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Abstract. Extreme precipitation events are major causes of
severe floods and droughts worldwide. Therefore, scientific
understanding of changing properties of extreme precipita-
tion events is of great scientific and practical merit in the de-
velopment of human mitigation of natural hazards, such as
floods and droughts. Wetness and dryness variations during
1961–2008 in Xinjiang, a region of northwest China charac-
terised by an arid climate, are thoroughly investigated using
two extreme precipitation indices. These are annual max-
imum consecutive dry days (CDD) and annual maximum
consecutive wet days (CWD), based on a daily precipitation
dataset extracted from 51 meteorological stations across Xin-
jiang. As a result, we present spatial distributions of mean
annual CDD and mean annual CWD and their trends within
the study period. The results indicate that:
(1) CDD maximize in the Taklimakan and Turban basins of
southeast Xinjiang, while minima are found in the Tianshan
Mountains and the Ili river valley of northwest Xinjiang. On
the contrary, the longest CWD are observed in northwest
Xinjiang and the shortest in the southeast part of the region.
(2) On an annual basis, CWD temporal variability shows sta-
tistically positive trends and a rate of increase of 0.1d/10a.
CDD temporal variability shows statistically negative trends
and a rate of decrease of 1.7d/10a. (3) Goodness-of-fit anal-
ysis for three candidate probability distribution functions,
generalised Pareto distribution (GPD), generalised extreme
value (GEV) and Gumbel, in terms of probability behaviours
of CDD and CWD, indicates that the GEV can well depict
changes of CDD and CWD. (4) The CDD and CWD bet-

ter describe wet and dry conditions than precipitation in the
Xinjiang. The results pave the way for scientific evaluation
of dryness/wetness variability under the influence of chang-
ing climate over the Xinjiang region.

1 Introduction

Changes in the frequency or intensity of extreme weather and
climate events profoundly impact both human society and
the natural environment (Easterling et al., 2000; Zhang et
al., 2009, 2010b). Statistical analysis of extreme precipita-
tion variables is prerequisite and is important in engineering
practices for water resource risk assessment and decision-
making. Analysis of extreme precipitation events may im-
prove assessment of drought and flood forecasts, which in-
fluence water resource management. Many studies have re-
vealed changes in intensity and frequency of weather ex-
tremes worldwide (Colombo et al., 1999; Kharin and Zwiers,
2000; IPCC, 2001; 2007; Goldstein et al., 2003; Zhang et al.,
2008, 2010a) and in the vulnerable region of the southeast
Mediterranean (NASTOS et al., 2007, 2008). By analysing
trends of annual precipitation, Karl et al. (1996) reported
an increase in the frequency of high intensity precipitation
events across the United States over the period 1910–1996.
Quirin (2011) reported links between rising greenhouse-gas
levels and increasing rain intensity in the Northern Hemi-
sphere and increased flood risk in the United Kingdom. In
China, there has been a high frequency of floods in the seven
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big river valleys since the 1990s. In addition, both flood and
geological disasters have increased as a consequence of the
increase in concentration of intense precipitation events (e.g.,
Zhang et al., 2008). Changes in spatial and temporal con-
centration and variation of heavy precipitation were possible
reasons for frequent flood disasters in China (Xie et al., 2005;
Zhang et al., 2008, 2009a).

