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Abstract

Background: DNA methylation is influenced by both environmental and genetic factors and is increasingly
thought to affect variation in complex traits and diseases. Yet, the extent of ancestry-related differences in DNA
methylation, their genetic determinants, and their respective causal impact on immune gene regulation remain
elusive.

Results: We report extensive population differences in DNA methylation between 156 individuals of African and
European descent, detected in primary monocytes that are used as a model of a major innate immunity cell type.
Most of these differences (~ 70%) are driven by DNA sequence variants nearby CpG sites, which account for ~ 60%
of the variance in DNA methylation. We also identify several master regulators of DNA methylation variation in
trans, including a regulatory hub nearby the transcription factor-encoding CTCF gene, which contributes markedly
to ancestry-related differences in DNA methylation. Furthermore, we establish that variation in DNA methylation is
associated with varying gene expression levels following mostly, but not exclusively, a canonical model of negative
associations, particularly in enhancer regions. Specifically, we find that DNA methylation highly correlates with
transcriptional activity of 811 and 230 genes, at the basal state and upon immune stimulation, respectively. Finally,
using a Bayesian approach, we estimate causal mediation effects of DNA methylation on gene expression in ~ 20%
of the studied cases, indicating that DNA methylation can play an active role in immune gene regulation.

Conclusion: Using a system-level approach, our study reveals substantial ancestry-related differences in DNA
methylation and provides evidence for their causal impact on immune gene regulation.
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Background
Individuals and populations display variable susceptibil-
ity to infectious diseases, chronic inflammatory disor-
ders, and autoimmunity [1, 2]. Over the last decade, it
has become clear that such disparities partly result from
differences in the host genetic make-up, with an increas-
ing number of genes being associated with varying abil-
ities to fight infections at the individual and population

level [3, 4]. Furthermore, population genetic studies have
revealed that pathogen-driven selection has substantially
impacted human genetic diversity [5, 6]. Because the
mortality, and thus the selective pressure, imposed by
pathogens have been paramount [7], human populations
had to adapt to the different pathogenic environments
they encountered around the globe, and genes involved
in host defense are among the functions most strongly
selected for by natural selection [5, 8–11]. While sub-
stantial evidence supports this hypothesis at the genetic
level, we still know little about the degree of naturally
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occurring epigenetic variation at the population level
and how this may impact immune phenotypes.
As the immune system is the primary interface with the

human pathogenic environment, the study of DNA
methylation [12, 13] offers a unique opportunity to ex-
plore the interplay between the genome and environmen-
tal cues. DNA methylation can be affected by a range of
external factors, such as nutrition, toxic pollutants, social
environment, and infectious agents [14–19]. Furthermore,
numerous studies have mapped DNA sequence variants
associated with DNA methylation variation [20–28], i.e.,
methylation quantitative trait loci (meQTLs), and ~ 20%
of the inter-individual variation in DNA methylation has
been attributed to genetics [29, 30]. DNA methylation
variation has also been associated with complex traits, in-
cluding aging [31], body mass index [32], various cancers
[33, 34], obesity [35], and autoimmune and inflammatory
disorders [36, 37]. Yet, most studies of human epigenome
variation, both in health and disease conditions, have fo-
cused on populations of homogeneous genetic ancestry,
primarily of European descent.
A few studies, however, have reported that population

differences in ancestry, habitat, or lifestyle affect DNA
methylation, providing an initial assessment of the
contribution of genetic factors and gene-environment
(G × E) interactions to population-level epigenetic vari-
ation [38–44]. Yet, these studies investigated DNA
methylation variation from virus-transformed lympho-
blastoid cell lines or whole blood, so the differences ob-
served could reflect, at least partially, epigenetic changes
induced by cell immortalization or heterogeneity in
blood cell composition that was not fully accounted for
[45–47]. Thus, the extent of DNA methylation variation
related to ancestry, and its genetic determinants, in a
cellular setting relevant to immunity are far from clear.
A growing body of research has reported ancestry-related

variation in terms of immune gene expression levels. Two
recent studies found marked differences between individ-
uals of African and European ancestry in their transcrip-
tional responses to infectious challenges [48, 49] and
showed that regulatory variants (i.e., expression quantitative
trait loci, eQTLs) explain a substantial proportion of these
population differences. Still, a large fraction of the variance
in gene expression, both across individuals and populations,
cannot be attributed to genetic factors and remains unex-
plained [48–55]. In this context, DNA methylation repre-
sents an additional, possible layer for variation in gene
regulation [56]. The observed correlations between DNA
methylation and gene expression levels can be positive and
negative; in the canonical model, high levels of methylation
at promoter regions are often associated with low gene ex-
pression, but elevated gene body methylation is also associ-
ated with active expression [28, 47, 57–60]. There is also
increasing evidence that DNA methylation can play both

passive and active roles in the regulatory interactions influ-
encing gene expression, but the causality relationships be-
tween DNA methylation, gene expression, and genetic
factors are not fully understood [19, 23, 56]. Furthermore,
genetic variants associated with complex traits or diseases
by genome-wide association studies (GWAS) often overlap
both eQTLs and meQTLs, suggesting that disease risk can
be mediated, directly or indirectly, by variation in DNA
methylation [61–67].
Here, we aimed to broaden our understanding of the

mechanistic links between ancestry-related differences in
DNA methylation, genetic factors, and immune gene regu-
lation. To do so, we build upon the EvoImmunoPop col-
lection of primary monocytes originating from healthy
individuals of African and European ancestry [48]. We pro-
filed the DNA methylome of 156 donors, including 78 of
each ancestry, using the high-resolution Infinium Methyla-
tionEPIC array, which captures methylation variation at
more than 850,000 sites. This new dataset was combined
with both genome-wide genotyping and whole-exome se-
quencing data, as well as with RNA-sequencing profiles
from resting and stimulated monocytes with various im-
mune stimuli, obtained from the same individuals. Such a
system-level approach, integrating epigenetic, genetic, and
transcriptional data, allowed us to assess the extent to
which population-level variation in DNA methylation and
its genetic determinants impact transcriptional activity re-
lated to immune responses.

