gets genes 4, 2 and 3, and
offspring 2 gets genes 2, 5 and 4. Note that the
net effect of the second cycle 15 to swap the genes
in the two parents as they are passed to offspring.

Now, consider the owo parent bus chromo-
somes shown in Fig. 17. Assume that there are

708

Parent 1: 3 2 1 5 4 6
Parant 2: 1 4 & 2 £ 3
Offspring 1: 3 4 A 2 5 8
Offspring 2: 1 2 & 5 4 3
Cycle 1: 3-1-6-3 (inparant 1)
Cycla 2 4-2-5-4 (in parent 2)

Fiz. 16, Cyele crossover example

3 =1 B & 1 4 1 & T -1 2 <1
6 7T =1 1 & A 8 F &h 3§ 2 4

Fig. 17. An example of o bus chromosome.

four control steps and thus there are three
buses, The non-negative numbers are indices to
the data transfer hst and —1s indicates that
there are ne data transfers in those control
steps. One would notice that we can not apply
cyele crossover directdy on this bus chromo-
some. The reason is that the oene's values
{alleles) are noc distince, In order to have a bus
C]1rlj]T1{jS(}]13L' O "n.‘\."hil;:]'l {'.‘r'l'.'.]{_‘ CrOSS0OVED Can |.’]L‘
applicd. we fll the segments having no data
transfer {in the sample chromosome) with the
numbers greater than the total number of data
transfers. In Fig 17, there are eight dara trans-
fers. Thus —1s positions are filled with
numbers 9, 10, 11 and 12 as shown in Fig. 18a.
After cycle crossover 15 applied the resulting
offspring are shown in Fig. 18b.

7.4 Final data path

As mentioned in Section 7.2, we store
enough information for cach data transfer that
can be used to find the number of muloplexer
inputs. Using the same information one can
casily generate the final data path for the high-
level description. This information is as
follows:

o Funcoonal unit number for cach opeTation.

o Funcoonal unic input number for cach inpue
variable,

Microelectronics Journal, Vol. 27, No. 8

Parents
3 9 8 6 12 41 5 7 11 2 10
6 7 11 1 & &% 2 10 & 3 12 4
(a)
Offspring
37T 8 6 12 9 1 10 5 11 2 4

6 9 11 1 8 42 5 7 3 12 10
(b}

Fig. 18. {a) Bus chromosome suitable for cycle crossover,
(b} Offspring resulung from cycle crossover,

o Variable to register mapping for each control
step.

& Dam transter to bus mapping for each data
transfer,

Multiplexers are provided only if there are
multple inputs coming to the two inputs of a
functional unic or the input of a register. A direct
mterconnection is implied if there is only one
imput to a bus.

8. Experimental results

GSA and TSA are tested on wvarious bench-
marks, Table 1 shows the results for the differ-
ential equation benchmark. Table2 shows the
results for a more complicated fifth order ellip-
tic wave fileer (EWF) benchmark, The STAR
systern |20 uses parallel data transfers, so that
the bus comparison with this system is of little
significance. The tesults shown for 17
control steps are for loop unfolding. Table 3
shows the results obtained for the discrewe
cosine transform (DCT) benchmark., Two
results of TSA for seven control steps with
pipelined multipliers option correspond to the
results obtained from owo implementations of
TSA discussed earlier. The results are
compared with simulated evolution (SE) [Y],
the HAL system [4], SALSA 1T |6], the STAR

TABLE 1 Ixfferental equation results

LSysler:] cs | aLu | * | Rez | Mx | Cost
GSA B 1 Ip & 4 1714
PTHJ"L 8 1 ip & 4 1710
HAL | 8| 1 [1p| 5 | 4| -
SE | 8| 1 |1p| 5 |5]

systemn [20], the EMUCS system [3], and the
CATREE systemn [2). Comparisons are given
for number of control steps (CS), adders (+).
multipliers {*), functional units capable of
performing addition and subtraction (+/-).
registers (Reg), and multiplexers or buses (Mx).
The cost column indicates the cost achieved by
T5A and GSA. The costs of control steps,
adders, muldpliers, regsters, mulaplexers and
interconnections are derived from [5]. The p in
the (*) column stands for pipelined multiplier.
[t is assumed that addicion takes one control
step whereas multiplication takes two control
steps. The cost column is included for the sake
of companson between GSA and TSA, The
cost for other systems can not be computed
because the interconnection cost is not known,
The data path synthesis result using the GA for
differential equanion benchmark is shown in
Table 4. The result is comparable with the best
known svstems.

