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Abstract. Based on rainfall intensity-duration-frequency
(IDF) curves, fitted in several locations of a given area, a ro-
bust optimization approach is proposed to identify the best
locations to install new rain gauges. The advantage of ro-
bust optimization is that the resulting design solutions yield
networks which behave acceptably under hydrological vari-
ability. Robust optimization can overcome the problem of se-
lecting representative rainfall events when building the op-
timization process. This paper reports an original approach
based on Montana IDF model parameters. The latter are as-
sumed to be geostatistical variables, and their spatial interde-
pendence is taken into account through the adoption of cross-
variograms in the kriging process. The problem of optimally
locating a fixed number of new monitoring stations based
on an existing rain gauge network is addressed. The objec-
tive function is based on the mean spatial kriging variance
and rainfall variogram structure using a variance-reduction
method. Hydrological variability was taken into account by
considering and implementing several return periods to de-
fine the robust objective function. Variance minimization is
performed using a simulated annealing algorithm. In addi-
tion, knowledge of the time horizon is needed for the compu-
tation of the robust objective function. A short- and a long-
term horizon were studied, and optimal networks are iden-
tified for each. The method developed is applied to north
Tunisia (area = 21 000 km2). Data inputs for the variogram
analysis were IDF curves provided by the hydrological bu-
reau and available for 14 tipping bucket type rain gauges. The
recording period was from 1962 to 2001, depending on the
station. The study concerns an imaginary network augmen-
tation based on the network configuration in 1973, which is

a very significant year in Tunisia because there was an ex-
ceptional regional flood event in March 1973. This network
consisted of 13 stations and did not meet World Meteorologi-
cal Organization (WMO) recommendations for the minimum
spatial density. Therefore, it is proposed to augment it by 25,
50, 100 and 160 % virtually, which is the rate that would meet
WMO requirements. Results suggest that for a given aug-
mentation robust networks remain stable overall for the two
time horizons.

1 Introduction

Rain gauge monitoring networks are highly important to
estimate precipitation and erosion, and to evaluate runoff.
In fact, rainfall intensity is the most important variable in
runoff and erosion impact prediction. More generally, rain-
fall network accuracy depends on precipitation variability
as well as on the network size and design. Several opti-
mization approaches have been proposed in the literature
since the early work of Bras and Rodríguez-Iturbe (1976)
and Delhomme (1978), who proposed a methodology of
network design based on the minimization of the mean
areal kriging error variance. The adoption of geostatisti-
cal methods for rainfall network sizing and augmentation
was also performed by Pardo-Igúzquiza (1998). In Del-
homme (1978), the optimal location of rain gauges was iden-
tified using a technique called the fictitious point method
while in Pardo-Igúzquiza (1998) an automatic optimiza-
tion technique (namely simulated annealing) was adopted.
Barca et al. (2008) provided a methodology for assessing the
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optimal location of new monitoring stations within an exist-
ing rain gauge monitoring network. The methodology used
geostatistics and probabilistic techniques (simulated anneal-
ing) combined with GIS. A method composed of kriging and
entropy that can determine the optimum number and spatial
distribution of rain gauge stations in catchments was pro-
posed in Chen et al. (2008). Chebbi et al. (2011) have con-
sidered mono-objective criteria assuming 1 h rainfall inten-
sity interpolation and erosivity factor interpolation and us-
ing one single extreme rainfall event to conduct the analysis.
Rainfall quantities retained in previous studies were mainly
taken in a deterministic way. Effectively, a single rainfall pat-
tern was selected for which the average kriging variance was
minimized to achieve the best new rain gauge locations (Del-
homme, 1978; Pardo-Igúzquiza, 1998; Chebbi et al., 2011).
In the present study, it is aimed to find out new observa-
tion locations using a collection of rainfall patterns or rain-
fall auxiliary variables, each characterized by its probability
of occurrence. Because robust optimization is an approach
which can deal with the uncertainty in optimization problems
by computing a solution that can cope with possible different
scenarios (Mulvey et al., 1995; Bai et al., 1997; Beyer and
Sendhoff, 2007), we claim that a robust network augmenta-
tion framework is proposed here.