Results
Population differences in DNA methylation profiles of
primary monocytes
To assess population differences in DNA methylation of a
purified innate immune cell type, we characterized DNA
methylation variation at > 850,000 CpG sites across the
genome, in monocytes originating from 156 male healthy
volunteers: 78 of African descent (AFB, median age = 30.9
years) and 78 of European descent (EUB, median age =
25.9 years), all living in Belgium. Note that AFB individ-
uals moved to Belgium between the ages of 6–45 years old
(median age = 29 years). After normalization and filtering
(see “Materials and methods”), we retained a final dataset
of 552,141 methylation sites in the 156 individuals
(Additional file 1: Figure S1). Principal component analysis
(PCA) of DNA methylation clearly separated AFB and
EUB along the first two PCs, which explained together
11.6% of the total variance (Fig. 1a). At a false discovery
rate (FDR) = 1%, we identified 77,857 sites (14.1% of the
total number) that presented a significant difference be-
tween AFB and EUB in their mean level of DNA methyla-
tion, after adjusting for age and surrogate variables. When
restricting our analyses to CpGs that presented a mean
difference > 5% (measured by the β value [68], see
“Materials and methods”), we identified a total of 12,050
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differentially methylated sites between populations (DMS)
that mapped to 4818 genes. Because the age distributions
of AFB and EUB individuals significantly differ (Wilcoxon
P value = 10−4; Additional file 1: Figure S2), and age might
have a non-linear effect on DNA methylation [69], we also
investigated with ANOVA the extent to which DNA
methylation is non-linearly affected by age in our dataset.
Our analyses showed that such effects had little to no im-
pact on the population differences in DNA methylation
detected (Additional file 2: Supplementary Note 1).
The genomic distribution of DMS, which were

highly enriched in enhancer regions (odds ratio (OR)
~ 2.6, P = 1.42 × 10−224), was independent of the popu-
lation where hyper-methylation was observed (Fig. 1b).
However, of the 12,050 DMS, 76.3% were more meth-
ylated in AFB than in EUB, with respect to the ob-
served 54% when considering all CpGs (Fisher’s exact
P < 2.2 × 10−16) (Fig. 1c). The corresponding genes
were enriched in Gene Ontology (GO) categories re-
lated to cellular periphery and plasma membrane

(Fig. 1d). The remaining 23.7%, which were
hyper-methylated in EUB, were enriched in sites lo-
cated in genes largely associated with immune re-
sponse regulation and responses to external stimulus
(Fig. 1c, d; Additional file 3: Table S1). These results
cannot be explained by population differences in
monocyte subpopulations (i.e., CD14high/CD16neg
[Classical], CD14high/CD16low [Intermediate], and
CD14low/CD16high [Non-Classical]), as adding these
subpopulations as covariates in the model did not
alter our results (Additional file 1: Figure S3). Fur-
thermore, we detected no CpG sites whose levels of
methylation correlate significantly with monocyte sub-
types (FDR = 5%), indicating that the effects of mono-
cyte subpopulations on DNA methylation are
negligible at the epigenome-wide level. Together,
these analyses reveal genes and functions that present
extensive differences in DNA methylation between in-
dividuals of African and European ancestry, in the
context of primary monocytes.

Fig. 1 Population differences in DNA methylation profiles. a Principal component analysis (PCA) of DNA methylation profiles for all 156
individuals. Red and blue circles represent African (AFB) and European (EUB) individuals, respectively. The proportions of variance explained by
PC1 and PC2 are indicated. b Genomic location of differentially methylated sites (DMS), for CpG sites hyper-methylated in AFB (red) and in EUB
(blue). Odds ratio and 95% confidence intervals are displayed for AFB-DMS and EUB-DMS, comparing their localization in different genomic
locations as provided by Illumina (TSS1500, TSS200, 5′UTR, 1stExon, Body, Exon boundaries [ExonBnd], and 3′UTR), and in enhancer and promoter
regions specifically detected in monocytes by ChromHMM phase 15 (see refs. [110, 111]). Odds ratios were computed against the general distribution
of the 552,141 CpGs of our dataset. c Proportion of DMS that are hyper-methylated either in AFB (red) or in EUB (blue) individuals. The density of β
values of one CpG site by category is given as an illustration of the population differences, with red and blue lines representing the methylation
density in AFB and EUB, respectively. d Gene Ontology (GO) enrichment analyses of AFB- and EUB-DMS. For both groups, the top-GO categories
reaching 5% FDR are shown, together with the number of genes per category and the log10-transformed FDR-adjusted enrichment P values
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Genetic factors drive most ancestry-related DNA
methylation variation
We next examined the genetic determinants of the ob-
served population differences in DNA methylation, and
mapped methylation quantitative trait loci (meQTLs).
We first tested for local associations between DNA
methylation variation at CpGs and SNPs located within
a 100-kb window (cis-meQTLs), using MatrixEQTL [70]
(see “Materials and methods”). We set a 5% FDR thresh-
old, considering one association per CpG site and using
100 permutations (P < 1 × 10−5). We adjusted for age,
two surrogate variables (accounting for batch effects and
unknown confounders, see “Materials and methods”),
and the first two PCs of the genetic data (Additional file 1:
Figure S4), to account for population stratification. To
detect subtle effects, we merged all individuals and in-
cluded ancestry as a covariate, but simultaneously, we
analyzed the two populations separately to detect puta-
tive population-specific effects. For all subsequent ana-
lyses, we present the significant results of these two
approaches combined, unless otherwise indicated.
We identified 69,702 CpGs associated with at least

one genetic variant in at least one population (~ 12.6%
of all sites, referred to as meQTL-CpGs). Given that
multiple linked SNPs can be associated to the same
CpG, we kept the best-associated SNP for each
meQTL-CpG. However, we also used a fine mapping ap-
proach [51] to detect independent SNPs associated to
each CpG (see “Materials and methods”). In doing so,
we detected 9826 additional meQTLs (Additional file 1:
Figure S5), providing a more thorough view of the con-
tribution of proximate genetic variants to DNA methy-
lation variation. The median distance between a CpG
and its associated SNP was ~ 3.8 kb (Additional file 1:
Figure S6), supporting the close genetic control of
DNA methylation [22, 28, 41, 65]. Furthermore, we
found a 2.2-fold enrichment of meQTL-CpGs in en-
hancers (P < 1 × 10−326), a trend that was even more
pronounced for meQTLs associated with population
differences in DNA methylation (meQTL-DMS; OR ~
2.8, P = 6.8 × 10−317, Additional file 1: Figure S7).
Focusing on ancestry-related differences, we observed

that ~ 70.2% of DMS harbor a significant meQTL, with re-
spect to the 12.6% detected genome-wide (Fisher’s exact
P < 2.2 × 10−16; Fig. 2a). These meQTLs were found to ac-
count, on average, for ~ 58% of the observed population
differences in DNA methylation (Additional file 1: Figure
S8, see “Materials and methods”). Furthermore, meQTLs
presented opposite effects on DNA methylation as a func-
tion of population differences in allelic frequency, i.e., a
derived allele at higher frequency in Africans was generally
associated with high levels of DNA methylation, while a
derived allele at higher frequency in Europeans was pri-
marily associated with low DNA methylation (Fig. 2b).

This observation provides a genetic explanation for the
unbalanced patterns of hyper-methylation, observed at
DMS, between Africans and Europeans (Fig. 1c).
Local meQTLs can, a priori, lead to population differ-

ences in DNA methylation following two main models:
(i) the meQTL has a similar effect in both populations
but present different allelic frequencies (Fig. 2c), or (ii)
the meQTL is present at similar frequencies but display
population-specific effects, revealing more complex in-
teractions (Fig. 2d). We therefore investigated the popu-
lation specificity of the 69,702 meQTL-CpGs detected
using a model selection approach (see “Materials and
methods”). We found 2868 (4.1%) significant
population-specific effects (1337 AFB-specific and 1531
EUB-specific), suggesting the occurrence of G × E or
G × G effects.

