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Abstract. Biomass burning emission inventories serve as
critical input for atmospheric chemical transport models that
are used to understand the role of biomass fires in the chem-
ical composition of the atmosphere, air quality, and the cli-
mate system. Significant progress has been achieved in the
development of regional and global biomass burning emis-
sion inventories over the past decade using satellite remote
sensing technology for fire detection and burned area map-
ping. However, agreement among biomass burning emis-
sion inventories is frequently poor. Furthermore, the un-
certainties of the emission estimates are typically not well
characterized, particularly at the spatio-temporal scales per-
tinent to regional air quality modeling. We present the
Wildland Fire Emission Inventory (WFEI), a high resolution
model for non-agricultural open biomass burning (hereafter
referred to as wildland fires, WF) in the contiguous United
States (CONUS). The model combines observations from the
MODerate Resolution Imaging Spectroradiometer (MODIS)
sensors on the Terra and Aqua satellites, meteorological anal-
yses, fuel loading maps, an emission factor database, and fuel
condition and fuel consumption models to estimate emis-
sions from WF.

WFEI was used to estimate emissions of CO (ECO) and
PM2.5 (EPM2.5) for the western United States from 2003–
2008. The uncertainties in the inventory estimates of ECO
and EPM2.5 (uECO anduEPM2.5, respectively) have been ex-
plored across spatial and temporal scales relevant to regional
and global modeling applications. In order to evaluate the un-
certainty in our emission estimates across multiple scales we
used a figure of merit, the half mass uncertainty,ũEX (where
X = CO or PM2.5), defined such that for a given aggrega-
tion level 50 % of total emissions occurred from elements
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with uEX < ũEX. The sensitivity of the WFEI estimates of
ECO and EPM2.5 to uncertainties in mapped fuel loading,
fuel consumption, burned area and emission factors have also
been examined.

The estimated annual, domain wide ECO ranged from
436 Gg yr−1 in 2004 to 3107 Gg yr−1 in 2007. The extremes
in estimated annual, domain wide EPM2.5 were 65 Gg yr−1

in 2004 and 454 Gg yr−1 in 2007. Annual WF emissions
were a significant share of total emissions from non-WF
sources (agriculture, dust, non-WF fire, fuel combustion,
industrial processes, transportation, solvent, and miscella-
neous) in the western United States as estimated in a national
emission inventory. In the peak fire year of 2007, WF emis-
sions were∼20 % of total (WF + non-WF) CO emissions and
∼39 % of total PM2.5 emissions. During the months with
the greatest fire activity, WF accounted for the majority of
total CO and PM2.5 emitted across the study region. Uncer-
tainties in annual, domain wide emissions was 28 % to 51 %
for CO and 40 % to 65 % for PM2.5. Sensitivity of ũECO
andũEPM2.5 to the emission model components depended on
scale. At scales relevant to regional modeling applications
(1x = 10 km,1t = 1 day) WFEI estimates 50 % of total ECO
with an uncertainty<133 % and half of total EPM2.5 with
an uncertainty<146 %. ũECO and ũEPM2.5 are reduced by
more than half at the scale of global modeling applications
(1x = 100 km,1t = 30 day) where 50 % of total emissions
are estimated with an uncertainty<50 % for CO and<64 %
for PM2.5. Uncertainties in the estimates of burned area
drives the emission uncertainties at regional scales. At global
scalesũECO is most sensitive to uncertainties in the fuel load
consumed while the uncertainty in the emission factor for
PM2.5 plays the dominant role iñuEPM2.5. Our analysis in-
dicates that the large scale aggregate uncertainties (e.g. the
uncertainty in annual CO emitted for CONUS) typically re-
ported for biomass burning emission inventories may not be
appropriate for evaluating and interpreting results of regional
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scale modeling applications that employ the emission esti-
mates. When feasible, biomass burning emission inventories
should be evaluated and reported across the scales for which
they are intended to be used.

1 Introduction

Biomass burning (BB; defined here as open biomass burn-
ing which includes wildfires and managed fires in forests, sa-
vannas, grasslands, and shrublands, and agricultural fire such
the burning of crop residue) is a significant source of global
trace gases and particles (van der Werf et al., 2010; Michel
et al., 2005; Ito and Penner, 2004). Biomass fire emis-
sions comprise a substantial component of the total global
source of carbon monoxide (40 %), carbonaceous aerosol
(35 %), and nitrogen oxides (20 %) (Langmann et al., 2009).
Other primary BB emissions include greenhouse gases (CO2,
CH4, N2O) and a vast array of photochemically reactive non-
methane organic compounds (NMOC; Akagi et al., 2011)
that contribute to the production of ozone (O3) and secondary
organic aerosol (Alvarado et al., 2009; Pfister et al., 2008;
Sudo and Akimoto, 2007).

BB emissions have a significant influence on the chemical
composition of the atmosphere, air quality, and the climate
system (Langmann et al., 2009; Lapina et al., 2006; Simp-
son et al., 2006). Fires influence climate through the produc-
tion of long-lived greenhouse gases and short-lived climate
forcers (e.g. aerosol, O3) which are agents for direct and in-
direct (e.g. aerosols cloud effects) climate forcing. Biomass
fires contribute to air quality degradation by increasing the
levels of pollutants that are detrimental to human health and
ecosystems, and that decrease visibility (Liu et al., 2009;
Park et al., 2007). The air quality impacts occur through the
emission of primary pollutants (e.g. fine particulate matter;
PM2.5) and production of secondary pollutants (e.g. O3 and
secondary organic aerosol) when NMOC and nitrogen oxides
released by biomass fires undergo photochemical processing.
Air quality can be impacted by the transport and transforma-
tion of BB emissions on local (Muhle et al., 2007; Phuleria
et al., 2005), regional (Spracklen et al., 2007; Sapkota et al.,
2005; DeBell et al., 2004), and continental (Morris et al.,
2006) scales.

BB emission inventories (EI) serve as critical input for at-
mospheric chemical transport models that are used to under-
stand the role of biomass fires in the atmosphere and climate.
BB EI are also important for interpreting in-situ and remote
atmospheric observations. The application determines the re-
quirements of a specific BB EI, such as spatial and temporal
resolution and chemical speciation. Modeling of regional air
quality needs high resolution EI (1x . 25 km,1t ≤ 1 day),
while global modeling applications can use less resolved in-
put (1x = 0.5 to 3 degree,1t = week to month).

Many BB emission models and inventories have been de-
veloped to provide input for a range of modeling applica-
tions. Case study EI have been assembled to assess the
impact of specific fire events on air quality (e.g., the Oc-
tober 2003 wildfire outbreak in southern California, USA,
Mühle et al., 2007; Clinton et al., 2006; and prescribed
burns in Georgia, Liu et al., 2009). Emission models to
support the simulation of cumulative smoke impacts from
fires have been implemented for the contiguous United States
(CONUS; Larkin et al., 2009; Zhang et al., 2008) and North
America (Wiedinmyer et al., 2006). These models are de-
signed to provide near-real-time fire emission estimates for
air quality forecasts. Other region specific BB EI have cov-
ered boreal Siberia (1998–2002; Soja et al., 2004), Africa
(2000–2007; Liousse et al., 2010), and tropical Asia (2000–
2006; Chang and Song, 2010).

Several global BB EI have been produced in the last
decade. The spatial and temporal resolution, speciation, and
coverage period of the inventories varies considerably. Ito
and Penner (2004) and Hoelzemann et al. (2004) published
global, monthly EI for 2000 at spatial resolutions of 1 km
and 0.5 degree, respectively. The Global Fire Emissions
Database (GFED, van der Werf et al., 2010; van der Werf
et al., 2006), a widely used BB inventory, is available over
1997–2009 as 8-day and monthly composites at 0.5◦ or 1.0◦

spatial resolution. Mieville et al. (2010) recently produced a
monthly, 1 km spatial resolution global emission dataset for
1997–2005 and used this contemporary inventory to recon-
struct historical (1900–2000) emissions. The Fire Locating
and Modeling of Burning Emissions (FLAMBE) program es-
timates near-real-time global BB emissions to support opera-
tional aerosol forecasting (Reid et al., 2009). The FLAMBE
archive provides emissions datasets from 2000 to the present.
The most recent addition to global BB EI category was the
Fire Inventory from NCAR (FINN), a global, high resolution
BB emission model that is capable of supporting near-real-
time applications (Wiedinmyer et al., 2011). A unique as-
pect of FINN is that it provides a comprehensive inventory
of NMOC emissions allocated as lumped species for widely
used atmospheric chemical mechanisms. FINN emission es-
timates are available for 2005–2010 with daily, 1 km resolu-
tion.

While significant progress has been achieved in the de-
velopment of methods for estimating BB emissions, agree-
ment among BB EI is variable. For example, GFED v3
and FINN v1 showed excellent agreement in annual, global
CO2, CO, and CH4 emissions over 2005–2009, the invento-
ries agreed within 3–35 % for each compound (Wiedinmyer
et al., 2011; van der Werf et al., 2010). In contrast, Strop-
piana et al. (2010) compared five global BB EI (including
GFED v3) for the year 2003 and found that total CO emis-
sions differed by a factor of 3.9 (high/low). The authors cited
differences in the area affected by fires and vegetation char-
acteristics as the prime causes for variability among inven-
tories. On a continental basis, the disagreement in annual
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emission estimates among various inventories can be much
greater. While 2003 total CO emissions for Africa varied by
a factor of 2.2, those for North America varied by a factor
of 14.5 (Stroppiana et al., 2010). Other inventories showed
somewhat better agreement; for example, annual CO emis-
sions estimated for North America by GFED v3 (van der
Werf et al., 2010) and a continental BB EI (Wiedinmyer et
al., 2006) differed by a factor of 1.15 to 1.93 over 2002–
2004. Over shorter time periods, the disagreement between
BB EI is more significant. Year 2003 monthly CO emissions
for Africa from six different inventories varied by a factor
of 7 over the year, with maximum differences of 300–400 %
during the peak emission months (Liousse et al., 2010). Sim-
ilarly, Al-Saadi et al. (2008) compared four satellite-driven
BB emission models over March 2006 to September 2006
and found that the estimates of monthly CO emissions inte-
grated over CONUS varied by an order of magnitude.

The lack of consistency among emission inventories and
the absence of information regarding uncertainty at pertinent
scales makes it difficult to determine which BB EI is most
appropriate for a particular application and hinders the eval-
uation of model results. For example, the annual, continental
scale uncertainty reported for a BB EI may seriously mis-
represent the relevant uncertainty for an air quality simula-
tion conducted with horizontal grid spacing of 10 km. This
is particularly true given that BB emissions typically have
large spatio-temporal gradients. Further, the sensitivity of
the emission estimates to the model components is gener-
ally not well characterized. Understanding the sensitivity of
emission estimates to assumptions and uncertainties associ-
ated with each input to the emission model – burned area,
fuel map, fuel load, fuel consumption, and emission factors,
is crucial for properly assessing the impact these assumptions
may have on atmospheric chemical transport model simula-
tions.

We present the Wildland Fire Emission Inventory (WFEI),
a high resolution (500 m, 1 day) wildland fire emission model
designed to support regional scale atmospheric chemistry
studies and air quality forecasting. In this paper, wildland
fire (WF) refers to non-agricultural, open biomass burning
which differs from the more commonly used definition of
open BB which usually includes agricultural burning (e.g.
pasture maintenance and crop residue). WFEI was used to
estimate WF emissions of CO (ECO) and PM2.5 (EPM2.5)
for the western United States from 2003–2008. We introduce
a figure of merit, the half mass uncertainty, to evaluate uncer-
tainty in the EI across spatio-temporal scales. To evaluate the
dependence of the model’s uncertainty to scale, the base res-
olution (500 m and 1 day) emission inventory was aggregated
across multiple spatial grids (1x = 10, 25, 50, 100, 200 km)
and time steps (1t = 1, 5, 10, 30, 365 day). The spatial and
temporal sensitivity of WFEI estimates of ECO and EPM2.5
to uncertainties in mapped fuel loading, fuel consumption,
burned area and emission factors is also examined. This as-
sessment may be the first study which has attempted to rigor-

ously evaluate the uncertainties of a BB EI across a range of
spatial and temporal scales. WFEI was designed for the con-
tiguous United States and here it is applied to western United
States over 2003–2008. However, the uncertainty/sensitivity
analysis presented here may be applicable to BB EI for dif-
ferent regions of the globe.

