
INT. J. ELECTRONICS, 1999, VOL. 86, NO. 1, 67± 77

A novel technique for fast multiplication

SADIQ M. SAIT² , AAMIR A. FAROOQUI³ and
GERHARD F. BECKHOFF§

In this paper we present the design of a new high-speed multiplication unit. The
design is based on non-overlapped scanning of 3-bit ® elds of the multiplier. In this
technique the partial products of the multiplicand and three bits of the multiplier
are pre-calculated using only hardwired shifts. These partial products are then
added using a tree of carry-save-adders, and ® nally the sum and carry vectors
are added using a carry-lookahead adder. In the case of 2 s complement
multiplication the tree of carry-save-adders also receives a correction output
produced in parallel with the partial products. The algorithm is modelled in a
hardware description language and its VLSI chip implemented. The performance
of the new design is compared with that of other recent ones proposed in literature.

1. Introduction

Multipliers ® nd use in high-speed real-time applications where a large amount of
data is to be processed. One such application is digital signal processing (DSP).
Several multiplication algorithms for high-speed implementation have been pro-
posed (Cooper 1988, Fadavi-Ardekani 1993, Madrid et al. 1993, Sunder 1993,
Hung et al. 1994b), and most of them are based on the Booth (1951) algorithm
and its modi® cations. In this work we present a new technique for high-speed 2 s
complement multiplication which can be easily implemented in hardware. The high
speed features of this algorithm are due to:

(1) pre-calculation of partial products of non-overlapped 3-bit ® elds by hard-
wired shifting;

(2) addition of partial products using a carry-save-adder tree;
(3) a single addition of the carry and sum vectors using a carry-look-ahead

adder;
(4) a new technique to accommodate multiplication of negative operands.

The design of unsigned multiplier is presented for 9-bits and can be extended to 12-
bits with no additional time delay at the cost of increased hardware. The design of a
signed 2 s complement multiplier is presented for 8-bits and is also extendable to 10-
bits (using non-overlapped 4-bit ® elds) with no additional time delay. The metho-
dology can be easily extended to words of larger sizes.

The paper is divided into six sections. In the following section (§2) we present the
basic design for unsigned numbers. In §3 the design to accommodate 2 s comple-
ment numbers is discussed. A mathematical proof to validate the correction circuit

0020± 7217/99 $12.00 Ñ 1999 Taylor & Francis Ltd.

Received 8 October 1997. Accepted 19 May 1998.
² King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
³ Department of Electrical and Computer Engineering, University of California, Davis,

CA-95616, USA. e-mail: aamirf@ece.ucdavis.edu
§Queens University, Ontario, Canada.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266085203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

output is also presented. Implementation details are presented in §4. Performance
details are given in §5 and conclusions in §6.

2. Basic design

The basic idea behind the algorithm consists of ® rst ® nding partial products
which are the products of the multiplicand (B) with 3-bit ® elds of the multiplier
(A). The product of the multiplicand and a three-bit number (0 to 7) is obtained
by means of shift and add operations. As shown in table 1, multiplication by a three-
bit number can be expressed as a single addition of two multiplicands shifted by a
® xed amount. For example, multiplication by 6 is expressed as the addition of multi-
plication by 4 and multiplication by 2 (multiplication by powers of 2 is accomplished
by shifts only). Multiplication by 7 (111) requires three additions. This operation is
replaced by subtracting a 1 from a number multiplied by 8. In order to avoid the
delay produced by obtaining the 2 s complement of 1, the LSB of the three times
shifted multiplicand is pre-set to one. Then, only the inverse of the multiplicand is
added to it. That is,

B 111 B 1000 B 1 B000 B 1 B001 B

where B000 represents three zeros catenated to B, or B shifted left three times.
The two partial products to be added in table 1 can be considered as two oper-

ands of an adder, designated as the left-operand and the right-operand. Note that the
left-operand is multiplied by either 2, 4 or 8, whereas the right-operand needs to be
multiplied by 1, 2 or 1, the last representing complementation. Therefore, as shown
in ® gure 1, the two columns consist of hard-wired shifters which are enabled by a
simple encoder logic. The logic design of the encoder block that enables one of the
three shifters in each block of the pp-cell of ® gure 1 is given in ® gure 2.

