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Abstract. Biomass burning emission inventories serve aswith ugx < iigx. The sensitivity of the WFEI estimates of
critical input for atmospheric chemical transport models thatECO and EPMs to uncertainties in mapped fuel loading,
are used to understand the role of biomass fires in the chenfuel consumption, burned area and emission factors have also
ical composition of the atmosphere, air quality, and the cli-been examined.
mate system. Significant progress has been achieved in the The estimated annual, domain wide ECO ranged from
development of regional and global biomass burning emis-436 Ggyr ! in 2004 to 3107 Gg yr! in 2007. The extremes
sion inventories over the past decade using satellite remoti estimated annual, domain wide ERMwere 65 Ggyr!
sensing technology for fire detection and burned area mapin 2004 and 454 Ggyrt in 2007. Annual WF emissions
ping. However, agreement among biomass burning emiswere a significant share of total emissions from non-WF
sion inventories is frequently poor. Furthermore, the un-sources (agriculture, dust, non-WF fire, fuel combustion,
certainties of the emission estimates are typically not wellindustrial processes, transportation, solvent, and miscella-
characterized, particularly at the spatio-temporal scales pemeous) in the western United States as estimated in a national
tinent to regional air quality modeling. We present the emission inventory. In the peak fire year of 2007, WF emis-
Wildland Fire Emission Inventory (WFEI), a high resolution sions were~20 % of total (WF + non-WF) CO emissions and
model for non-agricultural open biomass burning (hereafter~39 % of total PM 5 emissions. During the months with
referred to as wildland fires, WF) in the contiguous United the greatest fire activity, WF accounted for the majority of
States (CONUS). The model combines observations from theotal CO and PM s emitted across the study region. Uncer-
MODerate Resolution Imaging Spectroradiometer (MODIS) tainties in annual, domain wide emissions was 28 % to 51 %
sensors on the Terra and Aqua satellites, meteorological anafer CO and 40 % to 65% for Plk. Sensitivity ofiigco
yses, fuel loading maps, an emission factor database, and fuehdiiepw, 5 to the emission model components depended on
condition and fuel consumption models to estimate emis-scale. At scales relevant to regional modeling applications
sions from WF. (Ax =10km,At =1 day) WFEI estimates 50 % of total ECO
WFEI was used to estimate emissions of CO (ECO) andwith an uncertainty<133% and half of total EPl with
PM.s (EPMy5) for the western United States from 2003— an uncertainty<146 %. igco andiigpm,; are reduced by
2008. The uncertainties in the inventory estimates of ECOmore than half at the scale of global modeling applications
and EPM s (ueco andugpm, s, respectively) have been ex- (Ax =100km, At =30 day) where 50 % of total emissions
plored across spatial and temporal scales relevant to regionalre estimated with an uncertaingb0 % for CO and<64 %
and global modeling applications. In order to evaluate the unfor PMzs.  Uncertainties in the estimates of burned area
certainty in our emission estimates across multiple scales wdrives the emission uncertainties at regional scales. At global
used a figure of merit, the half mass uncertaifipy (where  scalesiecois most sensitive to uncertainties in the fuel load
X=CO or PMys), defined such that for a given aggrega- consumed while the uncertainty in the emission factor for
tion level 50 % of total emissions occurred from elementsPMz s plays the dominant role ifigpm,s. Our analysis in-
dicates that the large scale aggregate uncertainties (e.g. the
uncertainty in annual CO emitted for CONUS) typically re-

Correspondence tdS. P. Urbanski ported for biomass burning emission inventories may not be
BY (surbanski@fs.fed.us) appropriate for evaluating and interpreting results of regional

Published by Copernicus Publications on behalf of the European Geosciences Union.