2 Methodology

2.1 Biomass burning emission model

Biomass burning emission (E) of a compound (i) may be esti-
mated as the product of area burned (A; km2), fuel load con-
sumed (FLC; kg-dry vegetation km−2), and specific emission
factors (EF; [g-compoundi] [kg-dry vegetation−1]) (Lang-
mann et al., 2009; Seiler and Crutzen, 1980):

E(k,t,i) = A(k,t)×FLC(k,t)×0.001×EF(k,t) (1)

where,k is location,t is time, i is species and FLC is the
product of the fuel loading (FL; kg-dry vegetation km−2) and
combustion completeness (C, dimensionless). Emission fac-
tors are traditionally reported in units of g kg−1 and the factor
of 0.001 in Eq. (1) converts the EF units into kg kg−1. Equa-
tion (1) is the basis of WFEI which provides daily emission
inventories with a spatial resolution of 500 m. WFEI was
originally designed to provide near-real-time WF emissions
for assimilation into air quality forecasting systems. The
model combines observations from the MODerate Resolu-
tion Imaging Spectroradiometers (MODIS) on NASA’s Terra
and Aqua satellites, meteorological analyses, fuel loading
maps, an emission factor database, and fuel condition and
fuel consumption models. We describe WFEI as applied to
the western United States in the following sections.

2.1.1 MODIS based burned area

Burned area was mapped using an improved version of the
MODIS – direct broadcast (DB) algorithm developed by Ur-
banski et al. (2009a). Here we provide a brief overview of
the algorithm and describe algorithm improvements and the
MODIS data processed in this study. Details of the algo-
rithm, a thorough evaluation of the algorithm, and a discus-
sion of the deficiencies and limitations of burned area map-
ping using remote sensing and ground-based information are
provided in Urbanski et al. (2009a) and references therein.

The MODIS algorithm combines active fire detections and
single satellite scene burn scar detections to map burned area
with a nominal spatial and temporal resolution of 500 m and
1 day. The MODIS-DB algorithm provides rapid mapping
of burned area and enables production of a regional emis-
sion inventory within 1 h of the final (Aqua), local MODIS
overpass. While the algorithm was designed to process DB
data in near-real-time, archived data may also be used. This
study used MODIS Level-1B, Collection 5 Terra and Aqua
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datasets obtained from the NASA MODIS L1 and Atmo-
sphere Archive and Distribution System (NASA, 2011) to
identify burn scars. Collection 5 of the standard MXD14
product (Giglio et al., 2003) provided active fire detections
(spatial resolution 1 km). The burn scar algorithm (Urbanski
et al., 2009a; Li et al., 2004) was applied to the Level-1B
datasets to identify potentially burned pixels – provisional
burn scar detections (spatial resolution 500 m). The purpose
of the algorithm is to map WF burned area; therefore the ac-
tive fire and burn scar detections were filtered using an agri-
cultural land mask (Sect. 2.1.2) to eliminate burning due to
agricultural activity. The processed data was aggregated tem-
porally according to the date (Local Time) of satellite acqui-
sition. Provisional burn scars were then screened for false de-
tections using a contextual filter which eliminates pixels not
proximate to a recent active fire detection. To be classified as
“confirmed”, provisional burn scar detections were required
to be within 3 km of any active fire detection from the pre-
ceding 5 days. A daily burned area product was created by
resampling pixel centers of confirmed burn scar detections
onto a 500 m× 500 m CONUS grid using a nearest neigh-
bor approach. The burned area grid for each day was com-
pared against a cumulative burned area grid which tracked
the burned area for 90 days. Comparison against the cumu-
lative burned area grid identified grid cells newly burned in
the preceding day, providing a map of burned area growth for
that day.

The burned area mapping employed in this study was im-
proved over that reported in Urbanski et al. (2009a) through
the two modifications. First, the contextual filter for burn scar
detection was changed to 3 km and 5 days in the improved
implementation versus 5 km and 10 days in the original ver-
sion. Second, in the current study, active fire detections were
used only to confirm burn scar detections. Previously, ac-
tive fire detections were used to identify burned grid cells in
addition to confirming burn scars. These improvements were
proposed in Urbanski et al. (2009a) and their implementation
has largely eliminated the overestimation of burned area in
the original mapping scheme. The previous algorithm has a
bias of 36 % (Urbanski et al., 2009a) while the bias of the im-
proved algorithm used in this study is 7 % (Sect. 2.2.3). An
evaluation of the improved burned area mapping algorithm
used in this study is provided in Appendix A.

2.1.2 Fuel map and fuel loading

The biomass, i.e. fuel loading (FL; kg dry vegetation km−2),
was estimated using wildland fuel loading models. A fuel
loading model describes and classifies fuelbed physical char-
acteristics to provide numerical input for fire effects mod-
els (Sect. 2.1.4). In this study the fire effects models CON-
SUME (Prichard et al., 2006) and FOFEM (Reinhardt, 2003)
were used to estimate the consumption of duff, litter, dead
wood, herbaceous vegetation, and shrubs (Sect. 2.1.4). The
Fuel Loading Models (FLM; Lutes et al., 2009) and the

Fuel Characteristics Classification System (FCCS; Ottmar,
et al., 2007a) were the fuel loading models used in this study.
We selected these fuel loading models because they were
mapped by the LANDFIRE project (LANDFIRE, 2011a, b)
and they provide a full description of the dead wood and duff
fuel strata that dominate loading, and hence potential emis-
sions, in forested ecosystems of the western United States.
WFEI incorporates only surface fuels and, for reasons dis-
cussed below, does not include canopy fuels.

The FCCS is a tool to classify fuelbeds according to their
potential fire behavior and fuel consumption (Ottmar et al.,
2007a). The FCCS contains over 200 fuelbeds for the United
States, organized by to vegetation type (e.g. Interior Pon-
derosa Pine – Douglas-fir Forest). The fuelbeds were de-
veloped using a wide range of sources: scientific literature,
fuels photo series, fuel data sets, and expert opinion (Ottmar
et al., 2007a).

The FLM are a surface fuel classification that categorizes
fuelbeds according to potential fire effects (consumption,
emissions, soil surface temperature; Lutes et al., 2009). The
FLM were developed using an extensive database of surface
fuel measurements from 4046 forested plots from across the
contiguous United States. The FLM contains 21 fuel classes
developed using a classification tree analysis to estimate the
critical loads of duff, litter, fine woody debris, and coarse
woody debris associated with 10 unique fire effects regimes.
The 10 unique fire effects regimes were identified by clus-
tering the potential fire effects of each measurement plot as
simulated using FOFEM (Lutes et al., 2009).

The major differences between the FCCS and FLM are:

1. The models were developed using different philoso-
phies to classify fuelbeds; the FCCS fuelbeds are for-
mally classified according to vegetation type while the
FLM fuelbeds are categorized based on the anticipated
fire effects of the fuel loadings.

2. The FLM covers only forests, while the FCCS includes
fuelbeds for herbaceous and shrubland cover types. The
absence of FLMs for non-forest cover types required
the development of supplemental fuelbeds as part of our
study (see below).

3. Due to a lack of data that satisfied their study’s criteria,
the FLM provides only a cursory treatment of under-
story herbs and shrubs. Because many of the plots in
the FLM dataset (2707 of 4046) were missing herba-
ceous or shrub loadings, all of the FLM were assigned
same loading, the dataset median, for these components.
The FCCS provides specific herbaceous and shrub fuel
loadings for each vegetation type classified.

4. The FLM were developed from a large, uniform col-
lection of surface fuel measurements. In contrast, the
FCCS were developed using a diverse range of data
sources and the nature of the underlying data is variable
across fuelbeds.
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The original FLM classifies only forests and does not pro-
vide models for herbaceous or shrub fuelbeds that are impor-
tant over large swaths of the western United States (e.g. sage
brush and chaparral). A field guide for identifying FLMs
does include models for sagebrush and chaparral (Sikkink
et al., 2009) and the LANDFIRE mapping of the FLMs in-
cluded these non-forested models. However, we chose not
to use the Sikkink et al. (2009) fuel loads and instead opted
to develop our own fuel loadings for non-forested classes of
the LANDFIRE FLM map. Using the Natural Fuels Photo
Series (Natural Fuels Photo Series, 2011) we developed six
non-forest cover type fuel loading models: grass, sage brush,
shrubs, coastal sage shrub, chamise, and ceanothus mixed
chaparral. We refer to these six fuel loading models as the
“FLM supplemental models”. The photo series datasets and
methods used to develop the FLM supplemental models are
described in Appendix B.

Our study used the LANDFIRE FLM and FCCS spatial
data layers (LANDFIRE, 2011b) to quantify surface fuels.
The LANDFIRE spatial data layers are provided as 30 m
resolution rasters which we aggregated to 500 m resolution
using majority resampling to match the resolution of our
daily burned area product (Sect. 2.1.1). FLM and FCCS fuel
codes were assigned to each burned grid cell by extracting
the FLM and FCCS values from the 500 m rasters at the cen-
ter point of each burned grid cell. Approximately 39 % of the
fire impacted FLM pixels were non-forest and these FLM
pixels were re-coded with the FCCS codes of those pixels.
The re-coded pixels were then assigned a FLM supplemen-
tal model based on the vegetation type of the FCCS fuelbed
(Appendix B).

Our study did not include forest canopy fuels because the
methods used in this study could not identify the occurrence
of crown fire or reliably model canopy fuel consumption.
While our burned area mapping technique efficiently identi-
fies burned pixels, it does not provide information regarding
the occurrence of crown fire. The fuel consumption models
used in this study (CONSUME and FOFEM) do not include
empirical or physical process based modeling of canopy con-
sumption. Additionally, the FLM do not include canopy fuel
loading and augmentation of the FLM with canopy fuel load-
ing estimates would have been problematic given the manner
in which the FLMs were developed – classification by an-
ticipated fire effects not vegetation type. Given these limi-
tations, we chose to exclude canopy fuel consumption from
our primary analysis. However, a rough estimate of canopy
consumption and resultant emissions using the FCCS is pro-
vided in Appendix C.

2.1.3 Fuel conditions

Fuel moistures for dead and live fuels were calculated us-
ing the National Fire Danger Rating System (NFDRS) ba-
sic equations (Cohen and Deeming, 1985). The NFDRS
provides fuel moisture models for live (woody shrubs and

herbaceous plants) and dead fuels. Dead fuels are classified
by timelag intervals (the e-folding time for a fuel particle’s
moisture content to return to equilibrium with its local envi-
ronment) which are proportional to the diameter of fuel par-
ticle (twig, branch, or log). The NFDRS classifies 1-h, 10-h,
100-h, and 1000-h dead fuels corresponding to diameters of
<0.64, 0.64–2.54, 2.54–7.62,>7.62 cm. 1-h and 10-h dead
fuel moistures were calculated from the hourly air tempera-
ture (T ), relative humidity (RH), and surface solar radiation
(SRAD) following the NFDRS implementation of Carlson
et al. (2002). The meteorological input for the fuel moisture
calculations was obtained from the North American Regional
Reanalysis (NARR) meteorological fields (32 km horizontal
resolution, 45 vertical layers, and a 3 h output) (Mesinger et
al., 2006).T , RH, and SRAD were estimated for the hours
between analyses by interpolating the 3-h NARR output. The
NFDRS does not include equations for duff moisture, which
is needed to predict duff consumption and is required input
for both CONSUME and FOFEM. The closed canopy em-
pirical relationship of Harrington (1982) was used to esti-
mate the duff moisture from the NFDRS 100-h fuel mois-
ture. The Harrington (1982) study was limited to Ponderosa
Pine forests and likely does not provide the best estimate of
duff moisture for all forest ecosystems in the western United
States. However, using the same methods to estimate fuel
moistures for all cover types avoids introducing additional
variability into our analysis that would have interfered with
our ability to assess uncertainties associated with the fuel
consumption models, a key objective of this study.

