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Abstract
Weconsider laser-pumpedone-dimensional two-component bosons in aparabolic trap embedded in a
high-finesse optical cavity.Above a thresholdpumppower, thephotons that populate the cavitymodify
the effective atom trap andmediate a couplingbetween the two components of theBose–Einstein
condensate.Wecalculate the ground state of the laser-pumped systemandfinddifferent stages of self-
organizationdependingon thepower of the laser. Themodifiedpotential and the laser-mediated coupling
between the atomic components give rise to richmany-bodyphysics: an increase of thepumppower
triggers a self-organizationof the atomswhile an even larger pumppower causes correlations between the
self-organized atoms—theBECbecomes fragmented and the reduceddensitymatrix acquiresmultiple
macroscopic eigenvalues. In this fragmented superradiant state, the atoms canno longer bedescribed as
two-level systems and themappingof the system to theDickemodel breaksdown.

1. Introduction

Cavity quantum electrodynamics (QED) is a burgeoning field of research due to recent rapid technological
progress in thefields of optics, electronics and optoelectronic devices. From scalable quantum computers [1–4]
to controlling atoms in an ultracold atomic ensemble [5, 6], atoms coupled to light in cavities have opened
promising new avenues of research. In particular, due to the ability to precisely control andmanipulate ultracold
atoms, trappedultracold atoms inoptical cavities have emerged as a prime choice for simulating cavityQED [7]. The
paradigmatic light–matterDickephase transitionwasfirst realizedusing cold atoms in [8] and subsequently, other
setups [9–11]have simulated theDickemodel [12].

The impact of realizing suchmodels goes beyond the field of ultracold atoms.Namely, cavityQEDprovides
hybrid quantum systems [13–17] that are one route to storing quantum informationwith long decoherence
times. Indeed, ultracold atoms are readily accessible and can have decoherence times of several seconds [15, 18];
thus ultracold atoms and, in particular, their hyperfine states (usually the ‘clock states’) have bright prospects for
quantum information storage. Attempts to collectively couple themicrowave hyperfine ground state of an
ultracold atomic ensemble in a cavityQED settingwith a superconducting resonator are already being pursued
by numerous groups across theworld despite the substantial technical challenges [19–24].

In recent years cavityQED experiments with ultracold atoms in optical cavities have evolved substantially
[25, 26]. In this work, we take afirst step towards understanding the physics of two-component trapped one-
dimensional (1D) ultracold atoms incorporating interparticle interactions aswell as coupling to a cavity. Our
results extend the understanding of experimental control ofmulti-component systems through optical cavities.

OPEN ACCESS

RECEIVED

8 January 2018

REVISED

7March 2018

ACCEPTED FOR PUBLICATION

6April 2018

PUBLISHED

15May 2018

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2018TheAuthor(s). Published by IOPPublishing Ltd on behalf ofDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/aabc3a
mailto:axel.lode@univie.ac.at
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aabc3a&domain=pdf&date_stamp=2018-05-15
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aabc3a&domain=pdf&date_stamp=2018-05-15
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


Interestingly, cavityQED can also be used tomediate interactions between atomswithin an ultracold atomic
ensemble [10]. In the dispersive regime, a transverse pumpbeam is coupled to the longitudinal atomicmotion of
the ultracold atoms. The atomicmotion, in turn,may populate the cavitymodes via photons scattered by the
moving atoms. Thus, depending on the pump power, a self-organization of the atomic density is triggered
[10, 27]. It is possible to resonantly control these interactions: in a spinor, two- ormulti-component condensate,
the atomic states can be coupledwith each other via an optical [7] or amicrowave cavity [19, 24].

Theoretically, cavityQED can be described by the Tavis–CummingsHamiltonian or generally theDicke
model [12, 28, 29]. The representation of ultracold atoms in an optical cavity by theDickemodel involves a
simplificationwhich is justified as long as the atomic ensemble is appropriatelymodeled by a two-level system.
However, in a degenerate ultracold ensemble, the atoms aremoving and interacting, and theDickemodelmay
thus breakdown [30, 31].

For single- andmulti-component BECs, i.e., BECs of atomswith internal degrees of freedom, the basic
model is theGross–Pitaevskii equation. It is an approximation that incorporates interactions through a specific
mean-field approximation based on the expectation value of the bosonicfield and, as such, neglects correlations
[32–34]. The inclusion of atom–atom scattering together with atom-cavity coupling is, however, likely to affect
the correlations between the atoms: the back-action of the photons onto the atomic state can be cast in the form
of a cavity-mediated optical lattice. Non-trivial correlations are known to emerge between cold atoms, in optical
lattices, for example the superfluid-Mott transition in the Bose–Hubbardmodel [35, 36], and are beyond the
realmofmean-field theories; such correlations thus entailmany-body effects that cannot be described by the
Gross–Pitaevskiimodel. The original proposal [19] to couple ultracold atoms to a superconductingmicrowave
cavity, for instance, neglected the interparticle interactions and thereby the interesting correlations that emerge
in 1Dmulti-component condensates [37].

A representative example for amany-body effect is the so-called fragmentation [38, 39] of the BEC.
Fragmentation can be quantified using the reduced one-body densitymatrix (RDM); if the RDMhas only a
singlemacroscopic eigenvalue the system is said to be condensed [40], while if the RDMhasmore than one
macroscopic eigenvalue the state is said to be fragmented [38, 39, 41, 42–55]. Fragmentation has been recently
demonstrated to emerge in single-component ultracold bosons coupled to a single-mode cavity for pump
powers roughly four times as large as the pumppower necessary to drive the system from the normal to the
superradiant phase [30]. Importantly, fragmentation and consequently correlations are also known to be present
in spinor condensates [37, 56–59].

