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 Teaching–Learning-Based Optimization (TLBO) is recently being used as a new, reliable, 
accurate and robust optimization technique scheme for global optimization over continuous 
spaces. This paper presents an improved variant of TLBO algorithm, called Improved 
Teaching–Learning-Based Optimization (ITLBO). A performance comparison of the proposed 
method is provided against the original TLBO and some other algorithms. The improved TLBO 
algorithm shows a marked improvement in performance over the traditional TLBO on several 
benchmark optimization problems.        

 

© 2013 Growing Science Ltd.  All rights reserved.

Keywords: 
Optimization technique  
TLBO  
Convergence  
Performance  

 

 

 

1. Introduction 

Constrained and unconstrained optimization problems are generally associated with many difficulties 
such as multi-modality, dimensionality and differentiability. Traditional optimization techniques 
generally fail to solve such problems, especially with nonlinear objective functions. To overcome 
these difficulties, there is a need to develop more powerful optimization techniques.  
 
Rao et al. (2011, 2012) proposed a teaching-learning based optimization (TLBO) algorithm based on 
the natural phenomenon of teaching and learning. The implementation of TLBO does not require the 
determination of any algorithm specific controlling parameters, which makes the algorithm robust 
and powerful. TLBO requires only common controlling parameters like population size and number 
of generations for its working. In this way, TLBO can be said as an algorithm specific parameter-less 
algorithm. Rao and Patel (2012) investigated the performance of TLBO algorithm for different elite 
sizes, population sizes and number of generations considering various constrained bench mark 
problems available in the literature to identify their effect on the exploration and exploitation capacity 
of the algorithm. Satapathy and Naik (2011) tried to propose a new approach to use TLBO to cluster 
data. They have proved that the TLBO algorithm can be used to cluster arbitrary data. Again they 
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have shown another good characteristic of TLBO algorithm, that the cost of computations are less in 
handling high dimensional problems in compare to other algorithms (Chandra Satapathy et al., 2012). 
TLBO also has been applied to the area of computer network by optimizing the multicast tree (Naik 
et al., 2012).  It is capable of handling power system problem easily where optimal solution of the 
unit maintenance scheduling problem in which the cost reduction is as important as reliability 
(Satapathy et al., 2012). TLBO algorithm has been adapted to solve multi objective problems of an 
economic load dispatch problem with incommensurable objectives (Krishnanand et al., 2011). From 
literature, we can see while clustering the data using fuzzy c-means (FCM) and hard c-means (HCM), 
the sensitivity to tune the initial clusters centers have captured the attention of the clustering 
communities for quite a long time. This problem has been addressed by TLBO in (Naik et al., 2012). 
In the area of feature selection, also TLBO is showing its performance in connection with Rough set 
theory. Empirical results reveal that the Rough TLBO approach could perform better in terms of 
finding optimal features and doing so in quick time in comparison with GA, PSO and DE (Naik et al., 
2012). Again there is some modification of TLBO have been done to improve its performance in 
optimization for global function optimization (Chandra Satapathy et al., 2012). There are good 
numbers of applications of TLBO from different papers (Rao & Patel, 2012; Rao & Savsani, 2012; 
Vedat Toğan, 2012; Rao & Kalyankar, 2012). Looking into the diverse applications of TLBO and 
effectiveness of TLBO, in this paper, we present yet another modification on TLBO to improve its 
performance in terms of convergence speed while solving unconstrained optimization problem. Our 
proposed improved TLBO (ITLBO) is compared with various other algorithms like PSO, DE, TLBO, 
OEA, HPSO-TVAC, CLPSO and APSO on several benchmark functions are the performance 
characteristics are provided to show that ITLBO performs better than all other compared techniques. 
  

The remainder of this paper is organized as follows. The conventional TLBO is explained in detail in 
Sections 2, ITLBO in section 3. Numerical Experiment and results demonstrating the performance of 
ITLBO in comparison with other optimization algorithm are presented in Section 4. Section 5 
concludes this paper. 
 

