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A NOTE ON LANG’S CONJECTURE FOR QUOTIENTS OF

BOUNDED DOMAINS

SÉBASTIEN BOUCKSOM AND SIMONE DIVERIO

“... Voglio una vita che non è mai tardi, di quelle che non dormono mai...”

Abstract. It was conjectured by Lang that a complex projective man-
ifold is Kobayashi hyperbolic if and only if it is of general type together
with all of its subvarieties. We verify this conjecture for projective mani-
folds whose universal cover carries a bounded, strictly plurisubharmonic
function. This includes in particular compact free quotients of bounded
domains.

Introduction

For a compact complex space X, Kobayashi hyperbolicity is equivalent to
the fact that every holomorphic map C → X is constant, thanks to a classical
result of Brody. WhenX is moreover projective (or, more generally, compact
Kähler), hyperbolicity is further expected to be completely characterized by
(algebraic) positivity properties of X and of its subvarieties. More precisely,
we have the following conjecture, due to S. Lang.

Conjecture. [Lan86, Conjecture 5.6] A projective variety X is hyperbolic
if and only if every subvariety (including X itself) is of general type.

Recall that a projective variety X is of general type if the canonical bundle
of any smooth projective birational model of X is big, i.e. has maximal
Kodaira dimension. This is for instance the case when X is smooth and
canonically polarized, i.e. with an ample canonical bundle KX .

Note that Lang’s conjecture in fact implies that every smooth hyperbolic
projective manifold X is canonically polarized, as conjectured in 1970 by
S. Kobayashi. It is indeed a well-known consequence of the Minimal Model
Program that any projective manifold of general type without rational curves
is canonically polarized (see for instance [BBP13, Theorem A]).
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Besides the trivial case of curves and partial results for surfaces [MM83,
Des79, GG80, McQ98], Lang’s conjecture is still almost completely open in
higher dimension as of this writing. General projective hypersurfaces of high
degree in projective space form a remarkable exception: they are known to be
hyperbolic [Bro17] (see also [McQ99, DEG00, DT10, Siu04, Siu15, RY18]),
and they satisfy Lang’s conjecture [Cle86, Ein88, Xu94, Voi96, Pac04].

It is natural to test Lang’s conjecture for the following two basic classes
of manifolds, known to be hyperbolic since the very beginning of the theory:

(N) compact Kähler manifolds X with negative holomorphic sectional
curvature;

(B) compact, free quotients X of bounded domains Ω ⋐ C
n.

In case (N), ampleness of KX was established in [WY16a, WY16b, TY17]
(see also [DT16]). By curvature monotonicity, this implies that every smooth
subvariety of X also has ample canonical bundle. More generally, Guenan-
cia recently showed [Gue18] that each (possibly singular) subvariety of X
is of general type, thereby verifying Lang’s conjecture in that case. One
might even more generally consider the case where X carries an arbitrary
Hermitian metric of negative holomorphic sectional curvature, which seems
to be still open.

In this note, we confirm Lang’s conjecture in case (B). While the case of
quotients of bounded symmetric domains has been widely studied (see, just
to cite a few, [Nad89, BKT13, Bru16, Cad16, Rou16, RT18]), the general
case seems to have somehow passed unnoticed. Instead of bounded domains,
we consider more generally the following class of manifolds, which comprises
relatively compact domains in Stein manifolds, and has the virtue of being
stable under passing to an étale cover or a submanifold.

Definition. We say that a complex manifold M is of bounded type if it
carries a bounded, strictly plurisubharmonic function ϕ.

By a well-known result of Richberg, any continuous bounded strictly psh
function on a complex manifold M can be written as a decreasing limit
of smooth strictly psh functions, but this fails in general for discontinuous
functions [FsSn87, p.66], and it is thus unclear to us whether every manifold
of bounded type should carry also a smooth bounded strictly psh function.

Theorem A. Let X be a compact Kähler manifold admitting an étale (Ga-

lois) cover X̃ → X of bounded type. Then:

(i) X is Kobayashi hyperbolic;
(ii) X has large fundamental group;
(iii) X is projective and canonically polarized;
(iv) every subvariety of X is of general type.