We study themany-body physics of a 1D two-component BEC in a high-finesse optical cavity as a function
of the power of the applied transversal laser pumps, see figure 1.We consider a setupwhere the photons that
populate the cavitymode throughRaman scatteringmodify the one-body potential of the atoms andmediate a
coupling between the two components of the BEC, see also [60].We go beyond [60] and exploit the capabilities
of themulticonfigurational time-dependentHartreemethod for indistunguishable particles X (MCTDH-X)
[37, 61–63] to accurately [64–66] include interactions and correlations between the atoms trapped by an external
confinement. Reference [60] studies two-component bosonswithout an external potential andwith no
interactions, i.e., a system inwhich a discreteZ2 symmetry is present andmay be broken spontaneously. Our
investigation below deals with confined and interacting bosons, i.e., amore realistic systemwhere correlations
play a crucial role and the discreteZ2 symmetry is absent. Our results thus complement thefindings in [60].

To this end, we extended theMCTDH-X software [63] to interacting bosonswith internal structure [37] that
are coupled to an optical cavity. To cast the evolution of the cavity field amplitude in the formof a partial
differential equation, we introduce a complex damping term that describes the cavity losses phenomenologically
and circumvents the necessity to solve a complicatedmaster equation. This approximation is particularly good
for the experimental setup considered in the paper whereΔc?Δa and it is compatible with adiabatic
elimination.We useMCTDH-X tofind the ground states and investigate the density,momentumdensity, the
effective potential, fragmentation, cavity population, and polarization (i.e. the fraction of atoms in each
component) of the ground state as a function of the strength of the pumps.

Wefind that the combined systemof atoms and photons undergoes two transitions. Formoderate pump
powers the atoms self-organize; the system is described by theDickemodel and exhibits a transition from a
normal to a superradiant phase. For larger pumppowers in the superradiant phase, the reduced one-body
densitymatrix of the atoms acquires severalmacroscopic eigenvalues—the BEC fragments and the combined
systemof light andmatter enters the fragmented superradiant phase [30]. Together with this second transition,
an almost complete polarization of the atoms emerges and, simultaneously, the two-level description of the
atomic ensemble—and therewith theDickemodel—breaks down.

This paper is structured as follows. In section 2we introduce theHamiltonian, the quantities of interest and
themethod used. In section 3we describe our results on themany-body physics of ultracold interacting two-
component bosonswith cavity-mediated coupling between the components. A short discussion and outlook
follow in section 4.
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2. System andmethod

The time-dependent 1Dmany-boson Schrödinger equation in dimensionless units8 is

Yñ = ¶ Yñˆ ∣ ∣ ( )H i . 1t

Here, Yñ∣ is themany-bodywavefunction ofN bosons inM single-particle states

å Yñ = ñ
= ¼ =



⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∣ ( ) ( ˆ )

!
∣ ( )

( )

†

C t
b

n
vac , 2

n n n
n

k

M
k

n

k, , 1M

k

1

where, ˆ †
bk is the bosonic creation operator acting on the vacuum ñ∣ nvac , k is the occupation of the kth single-

particle state and  ( )C tn is a time-dependent coefficient. The sum in equation (2) runs over all configurations
= ¼

 ( )n n n, , M1 with afixed number of particles + + =n n NM1 . Here and in the followingwe use

Figure 1.One-dimensional two-component quasi-condensate in a high-finesse optical cavity. The ultracold two-component bosons
are pumped by two transverse pumpbeams that couple to the transitions between the atomic states ñ∣ and ñ∣2 and between ñ∣ and ñ∣1
with Rabi frequenciesΩ1 andΩ2, respectively (see dashed box). The coupling to the cavity is given by =( ) ( )G x g k xcos c0 for both
transitions, where g0 is the single atom coupling strength, see text. In the self-organized phase, the cavitymode is populated (blue
dashes) and acts on the atoms as a potential and effective coupling between the  and  component.

8
To arrive at the dimensionless units, we divide theHamiltonian by 

mL

2

2 . To arrive at the interaction parameters l = 0.09750 and l = 0.10 ,
wefirstfix a length scale of L=1 μm.The scale of energy for themassm of 87Rb is ÿ2/(mL2)=116 Hz and the scale of time is
mL2/ÿ=1.37ms. According to [67], the 1D scattering lengthsλ are the three-dimensional scattering lengths a3D rescaled by the frequency
ω⊥of the transversal confinement by l w= ^Lm a2 3D .We pick the x =  state andmap l

0 to =a a100.43D
11

0, where a0 is the Bohr radius.
One obtains w l= =^ ( )Lma2 687.90 3D

11 Hz.

3

New J. Phys. 20 (2018) 055006 AU J Lode et al



dimensionless units (see footnote 8 on page 3) obtained by dividing themany-bodyHamiltonian by 

mL

2

2 wherem
is themass of the particles and L the unit of length. Atomic losses are neglected in this work.