2. Teaching–learning-based optimization 
 
This optimization method is based on the effect of the influence of a teacher on the output of learners 
in a class. It is a population based method and like other population based methods, it uses a 
population of solutions to proceed to the global solution. A group of learners constitutes the 
population in TLBO. In any optimization algorithms, there are numbers of different design variables. 
Different design variables in TLBO are analogous to various subjects offered to learners and the 
learners’ result is analogous to the ‘fitness’, as in other population-based optimization techniques. As 
the teacher is considered the most learned person in the society, the best solution so far is analogous 
to Teacher in TLBO. The process of TLBO is divided into two parts. The first part consists of the 
‘Teacher Phase’ and the second part consists of the ‘Learner Phase’. The ‘Teacher Phase’ means 
learning from the teacher and the ‘Learner Phase’ means learning through the interaction between 
learners. In the sub-sections below, we briefly discuss the implementation of TLBO. 
 
A  Initialization 
 
Following are the notations used for describing the TLBO: :	number	of	learners	in	a	class	i. e. “class	size” :	number of courses offered to the learners :	maximum	number	of	allowable	iterations 
 
The population  is randomly initialized by a search space bounded by matrix of  rows and  
columns. The ℎ parameter of the ℎ learner is assigned values randomly using the equation 
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( , ) = + × ( − ) (1)  
where rand represents a uniformly distributed random variable within the range (0, 1),	  and 	 represent the minimum and maximum value for ℎ parameter. The parameters of ℎ  learner 
for the generation g are given by 
 	 ( ) = [ ( , ), ( , ), ( , ), …… , ( , ), …… , ( , )] (2)
 

B Teacher Phase 
 

The mean parameter    of each subject of the learners in the class at generation  is given as 
 = , ,…… , , …… , . (3)
  

The learner with the minimum objective function value is considered as the teacher  for 
respective iteration. The Teacher phase makes the algorithm proceed by shifting the mean of the 
learners towards its teacher. To obtain a new set of improved learners a random weighted differential 
vector is formed from the current mean and the desired mean parameters and added to the existing 
population of learners. 
 		 ( ) = ( ) + × ( − ) (4)

         
 is the teaching factor, which decides the value of mean to be changed. Value of  can be either 1 

or 2. The value of  is decided randomly with equal probability as, = [1 + (0,1){2 − 1}], (5)  

 where 	  is not a parameter of the TLBO algorithm. The value of  is not given as an input to the 
algorithm and its value is randomly decided by the algorithm using Eq. (5). After conducting a 
number of experiments on many benchmark functions it is concluded that the algorithm performs 
better if the value of  is between 1 and 2. However, the algorithm is found to perform much better 
if the value of  is either 1 or 2 and hence to simplify the algorithm, the teaching factor is suggested 
to take either 1 or 2 depending on the rounding up criteria given by Eq.(5).  If ( )	 is found to be 
a superior learner than ( ) in generation   , than it replaces inferior learner ( ) in the matrix. 
 

C Learner Phase 
 

In this phase, the interaction of learners with one another takes place. The process of mutual 
interaction tends to increase the knowledge of the learner. The random interaction among learners 
improves his or her knowledge. For a given learner	 ( ), another learner ( ) is randomly selected( ≠). The ℎ parameter of the matrix  in the learner phase is given as 

( ) = ( ) + 	 × ( ) − ( ) ( ) < ( ( ))
( ) + 	 × ( ) − ( )  

(6)  

D Algorithm Termination 
 
The algorithm is terminated after  iterations are completed. Details of TLBO can be refereed 
in  (Rao et al., 2011). 
 