For a 9-bit wide multiplier-operand, three such pp-cells are required. Each pp-cell
takes the entire multiplicand operand, and 3 bits of the multiplier operand. This is
illustrated in ® gure 3. In general, the number of pp-cells is equal to p n

3 , where n
is equal to the number of bits of the multiplier operand A.

The output produced by these pp-cells is the shifted operand, which is added
using a three-level tree of carry-save-adders to produce the sum and carry vectors.
Note that, by using the above pp-cells, the number of additions is considerably

68 S. M. Sait et al.

A A B
Multiplier-® eld Expressed as shift/add

0 0 0 0 0
0 0 1 0 20 B
0 1 0 0 21 B
1 0 0 22 B 0
0 1 1 21 B 20 B
1 0 1 22 B 20 B
1 1 0 22 B 21 B
1 1 1 23 B 20 B

Table 1. Multiplication by numbers 0 through 7 expressed in
terms of addition/subtraction of powers of 2.

reduced. In this case the reduction is from 9 additions to 6. In general, the decrease in
the number of additions is from n to 2n

3 .
In the ® nal stage, the outputs of these carry-save-adders are added using a carry-

lookahead-adder (CLA) circuit. The output of this adder is the product of the 9-bit
multiplier with the m-bit multiplicand. Note that the number of levels of carry save
adder (CSA) circuitry remains the same for larger bits of the multiplicand. In the
case of increase in the number of bits of the multiplier, the only delay-causing
circuitry is due to increase in the number of levels in the CSA tree, and the increase
in delay of the CLA.

Novel technique for fast multiplication 69

Figure 1. Block diagram of a pp-cell.

Figure 2. Logic diagram of the encoder cell shown in ® gure 1.

3. Design of 2 s complement multiplier

For multiplication of signed 2 s complement numbers, the design is similar,
except that additional circuitry is included to accommodate correction. The multi-
plier (A) is again divided into ® elds of at most 3-bits. The division of the multiplier
into ® elds is slightly di� erent from the case of unsigned multiplication and is
depicted below.

An 2An 3An 4 A6A5A4 A3A2A1 A0As

Observe that the sign bit As An 1) is grouped with the LSB of the multiplier. Bits
A1 to A3 form one ® eld, similarly bits A4 to A6 form the other, and so-on. The pp-cell
required is identical to that in the previous multiplier for unsigned operands.

3.1. Correction circuit
Generally, the 2 s complement of a number is obtained by complementing indi-

vidual bits and then adding 1 to the number. One motivation for the design of
correction circuitry is to avoid the delay due to rippling of carry produced by the
addition of 1 in 2 s complementation both before and after multiplication.

Two’s complement numbers are accommodated just by inverting the negative
operands (1 s complement) and post-complementation (1 s complement) of the
negative results. Two’s complementation is avoided since it causes a delay due to
addition of one. The error is adjusted using a correction factor as explained below.
An additional circuit is used that generates in parallel a correction factor to be added
to the result of 1 s complement multiplication.

The technique that avoids the ripple delay due to adding a 1 is based on two
observations: (1) the distributive property of multiplication, that is, A B 1
A B A; therefore the addition of 1 is replaced by the addition of operand A to
the result of 1 s complement multiplication; and (2) the fact that the 2 s complement

70 S. M. Sait et al.

Figure 3. Block diagram of the 9-bit unsigned multiplier.

of R is the same as the 1 s complement of R 1 . The two observations can be put
into a commutative diagram, as shown in ® gure 4.

Based on the above two observations, an algorithm has been developed for
correction factor generation; the various values produced by the correction circuitry
(Corr, or Corr if post complementation is required) to be added to the output of the
unsigned multiplier are given in table 2.

Below we explain one segment of the code when the multiplier (A) is negative
As 1 and the multiplicand (B) is positive Bs 0 .