Since the bosons have two components the single-particle states *j ( )x t;k associatedwith the creation

operators ˆ †
bk aremutually orthonormal vectors,

* *åj f=
x

x x

= 

 ( ) ( ) ( )x t x t 1; ; , 3k k
,

,

made up of two functions *fx
k

, . Here 1ξ denotes the unit vector in the space of components. In the followingwe

use the term ‘components’ to refer to the contribution of the f ( )x t;k and f ( )x t;k functions to themany-body
state Yñ∣ , while we use the terms ‘orbitals’ or ‘single-particle states’ to refer to the vectorsj ( )x t;k , respectively.

The position-spaceHamiltonian of the ultracold systemof two-component bosons coupled to the cavity reads

å å= +
= < =

ˆ ˆ ( ) ˆ ( ) ( )H h x t W x x t; , ; . 4
i

N

i
i j

N

i j
1 1

Here, ˆ ( )h x t; is the one-body operator that contains the kinetic energy, the confinement potential ( )V x t, , and
a cavity-mediated term ( )V x t,cavity , i.e.,

å

= - ¶ + +

= - ¶ + +
x

x
x x

= 
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h x t V x t V x t

V x t V x t1 1

;
1

2
, ,

1

2
, , . 5

x

x
T

2 cavity

,

2 , cavity

The action of the cavity photons on the atoms is given by the one-body potential ( )V xcavity :

=
 

 

⎛

⎝
⎜⎜

⎞
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V x V x

V x V x
. 6cavity

cavity cavity

cavity cavity

The diagonal terms V cavity , V cavity prescribe amodification of the one-body confinementVξ, while the off-

diagonal ones,  V V,cavity cavity , induce a cavity-mediated coupling between the components [60]:

*

a

a d

h a a

=

= +

= = +
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cos . 7

c
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c

cavity 2 2

cavity 2 2

cavity cavity

The parameters a ∣ ∣U ,
2 describe the depths of the cavity-mediated optical lattices for the two components, with

kc and d̃ being thewave vector of the cavitymode and the offset between the two optical lattices, respectively. The
cavity pumppower η governs the coupling between different components. The parameters  U , are determined
by the dipolematrix elements and the detuning.

The cavity field amplitudeα is given by the following equation ofmotion [30, 60]:

å

å

a r k a

r h

¶ = -D + -

+

=

=
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⎣
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, 8
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M

kq kq

k q

M

kq kq

, 1

, 1

where r = áY Y ñ( ) ( )∣ ˆ ˆ ∣ ( )
†

t t b b tkq k q are thematrix elements of the RDM,Δc is the detuning of the cavity frequency
with respect to the laser pump, and the decay rateκ accounts for photons leaking out of the cavity.Here, we also
introduced thematrix elements

åj a j= á ñ
x

x x
x

= 

 ∣ ∣ ∣ ( )∣ ( )U U k x1 1 cos , 9kq k
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c q
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, 2 2
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h j h j

h f f f f

= á ñ
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( ( )[ ( ) ( ) ( ) ( )]) ( )

k x

x k x x x x x

cos 0 1
1 0

d cos . 10

kq k c q

c k q k q
, ,

TheUkqmatrix elements define the back-action of individual atomic components on the cavity field amplitude
α. The elements ηkq define a coupled back-action of both atomic components on the cavity field amplitudeα
and are zero for polarized atoms.

Wenote that the single distinction of themathematical framework for the description ofmicrowave cavities
as opposed to optical cavities is themagnitude of the cavity wave vector kc: formicrowave cavities, the ( )k xcos c

terms in equations (7), (9), (10) could be considered constants.
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To complete ourmathematical description, we consider an identical parabolic confinement for both
components of the atomic cloud,

º = ( ) ( ) ( )V x V x x
1

2
, 112

and contact interparticle interactions of atomswithin the same component,

å l d¢ = - ¢
x

x x x

= 

ˆ ( ) ( ( )) ( )W x x x x1 1, . 12T

,

,
0

Wefix the interaction strength to beweakly repulsive and slightly different for each component: for the 
component, we set l = 0.09750 and for the  component l = 0.10 in dimensionless units; see footnote 8 on
page 3 for a dimensionalizedmodel using 87Rb atoms. Since the interactions in the  component are slightly
weaker, a larger population in the  state is energetically favorable. Note that, for simplicity, we have neglected
interparticle interactions of atoms in distinct components that are present in ultracold spinor bosons [37, 68].

In this paper,weuse themulticonfigurational time-dependentHartreemethod for indistinguishable particles
software [63] to solve equation (1) for themany-body ground state.To that end, the time-dependent variational
principle is used toderive a set of equations ofmotion for both the coefficients and the single-particle states entering
themulticonfigurational ansatz in equation (2).Optimizingboth the coefficients and the single-particle states ensures
that the relevant part of themany-bodyHilbert space is spanned efficiently.Here,we consider a systemofN=100
atomsdescribedbyM=3 single-particle states coupled to equation (8) for thepopulationof photons in the cavity.

To compute the ground state,wepropagate the coupled equations (1) and (8) in imaginary time todampout all
excited states.Note that the populations of the different components are varying in the process of imaginary time
propagation, as the excitations of the systemmayhave a different atomnumbers in the components. Theobtained
ground state distributions of atomsbetween components are such that the total energy of the system isminimized.

We remark thatwework in dimensionless units throughout by dividing themany-bodyHamiltonian by 

mL

2

2

wherem is themass of the considered particles and L the unit of length. For examplewith 87Rb atoms and
L≡1 μm, the longitudinal extent of the systemwe consider is roughly 4–6μmyielding roughly 15–20 atoms
permicron (see footnote 8 on page 3). Furthermore, atomic losses are neglected in this work.