3. Improved Teaching–Learning-Based Optimizer (ITLBO) 
 

In the traditional TLBO (Rao et al., 2011), the teacher phase makes the algorithm proceed by shifting 
the mean of the learners towards its teacher.  
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To obtain a new set of improved learners a random weighted differential vector is formed from the 
current mean and the desired mean parameters and added to the existing population of learners. 
Similarly, in the learner phase the algorithm proceeds by random interaction among learners improve 
his or her knowledge. To obtain a new set of improved learners a random weighted differential vector 
is formed from a given learner ( ), another learner ( ) is randomly selected( ≠ ) and added to the 
existing learner. In our proposed algorithm we propose to vary this random weighed differential 
vector in a random manner in the range (0.5, 1) by using the relation 
0.5*(1+rand (0, 1)), (7)  
where rand (0, 1) is a uniformly distributed random number within the range [0, 1]. Therefore, the 
mean value of this weighted differential scale factor is 0.75. This allows for stochastic variations in 
the amplification of the difference vector and thus helps retain population diversity as the search 
progresses. Even when the tips of most of the population vectors point to locations clustered near a 
local optimum due to the randomly scaled difference vector, a new trial vector has fair chances of 
pointing at an even better location on the multimodal functional surface. Therefore, the fitness of the 
best vector in a population is much less likely to get stagnant until a truly global optimum is reached. 
So the new set of improved learners can be made by using equation in the teacher phase  	 ( ) = ( ) + 0.5 ∗ 1 + rand(0,1) ∗ ( − ) (8)  

So the new set of improved learners can be made by using equation in the learner phase  

( ) = ( ) + 0.5 ∗ 1 + rand(0,1) ∗ ( ) − ( ) ( ) < ( ( ))
( ) + 0.5 ∗ 1 + rand(0,1) ∗ ( ) − ( ) 						  

(9) 

 

4. Numerical experiments and results  
 
4.1 Experiments 1: ITLBO vs. PSO, DE and TLBO 
 
4.1.1 Settings 
 

For all experiments performed in this section, the values of the common parameters used in each 
algorithm such as population size and total evaluation number are chosen to be the same. Population 
size is 20 and the maximum number fitness function evaluation is 40,000 for all functions. The other 
specific parameters of algorithms are given below: 
 

PSO Settings: Cognitive and social components	 ,  are constants that can be used to change the 
weighting between personal and population experience, respectively. In our experiments cognitive 
and social components were both set to 2. Inertia weight, which determines how the previous velocity 
of the particle influences the velocity in the next iteration, was 0.5. 
 

DE Settings: In DE, F is a real constant which affects the differential variation between two Solutions 
and set to F = 0.5*(1+ rand (0, 1)) where rand (0, 1) is a uniformly distributed random number within 
the range [0, 1] in our experiments. Value of crossover rate, which controls the change of the 
diversity of the population, was chosen to be R = (  – ) * ( – ) /  where = 1	and =0.5 are the maximum and minimum values of scale factor R,  is the current 
iteration number and  is the maximum number of allowable iterations as recommended in 
(Swagatam Das et al., 2008).  
 

TLBO Settings: For TLBO there is no such constant to set. 
 

ITLBO Settings: For ITLBO there is no such constant to set. 
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4.1.2 Benchmark functions 
 
We used 20 benchmark problems in order to test the performance of the PSO, DE, TLBO and the 
ITLBO algorithms. This set is large enough to include many different kinds of problems such as 
unimodal, multimodal, regular, irregular, separable, non-separable and multidimensional. Initial 
range, formulation, characteristics and the dimensions of these problems are listed in Table 1.  
 

Table 1   
Benchmark functions used in experiments 1. D: Dimension, C: Characteristic, U: Unimodal, M: Multimodal, S: 
Separable, N: Non-Separable 
No. Function  D C Range  Formulation  Value  

  Step   30  US  [‐100,100]  ( ) = ( + 0.5 )  
= 0

  Sphere   30  US  [‐100,100]  ( ) =  
= 0

  SumSquares   30  US  [‐100,100]  ( ) =  
= 0

  Quartic   30  US  [‐1.28,1.28]  ( ) = + (0,1)  = 0
  Zakharov  10  UN  [‐5,10]  ( ) = + ( 0.5 ) + ( 0.5 )  

= 0
  Schwefel 1.2  30  UN  [‐100,100]  ( ) = ( )  