2.1.4 Fuel consumption

Factors controlling fire behavior and the consumption of
wildland fuels include fuelbed type, fuel arrangement, fuel
condition (moisture, soundness of dead wood) and meteorol-
ogy (Anderson, 1983; Albini, 1976; Rothermel, 1972). Our
study used two fire effects models, CONSUME and FOFEM,
to simulate fuel consumption. While the models require sim-
ilar input, fuel loading by fuel class (with slightly different
size classifications for woody fuels) and fuel moisture, they
employ significantly different approaches towards predicting
surface fuel consumption (dead wood and litter). While both
models were calibrated using field measurements of fuel con-
sumption from WFs, neither model has been extensively val-
idated using independent data from wildfires or prescribed
fires. Next we provide a brief description of the models.

CONSUME is an empirical fire effects model that pre-
dicts fuel consumption by fire phase (flaming, smoldering,
residual smoldering), heat release, and pollutant emissions
(Prichard et al., 2006). The CONSUME natural fuels al-
gorithms include predictive equations for the consumption
of shrubs, herbaceous vegetation, dead woody fuels, litter-
lichen-moss, and duff. The dead woody fuels algorithms are
comprised of equations for different size classes and decay
status (sound or rotten). There are specific equations for dead
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Table 1. Probability distribution functions and parameters used in the Monte Carlo analysis.

Model component pdf Parameters

A
(km2)

Normal µA = A, σA = (5.03A)1/2

FLC
(kg-dry
vegetation
burned km−2)

Normal µFLC(k,t) =

4∑
j=1

FLC(j,k,t)

4
σFLC(k,t) =

0.5× (max(FLC(k,t))
− min(FLC(k,t)))

EFCO
(g CO kg – dry
vegetation burned−1)

Normal
Log-normal

Forest:µEFCO= 87.0,
σEFCO= 17.9
Non-forest:µEFCO= 4.21,
σEFCO= 0.30

EFPM2.5
(g PM2.5 kg – dry
vegetation burned−1)

Log-normal
Log-normal

Forest:µEFPM2.5 = 2.59,
σEFPM2.5 = 0.34
Non-forest:µEFPM2.5 = 2.20,
σEFPM2.5 = 0.47

wood and duff consumption in the western United States.
Fuel moisture is the independent variable in all of the natural
fuel equations except for the shrub, herbaceous vegetation,
litter-lichen-moss, and 1-hour size class dead wood (diame-
ter<0.64 cm) strata.

FOFEM, the First Order Fire Effects Model, simulates
fuel consumption, smoke emissions, mineral soil exposure,
soil heating, and tree mortality (Reinhardt 2003). FOFEM
employs BURNUP (Albini et al., 1995), a physical model
of heat transfer and burning rate, to calculate the consump-
tion and heat release of dead woody fuels and litter. Duff
consumption is calculated using the empirical equations of
Brown et al. (1985). The consumption of herbaceous fuels
and shrubs are estimated using rules of thumb (FOFEM 5.7,
2011). In addition to loading by fuel class, FOFEM requires
fuel moisture (10-hr, 1000-hr, and duff) as input.

2.1.5 Fuel load consumed

The combination of fuel loading maps (FLM, FCCS) and
consumption models (FOFEM, CONSUME) provided four
predictions of fuel load consumption, FLC:

FLCi,j = FLi ×Cj (2)

where FL is the fuel loading (FL; kg-dry vegetation km−2),
C is the consumption completeness, and FLC is the dry mass
of vegetation burned per km2. In Eq. (2) thei andj index
identify the fuel loading model (FLM or FCCS) and fuel con-
sumption model (FOFEM or CONSUME), respectively (FL1
= FLM, FL2 = FCCS,C1 = FOFEM,C2 = CONSUME). The
mean of the four predictions was used as the best estimate of
FLC (µFLC, Table 1) fuel load consumed (FLC).

2.1.6 Emission factors

An emission factor (EF) provides the mass of a compound
emitted per mass of dry fuel consumed. Our study developed
“best estimate” CO and PM2.5 EFs for burning in forest and
non-forest (grasslands and shrublands) cover types from data
reported in the literature. The literature values used were fire-
average EF measured for wildfires and prescribed fires in the
United States and southwestern Canada. The EF source stud-
ies were all based on in-situ emission measurements obtained
from near source airborne or ground based tower measure-
ments. The published EFs were used to derive probability
distribution functions (pdf) for EFCO and EFPM2.5 that were
used in our uncertainty analysis (Sect. 2.2.5). The statistical
variability of each EF (CO or PM2.5, forest or non-forest)
was determined by fitting log-normal and normal distribu-
tions to the source data. For each EF, theµ from the fitted
distribution was taken as the best estimate of EF. The best
estimates for EFs are given as theµ of the pdfs in Table 1.
We used published EFs from 46 forest fires (Urbanski et al.,
2009b; Friedli et al., 2001; Yokelson et al., 1999; Nance et
al., 1993; Radke et al., 1991) and 21 grassland/shrubland
fires (Urbanski et al., 2009b; Hardy et al., 1996; Nance et
al., 1993; Radke et al., 1991; Coffer et al., 1990) to derive
the pdf for EFCO. The pdf for EFPM2.5 was obtained us-
ing EFs from 43 forest fires (Urbanski et al., 2009b; Nance
et al., 1993; Radke et al., 1991) and 17 grassland/shrubland
fires (Urbanski et al., 2009b; Hardy et al., 1996; Nance et al.,
1993; Radke et al., 1991).
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2.1.7 CO and PM2.5 emission estimates

Emissions of CO and PM2.5 were estimated using the bias
corrected burned area (Sect. 2.2.3), the best estimate, cover
type specific emission factors (Table 1), and the mean of
the four FLC predictions (Sect. 2.1.5, Table 1). The WFEI
model was applied to the 11 western states of the contigu-
ous U.S. for 2003–2008. The model’s base resolution of 500
m and 1 day was defined by the MODIS burned area prod-
uct. The burned area is derived from the 24 hour increase
in burn scar area (500 m spatial resolution) which is mapped
once per day using the combined MODIS data from the day-
time overpasses of the Terra and Aqua satellites (Sect. 2.1.1).
Emissions of CO and PM2.5 were estimated at multiple levels
of spatio-temporal aggregation (Sect. 2.2.1), with daily sums
on a 10 km grid being the finest scale and annual, domain
wide emissions as the most coarse scale.

2.2 Evaluation of emission model uncertainty

2.2.1 Spatial and temporal aggregation

The emission model has a base resolution of 500 m and 1
day. To evaluate the dependence of the model’s uncertainty
to scale, the base resolution (500 m and 1 day) emission in-
ventory was aggregated across multiple spatial grids (1x =

10,25,50,100,200 km) and time steps (1t = 1,5,10,30,365
day) providing 25 arrays,g1x,1t (k,t). We use1x and1t

to refer to the spatial and temporal scales of aggregation,
respectively. The following notation will be used to iden-
tify a particular spatio-temporal aggregation of the emission
model: g25 km,30 day(k,t). “Elements” will be used to refer
the array elements (k,t) of a particular spatio-temporal ag-
gregate. For example, the 25 km× 25 km grid (1x = 25 km)
has 7020 grid cells and our 6 year study has 72 30 day time
periods (1t = 30 day). Thus, the spatio-temporal aggregate
g25 km,30 day (k,t) has 505 440 elements; however, not all of
the elements are a source of fire emissions. The extent of
the study’s spatial and temporal domains were the 11 west-
ern United States and from 1 January 2003 to 31 December
2008, respectively. The span of the spatial resolution was
chosen to cover both regional (<

∼25 km) and global (50 km to
200 km) atmospheric chemical transport modeling applica-
tions.

2.2.2 Monte Carlo analysis

The uncertainty of the emission model was estimated using a
Monte Carlo analysis. The emission model is characterized
by large uncertainties and non-normal distributions. Monte
Carlo analysis is a suitable approach for assessing the uncer-
tainty of such a model (IPCC, 2006) and has been applied in
previous BB EI studies (van der Werf et al., 2010; French et
al., 2004). In this paper we useσX , where X = A, FLC, or
EF (i), to signify the 1-sigma (1σ) uncertainty of the model
variables. TheσX are the standard deviation of the model

components used in the Monte Carlo analysis. The proba-
bility distribution functions (pdf) and parametersσX andµX
(the mean of X which is used as the best estimate of X) for
A, FLC, and EF (i) are given in Table 1. The approaches
used to determine the pdf and parameters in Table 1 and their
application in the Monte Carlo analysis are described in fol-
lowing sections. We useuX , where X = A, FLC, EF(i), to
refer to the 1σ fractional uncertainty in estimated value of X,
uX = σX /µX .

2.2.3 Burned area mapping uncertainty

MODIS vs. MTBS “ground truth”

We used burn severity and fire boundary geospatial data from
the Monitoring Trends in Burn Severity (MTBS) project
(MTBS, 2011a, b) to develop “ground truth” burned area
maps to evaluate the uncertainty in our MODIS burned area
product. MTBS is an ongoing project designed to consis-
tently map the burn severity and perimeters of large fire
events (>404 ha) across the United States (MTBS, 2011c).
The project uses LANDSAT TM/ETM images to identify
fire perimeters and classify burn severity by 5 categories
(1 = unburned to low severity, 2 = low severity, 3 = moderate
severity, 4 = high severity, and 5 = increased greenness). The
fire severity classification is based on the differenced nor-
malized burn ratio (dNBR) calculated from pre-fire and post-
fire LANDSAT images. MTBS analysts develop fire sever-
ity classifications from the dNBR for each individual fire
event using raw pre-fire and post-fire imagery, plot data, and
analyst experience with fire effects in a given ecosystem.
We identified the annual “ground truth” burned area using
the Regional MTBS Burn Severity Mosaic geospatial data
(MTBS, 2011b). We mapped the “true” burned area from
the MTBS dataset by classifying all pixels with an MTBS
severity class 2, 3, or 4 as burned.

The uncertainty assessment for our improved MODIS
burned area mapping algorithm used data from 11 subre-
gions representing the different land cover types of the west-
ern United States. The general approach was to aggre-
gate the MODIS and MTBS burned pixels by the cells of
a 25 km× 25 km evaluation grid on an annual basis. The
MTBS project mapped only large fires (>4 km2), and while
our MODIS burned area mapping algorithm was designed
for large wildfire events, it does detect and map fires<4 km2

(Urbanski et al., 2009a). Therefore it is possible that our
MODIS burned area mapping algorithm may accurately map
small fire events that are not included in the MTBS dataset
and that these MODIS detected burned pixels would im-
properly contribute to our assessment as false positive error.
As a result, we screened our MODIS data for burned pix-
els that were not associated with MTBS mapped fire events.
MODIS active fire detections not within 3 km of an MTBS
fire boundary (MTBS, 2011a) were flagged and the burn pix-
els confirmed by these active fire detections were excluded
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from the assessment. Even after spatial filtering, the screened
MODIS burn pixels may include areas associated with small
prescribed fires that were not mapped by MTBS but occurred
near MTBS mapped fires. Because the majority of prescribed
burning in the western United States is conducted prior to
(or after) a region’s wildfire season, we identified, annu-
ally, the approximate commencement date for wildfire activ-
ity within each evaluation zone from the MTBS fire bound-
ary data (MTBS, 2011a). Within each subregion (on an an-
nual basis) we used the earliest reported start date from the
MTBS perimeter data to identify the onset of wildfire activ-
ity. MODIS burned pixels in a particular evaluation zone
which predated the beginning of wildfire activity by more
than 1 week were assumed to be prescribed fires and ex-
cluded from the burned area assessment. We did not de-
velop a filter for post-season prescribed burns and such burns
could be included in our assessment as false positive error.
Within each subregion, the filtered MODIS burned area and
the MTBS based burned area were aggregated by the 25 km
grid cells on an annual basis. The evaluation used data se-
lected from 2005, 2006, and 2007, but in only a few cases
was more than one year of data used in any subregion. The
total burned area in the 11 subregions used in the uncertainty
analysis was 23 012 km2 for MTBS and 22 027 km2 for the
filtered MODIS data. Prior to filtering, the MODIS burned
area was 24 084 km2. The MTBS proximity filter and the
pre-season prescribed fire filter were only used in the burned
area uncertainty evaluation which quantified the uncertainty
function (Eq. 3) and corrected the algorithm’s mean bias (see
below). The burned area used in the emission inventory that
is presented and discussed in Sects. 3–5, included all MODIS
based burned pixels as mapped with the algorithm as de-
scribed in Sect. 2.1.1.