We investigate a cavity with parameters related to Esslinger’s experimental setupwith an optical cavity [8]
and consider a two-component systemwith two transversal pumps and the coupling scheme illustrated in
figure 1, see also [60]. The pumps and the cavity are far-red-detuned from the atomic transition.We define the
atomic and cavity detuningsΔ1/2 andΔc, in terms of the energies of the involved states ñ ñ ñ ñ∣ ∣ ∣ ∣1 , 2 , , ,
respectively,    w w w w= = = =ñ ñ ñ  ñ ∣ ∣ ∣ ∣E E E E, , ,1 1 2 2 .Wefix ºñ∣E 0 and obtain the detunings:

w w
w

w w
w w
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D =
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-

D = -

D =
+

-

W W

W

W W

2
,

,

2
.c c

1 1

2 2

1 2

2

1 2

Weassume that these atomic detunings are large enough compared to the kinetic energy in the excited states
ñ ñ∣ ∣1 , 2 such that we can eliminate them fromour description, see [60] for details.We consider two-photon

Raman transitions to be close to-resonant, i.e., w w w w w» - » - W Wc c1 2
. The relative two-photon detuning

is d w= - w w


-W W

2
2 1 . The coupling of the ñ∣ ( ñ∣ )-component to the atomic excited state ñ∣1 ( ñ∣2 ) is

=( ) ( )G x g k xcos c0 . The cavity pumppower is h = =W

D

W

D

g g0 1

1

0 2

2
, the cavity detuning isΔC=−42992, the cavity

loss-rateκ=5555, the k-vector of the cavity kc=4.9, the cavity-atom coupling = = = = D  D
U U1, 2

g g0
2

1

0
2

2
,

and the potential offset d d= + -W
D

W
D

˜ 1
2

1

2
2

2
is a Stark-shifted two-photon detuning [60].

In dimensionalized units (see footnote 8 on page 3), we have ( k pD = - ´ ) (U U, , , 2 4.987c MHz,
2π×0.6444MHz, 1457.7 Hz, 728.849 Hz).

3. Polarization and fragmentation of two-component bosons in a cavity

Wenowdiscuss the physics of the ground state of the two-component BEC as a function of the cavity pump

power. As quantities of interest, we use the reduced one-body densitymatrix r ¢ = áY Y ¢ Y Yñ( ) ∣ ˆ ( ) ˆ ( )∣( ) †
x x x x,1 ,

and its diagonal (simply called density) r rº ¢ =( ) ( )( )x x x x,1 , and the amplitude of the cavity field a∣ ∣. Since
we consider two-component bosons, the densities are also two-component quantities. The quantity r ( )x1 is
the component density, as it gives the density of the  component; likewise for the  component. The sumof the
component densities is the total density. Figures 2(a)–(c) show the component densities together and the total
density as a function of the pumppower η.
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Examining thedensity and its components, already reveals richphysics: close to zeropumppowerη each
component sees apotential that is almost harmonic as the cavity populationα is zero (seefigures 2(e)–(f) and3(a)). The
respectivedensities are thereforeGaussian-shapedand showno spatialmodulation (figures 2(a)–(c)). In themapping
of the system to theDickemodel, this absenceof spatialmodulation corresponds to thenormalphase [11, 12]. In the
normal phase, themomentumdistributionhas amaximumat zerowithno secondarypeak (figure2(d)).

As the cavity pumppower crosses a threshold value of ηc≈25, the cavity field amplitude (figure 3(a))
increases and the atoms self-organize into a periodic structure as a consequence of the cavity-mediated potential
(see equation (7)). This self-organization is a hallmark of the transition of the system to the superradiant state of
the equivalentDickemodel [11, 12].

With a further increase of thepumppower, i.e.,ηä[25, 120] the atomic ground state becomes polarized in an
almost purely -component state due to the cavity-mediated potential and coupling between the components (see
equation (7) andfigures 2(e), (f)). This polarization can bequantifiedby the fraction of atoms in the  component,

ò r= { ( )}P
N

x x1
1

d ,

Figure 2.Tracing the self-organization of a two-component Bose–Einstein condensate in a cavity. The total  [ ]density (a) (b)/(c),
the totalmomentumdensity (d), and cavity-modified potential +   ( ) ( )V x V x, ,

cavity (e)/(f) are depicted as functions of the cavity
pump power. The transition to the superradiant state inwhich the cavityfield amplitude is nonzero and the atoms self-organize
happens at ηc≈25 (seewhite dashed line in panel (a)). For larger η, the state becomes polarized (panels (b), (c)) and the density goes
to zero. The density (a)–(c) and potential (e), (f) change the number of humps andminima, respectively, in the superradiant phase.
This change happens at the pumppowers ηwhere the real and imaginary parts of the cavity field amplitudeα (figure 3(a)) change sign.
The self-organization of the two-component system results in the formation of peaks at±kc in the totalmomentumdistribution, see
panel (d). The emergence of fragmentation leads to the formation of additional structurewith a spacing of about kc/3 in the
momentumdistribution, see vertical dashed line in panel (d). See text for further discussion.
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plotted infigure 3(c). At pump powers above η≈120, less than 1%of the atoms are in the  state. This
polarization can be understood as a consequence of the structure of the potential in equation (7); for large pump
power η, the contribution of the off-diagonal potential terms,  V ,

cavity , to the energy isminimized by polarized
states. Since the expectation values of these off-diagonal potential terms always involve an  and a  contribution,
they vanish if either the or the  component is unpopulated.

