
EFFICIENT COMBINATIONAL CIRCUITS DESIGN THROUGH FUZZIFIED ANT
COLONY OPTIMIZATION ALGORITHM

Mostafa Abd-El-Barr, Sadiq M. Sait, Bambang A. B. Sarif, and Uthman Al-Saiari

Computer Engineering Department
KFUPM, Dhahran-31261, Saudi Arabia

�mostafa, sadiq, sarif, saiarios�@ccse.kfupm.edu.sa

ABSTRACT
With the increasing demand for high quality, more efficient
and less area circuits, the problem of logic circuit design
has become a multiobjective optimization problem. In this
paper, a multiobjective optimization of logic circuits based
on a fuzzified Ant Colony (ACO) algorithm is presented.
The results obtained using the proposed algorithm are com-
pared to those obtained using SIS in terms of area, delay
and power. It is shown that the circuits produced by the pro-
posed algorithm are better as compared to those obtained by
SIS.

1. INTRODUCTION

In conventional logic design, circuit designers begin with a
precise specification in the form of truth tables or Boolean
expressions. These expressions are manipulated by apply-
ing logic synthesis algorithms to obtain the optimal repre-
sentations. These will be either in two-level, multi-level or
Reed Muller representation forms. Iterative heuristics work
on a larger space, and through the process of assemble and
test, candidate solutions are built and evaluated. An optimal
solution could evolve from this process.

The first work in evolutionary design of logic circuits
was proposed by Louis [1]. Later, the work of Thompson
[2] that produced a tone discriminator circuit without input
clock hinted to the possibilityof a new way of designing cir-
cuits. The work of Miller [3] built some arithmetic circuits
that cannot be produced by human designer’s conventional
methods. Coello et.al [4] proposed a similar approach to
evolve a circuit, which they showed was better than that of
Miller’s. A complete review and taxonomy of the field can
be found in [5].

Ant Colony Optimization (ACO) algorithm [6] is a new
meta-heuristic that combines distributed computation, auto-
catalysis (positive feedback) and constructive greediness in
finding optimal solutions for combinatorial optimization prob-
lems. Unlike Genetic Algorithms (GAs), ACO involves co-
operating agents. In this paper, a multiobjective evolution-
ary logic design based on Ant Colony Optimization (ACO)

is proposed. Fuzzy logic is used to model the multiobjec-
tive cost function. The goal is to find functionally correct
circuits optimized in terms of area, delay and power.

2. ANT COLONY OPTIMIZATION ALGORITHM

The ACO algorithm [6] has been inspired by the behav-
ior of real ants. It was observed that real ants were able
to select the shortest path between their nest and food re-
source, in the existence of alternate paths between the two.
The search is made possible by an indirect communication
known as stigmergy amongst the ants. While traveling their
way, ants deposit a chemical substance, called pheromone,
on the ground. When they arrive at a decision point, they
make a probabilistic choice that is biased by the intensity of
pheromone they smell. This behavior has an autocatalytic
effect because of the very fact that choosing a path will in-
crease the probability that it will be chosen again by future
ants. When they return back, the probability of choosing
the same path is higher (due to the increase of pheromone).
New pheromone will be released on the chosen path, which
makes it more attractive for future ants. Shortly, all ants will
select the shortest path.

In the ACO algorithm, the optimization problem is for-
mulated as a graph � � �����, where � is the set of com-
ponents of the problem, and � is the set of possible connec-
tions or transitions among the elements of �. The solution
is expressed in terms of feasible paths on the graph �, with
respect to a set of given constraints.

3. PROPOSED APPROACH

Consider the Boolean function � � ��� � ��� � ���. Fig-
ure 1 shows a graph of some possible paths leading to the
intended function � starting from literal �. The ant will tra-
verse the paths by selecting the edges through a probabilistic
process.

The number of possible paths leading to function � shown
in Figure 1 is more than eleven. The number of all possible

CORE Metadata, citation and similar papers at core.ac.uk

Provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266084786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

x

yx

yx

xy

yx +

yx⊕

zyx

yzx

zxy

zxy⊕

zyx)(+

))((zxyyx ⊕+

zxyzyx +⊕)(zyx)(⊕

yzx)(⊕

xzy)(⊕

Fig. 1. Some of the possible paths in the function � .

paths could be huge. It is impractical to traverse all those
paths. We need to modify the ACO algorithm to handle the
search space.

3.1. Circuit Encoding and Representation

A circuit is modelled as a matrix � of size 	 �
. Each
cell of the matrix contains triplet of attributes consisting of
the row indices of the preceding column (as input1 and in-
put2) and the type of gate used. There are 10 types of gate
available. Table 1 shows these gates.

Gate ID Gate Output
0 WIRE1 �

1 WIRE2 �

2 NOT1 �

3 NOT2 �

4 AND � � �

5 OR �� �

6 XOR �� �

7 NAND � � �

8 NOR �� �

9 XNOR �� �

Table 1. Gate ID, gate name and output of the gate, consid-
ering input � and �.