When AsBs 10, the negative operand (A) is complemented and applied at the
input of the encoder. The two operands are then multiplied using the method
explained for unsigned numbers. The LSB A0 may be a zero or a 1. If A0 is a
one, then the complemented A0 will produce a zero, and the correction factor due to
adding a one (for 2 s complement) will be the same as adding a B later.

However, if A0 was a zero, then the complemented A0 would have produced a
one, and the correction factor due to addition of one (for 2 s complement) will be the
same as the addition of 2B later. In addition, since one of the operands is negative, it
is required to ® nd the 2 s complement of the result later. This again is replaced by a
simple inversion of the ® nal result (1 s complement) but subtracting a 1 in the
correction circuit. Therefore, the correction circuitry output which must be added
to the result is either B 1 (for A0 1) or 2B 1 (for A0 0 .

Novel technique for fast multiplication 71

Figure 4. Commutative diagram showing the two operations. multiplication and
C complementation.

Case AsBs A0 Corr Cin(CLA) Post-complementation

0 00 0 0 1 1 No
1 B 1 1 No

1 01 0 0 1 A 0 Yes
1 B 1 1 A 0 Yes

2 10 0 2B 1 0 Yes
1 B 1 0 Yes

3 11 0 2B 1 0 A 1 1 No
1 B 1 0 A 1 1 No

Table 2. Algorithm of correction circuitry for 2 s complement multiplication.

This correction factor (Corr) is added to the output produced by the other partial
product cells using the carry-save adder tree. If only one of the operands is negative,
then the ® nal output of the CLA is complemented.

The complete mathematical proof for the output produced by the correction
circuitry is given in ® gure 5 and summarized in table 2. The mapping of this
algorithm into hardware results in an extremely simple and fast correction cir-
cuitry. The correction circuitry output is produced in parallel with the output of
the pp-cells, and is added to the sum of partial products using the carry-save
adder tree.

72 S. M. Sait et al.

Figure 5. The four cases of 2 s complement multiplication. Note: whenever the (multiplier)
operand is in a form such that its LSB 1, a 1 is subtracted; the correction circuit
corrects this modi® cation.

Example:

Let A 4 00000100 and B 7 11111001.
Since Bs 1, complement it. Then,
A 00000100
B 00000110

Now, multiplying these numbers using the pp-cell circuit used for unsigned multi-
plication of numbers will produce 00011000 (that is, multiplying B by
A 00000100 (4) is the same as shifting B left twice). To this a correction output
is added. Since As 0, Bs 1, and A0 0, the correction circuit produces an output
A 1 00000011. Adding this to the pp-cell output yields (see ® gure 6)
00011000 00000011 00011011. Inverting this output will give
11100100 28, the required result.

4. Implementation

4.1. Design of pp-cell
The design of the pp-cell consists of hardwired shifters which can be implemented

using either tri-state bu� ers or multiplexers. The multiplicand to be shifted enters
two columns of shifters. The left column shifts the multiplicand by 2, 4 and 8.
Similarly, the right column shifts the multiplicand by 1 or 2 or produces the com-

Novel technique for fast multiplication 73

Figure 6. Block diagram of the 8-bit 2 s complement multiplier.

plement of the multiplicand. Which of the shifted outputs is selected depends on the
three-bit ® elds of the multiplier for each pp-cell. The details of the encoder are given
in ® gure 2, based on table 1.

4.2. Design of correction circuit
The correction circuitry consists of a carry-save adder with inputs arriving from

three sources. The three inputs of the CSA are labelled CSA-1, CSA-2 and CSA-3.
The di� erent values received by these inputs depend on the sign of the multiplier/
multiplicand and the value of bit A0. These values are given in tables 3 and 4 and
summarized in table 5.

