
Area-Time Optimal Adder with Relative Placement Generator

Abstract:

This paper presents the design of a generator, for the production of area-time-optimal
adders. A unique feature of this generator is that, it integrates synthesis and layout by
providing relative placement information.. Relative placement information provides
better support for structured layout and easier integration flow with data-path placer.
Adders generated using the proposed generator are dynamically configured for a given
technology library, wire-load model, delay, and area goal. Adders of sizes 1 to 1024 bits
are produced. The adder architecture used in this generator is a hybrid of Brent & Kung,
carry select, and ripple carry adders. When compared with Synopsys’ fast adders, a 20-
50% reduction in area with comparable delays are produced. This generator has been
integrated into Synopsys high-performance datapath design tool Module Compiler.

1. Introduction
Addition is an important operation affecting the speed and performance of digital signal
processors. High-speed adders can be realized using most widely used carry look-ahead
(CLA) [1], carry select [2], or binary carry look-ahead [3,4] techniques. Due to time-to-
market constraints in VLSI industry, design of, high-speed area efficient circuits in
minimal time is a major challenge. There are many full custom designed adders
[][][][][][], which offer very high speed and low area for a specific process technology
and complex circuit techniques. Due to the high cost of full custom adders, standard cell
based designs are widely used [][][][][][] but the performance of these adders is also
limited to a specific cell library and design constraints.

There is another class of adders, which are produced using software programs called
generators [][][][]. Using generators, adders can be generated for a variety of design
goals, bit-widths, and technologies. First attempt to produce area-time optimal adders
using software programs was reported by xx in []. The proposed adder architecture was
based on Ladner and Fischer’s parallel prefix computation model, which is essentially a
look-ahead addition. The design is formulated as a dynamic programming problem and
optimized for area and delay. In [], xxx propose a multi-dimensional programming
paradigm to control the block sizes of carry skip adders and CLA for minimizing the
delay. In the generator proposed in [], conditional sum adders which include testability
features are generated. All the above generators have a major drawback that they did not
consider the wiring effects. With the shrinking VLSI dimensions, especially today’s deep
sub-micron technologies interconnect delays play a dominant role in overall performance
of the circuit. Moreover the digital design paradigm has moved from logic domain to
physical domain, none of the above mentioned generators provide any information for the
placement or tiling of adder cells.

In this paper we present an efficient algorithm to generate area-time optimal adders, with
relative placement (RP) information. Relative Placement (RP) assigns an instance/gate to
a row and column position. RP information is used by the placement tool for fast,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266084777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

efficient and structured placement of instances in layout. The adders generated are
targeted for low area, with speeds comparable to Synopsys’ fast adders. The proposed
generator takes into consideration the wire-load models along with other parameters such
as delay, area, and operating conditions (temperature and voltage). The proposed
generator that generates adders upto 1024 bits has been integrated with Synopsys’
datapath synthesis tool, which allows further enhancement such as, pipelining, retiming,
GUI interface, and adder instantiation in a Verilog like language called MCL (module
compiler language).

The adder architecture used in this generator is a hybrid of Brent & Kung [i, ii], carry
select [], and ripple carry adders. In order to achieve low area with high-speed, area
optimized ripple carry adders are used along with carry select adders (CSA) and carry
generation logic. The whole adder is composed of 4-bit ripple carry and/or carry select
adder blocks. The 4-bit ripple carry adder blocks are used for fast arriving carry signals
(in the beginning of the adder) and CSA are used for slow arriving signals. The carry
generation logic (carry chain) has been implemented using the ‘o’ operator as described
by xxxx in [i, ii] with a modification that four-bit groups are used, instead of two bits. By
using four-bit groups, the number of wires and hardware is reduced by 1/2, keeping the
adder delay proportional to O(log n) [iii] (where ‘n’ is the number of bits of the adder)
Also, timing analysis is used to equalize the arrival of the entire sum and reduce adder
hardware by inserting/using maximum number of ripple carry adders. The adders
produced by the generator are similar in topology to [iii, iv, v] but due to programming
area-delay optimal adders are produced using different technology libraries, wire-load
models, area-delay goals.