Regarding water related problems, the literature contains a
few applications of robust optimization techniques. Watkins
and McKinney (1997) proposed two problems to illustrate
the suitability of robust optimization in the resolution of wa-
ter resources problems. The first is a problem of urban trans-
fer of water vis-à-vis the availability of water and the need to
consider water supply as random variable for decision mak-
ing. The second problem relates to the management of the
quality of subsoil waters, considering the uncertainty of the
aquifer parameters. Ricciardi et al. (2007) considered a sim-
ilar question in the context of aquifer remediation. Afonso
and Cunha (2007) developed a robust model to design bio-
logical reactors and secondary settling tanks in wastewater
treatment plants. Cunha and Sousa (2010) presented models
for the robust design of water distribution networks to en-
able them to face the uncertainty of network working con-
ditions under extreme events. Zeferino et al. (2012) have re-
cently proposed a robust optimization model for the sitting
and sizing of wastewater treatment plants at regional level
that includes uncertainty issues associated with river flows.
Accidents such as broken conduits or tanks and change in
demand may affect how water distribution functions. Our
study proposes to apply these approaches to decide on rain
gauge network development. The problem of the best rain
gauge location is addressed. North Tunisia is the study do-
main (area = 21 000 km2). Rainfall intensity at a given lo-
cation is considered as a random variable. Local intensity-
duration-frequency curves are assumed to reflect the hydro-
logical variability. Section 2 presents the method used in
this paper. Section 3 presents the case study and the avail-

able data. Section 4 sets out the results obtained, and some
concluding remarks are presented in Sect. 5.

2 Method

2.1 Definition of candidate stations

The main purpose of the rain gauge selection algorithm is to
identify an optimal set of locations for a particular number
of stations over the study area. The domain is in the Mediter-
ranean area, and elevation ranges from 0 to 1281 m. Accord-
ing to WMO (1994, Sect. 20), the minimum recommended
density is 1 station per 600 km2 for Mediterranean plain ar-
eas in difficult conditions. This means, for instance, places
where gauges are difficult to install and maintain, perhaps
because of rugged topography or site inaccessibility. The ini-
tial network we consider was in operation at the time of the
March 1973 flood event, which is why we took this as the
point of departure of our problem. It was composed of 13
sparsely distributed stations, which was wholly inadequate to
cover the rainfall variability over the study area. This study
has a methodological character, and so various scenarios are
simulated where the number of stations of the initial network
is increased by 25 % (scenario 1), 50 % (scenario 2), 100 %
(scenario 3) and 160 % (scenario 4). Moss and Tasker (1991)
suggested that the number of candidate stations should be
at least three times the number of the desired optimal sta-
tions. Accordingly, for scenarios 1 to 3, 40 candidate stations
are assumed. In scenario 4, which achieves WMO-required
density, the number of candidate stations is increased to 60.
These 60 candidate stations, which contain the 40 candi-
date stations considered previously, are imaginary locations
of rain gauges, equally distributed over the study area.

2.2 The IDF database

The search for “robust” solutions is an adequate method
to solve the problem as it takes into account the hydrolog-
ical uncertainty inherent to rainfall occurrence. Since we
are interested in short duration rainfall, the maximum rain-
fall intensity for specified durations is the variable to be
studied in this paper. To deal with hydrological risk in-
herent to rainfall data, we would need data on the maxi-
mum rainfall intensities recorded for several events. How-
ever, the problem is that we do not have this type of in-
formation for the study area. Thus, the adjustment parame-
ters of the intensity-duration-frequency (IDF) curves (Kout-
soyiannis et al., 1998) are proposed as alternative or auxiliary
variables (parametersa(T ) andb(T ) of Eq. 1). An existing
IDF study performed by DGRE-ST2i (2007) is taken as basis
for this. The following times of reference were considered
in DGRE-ST2i (2007): 5, 10, 15, 30, 45,. . . , 180 min. For
stations having short observation periods (3 to 10 yr) with-
out gaps, DGRE-ST2i (2007) selected thresholds (generally
one threshold per time of reference), identified using various
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tests, and adopted the intensities that were greater than the
fixed threshold, to constitute the time series. The peak over
threshold approach was adopted by DGRE-ST2i (2007) for
the rain gauges characterized by a large number of gaps in
the rainy months, even in the case where the number of ob-
servation years exceeded 10. For the rain gauges character-
ized by recordings without gaps and observed over long pe-
riods, DGRE-ST2i (2007) considered theM highest values
observed inM years to achieve the statistical analysis.