Xinjiang, in northwest China, is characterised by an arid
climate. This climate and its unique topography, which
is known as “two basins lying between three mountains,”
form the unique water cycle of this region. Alterations of
the climate and hydrologic cycles have occurred over the
past 30 yr. Strong signals of climatic shift from warm-dry
to warm-humid climate have been observed in the west-
ern Tianshan Mountains and neighbouring regions, includ-
ing northern Xinjiang, since the mid to late 1980s. Precipita-
tion, glacial meltwater and river runoff are rising, resulting in
increased flood damage and vegetation coverage and fewer
dust storm events (Yang et a1., 2003). As one of the most
important irrigated agricultural production areas in China,
Xinjiang has a vulnerable ecological environment and seri-
ous water shortage. Therefore, precipitation changes have a
crucial role in the sustainable ecological and regional socio-
economic environments. Increasing and intensifying weather
extremes, such as with precipitation, will further increase the
sensitivity of the ecological environment to climate changes,
particularly changes in precipitation. This is the major mo-
tivation for the current study. Jiang et al. (2002a, b, 2004a,
b, 2005) indicated an increase of droughts and floods in the
study region, which is in line with changing properties of
floods and droughts in China and across the world. Shi et
al. (2002, 2003) showed that the regional climate in north-
west China exhibited a climate shift from warm-dry to warm-
wet states over the last two decades. Flood and drought will
potentially increase, intensifying in the 21st century in Xin-
jiang because of global warming (Xu, 1997; Jiang et al.,
2004b; Zhang et al., 2008).

We analyse consecutive dry day (CDD) and consecutive
wet day (CWD) changes and possible implications for flood
and drought changes, using reliable, consistent and suffi-
cient rain gauge data. Temporal variability of extremes is
analysed over fixed decades, from 1961–1970, 1971–1980,
1981–1990, 1991–2000 and 2001–2008. CDD and CWD re-
turn period analysis is used to study the variable probabil-
ity of extreme rainfall events with observed data, to investi-
gate changes in flood risk. Although there have been studies
of drought/wetness variations elsewhere in China, e.g., the
Pearl River basin (Zhang et al., 2009b), no such research is
available for the Xinjiang region. We believe that the current
study is necessary for understanding precipitation changes
and possible implications for flood and drought changes in
the study region, under the impacts of a changing climate.

2 Study region

Xinjiang, an autonomous region in northwest China, has the
largest area of all province-level administrative regions and
arid land in China. Its total area is about 1.6 million km2,
which includes two vast deserts, the Taklimakan and the Gur-
bantunggut. These are situated between three high mountain
ranges, i.e., the Altun, Tianshan and Kunlun, which stretch
across the north, middle and south of the study region (Jiang
et al., 2009). The Tianshan Mountains divide Xinjiang into
southern and northern parts. Located in the hinterland of the
Eurasian continent, far from the ocean and surrounded by
mountains, the Xinjiang region is dominated by a temperate
continental climate with low precipitation. Annual precipita-
tion is distributed unevenly, with an average of 130 mm, and
the average number of rainy days is 55. The geographical
distribution of precipitation is as follows: Precipitation in-
creases from southeast to northwest, from windward to lee-
ward slopes and from mountain areas to plains and basins.
Precipitation dependence on elevation is obvious. The range
of annual precipitation in the south is less than in the north
(Su et al., 2007). The climate is affected mostly by the west-
erly current from the Atlantic and Arctic Oceans. Now, sev-
eral studies (Xu et al., 2008; Li et al., 2010) indicate that
annual precipitation is showing an increasing trend with the
increase in temperature. Variation of upper-air wind fields
over northwest Xinjiang indicates that moist currents from
the south are strengthened. At the same time, wind from the
north is also strengthened over eastern Xinjiang and mois-
ture transport from the southeast is weakened. This is the
main reason for a wet north and a continued dry south.

3 Data and methods

3.1 Data

A daily precipitation dataset from 55 stations across Xin-
jiang from 1961–2008 was provided by the National Cli-
matic Centre of China, China Meteorological Administra-
tion. This institution performed quality control of the dataset
before its release in addition to homogeneous detection for
the dataset (e.g., Feng et al., 2004; Li and Yan, 2009). Sta-
tions with missing precipitation data of more than one year
were excluded from the dataset; consequently daily precip-
itation data from 51 meteorological stations were analysed.
Figure 1 shows locations of these 51 stations. Meteorologi-
cal stations are located in oasis areas. Since there are more
oases in the north than the south, the number of stations fol-
lows accordingly. Because the distribution of stations is not
uniform, alternative analysis methods are used (Sect. 5) to
ensure that key results are not biased by this distribution.
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Fig. 1. Study area and location of meteorological stations.