The observed self-organization behavior can also be understood as a consequence of the cavity-mediated
change of the one-body potential, +   ( ) ( )V x V x, ,

cavity : the density of both components (see figures 2(b) and (c))
is intuitively located at theminima of the potential (see figures 2(e) and (f)).

We now turn to the emergence of correlations in themany-body state; for this purpose, we use the
eigenvalues {nk; k=1,K,M} of the reduced one-body densitymatrix r ¢( )( ) x x,1 .We quantify fragmentation
by the fraction F of atoms that does not correspond to the largest eigenvalue n1:

å= = -
=

⎛
⎝⎜

⎞
⎠⎟ ( )F

N
n

n

N

1
1 . 13

k

M

k
2

1

Figure 3.Cavity population, fragmentation, and polarization of two-component bosons in a cavity. At transition to superradiance of
theDickemodel equivalent to the cold atoms in the cavity, η≈25, the cavity field amplitude a∣ ∣ shows a sharp increase (panel (a)).
The fragmentation (panel (b)) of the state is quenched from40% to almost zero at the transition to superradiance. For larger pump
powers η, concurrently with the polarization of the atoms (panel (c)), fragmentation re-emerges, however, at a smaller rate. This re-
emergence of fragmentation heralds the breakdown of themapping of the system to theDickemodel (comparemomentumdensity in
figure 2(d)). The real and imaginary parts of the cavity field amplitudeα (panel (a)) change sign at the pumppowers ηwhere the
density changes from a two- to a three-hump and from a three- to a four-hump structure in the superradiant phase (seefigures 2(a)–
(c), (e)–(f)), see green/black (gray/black) part of a∣ ∣-plot in panel (a) and text for further discussion.
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The fraction F is 40% at zero pump power, see figure 3(b). This finding is a consequence of the slightly different
interaction strengths of each component aswell as the offset d̃ of the component potentials; if both interaction
strengthswere set equal and d̃ zero, a two-fold fragmented state with = » 50%n

N

n

N
1 2 would be obtained as the

ground state, because this configurationminimizes the contribution of the interactions (see equation (12)) to the
total energy.

When the atoms self-organize at ηc≈25 and theDickemodel equivalent to the systembecomes
superradiant, fragmentation and F are almost zero. For the range ηä[25, 600] of larger pumppowers, however,
fragmentation significantly increases; F is larger than 0.5 above η≈400. The emergence of fragmentation is
accompanied by a sharp growth of the atomic polarization. Above a cavity pumppower of η≈120, the system is
completely polarized and almost all bosons sit in the  state. The  component is thus in a fragmented
superradiant phase analogous to the one found for a single-component Bose–Einstein condensate in a cavity in
[30]. This fragmented superradiant phase goes beyond the two-level physics presupposed in theDickemodel
[12] for the single-component case [30].

Since the observed fragmented state in our two-component system is similar to the fragmented superradiant
state found in [30], it is of interest to assess the (in)applicability of theDicke two-level picture for the present
two-component case aswell. For this purpose, we analyze themomentumdensity infigure 2(d).

Themomentumdensity clearly demonstrates that theDickemodel whosemomentum states are at k=±kc
and zero, qualitatively describes the physics of the systemonly for cavity pumppowers η for which
fragmentation is essentially absent: themomentumdensity is essentially a three-humped structurewithmaxima
at k=±kc and zero for pumppowers η250.Here, we omitted the analysis of the componentmomentum
densities because the ground state is almost completely polarized already for pumppowers ηmuch smaller
than 250.

As the system enters the fragmented superradiant phase for η250, theDickemodel becomes inapplicable:

we observe the emergence of additional structure with a k

3
c -spacing in themomentumdensity in our simulations

infigure 2(d).We verifiedwith anMCTDH-X simulation includingM=4 orbitals that the k

3
c spacing is not a

feature of the applied approximation.Note that themomentumdensity corresponds to the diagonal of the
reducedmomentumdensitymatrix r ¢ =( )( ) k k k,1 . This is amarked difference between the present and the
fragmented superradiant state found for a single-component system in [30]. In the single-component case, the
Dickemodel also breaks down in the transition to fragmented superradiance; however, a structure with a
k

2
c -spacing is formed in the off-diagonal of the reducedmomentumdensitymatrix, r ¢ = -( )( ) k k k,1 while the

momentumdensity ρ(1)(k, k) is Gaussian-shaped.

4. Conclusions and outlook

Wehave investigated themany-body physics of ultracold laser-pumped two-component bosons in a cavity.
Above afirst threshold of the pumppower, the atoms self-organize and the system enters a superradiant state
that is qualitatively described by theDickemodel.When the power of the laser pumps is increased the bosons
become polarized. Above the pumppower necessary for this polarization, fragmentation and correlations
between the atoms emerge gradually: the reduced densitymatrix of the superradiant atomic ensemble acquires

multiplemacroscopic eigenvalues and the Bose–Einstein condensate becomes fragmented. A k

3
c -spaced pattern

in themomentumdistribution of the bosons heralds the breakdown of theDickemodel and the transition to a
fragmented superradiant state. Ourfindings can be detected by a straightforwardmeasurement of the atom
numbers that populate the components and themomentumdensity after time-of-flight expansion.