The statistical study was carried out by DGRE-
ST2i (2007) with Hydraccess software from IRD (Hydrac-
cess, 2000). The series of annual maximum rainfall in-
tensities for reference durations of 5, 10, 15, 20, 30, 45,
60, 120 and 180 min were adjusted by DGRE-ST2i (2007)
by means of nine probability distribution functions: Gauss,
Gumbel, Galton, Pearson III, Pearson V, Goodrich, Fréchet,
WRC-USA and Escapes.

The Montana model, which predicts maximum rainfall in-
tensity over durationt for the return periodT as a power
function of the duration (Eq. 1) (Burlando and Rosso, 1996),
was adopted by DGRE-ST2i (2007). The estimated model
parametersa(T )andb(T ) are reported.

I (t,T ) = a (T ) ∗ t−b(T ), (1)

whereT is the return period (in years). Here, we adopt the
hydrological risk definition where the risk isp = 1/T (Bobée
and Ashkar, 1993) so that we may consider thatT reflects the
hydrological risk,t is rainfall duration in minutes, anda(T )

andb(T ) are Montana IDF model parameters.

2.3 Geostatistical framework for IDF parameters

In this studya(T ) andb(T ) are taken as geostatistical vari-
ables (Matheron, 1965). In fact, it is assumed that it is possi-
ble to represent thea(T ) andb(T ) spatial structures through
variogram functions. Furthermore, the analysis is made pos-
sible by the fact that the two parametersa(T ) andb(T ) are
known at the same experimental points.

Further, we first test whethera(T ) andb(T ) are dependent
or independent. For this, their experimental cross-variogram
γa(T )b(T ) (Chilès and Delfiner, 1999) is examined (Eq. 2).
The experimental cross-variogram is defined as the variance
of the difference between two variables of different types or
attributes at two locations.

γa(T )b(T ) (h) =
1

2∗ N (h)

N(h)∑
i=1

[a (xi + h) − a (xi)]

[b (xi + h) − b(xi)], (2)

whereN(h) represents the number of sample points sepa-
rated by interdistanceh, andxi andxi +h are sampling loca-
tions separated by interdistanceh.

For the cross-correlation analysis, it is recommended to
adopt the co-dispersion coefficient graphra(T )b(T )(h) (Math-
eron, 1965), which is linked to the cross-variogram and to the

direct variograms by

ra(T )b(T ) (h) = γa(T )b(T ) (h)
/√

γa(T )a(T ) (h) ∗ γb(T )b(T ) (h), (3)

whereγa(T )a(T ) andγb(T )b(T ) are the direct variograms re-
spectively ofa(T ) andb(T ).

Generally, the direct variogram function is a key tool to
quantify the variability associated with the regionalized vari-
able,Z(the variableZ is set asa(T ) or b(T )). The experi-
mental semivariogram,γ (h), is calculated from the data as a
function of the point separation,h, and is given by

γ (h) =
1

2N(h)

N(h)∑
i=1

[Z(xi + h) − Z(xi)]
2, (4)

whereN(h) is the number of sample points separated byh,
xi andxi + h are sampling locations separated by a distance
h, andZ(xi) andZ(xi +h) are values of the variableZ mea-
sured at the corresponding locations.