= 0
  Schwefel 

2.22 
30  UN  [‐10,10]  ( ) = | | + | |  = 0

  Schwefel 
2.21 

30  UN  [‐100,100]  ( ) = {| |, 1 ≤ ≤ }  = 0
  Bohachevsk

y1 
2  MS  [‐100,100]  ( ) = + 2 − 0.3 cos(3 ) − 0.4cos(4 )+0.7 

 
= 0

  Bohachevsk
y2 

2  MS  [‐100,100]  ( ) = + 2 − 0.3 cos(3 ) ∗ cos(4 ) + 0.3 
 

= 0
  Bohachevsk

y3 
2  MS  [‐100,100]  ( ) = + 2 − 0.3 cos((3 ) +(4 ))+0.3 

 
= 0

  Booth   2  MS  [‐10,10]  ( ) = ( + 2 − 7) + (2 + − 5)   = 0
  Rastrigin   30  MS  [‐5.12,5.12]  ( ) = [ − 10 cos(2 ) + 10]  = 0
  Schaffer   2  M

N 
[‐100,100]  ( ) = + − 0.5(1 + 0.001( + ))  

= 0
  Six Hump 

Camel Back  
2  M

N 
[‐5,5]  ( ) =4 − 2.1 + + − 4 + 4   = −1.03163

  Griewank   30  M
N 

[‐600,600]  ( ) = 14000 − cos(√ ) + 1  = 0
  Ackley  30  M

N 
[‐32,32]  ( ) = −20 exp −0.2 1 − exp 1 cos(2 ∗ ∗ ) + 20 +  

= 0
  Multimod   30    [‐10,10]  ( ) = | | | |`

 
=0

  Noncontinu
ous 
Rastrigin 

30  MS  [‐5.12,5.12]  ( ) = [ − 10 cos(2 ) + 10] 
Where = | | < 0.5( ) | | ≥ 0.5  

=0 
  Weierstrass 30    [‐0.5, 0.5]  ( ) = ( [ cos(2 ( + 0.5))]) − [ cos(2 ( + 0.5))] , ℎ 	= 0.5, = 3, = 20 

=0
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Table 2  
Performance comparisons of PSO, DE, TLBO, ITLBO 
No. Function  Global 

min/max 
 PSO DE TLBO ITLBO 

 Step  
 

= 0 
 

Mean 203.3667 0 0 0 
Std  56.2296 0 0 0 

 Sphere = 0 
 

Mean 6.1515e-09 7.2140e-14 1.0425e‐281  0 
Std  7.6615e-10 5.8941e-14 0 0 

 SumSquares  = 0 
 

Mean 3.7584e-14 6.1535e-15 1.5997e-281 0 
Std  1.0019e-14 3.0555e-15 0 0 

 
 

Quartic  
 

= 0 
 

Mean 1.9275 0.0253 2.3477e-04 1.5209e-04 
Std  1.4029 0.0075 1.7875e-04 1.1235e-04 

 Zakharov = 0 
 

Mean 141.0112 66.8339 1.4515e-281 0 
Std  40.7567 14.4046 0 0 

 Schwefel 1.2 = 0 
 

Mean 9.3619e-08 5.3494e-13 2.6061e-270 0 
Std  6.6112e-08 4.6007e-13 0 0 

 
 

Schwefel 2.22 
 

= 0 
 

Mean 9.3293 3.9546e-07 3.1583e-137 1.0079e-
238 

Std  3.6619 1.9283e-07 1.7188e-137 0 
  Schwefel 2.21 = 0 

 
Mean 60.9603 1.5340 4.3819e-136 1.1377e-

226 
Std  4.0761 0.3900 1.5668e-136 0 

 
 

Bohachevsky1 
 

= 0 
 

Mean 0 0 0 0 
Std  0 0 0 0 

 
 

Bohachevsky2 
 

= 0 
 

Mean 0 0 0 0 
Std  0 0 0 0 

  Bohachevsky3 = 0  Mean 0 0 0 0 
Std  0 0 0 0 

 
 