4.3. Design of a multiplier for 2 s complement numbers
The techniques explained above are implemented by the combinational hardware

shown in ® gure 6. In the cases when either of the two operands is negative, in order
to 2 s complement the result and to avoid the ripple carry e� ect produced by the
addition of one to the 1 s complement, a (11111111) is added at the beginning of

74 S. M. Sait et al.

As Bs As Bs A B CSA-1 CSA-2 Cin CLA Invert output

0 0 1 No change No change 0 1 1 0
0 0 1 No change Inverted A 1 0 1
1 0 1 Inverted No change 0 1 0 1
1 1 0 Inverted Inverted A 0 1 0

Table 3. Table illustrating the ith input received by the CSA adder of the correction circuitry.
CSA-i represents the ith input. For input CSA-3 see table 4.

As A0 CSA-3

0 0 0
0 1 B
1 0 2B
1 1 B

Table 4. Table illustrating the third
input of the CSA of this
correction circuit.

A0 As Bs CSA input Cin

0 0 0 0 0 1 1
0 0 1 0 A 1 0
0 1 0 2B 0 1 0
0 1 1 2B A 0 1
1 0 0 B 0 1 1
1 0 1 B A 1 0
1 1 0 B 0 1 0
1 1 1 B A 0 1

Table 5. Table summarizing the inputs to CSA adders.

multiplication by correction circuitry (see ® gure 6) and ® nally the output is inverted
to get the 2 s complemented result. Note that an EXOR gate is required to get the

1 when A or B is negative but a NAND gate is used to reduce the gate delay in the
® rst stage. To compensate for the addition of 1 when A and B are positive, a carry
is added by the CLA in the ® nal stage.

5. Performance

The structural level hardware of the multiplier is expressed in the LOGIC3 hard-
ware description language and simulated using ldvsim (Kozminski 1992). The OASIS
silicon compiler is used to produce the layout in Magic (Ousterhout et al. 1984,
Mayo et al. 1990). To verify the correctness of the layout (see ® gure 7) and determine
the operating speed, the circuit is extracted from the layout and simulated using the
switch level simulator irsim.

In order to get the best results in terms of time and area, three di� erent imple-
mentations of the multiplier were attempted: (1) using tri-state bu� ers, (2) using
separate And/Or logic gates for multiplexing, and ® nally (3) using And-Or-Invert

Novel technique for fast multiplication 75

Figure 7. VLSI layout of the 2 s complement multiplier.

cells available in the library of OASIS. The last implementation produced best results
with a core area of 1.6 1.6mm2 and a speed of 9ns. The area can further be
reduced if, instead of relying on the silicon compiler, special handcrafted cells are
designed for the various arithmetic and logical functions (Hung et al. 1994a). Further
increase in speed can be achieved by using the PP addition technique (three-dimen-
sional optimization, TDM) proposed by Oklobdzija et al. (1996).

The results of our multiplier for signed numbers are compared with Modi® ed
Booth Multiplier (Sunder 1993) for unsigned numbers and summarized in table 6.

6. Conclusions

A new technique has been developed and implemented for the multiplication of
two signed numbers. The advantages of this technique over the others available in
literature include smaller propagation delay (Hung et al. 1994a) and reduced area
(Sunder 1993). The circuitry required to produce a correction output and its math-
ematical proof are also presented. Hung et al. (1994) also proposed a multiplier
based on non-overlapped bit scanning. Their design is limited to two bits and is
valid for unsigned numbers only. The 3-bit version requires an eight to one multi-
plexer. The partial products are stored in a RAM which requires a large area and
also makes the multiplier slow (the delay of an 11 11 multiplier in 2 m SCMOS is
22ns). The technique was implemented in VLSI using the OASIS silicon compiler by
modelling the hardware at the netlist level using LOGIC3. The chip was fabriated by
Orbit Semiconductors, California, and was found to work as per speci® cation. The
speed of the multiplier is 9ns, and speed can be further improved by using a full
custom approach and special adders (Hung et al. 1994a). The predicted increase in
propagation delay with increase in word sizes of operands is small.

Acknowledgments

The authors acknowledge King Fahd University of Petroleum and Minerals,
Dhahran, Saudi Arabia, for support under Project #COE/ARRAYS/l77. We are
also thankful to Mr Asjad M. T. Khan for his assistance.