The sample variogram is fitted to a variogram model. For
a stationary regionalized variable, the variogram is charac-
terized by three main parameters: range, sill, and nugget.
“Range” is the distance at which measurements cease to be
correlated with each other. “Sill” is the variogram value at
and beyond the range distance. The “nugget” effect is the ran-
dom component of the digital values, graphically expressed
by the discontinuity of the variogram at the origin. A para-
metric approach is used to derive the variogram model. With-
out loss of generality, further developments are given for the
example of the spherical model in Eq. (5), which is a bounded
variogram:

γδ (h) = s (δ) ∗

[
1.5∗

(
h
/
r (δ)

)
− 0.5∗

(
h
/
r (δ)

)3]
. (5)

The sill s(δ) represents the highest variance for a large data
point distance, and, for the spherical model, the ranger(δ)
refers to the distance over which the data are correlated.

The crossed and direct variograms are estimated from the
pairs (a(T ), b(T )) estimated at each observed location for
the various durations (t = 5, 10, 15, 20, 30, 45, 60, 120 and
180 min).

It is assumed that if the graphra(T )b(T )(h) is constant, it
may be concluded that the parametersa(T ) andb(T ) are de-
pendent (Chilès et al., 1991).

Furthermore, network optimization is achieved by adopt-
ing an objective function to be maximized (or minimized).
The quality ofa(T ) spatial interpolation is selected as a tar-
get, and kriging is adopted as the interpolation method. Ef-
fectively, advantage is taken of the fact that kriging is accom-
panied by the estimation of the variance of estimation error,
which is an indicator of interpolation accuracy. Also, an ad-
vantage of kriging is that kriging variance error can be sim-
ulated using imaginary networks (with no observed data at
the krigged location). We therefore used kriging methods to
define the objective function. Hence, the minimization of the
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Figure 1. Location of rain gauges in the study area (Medjerda basin BV5; Northern 
coast basins BV3 and surrounding basins Meliane Basin BV4; Central Tunisia basins 
BV6) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mediterranean Sea 

Algeria 

Fig. 1. Location of rain gauges in the study area (Medjerda basin
BV 5; northern coast basin BV 3; and surrounding basins (Meliane
basin BV 4 and central Tunisia basin BV 6)).

average (spatial mean over the study domain) kriging error of
a(T ) is the specific approach proposed here. Six return peri-
ods (T = 2, 5, 10, 20, 50, 100 yr) covering a broad panoply
of risk situations are considered.

As a(T ) andb(T ) are not independent, it is proposed to
develop the kriging estimate ofa(T ) using b(T ) as infor-
mation. External drift kriging (EDK) is a suitable method to
achieve this goal. In fact, in the case of a sparse network,
kriging with external drift seems more appropriate than or-
dinary kriging. EDK requires knowledge of the values of
b(T ) at the locations wherea(T ) is to be interpolated. This is
achieved by first using an ordinary kriging approach tob(T ).

Therefore, a map ofb(T ) is produced that is then adopted
to interpolatea(T ). The kriging systems are set out in Ap-
pendix A.

2.4 The objective function

The decision model presented here is built within the frame-
work of robust optimization and is inspired by the case stud-
ies reported in Mulvey et al. (1995). The objective func-
tion is written using the concept of regret by considering a
quadratic term expressing the difference, for each scenario,
between the values of the standardized mean spatial kriging
variance achieved by the solution to be implemented and by
the optimal solution for the scenario. This means that the op-
timal solution for the model proposed will be solution-robust
(Laguna, 1998). As such, the optimal solution obtained will
be “close” to the optimum for any of the realized scenarios
ensuring the optimality robustness. The robust optimization
method adopted requires knowledge of a time horizon. For a
fixed hydrologic riskp = 1/T , whereT is the return period,
we express the probability of an overrun of the event of return
periodT during time horizon of durationN . It corresponds

Table 1.Studied rain gauges by DGRE-ST2i (2007).