Booth  
 

= 0 
 

Mean 0 0 0 0 
Std  0 0 0 0 

 
 

Rastrigin  = 0 
 

Mean 76.2918 5.6344 0 0 
Std  17.1005 1.8667 0 0 

  Schaffer  
  

= 0 
 

Mean 0.0097 0.0029 0.0066 0 
Std  0.0025 0.0011 0.0045 0 

 
 

Six Hump 
Camel Back  
 

= −1.03163 
Mean -1.0316 -1.0316 -1.0316 -1.0316 
Std  0 0 0 0 

  Griewank = 0  Mean 7.6291e-08 5.7841e-011 0 0 
Std  4.0012e-09 1.6914e-011 0 0 

  Ackley = 0  Mean 14.0614 7.3814e-08 1.7171e-15 1.7702e-15 
Std  2.0125 3.0453e-08 1.5979e-15 1.2434e-15 

  Multimod  = 0  Mean 2.1994e-257 2.5678e-255 0 0 
Std  0 0 0 0 

  Noncontinuous 
Rastrigin 

= 0  Mean 100.3984 13.9237 0 0 
Std  28.7062 2.3146 0 0 

  Weierstrass = 0  Mean 12.0447 1.5388e-05 0 0 
Std  2.6160 1.0139e-05 0 0 
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Table 3   
No. of fitness evaluation comparisons of PSO, DE, TLBO, ITLBO 

No. Function   PSO DE TLBO ITLBO 
 Step  

 
Mean 40,000 2.4833e+4 (≈24833) 712 413.3333(≈413) 
Std  0 753.6577 (≈754) 30.4450(≈31) 19.1237(≈20) 

 Sphere Mean 40,000 40,000 40,000 2.6651e+04(≈26651) 
Std  0 0 0 194.5274 (≈195) 

 SumSquares  Mean 40,000 40,000 40,000 27315 
Std  0 0 0 114.5502 (≈115) 

 
 

Quartic  
 

Mean 40,000 40,000 40,000 40,000 
Std  0 0 0 0 

 Zakharov Mean 40,000 40,000 40,000 2.7022e+04 (≈27022) 
Std  0 0 0 117.0580 (≈118) 

 Schwefel 
1.2 

Mean 40,000 40,000 40,000 28100 
Std  0 0 0 83.5126 (≈84) 

 
 

Schwefel 
2.22 

Mean 40,000 40,000 40,000 40,000 
Std  0 0 0 0 

 Schwefel 
2.21 

Mean 40,000 40,000 40,000 40,000 
Std  0 0 0 0 

 
 

Bohachev
sky1 

Mean 3200 4.1111e+03 (≈4111) 1940 1200 
Std  51.6398 (≈52) 117.5409(≈118) 79.8308(≈78) 36.2329(≈37) 

 
 

Bohachev
sky2 

Mean 3.1429e+03(≈3142) 4.2844e+003(≈4284) 2.0836e+03(≈2083) 1176 
Std  200.5150 (≈201) 201.8832 (≈202) 140.3219(≈141) 37.1276(≈38) 

 Bohachev
sky3 

Mean 4945 7.7822e+03(≈7782) 2148 1179 
Std  168.1727(≈169) 140.2739(≈141) 51.4009(≈52) 32.2931(≈33) 

 
 

Booth  
 

Mean 6420 1.2554e+004(≈12554) 3.4277e+03(≈3427) 2.3086e+03(≈2308) 
Std  18.3935(≈19) 803.3543(≈804) 121.4487(≈122) 145.5112(≈146) 

 
 

Rastrigin  Mean 40,000 40,000 4.4533e+03(≈4453) 2.0688e+03(≈2068) 
Std  0 0 544.6047(≈545) 57.1781(≈58) 

 Schaffer  
  

Mean 40,000 40,000 40,000 4.0267e+03(≈4026)
Std  0 0 0 145.6414(≈146) 

 
 

