Smooth-Particle Phase Stability
with density and density-gradient potentials

Wm. G. Hoover and Carol G. Hoover
Highway Contract 60, Box 565
Ruby Valley, Nevada 89833

(Dated: February 8, 2008)

Abstract

Stable fluid and solid particle phases are essential to the simulation of continuum fluids and solids using Smooth Particle Applied Mechanics. We show that density-dependent potentials, such as $\Phi_\rho = \frac{1}{2} \sum (\rho - \rho_0)^2$, along with their corresponding constitutive relations, provide a simple means for characterizing fluids and that a special stabilization potential, $\Phi_{\nabla \rho} = \frac{1}{2} \sum (\nabla \rho)^2$, not only stabilizes crystalline solid phases (or meshes) but also provides a surface tension which is missing in the usual density-dependent-potential approach. We illustrate these ideas for two-dimensional square, triangular, and hexagonal lattices.

PACS numbers: 62.10.+s, 62.20.-x, 62.20.Dc, 83.10.Mj, 83.10Ff

Keywords: Smooth Particles, Stability, Density Gradients, Surface Tension
I. SMOOTH PARTICLE APPLIED MECHANICS

Smooth particle applied mechanics—SPAM—was discovered about thirty years ago [1, 2]. It has become a useful tool in simulating gases, fluids, and solids, and holds particular promise for problems involving large high-speed deformation and failure. The main advantage of the method is simplicity. SPAM closely resembles atomistic molecular dynamics and, in a variety of cases [3], the SPAM particle trajectories are isomorphic to those of molecular dynamics.

A smooth-particle code is less-complicated than typical grid-based continuum codes because the smooth-particle method evaluates spatial gradients in a particularly simple way, explained in more detail below. The main disadvantages of the method are instability in tension [4] and the lack of surface tension [5]. The present work introduces an idea—density-gradient potentials—designed to address those problems.

The basic smooth-particle approach is to represent all continuum properties (the density ρ, the velocity v, the stress tensor σ, ...) as interpolated sums of particle properties, where the particles are described by “weight functions”, expressing the range of influence of the particles in space. The simplest weight function satisfying five desirable conditions—(i) normalization, (ii) finite range h, (iii) a maximum at the origin, and (iv and v) two continuous derivatives everywhere—is Lucy’s. Normalized for applications in two-dimensional space Lucy’s weight function is as follows:

$$w_{\text{Lucy}}(r < h) = \frac{5}{\pi h^2} \left[1 - 6 \frac{r^2}{h^2} + 8 \frac{r^3}{h^3} - 3 \frac{r^4}{h^4} \right]$$

$$\rightarrow \int_0^h 2\pi r w(r) dr \equiv 1 .$$

The density at any point r is defined as the sum of all the particle contributions at that point:

$$\rho(r) \equiv \sum_j m_j w(|r - r_j|) ,$$

so that the density associated with Particle i is

$$\rho_i = \sum_j m_j w_{ij} ; \quad w_{ij} \equiv w(|r_i - r_j|) = w(r_{ij}) .$$

Other continuum properties at location r are likewise calculated as sums over nearby particles:

$$f(r)\rho(r) \equiv \sum_j m_j f_j w(|r - r_j|) \rightarrow$$
\[f(r) = \frac{[f(r)\rho(r)]/\rho(r) = \sum_j m_j f_j w(|r - r_j|)/\sum_j m_j w(|r - r_j|)}{.} \]

It is important to note that the interpolated function \(f(r) \) at the location of Particle \(j \) is typically different to the particle property \(f_j \) at that point.

Beyond using the point properties \(\{f_j\} \) to define the field properties \(f(r) \) this approach has the crucial advantage that \textit{gradients} of the field properties translate into simple sums of particle quantities:

\[
\nabla (\rho f)_r = (f \nabla \rho)_r + (\rho \nabla f)_r \equiv \nabla_r \left[\sum_j m_j f_j w(|r - r_j|) \right] = \sum_j m_j f_j \nabla w(|r - r_j|) .
\]

Expressions for the gradients of density, velocity, stress, and energy make it possible to express the \textit{partial} differential equations of continuum mechanics as \textit{ordinary} differential equations for the evolution of the particle coordinates, velocities, stresses, and energies [6]. The resulting “equation of motion” for the particles is

\[
\dot{v}_i = - \sum_j \left[(mP/\rho^2)_i + (mP/\rho^2)_j \right] \cdot \nabla_i w_{ij} ,
\]

where \(P_i \) is the pressure tensor associated with Particle \(i \). Where the pressure is hydrostatic, and slowly varying in space, it is noteworthy that the smooth-particle equations of motion are exactly the same as the equations of molecular dynamics, with the weight function \(w(r) \) playing the rôle of a pair potential. In the simple case that the internal energy depends only on volume (and not on temperature) the pressure is simply related to the internal energy per unit mass \(e \):

\[
P = \rho^2 \frac{de}{d\rho} .
\]

Specifying the density dependence of either the pressure or the internal energy, in such a case, corresponds to giving a full description of the equilibrium equation of state.