We stress that our study explicitly includes correlations and investigates a system that is a promising
candidate for ultracold-based quantum computation [69]. Understanding and possibly controlling correlations
triggered in ultracold atoms interfacedwith cavities enriches thefieldwith an important contribution towards
the generation of a scalable quantum computer. For instance, collision-induced highly entangled cluster states
[70–72] can be used as initially prepared resource states to engineermeasurement-based one-way quantum
computations [73–76]. The scheme considered in this work provides an essential building block in the
development of scalable quantum computers involving systems of ultracold atoms [77].

CavityQEDwith ultracold atoms is essentially described by the sameHamiltonian for bothmicrowave and
optical cavities. For optical cavities, the photonwavelength is smaller than the size of the ultracold cloud. The
structure of the cavitymode influences the physics of the systemwithin the optical cavity. Also, the photon recoil
is not negligible. For the case of amicrowave cavity as proposed in [19], the photon recoil can be neglected, and
since thewavelength ofmicrowave radiation ismuch larger than the typical size of the atomic cloud, the cavity
mode does not impose additional non-uniformpotential on the atomic ensemble.
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We thus applied amany-body theory, themulticonfigurational time-dependentHartreemethod for
indistunguishable particles X (MCTDH-X), and described different phases and their correlation properties; we
demonstrated rich physics that result from an intricate interplay of polarization, self-organization, correlations
and fragmentation. To enable a protocol thatmanages the correlations of the system, further studies are needed

to understand themechanismbehind the k

3
c -pattern in themomentumdistribution aswell as the behavior of the

emergent effects as a function of the offset δ and the couplings  U U, . Future studiesmay also include
interparticle interactions between atoms in distinct components,multi-modal [78, 79] andmicrowave [19, 20]
cavities, or considermore than one spatial dimension. Furthermore, the non-equilibriumdynamics of self-
organization [31] or the investigation of fermionic systems [80] or systemswith cavity-mediated long-range [10]
and/or dipole–dipole [81, 82] interactions are of exceptional interest.

Acknowledgments

We thank Jörg Schmiedmayer for numerous insightful discussions and comments.We acknowledge financial
support by the Austrian Science Foundation (FWF) under grantNo. F65 (SFB ‘Complexity in PDEs’), grantNo.
F40 (SFB ‘FOQUS’), grantNo. F41 (SFB ‘ViCoM’), grantNo. P 31140-N32 (‘ROAM’), and theWiener
Wissenschafts- undTechnologieFonds (WWTF) projectNo.MA16-066 (‘SEQUEX’).We acknowledge
financial support fromFAPESP, the hospitality of theWolfgang-Pauli-Institut, computation time on theHazel
Hen cluster of theHLRS in Stuttgart and theHPC2013 cluster, financial support from the SwissNational Science
Foundation andMrGAnderheggen.

References

[1] Giovannetti V, Vitali D, Tombesi P and Ekert A 2000Phys. Rev.A 62 032306
[2] KimMDandKim J 2017Quantum Inf. Process. 16 192
[3] WeiH-R andDeng F-G 2014 Sci. Rep. 4 7551
[4] Brecht T, PfaffW,WangC, ChuY, Frunzio L, DevoretMHand Schoelkopf R J 2016 npjQuantum Inf. 2 16002
[5] Henschel K,Majer J, Schmiedmayer J andRitschH 2010Phys. Rev.A 82 033810
[6] Henkel C, Powers B and Sols F 2005 J. Phys.: Conf. Ser. 19 34
[7] Brennecke F, Donner T, Ritter S, Bourdel T, KöhlM and Esslinger T 2007Nature 450 268
[8] BaumannK,Guerlin C, Brennecke F and Esslinger T 2010Nature 464 1301
[9] Garraway BM2011Phil. Trans. R. Soc.A 369 1137
[10] RitschH,Domokos P, Brennecke F and Esslinger T 2013Rev.Mod. Phys. 85 553
[11] BaumannK,Mottl R, Brennecke F and Esslinger T 2011Phys. Rev. Lett. 107 140402
[12] Dicke RH1954Phys. Rev. 93 99
[13] Putz S, Angerer A, KrimerDO,Glattauer R,MunroW J, Rotter S, Schmiedmayer J andMajer J 2017Nat. Photon. 11 36
[14] Astner T,Nevlacsil S, PeterschofskyN, Angerer A, Rotter S, Putz S, Schmiedmayer J andMajer J 2017 Phys. Rev. Lett. 118 140502
[15] Schoelkopf R J andGirvin SM2008Nature 451 664
[16] BermanP (ed) 1994Cavity QuantumElectrodynamics (Boston,MA: Academic)
[17] Kurizki G, Bertet P, KuboY,MølmerK, PetrosyanD, Rabl P and Schmiedmayer J 2015 Proc. Natl Acad. Sci. 112 3866
[18] DeutschC, Ramirez-Martinez F, Lacroûte C, Reinhard F, Schneider T, Fuchs JN, Piéchon F, Laloë F, Reichel J andRosenbusch P 2010

Phys. Rev. Lett. 105 020401
[19] Verdú J, ZoubiH, Koller C,Majer J, RitschH and Schmiedmayer J 2009Phys. Rev. Lett. 103 043603
[20] Minniberger S, Diorico F,Haslinger S,Hufnagel C,NovotnyC, LippokN,Majer J, Koller C, Schneider S and Schmiedmayer J 2014

Appl. Phys.B 116 1017
[21] Jessen F et al 2014Appl. Phys.B 116 665
[22] SierckeM,ChanK S, ZhangB, BeianM, LimM J andDumkeR 2012Phys. Rev.A 85 041403
[23] Bernon S et al 2013Nat. Commun. 4 2380
[24] HattermannH, BothnerD, Ley L Y, FerdinandB,Wiedmaier D, Sárkány L, Kleiner R, Koelle D and Fortágh J 2017Nat. Commun.