We found that the MODIS burned area product was in
close agreement with the MTBS burned area (Fig. 1). The
coefficient of determination (r2

= 0.91) and the Theil-Sen
(TS) regression estimator value indicated our MODIS burned
area product slightly overestimated burned area by 7 % (see
Fig. 1). The TS regression estimator was selected over or-
dinary least squares regression because the burned area data
in this study is non-normal distributed, heteroscedastic (the
variance of the error term is not constant), and contains high
leverage outliers. The TS estimator is somewhat resistant
to outliers and tends to yield accurate confidence intervals
when data is heteroscedastic and non-normal in distribution
(Wilcox, 1998, 2005). The slope value of the TS estimator
did not change when the intercept was forced to zero. The
MODIS burned area was adjusted by the TS estimator slope
(0.93) to correct for the slight overestimation. The MODIS
burned area used throughout the remainder of this paper is
the adjusted MODIS burned area.

Uncertainty quantification

A primary goal of this study was to characterize the uncer-
tainty in a biomass burning emission model, a task that re-
quires uncertainty estimates for each model component. The
burned area data has a non-normal distribution and is het-
eroscedastic. The heteroscedasticity in the dataset is read-
ily apparent; the variation in the MODIS burned area dif-
fers depending on the value of the “ground truth”, and the
scatter (error) increases with increasing burned area (see
Fig. 1). The default Breusch-Pagan test for linear forms
of heteroscedasticity was used to formally verify the het-
eroscedastic condition of the dataset.

When data is non-normal in distribution and heteroscedas-
tic, standard approaches for quantifying uncertainty are not
reliable (Wilcox, 2005). Therefore, following Urbanski et
al. (2009a) and Giglio et al. (2010), we employed an empir-
ical error estimation approach to quantify the uncertainty of
our MODIS based burned area measurement. The details of
this analysis are provided in Appendix A and only the results
are presented in this section. As evident in Fig. 1, and as
demonstrated by Urbanski et al. (2009a), and by Giglio et
al. (2010) (who used a more sophisticated MODIS burn scar
mapping technique) our analysis found that absolute uncer-
tainty increases with increasing burned area. The 1σ uncer-
tainty in our MODIS mapped burned area is:

σA = (b×A)1/2 (3)

where A is the MODIS measured burned area in km2 and
b = 5.03 km2. The development of Eq. (3) is described in
Appendix A. While the absolute uncertainty (σA) increases
with burned area, the relative uncertainty (uA = σA /A) de-
creases. For example,uA = 0.71 for a measured burned area
of A = 10 km2 and decreases to 0.22 at A = 100 km2. Un-
certainty is typically expressed as an interval about a mea-
surement result that is expected to encompass a specified
probability range of the true value. In this study we defined
the burned area uncertainty,uA , as the error cone expected
to contain approximately 68 % of the “ground truth” burned
area values of which the MODIS burned area is a measure-
ment. This definition of uncertainty provides coverage com-
parable to that of a standard uncertainty for normally dis-
tributed data (i.e. coverage of∼68 % for 1σ ). The empirical
uncertainty analysis employed in this study (see Appendix A)
satisfies our definition of uncertainty. Seventy two percent of
the “ground truth” burned area values fall within the uncer-
tainty bounds (Eq. 3) and when a coverage factor of 1.65
is applied (i.e. the 90 percent confidence interval of a normal
distribution), 87 % of the “ground truth” values are enveloped
by the resulting uncertainty bounds (Fig. A2).

2.2.4 Fuel load consumption uncertainty

The combination of fuel loading maps (FLM, FCCS) and
consumption models (FOFEM, CONSUME) provided four
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Fig. 1. MODIS mapped burned area plotted against the MTBS
burned area for 463 grid cells (25 km× 25 km). The solid line is
the Theil-Sen estimate of the slope, slope = 0.930.96

0.90; uncertainty is

90 % confidence interval, the coefficient of determination isr2
=

0.91. The dashed line is 1:1.

predictions of fuel load consumption (Eq. 2, Sect. 2.1.5) At
each element of theg1x,1t (k,t) we aggregated base reso-
lution FLC data (500 m and 1 day) by summing each of the
four FLCi,j at each grid (k) and time step (t) and then using
the mean of the four predictions as the best estimate of FLC
(µFLC, Table 1). Sufficient observational data is not avail-
able to evaluate the estimates of FL, C or FLC; therefore, a
statistical sample of the prediction error could not be used
to quantify the uncertainty in the FLC. We made the subjec-
tive decision to estimate the uncertainty in the FLC predic-
tions (σFLC, Table 1) as 50 % of the range. Our uncertainty
analysis does not account for mapping error, i.e. incorrect
assignment of fuel code in the LANDFIRE geospatial data.
Mapping error could not be considered due to the absence of
appropriate independent data.

2.2.5 Emission factor uncertainty

Published studies of over 50 fires in the United States and
southwestern Canada (Sect. 2.1.5) were used to develop the
forest and non-forest cover type pdf for EFCO and EFPM2.5
in Table 1. The statistical variability of each EF (CO or
PM2.5, forest or non-forest) was determined by fitting log-
normal and normal distributions to the source data. With the
exception of EFCO for forest cover type, the EF were best
described with a log-normal distribution. For each EF, the
distribution model and fitted parameters (µ andσ) were used

in the Monte Carlo simulations (Sect. 2.2.2) to estimate the
uncertainty.µ was taken as the best estimate of EF. The pdf
and parameters are given in Table 1.

2.2.6 Emission inventory uncertainty

The Monte Carlo analysis provided estimates of the model
uncertainty for ECO and EPM2.5 at multiple scales by con-
ducting 10 000 simulations at each of the 25 spatio-temporal
aggregates,g1x,1t (k,t). In each simulation round, possible
CO and PM2.5 emission values for each element were cal-
culated using Eq. (1) where the values A, FLC, EF(i) were
obtained by random sampling from each component’s pdf
(Table 1). We note that the burned area pdf was based on
an analysis at a spatial scale of 25 km but is used across all
scales (1x = 10 km to 1x = 200 km) in the Monte Carlo
analysis. Both forest and non-forest EF values were drawn
and the cover type weighted average of the two was used
as the EF (i) at each element. The simulations provided
10 000 ECO and EPM25 estimates for each element of each
g1x,1t (k,t), which served as the emission model pdf. The
best estimate of ECO and EPM2.5 at each element (µECO
andµEPM2.5) was calculated with Eq. 1 using the mean val-
ues in Table 1The simulation results for ECO and EPM2.5
were each sorted by increasing value and the 1σ uncertainty
bounds were taken as the 16th and 84th percentiles (elements
Bl = 1600 and Bu = 8400 of the sorted simulation, respec-
tively). Likewise, 90 % confidence intervals were taken as
the 5th and 95th percentiles, Bl = 500, Bu = 9500. The un-
certainty bounds produced in this analysis are not symmetric
due to truncation of negative values and the log-normal na-
ture of EFPM2.5 and the EFCO for non-forest cover types
(Table 1). When the uncertainty in the burned area was
larger than the absolute burned area the lower uncertainty
bound was truncated to 0. This truncation contributes to
skewed uncertainty bounds for the emission estimates with
σEX(upper)> σEX (lower). The truncation effects associated
with the burned area were most prevalent at small aggrega-
tion scales. The FLC pdf occasionally produced an uncer-
tainty that was larger thanµFLC resulting in a negative lower
uncertainty bound which was truncated to 0. Throughout the
paper we use the larger, upper uncertainty bounds (84th or
95th percentiles) when referring to absolute or relative un-
certainties. The nomenclatureσEX anduEX refers to the up-
per bound, 1σ absolute uncertainty and fractional uncertainty
in EX (uEX = σEX/EX), respectively. For each element with
WF emissions at a giveng1x,1t (k,t) our analysis provides
a best estimate of EX and estimates of uncertaintyσEX and
uEX. Note that A (µA in Table 1), is simply the MODIS
burned area measurement for each element and that EF (i) is
the cover type weighted average of the appropriateµ from
Table 1.
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Fig. 2. Estimates of western United States annual(a) burned area,(b) fuel consumption,(c) CO emitted, and(d) PM2.5 emitted. Solid points
are the best estimate. The solid horizontal lines, boxes, and whiskers denote the median, 1σ uncertainty and 90 percent confidence interval,
respectively, from the Monte Carlo analysis. Numbers give 1σ as percentage of the best estimate.

2.2.7 Variability and sensitivity of emission
model uncertainty

In order to evaluate the uncertainty in our emission estimates
across multiple scales we used a figure of merit, the half mass
uncertainty,̃uEX (where X = CO or PM2.5), defined such that
for a given aggregation level 50 % of total emissions occurred
from elements withuEX < ũEX. The figure of merit was cal-
culated as follows: for eachg1x,1t (k,t), paireduEX and EX
were sorted in order of ascendinguEX and the figure of merit
was taken as the value ofuEX where the cumulative sum of
EX exceeded 50 % of total EX. A graphical demonstration
of ũEX is provided in Fig. S1. Thus, at a giveng1x,1t (k,t),
50 % of total ECO (EPM2.5) is estimated with an uncertainty
less thañuECO (ũEPM2.5).

We estimated the sensitivity of the uncertainty in our emis-
sion estimates to uncertainties in the model components us-
ing Eq. (4):

λEX,i =
∂ũEX

∂αi

(4)

whereσi is the uncertainty in one of the model components
(i = A, FLC, EF). One model component at a time, the 1σ un-
certainties from Table 1 were varied by a factor ofα = 0.30 to
1.70 with an increment of 0.1. For each increment inα, the
Monte Carlo analysis was repeated and the figure of merit,
ũEX, was determined. Then thẽuEX for all α increments
was regressed againstα and the slope of this regression pro-
vided the value ofλEX,i (Fig. S2). These steps were repeated
across each of the 25 spatio-temporal aggregates for allσi .

3 Results

3.1 Emissions, burned area, and fuel consumption

Estimated annual burned area, fuel consumption (FC;
FC = A× FLC), and emitted CO and PM2.5 for the west-
ern United States are shown in Fig. 2. The annual values
and uncertainties were derived by annual aggregation of the
base resolution (500 m and 1 day) model components and
emission estimates. The annual sums of A, FC, ECO, and
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Fig. 3. Annual burned area aggregated as square km burned per 25 km× 25 km grid cell displayed in log scale.

Fig. 4. Annual fuel consumed aggregated as kg dry vegetation burned per 25 km× 25 km grid cell displayed in log scale.

EPM2.5 for each of the 11 states are provided in Tables 2
through 5. Maps of the annual burned area, fuel consump-
tion, and emissions, aggregated to the1x = 25 km grid (i.e.

g25 km,1365d (k,t)) are given in Figs. 3 through 6. There was
significant inter-annual variability in the burned area, fuel
consumption, and emissions. The annual burned area ranged
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Fig. 5. Annual CO emissions aggregated as kg CO per 25 km× 25 km grid cell displayed in log scale.

