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Abstract. To evaluate how mangrove invasion and re-
moval can modify short-term benthic carbon cycling and
ecosystem functioning, we used stable-isotopically labeled
algae as a deliberate tracer to quantify benthic respiration
and C-flow over 48 h through macrofauna and bacteria in
sediments collected from (1) an invasive mangrove for-
est, (2) deforested mangrove sites 2 and 6 years after re-
moval of above-sediment mangrove biomass, and (3) two
mangrove-free control sites in the Hawaiian coastal zone.
Sediment oxygen consumption (SOC) rates averaged over
each 48 h investigation were significantly greater in the man-
grove and mangrove removal site experiments than in con-
trols and were significantly correlated with total benthic
(macrofauna and bacteria) biomass and sedimentary man-
grove biomass (SMB). Bacteria dominated short-term C-
processing of added microalgal-C and benthic biomass in
sediments from the invasive mangrove forest habitat and in
the 6-yr removal site. In contrast, macrofauna were the most
important agents in the short-term processing of microalgal-
C in sediments from the 2-yr mangrove removal site and con-
trol sites. However, mean faunal abundance and C-uptake
rates in sediments from both removal sites were significantly
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higher than in control cores, which collectively suggest that
community structure and short-term C-cycling dynamics of
sediments in habitats where mangroves have been cleared
can remain fundamentally different from un-invaded mudflat
sediments for at least 6-yrs following above-sediment man-
grove removal. In summary, invasion by mangroves can lead
to dramatic shifts in benthic ecosystem function, with sed-
iment metabolism, benthic community structure and short-
term C-remineralization dynamics being affected for years
following invader removal.

1 Introduction

Marine vascular plants can influence a variety of above-
and below-sediment physical and chemical characteristics,
and consequently can alter the species composition and
trophic structure of benthic communities (Talley and Levin,
1999; Levin et al., 2006; Alongi, 2009). Thus, vascular
plants can play a large role in structuring the flow of or-
ganic material and energy in coastal habitats (Wardle et al.,
2004). Mangroves are among the most widespread ma-
rine vascular plants, occupying∼1.6×105km2 along sub-
tropical and tropical coastlines (Alongi, 2002, 2008), where
they play important ecosystem roles, serving as nursery
grounds for commercially important fishes and invertebrates

Published by Copernicus Publications on behalf of the European Geosciences Union.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26087019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0/


2130 A. K. Sweetman et al.: Ecosystem functioning in exotic and deforested mangrove sediments

(Manson et al., 2005), and as nesting habitats for a variety of
birds (Nagelkerken et al., 2008). Mangroves also act as ma-
jor ecosystem engineers by reducing water flow and trapping
sediments, which can lead to enhanced densities of deposit
feeding fauna (Demopoulos, 2004; Demopoulos and Smith,
2010), as well as limiting coastal erosion, and providing a
buffer to tropical storms and tsunamis (Environmental Jus-
tice Foundation report 2006). They also effectively sequester
nutrients (Middelburg et al., 1996; Bouillon et al., 2008), and
may enhance water quality in surrounding habitats by reduc-
ing eutrophication and turbidity (Valiela and Cole, 2002; Vic-
tor et al., 2004).

Despite suitable seawater temperatures (>20◦C), the ge-
ographic isolation of the Hawaiian Archipelago excluded
mangroves from the Hawaiian Islands until 1902, when the
red mangrove,Rhizophora mangle, was introduced from
Florida to Moloka’i to stabilize coastal erosion from pastures
and sugarcane fields (Chimner et al., 2006). Mangroves have
now invaded large portions of the intertidal and high subtidal
zone along the island of O’ahu, and in 2001, the total area of
mangroves on O’ahu was 1500 km2 (Chimner et al., 2006).

Recent studies have examined the effects of marine vas-
cular plant invasions on coastal habitats, in particular in salt-
marshes (Talley and Levin 1999, Levin et al., 2006). It is
now known that invasive marine vascular plants can cause
local species extinctions (Grosholz, 2002) and habitat modi-
fication (Bromberg-Gedan et al., 2009). In Hawaii, the es-
tablishment ofR. manglehas dramatically altered macro-
faunal species and food-web structure, facilitating greater
dominance by sub-surface deposit feeders, and creating new
niches for other exotic species in mangrove sediments (De-
mopoulos, 2004; Demopoulos et al., 2007; Demopoulos and
Smith, 2010). However, the impacts ofR. mangleinvasion on
benthic ecosystem functioning, in particular, how mangroves
modify sediment metabolism and C-remineralization pro-
cesses in the Hawaiian coastal zone, remain essentially unex-
plored.Rhizophora mangledetritus is rich in tannins, which
can be toxic to benthic detritivores, interfering with digestive
enzymes (Mahadevan and Muthukumar, 1980; Neilson et al.,
1986; Alongi, 1987; Sessegolo and Lana, 1991). Therefore,
we postulate that mangrove invasion will favor microbial
C-remineralization processes by limiting macrofaunal con-
sumption and assimilation of detrital carbon (Alongi, 1987;
Boto et al., 1989; Tietjen and Alongi, 1990; Robertson et al.,
1992).

Because invasive species can considerably damage natural
and managed ecosystems, strategies have been developed to
control, contain and/or eradicate invasive species. However,
eradication or removal of invasive species alone may not al-
low ecosystems to rapidly or even completely recover orig-
inal ecosystem function because invaders can substantially
alter physical, chemical and biological conditions (Zavaleta
et al., 2001). In Hawaii, the success ofR. manglehas created
a suite of environmental problems (e.g. clogging of streams
and fish ponds, invasion of bird sanctuaries), leading to nu-

merous removal projects in the coastal zone. Typical man-
grove clearing practices in Hawaii include the removal of
the above-sediment mangrove biomass, but leaving intact the
prop roots and the root-fiber mat within the sediment (Sweet-
man personal observations). Mangrove roots and fiber-mats
are also rich in tannins and bind sediments, which may ham-
per faunal movement and impede bioturbation. Few data are
available concerning benthic ecosystem functioning in de-
forested, native mangrove forests worldwide (Sjöling et al.,
2005), and we know of no data on the effects of the removal
strategy employed in Hawaii on benthic ecosystem function-
ing and recovery. However, we postulate that benthic C-
cycling processes may be dominated by microbes, and that
sediment ecosystem function will be altered, long after man-
grove removal if the toxic, nutrient trapping, root-fiber mat is
not removed along with the emergent mangrove structures.

In recent years, tracer experiments with stable isotopes
have proved extremely powerful in quantifying benthic
ecosystem functioning in a variety of marine environments
(Middelburg et al., 2000; Moodley et al., 2000; Evrard et
al., 2005; van Oevelen et al., 2006). In short, an isotopi-
cally labeled substrate (e.g.13C-labeled algae) is deposited
over an enclosed area of seafloor and the uptake of labeled
elements tracked into sediment-dwelling organisms and abi-
otic components (e.g. dissolved inorganic carbon), making
it possible to quantify the uptake of specific elements into
specific organisms and thus, identify the pathways through
which certain elements cycle. In this case-study, we used
stable-isotopically labeled algae as a deliberate tracer as one
means to explore benthic ecosystem functioning in sediments
from (1) an invasive mangrove forest, (2) mangrove removal
sites 2- and 6-yrs after removal of above-sediment mangrove
biomass, and (3) two mangrove-free control sites. We eval-
uated the effects of intact mangroves, as well as sediment
root-fiber complexes remaining after mangrove removal, on
respiration and C-flow though the sediment-dwelling macro-
fauna and bacteria. Because of the relatively short duration
of each experiment (48 h) and the addition of algal-C to the
sediment surface, our experiments primarily addressed near-
surface processes, and tested the following hypotheses: (1)
Biogeochemical cycling in mangrove sediments favors bac-
terial pathways, yielding lower macrofaunal uptake of labile
organic matter than in adjacent mudflats. (2) Due to the
persistence of a dense root-fiber mat, bacterial metabolism
is enhanced, and macrofaunal uptake of newly added la-
bile organic matter reduced, in sediments for years following
above-sediment mangrove removal.