Ancestry-related meQTLs are enriched in associations
with complex traits and diseases
Given that a large fraction of genetic variants identified
by GWAS are thought to act by affecting gene regulation
[71–74], we investigated the putative functional impact
of the detected meQTLs on ultimate complex pheno-
types. In practice, we searched for enrichments in
GWAS hits among our set of 79,528 meQTLs, correct-
ing for linkage disequilibrium (see “Materials and
methods”). Focusing on the 17 parental classes of the
Experimental Factor Ontology (EFO) classification [75],
we found that meQTLs were enriched in significant hits
for all these functional categories (Additional file 1:
Figure S9, OR ~ 2.1–5.5, P < 4.1 × 10−10). Stronger en-
richments were detected for meQTLs associated with
population differences in DNA methylation (OR ~ 2.7–
9.8, P < 2.9 × 10−3), in particular for phenotypes related
to hematological measurements, neurological disorders,
immune system disorders, inflammatory measurements,
and digestive system disorders (Fig. 2e).
Because DNA methylation and meQTLs have been

shown to be largely cell or tissue dependent [23, 76–81],
we next searched for the specific traits that account for
the signals detected at the parental category “immune
system disorder”, given our focus on primary monocytes.
We found that meQTLs overlapped variants associated
with diseases such as osteoarthritis, psoriasis, systemic
lupus erythematosus, inflammatory skin disease, or type
1 diabetes (Additional file 1: Figure S10). For example,
the meQTL SNP rs629953 presents markedly different
frequencies between AFB and EUB (DAF AFB 7.5% ver-
sus DAF EUB 62%), leading to variable population-level
DNA methylation at TNFAIP3 (cg06987098), and has
been associated with psoriasis susceptibility [82, 83]. To-
gether, our analyses support that complex traits and
variable DNA methylation are pleiotropically associated
with genetic variation [39, 60, 63, 64], but extend these
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associations to variants affecting ancestry-related
epigenetic variation in the context of an innate immun-
ity cell type.

Exploring the distant genetic control of DNA methylation
variation
We subsequently searched for the effects of distant gen-
etic variants on DNA methylation variation (trans--
meQTLs). To limit the burden of multiple testing, and
because trans-meQTLs are enriched in cis-eQTLs for
genes encoding transcription factors (TF) [65], we fo-
cused on two non-independent subsets of genetic vari-
ants: (i) the 4037 SNPs detected as cis-eQTLs for one of
600 TF-coding genes and, more generally, (ii) the 73,561
SNPs located in the vicinity (± 10 kb) of the TSS of these

genes. Only associations for which the SNP-CpG dis-
tance was higher than 1Mb were considered, at an FDR
of 5% (P < 1 × 10−9). Given the generally low power to
map trans-associations, we performed this analysis by
considering all individuals together and including ances-
try as a covariate.
We identified 133 CpG sites associated with at least

one distant SNP, for a total of 672 trans-meQTLs that
involved 91 independent loci (Additional file 4: Table
S2). Among these, we detected a number of hubs of dis-
tant genetic control of DNA methylation variation, in-
cluding six TFs (ZNF429, CTCF, FOXI1, ZBTB25,
MKL2, and NFATC1) where local genetic variation was
associated with at least 10 different CpGs in trans.
Highlighting one pertinent example, a single genetic

Fig. 2 Genetic control of population differences in DNA methylation levels. a Proportions of CpGs and DMS associated to genetic variants
identified in the three meQTL studies: merging the two populations (gray shades), mapping in AFB only (red shades) and in EUB only (blue
shades). For each mapping, proportions among all 552,141 tested CpG sites and among DMS are indicated in light and dark colors, respectively.
***Fisher’s exact P < 2.2 × 10−16. b Contour plot of meQTL effects on DMS as a function of their difference in derived allelic frequencies (DAF)
between populations. For each of the 8459 DMS for which we detected at least one meQTL, we used a kernel density estimation to draw the
contour plot of the effect of the derived allele of the meQTL onto methylation (beta, Y axis) according to the ΔDAF (DAFEUB – DAFAFB, X axis). The
coefficient and P value of Pearson’s correlation test are displayed. The marginal distribution of the two variables is displayed: top for ΔDAF, and right
for beta. c, d Examples of meQTLs detected in this study. Boxplots represent the distribution of β values as a function of genotype, for AFB (red) and
EUB (blue) individuals. The minor allele frequency of each meQTL is presented for each population on the top. Gray lines indicate the fitted linear
regression model for β value~genotype for each population. e Fold enrichment of meQTLs associated with DMS in GWAS hits. For each of the 17
parental EFO categories, the fold enrichment, the 95% confidence intervals obtained by bootstrap, and the associated P values are shown
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variant (rs7203742) nearby CTCF—encoding a transcrip-
tional regulator with 11 highly conserved zinc-finger do-
mains—controls the degree of DNA methylation at 30
CpG sites, ~ 29.4% of all CpGs regulated in trans. Fur-
thermore, of the 21 trans-regulated CpGs that were de-
tected as DMS, 12 were controlled by the same CTCF
variant. That this variant (T→C) presents high levels of
population differentiation (DAF AFB 24% vs. EUB 88%,
FST = 0.59 in the 1% of the genome-wide distribution)
suggests the action of positive selection targeting the de-
rived allele in Europeans. This observation makes of
CTCF not only a master regulator of DNA methylation,
as previously observed [65], but also an important con-
tributor to differences in DNA methylation between hu-
man populations.

Dissecting the mechanistic relationships between DNA
methylation and gene expression
We leveraged the availability of RNA-sequencing data
from the same individuals [48] to obtain new insights
into the mechanistic relationships between DNA methy-
lation and gene expression variation, in African and
European individuals. We associated the levels of ex-
pression of 12,578 genes in primary monocytes with
those of DNA methylation at CpGs located within 100
kb of their TSS, for a total of 513,536 CpG sites. Associ-
ations were considered significant if they passed a P
value threshold determined using 100 permutations
(FDR = 5%, P < 5 × 10−5) (see “Materials and methods”).
We identified 1666 CpGs whose levels of DNA methy-

lation were associated with gene expression (eQTMs),
for a total of 811 genes (eQTM-genes) associated with at
least one CpG in one population group (Additional file 5:
Table S3). The KEGG pathways associated with
eQTM-genes contained a large number of immune-re-
lated pathways, providing a link between DNA methyla-
tion and gene expression in the context of immunity
(Fig. 3a). When investigating the population specificity
of the 811 eQTMs (see “Materials and methods”), we de-
tected 93 significant population-specific effects (43
AFB-specific and 50 EUB-specific). The majority of these
cases (80 out of 93) corresponded to genes whose
eQTMs were also under genetic control, suggesting,
again, the occurrence of G × G or G × E interactions.
Based on current genomic annotations, eQTMs were