http://creativecommons.org/licenses/by/3.0/

12974 S. P. Urbanski et al.: The wildland fire emission inventory

scale modeling applications that employ the emission esti- Many BB emission models and inventories have been de-
mates. When feasible, biomass burning emission inventorieseloped to provide input for a range of modeling applica-
should be evaluated and reported across the scales for whidions. Case study El have been assembled to assess the
they are intended to be used. impact of specific fire events on air quality (e.g., the Oc-
tober 2003 wildfire outbreak in southern California, USA,
Miuhle et al., 2007; Clinton et al., 2006; and prescribed
1 Introduction burns in Georgia, Liu et al., 2009). Emission models to
support the simulation of cumulative smoke impacts from
Biomass burning (BB; defined here as open biomass burnfires have been implemented for the contiguous United States
ing which includes wildfires and managed fires in forests, sa{CONUS; Larkin et al., 2009; Zhang et al., 2008) and North
vannas, grasslands, and shrublands, and agricultural fire suéwmerica (Wiedinmyer et al., 2006). These models are de-
the burning of crop residue) is a significant source of globalsigned to provide near-real-time fire emission estimates for
trace gases and particles (van der Werf et al., 2010; Miche#ir quality forecasts. Other region specific BB El have cov-
et al., 2005; Ito and Penner, 2004). Biomass fire emis-ered boreal Siberia (1998-2002; Soja et al., 2004), Africa
sions comprise a substantial component of the total globa(2000-2007; Liousse et al., 2010), and tropical Asia (2000~
source of carbon monoxide (40%), carbonaceous aerosd006; Chang and Song, 2010).
(35 %), and nitrogen oxides (20 %) (Langmann et al., 2009). Several global BB EI have been produced in the last
Other primary BB emissions include greenhouse gases,(CO decade. The spatial and temporal resolution, speciation, and
CHjs, NoO) and a vast array of photochemically reactive non-coverage period of the inventories varies considerably. Ito
methane organic compounds (NMOC; Akagi et al., 2011)and Penner (2004) and Hoelzemann et al. (2004) published
that contribute to the production of ozones(@nd secondary  global, monthly EI for 2000 at spatial resolutions of 1 km
organic aerosol (Alvarado et al., 2009; Pfister et al., 2008;and 0.5 degree, respectively. The Global Fire Emissions
Sudo and Akimoto, 2007). Database (GFED, van der Werf et al., 2010; van der Werf
BB emissions have a significant influence on the chemicakt al., 2006), a widely used BB inventory, is available over
composition of the atmosphere, air quality, and the climate1997—-2009 as 8-day and monthly composites &t 6r3.0°
system (Langmann et al., 2009; Lapina et al., 2006; Simp-spatial resolution. Mieville et al. (2010) recently produced a
son et al., 2006). Fires influence climate through the producmonthly, 1km spatial resolution global emission dataset for
tion of long-lived greenhouse gases and short-lived climatel997—2005 and used this contemporary inventory to recon-
forcers (e.g. aerosol, §pwhich are agents for direct and in- struct historical (1900-2000) emissions. The Fire Locating
direct (e.g. aerosols cloud effects) climate forcing. Biomassand Modeling of Burning Emissions (FLAMBE) program es-
fires contribute to air quality degradation by increasing thetimates near-real-time global BB emissions to support opera-
levels of pollutants that are detrimental to human health andional aerosol forecasting (Reid et al., 2009). The FLAMBE
ecosystems, and that decrease visibility (Liu et al., 2009;archive provides emissions datasets from 2000 to the present.
Park et al., 2007). The air quality impacts occur through theThe most recent addition to global BB EI category was the
emission of primary pollutants (e.g. fine particulate matter; Fire Inventory from NCAR (FINN), a global, high resolution
PM, ) and production of secondary pollutants (e.g.abd BB emission model that is capable of supporting near-real-
secondary organic aerosol) when NMOC and nitrogen oxidegime applications (Wiedinmyer et al., 2011). A unique as-
released by biomass fires undergo photochemical processingect of FINN is that it provides a comprehensive inventory
Air quality can be impacted by the transport and transforma-of NMOC emissions allocated as lumped species for widely
tion of BB emissions on local (Muhle et al., 2007; Phuleria used atmospheric chemical mechanisms. FINN emission es-
et al., 2005), regional (Spracklen et al., 2007; Sapkota et al limates are available for 2005-2010 with daily, 1 km resolu-
2005; DeBell et al., 2004), and continental (Morris et al., tion.
2006) scales. While significant progress has been achieved in the de-
BB emission inventories (El) serve as critical input for at- velopment of methods for estimating BB emissions, agree-
mospheric chemical transport models that are used to undement among BB El is variable. For example, GFED v3
stand the role of biomass fires in the atmosphere and climateand FINN v1 showed excellent agreement in annual, global
BB El are also important for interpreting in-situ and remote CO, CO, and CH emissions over 2005-2009, the invento-
atmospheric observations. The application determines the reies agreed within 3—-35 % for each compound (Wiedinmyer
quirements of a specific BB El, such as spatial and temporagt al., 2011; van der Werf et al., 2010). In contrast, Strop-
resolution and chemical speciation. Modeling of regional airpiana et al. (2010) compared five global BB EI (including
quality needs high resolution Ene <25km,Ar <1 day), GFED v3) for the year 2003 and found that total CO emis-
while global modeling applications can use less resolved in-sions differed by a factor of 3.9 (high/low). The authors cited
put (Ax = 0.5 to 3 degreeAr = week to month). differences in the area affected by fires and vegetation char-
acteristics as the prime causes for variability among inven-
tories. On a continental basis, the disagreement in annual
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emission estimates among various inventories can be mucbusly evaluate the uncertainties of a BB El across a range of
greater. While 2003 total CO emissions for Africa varied by spatial and temporal scales. WFEI was designed for the con-
a factor of 2.2, those for North America varied by a factor tiguous United States and here itis applied to western United
of 14.5 (Stroppiana et al., 2010). Other inventories showedStates over 2003-2008. However, the uncertainty/sensitivity
somewhat better agreement; for example, annual CO emisanalysis presented here may be applicable to BB El for dif-

sions estimated for North America by GFED v3 (van der ferent regions of the globe.

Werf et al., 2010) and a continental BB El (Wiedinmyer et

al., 2006) differed by a factor of 1.15 to 1.93 over 2002—

2004. Over shorter time periods, the disagreement betweed Methodology

BB El is more significant. Year 2003 monthly CO emissions ) ] o

for Africa from six different inventories varied by a factor 2-1 Biomass burning emission model

of 7 over the year, with maximum differences of 300—-400 %

during the peak emission months (Liousse et al., 2010). Sim P
ilarly, Al-Saadi et al. (2008) compared four satellite-driven Mated as the product of area burned (As#niuel load con-

BB emission models over March 2006 to September 2006UMed (FLC; kg-dry vegetation kmd), and sp'ecn‘lu: emission
and found that the estimates of monthly CO emissions inteJactors (EF; [g-compqund] [kg-dry vegetation™]) (Lang-
grated over CONUS varied by an order of magnitude. mann etal., 2009; Seiler and Crutzen, 1980):

The lack of qonsisteqcy among emission i_nventories. andE(k’m) — Ak.t) x FLC(k.1) x 0.001x EF(k.1) )
the absence of information regarding uncertainty at pertinent
scales makes it difficult to determine which BB EIl is most Where,k is |Ocati0n’t is time,i is Species and FLC is the
appropriate for a particular application and hinders the evalproduct of the fuel loading (FL; kg-dry vegetation k&) and
uation of model results. For example, the annual, Contineﬂtabombustion Comp]eteness (C, dimensiomess)_ Emission fac-
scale uncertainty reported for a BB EI may seriously mis-tors are traditionally reported in units of gkgand the factor
represent the relevant uncertainty for an air quality simula-of 0.001 in Eq. (1) converts the EF units into kg®g Equa-
tion conducted with horizontal grid spacing of 10km. This tion (1) is the basis of WFEI which provides daily emission
is particularly true given that BB emissions typically have inventories with a spatial resolution of 500 m. WFEI was
large spatio-temporal gradients. Further, the sensitivity oforiginally designed to provide near-real-time WF emissions
the emission estimates to the model components is genefor assimilation into air quality forecasting systems. The
aIIy not well characterized. Understanding the sensitivity of model combines observations from the MODerate Resolu-
emission estimates to assumptions and uncertainties assogjon Imaging Spectroradiometers (MODIS) on NASA's Terra
ated with each input to the emission model — burned areagnd Aqua satellites, meteorological analyses, fuel loading
fuel map, fuel load, fuel consumption, and emission factors,maps, an emission factor database, and fuel condition and
is crucial for properly assessing the impact these assumptiongie| consumption models. We describe WFEI as applied to
may have on atmospheric chemical transport model simulathe western United States in the following sections.
tions.