3.2 Indices selected

First, it is useful to consider the following trends in simple
statistics of the precipitation series: the daily mean with at
least 0.05 mm of precipitation, the number of wet days per
year, and the number of dry days per year. Analysis of CDD
and CWD could be performed using different rainfall thresh-
olds for a dry/wet day, such as less/more than or equal to
0.05 mm, 0.1 mm, 1.0 mm, 10 mm, etc. (Kutiel, 1985). In
this study, CDD and CWD were evaluated using a definition
with consideration of the arid climate in Xinjiang. The an-
nual maximum consecutive dry or wet days (CDD/CWD) are
defined as the greatest number of consecutive days with daily
precipitation<0.05 mm d−1 or >0.05 mm d−1, respectively.

Dry index (DI) is defined as

DI =
kTs

Ps

,

whereTs is the average summer temperature (June, July, Au-
gust),Ps is summer precipitation total, andk = 17.5 is con-
stant. This index is from Introduction to Climate, Ecology
and Environment in Northwest China (Ding et al., 2001),
and reflects drought conditions in arid areas.

3.3 Distributions of extreme value

The theory of extreme value statistics states that the largest
of m independent observations from a fixed distribution ap-
proaches a known distribution asm increases, regardless of
the distribution from which the observations came (Coles,
2001). This is known as the extremal types theorem, which
is analogous to the central limit theorem. The theory and ap-
proaches are applicable to distributions of extreme minima
by analysing the variableX (Embrechts et al., 1997).

The cumulative distribution function (CDF) of the gener-
alised extreme value (GEV) is

F(x) = exp{−[1+
κ(x − ς)

β
]
1/κ

}. (1)

Now, ς , β andκ are the location, scale and shape parame-
ters, respectively. Because the moments of the GEV involve
the gamma function, estimation of GEV parameters using the
method of moments is no more convenient than the alterna-
tive method of maximum likelihood that is frequent in hy-
drologic applications. Maximum likelihood methods can be
easily adapted to include effects of covariates, or additional
influences (Saralees and Choi, 2007). For moderate and large
sample sizes, results of the two parameter estimation meth-
ods are usually similar. Based on Eq. (1), the return period
XT can be computed as

XT = ς −
β

κ
{1− [− log(1−

1

T
)]−κ

}, κ 6= 0, (2)

XT = ς − β{log[− log(1−
1

T
)]}, κ = 0. (3)

The generalised Pareto distribution (GPD) is essentially a
simple primitive distribution model (Ding et al., 2008),
which is specifically designed to describe probability fea-
tures of the whole observation dataset beyond a given critical
value (threshold).

The distribution function of GPD is

F(x) = 1− [1− κ(
x − β1

α1
)]

1
κ , κ > 0, β1 ≤ x ≤ β1 (4)

+
β1

κ
or κ < 0, β1 ≤ x < ∞,

F (x) = 1− [1− κ(
x − β1

α1
)]

1
κ , κ = 0. (5)

whereβ1 denotes the threshold,α1 the scale parameter andκ

the shape parameter (linear type). Ify = x − β1 denotes val-
ues of the variableX above the thresholdβ1, we may rewrite
the distribution function asλx = λt[1− F(x)].. It is seen
from Eq. (3.13) that forλx = λt[1−F(x)]., the GPD can be
simplified to a logarithmic distribution (Coles, 2001; Katz et
a1., 2005).

Based on Eq. (4), the return periodXT can be computed
as

XT = β1 +
α1

κ
[1− (λT )−κ

], κ 6= 0. (6)

Based on Eq. (5), the return periodXT can be computed as

XT = β1 + α1(InλT ),κ = 0. (7)

whereλ denotes the yearly mean crossing rate,β1 the given
threshold,α1 the scale parameter andκ the shape parame-
ter (to denote the distribution curve type). Then, the related
GPD model and its quantile can be found by obtaining GPD
parameters using the given estimation method.