8 2254
[25] NorciaMA, Lewis-SwanR J, Cline J RK, ZhuB, ReyAMandThompson J K 2017 arXiv:1711.03673
[26] Masson S J, BarrettMDandParkins S 2017Phys. Rev. Lett. 119 213601
[27] Brennecke F, Ritter S, Donner T and Esslinger T 2008 Science 322 235
[28] TavisM andCummings FW1968Phys. Rev. 170 379
[29] TavisM andCummings FW1969Phys. Rev. 188 692
[30] LodeAU J andBruder C 2017Phys. Rev. Lett. 118 013603
[31] Molignini P, Papariello L, LodeAU J andChitra R 2017 arXiv:1710.02474
[32] PethickC J and SmithH2002Bose–Einstein Condensation inDilute Gases (Cambridge: CambridgeUniversity Press)
[33] BogoliubovNN1991 SelectedWorks II: Quantum and StatisticalMechanics (NewYork: Gordon andBreach)
[34] Pitaevskii L P and Stringari S 2003Bose–Einstein Condensation (Oxford: Clarendon)
[35] JakschD, BruderC, Cirac J I, Gardiner CWandZoller P 1998Phys. Rev. Lett. 81 3108
[36] GreinerM,Mandel O, Esslinger T,Hänsch TWandBloch I 2002Nature 415 39
[37] LodeAU J 2016Phys. Rev.A 93 063601
[38] Nozières P and Saint JamesD1982 J. Phys. 43 1133
[39] Spekkens RWand Sipe J E 1999Phys. Rev.A 59 3868
[40] PenroseO andOnsager L 1956Phys. Rev. 104 576
[41] Streltsov A I, AlonOE andCederbaumL S 2007Phys. Rev. Lett. 99 030402

9

New J. Phys. 20 (2018) 055006 AU J Lode et al

https://doi.org/10.1103/PhysRevA.62.032306
https://doi.org/10.1007/s11128-017-1644-5
https://doi.org/10.1038/srep07551
https://doi.org/10.1038/npjqi.2016.2
https://doi.org/10.1103/PhysRevA.82.033810
https://doi.org/10.1088/1742-6596/19/1/005
https://doi.org/10.1038/nature06120
https://doi.org/10.1038/nature09009
https://doi.org/10.1098/rsta.2010.0333
https://doi.org/10.1103/RevModPhys.85.553
https://doi.org/10.1103/PhysRevLett.107.140402
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1038/nphoton.2016.225
https://doi.org/10.1103/PhysRevLett.118.140502
https://doi.org/10.1038/451664a
https://doi.org/10.1073/pnas.1419326112
https://doi.org/10.1103/PhysRevLett.105.020401
https://doi.org/10.1103/PhysRevLett.103.043603
https://doi.org/10.1007/s00340-014-5790-5
https://doi.org/10.1007/s00340-013-5750-5
https://doi.org/10.1103/PhysRevA.85.041403
https://doi.org/10.1038/ncomms3380
https://doi.org/10.1038/s41467-017-02439-7
http://arxiv.org/abs/1711.03673
https://doi.org/10.1103/PhysRevLett.119.213601
https://doi.org/10.1126/science.1163218
https://doi.org/10.1103/PhysRev.170.379
https://doi.org/10.1103/PhysRev.188.692
https://doi.org/10.1103/PhysRevLett.118.013603
http://arxiv.org/abs/1710.02474
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1038/415039a
https://doi.org/10.1103/PhysRevA.93.063601
https://doi.org/10.1051/jphys:019820043070113300
https://doi.org/10.1103/PhysRevA.59.3868
https://doi.org/10.1103/PhysRev.104.576
https://doi.org/10.1103/PhysRevLett.99.030402


[42] Bader P and FischerUR 2009Phys. Rev. Lett. 103 060402
[43] TsatsosMC,Nguyen JHV, LodeAU J, Telles GD, LuoD, BagnatoV S andHulet RG 2017 arXiv:1707.04055
[44] LodeAU J, Streltsov A I, SakmannK,AlonOE andCederbaumL S 2012Proc. Natl Acad. Sci. USA 109 13521
[45] Brezinova I, LodeAU J, Streltsov A I, AlonOE, CederbaumL S andBurgdörfer J 2012Phys. Rev.A 86 013630
[46] LodeAU J, Klaiman S, AlonOE, StreltsovA I andCederbaumL S 2014Phys. Rev.A 89 053620
[47] Brezinova I, LodeAU J, Streltsov A I, CederbaumL S, AlonOE, Collins LA, Schneider B I andBurgdörfer J 2014 J. Phys.: Conf. Ser. 488