We present the Wildland Fire Emission Inventory (WFEI), 2.1.1 MODIS based burned area
a high resolution (500 m, 1 day) wildland fire emission model
designed to support regional scale atmospheric chemistrdurned area was mapped using an improved version of the
studies and air quality forecasting. In this paper, wildland MODIS — direct broadcast (DB) algorithm developed by Ur-
fire (WF) refers to non-agricultural, open biomass burningbanski et al. (2009a). Here we provide a brief overview of
which differs from the more commonly used definition of the algorithm and describe algorithm improvements and the
open BB which usually includes agricultural burning (e.g. MODIS data processed in this study. Details of the algo-
pasture maintenance and crop residue). WFEI was used tdthm, a thorough evaluation of the algorithm, and a discus-
estimate WF emissions of CO (ECO) and PMEPM,s) sion of the deficiencies and limitations of burned area map-
for the western United States from 2003—2008. We introduceping using remote sensing and ground-based information are
a figure of merit, the half mass uncertainty, to evaluate uncerprovided in Urbanski et al. (2009a) and references therein.
tainty in the El across spatio-temporal scales. To evaluate the The MODIS algorithm combines active fire detections and
dependence of the model’s uncertainty to scale, the base resingle satellite scene burn scar detections to map burned area
olution (500 m and 1 day) emission inventory was aggregatedvith a nominal spatial and temporal resolution of 500 m and
across multiple spatial grids\x = 10, 25, 50, 100, 200km) 1 day. The MODIS-DB algorithm provides rapid mapping
and time stepsAr =1, 5, 10, 30, 365 day). The spatial and of burned area and enables production of a regional emis-
temporal sensitivity of WFEI estimates of ECO and ERM  sion inventory within 1 h of the final (Aqua), local MODIS
to uncertainties in mapped fuel loading, fuel consumption,overpass. While the algorithm was designed to process DB
burned area and emission factors is also examined. This aslata in near-real-time, archived data may also be used. This
sessment may be the first study which has attempted to rigorstudy used MODIS Level-1B, Collection 5 Terra and Aqua

Biomass burning emission (E) of a compound (i) may be esti-

www.atmos-chem-phys.net/11/12973/2011/ Atmos. Chem. Phys., 11, 1P3083-2011



12976 S. P. Urbanski et al.: The wildland fire emission inventory

datasets obtained from the NASA MODIS L1 and Atmo- Fuel Characteristics Classification System (FCCS; Ottmar,
sphere Archive and Distribution System (NASA, 2011) to etal., 2007a) were the fuel loading models used in this study.
identify burn scars. Collection 5 of the standard MXD14 We selected these fuel loading models because they were
product (Giglio et al., 2003) provided active fire detections mapped by the LANDFIRE project (LANDFIRE, 2011a, b)
(spatial resolution 1 km). The burn scar algorithm (Urbanskiand they provide a full description of the dead wood and duff
et al.,, 2009a; Li et al., 2004) was applied to the Level-1B fuel strata that dominate loading, and hence potential emis-
datasets to identify potentially burned pixels — provisional sions, in forested ecosystems of the western United States.
burn scar detections (spatial resolution 500 m). The purpos&V/FEI incorporates only surface fuels and, for reasons dis-
of the algorithm is to map WF burned area; therefore the accussed below, does not include canopy fuels.
tive fire and burn scar detections were filtered using an agri- The FCCS is a tool to classify fuelbeds according to their
cultural land mask (Sect. 2.1.2) to eliminate burning due topotential fire behavior and fuel consumption (Ottmar et al.,
agricultural activity. The processed data was aggregated tem2007a). The FCCS contains over 200 fuelbeds for the United
porally according to the date (Local Time) of satellite acqui- States, organized by to vegetation type (e.g. Interior Pon-
sition. Provisional burn scars were then screened for false dederosa Pine — Douglas-fir Forest). The fuelbeds were de-
tections using a contextual filter which eliminates pixels notveloped using a wide range of sources: scientific literature,
proximate to a recent active fire detection. To be classified aguels photo series, fuel data sets, and expert opinion (Ottmar
“confirmed”, provisional burn scar detections were requiredet al., 2007a).
to be within 3km of any active fire detection from the pre- The FLM are a surface fuel classification that categorizes
ceding 5 days. A daily burned area product was created byuelbeds according to potential fire effects (consumption,
resampling pixel centers of confirmed burn scar detectionemissions, soil surface temperature; Lutes et al., 2009). The
onto a 500 mx 500 m CONUS grid using a nearest neigh- FLM were developed using an extensive database of surface
bor approach. The burned area grid for each day was comfuel measurements from 4046 forested plots from across the
pared against a cumulative burned area grid which trackedontiguous United States. The FLM contains 21 fuel classes
the burned area for 90 days. Comparison against the cumwleveloped using a classification tree analysis to estimate the
lative burned area grid identified grid cells newly burned in critical loads of duff, litter, fine woody debris, and coarse
the preceding day, providing a map of burned area growth fowoody debris associated with 10 unique fire effects regimes.
that day. The 10 unique fire effects regimes were identified by clus-
The burned area mapping employed in this study was im4ering the potential fire effects of each measurement plot as
proved over that reported in Urbanski et al. (2009a) throughsimulated using FOFEM (Lutes et al., 2009).
the two modifications. First, the contextual filter for burn scar  The major differences between the FCCS and FLM are:

Qet?ction was changed tE 3 kmdandds days if? thg implroved 1. The models were developed using different philoso-
imp ementatcljon Vﬁrsus okm and 10 gysfm tde original ver- phies to classify fuelbeds; the FCCS fuelbeds are for-
sion. Second, in the current study, active fire detections were mally classified according to vegetation type while the

used only to confirm burn scar detections. Previously, ac- FLM fuelbeds are categorized based on the anticipated
tive fire detections were used to identify burned grid cells in fire effects of the fuel loadings

addition to confirming burn scars. These improvements were
proposed in Urbanski et al. (2009a) and their implementation 2. The FLM covers only forests, while the FCCS includes
has largely eliminated the overestimation of burned area in  fuelbeds for herbaceous and shrubland cover types. The
the original mapping scheme. The previous algorithm has a  absence of FLMs for non-forest cover types required
bias of 36 % (Urbanski et al., 2009a) while the bias of the im- the development of supplemental fuelbeds as part of our
proved algorithm used in this study is 7% (Sect. 2.2.3). An study (see below).

evaluation of the improved burned area mapping algorithm 3

. . ) ] . . Due to a lack of data that satisfied their study’s criteria,
used in this study is provided in Appendix A. y

the FLM provides only a cursory treatment of under-
story herbs and shrubs. Because many of the plots in
the FLM dataset (2707 of 4046) were missing herba-
ceous or shrub loadings, all of the FLM were assigned
same loading, the dataset median, for these components.
The FCCS provides specific herbaceous and shrub fuel
loadings for each vegetation type classified.