Six Hump 
Camel 
Back  

Mean 800 1.5556e+03(≈1555) 720 417.1429(≈418) 
Std  99.2278(≈100) 136.7738(≈137) 33.0289(≈34) 20.0348 

 Griewank Mean 40,000 40,000 2916 1.7455e+03(≈1745) 
Std  0 0 145.0686(≈146) 52.5381(≈53) 

 Ackley Mean 40,000 40,000 40,000 40,000 
Std  0 0 0 0 

 Multimod  Mean 40,000 40,000 3488 2132 
Std  0 0 30.2715(≈31) 72.3935(≈73)

 Noncontinuous 
Rastrigin 

Mean 40,000 40,000 6.1891e+03(≈6189) 2.2235e+03(≈2223) 
Std  0 0 75.6887(≈76) 31.8082(≈32) 

 Weierstrass Mean 40,000 40,000 4.0178e+03(≈4017) 2.4667e+03(≈2466) 
Std  0 0 110.5696(≈111) 100.9870(≈101)

(values in brackets in the table are the absolute values of FEs) 
 

 

Table 4  
t value , significant at a 0.05 level of significance by two tailed test using table 2. 
Function No. PSO/ITLBO DE/ITLBO TLBO/ITLBO Function No. PSO/ITLBO DE/ITLBO TLBO/ITLBO 

 + NA NA  NA NA NA 
 + + +  NA NA NA 
 + + +  + + NA 
 + + .  + + + 
 + + +  NA NA NA 
 + + +  + + NA 
 + + +  + + + 
 + + +  + + NA 
 NA NA NA  + + NA 
 NA NA NA  + + NA 
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4.1.3  Results 
 

In Experiments 1, we compared the PSO, DE, TLBO and ITLBO algorithms on a large set of 
functions described in the previous section and are listed in Tables 1. Each of the experiments in this 
section was repeated 30 times with different random seeds and they were terminated when they 
reached the maximum number of function evaluations or when they reached the global minimum 
value. Mean and standard deviation of fitness values on 30 different run produced by the algorithms 
have been recorded in the table 2 and at the same time mean value and standard deviation of no of 
fitness evaluation produced by the algorithms have been recorded in the Table 3.  

In order to analyze the results whether there is significance between the results of each algorithm, we 
performed t-test on pairs of algorithms which is quite popular among researchers in evolutionary 
computing (Swagatam Das et al., 2009). In the table 4 we report the statistical significance level of   
difference of the means of PSO and ITLBO algorithm, DE and ITLBO algorithm, TLBO and ITLBO 
algorithm. Note that here ‘+’ indicates the t value is significant at a 0.05 level of significance by two-
tailed test, ‘·’ means the difference of means is not statistically significant and ‘NA’ stands for Not 
Applicable, covering cases for which the two algorithms achieve the same accuracy results. From the 
Table 4, we understand that in 15 cases ITLBO performs better than PSO, where as in 14 cases 
ITLBO performs better than DE and in 8 cases ITLBO performs better than TLBO. To show 
convergence nature of each algorithm corresponding to each function we have made graph for each 
function. We have drawn two different graphs for each function. In the first graph we have shown 
convergence nature of all four algorithms where as in second graph we have shown the convergence 
nature of TLBO and ITLBO, as ITLBO is modification of TLBO to improve convergence 
characteristic. From Figs 1-20, it is clear that in almost all cases ITLBO have faster convergence than 
others. 
 
4.2. Experiments 2: ITLBO vs. OEA, HPSO-TVAC, CLPSO and APSO 
 
The experiments in this section constitute the comparison of the ITLBO algorithm versus OEA, 
HPSO-TVAC, CLPSO and APSO on 8 benchmarks function described in Table 1. The experimental 
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result for OEA, HPSO-TVAC, CLPSO and APSO are gained from (Zhan et al., 2009; Ratnaweera et 
al., 2004)  directly , where OEA uses the number of 3.0 × 10   FEs and HPSO-TVAC, CLPSO and 
APSO use the number of 2.0 × 10  FEs, where as ITLBO runs for 4.0 × 10  FEs. In the last column 
of table 5 shows the significance level between best and second best algorithm using t test  at a 0.05 
level of significance by two tailed test. Note that here ‘+’ indicates the t value is significant ,’.’ means 
the difference of means is not statistical significant  and ‘NA’ stands for Not applicable, covering 
cases for which the two algorithms achieve the same accuracy results. As can be seen from table 5, 
ITLBO greatly outperforms OEA, HPSO-TVAC, CLPSO and APSO with better mean and standard 
deviation. 
 