Rain Rain Time Begining
gauge gauge series of
name number Basin size recording

Ghardimaou 1 BV 5 26 yr 29 Dec 1973
Zouarine gare 2 BV 5 33 yr 30 Sep 1968
Aïn Taga 3 BV 5 32 yr 9 May 1964
Aïn Beya Fernana 4 BV 5 17 yr 1 Jan 1983
Haïdra Poste Douanes 5 BV 5 17 yr 5 Mar 1984
Izid Barrage 6 BV 5 10 yr 28 Jul 1973
Joumine Antra 7 BV 3 28 yr 21 Aug 1963
Mellègue K13 8 BV 5 17 yr 15 Dec 1976
Oued Tine cassis 9 BV 3 20 yr 12 Jul 1968
Sarrat Pont Route 10 BV 5 18 yr 21 Oct 1982
Sejnène 11 BV 3 15 yr 19 Sep 1962
Siliana Laouej 12 BV 5 14 yr 5 Feb 1974
Slouguia 13 BV 5 15 yr 3 Jan 1976
Sraya Ecole 14 BV 5 26 yr 16 Dec 1975

to

u(T ) = 1− (1− p)N , (6)

whereN is the number of years in the horizon. Two time
horizons are successively considered in the present study: the
short term (N = 5 yr) and the long term (N = 30 yr).

u(T ) is further scaled by dividing it by the sum ofu(T )

over the various return periods.

ω(T ) = u(T )
/∑i=NT

i=1
u(Ti), (7)

whereNT is the number of return periods; this means the
number of scenarios considered in the study.

To evaluate the mean spatial kriging error variance over
the study domain, a grid mesh with a resolution of 4 km was
used. The optimization problem consists of minimizing the
objective function expressed by

Min
NT∑
i=1

ω(T = Ti) ∗ (S (T = Ti) − Sref (T = Ti))
2, (8)

where
NT∑
i=1

ω(T = T i) = 1withω(T = Ti) as indicated in

(Eq. 7), withSref(T = Ti) being the value of the standard-
ized mean spatial kriging variance obtained for every return
periodTi independently of the other return periods. It is taken
as reference.

In addition, standardization of the mean spatial kriging
variance is obtained by using the interquartile range ofa(T )

kriging error variance map:

S (T = Ti ) =

(
n∑

i=1

(
σi(a(T =Ti ))

)2/
n

)/
F (T = Ti), (9)
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(d) case 4 : T= 20 years 
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(f) case 6 : T= 100 years 
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Figure 2. Fluctuation of ra(T)b(T)(h)  
Fig. 2.Fluctuation ofra(T )b(T )(h).

where (σ 2
i(a(T =Ti )))

is the variance of kriging errors ofa(T =

Ti) at the computing nodei depending on locations of sta-
tions, andn is the number of grid nodes.

F (T = Ti ) =

(
σ 2

75%(a(T =T i)) − σ 2
25%(a(T =T i))

)
(10)

σ 2
75%(a(T =Ti ))

is the 75th percentile of the pattern of the vari-
ance of kriging errors ofa(T = Ti).

σ 2
25%(a(T =Ti ))

is the 25th percentile of the pattern of the
variance of kriging errors ofa(T = Ti).

This objective function is subjected to domain constraints
expressed by the set of possible locations for the stations (as
such the solution space is defined).

In all cases (for the two horizons with the four differ-
ent scenarios of network augmentation (+25 %; +50 %;
+100 %; +160 %)), the minimization problem is solved
using a simulated annealing algorithm (Kirkpatrick et al.,
1983).

3 Case study and data

The study area is composed of two watersheds: the north
coast watershed (BV 3) and the Medjerda watershed (BV 5)
in Tunisia. The study area is characterized by a sub-humid to
semi-arid climate and covers more than 20 000 km2. Figure 1
shows the study area together with the reference rain gauges
of the DGRE-ST2i study composed of 14 stations. It also
shows the initial network consisting of the 13 stations func-
tioning in March 1973 during the extreme flood event. Can-
didate locations for composing the robust network are also
marked. Table 1 presents the rain gauges from the DGRE-
ST2i study. The Montana IDF model parameters estimated
by DGRE-ST2i (2007) are presented in Table 2 for the 14
stations. The size of the time series analysed in DGRE-ST2i
ranges from 10 to 33 yr (Table 1). The observations periods
range from 1962 to 2001, depending on the station.

www.hydrol-earth-syst-sci.net/17/4259/2013/ Hydrol. Earth Syst. Sci., 17, 4259–4268, 2013
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Table 2.Parametersa(T ) andb(T ) for the 14 stations studied for IDF (DGRE-ST2i, 2007).