2.1.2 Fuel map and fuel loading

The biomass, i.e. fuel loading (FL; kg dry vegetationidy

was estimated using wildland fuel loading models. A fuel
loading model describes and classifies fuelbed physical char-
acteristics to provide numerical input for fire effects mod-
els (Sect. 2.1.4). In this study the fire effects models CON- 4. The FLM were developed from a large, uniform col-
SUME (Prichard et al., 2006) and FOFEM (Reinhardt, 2003) lection of surface fuel measurements. In contrast, the
were used to estimate the consumption of duff, litter, dead FCCS were developed using a diverse range of data
wood, herbaceous vegetation, and shrubs (Sect. 2.1.4). The sources and the nature of the underlying data is variable
Fuel Loading Models (FLM; Lutes et al., 2009) and the across fuelbeds.
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The original FLM classifies only forests and does not pro- herbaceous plants) and dead fuels. Dead fuels are classified
vide models for herbaceous or shrub fuelbeds that are imporby timelag intervals (the e-folding time for a fuel particle’s
tant over large swaths of the western United States (e.g. sagmoisture content to return to equilibrium with its local envi-
brush and chaparral). A field guide for identifying FLMs ronment) which are proportional to the diameter of fuel par-
does include models for sagebrush and chaparral (Sikkinkicle (twig, branch, or log). The NFDRS classifies 1-h, 10-h,
et al., 2009) and the LANDFIRE mapping of the FLMs in- 100-h, and 1000-h dead fuels corresponding to diameters of
cluded these non-forested models. However, we chose not0.64, 0.64-2.54, 2.54-7.62,7.62 cm. 1-h and 10-h dead
to use the Sikkink et al. (2009) fuel loads and instead opteduel moistures were calculated from the hourly air tempera-
to develop our own fuel loadings for non-forested classes ofture ('), relative humidity (RH), and surface solar radiation
the LANDFIRE FLM map. Using the Natural Fuels Photo (SRAD) following the NFDRS implementation of Carlson
Series (Natural Fuels Photo Series, 2011) we developed sigt al. (2002). The meteorological input for the fuel moisture
non-forest cover type fuel loading models: grass, sage brustgalculations was obtained from the North American Regional
shrubs, coastal sage shrub, chamise, and ceanothus mix&eanalysis (NARR) meteorological fields (32 km horizontal
chaparral. We refer to these six fuel loading models as theesolution, 45 vertical layers, and a 3 h output) (Mesinger et
“FLM supplemental models”. The photo series datasets andl., 2006). 7T, RH, and SRAD were estimated for the hours
methods used to develop the FLM supplemental models arbetween analyses by interpolating the 3-h NARR output. The
described in Appendix B. NFDRS does not include equations for duff moisture, which

Our study used the LANDFIRE FLM and FCCS spatial is needed to predict duff consumption and is required input
data layers (LANDFIRE, 2011b) to quantify surface fuels. for both CONSUME and FOFEM. The closed canopy em-
The LANDFIRE spatial data layers are provided as 30 mpirical relationship of Harrington (1982) was used to esti-
resolution rasters which we aggregated to 500 m resolutiormate the duff moisture from the NFDRS 100-h fuel mois-
using majority resampling to match the resolution of our ture. The Harrington (1982) study was limited to Ponderosa
daily burned area product (Sect. 2.1.1). FLM and FCCS fuelPine forests and likely does not provide the best estimate of
codes were assigned to each burned grid cell by extractingluff moisture for all forest ecosystems in the western United
the FLM and FCCS values from the 500 m rasters at the cenStates. However, using the same methods to estimate fuel
ter point of each burned grid cell. Approximately 39 % of the moistures for all cover types avoids introducing additional
fire impacted FLM pixels were non-forest and these FLM variability into our analysis that would have interfered with
pixels were re-coded with the FCCS codes of those pixelsour ability to assess uncertainties associated with the fuel
The re-coded pixels were then assigned a FLM supplemeneonsumption models, a key objective of this study.
tal model based on the vegetation type of the FCCS fuelbed
(Appendix B). 2.1.4 Fuel consumption

Our study did not include forest canopy fuels because the
methods used in this study could not identify the occurrence=actors controlling fire behavior and the consumption of
of crown fire or re|iab|y model canopy fuel Consumption_ wildland fuels include fuelbed type, fuel arrangement, fuel
While our burned area mapping technique efficiently identi- condition (moisture, soundness of dead wood) and meteorol-
fies burned pixels, it does not provide information regarding©dy (Anderson, 1983; Albini, 1976; Rothermel, 1972). Our
the occurrence of crown fire. The fuel consumption modelsstudy used two fire effects models, CONSUME and FOFEM,
used in this study (CONSUME and FOFEM) do not include t0 simulate fuel consumption. While the models require sim-
empirical or physical process based modeling of canopy conilar input, fuel loading by fuel class (with slightly different
sumption. Additionally, the FLM do not include canopy fuel Size classifications for woody fuels) and fuel moisture, they
loading and augmentation of the FLM with canopy fuel load- €mploy significantly different approaches towards predicting
ing estimates would have been problematic given the mannesurface fuel consumption (dead wood and litter). While both
in which the FLMs were developed — classification by an- models were calibrated using field measurements of fuel con-
ticipated fire effects not vegetation type. Given these limi- sumption from WFs, neither model has been extensively val-
tations, we chose to exclude canopy fuel consumption fromidated using independent data from wildfires or prescribed
our primary analysis. However, a rough estimate of canopyfires. Next we provide a brief description of the models.
consumption and resultant emissions using the FCCS is pro- CONSUME is an empirical fire effects model that pre-

vided in Appendix C. dicts fuel consumption by fire phase (flaming, smoldering,
residual smoldering), heat release, and pollutant emissions
2.1.3 Fuel conditions (Prichard et al., 2006). The CONSUME natural fuels al-

gorithms include predictive equations for the consumption
Fuel moistures for dead and live fuels were calculated us-of shrubs, herbaceous vegetation, dead woody fuels, litter-
ing the National Fire Danger Rating System (NFDRS) ba-lichen-moss, and duff. The dead woody fuels algorithms are
sic equations (Cohen and Deeming, 1985). The NFDRScomprised of equations for different size classes and decay
provides fuel moisture models for live (woody shrubs and status (sound or rotten). There are specific equations for dead
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Table 1. Probability distribution functions and parameters used in the Monte Carlo analysis.