The paper is organized as the following: In Section 2 the architecture of the proposed
adder is described. In Section 3 the generator is described in detail. In Section 4 the
performance comparison of the adders generated and RP layout of a 64-bit adder using
the proposed generator is presented. Finally Section 5 concludes this paper.

2. Adder Architecture:

Let, A = an-1, an-2 a1, a0, and B = bn-1, bn-2,...... b1, b0 be the two input operands, with
an-1 and bn-1 be the most significant bits. The generate and propagate signal at bit position
“i” are given by; gi = ai��bi, and pi = ai��bi,(where: � �= AND operation and ��=
XOR operation). The Carry out from bit position “i” is given by; Ci = gi + gi-��pi (where
+ = OR operation) provided C0 = 0. The “o” operator as defined by [3] is given as
follows:
(g, p) o (g’, p’) = (g + (p ��g’), p ��p’) (1)
The group Generate (G) and Propagate (P) are given by:
(Gi, Pi) = (g0, p0) if i =0 &
 (gi,pi) o (gi-1, pi-1) if 0 < i < n (2)
In [3,4,5], using (1), the generate and propagate signals for each level (k) of the adder are
generated using the following combination:
(Gi+2k, Pi+2k) = (gi+2k, pi+2k) o (gi, pi) for 0 < k < log n (3)

In the proposed implementation for ‘n’ bits, at k = 0 (first level) n/2 generate and
propagate signals are produced using the following combination:
(G2i+1, P2i+1) = (g2i+1, p2i+1) o (g2i, p2i) for 0 < i < n/2 (4)
At the second level n/4 signals are produced (by grouping the signals generated at the
first level) using (4) but limiting i to n/4. These signals are the four-bit group generate
and propagate signals, their value for 4-bit case is given below, and their grouping is
shown in Fig. 1.
(g10, p10) = (g1, p1) o (g0, p0) and
(g32, p32) = (g3, p3) o (g2, p2) at k = 0 (at first level) (5)
(G30, P30) = (g32, p32) o (g10, p10) (at second level) (6)
In this realization no (g2, p2) or intermediate even carry is generated, because these are
generated within the conditional sum adders. Once we have the 4-bit group carries, the
carries in multiplies of 4 are generated using (2). This technique results in minimum
wiring and area, for n bits, approximately 2n/2k signals are generated at each level of the
adder in contrast to [3, 5] which requires 2(n-2k) signals. The wiring and area of Brent’s
adder [3,5] increases exponentially with the increase in the number of bits. While using
four-bit groups offer linear increase in wiring and area, keeping the delay equivalent to
Brent’s adder [].

Fig. 1 shows the block diagram of a 32-bit adder. As shown in this figure, the carry tree
generates the carry inputs in multiples of four. The carry tree is made up of 3-input
AND-OR and 2-input AND gates, implementing gi.i-1 = gi + gi-1•pi and pi.i-1 = pi-1•pi

(filled circle) respectively, at each level of the tree. Since inverted logic is faster then non-
inverted logic therefore alternate polarities of g and p are produced at each level. The
carries generated by the tree are then used to generate the final sum using either a ripple
carry adder or a CSA. In the following sections we explain the design of the area-delay-
optimized ripple and CSA adders.

g31p31 g0p0

C031

Level 0

Level 1

Level 2

Level 3

Delay = log n

Level 4

C03
C07C011C015

Ripple Add.Ripple Add.
Ripple
Add.Ripple Add.

S03

4444

S711S1215 S48

C023
C027

Carry
Select
Adder

Carry
Select
Adder

S2023

444

S2831 S2427

C019

Carry
Select
Adder

4

S1619

Carry
Select
Adder

Fig. 1. 32-Bit adder block diagram.