9. Conclusions

The GA is a promising optimization techni-
que. This work presents its application to
scheduling and allocation in HLS. The work
involves finding an appropriace string cheoding
or chromosomal representation. The initial
populanion of solutions 15 constructed to get
better results. Two scheduling techniques,
mobility-up and mobility-down, are used for
this purpose. Two new crossover operators
{alternate crossover and order crossover for
scheduling) are presented which can find

709

Sadiq M. Sait et al./Scheduling and allocation in high-level
synthesis

FABLE 2 EWF results

System CS |+ | * | Reg | Mx Unﬂ

GSA 17 | 3|3 | 11| 10| 4786
TSA 17 |3 3| 11| 104804
SE (&3 | I |31)] -
HAL g | B E s Ve =
saLsam| 17 |3|3| - | - 3
GSA 17 | 3|ep| 11 | 10 | 30986
TSA 17 |3 |2p| 11 | 10 | 4006
SF 17 |3 |2p| 11 |12]| -
CHAL i |3 o] - |=| =
lcatRer | 17 [3|2p| 22| - | -
SALSATL | 17 |3 |2p| -
| Gsa Tro |2 | 1p| 10 | 8 | 2638
| TSA 7o | 2 | 1p| 10 | 8 | 2638
STAR 1Te | 2 | 1p | 11| 5% | -
GSA 18 |22 11 | 8 |3484]
TSA 18 2| 2| 10| 8 | 3424
SE 18 |22 16| %] -
saLsaH| 18 | 3| 2| - :
GSA 19 |2] 210] 7 |30
TSA 19 |22 | 10| 7 |3340
SE 19 |22 1w |11 -
HAL W lE|el &l | &
EMUCS | 19 | 2| 2| 12|12 -
GsA 19 [2|1p] 2t [& [2044
TSA 19 |2|1p| 10 | 7 |2558
SE 19 |2l |e]| -
HAL | an |2 || 22 € | -
STAR | 19 |2 |1p| 11 | 4* | -
|saLsan| 19 [2 || - | - | -

710

TABLE 3 1DCT resules

[_S_j.rstem C3|+/-| * | Reg | Mx | Cost
GSA 7| 6 | 8| 10|18 10804
TSA 71 6 | 8|19 |18]10004
saLSAT| 7 | 6 8] - .
GSA 7 | & [4p| 21 | 21 | s7ss
TEA, T] ip | 21 21 | BR24

TSJ‘.g i i op 19 17 ?:.4-45
saren | | & |4p| = | = ,
GSA AR AR AE R
TSA 8|5 |6 15| 16| 8660
sALsAIL | 8 |5 [6] - | -

GSA 5] 4p L7 15 7030
TSA b b 4p LG 16 7110
saLsat| s | 5 [4p| - |

GSA 9 | 4 | 6| 15| 14| 8076
TSA 9 | 4 | 6| 14| 15| 8158
SALSATI| 9 | a4 |6 - | -

GSA 9 | 4 |3p| 13 | 14 | 5626
TSA 9 | 4 |3p| 13 | 14 | 5660
SALSATI| 9 | 4 |3p

TABLE 4 Data path synthesis results for differential equa-

tion benclumark

Systemn | Mux Inputs
DPs 14
Splicer 16
HAL 13
i _12

Microelectronics Journal, Vol. 27, No. 8

applications in many other areas. The GSA
approach is different from a previous attempt
using GA [7] in many respects. The contribu-
tions include: a new chromosomal representa-
tion for scheduling and two subproblems of
allocation; and two novel crossover operators
T g{"l'![fTi_lt{_‘. Il;'.g:ll SL:}'IL‘({[I]L'S..

TS 15 another promising optimization technique.
This paper presents its application to scheduhing
and allocation in HLS. Investigations are done to
find a pood inigal solution to start with, to
define a neighborhood for a2 given solution,
ceneration of moves, formulation and man-
tenance of tabu list(s), defining a proper aspira-
tion level criterion, finding a good tabu list size
and an efficient way to accept moves. Twao
implementations of TS are reported and
compared.

GSA and TSA are tested on three benchmark
circuits, namely differential equation, fifth order
cliptic wave filter, and DCT. The results
obtained are comparable with these obtained by
other svstems.

A novel interconnect optimization approach
using the GA is also reported in this research. [
can be used to optumize a number of inter-
connections for a given schedule and functional
unit allocation. It tries to find genetically good
mappings for variables to registers and data
transfers to buses with the mm of optimizing
nterconnection.