Model component pdf Parameters
A Normal ua=A, oy =(5.03A)1/2
(km?)
4
> FLC(j.k.1)
FLC Normal upLck,t = Flﬁ
(kg-dry orLc(k.1) =
vegetation 0.5x (max(FLCk,1))
burned knT?2) — min(FLC(,?)))
EFCO Normal Forest:ugrco=87.0,
(gCOkg —dry Log-normal oerco=17.9
vegetation burned?) Non-forest:ugrco=4.21,
oerco=0.30
EFPM, 5 Log-normal Forest:ugrpm, s =2.59,
(g PMo5 kg —dry Log-normal OEFPMy 5 = 0.34
vegetation burnet) Non-forest:ugrpm, 5 = 2.20,
OEFPMy 5 = 0.47

wood and duff consumption in the western United States.2.1.6 Emission factors

Fuel moisture is the independent variable in all of the natural

fuel equations except for the shrub, herbaceous vegetatiorf\n emission factor (EF) provides the mass of a compound

litter-lichen-moss, and 1-hour size class dead wood (diameemitted per mass of dry fuel consumed. Our study developed

ter <0.64 cm) strata. “best estimate” CO and Py EFs for burning in forest and
FOFEM, the First Order Fire Effects Model, simulates non-forest (grasslands and shrublands) cover types from data

fuel consumption, smoke emissions, mineral soil exposurefeported in the literature. The literature values used were fire-

soil heating, and tree mortality (Reinhardt 2003). FOFEM average EF measured for wildfires and prescribed fires in the
employs BURNUP (Albini et al., 1995), a physical model United States and southwestern Canada. The EF source stud-

of heat transfer and burning rate, to calculate the consumpi-es were all based on in-situ emission measurements obtained
tion and heat release of dead woody fuels and litter. pufffrom near source airborne or ground based tower measure-
consumption is calculated using the empirical equations offents. The published EFs were used to derive probability

Brown et al. (1985). The consumption of herbaceous fuelsdistribution functions (pdf) for EFCO and EFRMthat were

and shrubs are estimated using rules of thumb (FOFEM 5_7ysed in our uncertainty analysis (Sect. 2.2.5). The statistical

2011). In addition to loading by fuel class, FOFEM requires Variability of each EF (CO or Phk, forest or non-forest)

fuel moisture (10-hr, 1000-hr, and duff) as input. was determined by fitting log-normal and normal distribu-
tions to the source data. For each EF, th&om the fitted
215 Fuel load consumed distribution was taken as the best estimate of EF. The best

estimates for EFs are given as theof the pdfs in Table 1.
The combination of fuel loading maps (FLM, FCCS) and We used published EFs from 46 forest fires (Urbanski et al.,
consumption models (FOFEM, CONSUME) provided four 2009b; Friedli et al., 2001; Yokelson et al., 1999; Nance et

predictions of fuel load consumption, FLC: al., 1993; Radke et al., 1991) and 21 grassland/shrubland
fires (Urbanski et al., 2009b; Hardy et al., 1996; Nance et
FLC: ; =FL; x C; ) al., 1993; Radke et al., 1991; Coffer et al., 1990) to derive

the pdf for EFCO. The pdf for EFPp4% was obtained us-
where FL is the fuel loading (FL; kg-dry vegetation KAy, ing EFs from 43 forest fires (Urbanski et al., 2009b; Nance
C is the consumption completeness, and FLC is the dry mas§t al., 1993; Radke et al., 1991) and 17 grassland/shrubland
of Vegetation burned per Km In Eq. (2) thei andj index fires (Urbanski etal., 2009b; Hardy etal., 1996; Nance et al.,
identify the fuel loading model (FLM or FCCS) and fuel con- 1993; Radke et al., 1991).
sumption model (FOFEM or CONSUME), respectively (FL
= FLM, FL, = FCCS,C1 =FOFEM,C2 =CONSUME). The
mean of the four predictions was used as the best estimate of
FLC (urLc, Table 1) fuel load consumed (FLC).
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2.1.7 CO and PM. s emission estimates components used in the Monte Carlo analysis. The proba-
bility distribution functions (pdf) and parameterg and.x
Emissions of CO and P4 were estimated using the bias (the mean of X which is used as the best estimate of X) for
corrected burned area (Sect. 2.2.3), the best estimate, covey FLC, and EF {) are given in Table 1. The approaches
type specific emission factors (Table 1), and the mean of;sed to determine the pdf and parameters in Table 1 and their
the four FLC predictions (Sect. 2.1.5, Table 1). The WFEI gpplication in the Monte Carlo analysis are described in fol-
model was applied to the 11 western states of the contigufowing sections. We usex, where X=A, FLC, EF{), to

ous U.S. for 2003-2008. The model’s base resolution of 50Gefer to the & fractional uncertainty in estimated value of X,
m and 1 day was defined by the MODIS burned area prody,y = oy /ux.

uct. The burned area is derived from the 24 hour increase

in burn scar area (500 m spatial resolution) which is mapped.2.3 Burned area mapping uncertainty

once per day using the combined MODIS data from the day-

time overpasses of the Terra and Aqua satellites (Sect. 2.1.1MODIS vs. MTBS “ground truth”

Emissions of CO and P4 were estimated at multiple levels

of spatio-temporal aggregation (Sect. 2.2.1), with daily sumswe used burn severity and fire boundary geospatial data from
on a 10km grid being the finest scale and annual, domainthe Monitoring Trends in Burn Severity (MTBS) project

wide emissions as the most coarse scale. (MTBS, 2011a, b) to develop “ground truth” burned area
_ o _ maps to evaluate the uncertainty in our MODIS burned area

2.2 Evaluation of emission model uncertainty product. MTBS is an ongoing project designed to consis-
. . tently map the burn severity and perimeters of large fire

22.1 Spatial and temporal aggregation events 404 ha) across the United States (MTBS, 2011c).

The project uses LANDSAT TM/ETM images to identify

The emission model has a base resolution of 500m and : , X /
i)re perimeters and classify burn severity by 5 categories

day. To evaluate the dependence of the model’s uncertaint L=urb diol o= itV 3=moderat
to scale, the base resolution (500 m and 1 day) emission ini~ "~ un uérln_eh_ (r)] ow Sever y(,j 5__ ow sever(; Y, 5=Mo eraT(;
ventory was aggregated across multiple spatial grids £ severity, 4 =high severity, and 5=increased greenness). The

10, 25,50, 100,200 km) and time stepa\¢ = 1,5, 10,30, 365 fire severity classification is based on the differenced nor-
da’y) [;)ro</iding 25 arraysga, o (k.1). We uée’Ax’an’d At malized burn ratio (dNBR) calculated from pre-fire and post-
X, ’ .