Consider the example shown in Figure 2. Cell(1,2) whose
attribute is (0,3,4) is an AND gate (according to Table 1).
The first input of the AND gate of this cell is connected to
the output of cell(0,1), which is a WIRE, and the second
input is connected to the output of cell(2,1).

3.2. Fitness Function Calculation

The fitness of a solution contains two parts, namely func-
tional fitness and objective fitness. The functional fitness
deals with the functionality of the solution, i.e., how good
the solution is in satisfying the truth table of the intended
Boolean function. Several functional fitness () function
calculation are reported in the literature [5]. The most com-
monly used one is the ratio of the number of hits to the

Fig. 2. Example of a circuit and its encoding.

length of the truth table. This can be formulated as follows.

 ��� �
��
��� �� ���� �� ���� �

��	��� �� ����� �����

The number of hits is defined as the number of correct
matchings between the output patterns obtained at cell � and
the truth table of the intended function. The solution has to
be ’inverted’ if the value of ��� is less than 0.5. There-
fore, the formulation normalized FF(i) below is used.

���� � ���� ���� �� ���� (1)

The objective fitness (� ���) of cell � is a measure of
the quality of solution in terms of optimization objectives
such as area, delay, gate count, and power consumption. It
consider two aspects: constraints satisfaction and multiob-
jective optimization. In this paper, fuzzy logic is used to
represent the cost function for area, delay and power. For
this purpose, SIS tools [7] are used to estimate the target
value (area, delay, and power) of the intended circuits. The
shape of the membership function for area is depicted in
Figure 3.

1

t
µ�

µ

area

minimum�area target�area
�

Fig. 3. Membership function for area as optimization ob-
jective.

The membership function for delay and power are built
using similar rules (interested reader can consult [8] for fur-
ther details). These three membership functions are aggre-
gated into one unit (the objective fitness) using the ordered
weighted average (OWA) operator [9].

The overall fitness of cell � is formulated as follows.

����� � �� ����� � �� ��� � �� ��� (2)

Where �� is the weight for functional fitness. The value
of �� must be large enough in order to have better func-
tionality of the circuit. However, it should not be too large
in order to get better quality solutions in terms of design
objectives.

3.3. Solution Construction

At first, the cells of the matrix � are filled with randomly
generated attributes. Then, each ant will traverse the matrix.
These ants originate from a dummy cell called nest, and
traverse each state (a cell in a column) until it reaches the
last column or a cell that has no successor.

The selection of edges to traverse is determined by a
stochastic probability function. It depends on the pheromone
value (�) and the heuristic value (�) of the edge. The prob-
ability of selecting next cell is formulated below [6]:

������� �
��������

� � �����
�

�
����

�

��������� � ������
(3)

The value of � and imply the preference of the search,
whether it depends more on the pheromone value or the
heuristic value, respectively. Every newly created cell will
be given an initial and small amount of pheromone value.
This value will be updated every iteration by the ant. The
heuristic value (�) between cell � and ! is formulated as fol-
lows.

� � �"� � � �!�� ���� (4)

The addition of 0.5 in the calculation of � is meant to
normalize the value of � into [0,1]. A decrease in functional
fitness means that the value of � is in the range of [0,0.5),
while an increase in the functional fitness makes the value
of � in the range of (0.5, 1]

When all ants finish their tour, pheromone update is per-
formed. The pheromone update is performed using the fol-
lowing equation:

� ��� � ��� #� � � ��� � $ � ����� (5)

where ����� denotes the overall fitness of the solution that
the ants built, # is pheromone evaporation rate and $ is a
constant.

When all ants finish their movement, the matrix � is
checked to see which cells of the matrix deserve to be kept.
The cells that are not included in the best solution in the
current iteration will be removed. These empty cells will
be filled at the beginning of the next iteration. If it has not
reached the maximum iteration, the procedure will be re-
peated. Otherwise, the best solution is returned. Figure 4
shows the pseudocode of the approach.

Modified ACO algorithm
For MAXITER number of iteration do

Fill the matrix
ACO algorithm

Ant activity
Pheromone update

Remove unfit cells
End For
Return the best path

end Algorithm

Fig. 4. Modified Ant Colony Algorithm.

4. EXPERIMENTS AND RESULTS

In this section, comparison of the results obtained using the
proposed algorithm with the results obtained using SIS is
presented. It should be noted that SIS does not consider ca-
pacitance load in delay calculation and power optimization.
Therefore, the results obtained from SIS are in the form of
netlistfiles. These files are imported to the cost function cal-
culation procedures of the proposed algorithm to determine
the area, delay and power of the circuits.

The rugged.script is used in order to get the area mini-
mized circuits in SIS. The obtained circuits are then mapped
for area minimization. Table 2 shows the results for area
optimization for both techniques. The table shows that for
single-output circuits, the best improvements are obtained
in the case of 8-bit and 9-bit odd parity circuits. The parity
circuits are best represented using XOR (XNOR) gates. Un-
fortunately, SIS is unable to perform XOR decomposition.
Thus, the parity circuits obtained by SIS requires larger area
as compared to the ones obtained using the proposed al-
gorithm. For multiple-output circuits, the improvement in
area varies. The highest improvements are observed in the
case of multiplier circuits. However, the proposed algorithm
failed to deliver better circuit in terms of area in the case of
add3 circuit, which is the largest circuit used as test case.