mostly negatively correlated to gene expression (69.5%
vs. 30.5%, see also refs. [23, 28, 65, 84, 85]). Negatively
correlated sites were strongly enriched in enhancers
(OR~ 2.6, P = 6.6 × 10−59) (Fig. 3b), highlighting their
major role in transcriptional regulation [86–88]. In
addition, we found a slight excess of negative associa-
tions in promoters (OR ~ 1.2, P = 1.8 × 10−2) and nearby
TSS (TSS1500) (OR ~ 1.4, P = 7.2 × 10−13), as expected
following the canonical model. Conversely, positive

associations were enriched in sites located nearby
UTRs, particularly 3′-UTR (OR ~ 1.8, P = 8.4 × 10−5)
[89], but depleted in sites located in promoters (OR
~ 0.6, P = 1.1 × 10−4) (Fig. 3b). Furthermore, we found
that eQTMs were strongly enriched in DMS (OR ~
11.8, P < 1.93 × 10−216) and, importantly, in meQTL-
CpGs (OR ~ 33.2, P < 1 × 10−326) (Fig. 3c). Together,
these observations indicate that DNA methylation vari-
ation, in particular at sites that are differentially methyl-
ated across populations (DMS), is much more likely to be
under genetic control when associated with gene expres-
sion differences (eQTMs), than random CpG sites.

Exploring the underlying causality between regulatory
loci and gene expression
Because the respective roles of genetic and epigenetic fac-
tors in transcriptional regulation are not fully understood
[56], we next mapped eQTLs (FDR = 5%, see “Materials
and methods”) to identify the cases where DNA methyla-
tion, gene expression, and genetic variants show signifi-
cant associations between all pairs (Additional file 1:
Figure S11). We thus obtained 552 trios, each of them
consisting of one gene, one to various CpGs and one to
various SNPs (containing 68.1% of the genes detected in
the eQTM mapping). This suggested potential, causal re-
lationships between these variables—a latent, though chal-
lenging, question in epigenetics. To infer causality
between regulatory loci (i.e., eQTMs and eQTLs) and
gene expression variation for these specific trios, we first
used an elastic net model to build two intermediate vari-
ables measuring (i) DNA methylation variability attribut-
able to genetics for the trios presenting more than one
SNP and (ii) gene expression variability attributable to
DNA methylation for the trios presenting more than one
CpG (see “Materials and methods”).
We used a Bayesian approach [90] to assess potential

causal effects of a mediating variable M (DNA methyla-
tion) on the relationship between an independent vari-
able X (genetics) and a dependent variable Y (gene
expression) [91]. When comparing the performance of
this method with that of an approach based on partial
correlations, using simulated data and various genomic
scenarios, we found similar results between the two ap-
proaches in terms of sensitivity and specificity (Fig. 4a,
b; Additional file 1: Figure S12; see “Materials and
methods”). We then ran the mediation analysis on each
trio, adjusting for regular covariates (age and surrogate
variables), but also for the fourth and second PCs of
gene expression and DNA methylation, respectively. The
latter covariates were added because they likely capture
potential confounding factors inducing correlation be-
tween DNA methylation and expression, which would
violate the assumption of the causal inference model
(Additional file 1: Figure S13). Note that reverse
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causation was found to be unlikely in our experimental
setting and was thus not considered in our analyses
(Additional file 2: Supplementary Note 2).
At FDR = 5%, we identified 165 genes where the gen-

etic control of expression levels was mediated by DNA
methylation (i.e., α × β was significantly different from
zero, Fig. 4a), in at least one population. Remarkably, in
66 of these cases, mediation occurred through CpG sites
that are differentially methylated across populations
(DMS) (Additional file 6: Table S4). The proportion of
mediated genes whose expression was positively and
negatively correlated to DNA methylation was similar,
ranging from 26 to 31% (Fig. 4c). Expectedly, we found
that, among mediated genes, DNA methylation ex-
plained a significantly higher proportion of the variance
of gene expression than genetics (mean R2 = 23.4% ver-
sus 15.4%, respectively; Wilcoxon P = 3.3 × 10−11), in
contrast with the 387 non-mediated cases where we ob-
served the opposite trend (Wilcoxon P = 7.8 × 10−37)
(Fig. 4d).

We also found that CpG sites mediating gene expres-
sion were preferentially located in enhancers (OR ~ 2.5,
P = 4.0 × 10−21), highlighting again the major role of these
regions in epigenetic regulatory mechanisms [92–94].
These CpGs were depleted in promoters (OR ~ 0.7,
P = 1.4 × 10−2), which were otherwise enriched in
non-mediating CpGs (OR ~ 1.3, P = 5.9 × 10−3). Not-
ably, 86.6% of mediating CpGs fell directly into a
TF-binding site (TFBS), with respect to the expected
76.9% at the genome-wide level (OR ~ 1.9, Fisher’s
exact P = 8.64 × 10−7). This result suggests that DNA
methylation might actively regulate transcriptional
activity through the modulation of TF binding, a hy-
pothesis that requires experimental validation.
Interestingly, among mediated cases, we found key

genes of the immune response, such as NLRP2, RAI14,
NCF4, or ICAM4, and genes with functions related to
transcriptional activity, encoding zinc-finger proteins
(Additional file 6: Table S4). This suggests a more exten-
sive role of DNA methylation in regulating gene

Fig. 3 Correlations of DNA methylation with gene expression. a Networks of KEGG pathways of genes detected in the eQTM mapping.
b Genomic location of eQTMs, for positively and negatively associated CpG sites (light and dark yellow, respectively). Odds ratio were computed
against the general distribution of the 552,141 CpGs from our dataset. The distribution of eQTMs according to the direction of their effect on gene
expression is shown. c Proportions of different groups of CpG sites in all tested sites (left panel) and among the detected eQTMs (right panel)
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expression than the local associations described here,
through the regulation of DNA-binding protein activity.

Impact of immune perturbation on genetic and
epigenetic interactions
Finally, we sought to understand how DNA methylation
variation at the basal state affects transcriptional responses
to immune activation. We used RNA-sequencing data, ob-
tained from the same individuals, after exposure to various
stimuli: LPS activating TLR4 and Pam3CSK4 activating
TLR1/2, both pathways sensing bacterial components,
R848 activating TLR7/8, predominantly sensing viral nu-
cleic acids, and influenza A virus (IAV) [48]. We then
mapped response-QTMs (reQTMs) using fold changes
in gene expression between non-stimulated and stim-
ulated states, for all genes expressed in either condi-
tion (see “Materials and methods”).
We found 230 unique genes whose response to immune

activation was associated with DNA methylation in at
least one condition; most associations were context-spe-
cific, with only 7 genes detected in all conditions (Fig. 5a;
Additional file 5: Table S3). Furthermore, a 2.5-fold

increase was observed in the number of reQTM-genes de-
tected upon activation with viral-stimuli (R848 and IAV;
197 unique genes) with respect to those detected for bac-
terial ligands (LPS and Pam3CSK4; 78 unique genes)
(Fig. 5a). For example, we detected a reQTM upon R848
stimulation for CARD9 in EUB and CD1D upon IAV in-
fection in AFB, both genes known to play an important
role in host defense (Fig. 5b, c). Despite reQTMs and
eQTMs present a similar genomic distribution (Add-
itional file 1: Figure S14), we observed an important shift
towards positive associations between DNA methylation
and transcriptional responses, in particular to TLR ligands
(Fig. 5d). This shift was mainly accounted for by reQTMs
that present the strongest associations between DNA
methylation and gene expression in the non-stimulated
condition (Additional file 1: Figure S15), corresponding to
109 genes (47% of the total). This contrasts with the ca-
nonical model of negative associations primarily observed
at reQTMs presenting the strongest associations at the
stimulated state, corresponding to 131 genes (57% of the
total). Note that 10 genes were associated with reQTMs of
both groups.