Fig. 6. Annual PM2.5 emissions aggregated as kg PM2.5 per 25 km× 25 km grid cell displayed in log scale.

from 3622 to 19352 km2. Fuel consumption was 5292 to
39 710 Gg dry vegetation yr−1. Annual total ECO was 436
to 3107 Gg yr−1 and annual total emissions of PM2.5 were 65

to 454 Gg yr−1. Annual total burned area, fuel consumption,
ECO, and EPM2.5 were all largest in 2007, and smallest in
2004; with 2007 emissions being∼ 7 times those in 2004.
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Table 2. Annual sums of state level burned area estimates (km2 yr−1) over 2003–2008.

State 2003 2004 2005 2006 2007 2008 Total Contributionb

Arizona (AZ) 727 841 1788 486 356 268 4466 6.9 %
California (CA) 2958 884 815 1940 3463 1742 11 802 18.3 %
Colorado (CO) 222 233 195 187 139 336 1312 2.0 %
Idaho (ID) 994 109 1745 2462 6128 346 11784 18.3 %
Montana (MT) 1955 134 330 2669 2026 398 7512 11.7 %
New Mexico (NM) 596 309 377 378 170 315 2145 3.3 %
Nevada (NV) 192 169 2840 3979 2687 332 10 199 15.8 %
Oregon (OR) 641 267 662 1949 2037 657 6213 9.6 %
Utah (UT) 415 344 603 642 1331 88 3423 5.3 %
Washington (WA) 742 246 449 1068 739 299 3543 5.5 %
Wyoming (WY) 438 85 141 767 276 346 2053 3.2 %

Totala 9879± 2 % 3622± 4 % 9945± 2 % 16 526± 2 % 19 352± 2 % 5128± 3 % 64 452± 2 % 100.0 %

a Uncertainties are 1σ (see Sect. 2.2.3).b Contribution is the percent contribution of estimated burned area in each state to the 6 year total.

Burned area alone did not drive emissions. The significance
of the ecosystems burned to fuel consumption and total emis-
sions is easily seen by examining the years 2003, 2005, and
2006. In 2003 and 2005, the burned area was comparable,
but fuel consumption, and thus emissions, were larger by a
factor of∼ 2.7 in 2003. The large difference in burned area
between 2003 (9879 km2) and 2006 (16 526 km2), ECO and
EPM2.5 differed by only a few percent. These differences are
not simply a function of the forested to non-forested burned
area ratio, e.g. the fraction of forested burned area in 2003
and 2005 were roughly the same. And while in 2006 the
fraction of burned area that was forest (49 %) was smallest
of the six years, emission per area burned in 2006 exceeded
that in 2004 and 2005 when 77 % and 68 % of burned area
was forest, respectively.

State level, annual burned area, fuel consumption, total
ECO and EPM2.5 are included in Tables 2–5. Spatially,
fire emissions were concentrated in three regions: Idaho and
western Montana; southern California; and central Oregon
and Washington (Figs. 5 and 6). Nearly half of the total esti-
mated burned area over 2003–2008 occurred in three states:
California (18.3 %), Idaho (18.3 %), and Montana (11.7 %).
These three states accounted for two-thirds of estimated CO
and PM2.5 emissions. Fire activity in Nevada comprised a
large fraction of the total burned area (15.8 %), but owing to
the sparse vegetation and light fuel loads of Nevada’s domi-
nant ecosystems, ECO and EPM2.5 in this state were only a
few percent of the domain wide emissions.

During our 6-year study period, fire activity exhibited sig-
nificant intra-annual variability. Burning was largely lim-
ited to June–October. More than 90 % of estimated burned
area, fuel consumption, and emissions occurred during these
months. This temporal pattern is consistent with that of wild-
fire burned area reported in administrative records cover-
ing 2000–2010 (National Interagency Coordination Center,
2011). The spatial distribution of monthly ECO during the

fire season, summed over 2003–2008, is displayed in Fig. 7.
Monthly burned area and ECO as percentages of the 2003–
2008 totals are also given in Fig. 7 (lower right panel). The
maximum burned area occurred in July; however, emissions
were a maximum in August due to greater fuel consumed
as a result of high fuel loadings and similar or lower fuel
moistures. The seasonal fire activity originated in the south-
west (Arizona, New Mexico, southern Nevada) in June. Dur-
ing July, fire activity expanded northward along the Rocky
Mountains and through the Great Basin with the epicenter of
activity migrating into northern Nevada and southern Idaho.
Fire occurred throughout the interior west and Pacific North-
west over July. By August, fire activity had largely moved
into the northern Rocky Mountains and Pacific Northwest.
Fire activity decreased in September and, outside of Cali-
fornia, was minimal in October. In California, significant
fire activity occurred in each month of the June–October pe-
riod at some point over 2003–2008. October fires accounted
for the largest monthly portion of burned area in California
(36 %), followed by fires in July (19 %), September (13 %),
August (12 %), and June (9 %).

While fire activity was wide spread over the course of the
fire season, emissions were highly concentrated. Cumula-
tive distribution functions of estimated CO emissions ver-
sus the fraction of elements with fire activity are shown in
Fig. 8. As described in Sect. 2.2.1, “elements” refers to the
array elements (k,t) of a particular spatio-temporal aggre-
gate. From Fig. 8 it is readily apparent that a small fraction
of elements were responsible for the majority of total emis-
sions. Atg25 km,30d (k,t) 50 %/90 % of total ECO originated
from 2 %/18 % of elements. The pattern is similar, though
not as extreme, atg10 km,1d (k,t), 50 %/90 % of total ECO
arose from 5 %/35 % of the elements. This result is consis-
tent with previous findings that very large wildfires (burned
area>100 km2) accounted for a substantial portion of burned
area in the western United States (Urbanski et. al, 2009a).

www.atmos-chem-phys.net/11/12973/2011/ Atmos. Chem. Phys., 11, 12973–13000, 2011



12986 S. P. Urbanski et al.: The wildland fire emission inventory

Fig. 7. 25 km grid cell maps of estimated monthly ECO (kg CO) summed over 2003 to 2008 and, in the lower right panel, plot of burned
area and ECO fractions by month over 2003 to 2008. Maps are log scale.

3.2 Uncertainty

3.2.1 Annual domain wide

Uncertainty in the estimated annual burned area was≤5 %
(Fig. 2a). Due to the large burned area for annual, domain
wide aggregation, the lower bound uncertainties were never
negative and were not truncated. In this absence of trunca-
tion effects, the uncertainty bounds are symmetric. The un-
certainties in total, domain wide ECO, which were slightly
skewed towards the upper bounds, ranged from 28 % to
51 % (Fig. 2c). The asymmetry in theuECO reflects the tail
of the log-normal distribution for EFCO in non-forest fu-
els (Sect. 2.2.3). The uncertainty in estimated EPM2.5 is
markedly larger and more skewed than that for ECO. The
upper bound fractional uncertainties in EPM2.5 span 43 %–
64 % and are 12–15 percentage points higher than those for
ECO (Fig. 2d). This difference is due to the larger uncer-
tainty in EFPM2.5 compared with EFCO (Table 1). Frac-
tional uncertainties in the estimated fuel consumption were
symmetric and ranged from 19 % to 47 % (Fig. 2b). Because
the burned area uncertainty is small for annual, domain wide
aggregation, the uncertainty in fuel consumption results pri-
marily from uFLC. In the absence of independent data for
evaluation, we have assumed that the mean and half-range
of FLC predicted with the fuel load – consumption model
combinations provided a reasonable estimate of true FLC
and uFLC, respectively. Given that the true FLC could be

quite different from that used here, it is worthwhile to exam-
ine the variability of the FLC combinations that provided our
best estimate. Figure 9a shows the annual, domain wide FLC
predicted by each fuel load – consumption model combina-
tion. For both fuel consumption models, the FCCS predicted
FLC was always greatest and exceeded the FLM predictions
by 37 % to 189 %. The choice of fuel consumption model
(FOFEM or CONSUME) had minimal impact (1 to 7 %) for
the FCCS and resulted in only a modest 5 to 10 % difference
for the FLM in all years except 2008.

The systemic difference between FCCS and FLM was
much greater when forest cover types, which comprised 49 %
to 77 % of burned area annually, were examined separately.
The range of FLC predictions for all forested area burned
was 85 % to 134 % of the mean. The FCCS based FLC
was a factor of 2.1 to 4.6 times the FLM based predictions,
with the difference being greatest for the CONSUME based
calculations. The FLM with the lowest fuel loading (FLM
011, 0.2 kg m−2) accounted for 58 % of the forested burned
area and its predominance was a substantial factor behind the
large difference in FLC predicted by the FCCS and FLM. For
a given fuel loading model, the FOFEM predictions always
exceeded those of CONSUME. The difference associated
with the fuel consumption model was 19 to 40 % for the FLM
and≤12 % for the FCCS. The FLC disparity for the FLM re-
sulted from differences in duff consumption. The average
duff consumption predicted by FOFEM was 74 % compared
to 43 % predicted by CONSUME. The smaller FLC disparity
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Fig. 8. Cumulative Distribution Function of CO emitted versus
fraction of elements with fire. Panel(a) is for data aggregated to
1x = 10 km and1t = 1 day. Panel(b) is for data aggregated to
1x = 25 km and1t = 30 day.

simulated using the FCCS was a consequence of the FCCS
fuel load distribution. In aggregate the FCCS fuel loads for
the forested areas burned in our study had a larger fraction of
dead wood (48 %) compared to duff (41 %), which was oppo-
site of the FLM (33 % dead wood, 51 % duff), and partially
offset the duff consumption differences between FOFEM and
CONSUME.

In the case of non-forest cover types, there was no system-
atic difference between the fuel loading models, while the
bias of the fuel consumption models was reversed from that
observed for forests with CONSUME> FOFEM. The range
of FLC predictions was 23 % to 61 % of the mean. The FLC
difference due to the fuel consumption models was 18 % to
21 % for the FLM and 4 % to 14 % for the FCCS. In 2003,
2004, and 2007 the FLC based on the FLM exceeded the
FCCS based predictions by 30–60 %. The large difference

Fig. 9. Estimated annual fuel load consumed (FLC) for different
combinations of mapped fuel loads and fuel consumption mod-
els, plotted with the following symbols: filled back symbols are
FCCS, empty red symbols are FLM, filled black triangles = FCCS
and FOFEM, filled black diamonds = FCCS and CONSUME, open
red squares = FLM and FOFEM, open red circles = FLM and CON-
SUME. The average of the four combinations is plotted with the
solid line and open black circles. Panel(a) is all cover types, panel
(b) is forest cover types, and panel(c) is non-forest cover types.
FLC is plotted in units of kg m−2 for clarity.

between fuel loading models in 2003, 2004, and 2007 re-
sulted largely from the burning of scrub-oak chaparral veg-
etation in southern California. The supplemental FLM as-
signed to this vegetation type had a fuel load (FLM = 3003,
see Appendix B) twice that of the corresponding FCCS fuel
model (FCCS = 2044). The persistent FLC differential be-
tween fuel consumption models (CONSUME> FOFEM) re-
sulted from differences in the shrub consumption algorithms
of the models. The algorithm difference was amplified
for the supplemental FLM because the chaparral vegetation
types for this model had a larger fraction of their fuel load-
ing in the shrub fuel compared to the FCCS models which
tended to have a larger surface fuel component.
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Fig. 10. Plots ofũECO (top panel) and̃uEPM2.5 (bottom panel) ver-
sus1x for temporal aggregation of1t = 1 day, 5 day, 10 day, 30
day and 1 year.