to refer to the spatial and temporal scales of aggregation]:Ire LANDSAT images. MTBS analysts develop fire sever-

respectively. The following notation will be used to iden- ity classifications from the dNBR for each individual fire
tify a particular spatio-temporal aggregation of the emission®Vent using raw pre—f|r_e af?"' post-fire 'magery, plot data, and
model: g25maodayk.?). “Elements” will be used to refer analyst experience with fire effects in a given ecosystem.

the array elementsk(r) of a particular spatio-temporal ag- Vk\1/e :gen.t'f'e? It\;11e_BaSnr|13ual “gsrounq trll\J/lth" purned area Iucsjlng
gregate. For example, the 25 kn25km grid (A\x =25km) '€ Regiona urn Severity Mosaic geospatial data

has 7020 grid cells and our 6 year study has 72 30 day timéMTBS’ 2011b). We mappgd_the “tru_e” burn_ed area from
periods (7 = 30 day). Thus, the spatio-temporal aggregatethe MTBS dataset by classifying all pixels with an MTBS
g25km30day (k, 1) has 505440 elements; however, not all of severity class 2 3, or 4 as burned. )

the elements are a source of fire emissions. The extent of 1€ uncertainty assessment for our improved MODIS
the study’s spatial and temporal domains were the 11 westPUrned aréa mapping algorithm used data from 11 subre-
ern United States and from 1 January 2003 to 31 Decembe$iONS rgpresentmg the different land cover types of the west-
2008, respectively. The span of the spatial resolution wa€™ United States. The general approach was to aggre-
chosen to cover both regionalZs km) and global (50kmto ~ 92t€ the MODIS and MTBS burned pixels by the cells of

200 km) atmospheric chemical transport modeling applica-2 2°kmx 25km evaluation grid on an annual basis. The
tions. MTBS project mapped only large fires 4 kn?), and while

our MODIS burned area mapping algorithm was designed
2.2.2 Monte Carlo analysis for large wildfire events, it does detect and map fiegskn?

(Urbanski et al., 2009a). Therefore it is possible that our
The uncertainty of the emission model was estimated using MODIS burned area mapping algorithm may accurately map
Monte Carlo analysis. The emission model is characterizedmall fire events that are not included in the MTBS dataset
by large uncertainties and non-normal distributions. Monteand that these MODIS detected burned pixels would im-
Carlo analysis is a suitable approach for assessing the unceproperly contribute to our assessment as false positive error.
tainty of such a model (IPCC, 2006) and has been applied irAs a result, we screened our MODIS data for burned pix-
previous BB El studies (van der Werf et al., 2010; French etels that were not associated with MTBS mapped fire events.
al., 2004). In this paper we ugs;, where X=A, FLC, or  MODIS active fire detections not within 3km of an MTBS
EF (), to signify the 1-sigma (@) uncertainty of the model fire boundary (MTBS, 2011a) were flagged and the burn pix-
variables. Therx are the standard deviation of the model els confirmed by these active fire detections were excluded
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from the assessment. Even after spatial filtering, the screeneldncertainty quantification

MODIS burn pixels may include areas associated with small

prescribed fires that were not mapped by MTBS but occurred® primary goal of this study was to characterize the uncer-
near MTBS mapped fires. Because the majority of prescribedainty in a biomass burning emission model, a task that re-

burning in the western United States is conducted prior toquires uncertainty estimates for each model component. The
(or after) a region’s wildfire season, we identified, annu-burned area data has a non-normal distribution and is het-

ally, the approximate commencement date for wildfire activ-eroscedastic. The heteroscedasticity in the dataset is read-
ity within each evaluation zone from the MTBS fire bound- ily apparent; the variation in the MODIS burned area dif-
ary data (MTBS, 2011a). Within each subregion (on an an-fers depending on the value of the “ground truth”, and the
nual basis) we used the earliest reported start date from thecatter (error) increases with increasing burned area (see
MTBS perimeter data to identify the onset of wildfire activ- Fig. 1). The default Breusch-Pagan test for linear forms
ity. MODIS burned pixels in a particular evaluation zone Of heteroscedasticity was used to formally verify the het-
which predated the beginning of wildfire activity by more €roscedastic condition of the dataset.
than 1 week were assumed to be prescribed fires and ex- When data is non-normal in distribution and heteroscedas-
cluded from the burned area assessment. We did not delic, standard approaches for quantifying uncertainty are not
velop a filter for post-season prescribed burns and such burnliable (Wilcox, 2005). Therefore, following Urbanski et
could be included in our assessment as false positive erro@l. (2009a) and Giglio et al. (2010), we employed an empir-
Within each subregion, the filtered MODIS burned area andical error estimation approach to quantify the uncertainty of
the MTBS based burned area were aggregated by the 25 k@ur MODIS based burned area measurement. The details of
grid cells on an annual basis. The evaluation used data séhis analysis are provided in Appendix A and only the results
lected from 2005, 2006, and 2007, but in only a few casesare presented in this section. As evident in Fig. 1, and as
was more than one year of data used in any subregion. Théemonstrated by Urbanski et al. (2009a), and by Giglio et
total burned area in the 11 subregions used in the uncertaint§l. (2010) (who used a more sophisticated MODIS burn scar
analysis was 23 012 kfrfor MTBS and 22 027 krh for the mapping technique) our analysis found that absolute uncer-
filtered MODIS data. Prior to filtering, the MODIS burned tainty increases with increasing burned area. Theudcer-
area was 24084 kfn The MTBS proximity filter and the tainty in our MODIS mapped burned area is:
pre-season prescribed fire filter were only used in the burned
- o X g =(bxAY? 3)
area uncertainty evaluation which quantified the uncertainty’

function (Eq. 3) and corrected the algorithm’s mean bias (s€§ynere A is the MODIS measured burned area irékand
below). The burned area used in the emission inventory thah, -5 g3 kn?. The development of Eq. (3) is described in
is presented and_discussed in Sects. 3-5, include_d all MODIGppendix A. While the absolute uncertainty,) increases
based burned pixels as mapped with the algorithm as deyjith burned area, the relative uncertainty (= oa/A) de-
scribed in Sect. 2.1.1. _ creases. For examples = 0.71 for a measured burned area
We found that the MODIS burned area product was in g A =10kn? and decreases to 0.22 at A=100%muUn-
close agreement with the MTBS burned area (Fig. 1). Thecertainty is typically expressed as an interval about a mea-
coefficient of deter.mmatloan = 0.91) and the Theil-Sen  grement result that is expected to encompass a specified
(TS) regression estimator value indicated our MODIS burnedyopapility range of the true value. In this study we defined
area product slightly overestimated burned area by 7% (Seghe burned area uncertainiya, as the error cone expected
Fig. 1). The TS regression estimator was selected over Ory, contain approximately 68 % of the “ground truth” burned
dinary least squares regression because the burned area daf@a values of which the MODIS burned area is a measure-
in this study is non-normal distributed, heteroscedastic (thénent. This definition of uncertainty provides coverage com-
variance of the error term is not constant), and contains h'gfbarable to that of a standard uncertainty for normally dis-
leverage outliers. The TS estimator is somewhat resistangiputed data (i.e. coverage 6168 % for 1r). The empirical
to outliers r_;md tends to y|elld accurate conflde_nce_ '”’FerV?‘l%ncertainty analysis employed in this study (see Appendix A)
when data is heteroscedastic and non-normal in distributionsatisfies our definition of uncertainty. Seventy two percent of
(Wilcox, 1998, 2005). The slope value of the TS estimator ihe “ground truth” burned area values fall within the uncer-
did not change when the intercept was forced to zero. ThEiainty bounds (Eg. 3) and when a coverage factor of 1.65
MODIS burned area was adjusted by the TS estimator slopgs appjied (i.e. the 90 percent confidence interval of a normal