2 Methods

2.1 Study sites

Ex-situ experiments were carried out on sediment cores col-
lected from 5 sites on the island of O’ahu, Hawaii (Fig. 1)
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between January and May of 2008. Three sites were lo-
cated in the high subtidal zone of Pearl Harbor (PH) and
were all sampled in January 2008 (water temperature:∼23–
27◦C). The mangrove site (PHM) was located 8 m inside a
healthyR. manglemangrove forest in Pouhala Marsh, Pearl
Harbor. The 2-yr post-removal site (PHR) was located at
the fringe of a former mangrove forest in the Pearl Har-
bor National Wildlife Refuge. Most living above-sediment
mangrove biomass was removed from the PHR site in 2006.
The third Pearl Harbor site was a mangrove-free control site
(PHC) located on a mudflat at the southern end of Neal S.
Blaisdell Park, approximately 60 m away from the nearest
mangrove stand. The remaining two sites were located in
the Kaneohe Bay (KB) low intertidal zone and were sampled
at the beginning of May 2008 (Water temperature:∼27–28
◦C), with the fourth site located several meters into a former
R. manglestand (live above sediment mangrove biomass re-
moved in 2002) in Kahaluu, Kaneohe Bay (KBR). The fifth
site was a mangrove-free, mudflat control site (KBC) located
approximately 60 m away from the nearest mangrove stand
(Fig. 1). Despite being suitable habitats for mangrove colo-
nization, both control sites remained free of mangroves be-
cause of active seedling removal programs in the State of
Hawaii. Tidal range at all sites was approximately 0.4 m.
Because of logistical constraints imposed by the Pearl Har-
bor naval base and the labor-intensive nature of these exper-
iments, we were forced to study a single mangrove site in
Pearl Harbor. Only single 2-yr and 6-yr removal sites were
available on O’ahu, so this investigation constitutes a case
study of the various habitat types.

2.2 Experimental design

At each sampling site, four replicate, 15 cm deep sediment
cores were collected in 19 cm (i.d.) clear, acrylic benthic
chambers at random locations along a 15 m long transect run-
ning parallel to the water’s edge, so that substantial habitat
heterogeneity along the shoreline was incorporated into the
design. Mangrove leaf litter was only found on top of sed-
iments from the PHM site and was not removed from sedi-
ment cores. Subtidal sediments from all Pearl Harbor sites
were collected from approximately 15 cm water depth at low
tide, and those collected at the PHM site were sampled be-
tween prop roots at a distance of approximately 0.5 m from
individual emergent roots. Intertidal sediment cores from
both Kaneohe Bay sites were collected along a 15 m long
transect line at an identical tidal elevation above the low tide
mark at low tide. Immediately after collection, all cored sed-
iments were covered with 25 cm of top water and transported
to Waikiki Aquarium where they were placed in a tempera-
ture controlled water bath (24◦C). Sediments were allowed
to settle, and conditions in each chamber allowed to equili-
brate for 24 h prior to the start of the experiments. Pilot stud-
ies revealed that 24 h was sufficient time to allow settlement
of sediments re-suspended during chamber transport.

 38

 922 

 923 

 924 

 925 

 926 

 927 

 928 

 929 

 930 

 931 

 932 

 933 

                   934 

                                                                     935 

   936 

 937 

 938 

 939 

                                           Figure 1 940 

 941 

 942 

                            943 

 944 

 945 

 946 

 947 

 948 

KBR
KBC

PHRPHM PHC

O’AHU
KBR

KBC

PHRPHM PHC

O’AHU

Fig. 1. Location of the 5 sampling sites on the island of O’ahu,
Hawaii.

A non-axenic clone of the green algaChlorella spp.
(Chlorophyta), initially sampled off the coast of Hawaii, was
used as a food source in our experiments. Whilst this la-
bile C-source is physically and biochemically distinct from
relatively refractory mangrove material, labile algal-C is
known to continuously enter and support mangrove ecosys-
tems through natural processes including phytodetritus de-
position and benthic microalgal production (Bouillon et al.,
2008; Oakes et al., 2010). This type of addition is there-
fore not entirely artificial and allowed us to realistically trace
the fate of labile algal-C in mangrove type environments and
therefore, quantify various aspects of ecosystem functioning
in the sites studied. Phytoplankton was cultured for 3 weeks
at 24◦C under a 16: 8 h light: dark cycle in artificial sea-
water modified with F/2 algal culture medium (Grasshoff et
al., 1999), and labeled by replacing 25% of12C bicarbon-
ate in the culture medium with NaH13CO3. For harvest, in-
ocula were concentrated by centrifugation (404× g, 5 min),
washed 5 times in a isotonic solution to remove excess la-
beled bicarbonate, and freeze dried. Algae samples pos-
sessed a13C-content,δ13C-signature, and molar C:N ratio of
23.40±0.20 atom % (SE,n =4), 26 330±303‰ (SE,n =4)
and 6.45±0.20 (SE,n =4), respectively.

To start the experiments,13C-labeledChlorella spp. were
injected into three of the four chambers (T =0 h) and stir-
rers mounted 5 cm beneath the chamber lids were activated
to homogeneously distribute the algae over the enclosed sed-
iment surface. Approximately 1.8 g algal-C m−2 was added
to each experimental chamber except to cores collected at
the KBC site, where∼1.6 g algal-C m−2 was added. Ten
minutes after the algae were injected; stirrers were switched
off for 1 h to allow the labeled algae to sink to the sediment
surface. Stirrers were then turned on and the chamber wa-
ters gently mixed (without creating sediment resuspension)
at 3 rpm for the remainder of the experiments. Pilot studies
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revealed that stirring at 3 rpm maintained a sufficiently thin
diffusive sub-layer (<1 mm) to ensure that O2 flux into the
sediments within each chamber was not diffusion limited.
To avoid contaminating the control chamber (used for back-
ground isotopic signatures) with labeled algae or labeled dis-
solved inorganic carbon (DIC), the control chamber was hy-
draulically (but not thermally) isolated from the water bath
with an acrylic chamber.