Note that X̃ can always be replaced with the universal cover of X, and
hence can be assumed to be Galois.
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By [Kob98, 3.2.8], (i) holds iff X̃ is hyperbolic, which follows from the fact
that manifolds of bounded type are Kobayashi hyperbolic [Sib81, Theorem

3]. Alternatively, any entire curve f : C → X lifts to X̃ , and the pull-back

to C of the bounded, strictly psh function carried by X̃ has to be constant,
showing that f itself is constant.

By definition, (ii) means that the image in π1(X) of the fundamental
group of any subvariety Z ⊆ X is infinite [Kol95, §4.1], and is a direct
consequence of the fact that manifolds of bounded type do not contain non-
trivial compact subvarieties. According to the Shafarevich conjecture, X̃
should in fact be Stein; in case X̃ is a bounded domain of Cn, this is indeed
a classical result of Siegel [Sie50] (see also [Kob59, Theorem 6.2]).

By another classical result, this time due to Kodaira [Kod54], any compact

complex manifold X admitting a Galois étale cover X̃ → X biholomorphic
to a bounded domain in C

n is projective, with KX ample. Indeed, the
Bergman metric of X̃ is non-degenerate, and it descends to a positively
curved metric on KX . Our proof of (iii) and (iv) is a simple variant of this
idea, inspired by [CZ02]. For each subvariety Y ⊆ X with desingularization

Z → Y and induced Galois étale cover Z̃ → Z, we use basic Hörmander–
Andreotti–Vesentini–Demailly L2-estimates for ∂ to show that the Bergman
metric of Z̃ is generically non-degenerate. It then descends to a psh metric
on KZ , smooth and strictly psh on a nonempty Zariski open set, which is
enough to conclude that KZ is big, by [Bou02].

As a final comment, note that Kähler hyperbolic manifolds, i.e. compact
Kähler manifolds X carrying a Kähler metric ω whose pull-back to the
universal cover π : X̃ → X satisfies π∗ω = dα with α bounded, also satisfy
(i)–(iii) in Theorem A [Gro91]. It would be interesting to check Lang’s
conjecture for such manifolss as well.

Acknowledgment. This work was started during the first-named author’s
stay at SAPIENZA Università di Roma. He is very grateful to the mathe-
matics department for its hospitality, and to INdAM for financial support.

Both authors would also like to thank Stefano Trapani for helpful discus-
sions, in particular for pointing out the reference [FsSn87].

1. The Bergman metric and manifolds of general type

1.1. Non-degeneration of the Bergman metric. Recall that the Bergman
space of a complex manifold M is the separable Hibert space H = H(M) of
holomorphic forms η ∈ H0(M,KM ) such that

‖η‖2H := in
2

∫
X̃

η ∧ η̄ <∞,
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with n = dimM . Assuming H 6= {0}, we get an induced (possibly singular)
psh metric hM on KM , invariant under Aut(M), characterized pointwise by

h/hM = sup
η∈H\{0}

|η|2h
‖η‖2H

=
∑
j

|ηj |
2
h,

for any choice of smooth metric h on KM and orthonormal basis (ηj) for H
(see for instance [Kob98, §4.10]).

The curvature current of hM is classically called the “Bergman metric”
of M ; it is a bona fide Kähler form precisely on the Zariski open subset
of M consisting of points at which H generates 1-jets [Kob98, Proposition
4.10.11].

Definition 1.1. We shall say that a complex manifold M has a non-
degenerate (resp. generically non-degenerate) Bergman metric if its Bergman
space H generates 1-jets at each (resp. some) point of M .

We next recall the following standard consequence of L2-estimates for ∂.

Lemma 1.2. Let M be a complete Kähler manifold with a bounded psh
function ϕ. If ϕ is strictly psh on M (resp. at some point of M), then the
Bergman metric of M is non-degenerate (resp. generically non-degenerate).

Proof. Pick a complete Kähler metric ω on M . Assume ϕ strictly psh at
p ∈M , and fix a coordinate ball (U, z) centered at p with ϕ strictly psh near
U . Pick also χ ∈ C∞

c (U) with χ ≡ 1 near p. Since χ log |z| is strictly psh in
an open neighbourhood V of p, smooth on U \V , and compactly supported
in U , we can then choose A≫ 1 such that

ψ := (n + 1)χ log |z|+Aϕ

is psh on M , with ddcψ ≥ ω on U . Note that ψ is also bounded above on
M , ϕ being assumed to be bounded.