(0.93) to correct for the slight overestimation. The MODIS jstribution), 87 % of the “ground truth” values are enveloped
burned area used throughout the remainder of this paper IBy the resulting uncertainty bounds (Fig. A2).

the adjusted MODIS burned area.
2.2.4 Fuel load consumption uncertainty

The combination of fuel loading maps (FLM, FCCS) and
consumption models (FOFEM, CONSUME) provided four
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in the Monte Carlo simulations (Sect. 2.2.2) to estimate the
uncertainty.u was taken as the best estimate of EF. The pdf
and parameters are given in Table 1.

2.2.6 Emission inventory uncertainty

The Monte Carlo analysis provided estimates of the model
uncertainty for ECO and EPM at multiple scales by con-
ducting 10 000 simulations at each of the 25 spatio-temporal
aggregatesgax ar (k,7). In each simulation round, possible
CO and PM s emission values for each element were cal-
culated using Eq. (1) where the values A, FLC, BR{ere
obtained by random sampling from each component’s pdf
(Table 1). We note that the burned area pdf was based on
an analysis at a spatial scale of 25km but is used across all
scales Ax = 10km to Ax =200km) in the Monte Carlo
analysis. Both forest and non-forest EF values were drawn
and the cover type weighted average of the two was used
as the EF i) at each element. The simulations provided
10000 ECO and EPM25 estimates for each element of each

gax.Ar (k,1), which served as the emission model pdf. The
Fig. 1. MODIS mapped burned area plotted against the MTBS Pest estimate of ECO and ERMl at each elementuco
burned area for 463 grid cells (25ke25km). The solid line is ~ anduepm,5) was calculated with Eq. 1 using the mean val-
the Theil-Sen estimate of the slope, slopes3 3% uncertaintyis ~ ues in Table 1The simulation results for ECO and BERM
90 % confidence interval, the coefficient of determinationds= were each sorted by increasing value and teuticertainty
0.91. The dashed line is 1:1. bounds were taken as the 16th and 84th percentiles (elements

B; = 1600 and B = 8400 of the sorted simulation, respec-

tively). Likewise, 90% confidence intervals were taken as
predictions of fuel load consumption (Eq. 2, Sect. 2.1.5) Atthe 5th and 95th percentiles; 8500, B, =9500. The un-
each element of thga, s (k,7) we aggregated base reso- certainty bounds produced in this analysis are not symmetric
lution FLC data (500 m and 1 day) by summing each of thedue to truncation of negative values and the log-normal na-
four FLG; ; at each gridX) and time steps) and then using ture of EFPM 5 and the EFCO for non-forest cover types
the mean of the four predictions as the best estimate of FLETable 1). When the uncertainty in the burned area was
(urLe, Table 1). Sufficient observational data is not avail- larger than the absolute burned area the lower uncertainty
able to evaluate the estimates of FL, C or FLC; therefore, dound was truncated to 0. This truncation contributes to
statistical sample of the prediction error could not be usedskewed uncertainty bounds for the emission estimates with
to quantify the uncertainty in the FLC. We made the subjec-oex(upper)> oex (lower). The truncation effects associated
tive decision to estimate the uncertainty in the FLC predic-with the burned area were most prevalent at small aggrega-
tions EFLc, Table 1) as 50 % of the range. Our uncertainty tion scales. The FLC pdf occasionally produced an uncer-
analysis does not account for mapping error, i.e. incorrectainty that was larger thamg ¢ resulting in a negative lower
assignment of fuel code in the LANDFIRE geospatial data.uncertainty bound which was truncated to 0. Throughout the
Mapping error could not be considered due to the absence gfaper we use the larger, upper uncertainty bounds (84th or
appropriate independent data. 95th percentiles) when referring to absolute or relative un-
certainties. The nomenclatusgx andugx refers to the up-
per bound, & absolute uncertainty and fractional uncertainty
in EX (uex = oex/EX), respectively. For each element with

Published studies of over 50 fires in the United States andVF emiss.ions at a givegax, ar _(k,t) our anaIysis_provides
southwestern Canada (Sect. 2.1.5) were used to develop ttfePest estimate of EX and estimates of uncertasgty and

forest and non-forest cover type pdf for EFCO and EggM  “Ex- Note that A fua in Table 1), is simply the MODIS
in Table 1. The statistical variability of each EF (CO or Purned area measurement for each element and thaj & (

PMjs, forest or non-forest) was determined by fitting log- the COVer type weighted average of the appropriatieom

normal and normal distributions to the source data. With the'@ble 1.
exception of EFCO for forest cover type, the EF were best
described with a log-normal distribution. For each EF, the
distribution model and fitted parametersdndo) were used

2.2.5 Emission factor uncertainty
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Fig. 2. Estimates of western United States anr(agburned aregp) fuel consumption(c) CO emitted, andd) PM, 5 emitted. Solid points
are the best estimate. The solid horizontal lines, boxes, and whiskers denote the mediaceriainty and 90 percent confidence interval,
respectively, from the Monte Carlo analysis. Numbers giveas percentage of the best estimate.