2.3 Chamber sampling

Water samples used to calculate fluxes of oxygen (sediment
O2 consumption) and DIC were extracted with a 140 ml sy-
ringe from each chamber at 12 h intervals throughout the
duration of each 48 h study, through stop-cock valves fixed
within the chamber lids. Simultaneously, 140 ml of replace-
ment water from a freshly filled, filtered seawater reservoir
(maintained at 24◦C) was added to each chamber through
a second stop-cock mounted downstream of the extraction
valve. Two 60 ml samples of chamber water were imme-
diately transferred into gas-tight glass B.O.D. bottles via a
10 cm tube attached to the syringe nozzle, and fixed for dis-
solved O2 Winkler analysis. This was followed by a 2 ml
water sample, which was passed through a 0.25 µm sterile,
cellulose acetate filter into gas tight 4 ml borosilicate glass
vials (Labco, UK) and fixed with 5 µl of 6% HgCl2 for total
DIC and13C isotope-ratio mass-spectrometry (IRMS) anal-
yses. Reservoir water that was used as a replacement was
also sampled and fixed for O2 and DIC analyses thereby al-
lowing concentrations and flux rates through time to be cor-
rected for dilution effects. After sampling for O2 and DIC
and prior to the start of the next incubation, chamber wa-
ters were re-oxygenated. Bubbles were then removed from
beneath each chamber lid, lids were replaced, new samples
for O2 and DIC taken and the incubations continued. Flux
rates of O2 (hence SOC) and rates of DIC efflux were cal-
culated from algae amended chambers from linear changes
in the concentration of O2 (down to 150 µmol l−1 or 70%
saturation) and DIC through time. The presented SOC data
are mean rates (± 1 SE,n =3) calculated from average SOC
rates measured from each algae-amended chamber over each
48 h experiment.

At the end of each 48 h experiment, the chambers were
removed from the water bath and immediately processed for
sedimentary mangrove biomass (SMB), macrofauna and bac-
terial phospholipid derived fatty acid (PLFA) analyses. Three
6.5 cm (i.d.) coring tubes were inserted into sediment (one
each for SMB, macrofauna and PLFA), removed and the sed-
iment core sample sectioned into 0–2 and 2–5 cm sediment
slices using an extruder. Sectioned samples for SMB and
PLFA were transferred to 50 ml Corning Vials ® and pre–
washed (methanol: dichloromethane in a 1:1 ratio) brown
glass bottles, respectively, and frozen at− 20◦C until analy-
sis. Macrofaunal samples were fixed whole with 4% buffered
formaldehyde seawater.

2.4 Analysis

To measure SMB, frozen sediment sub-core samples were
thawed, sieved with freshwater on nested 250 µm and 1 mm
mesh sieves, the mangrove leaf litter, roots and fibrous ma-
terial picked out at 150× magnification under a dissecting
microscope and then dried at 35◦C for 4 days. Dried ma-
terial was weighed on an electronic balance. As a result
of a positive, highly significant correlation between SMB
and sediment particulate organic carbon (POC) (r =0.967,
P =0.007,n =5) SMB has been used as a readily measured
first order proxy for sediment POC content in this study. Sed-
iment characteristics from all sites are shown in Table 1.

Frozen sediment samples for bacterial analysis were freeze
dried (with no oil used for sealing) and subsequently ground
with a mortar and pestle. Stones were removed using a
500 µm mesh sieve, and sediment was ground-up again.
Lipids were extracted from approximately 3 g of dried sedi-
ment by a Bligh and Dyer extraction procedure (Middelburg
et al., 2000), in which the lipids were sequentially isolated by
rinsing on a silicic acid column with chloroform, acetone and
methanol. The lipid extract was then derivatized to volatile
fatty acid methyl esters (FAME) and measured by gas chro-
matography isotopic ratio mass spectrometry (GC-IRMS)
for PLFA concentration andδ13C-signatures (Middelburg et
al., 2000). The C-isotopic ratios were corrected for the
one methyl group inserted during derivatization. Bacterial
biomass was measured by GC-IRMS, and bacterial biomass
was calculated as PLFA (aiC17:0, iC17:0, aiC15:0, iC14:0, 10
Methyl-C16:0, see Boschker and Middelburg 2002) concen-
tration (µmol) ml−1 sediment/ (a ×b), wherea is the aver-
age PLFA concentration in bacteria of 0.056 g C PLFA g−1

biomass (Brinch-Iversen and King, 1990), andb is the aver-
age fraction-specific bacterial PLFA encountered in sediment
dominated by bacteria (0.18; calculated after Rajendran et
al., 1993). The prefixes “i” and “ai” refer to “iso”and “an-
tiso”, respectively.

Faunal samples fixed in formaldehyde were gently sieved
on a 500 µm mesh sieve in cool, filtered seawater in the lab
and macrofauna picked out and identified under a dissect-
ing microscope. Organisms were identified to major taxon,
with polychaetes and crustaceans identified to the lowest tax-
onomic level possible. Separate picking utensils were used
for unlabeled and labeled samples to avoid contamination
with stable isotopes. Single organisms were washed of at-
tached organic debris in cooled, filtered seawater, placed in
tin cups and dried at 35–40◦C for 4 days. Calcareous shelled
organisms were decalcified in double boated silver caps us-
ing the methods of Sweetman et al. (2009). In order to obtain
sufficient biomass for isotope measurements, some individ-
ual organisms were combined.

The isotopic ratios (13C/12C) and DIC concentration of the
chamber water samples were measured against a lithium car-
bonate standard (calibrated against NIST 8545) using a PDZ
Europa 20-20 IRMS, coupled with a Poroplot-Q GC column
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Table 1. Summary of sediment characteristics (averaged over top 5 cm of sediment) from single un-amended cores collected at all 5 sites.
Water content was determined by weight loss upon drying at 60◦C and total C and N were measured by CHN analysis (Middelburg et al.,
2000). POC was analyzed by CHN analysis following acidification to remove inorganic C as in Middelburg et al. (2000).

Site Density Water SMB Total C (%) POC (%) Total N (%) C: N
(g/ml) content (%) (g dw m−2)

PHM 1.13 38.54 1998.01 8.75 8.22 0.44 22.13
PHR 1.23 45.88 699.15 3.44 3.05 0.20 18.24
PHC 1.72 31.79 0 2.44 0.52 0.04 16.58
KBR 1.52 27.03 599.70 1.09 0.91 0.07 16.51
KBC 1.73 33.36 0 8.20 0.49 0.04 14.79

(15 m×0.53 mm ID, 25◦C, 3 ml min−1) at UC Davis, after
acidification with 1 ml of 85% phosphoric acid. The isotopic
measurements and biomass of macrofauna organisms were
measured using both Europa Integra (enriched isotopes) and
Hydra 20/20 (natural isotopes) isotope ratio mass spectrome-
ters at UC Davis, USA. The total amount of DI13C produced
from the added tracer (mmol13C m−2) was calculated as the
product of excess13C (E) (expressed as atom %13C) and
the total DIC concentration, and subsequently converted to
mg 13C m−2. E is the difference between the labeled frac-
tion F of a sample and the background sampled from the
un-amended control chamber:

E = Fsample−Fbackground (1)

where

F =
13 C/(13C+

12C) = R/(R+1) (2)

and

R = (δ13C/1,000+1)×RVPDB (3)

whereRVPDB=0.0112372.
Uptake of13C after 48 h by macrofauna (mg13C m−2) was

calculated as the product of the excess13C and C-content in
the animal (expressed as unit weight). If ‘background’ sam-
ples of certain taxa were unavailable in the control cham-
ber for calculating13C-uptake,E was calculated using back-
groundF−values from closely related organisms or from
fauna within the same feeding guild. Polychaete feeding
modes were determined from Fauchald and Jumars (1979).
For bacteria, total uptake (mg13C m−2) of 13C (U ) after 48 h
was calculated according to Moodley et al. (2000) from la-
bel incorporation into bacterial fatty acids (aiC17:0, iC17:0,
aiC15:0, iC14:0, 10 Methyl-C16:0, Boschker and Middelburg
2002) as:

Ubact= 6bact fatty acids/(a×b) (4)

To calculate the daily production rate of DIC
(mg C m−2 d−1) from the added tracer, the amount of
DI13C produced (mg13C m−2) was divided by 2, and

adjusted to account for the fractional abundance of13C in
the added algae as:

DIC produced d−1
= DI13C produced d−1/

fractional abundance of13C in algae (5)

DIC produced d−1 refers to only the DIC derived from the
added microalgal-C. Total C-uptake per day (mg C m−2 d−1)

by fauna and bacteria was calculated from faunal and bacte-
rial 13C-uptake data in the same way. The amount of algal-C
added to each experiment contributed only 0.2–2% to the C-
standing stock in the top 5 cm of sediment (85–929 g C m−2,
based on data in Table 1). Nevertheless, because different
amounts of algal-C were added to the KBC study compared
to all the other experiments as previously stated, total daily
DIC efflux, daily DIC production from added algal-C and
C-uptakes rates by fauna and bacteria have been normal-
ized by the amount of algal-C added (g C m−2). As such,
all DIC production and C-uptake rates are given in units of
mg g C m−2 d−1.

2.5 Statistics

Because of seasonal differences in temperature when the
Pearl Harbor and Kaneohe Bay sites were sampled, as well
as potential artefacts from dissimilarities in tidal elevation af-
fecting comparisons between locations (e.g. subtidal vs. in-
tertidal characteristics and processes quantified using sedi-
ments from Pearl Harbor and Kaneohe Bay sites, respec-
tively), differences among variables between Pearl Harbor
sites were analysed separately from those in Kaneohe Bay
using a one-way ANOVA test followed by a Tukey post-
hoc test. Differences in variables between the KBR and
KBC sites were analysed by parametric t-tests. Prior to sta-
tistical analysis, data were checked for normality and het-
eroscedasticity. A square-root transformation was applied,
when necessary, to obtain homogeneity of variances. If data
sets failed to meet ANOVA assumptions after transformation,
a non-parametric Kruskal-Wallis test was performed. Cor-
relations among variables were analysed by Pearson Prod-
uct Moment correlations, after initially checking for linearity
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Fig. 2. Total sedimentary mangrove biomass(A) and vertical distribution of sedimentary mangrove biomass(B) within cores from the PHM,
PHR and KBR sites. Bars denote mean±1 SE (n =3), unless otherwise stated.

and bi-variate normality of correlation data and applying a
square root transform, if necessary (Zar, 1999). Anα-level
of 0.05 was chosen as the criterion for statistical significance.
All data was analysed using Sigma-Stat (Version 3.5, Systat)
software.

3 Results

3.1 Sedimentary mangrove biomass

Leaf material was only found at the sediment surface in
cores collected from the PHM site. SMB was significantly
lower (by 60%) in sediment cores from the PHR compared
to the PHM site (P =0.003, Fig. 2a). This equates to a
SMB loss rate of∼36% yr−1 assuming that the SMB in
the original mangrove stand at the PHR location averaged
3550 g dw m−2 as found by Demopoulos and Smith (2010)
(Fig. 2a). SMB in sediment cores from the KBR site (Fig. 2a)
was reduced by approximately 70% after 6-yr (decomposi-
tion rate of 12% yr−1) assuming SMB down to 5 cm depth in
the original mangrove forest at the KBR site was approx-
imately 2000 g dw m−2 as found by Demopoulos (2004).
Mean SMB increased with sediment depth in cores from all
sites (Fig. 2b). No SMB was found in sediment cores from
either the PHC or KBC sampling locations.

3.2 Benthic biotic structure

Macrofauna abundance and biomass from Pearl
Harbor were significantly different between sites
(P =0.014 and P =0.012, respectively), with greater
abundance (183 427±48 081 m−2, SE, n =3) and biomass
(3391±646 mg C m−2, SE,n =3) in sediment cores from the
PHR site compared to the PHM and PHC locations (Figs. 3a
and c, Table 2). Mean macrofauna abundance and biomass
in sediment collected from the PHR and PHC sites was
higher in the top 2 cm of sediment compared to the bottom

sediment layer (Fig. 3b and d). Bacterial biomass was
significantly higher (P =0.010) in sediment cores from the
PHM site (18 154±2004 mg C m−2, range,n = 2) compared
to the other Pearl Harbor locations (Fig. 3e). Mean bacterial
biomass was higher in surficial sediments in cores from both
the PHM and PHR sites (Fig. 3f). In Kaneohe Bay, faunal
abundance estimates were significantly higher (P =0.003,
Fig. 4a) in sediments from the KBR (46 610±3957 m−2, SE,
n =3) compared to the KBC site (18 684±1517 m−2, SE,
n =3), but despite higher mean faunal biomass being found
in sediment cores from the KBR site (Fig. 4c, Table 2), no
significant difference in faunal biomass between the two
sites could be detected (P =0.146). Mean faunal abundances
in sediments collected from the KBR and KBC sites, as
well as mean faunal biomass in cores from the KBR site,
decreased with sediment depth (Fig. 4b and d). The same
pattern was found for mean bacterial biomass, which was
higher in surficial sediments in cores collected from both
Kaneohe Bay sites (Fig. 4f). Total bacterial biomass was
significantly higher in sediments recovered from the KBR
compared to the KBC site (P =0.036, Fig. 4e).

3.3 Macrofauna community structure

Sub-surface deposit feeding tubificid oligochaetes dominated
macrofauna abundance (83%) and biomass (80%) in cores
collected at the PHM location, whereas surface feeding spi-
onid polychaetes were more dominant in terms of abun-
dance (37%) and biomass (34%) in sediments from the PHR
site (Table 2). Harpacticoid copepods were the most abun-
dant taxon in sediment cores from the PHC site (32%),
but spionid polychaetes accounted for the major part of
the biomass (62%). Surface-feeding corophiids completely
dominated the amphipod taxa in sediment samples from the
KBR site and contributed most to abundance (62%) and
biomass (80%) in cores collected from this site, but sur-
face feeding sabellid polychaetes were more important in
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 971 

Fig. 3. Total and vertical distribution of macrofauna abundance (A andB, respectively), biomass (C andD, respectively), and bacterial
biomass (E andF, respectively) in cores from all Pearl Harbor sites. Sediment oxygen consumption rates in cores from all Pearl Harbor sites
is shown in(G). Significant differences (P < 0.05) in parameters between sites are designated by different letters. Error bars denote±1 SE
(n =3), unlessn =2, where error bars denote± range of two samples because of insufficient sample for PLFA analysis from a 3rd replicate
chamber.

terms of abundance (45%) in cores recovered from the KBC
site (Table 2). Spionid polychaetes as well as unidentified
taxa (i.e. poorly preserved fauna) contributed more to faunal
biomass (31% and 30%, respectively) in sediments sampled
at the KBC site (Table 2).