For delay optimization, the results from SIS are obtained
by executing delay.script mapped for delay minimization.
The test cases used are the same circuits used for area op-
timization. As can be seen from Table 3, in contrast with
area optimization, the results of delay optimization is very
positive. The reason behind this is the following. ACO can
be easily modelled as a shortest path problem. Since de-
lay can be said proportional to the length of the path, ACO
algorithm, which is the basis of the proposed algorithm,
provides a good computational tool for delay optimization
problem.

Proposed Algorithm SIS % ImprovementCircuit
Area Delay Power Area Delay Power Area Delay Power

majority 13851 4.57 5.06 14823 6.28 5.41 6.56 27.18 6.48
xor8 20655 5.90 9.32 27945 27.69 10.82 26.09 78.70 13.89
xor9 23328 8.84 10.65 33048 33.25 12.65 29.41 73.40 15.83
add2 24300 11.48 9.96 29889 17.22 11.38 18.70 33.31 12.48
mul2 12636 3.56 4.66 18225 6.59 5.56 30.67 45.94 16.21
add3 49086 21.96 18.474 42282 24.99 15.68 -16.09 12.13 -17.79
mul3 59292 15.03 17.541 112752 43.39 37.75 47.41 65.36 53.53

Table 2. Comparison with SIS in area optimization.

Proposed Algorithm SIS % ImprovementCircuit
Area Delay Power Area Delay Power Area Delay Power

majority 16038 4.19 5.02 18711 7.53 5.40 14.29 44.34 7.11
xor8 20655 5.90 9.32 32805 9.53 11.65 37.04 38.11 20.04
xor9 27216 8.84 11.48 41067 15.42 14.15 33.73 42.64 18.85
add2 31347 8.957 11.463 50787 11.77 14.63 38.28 23.90 21.64
mul2 18225 2.96 5.99 25272 4.33 7.16 27.88 31.57 16.30
add3 53703 12.979 21.484 118827 19.20 35.21 54.81 32.40 38.98
mul3 74358 13.138 21.645 174231 31.66 47.16 57.32 58.51 54.10

Table 3. Comparison with SIS in delay optimization.

5. CONCLUSION

In this paper, we have proposed an ACO-based evolution-
ary logic design technique. Comparison of the proposed
approach with SIS is shown. The proposed approach has
shown that it is capable of producing optimized combina-
tional circuits. In addition, the results obtained by the pro-
posed algorithm are better in terms of area, delay and power
as compared to SIS.

Acknowledgment: We would like to acknowledge the con-
tinued support for our research from King Fahd University
of Petroleum & Minerals under project entitled “Iterative
heuristic for the Design of Combinational Logic Circuits”.

6. REFERENCES

[1] Sushil J. Louis, Genetic Algorithms as a Computational
Tool for Design, Ph.D. thesis, Department of Computer
Science, Indiana University, Aug 1993.

[2] Adrian Thompson, “Silicon Evolution,” Proceedings of
the First Annual Conference on Genetic Programming,
pp. 444–452, MIT Press, 1996.

[3] J. F. Miller, D. Job, and Vassilev V. K., “Principles in
the Evolutionary Design of Digital Circuits - Part I,”
Journal of Genetic Programming and Evolvable Ma-
chines, vol. 1, no. 1, pp. 8–35, 2000.

[4] C. A. Coello, A. D. Christiansen, and A. H. Aguirre,
“Towards Automated Evolutionary Design of Combi-
national Circuits,” Computers and Electrical Engineer-
ing, Pergamon Press, vol. 27, no. 1, pp. 1–28, Jan. 2001.

[5] R. S. Zebulum and M. A. Pacheco and Maria Vel-
lasco, Evolutionary Electronics: Automatic Design of
Electronic Circuits and Systems by Genetic Algorithms,
CRC Press, 2002.

[6] M. Dorigo and G. Di Caro, New Ideas in Optimisation,
McGraw Hill, London, UK, 1999.

[7] E. M. Sentovic, K. J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K.
Brayton, and A. L. Sangiovanni-Vincentelli, “SIS: A
System for Sequential Circuit Synthesis,” Technical
Report UCB/ERL M92/41, University of California,
Berkeley, May 1992.

[8] Bambang A. B. Sarif, “Modified Ant Colony Optimiza-
tion Algorithm for Combinational Logic Circuits De-
sign,” M.S. thesis, Computer Engineering Department,
King Fahd University of Petroleum & Minerals, Saudi
Arabia, August 2003.

[9] Ronald R. Yager, “On Ordered Weighted Averaging
Aggregation Operators in Multicriteria Decision Mak-
ing,” IEEE Transaction on Systems, MAN, and Cyber-
netics, vol. 18, no. 1, January 1988.