For an appropriate choice of holomorphic function f on U , the smooth
(n, 0)-form η := χf dz1 ∧ · · · ∧ dzn, which is compactly supported in U
and holomorphic in a neighborhood of x, will have any prescribed jet at p.
The (n, 1)-form ∂̄η is compactly supported in U , and identically zero in a
neighborhood of p, so that |∂η|ωe

−ψ ∈ L2(U). Since ddcψ ≥ ω on U , [Dem82,
Théorème 5.1] yields an L2

loc (n, 0)-form u on M such that ∂u = ∂η and

(1.1) in
2

∫
M

u ∧ ū e−2ψ ≤

∫
U

|∂η|2ωe
−2ψdVω.

As a result, v := η − u is a holomorphic n-form on X. Since u = η − v is
holomorphic at x and ψ has an isolated singularity of type (n+ 1) log |z| at
x, (1.1) forces u to vanish to order 2 at p, so that v and η have the same
1-jet at p. Finally, (1.1) and the fact that ψ is bounded above on M shows
that u is L2. Since η is clearly L2 as well, v belongs to the Bergman space
H, with given 1-jet at p, and we are done. �
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1.2. Manifolds of general type. Let X be a compact complex manifold,
X̃ → X a Galois étale cover, and assume that the Bergman metric of X̃ is
non-degenerate, so that the canonical metric hX̃ on KX̃ defined by H(X̃)
is smooth, strictly psh. Being invariant under automorphisms, this metric
descends to a smooth, strictly psh metric on KX , and the latter is thus
ample by [Kod54]. This argument, which goes back to the same paper by
Kodaira, admits the following variant.

Lemma 1.3. Let X be a compact Kähler manifold admitting a Galois étale
cover X̃ → X with generically non-degenerate Bergman metric. Then X is
projective and of general type.

Proof. The assumption now means that the psh metric hX̃ on KX̃ is smooth
and strictly psh on a non-empty Zariski open subset. It descends again to
a psh metric on KX , smooth and strictly psh on a non-empty Zariski open
subset, and we conclude that KX is big by [Bou02, §2.3] (see also [BEGZ10,
§1.5]). Being both Moishezon and Kähler, X is then projective. �

2. Proof of Theorem A

Let X be a compact Kähler manifold with an étale cover π : X̃ → X of
bounded type, which may be assumed to be Galois after replacing X̃ by the
universal cover of X. Since X̃ is also complete Kähler, its Bergman metric
is non-degenerate by Lemma 1.2, and X is thus projective and canonically
polarized by [Kod54].

Now let Y ⊆ X be an irreducible subvariety. On the one hand, pick any
connected component Ỹ of the preimage π−1(Y ) ⊂ X̃ , so that π induces

a Galois étale cover π|Ỹ : Ỹ → Y . On the other hand, let µ : Z → Y be a
projective modification with Z smooth and µ isomorphic over Yreg, whose
existence is guaranteed by Hironaka. Since Y is Kähler and µ is projective,
Z is then a compact Kähler manifold. The fiber product Z̃ = Z ×Y Ỹ sits
in the following diagram

Z̃
µ̃

��
❃

❃

❃

❃

❃

❃

❃

❃

ν

��

Ỹ �

�

//

π|
Ỹ

��

X̃

π

��

Z

µ
��
❅

❅

❅

❅

❅

❅

❅

❅

Y �

�

// X.

Being a base change of a Galois étale cover, ν is a Galois étale cover, and µ̃ is
a resolution of singularities of Ỹ . Since π is étale, we have Ỹreg = π−1(Yreg),

and µ̃ is an isomorphism over Ỹreg. The pull-back of ϕ to Z̃ is thus a bounded
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psh function, strictly psh at any point p ∈ µ̃−1(Ỹreg). Since Z is compact

Kähler, Z̃ is complete Kähler. By Lemma 1.2, the Bergman metric of Z is
generically non-degenerate, and Z is thus of general type, by Lemma 1.3.
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Norm. Sup. (4) 15 (1982), no. 3, 457–511. MR 690650

[Des79] Mireille Deschamps, Courbes de genre géométrique borné sur une surface de type
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