Basic Cells
Fig. 2 shows the area optimized ripple carry adder. The area of the adder is optimized by
utilizing generate (g) and propagate (p) signals produced in the carry tree. This adder
requires only 9-gates (counting shaded AND-OR gates as one gate) for 4-bits.

a 0b 0 C in

S u m 0

C in

S u m 1

a 1b 1 g 0 p 0

S u m 2

a 2b 2 g 0 1 p 0 1

S u m 3

a 3 b 3 g 0 1 p 0 1p 2p 2g 2

4 - B i t R ip p l e A d d e r

Fig. 2. Four bit area optimised ripple carry adder.

Since, the four bit carry select adders are not on the critical path, they could be designed
using two sets of four bit ripple carry adders, with Cin = 0 for one set , and Cin =1 for the
other. However, we have found that it is possible to reduce the hardware by merging the
two adders together.

Fig. 3 shows the schematic diagram of the 4-bit merged carry select adder (CSA). The
hardware of this merged CSA is approximately 40% smaller then the hardware required
by two separate four-bit ripple carry adders. In VLSI implementation, the 4-bit CSA is
combined with the 4-bit carry generate circuit.

0 10 10 1

a0b0

p0g0 a1b1p1g1a2b2g01p2g2a3b3

11 XORs

3 MUXs

3 AOI

2 INV

Cin

Sum
0

Sum
1

Sum
2

Sum
3

CinCinCin

8 XORs

0 MUXs

12 AOI
(app.)

xx

New_add FASTCLA

Fig. 3. Four bits carry select adder.

3. Generator
In this section we present the generator architecture. The generator is described in C++ in
a modular fashion and contains the following modules:

1. A Logic generator.
2. A Delay calculator.
3. An Adder optimizer.

Functions, such as, reading the technology library, parsing MCL input, adder parameters
(bitwidth, delay, area goals), and GUI interface are performed by the module compiler
(MC) synthesis engine. Below we explain the design of the individual generator modules.

Logic generator
The main function of the logic generator is to instantiate, place, and interconnect logic
cells and generate relative placement information. The MC synthesis engine parses the
input and then passes a data structure to the logic generator. This data structure contains
information regarding the adder type, number of bits, and pointers to input/output
operands, desired area and delay.

Logic generator creates a data structure containing ‘n’ link lists (columns) containing
input operand bits and their associated delay in ascending order. After this the generator
performs following operation in the same order: Each instantiation of the gate updates RP
data structure with bit/column number and the level of the adder. The nets produced
following this operation are again placed in the link list, which is once again sorted for
delays.

1. Generate the GP terms for each bit using NAND and NOR gates.
2. Generate a binary tree using equation 6, instantiate AND-OR and AND gate for

each node. Since inverted logic is faster then non-inverted logic therefore alternate
polarities of g and p are produced at each level of the GP tree, in order to get full
advantage of inverting logic cells.

3. Generate intermediate GP terms, which are not power of 2.
4. Instantiate the first ripple carry adder shown in Fig.2 for the first four bits.
5. Instantiate CSA adders (Fig.3) for the rest of the bits.

Adder optimizer

Can you please explain this in words??
/*--
 Begin adder optimization
 Determine the maximum delay the Adder
---*/
 int delay[BigMaxBits];
 int maxDelay = 0;
 int maxGroupDelay = 0;
 for (i=4; i < origBits; i++)
 {
 delay[i] = gp_tree[MaxLevel][i].delay;
 if (delay[i] > maxDelay)
 maxDelay = delay[i];
 }