Fig. 4 Inference of the causal effects of DNA methylation on gene regulation. a Representation of a simulated scenario, with the three varying
parameters (α, β, and τ). b Comparison of the mediation analysis (med) with a partial correlation approach (PartCor) using a range of different
simulated parameters for α (0.3–0.8), β (0.9–0.1), and τ (0.1–0.9). Note that the parameter range simulated for β and τ was adjusted so that we
kept 75% of the variance unexplained (random noise parameter γ = 0.25). The difference of the area under the curve (AUC) between the two
approaches is represented with different shades of red and blue. The sizes of the circles are proportional to the mean AUC of the two
approaches. Two examples of the ROC curves are shown in the upper part of the figure. c Number of mediated and non-mediated eQTM-genes
for negative and positive associations between DNA methylation and gene expression. The percentages of these two categories are also
indicated. d Proportion of variance of gene expression explained by DNA methylation (light gray) and genetics (dark gray), in mediated and
non-mediated cases
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To explore causal mediation effects of DNA methy-
lation in the context of immune activation, we
mapped response-QTLs (see “Materials and
methods”). Following our previous rationale (Add-
itional file 1: Figure S11), we identified 141 trios
(61.3% of the 230 reQTM-genes, Additional file 6:
Table S4). At FDR = 5%, we detected 40 genes
(28.4%) where the genetic control of their transcrip-
tional response was mediated by DNA methylation
(Fig. 5e). Although non-significant, we found a higher
proportion of mediation for genes whose response
was positively associated with DNA methylation, as
compared to negative associations, in particular for
viral challenges (OR ~ 2.0; Fisher’s exact P = 0.33)
(Additional file 1: Figure S16). Among mediated
genes in the viral conditions, the proportion of gene
expression variance explained by DNA methylation
was higher for positive than for negative associations,
again at odds with the non-stimulated condition
(Fig. 5f ). More generally, our analyses illustrate the
value of mapping reQTMs and studying the under-
lying patterns of causality, to uncover mechanisms
that might explain disparities in the way individuals
and populations respond to immune activation.

Discussion
Our population epigenetic results, obtained in the setting
of an innate immunity cell population, demonstrate exten-
sive differences in DNA methylation profiles between two
populations that differ in their genetic ancestry but share
the same present-day environment. Such population dif-
ferences were observed at the epigenome-wide level
(explaining ~ 12% of the total variance in DNA methyla-
tion) and involved 12,050 sites that were mostly located in
genes with functions related to cell periphery or immune
response regulation. Previous studies have searched for
ancestry-related differences in DNA methylation in vari-
ous human populations and cell types [16, 38–41, 43, 95].
Although comparisons across studies are complicated by
differences in experimental settings and statistical
thresholds used to detect ancestry-associated CpG
sites, these range from 299 between Caucasian- and
Asian/mixed-descent individuals living in Canada [16]
to 36,897 between European CEU and African YRI
[39]. An interesting insight that can be drawn from
our analyses is that genes involved in the activation
and regulation of immune responses tend to present
higher levels of DNA methylation in individuals of
European ancestry, with respect to those of African

Fig. 5 Effects of DNA methylation on transcriptional responses to immune stimulation. a Number of genes harboring reQTMs in single conditions
or combinations of stimulations. b, c Examples of reQTMs detected in this study. Lines indicate the fitted linear regression model, and gray
shades the 95% confidence intervals of these models. b The distribution of the expression values of CD1D at the non-stimulated (yellow) and
after IAV infection (purple) is plotted as a function of β values, for AFB individuals only. c The distribution of the expression values of CARD9 at
the non-stimulated (yellow) and upon R848 stimulation (blue) is plotted as a function of β values, for EUB individuals only. d Number of reQTM-
genes by condition and according to the direction of their association with DNA methylation. e Number of mediated and non-mediated reQTM-
genes per stimulation condition. The percentages of these two categories for each condition are also indicated. f Proportion of variance of gene
expression explained by DNA methylation, among negative (dark colors) and positive (light colors) associations, in mediated cases
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ancestry, mostly owing to genetic control. That up to
16% of immune-related genes that are hyper-methylated
in Europeans are also differentially expressed between
populations [48] could provide a mechanistic explanation
for the ancestry-related differences in transcriptional re-
sponses to bacteria reported in macrophages, where Euro-
pean ancestry is associated with lower inflammatory
responses [49].
Although variation in past environmental exposures

and socioeconomic factors may contribute to population
differences in DNA methylation, we found that 70% of
differentially methylated sites between African and
European ancestry groups were associated with at least
one meQTL. This indicates that population differences
in DNA methylation are mostly driven by DNA se-
quence variants [38, 40–42]. In some cases, a single gen-
etic variant can account for important population
differences at multiple CpG sites, as attested by the
trans-meQTL we detected at CTCF, whose local genetic
variation has been shown to alter distant DNA methyla-
tion patterns in whole blood [65]. We show that a CTCF
variant (rs7203742) regulates DNA methylation of 30
distant CpGs, 40% of which are differentially methylated
between populations. We also found that all CTCF
trans-regulated CpGs fall within a TFBS, confirming our
initial hypothesis about the mechanism by which a gen-
etic variant might alter DNA methylation at a distant
CpG site. Interestingly, 9 out of the 30 CTCF trans-regu-
lated CpGs fall within a TFBS of CTCF, while the
remaining 21 fall within a TFBS specific to other TFs such
as YY1, ESR1, or ZNF143. This observation is consistent
with a model of pioneer transcription factor activity [96]
and suggests that CTCF acts as a pioneer factor that will
generate changes in chromatin state that, in turn, will be-
come accessible for binding of secondary factors.
At the genome-wide level, we find that the quantitative

impact of DNA methylation on gene expression vari-
ation is lower than that reported by some previous stud-
ies, possibly reflecting differences in experimental
settings and statistical power (e.g., cell types and sample
sizes) [23, 65, 84, 89]. For example, a study of 204
healthy newborns detected substantial variation across
tissues in the number of genes whose expression levels
were associated with DNA methylation, ranging from
596 in fibroblasts to 3838 in T cells [23]. We detected, at
the non-stimulated state, 811 eQTM-genes (6% of the
total number of expressed genes), a figure that drops to
230 for reQTM-genes across stimulation conditions.
However, a limitation of our study is that we measured
DNA methylation at the basal state, while gene expres-
sion was obtained after 6 h. Studies including a more
comprehensive range of epigenetic marks obtained at
different time points—in different cell types and tissues
originating from individuals of various ancestries—are