3.4 Estimation of parameters using maximum
likelihood method

Maximum likelihood methods can be adapted easily to in-
clude effects of covariates or additional influences (Saralees
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Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Comparison of fit lines from Gumbel, GEV and GPD mod-
els.

and Choi, 2007). A much better approach to parameter fit-
ting for the three distributions is the method of maximum
likelihood. For many distributions, maximum likelihood fit-
ting requires an iterative procedure that is only practical with
a computer (Wilks, 2006). Supposingx1, · · · ,xn denote an-
nual maximum numbers of consecutive dry days for given
n years, the method of maximum likelihood was used to fit
these data. Assuming data independence, the likelihood is
the product of the densities of Eq. (1) for the observations
x1, · · · ,xn, i.e.,

L(ς,β,κ) =
1

βn
5ni=1

{[
1 =

κ(x1 − ς)

β

]1−
1
κ

}
(8)

×exp

{
−1+

κ(x1 − ς)

β

1
κ

}
.

The estimates ofς , β andβ, sayς , β andκ, are taken
as values that maximize the likelihood. This maximization
was done by a quasi-Newton iterative algorithm. Standard
errors of the estimates were computed by inverting the Fisher
information matrix (Prescott and Walden, 1980).

4 Results and discussion

The CDD and CWD time series were assessed using daily
precipitation data from 51 meteorological stations provided
by the China National Meteorological Service, for the period
1961–2008. First, we compared the performances of GPD,
GEV and Gumbel distribution functions; results are shown in
Fig. 2. This figure indicates that the GEV is the best choice,
followed by the Gumbel and GPD. Therefore, we chose
GEV as the basic distribution function and calculated CDD
and CWD values for different return periods. Parameters
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Note: ACDD (Anomaly of annual maximum consecutive dry days ) and ACWD ( Anomaly of annual maximum consecutive wet days ) 
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Fig. 3. Changes of CWD and CDD anomalies over Xinjiang from
1961 to 2008:(a)Anomalies of CDD;(b) anomalies of CWD. Note:
ACDD (Anomaly of annual maximum consecutive dry days) and
ACWD (Anomaly of annual maximum consecutive wet days).

of the Gumbel, GEV and GPD distributions were estimated
by using the maximum likelihood method. Goodness-of-fit
is tested using the Kolmogorov-Smirnov statistic test (K-S),
correlation coefficient (R), and mean square error (MSE)
(Ding et al., 2008; Hosking, 1990). Results are displayed
in Table 1. Table 1 shows that the GEV distribution is su-
perior to Gumbel and GPD. Thus, both Table 1 and Fig. 2
indicate that GEV is the optimal choice. The parameters of
GEV areς = 58.56,β = 6.87 andκ = −0.30 for CDD, and
ς = 4.50,β = 0.41 andκ = −0.18 for CWD. The return pe-
riods of CDD and CWD are shown in Table 2. Now, we
use the GEV statistical distribution function to fit the out-
put of CDD/CWD for different return periods and map spa-
tiotemporal distributions of CDD and CWD for different re-
turn periods, using all data from the selected 51 stations. The
drought and flood situation of the Xinxiang region in the next
5 yr, 10 yr, 20 yr, 30 yr, 50 yr and 100 yr is then discussed.
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Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Comparison of spatial distribution fits for(a) average annual precipitation,(b) drought index,(c) average CDD and(d) average CWD.

Table 1. Comparison of fits from GEV, Gumbel and GPD models.

stations
GEV Gumbel GPD

K-S MSE R N K-S MSE R N K-S MSE R N

Xinjiang 0.05 0.01 0.99 51 0.14 0.03 0.99 51 0.23 0.14 0.98 51

4.1 Spatial distributions of CDD and CWD

To evaluate annual CDD and CWD trends, one may examine
the temporal variability of mean annual anomalies of CDD
and CWD (Fig. 3). Figure 3a shows that CDD decreases at
a linear rate of 1.7 d per 10 a, with an unprecedented decline
beginning in the mid-1980s. This demonstrates that consec-
utive dry days in Xinjiang decreased constantly, explaining
the decrease of drought disasters there. Figure 3b shows that
CWD increased at a rate of 0.10 d per 10a. After 1988, the
average CWD anomaly in most years was positive; there was
a general increase before that year and a faster increase after-
ward. By analysing CDD and CWD variations, we conclude
that there was a regime shift from drought to wet in 1988.
Shi et al. (2002) reported an increasing trend of annual mean
rainfall in these regions.