3.4 Sediment oxygen consumption (SOC)

SOC in algae-amended cores was significantly different be-
tween sites in Pearl Harbor (P <0.001), with greater SOC
rates for sediments from the PHM and PHR sites compared
to the PHC site (Fig. 3g). Significantly higher SOC rates
were also found in the PHM experiments compared to the
PHR study (Fig. 3g). In the Kaneohe Bay experiments, SOC
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 975 

Fig. 4. Total and vertical distribution of macrofauna abundance (A andB, respectively), biomass (C andD, respectively), and bacterial
biomass (E andF, respectively) in cores from all Kaneohe Bay sites. Sediment oxygen consumption rates in cores from all Kaneohe Bay
sites is shown in(G). Significant differences (P < 0.05) in parameters between sites are designated by different letters. Error bars denote
±1 SE (n =3) unlessn =2, where error bars denote± range of two samples because of insufficient sample for PLFA analysis from a 3rd
replicate chamber.

was greater in the KBR experiments compared to the Ka-
neohe Bay control (P =0.005, Fig. 4g). SOC was strongly
correlated with both total benthic (macrofauna and bacteria)
biomass (r =0.876,P =0.0002,n =12, Fig. 5) as well as
SMB (r =0.901,P <0.0001,n =13, Fig. 6).

3.5 DIC production and C-uptake from added algae

Between 71 and 90% of the processed algal-C was found in
the DIC pool after 48 h (Table 3), and the mean daily pro-
duction rate of DIC from algal-C accounted for between 4–
12% of the mean total daily DIC efflux rate in all studies,
assuming a molar mass weight for C of 12 (Table 3). Pro-
duction of DIC from added algal-C was significantly differ-
ent between Pearl Harbor sites (P =0.011), with production
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Table 2. Mean abundance (Number m−2
±1 SE,n =3) and biomass (mg C m−2

±1 SE,n =3) estimates of major macrofauna taxa from
sediment cores collected from all 5 sites. Star (∗) denotes mean± range of 2 samples when a single replicate sample was lost prior to
biomass analysis. Total macrofauna abundance (Number m−2

±1 SE,n =3) and biomass (mg C m−2
±1 SE,n =3) is also shown.

PHM PHR PHC KBR KBC

Taxon Abundance Biomass Abundance Biomass Abundance Biomass Abundance Biomass Abundance Biomass
(No. m−2) (mg C m−2) (No. m−2) (mg C m−2) (No. m−2) (mg C m−2) (No. m−2) (mg C m−2) (No. m−2) (mg C m−2)

Oligochaeta 8036±2400 155±29 402±266 8±5

Enchytraeidea 3114±1480 75±33

Tubificidae 17981±10748 572±510 2411±1595 55±40 904±460 9±3

Polychaeta

Cirratulidae 29232±26978 525±475 301±174 8±5

Chaetopteridae 201±100 28±14

Opheliidae 9242±958 71±15 904±522 35±34 1205±522 38±1*

Syllidae 201±201 4±4

Lumbrineridae 2913±559 103±28

Capitellidae 2813±2362 107±98* 5324±1282 381±86 502±502 6±6 2210±822 47±20 201±100 4±3

Eunicidae 100±100 43±43

Sabellidae 37871±21799 239±136 3214±1222 28±11 8538±266 96±5

Spionidae 68911±23656 1111±337 8237±2147 208±62 201±201 29±29 1708±402 265±65

Crustacea

Amphipoda 4520±3175 65±53 28529±2861 1138±143 1607±402 29±9

Decapoda 201±100 651±354

Harpacticoida 11853±4111 15±2 10648±4133 13±5

Isopoda 100±100 1±1

Ostracoda 1005±1005 6±6 5625±2032 21± 8 100±100 1±1

Tanaidacea 1607±1317 23±20

Mollusca

Gastropoda 100±100 10±10

Nematoda 8538±3688 26±18 9643±3595 14± 4 301±174 . . . 502±362 1±1*

Nemertea 100±100 1±1

Unknown 804±804 69±62 1105±703 161±40 100±100 24±13 . . . 20±18 603±301 266±207

Total 21597±12731 713±639 183427±48081 3391±646 34154±10463 337±74 46610±3957 1435±77 18684±1517 882±297

being significantly lower in the PHC experiments compared
to the other Pearl Harbor studies (Fig. 7a). No signifi-
cant difference in the amount of DIC produced from algal-
C could be detected between the KBR and KBC experiments
(P =0.250, Fig. 8a). On average, macrofauna in the PHR and
both control site experiments took up approximately 1.6–3.8
times as much algal-C as the bacteria (Table 3). These pat-
terns contrasted with the benthic response observed in the
PHM and KBR experiments, where mean bacteria C-uptake
rates were approximately 15.3 and 1.4 times greater than
for the macrofauna, respectively (Table 3). Short-term C-

uptake rates by macrofauna were significantly different be-
tween Pearl Harbor sites (P <0.001, Fig. 7b), with signif-
icantly higher faunal C-uptake rates measured in the PHR
compared to the PHM and PHC experiments. Mean faunal
C-uptake rates were also significantly higher in experiments
using sediment cores recovered from the KBR compared to
the KBC site (P =0.003, Fig. 8b). Mean uptake of algal-C
by macrofauna was highest in the top-most sediment layer
in the PHR, PHC, KBR and KBC experiments (Figs. 7c and
8c). Surface-feeding spionid polychaetes and corophiid am-
phipods in sediments from the PHR and KBR sites took up
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Table 3. Mean rate (mg g C−1 m−2 d−1
±1 SE,n =3) and percentage (± 1SE,n =3) of DIC production, faunal C-uptake and bacterial

C-uptake from added algal-C in experiments from all 5 sites. Total amount of C processed d−1 (mg g C−1 m−2 d−1
±1 SE,n =3) and the

percentage of total added C which was processed is also shown. Numbers in bold denote mean total daily DIC efflux normalized to algal-C
(mg g C−1 m−2 d−1

± 1 SE,n =3) and were calculated using a molar mass weight for C of 12. Star (∗) denotes mean± range of 2 samples
when there was insufficient water or sediment sample for accurate DIC and PLFA measurements from a 3rd replicate chamber.

Site PHM PHR PHC KBR KBC
Rate % Rate % Rate % Rate % Rate %

DIC 130.94±3.17 90.09±2.98* 128.38±3.47* 75.13±5.87* 92.05±8.55 88.37±1.86 127.08±17.85* 70.75±5.84* 147.01±3.36 89.41±1.43

(3149.86±1159.26) (1981.89±496.86)* (2840.77±898.48) (1092.24±674.89)* (1914.99±970.08)

Macrofauna 0.87±0.64 0.83±0.56* 39.05±7.04 19.09±2.64* 7.55±1.89 7.18±1.73 21.58±0.63 11.76±0.75* 12.51±1.32 7.62±0.86

Bacteria 13.34±4.41* 9.08±2.42* 10.20±6.06* 5.78±3.23* 4.64±0.42 4.45±0.14 30.73±7.27* 17.49±5.09* 4.86±1.24 2.96±0.77

Total amount 144.17±10.27* 171.57±8.80* 104.24±9.75 178.77±10.47* 164.37±1.23
processed d−1

% of total amount 14.42±1.03* 17.16±0.88* 10.42±0.97 17.88±1.05* 16.44±0.12
of added C processed

Table 4. Mean C-uptake rate (mg g C−1 m−2 d−1
±1 SE,n =3) and mean C-uptake rate normalized to biomass (mg g C−1 m−2 d−1 mg

C biomass−1
±1 SE,n =3) of major macrofauna taxa from sediments collected from all 5 sites. Star (∗) denotes mean± range of 2 samples

when only 2 replicate chambers contained a specific taxon for C-uptake analysis.