/*--
 Now Start adder optimization (why can’t this be merged above?)
 Now Replace the CSA adders
---*/
 //fast car_in path, area optimized ripple adder
 for (i=4; i<origBits; i = (i + 4))
 {
 if (origBits-i < 4)
 groupWidth = origBits-i-1;
 else
 groupWidth = 3;
 reduceCol=AdddbFALSE;
 GenerateSumRip(inp,i,(claLog2(i-1)),groupWidth,
reduceCol);
 for (j=i; j < i+1+groupWidth; j++)
 {
 delay[j] = gp_tree[MaxLevel][j].delay;
 if (delay[j] > maxGroupDelay)
 maxGroupDelay = delay[j];
 }
 reduceCol=AdddbTRUE;
 if(maxDelay > (maxGroupDelay+5))
 GenerateSumRip(inp,i,(claLog2(i-1)),groupWidth,
reduceCol);
 else
 GenerateSumCSA(inp,i,(claLog2(i-1)),groupWidth,
reduceCol);

 }
 }

Delay calculator
The delay calculator module provides detailed timing calculation information about the
specified cell or net timing arc. Both, the operating conditions, and wire load models are
taken into account when making delay calculations. For CMOS models, the delay is
broken into four parts: intrinsic delay (Di), transition delay (Dt), slope delay (Ds),
connect delay (Dc). The total delay is therefore given by:

Dtotal = Di + Dt + Ds + Dc.

The intrinsic delay Di is the delay through the element, which is independent of the load
(also known as the base delay).
The transition delay Dt is a function of the driver resistance and the capacitance of the
wire and the pin. Dt = Rdriver(Cwire + Cpins) where Rdriver is the rise or fall resistance (also
known as the Load Factor)
The slope delay Ds is the input to output delay due to the transition time on the input. The
equation for this is Ds = Ss * Dt (previous stage); where Ss is the rise slope or fall slope.

The connect delay Dc is a rise or fall delay, also known as the time-of-flight delay or the
time it takes for a waveform to propagate along a wire and is based on one of three types
of models:

 Worst Case RC generic CMOS tree Dc = Rwire(Cwire + sum(Cload_pins))
 Worst Case RC CMOS2 tree Dc = (Rwire/N) * (Cwire + sum (Cload_pins))
The above models the case where the load pin is at the extreme end of the wire.

 Balanced RC tree Dc = (Rwire/N) * (Cwire/N + sum (Cload_pins))
The above models the case where all load pins are on separate, equal branches of the
interconnect wire. Each load pin incurs an equal portion of the wire capacitance.

 Best Case RC tree Dc = Rwire(Cwire + Cpin) = 0
Models the case where the load pin is physically adjacent to the driver.

The wire resistance Rwire is determined from a wire load model. The length of the net is
computed from a global estimation function, which is based on the number of fanouts for
that net.

The wire capacitance Cwire is determined for the head of the timing arc. The length is
computed using the actual number of fanout pins on the net and the fanout_lengths
defined in the wire_load group in the library. If no wire_load group is defined, then Cwire

is 0. The pin capacitance Cpin is the library capacitance defined in the pin group for the
load pin.

For a cell arc, the pin names are associated with an input pin and an output pin for the
same cell. For a net arc, the pin names are for a driver pin to a load pin on the same net.

Calculating the Driving Cell Delay

Assuming nonlinear delay library modeling for the specified timing arc (that is, libcell-
input-pin to libcell-output-pin timing relationship), the cell delay is a function of both the
transition time on the input pin and the capacitive load on the output pin. Delay
calculation uses the first timing arc it encounters for the driving cells specified output pin,
and it uses zero for the input transition time.

The total capacitive load seen by the driving cells output pin is the sum of the wire
capacitances and the pin capacitances that it drives. These capacitances can exist both
externally and internally to an input port. Both external wire capacitance and external pin
capacitance contribute to the load seen by the driving cell. Internal capacitances are
modeled in four ways:

 - The wire load model calculation of the nets wire capacitance based on the number of
loads it drives
 - The net's wire capacitance annotated on pins or ports through
 set_rtl_load (for details, see the man page for set_rtl_load) (what man page?)
 - The net's pin capacitance for each leaf cell input pin it drives
 - The nets wire capacitance annotated by using set_load (this capacitance

The conventional approach to calculate pre-layout wire load during synthesis, in an ASIC
environment, has been a specification of a statistical wire load model based on total die
size and fanout capacitance. For example, assume you have the following values:

 Cpin - pin capacitance external to input port.