needed to more precisely understand the interplay be-
tween these regulatory elements and quantify their re-
spective roles in the regulation of transcriptional activity.
The detected eQTMs were found to be drastically

enriched in genetic control (OR ~ 33.2, P < 1 × 10−326,
Fig. 3c), which highlights the coordinated action of gen-
etic and epigenetic factors in driving gene expression
variation but raises questions about the causal role of
DNA methylation [56]. Despite cautious interpretation
of causality in mediation analyses is required [97], our
analysis provides a first estimate of the potential direct
role of DNA methylation in regulating transcriptional
activity, in both resting and stimulated monocytes. At
the non-stimulated state, we find that ~ 20% of
eQTM-genes show evidence of a causal mediation effect
of DNA methylation. Although a similar extent of medi-
ation was found upon immune stimulation (~ 17%), we
detected specific patterns upon treatment with viral
challenges, where a higher occurrence of positive associ-
ations was observed among mediated cases. These find-
ings mostly reflected cases where high levels of DNA
methylation were associated with low gene expression in
the non-stimulated condition, thus requiring stronger
responses to reach high levels of gene expression upon
cell perturbation. These trends suggest a major, direct,
and context-specific role of DNA methylation in the
regulation of immune responses, whose complexity re-
quires further investigation.
Finally, we found that meQTLs, in particular those asso-

ciated with ancestry-related differences, are enriched in
GWAS hits related to immune disorders. This suggests
that DNA methylation has an important impact on the
cellular activity of monocytes and ultimately affect pheno-
typic outcomes. Nonetheless, a large fraction of the vari-
ance of DNA methylation and gene expression remains
unexplained. Additional work is needed to quantify the
relative impact of genetic, epigenetic, environmental, and
lifestyle factors in driving variation of DNA methylation
and gene expression, both in resting and stimulated cells.
Furthermore, although the causal mediation analyses pre-
sented in this study reinforce the notion that DNA methy-
lation can play a direct role in regulating gene expression
in humans [23, 98], monitoring the kinetics of variation in
DNA methylation and gene expression after exposure to
different infectious agents will broaden our understanding
of the interplay between these molecular phenotypes and
their impact on endpoint phenotypes.

Conclusion
Our study reveals extensive variation in DNA methyla-
tion profiles between individuals and populations, with
ancestry-related differences being mostly explained by
genetic variation. It also suggests that DNA methylation
can have a direct, causal impact on the transcriptional
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activity of primary monocytes, providing new insight
into the nature of the host factors that drive immune re-
sponse variation in humans.

Materials and methods
Sample collection and monocyte purification
The EvoImmunoPop collection consists of 156 individuals
(males between 20 and 50 years old, mean 31.5 years old)
from two different ancestries (78 of European and 78 of
African descent), who were recruited at the Center for
Vaccinology from the Ghent University Hospital (Ghent,
Belgium) [48]. For each participant, 300ml of whole blood
was collected into anticoagulant EDTA-blood collection
tubes and peripheral blood mononuclear cells (PBMCs)
were purified using Ficoll-paque density gradients
(#17-1440-03, GE Healthcare). Monocytes were positively
selected from purified PBMCs using magnetic CD14
microbeads (#130-050-201, MiltenyiBiotec), as per manu-
facturer’s instructions. All samples had a monocyte purity
higher than 90% with a mean value of 97%.

DNA methylation profiling and data normalization
Genomic DNA was extracted from the monocyte frac-
tion using a phenol/chloroform protocol followed by
ethanol precipitation. The DNA was then bisulfite con-
verted, and BC-DNA was then processed using the Illu-
mina Infinium MethylationEPIC BeadChip Kit (Illumina,
San Diego, CA) to obtain the methylation profile of each
individual at more than 850,000 CpG sites genome-wide.
In total, 184 samples were hybridized with the EPIC

array, including 172 unique samples and 12 technical
replicates. We removed any technically unreliable
probes: (i) potentially cross-hybridizing probes (83,635
probes), (ii) those located on the X and Y chromosomes
(17,229 probes), and (iii) probes overlapping SNPs that
present a frequency higher than 1% in at least one of the
studied populations (206,998 probes). These SNPs were
chosen based on our own genotyping dataset, as well as
on the 1000 Genomes project [99]. To control for the
quality of the probes and samples, we filtered out indi-
viduals with > 5% of probes associated with a detection
P value > 10−3, and then, probes with a detection P value
> 10−3 in one or more individuals (6833 probes). Follow-
ing this filtering process, 552,141 of the original 866,836
sites on the array were retained.
We calculated methylation levels from raw data, using

the R Bioconductor lumi package [100]. Given that the
M value has been shown to provide better detection sen-
sitivity than β values at extreme levels of modification
[68], we used the M value to run all statistical analysis
unless otherwise stated. Note that in some instances of
the text and figures, β values are reported for ease of
clarity and interpretation. M values were then adjusted
for background noise with the normal-exponential using

out-of-band probes (noob) from the R Bioconductor
minfi package [101]. Next, normalization for color bias
was performed using lumiMethyC with the “quantile”
method, and for methylated/unmethylated intensity vari-
ation using the lumiMethyN with the “ssn” method
[100]. Finally, we corrected for technical differences be-
tween type I and type II assay designs, by performing
beta-mixture quantile normalization [102]. To correct
for known batch effects and potential hidden confounders,
we used the sva function from the sva Bioconductor pack-
age [103] with age as a variable of interest. Additionally,
five EUB samples were removed because they presented
an excess of hemimethylated sites, leaving 89 EUB and 78
AFB samples. To obtain equal power in the two studied
populations, we down-sampled the European group to 78
samples by randomly removing 11 EUB samples, for an
overall final cohort of 156 individuals.

Extraction of differentially methylated sites (DMS)
To detect CpG sites presenting statistically different levels
of DNA methylation between AFB and EUB, we fitted a
linear regression model for each CpG site: M value ~
population + age + two surrogate variables + error, and
next applied an empirical Bayes smoothing to the standard
errors using the R Bioconductor limma pipeline [104]. P
values were adjusted using the Benjamini and Hochberg
method. DMS were extracted using a threshold of ad-
justed P value (< 0.01) and a difference in the mean β
value of each population |Δβ| > 5%.