Xinjiang is characterised by a great variation in geomor-
phologic features and is mainly composed of a large desert
in the middle and by mountains elsewhere. Figure 4 was
created with GIS technology and the kriging interpolation

method. For detailed derivation and discussion of kriging,
see Cressie (1991) or Journel and Huijbregts (1978). Kriging
interpolation is the most appropriate for our analysis. Fig-
ure 4a–d shows spatial distributions of averages of annual
precipitation, annual drought index (DI), annual CDD and
CWD, respectively. Compared are spatial distributions of
annual precipitation with mean annual CWD, plus annual
drought index with average annual CDD. The general dry-
wet distribution pattern of Fig. 4a indicates that the northwest
is wetter than the southeast, with relatively plentiful precipi-
tation. From the spatial distribution of mean annual CWD
(Fig. 4d) over the study period (1961–2008), the longest
CWD were in northwest Xinjiang, while the shortest were
in the southeast. This is clearly depicted by the scatter plots
of Fig. 5a, which are arranged by longitude-latitude. Highest
mean annual values are found at stations in the northwest.
There is a good correlation between CWD and longitude-
latitude. There is negative correlation between CWD and
longitude, and positive correlation between CWD and lat-
itude. Figure 4d shows that CWD also declines gradually

www.nat-hazards-earth-syst-sci.net/12/1353/2012/ Nat. Hazards Earth Syst. Sci., 12, 1353–1365, 2012
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Fig. 5. Scatter plots of(a) CWD and longitude-latitude,(b) CDD and longitude-latitude.

from southeast to northwest, reflecting the precipitation and
drought-wet distributions across the region. Xinjiang is a
drought area, with extremely scarce precipitation and rare
heavy rainfall. Continuously heavy rainfall causes disasters,
e.g., floods, landslides, large areas of soil erosion and oth-
ers. If a continuous frequency distribution of heavy precip-
itation can be effectively estimated, then disasters and dam-

ages can be mitigated. Figure 4b shows the spatial pattern
of annual drought index. This figure shows that this index
declines gradually from southeast to northwest. The greater
the drought index, the more serious the drought. The mean
drought index can estimate the drought condition well and
is principally used for climatic zoning. However, it does
not reflect the frequency of regional drought. The spatial
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Fig. 6. Spatial distribution of decadal average CDD in Xinjiang:(a) 1961–1970;(b) 1971–1980;(c) 1981–1990;(d) 1991–2000;
(e)2000–2008.

Table 2. Return level estimates for T = 10, 20, 50, 100 over all Xinjiang.

GEV distribution
Return level (95% confidence interval)

T = 5 T = 10 T = 20 T = 30 T = 50 T = 100

MCDD 66.85 69.79 72.05 73.14 74.33 75.67

MCWD 5.04 5.26 5.44 5.54 5.65 5.78

Note: MCDD (maximum consecutive dry days) and MCWD (maximum consecutive wet days).

distribution of mean annual CDD (Fig. 4c) over the study
period reveals that the longest CDD were in the Taklimakan
and Turban basins of southeast Xinjiang, while the shortest
CDD were in the Tianshan Mountains and Ili river valley of

the northwest. This is clearly depicted by the scatter plots of
Fig. 5b, which are arranged by longitude-latitude. Highest
mean annual values are found at stations in the southeast.
Correlation is good between CDD and longitude-latitude.
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Fig. 7. Spatial and temporal distribution of decadal average CWD in Xinjiang:(a) 1961–1970; (b) 1971–1980; (c) 1981–1990;
(d) 1991–2000;(e)2000–2008.