References

Booth, A.D.,1951, A signed binary multiplication algorithm. Quarterly Journal of Mechanics
and Applied Mathematics, 4, 236± 240.

Cooper, A. R., 1988, Parallel architecture modi® ed Booth multiplier. Proceedings of the
Institution of Electrical Engineers, 135(3), 125± 128.

Fadavi-Ardekani, J., 1993, M N Booth encoded multiplier generator using optimized
Wallace trees. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
1(2), 120± 125.

76 S. M. Sait et al.

Characteristic OMB multiplier QMB multiplier Our multiplier

Technology 1.2 m NTE CMOS4S 1.2 m NTE CMOS4S 2m SCMOS
Area of chip 2026.43 2026.43m m2 1920.91 1920.91 m m2 1620.00 1607.00 m m2

Prop. delay 9.27ns 13.17ns 9.00ns
Area time 3.8066 07 m m2 ns 3.8066 07 m m2 ns 2.3430 07 m m2 ns
Gate count 860 720 573

Table 6. Comparison with other proposed approaches.

http://www.ingentaconnect.com/content/external-references?article=/1350-2387^28^29135:3L.125[mcbca=0]
http://www.ingentaconnect.com/content/external-references?article=/1063-8210^28^291:2L.120[aid=587043,csa=1063-8210^26vol=1^26iss=2^26firstpage=120]
http://www.ingentaconnect.com/content/external-references?article=/1350-2387^28^29135:3L.125[mcbca=0]
http://www.ingentaconnect.com/content/external-references?article=/1063-8210^28^291:2L.120[aid=587043,csa=1063-8210^26vol=1^26iss=2^26firstpage=120]

Hung, H. T., Kwentus, A. Y., and Wilson, A. N., 1994a. An architecture for high perfor-
mance/small area multiplier for use in digital ® ltering applications. IEEE Journal of
Solid State Circuits, 29(2).

Hung Xiaoping, Liu,Wen-Jung, and Wei,W.Y., 1994b, A high performance CMOS redun-
dant binary multiplication and accumulation (MAC) unit. IEEE Transactions on
Circuits and Systems, 41(1), 33± 39.

Kozminski, K., 1992, OASIS: Open architecture silicon implementation system user’s guide
(Research Triangle Park, North Carolina: MCNC).

Madrid, P. E., Millar, B., and Swartzlander, E. E., Jr, 1993, Modi® ed Booth algorithm
for high radix ® xed-point multiplication. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 1(2), 164± 167.

Mayo, R., et al., 1990, DECWRL/Livermore Magic Release (Digital Western Research
Laboratory).

Oklobdzija, V. G., Villeger, D., and Liu, S., 1996, A method for speed optimized partial
product reduction and generation of fast parallel multipliers using an algorithmic
approach. IEEE Transactions on Computers, 45(3), 294± 306.

Ousterhout, J. K., et al., 1984, MAGIC: A VLSI layout system. Proceedings of 21st Design
Automation Conference, pp. 152± 159.

Sunder, S., 1993, A fast multiplier based on modi® ed Booth algorithm. International Journal
of Electronics, 75(2), 199± 208.

Novel technique for fast multiplication 77

http://www.ingentaconnect.com/content/external-references?article=/1057-7122^28^2941:1L.33[aid=587044,mcbca=0]
http://www.ingentaconnect.com/content/external-references?article=/1063-8210^28^291:2L.164[aid=587045,csa=1063-8210^26vol=1^26iss=2^26firstpage=164]
http://www.ingentaconnect.com/content/external-references?article=/0018-9340^28^2945:3L.294[aid=587046,mcbca=0]
http://www.ingentaconnect.com/content/external-references?article=/1057-7122^28^2941:1L.33[aid=587044,mcbca=0]
http://www.ingentaconnect.com/content/external-references?article=/1063-8210^28^291:2L.164[aid=587045,csa=1063-8210^26vol=1^26iss=2^26firstpage=164]