Rain
Return Return Return Return Return Return

gauge
period 2 yr period 5 yr period 10 yr period 20 yr period 50 yr period 100 yr

number a(T ) b(T ) a(T ) b(T ) a(T ) b(T ) a(T ) b(T ) a(T ) b(T ) a(T ) b(T )

1 231.6 0.685 289.9 0.69 324.4 0.688 356.9 0.686 401.3 0.685 435.7 0.685
2 240 0.66 303 0.64 352 0.63 404 0.63 479 0.62 542.0 0.62
3 437.1 0.538 541.8 0.53 614 0.524 680 0.517 759.9 0.507 812.4 0.498
4 368.5 0.682 528.6 0.694 629.6 0.683 715 0.665 804 0.635 856.4 0.61
5 321.4 0.745 406 0.741 456.9 0.734 503.4 0.726 556.9 0.713 594.4 0.704
6 157.7 0.652 307.7 0.73 465.9 0.776 651.5 0.81 920.4 0.84 1142.3 0.857
7 179 0.549 220 0.511 249.5 0.49 277.7 0.473 313.8 0.455 341.8 0.445
8 410.4 0.722 553 0.68 668.7 0.654 793.3 0.635 965.1 0.616 1103.9 0.606
9 144.5 0.626 206.3 0.637 241.9 0.624 286.8 0.618 345.9 0.605 392.4 0.594
10 431.5 0.758 688.3 0.789 848.3 0.796 992.5 0.798 1171.5 0.797 1317.5 0.798
11 304.8 0.669 349.2 0.663 385.4 0.66 429.2 0.661 499.2 0.666 559.9 0.671
12 254.2 0.635 342.6 0.675 406 0.692 461.1 0.698 512.4 0.689 530.8 0.67
13 275.1 0.695 343.8 0.69 387.7 0.682 427.6 0.673 479.7 0.663 519.8 0.657
14 162.1 0.592 200.1 0.592 237.2 0.596 284.7 0.604 367.1 0.619 448.1 0,633

Table 3. Adjusted sills and ranges fora(T ) and b(T ) assuming
spherical variogram models.

Return
period Range Range
T (yr) Sill b b (km) Sill a a (km)

2 0.004 30 15 000 40
5 0.008 40 32 000 50

10 0.010 40 45 000 45
20 0.014 40 50 000 50
50 0.016 40 110 000 50

100 0.018 40 110 000 50

3.1 Results

3.2 Dependence of the parametersa(T ) and b(T )

The co-dispersion coefficient graphra(T )b(T )(h) is plotted in
Fig. 2. An erratic fluctuation ofra(T )b(T )(h) around a fixed
value can clearly be seen. Therefore,ra(T )b(T )(h) can be as-
sumed as nearly constant for allT values, allowing the sup-
position thata(T ) and b(T ) are dependent variables. This
authorizes the kriging ofa(T ) by taking b(T ) as external
drift.

3.3 Structural analysis of the parametersa(T ) andb(T )

Spherical variogram models are adjusted to sample vari-
ograms. The ranges and sills were identified manually, and
an attempt was made to take account of a good approxima-
tion of the first points of the sample variograms (short in-
terdistances) as well as a good approximation of high inter-

Table 4.Values ofu(T ) andω(T ).

T (yr)
Horizon= 5 yr Horizon= 30 yr

u(T ) ω(T ) u(T ) ω(T )

2 0.97 0.56 1 0.41
5 0.67 0.39 1 0.41

50 0.10 0.05 0.45 0.18

Table 5. Values of OFref (T ) objective function obtained for inter-
polation ofa(T ).