Table 5  
Performance  comparison for ITLBO,OEA,HPSO-TVAC,CLPSO and APSO 
Function  OEA HPSO-TVAC CLPSO APSO ITLBO Significant  
Sphere Mean 2.48e-30 3.38e-41 1.89e-19 1.45e-150 0 + 

Std 1.128e-29 8.50e-41 1.49e-19 5.73e-150 0 
Schwefel 2.22 Mean 2.068e-13 6.9e-23 1.01e-13 5.15e-84 1.0079e-238 + 

Std 2.440e-12 6.89e-23 6.54e-14 1.44e-83 0 
Schwefel 1.2 Mean 1.883e-09 2.89e-07 3.97e+02 1.0e-10 0 + 

Std 3.726e-9 2.97e-07 1.42e+02 2.13e-10 0 
Step Mean 0 0 0 0 0 NA 

Std 0 0 0 0 0 
Rastrigin Mean 5.430e-17 2.39 2.57e-11 5.8e-15 0 + 

Std 1.683e-16 3.71 6.64e-11 1.01e-14 0 
Noncontinous 
Rastrigin 

Mean N 1.83 0.167 4.14e-16 0 + 
Std N 2.65 0.379 1.45e-15 0 

Ackley Mean 5.336e-14 2.06e-10 2.01e-12 1.11e-14 1.7702e-15 NA 
Std 2.945e-13 9.45e-10 9.22e-13 3.55e-15 1.2434e-15 

Griewank 
 

Mean 1.317e-02 1.07e-02 6.45e-13 1.67e-02 0 + 
Std 1.561e-02 1.14e-02 2.07e-12 2.41e-02 0 

 
4.3 Experiment 3: ITLBO  vs. JADE,  jDE and SaDE 
  
The experiments in this section constitute the comparison of the ITLBO algorithm versus SaDE, jDE 
and JADE on 8 benchmark functions which are describe in Table 1. The results of JADE, jDE and 
SaDE are gained from (Z. H. Zhan et al., 2009 ) directly. In the last column of Table 6 shows the 
significance level between best and second best algorithm using t test at a 0.05 level of significance 
by two tailed test. Note that here ‘+’ indicates the t value is significant,’.’ means the difference of 
means is not statistical significant and ‘NA’ stands for Not applicable, covering cases for which the 
two algorithms achieve the same accuracy results. It can be seen from Table 6 that ITLBO performs 
much better than these DE variants on almost all the functions . 
 
Table 6  
Performance  comparisons ITLBO, IADE,  jDE and SaDE 
Function FEs  SaDE jDE JADE ITLBO Significant  
Sphere 1.5x10  Mean 4.5e-20 2.5e-28 1.8e-60 0 + 

Std 1.9e-14 3.5e-28 8.4e-60 0 
Schwefel 2.22 2.0x10  Mean 1.9e-14 1.5e-23 1.8e-25 0 + 

Std 1.1e-14 1.0e-23 8.8e-25 0 
Schwefel 1.2 5.0x10  Mean 9.0e-37 5.2e-14 5.7e-61 0 + 

Std 5.4e-36 1.1e-13 2.7e-60 0 
Step 1.0x10  Mean 9.3e+02 1.0e+03 2.9e+00 0 + 

Std 1.8e+02 2.2e+02 1.2e+00 0 
Rastrigin 1.0x10  Mean 1.2e-03 1.5e-04 1.0e-04 0 + 

Std 6.5e-04 2.0e-04 6.0e-05 0 
Schwefel 2.21 5.0x10  Mean 7.4e-11 1.4e-15 8.2e-24 0 + 