Mapping of methylation quantitative trait loci (meQTLs)
All individuals were genotyped for a total of 4,301,332
SNPs on the Illumina HumanOmni5-Quad BeadChips
and went through whole-exome sequencing with the
Nextera Rapid Capture Expanded Exome kit, on the Illu-
mina HiSeq 2000 platform, with 100-bp paired-end reads.
Details of the processing of genotyping and whole-exome
sequencing data, together with imputation using the 1000
Genomes Project imputation panel [99], are reported in
ref. [48]. For the meQTL mapping, we filtered out SNPs
with a minor allele frequency < 5% in the populations
studied and kept a final dataset of 10,278,745 SNPs (i.e.,
corresponding to the merged genotyping and whole-ex-
ome sequencing dataset after imputation; 8,913,090 SNPs
in Africans and 6,178,808 SNPs in Europeans). Age, PC1
and PC2 of the genotype matrix, and two surrogate vari-
ables, as identified with the sva R package, were used as
covariates in the linear model.
We mapped meQTLs using the statistical framework

implemented in the MatrixEQTL R package [70]. For
local associations (i.e., distance SNP-CpG ≤ 100 kb), we
performed two independent mappings using (i) the dir-
ect linear model from the MatrixEQTL pipeline and (ii)
a Kruskal-Wallis rank test. Associations were considered
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significant when passing the 5% FDR threshold in both
mappings. Two models were considered: merging all in-
dividuals and including a binary variable adjusting for
ancestry or keeping the two populations separately. To
detect all possible independent SNPs regulating methyla-
tion at a single CpG site in cis, we regressed out geno-
types of all primary cis-meQTLs and then performed
cis-meQTL mapping on the regressed methylation data
to find secondary cis-meQTLs. We repeated this process
in a stepwise fashion until no additional independent
cis-meQTLs were detected. This allowed us to refine our
local meQTL mapping by detecting all possible inde-
pendent SNP-CpG associations.
For distant, trans-acting associations (i.e., distance be-

tween SNP and CpG ≥ 1Mb or on different chromo-
somes), we restricted our analysis to SNPs located in the
vicinity of transcription factor (TF) coding genes, to
limit the burden of multiple testing. Specifically, we se-
lected (i) all SNPs located less than 10 kb to the TSS of
any expressed TF in our dataset and (ii) SNPs detected
as cis-eQTLs for these TFs. For each SNP, we only inves-
tigated CpG sites that mapped at least 1Mb from the
SNP or located on other chromosomes, using a
Kruskal-Wallis rank test.
For both cis- and trans-meQTLs, FDR was computed

by mapping meQTLs on 100 datasets with the M values
permuted within each population. We then kept, after
each permutation, the most significant P value per CpG
site, across populations (probe-level FDR). Finally, we
computed the FDR associated with different P value
thresholds for cis or trans, and subsequently selected the
P value threshold that provided a 5% FDR: P = 1 × 10−5

and P = 1 × 10−9 for cis- and trans-meQTLs, respectively.

Investigating the genetic basis of population differences
in DNA methylation
We aimed at identifying the proportion of the popula-
tion differences in DNA methylation that was accounted
for by genetic variability. To do so, for the 8459 DMS
that were associated with at least one meQTL, we com-
puted the following ratio:

ExpDiff ¼ β� ΔDAF
ΔMeth

with β reflecting the effect of the derived allele of the
meQTL on methylation, ΔDAF the difference in allelic
frequencies between Europeans and Africans (DAFEUB −
DAFAFB), and ΔMeth the observed difference in the
mean levels of DNA methylation between European and
African individuals (MethEUB−MethAFBÞ.
Note that this ratio is not bound to [0:1], as the effect

of genetics onto the overall population differences in
DNA methylation can be counteracted by opposite

effects of independent origins (e.g., environmental fac-
tors or non-detected independent genetic effects).

Detecting population-specific meQTLs
We aimed at refining our meQTL mapping by detecting
population-specific meQTL effects (i.e., SNPs present at
similar frequencies in both populations but having different
effect sizes on DNA methylation between populations). To
do so, we used a Bayesian model selection approach to
identify specific and shared effects for each of the 69,702
CpGs that we detected as being associated with at least
one genetic variant. Specifically, for each CpG-SNP pair,
we computed the likelihood of three models:

lm Meth � SNP þ Popð Þ ðiÞ
lm Meth � SNPEUB þ Popð Þ ðiiÞ
lm Meth � SNPAFB þ Popð Þ ðiiiÞ

with SNPEUB coded 0,1,2 in EUB individuals and 0 in
AFB individuals, and SNPAFB coded 0,1,2 in AFB individ-
uals and 0 in EUB individuals. We next calculated the pos-
terior probability of each model assuming that all models
are equally likely a priori. We then set a threshold of 0.9 to
consider one of the models as supported by the data. Thus,
a meQTL is classified as EUB-specific if the posterior
probability of model (ii) is higher than 0.9, or AFB-specific
if the probability of model (iii) is higher than 0.9.

GWAS enrichment analyses
We used the NHGRI GWAS catalog [105] to first select
all significant SNPs that were significantly associated
with a complex trait or disease at a P < 1 × 10−8. Using
this set of GWAS hits, we next extracted all SNPs in LD
with each of these hits (R2 > 0.8) and classified the result-
ing final set of 166,248 SNPs according to their parental
Experimental Factor Ontology (EFO) term [75].
We then selected all meQTLs in our dataset that passed

the P value threshold corresponding to FDR 5% in our ini-
tial mapping, and filtered out meQTLs that were in LD
(R2 > 0.8) keeping one SNP per independent loci (56,574
independent SNPs). For the resampling set, we considered
all SNPs that were initially used for the meQTL mapping
and pruned them for LD (R2 > 0.8), yielding a final set of
921,466 SNPs. Resampling was performed using bins of al-
lelic frequencies at intervals of 5%.
Finally, we tested for fold enrichments of meQTLs in

GWAS hits, for each of the 17 parental EFO categories
[75]. The fold enrichment was calculated by comparing
the number of LD pruned-meQTLs that were found to
correspond to GWAS hits (or were in LD with GWAS
hits) with the expected number estimated through 10,000
resamples. P values associated to the fold enrichment were
calculated by fitting a normal distribution to the empirical
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distribution of our 10,000 resampled sets of SNPs. Confi-
dence intervals were computed using 10,000 resamples by
bootstrap. The same procedure was applied when search-
ing for enrichments of meQTLs specifically in GWAS hits
related to the 268 traits of the “Immune system disorder”
EFO parental term.