3.2.2 Variation of uncertainty with scale

Biomass burning emission estimates are commonly em-
ployed for a wide-range of tasks and emission uncertain-
ties at the state level on an annual basis are not particularly
useful for assessing the appropriateness of an emission in-
ventory for many applications. We have therefore estimated
the uncertainties in our emission model across the range of
spatial and temporal scales relevant to regional and global
atmospheric chemical transport model applications. As dis-
cussed in Sect. 3.2.1, the emission estimates have skewed un-
certainty bounds, with the upper bound> lower bound. The
following analysis uses the larger, upper uncertainty bound.

The variation inũECO andũEPM2.5 with scale is displayed
in Fig. 10. The uncertainty varies with spatial and temporal
aggregation (1x, 1t) due the dependence of the burned area
fractional uncertainty (uA) on fire size. In general, the true
burned area in an individual cell increases with1x, decreas-
ing the fractional uncertainty in the burned area estimate, and
thus ũEX decreases with increasing1x. Similarly, at fixed
1x, the true burned area tends to increase over time, and
thusuA , and hencẽuEX decreases with increasing1t .

3.2.3 Sensitivity of uncertainty to model components

The uncertainties in our emission estimates were quite large,
particularly at the finer scales. In an effort to identify the
most effective approach for reducing uncertainty in ECO and
EPM2.5 we conducted a simple sensitivity analysis. The ex-
ercise evaluated sensitivity ofũECO andũEPM2.5 to the model
components by separately varying the 1σ uncertainty of each
component by a factor of 0.3 to 1.7 and repeating the Monte
Carlo analysis across scales1x, 1t (Sect. 2.2.7). Results
of the analysis, presented using the sensitivity factorλEX,i ,
are displayed versus1x in Fig. 11 for 1t = 1 day and
1t = 30 day. At the scale of global modeling applications
(1x = 50–200 km,1t = 1 week–1 month) the sensitivity of
ũECO and ũEPM2.5 to the absolute uncertainty (σX) in FLC
and A is similar (Figs. 11a and c) with both being more sen-
sitive touFLC thanuA . However, due to the significant un-
certainty in EFPM2.5, ũEPM2.5 is most sensitive to this model
component by a considerable margin. In contrast, the EFCO
is well characterized and the uncertainty in ECO is relatively
insensitive touEFCO.

Uncertainty in emissions at the scale of regional model-
ing applications (1x ≤ 25 km,1t ≤ 1 day) are most sensi-
tive to uA for both CO and PM2.5 (Figs. 11b and d). The
fractional uncertainty in A increases rapidly with decreasing
burned area (Sect. 2.2.3). At aggregation levels relevant for
regional modeling the absolute burned area in the elements
tends to be relatively small anduA dominates the uncertainty
in emissions.

4 Discussion

4.1 Source contribution and variability

Forested land covered about 61 % of the total burned area
over 2003 to 2008, with minimum and maximum contribu-
tions of 49 % in 2006 and 77 % in 2004, respectively. Emis-
sions from forest fires dominated overall WF emissions, ac-
counting for 85 % of emitted CO and 87 % of emitted PM2.5.
Seasonally, burned area peaked in July, while fuel consump-
tion and emissions peaked in August. From 2003 to 2008,
34 % of the total area burned occurred in July and 37 % of
total CO was emitted in August (see Fig. 7). October was
the only month where emissions from non-forest cover types
exceeded emissions from forests. This resulted from large ar-
eas of chaparral fires in central and southern California which
had relatively heavy fuel loading.

On an annual basis, region wide and state level fire emis-
sions of CO and PM2.5 were significant relative to emissions
from non-fire sources (Sect. 4.4). Fire emissions were heav-
ily concentrated both temporally and spatially. While fire
emissions occurred on 1915 days (87 % of total days) dur-
ing the study period, 13 % of total emissions occurred on 10
days and 27 % of total emissions occurred on 30 days.
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Fig. 11. Sensitivity ofũECO (λECO,i ) andũEPM2.5 (λEPM2.5,i ) to 1σ absolute uncertainties in the emission model components (i = A, FLC,
EF, Table 1). ũEX (X = CO or PM2.5) is our figure of merit and is defined such that 50 % of total emissions (EX)are estimated with an
uncertainty less thañuEX (Sect. 2.2.7). Sensitivities are plotted versus1x for temporal aggregation of1t = 30 day (panels(a) and(c)) and
1t = 1 day (panels(b) and(d)).

Table 3. Annual sums of state level fuel consumption estimates (Gg dry vegetation yr−1) over 2003–2008.

State 2003 2004 2005 2006 2007 2008 Total Contributionb

AZ 1027 711 932 536 356 277 3839 3.2 %
CA 7685 1808 1292 4917 8882 4477 29060 24.3 %
CO 411 277 338 256 166 419 1867 1.6 %
ID 2366 214 3212 4096 15075 776 25 738 21.5 %
MT 8065 402 980 6991 9348 1075 26 861 22.5 %
NM 742 500 412 445 207 393 2699 2.3 %
NV 84 151 926 1779 1177 565 4681 3.9 %
OR 1714 321 791 1937 1976 831 7569 6.3 %
UT 349 237 292 309 793 79 2059 1.7 %
WA 1637 428 592 4324 521 350 7853 6.6 %
WY 1722 139 180 2241 1097 1859 7239 6.1 %

Totala 26 279± 27 % 5292± 36 % 9766± 31 % 27 119± 27 % 39 710± 19 % 11 240± 47 % 119 406± 27 % 100.0 %

a Uncertainties are 1σ (see Sect. 2.2.4).b Contribution is the percent contribution of estimated fuel consumption in each state to the 6 year total.
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During these high activity episodes CO and PM2.5 emis-
sions from fires dominated other emission sources and likely
played a significant role in regional air quality.

4.2 Uncertainty

The fractional uncertainties in CO and PM2.5 emissions
(uECO anduEPM2.5) decreased with increasing scale due to
the concurrent reduction of the relative error in the burned
area estimates. As the scale of aggregation increases the
characteristic burned area of the elements increases as well
and there is a corresponding decrease of the relative error in
the burned area estimate. This dwindlinguA with increasing
scale results in a reduction of the relative uncertainty in ECO
and EPM2.5.

At scales relevant to regional air quality modeling (1x =

10 km,1t = 1 day) WFEI estimates 50 % of total ECO with
an uncertainty> 133 % and a like fraction of total EPM2.5 is
estimated with an uncertainty> 146 %. Uncertainty in the
burned area (uA) drives the emission uncertainties at this
scale and reducinguA would be the most effective approach
for improving the emission estimates for regional modeling.
WFEI employs a burned area mapping algorithm designed
for near-real-time applications, such as supporting air quality
forecasting. Replacing this algorithm with a more sophisti-
cated, non-real-time burned area mapping method, for exam-
ple a differenced normalized burn ratio (dNBR) method, may
reduce the uncertainty in WFEI for retrospective modeling
studies. However, such methods are generally not suitable
for time sensitive applications such as air quality forecasting
or the planning of scientific missions with research flights
during field experiments.

The uncertainty in WFEI ECO and EPM2.5 is significantly
reduced at the scale of global modeling applications (1x =

100 km,1t = 30 day). Fifty percent of total emissions are
estimated with an uncertainty< 50 % for CO and< 64 % for
PM2.5. At this scale, the uncertainty in ECO is most sensi-
tive to uncertainties FLC, while the uncertainty in EF drives
the uncertainty in PM2.5 emissions. Refinement of EFPM2.5,
perhaps through the use of ecosystem specific EF rather than
the simple cover type delineation currently implemented in
WFEI, could reduce EF uncertainty and efficiently improve
EPM2.5. Compared to EFPM2.5, EFCO is much better char-
acterized and reductions inuFLC would have the greatest im-
pact on uncertainty in ECO at this scale.

4.3 Comparison against other BB emission inventories

4.3.1 Relative uncertainties

The published biomass burning emission inventories (BB EI)
that cover our study region and time period include agri-
cultural burning and are reported for broader domains (e.g.
CONUS or North America) and therefore direct comparison
with the emissions estimates presented here is not possible.

(In Sect. 4.4 we do compare WFEI to a state level emission
inventory). However, a few studies report quantitative uncer-
tainty estimates for regional emissions that may be compared
with the uncertainties estimated in our study. The Global Fire
Emission Database version 3 (GFED3) (van der Werf et al.,
2010) is the only BB EI coinciding with our study region and
period which provides a quantitative uncertainty estimate. In
the supplementary material, van der Werf et al. (2010) re-
port 1σ relative uncertainties in the annual C emissions (EC;
EC = ECO2 + ECO + ECH4) for CONUS (which they label
as Temperate North America) ofuEC∼ 21 %. Neglecting un-
certainties regarding the small fraction of combusted biomass
C that is emitted in other forms (e.g., NMOC and carbona-
ceous aerosol), we compare theiruEC with our relative uncer-
tainty in annual fuel consumed (Table 3). In most years, the
uncertainty in our estimate is larger, the ratio of uncertain-
ties (ours/van der Werf) varies from 0.9–2.4. The sizeable
difference in uncertainty estimates results from the large un-
certainty we have ascribed to our fuel loading and fuel con-
sumption. The uncertainty in our FLC is 19 %–47 % and ac-
counts for virtually all of the uncertainty in the annual, do-
main wide total fuel consumption estimates (Table 3). French
et al. (2004) reported annual BB carbon emissions for boreal
Alaska withuEC estimated as 23 to 27 %, again about half
the uncertainty we estimate for WFEI. The African BB EI
published by Liousse et al. (2010) reports a general inven-
tory relative uncertainty of 57 %, roughly comparable to the
uncertainty in annual, domain wide EPM2.5 for WFEI. Jain
(2007) estimated the relative uncertainty in their BB EI’s CO
emitted was 75 % for the US and Canada in 2000. The large
uncertainty in ECO reported by Jain (2007), about twice that
in the current study, reflects the large relative uncertainty the
author assigned to the burned area for North America. Jain
(2007) used auA of 45 % which we believe is large and may
not capture the decrease in relative error with increasing area
burned that is reported both here and in two previous studies
that used satellite data for burned area (Giglio et al., 2010;
Urbanski, 2009a).

4.3.2 Sensitivity

Several published BB EI include a cursory assessment of
their inventory’s sensitivity to fuel loading and fuel consump-
tion. Because the estimated uncertainty in our annual, do-
main wide FLC (19–47 %; Fig 9a) was based on different
combinations of mapped fuel loadings and fuel consumption
models (Sect. 2.2.2.2) we can gain some insight by compar-
ing our results with similar analysis in other studies. Zhang
et al. (2008) developed a near-real-time BB emission model
for CONUS. The model combines burned area information
from the GOES WFABBA and fuel loading maps based
on their MODIS Vegetation Property-based Fuel Systems
(MVPFS) to estimate PM2.5 emissions. They assessed the
sensitivity of their model emissions to fuel loading by run-
ning their algorithm with a 1 km FCCS map (different from
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the mapping used in our study) substituted for MVPFS. The
annual CONUS wide estimates of EPM2.5 based on the two
fuel loading maps differed by−16 % to +17 % over 2002–
2005. This sensitivity of emissions on mapped fuel loading
is considerably less than that observed in the current study,
where independent of fuel consumption model, the choice of
mapped fuel loading resulted in a +37 % to +189 % differ-
ence in fuel consumed (which is proportional to EPM2.5).

The global model Fire Inventory from NCAR version 1.0
(FINNv1) (Wiedinmyer et al., 2011) estimates daily, BB
emissions with a 1 km resolution using burned area derived
from MODIS active fire detections. The model is designed
to support both near-real-time and retrospective modeling ap-
plications. A detailed assessment of the model’s uncertainty
is not given, but the authors did explore the sensitivity of the
emission model to the choice in land cover maps. Chang-
ing the FINNv1 land cover map resulted in a 20 % change
in CO emissions in 2006 across CONUS, Mexico, and Cen-
tral America. Similar results for land cover map substitution
were reported for the precursor model of FINNv1 (Wiedin-
myer et al., 2006). In both studies, the substitution employed
the same the fuel loading model and fuel consumption algo-
rithm, and thus provides information only on the sensitivity
to the mapping of fuel models. This aspect of uncertainty
was not specifically addressed in our study.