Std 1.82e-10 1.0e-15 4.0e-23 0 
Ackley 5.0x10  Mean 2.7e-03 3.5e-04 8.2e-10 4.1892e-14 + 

Std 5.1e-04 1.0e-04 6.9e-10 2.8235e-14 
Griewank 
 

5.0x10  Mean 7.8e-04 1.9e-05 9.9e-08 0 + 
Std 1.2e-03 5.8e-05 6.0e-07 0 
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4.4  Experiment 4: ITLBO vs. CABC, GABC ,RABC and IABC 
  
The experiments in this section constitute the comparison of the ITLBO algorithm versus CABC ( 
Alatas et al., 2010), GABC (Zhu et al., 2010), RABC (Kang et al., 2011) and IABC (Weifeng Gao et 
al., 2011) on 8 benchmark functions which are described in table 1 . The parameters of the algorithms 
are identical to (Kang et al., 2011). In the last column of table 7 shows the significance level between 
best and second best algorithm using t test at a 0.05 level of significance by two tailed test. Note that 
here ‘+’ indicates the t value is significant ,’.’ means the difference of means is not statistical 
significant  and ‘NA’ stands for Not applicable, covering cases for which the two algorithms achieve 
the same accuracy results The results, which have been summarized in Table 7, show that ITLBO  
performs much better in most cases than these ABC variants. 
 

Table 7  
Performance  comparison  of ITLBO, CABC, GABC, RABC and IABC 
Function Fes  CABC GABC RABC IABC ITLBO Significant  
Sphere 1.5x10  Mean 2.3e-40 3.6e-63 9.1e-61 5.34e-178 0 + 

Std 1.7e-40 5.7e-63 2.1e-60 0 0 
Schwefel 
2.22 

2.0x10  Mean 3.5e-30 4.8e-45 3.2e-74 8.82e-127 0 + 
Std 4.8e-30 1.4e-45 2.0e-73 3.49e-126 0 

Schwefel 
1.2 

5.0x10  Mean 8.4e+02 4.3e+02 2.9e-24 1.78e-65 0 + 
Std 9.1e+02 8.0e+02 1.5e-23 2.21e-65 0 

Step 1.0x10  Mean 0 0 0 0 0 NA 
Std 0 0 0 0 0 

Rastrigin 5.0x10  Mean 1.3e-00 1.5e-10 2.3e-02 0 0 + 
Std 2.7e-00 2.7e-10 5.1e-01 0 0 

Schwefel 
2.21 

5.0x10  Mean 6.1e-03 3.6e-06 2.8e-02 4.98e-38 0 + 
Std 5.7e-03 7.6e-07 1.7e-02 8.59e-38 0 

Ackley 5.0x10  Mean 1.0e-05 1.8e-09 9.6e-07 3.87e-14 2.4672e-15 + 
Std 2.4e-06 7.7e-10 8.3e-07 8.52e-15 1.8165e-15 

Griewank 
 

5.0x10  Mean 1.2e-04 6.0e-13 8.7e-08 0 0 + 
Std 4.6e-04 7.7e-13 2.1e-08 0 0 

  
The t-test results also clearly indicate that the difference between the ITLBO algorithm and the other 
algorithms is statistically significant in most cases. Therefore, it is evident that the ITLBO algorithm 
has a good performance.  
 

5. Conclusion  
 

In this paper, we have developed a novel algorithm, ITLBO, to solve global numerical optimization 
problems by introducing a new search mechanism. We testify the performance of the proposed 
approach on a numbers of benchmark functions and provide comparisons with some other algorithms. 
The results show that the ITLBO algorithm possesses superior performance in accuracy, 
convergence, speed, stability and robustness, as compared to the other algorithms. Hence, the ITLBO 
algorithm may be a good alternative to deal with complex numerical optimization problems. Practical 
applications of the proposed approach in areas of clustering, data mining, design and optimization of 
communication networks, would also be worth studying. 
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