Return periodT 2 yr 5 yr 50 yr

25 % (scenario 1: 3 new stations) 2.13 1.69 1.67
50 % (scenario 2: 6 new stations) 1.52 1.34 1.35
100 % (scenario 3: 13 new stations) 1.30 1.05 1.06
Normative density of the WMO (160 %)
(scenario 4: 21 new stations) 1.03 0.89 0.89

distances. Table 3 reports the adjusted sill and range for ev-
ery return period. Adjusted ranges ofa(T ) andb(T ) extend
from 30 to 50 km. Sample and adjusted variograms ofa(T )

andb(T ) are plotted in Fig. 3. Instead of using all the return
periods previously studied, it is proposed to adopt represen-
tative return periods. In effect, the analysis highlights three
groups of return periods where the variograms are found to
be quite similar: group 1 including only {T = 2 yr}; group 2
including {T = 5, 10, 20 yr} and group 3{T = 50, 100 yr}.
Hence,T1 = 2 yr (normal situation),T2 = 5 yr (small risk)
andT3 = 50 yr (high risk) were selected as representative of
each group.
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Fig. 3.Variograms ofa(T ) andb(T ).

3.4 Comparison of the resulting robust networks

We first calculated the probability of overrun of the event
u(T ) during the time horizon (Eq. 6) and thus the associated
weightω(T ) (Eq. 7). Table 4 summarizes the values ofu(T )

andω(T ) for each return period for the two horizons. In the
case of the short-term time horizon, we find thatT = 50 yr
is nearly neglected, and there is more focus onT = 2 yr in
the weighting system. For the long-term time horizon, the
method assigns equal weights to normal and moderate risk
(2 and 5 yr) while more weight is assumed for high risk sit-
uations (T = 50 yr). Therefore, these findings are consistent

with the intuitive point of view. Table 5 reports the values
of the standardized variances OFref(T ), which obviously de-
creased as the network size increased (Table 5). It was also
found that the most improvement is obtained when one splits
from scenario 1 (three new stations to implement) to scenario
2 (six new stations to implement).

The comparison of the resulting robust networks obtained
in turn for the two time horizons (short term and long term)
is reported in Table 6, where the locations which are different
for the two horizons are in italic. It shows that optimal net-
works are similar for scenario 1. This is an important result:
the locations of the 3 new stations chosen from 40 candidates
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Table 6.Robust solutions. The locations which are different for the two horizons are in italics.

Increasing the existing network by horizon= 5 yr horizon= 30 yr

Normative density of the WMO (160 %) {22,24, 25, 26, 27, 29, 30, 31,32, {22, 25, 26, 27,28, 29, 30, 31,33,
(scenario 4: 21 new stations) 34, 40,45, 46, 47,48, 49, 50, 51, 53, 54,55} 34, 35, 36, 40, 47, 50, 51,52, 53, 54,58, 60}
100 % (scenario 3: 13 new stations) {12,13, 16, 18, 19, 20, 21, 22, 25, 27,28, 31, 35} {12, 16, 18, 19, 20, 21, 22, 25, 27, 31,32, 35,40)}
50 % (scenario 2: 6 new stations) {15, 18, 21, 25, 27,34} {15, 18, 20, 21, 25, 27}
25 % (scenario 1: 3 new stations) { 25, 27, 28} { 25, 27, 28}
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Figure 4. Configuration of optimal networks 
Fig. 4.Configuration of optimal networks.

are independent of the time horizon. This kind of network
reinforcing is needed, without doubt. For scenario 2, which
consists of adding six new stations chosen from 40 candi-
dates, the two robust networks differ only by one station, for
both time horizons. This also indicates good accuracy of the
result. Five new stations can be added, and they are equally
representative for the short- and long-term perspectives. For
scenario 3, which requires 13 new locations to be found (out
of 40 candidates), the two robust networks obtained in turn
for the short- and long-term horizons differ only by 2 sta-
tions. Hence, as many as 11 new locations are common to
the two time horizon perspectives, which is a very encour-
aging result from a decision making point of view. However,
using 60 candidates for scenario 4, the short and long-term
visions differ by 7 stations out of 21 (Fig. 4), which may be
seen as problematic by a network manager.