Expression quantitative trait methylation (eQTM) analysis
To identify associations between DNA methylation levels
and gene expression of nearby genes, we leveraged
RNA-sequencing data obtained from the same individuals,
both at the non-stimulated state (NS) and in response to
four immune stimuli [48]. Briefly, RNA-sequencing was
performed on the Illumina HiSeq2000 platform with
101-bp single-read sequencing with fragment size of
around 295 bp, and outputs of around 30 million
single-end reads per sample were obtained. A total of 763
RNA-sequencing samples from our filtered dataset of 156
donors were analyzed for gene expression profiling, in-
cluding 156, 151, 153, 148, and 155 samples for the NS,
LPS, Pam3CSK4, R848, and IAV conditions, respectively.
Details of cell culture, immune stimulation conditions,
and RNA-seq processing can be found in ref. [48].
Using the RNA-sequencing data from the NS condi-

tion, we mapped eQTMs (i.e., CpGs whose variation is
associated with gene expression) in a window of 100 kb
around the TSS of each gene (12,578 expressed genes in
primary monocytes). The associated P values and the co-
efficients of correlation between methylation profiles
and gene expression were obtained using Spearman’s
rank correlation. FDR was computed by mapping
eQTMs on 100 datasets with the M values permuted,
and kept, after each permutation, the most significant P
value per gene (gene-level FDR). We selected the P value
threshold that provided a 5% FDR (P = 5 × 10−5).
We also mapped eQTMs in the context of the response

to the various stimulations, namely response-QTMs
(reQTMs). To do so, the same procedure explained above
for the eQTM mapping was followed, using the fold
change of expression upon stimulation as a measure of
the host response to infection. Specifically, we calculated
the difference of the log2 of expression values between the
stimulated and non-stimulated states, corrected for the ef-
fect of low values of FPKM, for each gene expressed in at
least one of the two conditions.

Diff ¼ log2 1þ FPKMStimð Þ− log2 1þ FPKMNSð Þ
¼ log2

1þ FPKMStim

1þ FPKMNS

� �

FoldChange ¼ 1þ FPKMStim

1þ FPKMNS
¼ 2Diff

For the mapping of eQTMs and reQTMs, we con-
ducted two separate analyses: merging all individuals

and including ancestry as a covariate, or keeping the two
populations separately.

Expression quantitative trait loci (eQTL) analysis
We mapped expression quantitative trait loci (eQTLs)
using the MatrixEQTL R package [70], leveraging our
genotyping and expression data [48]. As for the meQTL
mapping, we filtered out SNPs with a minor allele fre-
quency < 5% in the populations studied and kept a final
dataset of 10,278,745 SNPs. Age and PC1/PC2 of the
genotype matrix were used as covariates in the linear
model. Two different models were used: merging all indi-
viduals and including ancestry as a covariate, or keeping
the two populations separately. We also mapped response
quantitative trait loci (reQTLs), using the fold change of
expression described above, instead of expression, and the
same covariates that we used for the eQTL mapping.
For both eQTLs and reQTLs, FDR was computed by

mapping eQTLs/reQTLs on 100 datasets with the ex-
pression values permuted within each population. We
then kept, after each permutation, the most significant
P value per gene, across populations (gene-level FDR).
Finally, we computed the FDR associated with different
P value thresholds for eQTLs or reQTLs, and subse-
quently selected the P value threshold that provided a
5% FDR: P = 5 × 10−5 and P = 5 × 10−6 for eQTLs and
reQTLs, respectively.

Simulations to infer causality
We simulated different scenarios to infer causal rela-
tionships between DNA methylation and gene expres-
sion. For each scenario, we started by randomly
selecting genomic blocks of 1 Mb each along the gen-
ome to keep realistic expectations of genetic structure.
We next randomly sampled SNPs in these blocks,
which we used to simulate methylation and gene ex-
pression data. For example, in a scenario where a gen-
etic variant influences DNA methylation variation that,
in turn, actively regulates gene expression (see Fig. 4a),
we followed the next steps:

(i)

Gi std ¼ Gi−Gi
� �
sd Gið Þ

(ii)

Mi ¼ ffiffiffiffi
αi

p � Gistd þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−αið Þ

p
� εi

(iii)

Mi std ¼ Mi−Mi
� �
sd Mið Þ

(iv)
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Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ � βi

p
�Mistd þ

ffiffiffiffiffiffiffiffiffiffiffiffi
γ � τi

p � Gistd

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−γ � βi þ τi

� �� �q
� ζ i

where Gi is the genotype of the ith sampled variant and
Gi_std the standardized value of its genotype; Mi is the sim-
ulated methylation data and Mi_std its standardized methy-
lation value; Ei is the simulated gene expression data; αi is
the proportion of variance of Mi that is explained by Gi,
and γ is a noise parameter that corresponds to the total
proportion of variance of Ei that is explained by Gi and
Mi. βi and τi are the proportions of explained variance that
are attributable to Gi and Mi respectively (satisfying βi + τi
= 1). Finally, εi and ζi are random, normally distributed re-
siduals. Note that in the simulation presented in Fig. 4a, b,
we used a gamma of 0.25, so that 75% of the variance of
gene expression remained unexplained.

Detection of genetic variants-DNA methylation-gene
expression trios
To infer causality between regulatory loci and gene expres-
sion variation, we considered eQTLs that were also de-
tected as meQTLs, and, out of this subset, we kept only
those for which the meQTL-CpG had previously been
identified as an eQTM of the eQTL-gene (Additional file 1:
Figure S11). When multiple SNPs or CpGs where present
in a trio, we used an elastic net model, to build linear pre-
dictors of (i) gene expression based on DNA methylation
variability for trios with multiple CpGs and (ii) DNA
methylation based on genetic variability for trios with mul-
tiple SNPs. These predictors were then used as summary
variables for DNA methylation variability (i) or genetic
variability (ii). Specifically, the glmnet function from the R
package glmnet [106] was used to fit the generalized linear
model via penalized maximum likelihood, with an elastic
net mixing parameter α of 0.5. The strength of the penalty
λ1se was chosen as the largest value of lambda such that
the error was within 1 standard deviation of the minimum
lambda, when performing k-fold cross validation with the
cv.glmnet function. Finally, the generic R function predict
was used to build the optimal linear predictor in each case.
For the trios presenting more than one SNP, we also used a
predictor of gene expression based on genetic variability,
as summary variable for the genetic variability, and found
no differences in our simulation-based mediation results
when compared to building the summary variable from a
predictor of DNA methylation (data not shown).

Mediation analyses
For conducting causal mediation analyses, we used a
Bayesian approach as implemented in the mediation R
package [90]. Briefly, this approach estimates causal

effects of a mediating variable M (DNA methylation) on
the relationship between an independent variable X
(genetics) and a dependent variable Y (gene expression).
In this scenario, the global effect of X on Y can be writ-
ten as ρX→ Y = τ + α · β, where τ is the specific effect of X
on Y, α the specific effect of X on M, and β the specific
effect of M on Y. With this, the product α·β represents
the mediation effect of G on Y, through M. The mediate
function of the mediation R package was used to com-
pute point estimates for average causal mediation effects,
as well as 1000 simulation draws of average causal medi-
ation effects. The empirical distribution of simulated ef-
fects was used to fit a normal distribution, which was
subsequently used to compute empirical P values for the
H0 hypothesis “α·β = 0.” We used the R function p.adjust
with method “fdr” to correct at a FDR = 5%.
For comparison purposes with the mediation analyses,

we conducted on simulated data a partial correlation ap-
proach to test for independence between expression and
methylation levels when accounting for genetic variability.
We used the pcor.test function from the R package ppcor
[107] to compute P values of the partial correlation be-
tween simulated expression and methylation data.
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