PHM PHR PHC KBR KBC

Taxon C-uptake rate C-uptake rate C-uptake rate C-uptake rate C-uptake rate C-uptake rate C-uptake rate C-uptake rate C-uptake rate C-uptake rate
biomass−1(×10−6) biomass−1(×10−6) biomass−1(×10−6) biomass−1(×10−6) biomass−1(×10−6)

Oligochaeta 0.71±0.59 28320±17484 0.12±0.05 2890±1210 0.09±0.07* 10100±8966* 0.07±0.02 1698±337 0.03 2700

Polychaeta

Cirratulidae 3.87±3.54 16155±676 0.23±0.05* 19963±4008*

Chaetopteridae 1.08±0.06* 25645±2990*

Opheliidae 1.86±0.22 64693±6305 2.38±2.18* 78324±4791* 2.57±0.61* 170784±2312*

Syllidae 0.01 812

Lumbrineridae 0.15±0.07 3759±1504

Capitellidae 0.08±0.04 7162±1433 0.40±0.06 8491±2681 0.19 13509 0.38±0.11 32882±7270 0.07±0.07* 21783±21629*

Eunicidae 0.69 5400

Sabellidae 5.78±3.20 37429±7678 0.66±0.22 33430±8863 4.58±0.09 106739±12140

Spionidae 21.58±3.29 89580±8991 3.88±1.41 98746±27840 1.66 19051 2.41±0.64 75999±19842

Crustacea

Amphipoda 0.88±0.71 25406±12337 20.01±1.47 350789±39778 1.00±0.38 42316±10923

Decapoda 3.37±1.08* 7952±4186*

Harpacticoida 0.11±0.04 7909±3137 0.33±0.17 17859±8881

Isopoda 0.03 6021

Ostracoda 0.06 3367 0.01±0.00 1083±274 0.00 99

Tanaidacea 0.21±0.19* 4977±1471*

Mollusca

Gastropoda 0.29 9754

Nematoda 0.11±0.09 4589±998 0.18±0.17 9292±8048

Nemertea 0.07 22625

Unknown 0.13±0.00* 15790±8841* 1.97±0.60 48201±16425 0.79±0.59 49322±25730 0.62±0.49* 40260±5619* 1.48±0.88 55884±29258
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more microalgal-C in 48 h than any other taxon found in this
study (Table 4), and together with surface feeding cirratulid
and sabellid polychaetes, were responsible for the majority
of microalgal-C-uptake after 48 h in sediments from the re-
moval and control habitats (Table 4). When C-uptake rates
were normalized to biomass, corophiid amphipods were re-
sponsible for the highest C-uptake rates measured (Table 4).
Interestingly, mean C-uptake rates (normalized to biomass)
of spionids and oligochaetes fluctuated as a function of sam-
pling site with spionid and oligochaete C-uptake rates being
higher in both control experiments relative to the PHR and
KBR studies (Table 4). Mean C-uptake rates by sedimen-
tary bacteria within both control site experiments were ap-
proximately 16–45% of those found in sediments collected
from the PHM and both removal habitats (Figs. 7d and 8d,
Table 3), yet mean bacterial C-uptake was not significantly
different between the Pearl Harbor studies (P =0.286). Bac-
terial C-uptake was significantly higher in the KBR versus
the KBC experiments (P =0.013, Fig. 8d). Mean bacterial
C-uptake decreased with sediment depth in cores in all Pearl
Harbor (Fig. 7e) and Kaneohe Bay studies (Fig. 8e).

4 Discussion

Numerous studies have shown that invasive marsh grass and
mangroves can modify essential habitat properties (e.g. pore-
water salinity, organic C-content, detrital food-supply), ben-
thic biodiversity, and trophic structure through alterations in
habitat complexity by the production of above and below-
ground biomass (Demopoulos, 2004; Neira et al., 2005;
Levin et al., 2006; Demopoulos et al., 2007; Demopoulos
and Smith, 2010). But to the best of our knowledge, this is
the first study to address how an invasive vascular plant can
modify sediment metabolism, as well as examine changes
to benthic ecosystem processes as a function of the removal
of above-sediment invasive mangrove biomass. In the inva-
sive mangrove sediments sampled in this case study, macro-
fauna biomasses were reduced relative to microbial biomass,
the macrofauna community was dominated by sub-surface
feeding tubificid oligochaetes, and C-uptake of labile C was
dominated by bacteria. Thus, in agreement with our hy-
pothesis (1), biogeochemical cycling in the mangrove sed-
iments favored bacterial pathways, yielding lower macro-
fauna uptake of labile organic matter than in the control ex-
periments. Bacterial C-uptake and bacterial biomass were
significantly enhanced in sediments from the KBR site com-
pared to Kaneohe Bay control, but not in sediments recov-
ered from the PHR site (relative to the PHC study). Thus,
hypothesis (2) is partially supported. Nonetheless, SMB per-
sisted in sediments from mangrove removal sites for at least
6-yrs, and additional ecosystem functioning parameters in
both removal site experiments differed significantly from the
controls by exhibiting higher SOC rates, higher macrofauna
C-uptake rates, and higher macrofauna abundances. There
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Fig. 5. Relationship between SOC (mmol O2 m−2 d−1) and total
benthic (macrofauna and bacteria) biomass (mg C m−2).
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Fig. 6. Relationship between SOC (mmol O2 m−2 d−1) and sedi-
mentary mangrove biomass (g dw m−2).

are limitations associated with this case-study as a result of
the short duration of each experiment (i.e. only 48 h) and
algal-C only being added to the sediment surface. These
limitations therefore only allowed clarification of differences
in near-surface processes in the different sediments studied.
However, the experiments revealed dramatic differences be-
tween mangrove, mangrove removal and control sites in the
depth distribution of labeled C-uptake by fauna and bacteria.
Therefore, our results collectively show that major aspects of
ecosystem function in sediments from an invasive mangrove
forest can differ from those in un-invaded habitats, as well
as highlight that ecosystem functioning in sediments from
mangrove removal sites can differ substantially from those
in control sites 2–6 yrs after above-sediment mangrove re-
moval.