012032
[48] Klaiman S, Lode AU J, Streltsov A I, CederbaumLS andAlonOE2014Phys. Rev.A 90 043620
[49] Weiner S E, TsatsosMC,CederbaumL S and Lode AU J 2017 Sci Rep. 7 40122
[50] TsatsosMC andLode AU J 2015 J. Low. Temp. Phys. 181 171
[51] LodeAU J, Chakrabarti B andKotaVKB 2015Phys. Rev.A 92 033622
[52] FischerUR, LodeAU J andChatterjee B 2015Phys. Rev.A 91 063621
[53] LodeAU J andBruder C 2016Phys. Rev.A 94 013616
[54] RoyR,Gammal A, TsatsosMC,Chatterjee B, Chakrabarti B and Lode AU J 2018Phys. Rev.A 97 043625
[55] Dutta S, TsatsosMC, Basu S and LodeAU J 2018 arXiv:1802.02407
[56] Mueller E J, HoT-L, UedaMandBaymG2006Phys. Rev.A 74 033612
[57] MüstecaplıoğluOE, ZhangM,Yi S, You L and SunCP 2003Phys. Rev.A 68 063616
[58] Song S-W, Zhang Y-C, ZhaoH,WangX and LiuW-M2014Phys. Rev.A 89 063613
[59] HoT-L andYip SK 2000Phys. Rev. Lett. 84 4031
[60] Mivehvar F, Piazza F andRitschH2017Phys. Rev. Lett. 119 063602
[61] AlonOE, Streltsov A I andCederbaumL S 2008Phys. Rev.A 77 033613
[62] Fasshauer E and LodeAU J 2016Phys. Rev.A 93 033635
[63] LodeAU J, TsatsosMC, Fasshauer E, Lin R, Papariello L,Molignini P and LévêqueC 2018MCTDH-X: The time-dependent

multiconfigurationalHartree for indistinguishable particles software http://ultracold.org
[64] LodeAU J, SakmannK, AlonOE, CederbaumL S and Streltsov A I 2012Phys. Rev.A 86 063606
[65] LodeAU J 2015Tunneling dynamics in open ultracold bosonic systems Springer Theses Springer, Heidelberg
[66] SakmannK 2011Many-body Schrödinger dynamics of Bose–Einstein condensates Springer Theses Springer, Heidelberg
[67] OlshaniiM1998Phys. Rev. Lett. 81 938
[68] Wagner A,NunnenkampA andBruder C 2012Phys. Rev.A 86 023624
[69] Bloch I 2008Nature 453 1016
[70] JakschD, BriegelH J, Cirac J I, Gardiner CWandZoller P 1999Phys. Rev. Lett. 82 1975
[71] MandelO et al 2003Nature 425 937
[72] BriegelH J andRaussendorf R 2001Phys. Rev. Lett. 86 910
[73] Raussendorf R andBriegelH J 2001Phys. Rev. Lett. 86 5188
[74] Raussendorf R andBriegelH J 2002Quantum Inf. Comput. 2 443
[75] Walther P et al 2005Nature 434 169
[76] KieselN et al 2005Phys. Rev. Lett. 95 210502
[77] CramerM, BernardA, Fabbri N, Fallani L, Fort C, Rosi S, Caruso F, InguscioMandPlenioMB2013Nat. Commun. 4 2161
[78] Léonard J,Morales A, Zupancic P, Esslinger T andDonner T 2017Nature 543 87
[79] Léonard J,Morales A, Zupancic P, Esslinger T andDonner T 2017 arXiv:1711.07988
[80] Mivehvar F, RitschH and Piazza F 2017Phys. Rev. Lett. 118 073602
[81] Exl L 2017Comput. Phys. Commun. 221 352
[82] Exl L,MauserN J andZhang Y 2016 J. Comput. Phys. 327 629

10

New J. Phys. 20 (2018) 055006 AU J Lode et al

https://doi.org/10.1103/PhysRevLett.103.060402
http://arxiv.org/abs/1707.04055
https://doi.org/10.1073/pnas.1201345109
https://doi.org/10.1103/PhysRevA.86.013630
https://doi.org/10.1103/PhysRevA.89.053620
https://doi.org/10.1088/1742-6596/488/1/012032
https://doi.org/10.1088/1742-6596/488/1/012032
https://doi.org/10.1103/PhysRevA.90.043620
https://doi.org/10.1038/srep40122
https://doi.org/10.1007/s10909-015-1335-5
https://doi.org/10.1103/PhysRevA.92.033622
https://doi.org/10.1103/PhysRevA.91.063621
https://doi.org/10.1103/PhysRevA.94.013616
https://doi.org/10.1103/PhysRevA.97.043625
http://arXiv.org/abs/1802.02407
https://doi.org/10.1103/PhysRevA.74.033612
https://doi.org/10.1103/PhysRevA.68.063616
https://doi.org/10.1103/PhysRevA.89.063613
https://doi.org/10.1103/PhysRevLett.84.4031
https://doi.org/10.1103/PhysRevLett.119.063602
https://doi.org/10.1103/PhysRevA.77.033613
https://doi.org/10.1103/PhysRevA.93.033635
http://ultracold.org
https://doi.org/10.1103/PhysRevA.86.063606
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRevA.86.023624
https://doi.org/10.1038/nature07126
https://doi.org/10.1103/PhysRevLett.82.1975
https://doi.org/10.1038/nature02008
https://doi.org/10.1103/PhysRevLett.86.910
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1038/nature03347
https://doi.org/10.1103/PhysRevLett.95.210502
https://doi.org/10.1038/ncomms3161
https://doi.org/10.1038/nature21067
http://arxiv.org/abs/1711.07988
https://doi.org/10.1103/PhysRevLett.118.073602
https://doi.org/10.1016/j.cpc.2017.08.014
https://doi.org/10.1016/j.jcp.2016.09.045

	1. Introduction
	2. System and method
	3. Polarization and fragmentation of two-component bosons in a cavity
	4. Conclusions and outlook
	Acknowledgments
	References