4.4 Comparison versus 2005 national
emission inventory

We compare our emission estimates with the United States
Environmental Protection Agency (USEPA) National Emis-
sion Inventory (NEI) 2005 v2 (USEPA, 2011). NEI 2005 v2
includes annual, state level estimates of CO and PM2.5 emis-
sions for various sources including wildfires and prescribed
burning. In the following discussion NEI ‘WF emissions’
refers to the sum of emissions from wildfire and prescribed
burning reported in NEI 2005 v2 and excludes agricultural
burning. “Non-WF emissions” refers to emission estimates
from NEI 2005 v2 for all non-WF sources (agriculture, dust,
non-WF fire, fuel combustion, industrial processes, trans-
portation, solvent, and miscellaneous). Figure 12 compares
state level NEI WF emission estimates with our 2005 WFEI.
In most states, the NEI WF emission estimates exceeded the
WFEI, and the NEI 11 state sums were 119 % larger for ECO
(1698 Gg CO yr−1 vs. 788 Gg CO yr−1) and 28 % larger for
EPM2.5 (147 Gg PM2.5 yr−1 vs. 117 Gg PM2.5 yr−1). Due to
the complex methodology and methods behind the NEI it is
difficult to identify the causes of the discrepancy. WFEI does
not include canopy fuels and this likely contributes to the dif-
ference. Additionally, , the significant differential in the ECO
and EPM2.5 disparities indicates that the choice of EFs plays
a role.

Fig. 12. State level, 2005 wildland fire emissions from WFEI and
NEI 2005 v2. Bars show annual sums of emitted CO (top panel)
or emitted PM2.5 (bottom panel) in units of Gg yr−1. The numbers
centred above each pair of bars and running across the top of each
plot provide the WFEI to NEI emission ratios.

The importance of WF emissions, as estimated by WFEI,
is examined with respect to other sources. We use “total
emissions” to refer to the sum of the NEI non-WF emis-
sions and WF emissions estimated using WFEI. The follow-
ing analysis assumed annual non-WF emissions were con-
stant over 2003–2008 and used NEI 2005 non-WF emissions.
Therefore the inter-annual variability in the emission ratios
(WF/total) results strictly from variability in fire activity. An-
nually, across the western United States, WF emissions were
3–20 % of total ECO and 8–39 % of total EPM2.5. In all years
the WF/total emission ratio for PM2.5 was larger than that
for CO. Figure 13 shows the annual, state level ratios of WF
emissions to total emissions. The relative importance of WF
emissions was greatest in Idaho and Montana where fires ac-
counted for a majority of ECO and EPM2.5 during active fire
years. In most states, WF EPM2.5 was significant during ac-
tive fires years comprising 30–40 % of total emissions. Even
in California, a state with large non-WF pollution sources,
WF contributed 20 % or more of total EPM2.5 in most years.
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Table 4. Annual sums of state level CO emission estimates (Gg CO yr−1) over 2003–2008.

State 2003 2004 2005 2006 2007 2008 Total Contributionb

AZ 88 61 77 46 31 24 327 3.4 %
CA 587 143 106 386 696 381 2298 24.0 %
CO 35 23 29 21 14 34 156 1.6 %
ID 185 17 244 311 1177 61 1996 20.9 %
MT 662 33 81 555 794 80 2204 23.1 %
NM 64 43 35 39 18 34 233 2.4 %
NV 7 12 76 123 83 43 344 3.6 %
OR 143 26 62 149 156 67 602 6.3 %
UT 29 20 24 25 63 7 168 1.8 %
WA 134 35 46 366 40 27 647 6.8 %
WY 136 10 14 182 88 158 587 6.1 %

Totala 2116+33 %
−31 % 436+41 %

−40 % 788+37 %
−35 % 2084+35 %

−30 % 3107+28 %
−24 % 923+51 %

−49 % 9455+35 %
−31 % 100.0 %

a Uncertainties are 1σ (see Sect. 2.2.6).b Contribution is the percent contribution of estimated ECO in each state to the 6 year total.

Table 5. Annual sums of state level PM2.5 emission estimates (Gg PM2.5 yr−1 ) over 2003–2008.

State 2003 2004 2005 2006 2007 2008 Total Contributionb

AZ 13 9 12 7 5 4 50 3.5 %
CA 85 21 16 56 102 58 337 23.9 %
CO 5 4 4 3 2 5 24 1.7 %
ID 27 2 35 45 172 9 290 20.6 %
MT 99 5 12 82 120 11 329 23.3 %
NM 10 7 5 6 3 5 36 2.5 %
NV 1 2 11 17 12 6 49 3.4 %
OR 22 4 9 21 23 10 89 6.3 %
UT 4 3 4 4 9 1 25 1.8 %
WA 20 5 7 55 6 4 97 6.9 %
WY 20 1 2 27 13 24 87 6.2 %

Totala 313+49%
−33% 65+56%

−42% 117+50%
−33% 302+50%

−33% 454+43%
−28% 138+64%

−50% 1389+49%
−34% 100.0 %

a Uncertinaties are 1σ (see Sect. 2.2.6).b Contribution is the percent contribution of estimated EPM2.5 in each state to the 6 year total.

Assuming non-WF emissions were distributed evenly across
the months of the year, EPM2.5 from WF in July, August, and
September of 2006 and 2007 accounted for more than half of
domain wide emissions in each month. In 2003 and 2007, in-
tense fire seasons in southern California resulted in EPM2.5
from WF accounting for 56 % and 47 % of total domain wide
emissions during October.

4.5 Future developments

Our assessment of WFEI neglected, in some cases necessar-
ily, several key aspects of the model uncertainty related to
fuel loading, fuel consumption, and EFs. In the case of fuel
loading and fuel consumption we lack adequate error infor-
mation regarding input data. Due to the lack of appropri-
ate fuels data, a statistical sample of the fuel loading pre-

diction error could not be used to quantify the uncertainty
in the FLM and FCCS fuel loadings. Without data for a true
error assessment, we were limited to the less than optimal ap-
proach of taking the range of FLM and FCCS as an estimate
of the uncertainty. Furthermore, we were unable to assess
the mapping error and could not include this source of uncer-
tainty in our analysis. We anticipate future access to a large
fuel loading dataset that will enable a true quantification of
the error in the mapping of the FLM and FCCS and their fuel
loading prediction error. The acquisition of an appropriate
fuel loading data set will enable a true quantification of the
errors in each fuel loading model and their mapping. Such
an effort would provide a proper estimation of the true un-
certainty in both the FCCS and FLM mapped fuel loads and
possibly identify which product is most accurate over differ-
ent regions of the domain. While determining the uncertainty
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Fig. 13. Annual, state level ratio of WF emissions (from WFEI) to
total emissions (WF + non-WF NEI). Top panel is ECO ratio and
bottom panel is EPM2.5 ratio.

in this manner would provide a more robust result, the values
of uFLC would not necessarily be reduced relative to those
estimated with the ensemble approach applied in this study.

In addition to better characterizing the uncertainty of
WFEI, the magnitude of the uncertainties may be reduced
by improving the model components. The burned area map-
ping currently employed in WFEI was designed to provide
near-real-time emission estimates for operational applica-
tions such as air quality forecasting. For regional scale appli-
cations not requiring near-real time data,uA and hencẽuECO
andũEPM2.5, could be reduced by implementing a differenced
burn ratio method for mapping burned area (e.g. Giglio et al.,
2009). This change in WFEI would be particularly benefi-
cial for regional scale modeling applications where the un-
certainty in emissions is dominated byuA . Examples of such
applications are retrospective atmospheric chemical transport
model simulations that quantify the contribution of wildfires
to air quality or investigate the role of fires in regional climate
forcing.

Reducing the uncertainty in EFPM2.5 would reduce
ũEPM2.5, especially for global modeling applications. In gen-
eral, employing ecosystem specific EFs rather than the broad

forest or non-forest classification used in this study may sig-
nificantly reduceũEX. While ũECO was relatively insensi-
tive to uEFCO, this will not be the case when the model is
expanded to include the emissions of additional compounds
which have less well characterized EF (e.g., NMOC). WFEI
is designed to include the broad of range compounds (e.g.
NMOC, nitrogen oxides) emitted by WF (see Akagi et al.,
2011). The emission intensities of most compounds vary
with combustion phase (flaming or smoldering). Fuel type
and fuel condition, fire type, and meteorological conditions
all impact the characteristics of fuel combustion (Anderson,
1983; Albini, 1976; Rothermel, 1972). Modified combustion
efficiency (MCE) is a measure of the relative contributions
of flaming and smoldering combustion, and the emission in-
tensities of many compounds are proportional to MCE (see
for example Burling et al., 2010). The dataset used to pro-
vide EFCO and EFPM2.5 includes MCE and can be used to
estimate EFs for a wide range of NMOC using NMOC-MCE
relationships in the literature.

However, our study used an emission factor dataset that
was heavily biased towards prescribed fires, the combustion
characteristics (and hence the MCE) of which may not be
representative of the wildfires which dominate emissions in
the western United States. This issue is critical, because
many of the highly reactive NMOC emitted by WFs are a
strong function of MCE. Sufficient emission data are not
currently available to characterize the MCE typical of wild-
fires in the dominant vegetation types of the western United
States. NMOC emission estimates based on currently avail-
able MCE data may result in a significant systematic error.
Due to the lack of existing wildfire data this source of er-
ror could not be addressed in our study. However, an ongo-
ing field research project (JFSP, 2008) is collecting emission
measurements from wildfires in the western United States
and in the near future we will use these data to update WFEI
with improved EFs, including MCE based EFs for NMOC.

While WFEI was assessed only for the western United
States in this study, it is designed for CONUS. A future as-
sessment of WFEI will include coverage for all of CONUS.

5 Conclusions

We have presented a WF emission inventory (WFEI) for
the western United States from 2003 to 2008. The emis-
sion model used to produce WFEI may be used to forecast
and evaluate the impact of wildfires on regional air quality.
WFEI is based on our MODIS Direct Broadcast burned area
mapping algorithm that enables near-real-time emission esti-
mates that are needed to support air quality forecasting. The
uncertainty in the inventory estimates of CO and PM2.5 emis-
sions have been quantified across spatial and temporal scales
relevant to regional and global modeling applications. The
sensitivity of the WFEI uncertainties to emission model com-
ponents was evaluated to identify algorithm modifications
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likely to be most effective for reducing the inventory uncer-
tainty for various applications.

Wildland fires in the western United States burned an av-
erage of 10 742 km2 yr−1 from 2003–2008, with extremes of
3622 km2 in 2004 and 19 352 km2 in 2007. The estimated
annual CO emitted by these fires ranged from 436 Gg yr−1 in
2004 to 3107 Gg yr−1 in 2007. The uncertainty in annual CO
emitted was 28 % to 51 %. The estimated annual PM2.5 emis-
sions ranged from 65 Gg yr−1 (2004) to 454 Gg yr−1 (2007).
The uncertainty in annual EPM2.5 varied from 43 % to 64 %.
Annual fire emissions were significant compared to other
emission sources as estimated in the USEPA NEI 2005 v2. In
the peak fire year of 2007, domain wide total fire emissions
were∼20 % of total ECO and∼ 39 % of total EPM2.5. Dur-
ing the months with the greatest fire activity, fires accounted
for the majority of CO and PM2.5 emitted across the entire
study region.