SOC provides a good measure of depth-integrated com-
munity metabolism (Middelburg et al., 2005). In our study,
we added a small quantity of labile organic matter (Chlorella
spp. algae) to each experimental chamber, which represented
between 0.2–2% of the C-stock in the first 5 cm of sediment.
Nevertheless, daily production of DIC from the added phy-
todetritus accounted for between 10.59±1.49 (range,n =2)
to 10.91±0.26 (SE,n =3) mmol C m−2 d−1 in the mangrove
and removal site experiments and 7.67±0.71 (SE,n =3)
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to 12.25±0.28 (SE,n =3) mmol C m−2 d−1 in the controls,
based on a molar mass weight for C of 12. Assuming a res-
piratory quotient between DIC and O2 of 1 (Middelburg et
al., 2005), this transfer of algal-C into daily respired DIC
corresponded to approximately 10 to 17% of the SOC (or
4–12% of the mean total daily DIC efflux) in the mangrove
and removal site experiments compared to 18 to 30% of the
SOC (or 3–8% of the mean total daily DIC efflux) in the
PHC and KBC site studies. These results highlight the very
labile nature of the added algal-C-source and suggest that
the measured SOC and total daily DIC efflux values may be
higher than background values without algal addition. Nev-
ertheless, SOC rates measured in the PHM experiments were
quite similar to those found in previous mangrove studies
(Nedwell et al., 1994; Middelburg et al., 1996; Alongi et al.,
2000; Alongi, 2009), and overall rates were strongly corre-
lated with total benthic (macrofauna and bacteria) biomass,
which is consistent with other studies (e.g., Bolam et al.,
2002). This strong correlation suggests that the significantly
elevated bacterial biomass in sediment cores from the PHM
and KBR sites, in addition to the large macrofauna biomasses
found in sediments from both removal sites, played a ma-
jor role in stimulating sediment O2 demand in the mangrove
and removal site experiments. In addition, sediment O2 con-
sumption was strongly correlated with SMB. We hypothe-
size that the presence of leaf litter and root-fiber material in
sediments from the mangrove and removal habitats promoted
sediment community metabolism, most likely because the re-
lease of DOC and DON from SMB provided microbial sub-
strates (Boto et al., 1989; Alongi et al., 1989; Alongi and
Sasekumar 1992; Robertson et al., 1992; Alongi, 2009). Be-
cause of the high heterogeneity of mangrove habitats (Kris-
tensen, 2007), and the fact that sediments were recovered
from only a relatively small area at each site (i.e. along a 15 m
long transect), we are cautious to generalize the results of our
case study to a wide geographic area. However, if the SOC
results from this study are representative of other removal
sites in Hawaii, the presence of SMB and the apparent en-
hancement of SOC in the removal site experiments (relative
to the controls) after 6-yrs suggests that restoration of native
sediment ecosystem function following mangrove clearing
could require many years in Hawaii. Because root-fiber mats
in native stands of the mangroveR. manglein Florida and
central America show similar decomposition rates (ranging
from ∼17 to 60% of biomass lost yr−1 [McKee et al., 2007;
Poret et al., 2007; Alongi, 2009]) to those estimated here
for Hawaii (∼12–36% of biomass lost yr−1), we hypothesize
that sediment ecosystem function may be impacted for years
following above-sediment mangrove removal even in native
R. manglestands.

With the exception of mangroves trees, bacteria dominate
biomass and are the primary players in terms of energy-flow
in native mangrove ecosystems (Alongi, 2002), deriving en-
ergy from autochthonous and allochthonous particulate and
dissolved organic material (Bouillon et al., 2002), such as

tannins, sugars and ligninocelluloses (Benner and Hodson,
1985; Boto et al., 1989; Alongi et al., 1989; Alongi, 2009).
Our findings that the bacteria accounted for approximately
25-fold greater benthic biomass and 15-fold greater short-
term C-uptake rates than the macrofauna in sediments from
the invasive mangrove habitat are consistent with the bacte-
rial dominance documented for sediments within native man-
grove forests (e.g. Alongi, 2002, 2008; Kristensen, 2007;
Kristensen et al., 2008). The addition of labile algal-C to
the sediment surface in each experiment was, in all likeli-
hood, one of the main factors driving the high algal-C-uptake
rates by bacteria at 0–2 cm in each experiment. In exper-
iments using cores collected from the PHM site and from
both mangrove removal sites, upward diffusion of DOC from
sub-surface root material may have also stimulated bacte-
rial growth at the sediment surface (Boto et al., 1989; Kris-
tensen and Alongi, 2006), which may have contributed to
the elevated bacterial biomasses (and C-uptake rates) in sur-
ficial sediment layers in the mangrove and removal site ex-
periments (especially the KBR study). The high bacterial
biomass and activity in surface sediments of cores from the
PHM site may also have been stimulated by the mangrove
leaves at the sediment surface, which are known to be capa-
ble of hosting abundant bacterial populations (Mfilinge et al.,
2003).

Sediments within low energy mangrove forests are often
organically enriched compared to non-mangrove habitats as
a result of the deposition of plant litter and the trapping of
allochthonous material in emergent vegetation (Bosire et al.,
2003; Kristensen, 2007). In our study, high organic load-
ing was indicated in sediments from the PHM site by (1) the
high sediment POC content found in the un-amended con-
trol (∼8% POC, Table 1) and (2) the positive correlation be-
tween SMB and POC (see methods section) combined with
large amounts of SMB within sediments from the PHM site
(Fig. 2a). Organic loading in sediments from the PHR was
intermediate (∼3% POC, Table 1, Fig. 2a), while sediment
organic concentrations in cores from the PHC site were rel-
atively low (∼0.5% POC, no SMB, Table 1). Macrofauna
abundance and biomass in the PHM sediments were rela-
tively low (compared to cores from the PHR site) and dom-
inated by few potentially opportunistic taxa (oligochaetes
and capitellids) suggesting sediment-community disturbance
from high organic loading (Pearson and Rosenberg, 1979;
Weston, 1990; Nilsson and Rosenberg, 1997, 2000; Hyland
et al., 2005). The relatively low macrofauna density and
biomass in the PHM experiments also could have resulted
in part from large concentrations of tannins and tannin-rich
mangrove biomass in the sediments negatively affecting the
reproduction and growth of native Hawaiian biota poorly
adapted to tannin stress (Alongi, 1987; Tietjen and Alongi,
1990; Demopoulos et al., 2007). The PHR sediments had
elevated macrofauna biomass, and elevated abundances of
macrofauna and capitellids, combined with intermediate lev-
els of organic enrichment compared to PHC sediments; this
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Fig. 7. Total production of DIC(A) from added algal-C in cores collected from all Pearl Harbor sites. Total and vertical distribution of
macrofauna C-uptake (B andC, respectively) and bacterial C-uptake (D andE, respectively) in cores from all Pearl Harbor sites are shown.
Significant differences (P <0.05) in parameters between sites are designated by different letters. Error bars denote±1 SE (n =3) unless
n =2, where error bars denote± range of two samples because of insufficient sample for analysis from a 3rd replicate chamber.

pattern suggests the presence of intermediate stages of re-
colonization and recovery from organic loading in sediments
from the PHR site, which are often associated with biomass
maxima (e.g., Pearson and Rosenberg, 1978; Hyland et al.,
2005). The KBR sediments also showed enhanced macro-
fauna abundance, capitellid abundance, SMB, and POC con-
centrations relative to control sediments in Kaneohe Bay,
suggesting that this community was still at an intermedi-
ate stage of recovery 6-yrs after removal of above-sediment
mangrove vegetation.

In the present study, macrofauna from the mangrove
site were dominated by sub-surface deposit feeding tubifi-
cid oligochaetes (Ciutat et al., 2006; Giere, 2006), which
agrees with previous mangrove and salt-marsh studies show-
ing dominance by tubificids (Schrijvers et al., 1995; Levin et
al., 2006). Their dominance in the community may be a func-
tion of their ability to cope with hypoxic and sulphidic con-
ditions (Giere, 2006). However, the small, slender body size
of tubificids may also allow them to easily inhabit the dense,

root fiber network present in mangrove sediments (Levin et
al., 1998; Demopoulos, 2004).