\section*{II. CONVERGENCE OF SMOOTH-PARTICLE AVERAGES}

The evolving time-and-space dependent smooth-particle sums converge to continuum mechanics as a many-particle limit, just as do the more usual grid-based approximations. The range of the smooth-particle weight function, \(h \), corresponds to a few grid spacings. In
FIG. 1: Summed-up densities evaluated at regular-lattice particle sites for (from top to bottom at the left side of the plot) the square, triangular, and hexagonal lattices. The range of Lucy’s weight function varies from 2 to 5 where the overall density of the lattice is unity and all the particles have unit mass.

practice, for an error level of order one percent, the weight-function sums must include a few dozen particles. Fig. 1 shows the dependence of density sums, \(\rho_i = \sum_j m_j w_{ij} \) on the range of the weight function for three regular two-dimensional lattices. In typical applications, with \(h \simeq 3 \sqrt{V/N} \) the density errors are of order one percent.

The density curves in the Figure correspond to an actual density of unity. The many crossings of the curves suggest that energetic flows of highly inhomogeneous fluids would exhibit a complex structure without any definite lattice structure while very slow flows might “freeze” into a least-energy crystalline form. Simulations of the Rayleigh-Bénard problem (convection driven by a temperature gradient in the presence of gravity) support this surmise\(^7\). Low-energy, high-pressure simulations can actually “freeze”, with the smooth particles forming a locked lattice structure rather than flowing. For fluids this freezing behavior is undesirable. In the next Section we consider the stress-free mechanical stability of the three simplest two-dimensional lattice structures.
III. PHASE INSTABILITY FROM DENSITY POTENTIALS

When discrete particles are involved there can be difficulties in representing the smooth and continuous nature of fluid flows. By analogy with atomistic molecular dynamics, one would expect that regular lattice arrangements of particles would resist shear. In the atomistic case in two space dimensions the shear modulus G is of the same order as the one-particle Hooke’s-law force constant evaluated from the Einstein model:

$$G \simeq \kappa_{\text{Einstein}} \equiv \frac{\partial^2 \Phi}{\partial x_1^2},$$

where x_1 is the displacement of a single test particle, Particle 1, from its lattice site, with all the other particles fixed. For a sufficiently simple density-dependent potential we can estimate the one-particle force constant κ_{Einstein} analytically.

Let us illustrate for the simplest possible density potential,

$$\Phi_{\rho} \equiv \sum_j \frac{1}{2} [\rho_j - \rho_0]^2; \quad \rho_j = \sum_i m_i w_{ij},$$

where Φ_{ρ} is the total potential energy of the system, ρ_0 is the target density minimizing that energy, and all the particle masses are set equal to unity, $m_j = 1$. The first derivative,

$$\frac{\partial \Phi_{\rho}}{\partial x_1} = \sum_j (\rho_1 + \rho_j - 2\rho_0)(xw'/r)_{1j},$$

vanishes for

$$x_1 = 0 \rightarrow \rho_1 = \rho_j = \rho_0.$$

The second derivative can be estimated by replacing the particle sum with an integral:

$$\frac{\partial^2 \Phi_{\rho}}{\partial x_1^2} = \sum_j (xw'/r)_{1j}^2 \simeq \int_0^h \left(\frac{xw'}{r} \right)^2 2\pi r dr = \frac{90}{7\pi h^4}.$$

Fig. 2 shows that this analytic result closely resembles the detailed lattice sums for all three regular two-dimensional lattices.

Nevertheless, our detailed investigation of this particular choice of fluid model,

$$E = \sum \frac{1}{2} (\rho - \rho_0)^2 \longleftrightarrow P = \rho^2 (\rho - \rho_0),$$

revealed that this expectation of a shear strength varying as h^{-4} is unfounded. Instead, regular lattices, with a stress-free, density-based potential corresponding to an athermal fluid constitutive relation, show no shear resistance whatever!
FIG. 2: Comparison of the exact summed-up Einstein force constant κ_{Einstein} with the approximate integrated estimate as a function of the range h of Lucy’s weight function. The top-to-bottom ordering of the curves is [integrated > triangular > square > hexagonal].

Numerical investigation shows that the square, triangular, and hexagonal lattices, arranged at the target density ρ_0, are all unstable to small displacements. This can be shown by using lattice dynamics, elastic theory, or molecular dynamics. In every case the regular lattices are unstable to a variety of shear modes.