Uncertainty in ECO and EPM25 varied strongly with
the spatial and temporal scale because the fractional un-
certainty in burned area decreased rapidly with increasing
1x and/or1t . Sensitivity of the uncertainty in ECO and
EPM2.5 to the emission model components depended on
scale. At scales relevant to regional modeling applications
(1x = 10 km, 1t = 1 day) WFEI estimated 50 % of total
ECO with an uncertainty< 133 % and half of total EPM2.5
was estimated with an uncertainty< 146 %. Uncertainty in
the burned area (uA) dominated the emission uncertainties at
this scale and reducinguA would be the most effective ap-
proach for improving emission estimates for regional mod-
eling. WFEI employs a burned area mapping algorithm de-
signed for near-real-time applications, such as supporting air
quality forecasting. Replacing this algorithm with a more so-
phisticated, “non-operational” burned area mapping method
may reduce the uncertainty in WFEI for retrospective mod-
eling studies.

The uncertainty in WFEI ECO and EPM2.5 was signifi-
cantly less at the scale of global modeling applications (1x =

100 km,1t = 30 day). Fifty percent of total emissions were
estimated with an uncertainty< 50 % for CO and< 64 % for
PM2.5. At this scale, the uncertainty in ECO was most sen-
sitive to uncertainties in fuel loading consumed (FLC) while
the uncertainty in EF dominated the EPM2.5 uncertainty. Re-
finement of EFPM2.5, perhaps through the use of ecosystem
specific EF, rather than the simple cover type delineation cur-
rently implemented in WFEI, could reduce EF uncertainty
and efficiently improve EPM2.5. Compared to EFPM2.5,
EFCO is much better characterized and reductions inuFLC
would have the greatest impact on uncertainty in ECO at this
scale.

Our analysis indicates that “headline”, aggregate uncer-
tainties (e.g. annual, CONUS) reported for BB EI may be
misleading for evaluating and interpreting the results of mod-
eling applications that employ the emission estimates. Ide-
ally, BB EI should be evaluated across the scales for which
they are intended to be used and the EI uncertainty should

be reported at these scales. We employed a figure of merit,
which we called the half mass uncertainty, which is useful
for evaluating uncertainty in the EI across spatio-temporal
scales. However, estimating uncertainties in BB EI is diffi-
cult. Often the appropriate data is not available to fully eval-
uate all components of emission models. Lacking satisfac-
tory data, unorthodox methods are often required to estimate
uncertainty, and even with significant effort the resulting un-
certainty estimates may themselves be fairly uncertain. As a
result, many BB EI report only annual uncertainties for large
regions and provide only a limited sensitivity analysis. Nev-
ertheless, we believe that using a figure of merit similar to the
half mass uncertainty employed in our study to evaluate the
uncertainty in BB EI across pertinent spatio-temporal scales
would provide modelers and policy makers with improved
guidance on the use of the inventories as well as facilitate the
development of improved BB EI with better characterized
uncertainties.

Appendix A

Evaluation of MODIS burned area
mapping algorithm

In this study we defined the burned area uncertainty as the
error cone expected to contain approximately 68 % of the
“ground truth” burned area values of which the MODIS
burned area mapping algorithm is a measurement. This def-
inition of uncertainty provides a coverage comparable to
that of a standard uncertainty for normally distributed data
(i.e. coverage of∼68 % for 1σ). Following Urbanski et
al. (2009a) and Giglio et al. (2010), we employed an em-
pirical error estimation approach to identify this error cone.
The empirical error function (Eq. A1) describes the uncer-
tainty in the MODIS burned area measurement as a function
of burned area. In Eq. (A1), x is the 25 km× 25 km gridded
MODIS burned area measurement andσ 2 is the variance in
of the error in x.

σ 2
= bx (A1)

A total of 46 325 km× 25 km grid cells were used to evaluate
Eq A1. Details of the data used and its preparation are pro-
vided in Sect. 2.2.3. The coefficient in Eq. (A1) was evalu-
ated as follows: 1) the MODIS burned area (x) and measure-
ment error (=MTBS “ground truth” – x), ordered by the value
of x, were assigned to 4310-member bins, 2) the Winsorized
variance (trim = 0.1) of the error (σ 2

block) and the mean of x
(xblock) were calculated for blocks of 30 x-error data point
pair using a gliding window of 3 bins, providing a total of
41 evaluation blocks, 3)σ 2

block was regressed against xblock
using ordinary least squares regression to estimate the slope,
b. The fit ofσ 2

block is shown in Fig. A1 and the value of the
slope and fit statistics are provided in the Fig. A1 caption.

Atmos. Chem. Phys., 11, 12973–13000, 2011 www.atmos-chem-phys.net/11/12973/2011/



S. P. Urbanski et al.: The wildland fire emission inventory 12995

Fig. A1. Empirical error function for MODIS burned area measure-
ment. The x-axis is the average MODIS measured burned area for
blocks of 30 grid cells (25 km× 25 km) in log scale. Tthe y-axis is
the variance of the measurement error for each block. The analysis
used 41 blocks. Ordinary least squares regression with the inter-
cept forced to zero yielded a coefficient value of b = 5.03 km2 with
a coefficient of determination ofr2

= 0.87.

Fig. A2. Plot of burned area residuals (residuals = MTBS “ground
truth” – MODIS burned area) versus the burned area (open cir-
cles).The x-axis is log scale. The dashed (solid) curve is± 1σ

(±1.65σ) as estimated with the empirical error function, Eq. (A1)
with b = 5.03 km2. The 1σ (1.65σ ) uncertainty envelopes 70 %
(87 %) of the residuals.

The error predicted with Eq. (A1) (σA) provides a mean-
ingful measure of the uncertainty in the MODIS burned area
across the span of “ground truth” burned area values. The
empirical uncertainty satisfies our uncertainty definition by
providing coverage comparable to that of a standard uncer-
tainty for normally distributed data (i.e. coverage of∼ 68 %
for 1σ , and∼ 90 % for 1.65σ) (Fig. A2). Seventy percent of
the “ground truth” burned area values fall within the uncer-

tainty bounds and when a coverage factor of 1.65 is applied,
87 % of the “ground truth” values are enveloped by the result-
ing uncertainty bounds (Fig. A2). In addition to providing
the intended coverage, the empirical uncertainty cone cap-
tures the variability of the measurement error across the ob-
servations. The error equation was applied to the aggregated
MODIS burned area data for all temporal and spatial scales
(g1x,1t (k,t)), providing theσ (A) describing the error dis-
tribution used in the Monte Carlo simulations (Sect. 2.2.3).

Appendix B

Supplemental FLM

This appendix describes the six herbaceous and shrub fuel
loading models that were constructed to supplement the
FLM. While these six fuel loading models have been labeled
“supplemental FLM”, they were developed using a philoso-
phy very different from that embodied in the FLM. The sup-
plemental FLM fuelbeds are organized according to vegeta-
tion type while the FLM fuelbeds are classified based on the
anticipated fire effects. The development of the supplemental
FLM can be summarized as follows:

1. Identify burned pixels with a non-forest FLM code
(39 % of burned pixels in our study).

2. Assign the burned pixels with a non-forest FLM code
the FCCS code of that pixel

3. Assign recoded FLM pixels a vegetation type based on
the Society of Range Management (SRM) cover type
associated with each FCCS fuelbed.

4. Generalize the SRM based vegetation types into six
classes which serve as the supplemental FLM:

– Sage brush

– Generic interior shrub

– Generic interior grassland

– Coastal sage shrub

– Chamise chaparral

– Ceanothus mixed chaparral

5. Select sites from the Natural Fuels Photo Series to rep-
resent the 6 vegetation types

6. Create fuel loadings for the supplemental FLM using
the median fuel loadings of the appropriate Natural Fu-
els Photo Series sites

Table B1 provides details of the data used to develop the sup-
plemental FLM and Table B2 gives the supplemental FLM
fuel loading values used in this study.
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Table B1. Supplemental FLM.

Supplemental FLM Percent of
burned
pixels

Dominant FCCS fuelbed Natural Fuels Photo
Series∗

Sage brush 69.2 % Sagebrush shrubland Vol. I SB03;
Vol. IV SWSB 02–
11; Vol. X SG
01–11; Vol. XI
EOSG 05–12

Generic interior
shrubland

2.5 % Turbinella oak – Mountain
mahogany shrubland

Vol. I WJ 01–03;
SB 01, 02, 04;
Vol. III GO 02; 03;
Vol. IV SWSB 01;
PJ 01–03; Vol. VII
MCS 10; Vol. XI
EOSG 02, 04

Generic interior
grassland

12.8 % Bluebunch wheatgrass –
Bluegrass grassland

Vol. I BG 01–04;
Vol. XI EOSG 01,
03

Coastal sage shrub 1.1 % Coastal sage shrubland Vol. IV CH 01–03

Chamise chaparral 5.6 % Chamise chaparral
shrubland

Vol. IV CH 04–09

Ceanothus mixed
chaparral

8.8 % Scrub oak – Chaparral
shrubland

Vol. IV CH 10–16

∗References: Vol. I Ottmar et al. (1998), Vol. III Ottmar et al. (2000a), Vol. IV Ottmar et al. (2000b), Vol. VII Ottmar et al. (2004), Vol. X Ottmar et al. (2007b), Vol. XI Natural

Fuels Digital Photo Series (2011).

Table B2. Supplemental FLM fuel loadings by fuel class.

Supplemental FLM Fuel Loading (kg dry vegetation m−2)

Litter Fine Woody Herbaceous Shrub
Debris

Sage brush 0.04 0.05 0.04 0.33
Generic interior shrubland 0.03 0.02 0.06 0.17
Generic interior grassland 0.07 0.0 0.24 0.0
Coastal sage shrub 1.66 0.0 0.0 2.15
Chamise chaparral 0.0 0.0 0.0 2.88
Ceanothus mixed chaparral 0.0 0.0 0.0 8.67

Appendix C

Potential emissions from canopy consumption

The methods used in this study could not identify the occur-
rence of crown fire or reliably simulate canopy fuel consump-
tion. However, it is informative to provide guidance on the
potential magnitude of canopy fuel consumption relative to
the consumption of surface and ground fuels that were con-
sidered in this study. Therefore, we conducted a simple cal-
culation of canopy fuel consumption. Pre-fire canopy fuel

loading for burned pixels was assigned using the mapped
FCCS fuel loading models. It was then assumed that 25 %
of the canopy fuels were consumed at each burned pixel and
emissions of CO and PM2.5 were calculated using the forest
cover typeµEFX from Table 1 (89 g CO kg dry veg. burned−1

and 13.3 g PM2.5 kg dry veg. burned−1). The choice of 25 %
for canopy fuel consumption is completely arbitrary. These
calculations are presented for illustrative purposes and are
not intended to be a “best estimate” of canopy fuel consump-
tion. Results of this calculation and a comparison versus
non-canopy emissions are provided in Table C1. Canopy
fuel consumption of 25 % results in emissions that are on
the order of 10 % of the base emissions (i.e. emissions from
the consumption of from surface and ground fuels, Tables 4
and 5). Extrapolation of the results in Table C1 suggests that
canopy consumption of 50 % could increase the base emis-
sions by close to 25 %. This exercise shows that consump-
tion of canopy fuels will not dominate annual, domain wide
emissions. However, canopy fuel consumption could make a
non-negligible contribution to overall emissions.
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Table C1. Estimate of annual CO and PM2.5 emitted from 25 %
consumption of forest canopy foliage in the western United States.

Emissions from Emissions from Canopy to
canopy fuels non-canopy fuels non-canopy
(Gg yr−1) (Gg yr−1)∗ emission ratio

Year CO PM2.5 CO PM2.5 CO PM2.5

2003 228 35 2116 313 0.11 0.11
2004 60 9 436 65 0.14 0.14
2005 104 169 788 117 0.13 0.14
2006 236 36 2084 302 0.11 0.12
2007 387 59 3107 454 0.12 0.13
2008 128 20 923 138 0.14 0.14

∗ Emission data for non-canopy fuels is from Tables 4 and 5.

Supplementary material related to this
article is available online at:
http://www.atmos-chem-phys.net/11/12973/2011/
acp-11-12973-2011-supplement.zip.
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