There is positive correlation between CDD and longitude,
and negative correlation between CWD and latitude. In the
Taklimakan and Turban basins, actual precipitation is scarce
and average CDD is greater. In the Tianshan Mountains
and Ili river valley, actual precipitation is greater and CDD
smaller. CDD as an extreme value has the advantage of
producing statistics of annual maximum continuous drought
days, which cannot be represented by the drought index.
Drought forms when precipitation is lacking for a long pe-
riod, therefore, CDD as continuous dry days (and not CCD)
may indicate drought occurrence.

Maps of CDD spatiotemporal distribution in different pe-
riods from 1961 to 2008 were made using the same inter-
polation method. Figure 6a–e represents decadal averages
from 1961 to 2008, respectively. Figure 6a shows that CDD

declined gradually from southeast to northwest. This indi-
cates that in the period 1961–1970, there were more than
four months (120 days) without precipitation in the south-
east, while in the northwest the average CDD was less than
forty days. Figure 6b shows that CDD in the southeast
were greater than in the northwest. It also shows that CDD
in the southeast from 1971–1980 (Fig. 6b) exceeded that
from 1961–1970 (Fig. 6a). This explains why droughts
from 1971–1980 were more serious than those from 1961–
1970. Figure 6c shows the CDD distribution from 1981–
1990. From this figure, we see that CDD changed greatly
compared to 1971–1980. Generally, average CDD in the
southeast and northwest were less than 135 and 35 days, re-
spectively. Figure 6b indicates that CDD in the southeast and
northwest were less than 140 and 40 days, respectively. This
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Fig. 8. Spatiotemporal distribution of the estimated CDD in Xinjiang for various recurrence intervals:(a) 5 yr; (b) 10 yr; (c) 20 yr; (d) 30 yr;
(e)50 yr; (f) 100 yr.

indicates that from 1981–1990, drought conditions relaxed.
Figure 4d shows a decrease of CDD compared to Fig. 6c.
However, a different state is evidenced in Fig. 6e, in which
CDD from 2001–2008 shows a slight increase.

Figure 7 shows spatiotemporal distributions of CWD time
series from 1961–1970, 1971–1980, 1981–1990, 1991–2000
and 2001–2008. Figure 7a indicates that drought in the
southeast was more serious than in the northwest. Rainfall
and CWD in the southeast were less than in the northwest,
indicating a positive correlation between CWD and precip-
itation. Figure 7a clearly shows that CWD in the southeast
was less than 4 days, while in the northwest it was more than
6 days. Figure 7b also shows that CWD in the southeast was
less than in the northwest and the area with CWD>4 days
accounts for half the Xinjiang region. Figure 7c shows that
the area with CWD>4 days also exceeds half of the region.

Figure 7d–e shows that areas with CDD>4 days increased.
This areal enlargement may indicate that the Xinjiang region
is becoming wet.

4.2 Extreme wet and dry periods in the future

It was shown in the previous section that Xinjiang spatial
distributions of CDD and CWD have changed coherently
or uniformly over the period 1961–2008. In this section,
temporal aspects are considered in further detail, particu-
larly with regard to the future context of CDD and CWD
spatial distributions. Return period analysis is performed
over annual maximum consecutive dry-days series for dif-
ferent periods (Fig. 8). The extreme value for the 5-yr re-
turn period (Fig. 8a) shows that CDD in the southeast are
greater than in the northwest, which is similar to the drought
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Fig. 9. Spatiotemporal distribution of estimated CWD over Xinjiang for various recurrence intervals:(a) 5 yr; (b) 10 yr; (c) 20 yr; (d) 30 yr;
(e)50 yr; (f) 100 yr.