Faunal-mediated uptake of added C was significantly
lower in sediment cores collected from the PHM site than
in the PHR study (Fig. 7b, Table 3), and appeared to be
partly attributable to the low (relative to the PHR exper-
iments) macrofauna biomasses found in these cores (Bo-
lam et al., 2002). However, faunal communities in cores
from the PHM site were dominated by sub-surface feed-
ing taxa (e.g. oligochaetes and capitellid polychaetes), and
more fauna were found deeper in the sediment column
(14365±6833 m−2, SE, n = 3, see Fig. 3b) compared to
at the surface (7233±5908 m−2, SE, n = 3, see Fig. 3b),
which may have collectively limited the ability of the fau-
nal community to process C deposited at the sediment sur-
face. In addition, mangrove leaf litter on the surface of
PHM cores may have acted as a barrier to algal mixing dur-
ing the 48 h experiments, limiting the subduction of added
C to the sub-surface feeding fauna (Dobbs and Whitlach,
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Fig. 8. Total production of DIC(A) from added algal-C in cores collected from all Kaneohe Bay sites. Total and vertical distribution of
macrofauna C-uptake (B andC, respectively) and bacterial C-uptake (D andE, respectively) in cores from all Kaneohe Bay sites are shown.
Significant differences (P <0.05) in parameters between sites are designated by different letters. Error bars denote±1 SE (n =3) unless
n =2, where error bars denote± range of two samples because of insufficient sample for analysis from a 3rd replicate chamber.

1982; Levin et al., 1997). In the PHR and PHC experiments,
no leaf litter occurred atop sediments and a much higher
proportion of the macrofauna belonged to surface and sus-
pension feeding guilds (e.g. spionids, cirratulids, and sabel-
lids, see Table 2). These factors likely explain the signifi-
cantly higher C-uptake rates by macrofauna in the mangrove
removal and control sediments compared to the mangrove
site experiments. Likewise, suspension and surface feed-
ing macrofauna (e.g. corophiids, sabellids, see Table 2) were
highly abundant and made up a major part of the biomass
(e.g. corophiids, spionids, see Table 2) in sediments recov-
ered from the Kaneohe Bay sites, and contributed heavily to
the large (relative to the PHM study) faunal C-uptake rates
measured here (Table 4). In terms of C-uptake rates normal-
ized to biomass, the apparent increase in response to labile
C by similarly related taxa (e.g. oligochaetes, spionids, see
Table 4) in the control studies, relative to the removal sites,
may have resulted from lower faunal densities in control sed-
iments (see Table 2) stimulating deposit feeding as seen in

previous studies (Miller and Jumars, 1986; Wheatcroft et al.,
1998). Altogether, these results suggest that both habitat and
macrofauna-community structure may be important in regu-
lating the fate of sedimented phytodetritus in invasive man-
grove forests and other shallow marine ecosystems along the
Hawaiian coastal zone (cf. Josefson et al., 2002; Kamp and
Witte, 2005).

While surface and suspension feeding lifestyles appeared
to be an important determinant in structuring the high macro-
fauna C-uptake rates in sediment cores recovered from the
removal and control sites (relative to the PHM study), sig-
nificantly higher C-uptake rates were found in both removal
site experiments relative to the controls, suggesting that ad-
ditional factors were at play. Macrofauna abundance and
biomass were elevated in sediment cores recovered from the
removal sites compared to controls, and a much larger pro-
portion of macrofauna abundance and biomass was found
in surficial sediment layers in cores from the removal habi-
tats (see Figs. 3a to d, 4a to d). Therefore, because of

Biogeosciences, 7, 2129–2145, 2010 www.biogeosciences.net/7/2129/2010/



A. K. Sweetman et al.: Ecosystem functioning in exotic and deforested mangrove sediments 2143

the higher macrofauna standing stock near the sediment sur-
face, macrofauna likely had the ability to cycle through and
process newly deposited organic matter more rapidly in the
removal site experiments, than communities residing in sed-
iment cores recovered from the control sites, and is possibly
the main factor behind the significantly different faunal C-
uptake rates measured between the removal site experiments
and controls.

Overall, the faunal and bacterial C-uptake results sug-
gest that surface-living bacteria rather than deeper-dwelling
macrofauna can contribute significantly more to the short-
term cycling of labile organic matter, such as phytodetritus
(Bouillon et al., 2002, 2004, 2008), in sediments from in-
vasive mangrove forests in Hawaii as well as in specific re-
moval areas (i.e. the KBR site). The opposite appears to
be true for sediments from the Pearl Harbor removal habitat
and un-invaded mudflats on O’ahu, where macrofauna ap-
peared to be more dominant players in the early diagenesis
of microalgal-C. However, our data from the PHR and KBR
experiments suggest that mangrove invasion and removal in
Hawaii can have a major, lasting effect on benthic biotic
structure and C-cycling dynamics, and we hypothesize that
in Hawaii, and other areas where native mangrove species
ranges are increasing (e.g. the New Zealand coast), ecosys-
tem recovery following mangrove removal may involve in-
termediate stages in which macrofauna, as well as bacterial
standing stocks, and contributions to short-term microalgal-
C-cycling are substantially enhanced compared to adjacent
un-vegetated mudflats. In order to apply these results to other
areas with mangroves in Hawaii, more exhaustive short- and
long-term feeding studies using different types of labeled
phytoplankton and mangrove detritus (Oakes et al., 2010)
must now be undertaken in a diverse range of mangrove habi-
tats (i.e. high intertidal to subtidal, areas of extreme vs. little
burrowing activity) over a variety of temporal scales to better
quantify the variability in C-cycling dynamics in sediments
in invasive mangrove forests and deforested habitats.

5 Conclusions

Invasive mangroves in Hawaii can significantly elevate sed-
iment O2 demand, and elevated SOC rates can persist for at
least 6-yrs after above-sediment mangrove removal. Bacte-
rial C-processing can become enhanced, relative to macro-
fauna, in near-surface sediments from intact mangrove habi-
tats, suggesting that bacteria dominate short-term C-cycling
in sediments within invasive mangrove forests in Hawaii.
Bacterial dominance of short-term C-cycling in sediments
from Hawaiian mangrove forests is similar to early diage-
netic processes in native mangrove forests (Alongi, 2002,
2008; Kristensen, 2007; Kristensen et al., 2008). In sedi-
ments from the Pearl Harbor mangrove removal area, macro-
fauna dominated short-term microalgal-C remineralization,
similarly to mangrove-free mudflats. However, key benthic

ecosystem properties in sediments from mangrove removal
sites such as macrofauna abundance, bacterial biomass,
short-term microalgal-C-uptake by macrofauna and bacteria,
and SOC can remain significantly different compared to con-
trols for up to 6-yrs following mangrove-tree removal. This
case study demonstrates that invasive mangroves can have
large and persistent impacts on ecosystem function in the
Hawaiian coastal zone, and highlights the need for further
work to determine the generality of these findings.
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van der Putten, W. H., and Wall, D. H.: Ecological linkages
between above-ground and below-ground biota, Science, 304,
1629–1633, 2004.

Wheatcroft, R. A., Starczak, V. R., and Butman, C. A.: The im-
pact of population abundance on the deposit-feeding rate of a
cosmopolitan polychaete worm, Limnol. Oceanogr., 43, 1948–
1953, 1998.

Weston, D. P.: Quantitative examination of macrobenthic commu-
nity changes along an organic enrichment gradient, Mar. Ecol.
Prog. Ser., 61, 233–244, 1990.

Zar, J. H.: Biostatistical Analysis, Prentice Hall, New Jersey, USA,
1999.

Zavaleta, E. S., Hobbs, R. J., and Mooney, H. A.: Viewing inva-
sive species removal in a whole-ecosystem context, Trends. Ecol.
Evol., 16, 454–459, 2001.

www.biogeosciences.net/7/2129/2010/ Biogeosciences, 7, 2129–2145, 2010