Future work will focus on designing a
complete data path synthesis system using GAL
Efforts will be directed to include facilities such
as chaining and loop winding. The data path
synthesis should be able to ke high-level
description and produce register-transfer level
description of the circuit. Research can also be
directed to finding more effective implementa-
tion for TS and designing a complete data path
synthesis svstem using TS with the above-
mentioned facilities,

Acknowledgements

The authors wish to acknowledge King Fahd
University of Petroleum and Minerals for
support under project No. COE/DESIGN/ 145,

References

[1] M.C. MeFarland, AC. Parker and R, Campeosano.
The high level synthesis of digital systems, P
IEEE, 78(2) (Fcb, 19903 301-314.

[2] C.HL Gebotys and ML Elmasre, A VLS methodol-
opry with testabaliey conseratnts, in Proc, 1987 Canadian
Conf. on FLSIL Winnipeg, Oct. 1987,

[3] C¥, Hitchcock and D.E. Thomas, A method of
automatic data path synthesis, m Pre. 200 Design
Automation Confl, June 1983, pp. 484489,

[4] PG Paolnoand [P Koiglt, Force-directed schedul-
g For the beluvioral synchesis of ASICs, IEEE Trins,
Computer-Aided Desigr, B6) (June T98Y) 661674,

[3] 5. Devadas and A, Richard Newton, Algonthms for
hardware allocation in data path svothess, HEEE
Trans. Compater-AAided Design, 8(6) (1980 768-T81.

[6] MR, Rhinchart and J. MNestor, SALSA L a fase
transtornuational scheduler for high-level syothess, m
1993 [EEE Int. Symp. en Clraits ard Systems, 1993,
pp- 1678-1631.

[7] M. Wehn, M. Glesner and M. Held, A novel sche-
duling/allecation approach for daeapath synthesis
based om penetc paradigms, o (FTP Berking Confer-
erce ovi Logic and - Awchivecowre Spnthesis, Paris, 1990,
pp. 47-50.

[8] 5. Al Scheduling and allocation in high-level synth-
esis using penetic algorithm, Master Thess, King
Fahd Universty of Petroleum and Minerals, 1994,

[9] T-A. Ly and 1. T. Mowchenko, Applying simulated
cvolution o high level synthesis, [EEE Trns,
Comprter-Afded Design, 12(3) [(March 1993 389
404,

[10] 5 Ali, 5.0 Saic and MAT. Benten, GSA; schedul-
ing and allocation uvsing. genetic algorithm, in
Furgpean [esign Amomation Conference. — Erero-
D2ACTR, Grenoble, France, Ocr 1994, pp. 8489,

[11] S. AL SM. Saitand M.S.T. Beneen, TSA: scheduling
and allocation using tabu search, in Dt Conf on Flec-
trosdcs, Circnits and Systems — TCECS'94, Cairo,
Ewvpt, e, 1994, pp. 4234928,

[12] DE. Goldberg, Genetic Algonthims @ Search, Oprisni-
zavion and Muadhine Learming, Addison-Wesley, TISA,
1989,

[13] 5. Davidson, 12 Landskow, B2 Shaver and P
Maller, Some experiments in local microcode
compaction for horzontal machines, TEEE Trans.
Compuiter-Aided Design, 30073 (1981) 460477,

711

Sadiq M. Sait et al./Scheduling and allocation in high-level
synthesis

712

F. Cilover, Tabu Search — Pare 1, QORSA . Conrpur.,
| (T9E9) 190-200,

F. Glover, Tabu Search — Part 11, QRSA | Compur.,
2 (1990} 4-37.

L. Song and A, Vannelli, VLSI placement using taby
scarch, Microcleceromics |, 17(3) (1992) 437—445.

3. Arcibi and A, Vannelh, Circuit partitioning using a
tabu search approach, in Y993 IEEE [, Syt on
vt and Systenz, 14993, [1/13 16431646,

[18]

[19]

120

F. Glaver, Artificial intelhgence, hearistic frameworks
end tabu search, Managerial amd Decision Feonomics, 11
19900 365-375

AL Hashimoto and . Seevens, Wire routing by opti-
mizing clannel assignment within large apertures, in
Prov, 8l D, A Workshop, Las Vegas, 1971, pp. 155-164.
Fur-5hing Tsal and Yu-Clun Hsu, 5TAR: an auro-
mwatic dara path allocator, IEEE Trans, Compuier-Aided
Prosipn, 119} (Sepr. 1992) 10551064,