index distribution. It also shows an increasing trend of CDD
>140 days in the southeast, suggesting that drought risk in
these areas will increase. Figure 8b shows the spatiotemporal
distribution of CDD for the 10-yr return period. Comparing
Fig. 8b and a, we found that the probability of CDD in excess
of 140 days in the southeast for the 10-yr return period ex-
ceeds that for the 5-yr return period. This demonstrates that
the drought risk of CDD for the 10-yr return period exceeds
that for the 5-yr return period. It also shows that decadal
variability of the drought risk coefficient is closely related to
the selected time span. Figure 8c shows CDD for the 20-year
return period. By comparing Fig. 8b and c, we find that the
frequency of CDD of more than 140 days for the 20-yr re-
turn period is relatively high in the southeast. An increase in
drought risk during the 20-yr return period is evident. Fig-

ure 8d shows spatial distributions of CDD for the 30-yr re-
turn period. By comparing Figs. 8d and c, we clearly see that
the rate of CDD>140 day expansion slows, whereas that of
CDD>180 days becomes faster in the southeast. It is evident
that areas with CDD>180 days are drought-prone, so more
effort should be made for drought precautions. Figure 8e–f
shows CDD spatial distributions for 50-yr and 100-yr return
periods. These figures indicate a slow expansion of CDD
>180 days in the southeast.

Figure 9 was constructed using GIS technology and the In-
verse Distance Weighted (IDW) interpolation method. Fig-
ure 9a shows the CWD distribution for the 5-yr return pe-
riod. A wetting trend in Xinjiang is indicated by compari-
son of Fig. 9a and 6e. This is similar to Shi et al. (2002),
which reports an increasing trend in mean annual rainfall in
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the Xinjiang region. The CWD distribution for the 10-yr re-
turn period is shown in Fig. 9b. Comparison of Fig. 9b and a
reveals that the probability of CWD greater than 10 days for
the 10-year return period exceeds that for the 5-year return
period in the northwest. Figure 9c shows the CWD spatial
distribution for the 20-yr return period. It shows that the
area with CWD>10 days is about one third that of Xin-
jiang. Figure 9d illustrates the CWD distribution for a 30-yr
return period. From Fig. 9d, we find that the area with CWD
>10 days covers half the Xinjiang region. Figure 9e and f
shows CWD distributions for a 50-yr and 100-yr return pe-
riod, respectively. A flood risk increase in future decades is
evident.

5 Conclusions

In this study, we applied the GEV statistical distribution
function to fit the output of CDD/CWD with different re-
turn periods to diagnose dry/wet environmental variability
and spatial patterns in Xinjiang, a drought-susceptible region
in northwest China. Interesting results were obtained, as fol-
lows:

1. The dry/wet environment in Xinjiang has altered
markedly. Aridity in Xinjiang has decreased promi-
nently. CDD decreased at a rate of 1.7d/10a, while
CWD increased at a relatively smaller rate of 0.1d/10a.
This situation accords with the view that the climate
of Xinjiang has been changing from warm-dry to
warm-wet in recent years.

2. The findings indicate that mean annual CDD max-
imized in the southeast, while minima were in the
northwest. On the contrary, the longest mean annual
CWD were in the west and northwest, whereas the
shortest were in the east.

3. Spatiotemporal patterns of CDD/CWD indicate that
dry/wet conditions in Xinjiang may be well represented
by the return periods of CDD/CWD. The indexes
were successfully applied to reflect drought and flood
regimes in the region. Comparative analysis of CWD
and CDD can depict drought and flood regimes in
Xinjiang. Using specific numerical targets, regions
suffering from drought or flood can be detected. From
analysing CDD and CWD in future 5 a, 10 a, 20 a, 30
a, 50 a and 100 a periods, we conclude that flood risk
will gradually increase, and drought risk will decrease.

4. CDD/CWD as indicators of drought and flood were
used to expect shorter dry periods and longer wet peri-
ods. Recently, much domestic climate change research
has only addressed extreme precipitation, temperature,

aridity index (exponent) and others. However, research
on the index of extreme precipitation, especially annual
maximum numbers of consecutive dry/wet days as in
this paper, has been sparse. The indexes were success-
fully used here to portray drought and flood regimes in
Xinjiang. The results are important in forming regional
adaptation strategies against global warming.
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