 Cwire - wire capacitance external to input port.

 Cwlm - calculated wire capacitance internal to input port based upon wire load model

 Cfan - pin capacitance internal to input port based upon individual library cell input pin
descriptions

The total capacitive load seen by the output pin of our driving cell would be

 Ctotal = (Cpin + Cwire) + (Cwlm + Cfan)

Calculating the Interconnect Delay External to the Input
Port

The wire delay external to an input port is the product of the external wire resistance and
all capacitance seen after the external pin capacitance. The external and internal
capacitances used here are modeled in the same manner as described above in the
calculation of the driving cell delay. The difference, here, is that the external pin
capacitance does not contribute to the external wire delay. Only the external wire
capacitance and all internal capacitances contribute to this delay.

For example, assume we have the following values

 Rip - resistance value external to input port

 Cpin - pin capacitance external to input port

 Cwire - wire capacitance external to input port

 Rwlm - calculated wire resistance internal to input port based on the wire load model

 Cwlm - calculated wire capacitance internal to input port based on wire load model

 Cfan - pin capacitance internal to input port based on individual library cell input pin
descriptions

The wire delay external to an input port would be
 Dext = Rip * (Cwire + Cwlm + Cfan)

The total wire delay both external and internal to an input port would be

 Dtotal = Dext + (Rwlm * (Cwire + Cwlm + Cfan))

Note that Cpin does not affect the wire delay. However, it still presents an additional load
to the driving cell and, therefore, affects the driving cells delay as seen above.

4. Performance Comparison
The performance of the adders synthesized by the generator are compared with the
existing Module Compiler (MC) FASTCLA [], and Design Ware (DW) BK adder []. All
the MC adders are synthesized using MC and then post processed in Design Compiler
(DC), while the DW adders were synthesized using only DC. Each adder is synthesized
using ten different libraries worst case operating conditions and wire load models. Fig. 4
and Fig. 5 shows the delay and area comparison between different adders using
IBM_CMOS6S_SC library. It is clear from the synthesis results that in terms of delay
adders generated by the proposed generator are comparable (good in some cases and
slightly slow in some cases) to SYNOPSYs’ best adders (DW_BK, and MC_FASTCLA).
While, in terms of area adders generated by the proposed generator are always 20-50%
better.

IBM Delay COmparison

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 64

Bits

D
el

ay

Dw_Delay FCLA_Delay AOFCLA_Delay

Fig. 4. Delay comparison of DW_BK, MC_FCLA, and NEW adder in IBM 0.18u Tech.

IBM Area Comparison

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 64

Bits

C
el

l A
re

a

Dw_area FCLA_Area AOFCLA_area

Fig. 5. Area comparison of DW_BK, MC_FCLA, and NEW adder in IBM 0.18u Tech.

5. Conclusions

Reference:

i. Brent R., "On the addition of binary numbers", IEEE Trans. Computers, C-19, 758 (1970).

ii. Brent, R.P.; Kung, H.T., “A regular layout for parallel adders”, IEEE Transactions on Computers, vol.C-31, (no.3), March 1982.

p.260-4.

iii. A. A Farooqui, V. G. Oklobdzija, F. Chehrazi, "Multiplexer based adder for media signal processing", Proceedings of the 1999

International Symposium on VLSI Technology, Systems, and Applications, Taipei, Taiwan, R.O.C., Page(s): 100 -103, 8-10 June

1999.

iv. A. A Farooqui, V. G. Oklobdzija, F. Chehrazi, "64-Bit Media Adder", Proceedings of the 1999 IEEE International Symposium on

Circuits and Systems, (ISCAS '99), Orlando, Florida, USA, 30 May-2 June 1999.

v. A. A Farooqui, V. G. Oklobdzija, F. Chehrazi, "A Mutliplexer Based Parallel n-Bit Adder Circuit for High Speed Processing”,

SONY-50N3106, filed March 1999.