In a previous paper (Chebbi et al., 2011), mono-objective
criteria have been considered assuming 1 h rainfall intensity
interpolation and erosivity factor interpolation and using one
single extreme rainfall event to conduct the analysis. The
comparison of previous results with the present study high-
lights that the mean spatial kriging variance in the case of the
mono-objective criterion is lower than or equal to that ob-
tained in the case of the robust optimization. Nevertheless,
the essential advantage of the robust optimization lies in the
fact that it allows overcoming the problem of using one single
rainfall event and yields networks which work “adequately”,

when considering various extreme events with different re-
turn periods.

4 Conclusions

The robust optimization approaches are recommended in
cases where the variables of interest are uncertain . The
hydrological risk is considered in the present study, which
aims to find new observation locations for rain gauges for
recording short duration rainfall. The novel approach con-
sists of considering IDF curve parameters to locate the best
sites for installing imaginary new rain gauges. The method
assumes a time horizon to minimize an objective function-
based IDF parametera(T ) of the Montana model, consid-
ering the weighting of various return periodsT . Kriging in-
terpolation using the variance-reduction method was applied
to build the objective function using the variance error of
a(T ) estimation. The weighted mean spatial error variance
was considered.

The region of north Tunisia, which has a sub-humid to
semi-arid climate, was used to develop the methodology. The
comparison of the resulting robust networks considered three
return periods (T1 = 2 yr, T2 = 5 yr andT3 = 50 yr), repre-
senting normal to high risk situations and two different time
horizons (short term= 5 yr, and long term= 30 yr). It is sug-
gested that robust networks are quite similar to each other
when selecting 3, 6 and 13 locations from 40 candidates to
reinforce an initial network of 13 stations covering an area of
21 000 km2. The conclusions are quite different when select-
ing 21 new stations: only 14 out of 21 stations, assuming 60
candidate locations, are common to the two time horizons.
Therefore, the conclusion that may be drawn is that when the
size of the new network is augmented, it is more difficult to
obtain a unique robust solution. Further research topics aim
to develop entropy approaches to define the robust objective
function.
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Appendix A

Kriging systems

Once a proper variogram model is chosen, kriging is applied
to the entire area of study to estimate the variable values at
unsampled points, using the data from the surrounding sam-
pled area. The kriging estimator is expressed as follows:

Z∗(x0) =

N∑
i=1

λiZ(xi), (A1)

whereZ∗(x0) is an estimated value ofZ at locationx0, λi

is the weight assigned to the observation at the locationxi ,
andN is the number of observations within the search neigh-
bourhood.

The λi ’s are kriging weights which are estimated as the
solution of the ordinary kriging system (Eq. 2):

Nnb∑
i=1

λjγ (xj − xi) + µ
′

= γ (xj − x0) j = 1, ...,Nnb
Nnb∑
i=1

λi = 1

, (A2)

whereµ
′

is a Lagrange parameter accounting for the con-
straints on the weights.

The kriging variance for ordinary kriging is obtained by

σ 2
0 = γ (0) −

Nnb∑
i=1

λiγ (xi − x0) − µ
′

. (A3)

In the case of a sparse network, kriging with external drift
seems more appropriate than ordinary kriging. Kriging with
external drift represents the kriging estimates,Z ∗ (x), as a
sum of a trend componentm(x) = E[Z(x)] and a residual
R(x) (Bardossy and Lehmann, 1998):

Z∗(x) = m(x) + R(x). (A4)

The trend component is then replaced by

E [ Z(x)|Y (x)] = m(x) = a0 + a1Y (x), (A5)

wherea0 anda1 are unknown constants. The linear estimator
(Eq. 1) should be unbiased for anya0 anda1 values.

The external drift kriging variance is obtained by

σ 2
0 (x) = γ (0) −

N∑
i=1

λiγ (xi − x) − µ1 − µ2Y (x), (A6)

whereµ1 andµ2 are two Lagrange parameters accounting
for the constraints on the weights. Therefore,Y has to be
known at locationsxi as well as at the target locationx0.
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