The perfect-crystal elastic constants8, 9 for this potential can be calculated by two chain-rule differentiations of the potential Φ with respect to the elastic strains:

$$C_{11}V = \frac{\partial^2 \Phi}{\partial \varepsilon_{xx}^2}; \quad C_{12}V = \frac{\partial^2 \Phi}{\partial \varepsilon_{xx} \partial \varepsilon_{yy}}; \quad C_{44}V = \frac{\partial^2 \Phi}{\partial \varepsilon_{xy}^2};$$

$$\varepsilon_{xx} = \frac{\partial u_x}{\partial x}; \quad \varepsilon_{yy} = \frac{\partial u_y}{\partial y}; \quad \varepsilon_{xy} = \frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x}.$$

Here $u(r) = (u_x, u_y)$ represents an infinitesimal displacement from the perfect-lattice configuration. The resulting elastic constants take the form of lattice sums:

$$C_{11}V = \sum_i \left(\sum_j [x^2(u'/r)]_{ij} \right)^2;$$

$$C_{12}V = \sum_i \left(\sum_j [x^2(u'/r)]_{ij} \right) \left(\sum_j [y^2(u'/r)]_{ij} \right);$$
FIG. 3: Variation of the bulk modulus $B = C_{11} + C_{12} = 2C_{11} = 2C_{12}$ with the range of the weight function h for three two-dimensional lattices. The top-to-bottom ordering of the curves at $h = 2.1$ is [hexagonal > square > triangular].

$$C_{44}V = \sum_i \left(\sum_j [xy(w'/r)]_{ij} \right)^2 ;$$

$$r_{ij} = \sqrt{x_{ij}^2 + y_{ij}^2} ; x_{ij} = x_i - x_j ; y_{ij} = y_i - y_j .$$

For the square, triangular, and hexagonal lattices it is evident, by symmetry, that C_{11} and C_{12} are equal and that C_{44} vanishes. The nonvanishing elastic constant $C_{11} = C_{12}$ is exactly half the bulk modulus B. The range-dependence $B(h)$ is shown in Fig. 3 for all three lattice structures.

IV. PHASE STABILITY FROM DENSITY GRADIENTS

The results of the preceding section show that the smooth-particle fluid model (correctly) is able to flow under an infinitesimal shear stress. For solids shear resistance is required. A simple potential supporting shear strength minimizes the gradient of the density:

$$\Phi_{\nabla \rho} \propto \sum_j \frac{1}{2}(\nabla \rho)^2_j .$$

This potential is minimized for regular lattices, in which there can (by symmetry) be no density gradient at the particle sites. For systems with free surfaces—the details are not
FIG. 4: Hexagonal-lattice particle trajectories without the density-gradient potential. Initially the particle displacements were chosen randomly, with zero sum and with an initial rms value of \(\sqrt{\langle \delta r^2 \rangle} = 0.02 \). The range of Lucy’s weight function is \(h = 3 \) with the density and the particle mass both chosen equal to unity. The elapsed time (40,000 Fourth Order Runge-Kutta timesteps \(dt = 0.05 \)) is about 80 Einstein vibrational periods (\(\kappa_{\text{Einstein}} \approx 0.05 \)). \(\Phi_\rho = \frac{1}{2} \sum (\rho - \rho_0)^2 \).

Considered here, but are elaborated in a forthcoming book—this potential also provides a surface tension, eliminating the tendency of smooth particles to form string-like phases. Figs. 4 and 5 illustrate the stability of the hexagonal lattice in the absence, and in the presence, respectively of the density-gradient potential. In the one example detailed here (which is typical of many we have investigated, with various sizes, initial conditions, and crystal structures) the individual particle trajectories with and without the density-gradient potential are shown. Evidently, by choosing the proportionality constants wisely, these potentials can be tuned to reproduce desired flow stresses for solids modelled with SPAM. This approach avoids many of the difficulties involved in integrating the smooth-particle equations for the stress rates, \(\{ \dot{\sigma} \} \rightarrow \{ \sigma \} \).
FIG. 5: Hexagonal-lattice particle trajectories with the density-gradient potential \(\Phi_{\nabla \rho} = \frac{1}{2} \sum (\nabla \rho)^2 \). Initial conditions and length of the simulation are identical to those of Figure 4.
\[\Phi = \Phi_\rho + \Phi_{\nabla \rho} = \frac{1}{2} \sum [(\rho - \rho_0)^2 + (\nabla \rho)^2]. \]

V. CONCLUSIONS

Density-dependent potentials can be used to simulate the behavior of either fluids or solids from the standpoint of smooth-particle simulation. By introducing density-gradient potentials strength and surface tension can be introduced, providing a useful model for solids. We believe that this idea will prove fruitful in a wide variety of high-strain-rate applications of smooth-particle methods.

Acknowledgments

Much of this work was carried out with the help of Chris Clark and the support of the Academy of Applied Science’s “Research in Engineering Apprenticeship Program” at Great Basin College’s High Tech Center during the summer of 2005. Some of the work was performed under the auspices of the United States Department of Energy at the Lawrence
Livermore National Laboratory under Contract W-7405-Eng-48. We are specially grateful to Mike MacFarlane (Great Basin College) and Bob Ferencz (LLNL) for their help.