2.2.7 Variability and sensitivity of emission
model uncertainty

whereo; is the uncertainty in one of the model components
(i =A, FLC, EF). One model component at a time, theuh-
certainties from Table 1 were varied by a factowct 0.30 to
In order to evaluate the uncertainty in our emission estimated.70 with an increment of 0.1. For each increment jrthe
across multiple scales we used a figure of merit, the half masMonte Carlo analysis was repeated and the figure of merit,
uncertaintyjiex (where X = CO or PM55), defined such that  jigx, was determined. Then thge=x for all o increments
for a given aggregation level 50 % of total emissions occurredwas regressed againstand the slope of this regression pro-
from elements withiex < iigx. The figure of merit was cal-  vided the value of gx ; (Fig. S2). These steps were repeated
culated as follows: for eacén . ar (k,1), pairedugx and EX  across each of the 25 spatio-temporal aggregates for.all
were sorted in order of ascendingy and the figure of merit
was taken as the value 8x where the cumulative sum of
EX exceeded 50 % of total EX. A graphical demonstration3 Results
of iigx is provided in Fig. S1. Thus, at a given a: (k,),
50 % of total ECO (EPMs) is estimated with an uncertainty 3.1 Emissions, burned area, and fuel consumption
less thanieco (iiepm,s)- : .

We estimated the sensitivity of the uncertainty in our emis-EStimated annual burned area, fuel consumption (FC;

sion estimates to uncertainties in the model components ud=C =Ax FLC), and emitted CO and PM for the west-
ern United States are shown in Fig. 2. The annual values

ing Eq. (4):
9 Ea. (4) and uncertainties were derived by annual aggregation of the
AEX base resolution (500m and 1 day) model components and
AEXi = da; (4) emission estimates. The annual sums of A, FC, ECO, and
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98 Burned Area logm(kmz) 1.89 28

Fig. 3. Annual burned area aggregated as square km burned per 22&km grid cell displayed in log scale.

9.2

4.9 6.3 Fuel Consumed log, (kg) 7.8

Fig. 4. Annual fuel consumed aggregated as kg dry vegetation burned per R2k&rkim grid cell displayed in log scale.

EPM5 for each of the 11 states are provided in Tables 2gas5km azess (k,¢)) are given in Figs. 3 through 6. There was
through 5. Maps of the annual burned area, fuel consumpsignificant inter-annual variability in the burned area, fuel
tion, and emissions, aggregated to the=25km grid (i.e. = consumption, and emissions. The annual burned area ranged
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8.1

3.9 53 €O Emitted log,(kg) 6.7

Fig. 5. Annual CO emissions aggregated as kg CO per 25%K2b km grid cell displayed in log scale.

2005

44 pM25Emitted log (kg) 8 73

Fig. 6. Annual PMp 5 emissions aggregated as kg P¥per 25 kmx 25 km grid cell displayed in log scale.

from 3622 to 19352k Fuel consumption was 5292 to to 454 Ggyr'. Annual total burned area, fuel consumption,
39710 Gg dry vegetation y*. Annual total ECO was 436 ECO, and EPM5s were all largest in 2007, and smallest in
to 3107 Gg yr! and annual total emissions of BMlwere 65  2004; with 2007 emissions being 7 times those in 2004.
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Table 2. Annual sums of state level burned area estimate€ gqmt) over 2003—2008.

State 2003 2004 2005 2006 2007 2008 Total  Contribfition
Arizona (AZ) 727 841 1788 486 356 268 4466 6.9%
California (CA) 2958 884 815 1940 3463 1742 11802 18.3%
Colorado (CO) 222 233 195 187 139 336 1312 2.0%
Idaho (ID) 994 109 1745 2462 6128 346 11784 18.3%
Montana (MT) 1955 134 330 2669 2026 398 7512 11.7%
New Mexico (NM) 596 309 377 378 170 315 2145 3.3%
Nevada (NV) 192 169 2840 3979 2687 332 10199 15.8%
Oregon (OR) 641 267 662 1949 2037 657 6213 9.6 %
Utah (UT) 415 344 603 642 1331 88 3423 53%
Washington (WA) 742 246 449 1068 739 299 3543 55%
Wyoming (WY) 438 85 141 767 276 346 2053 3.2%
TotaP 9879+2% 3622£4% 9945+2% 16526+2% 19352:-2% 5128+-3% 64452:2% 100.0%

@ Uncertainties ared. (see Sect. 2.2.35’. Contribution is the percent contribution of estimated burned area in each state to the 6 year total.

Burned area alone did not drive emissions. The significancdire season, summed over 2003—-2008, is displayed in Fig. 7.
of the ecosystems burned to fuel consumption and total emisMonthly burned area and ECO as percentages of the 2003—
sions is easily seen by examining the years 2003, 2005, and008 totals are also given in Fig. 7 (lower right panel). The
2006. In 2003 and 2005, the burned area was comparablenaximum burned area occurred in July; however, emissions
but fuel consumption, and thus emissions, were larger by avere a maximum in August due to greater fuel consumed
factor of ~ 2.7 in 2003. The large difference in burned area as a result of high fuel loadings and similar or lower fuel
between 2003 (9879 kfnand 2006 (16 526 kd), ECO and  moistures. The seasonal fire activity originated in the south-
EPM;, 5 differed by only a few percent. These differences arewest (Arizona, New Mexico, southern Nevada) in June. Dur-
not simply a function of the forested to non-forested burneding July, fire activity expanded northward along the Rocky
area ratio, e.g. the fraction of forested burned area in 2003lountains and through the Great Basin with the epicenter of
and 2005 were roughly the same. And while in 2006 theactivity migrating into northern Nevada and southern Idaho.
fraction of burned area that was forest (49 %) was smallesFire occurred throughout the interior west and Pacific North-
of the six years, emission per area burned in 2006 exceededest over July. By August, fire activity had largely moved
that in 2004 and 2005 when 77 % and 68 % of burned areadnto the northern Rocky Mountains and Pacific Northwest.
was forest, respectively. Fire activity decreased in September and, outside of Cali-
State level, annual burned area, fuel consumption, totaI_Omia’ was minimal _in October. In California, significant
ire activity occurred in each month of the June—October pe-

ECO and EPM5s are included in Tables 2-5. Spatially, . . ;
fire emissions were concentrated in three regions: Idaho ar:_POd at some point over 2003-2008. October fires accounted

) P the largest monthly portion of burned area in California
western Montana; southern California; and central Orego or T
and Washington (Figs. 5 and 6). Nearly half of the total esti-(36 %), followed by fires in July (19%), September (13 %),
0 0,
mated burned area over 2003-2008 occurred in three state@‘.ugust (1_2 %), fmd June (9 %).
California (18.3 %), Idaho (18.3%), and Montana (11.7 %). While fire activity was wide spread over the course of the

These three states accounted for two-thirds of estimated C(fj.re sgaspn, .em'SS'OF‘S were hlghly concentratt_ad.. Cumula-
and PMs emissions. Fire activity in Nevada comprised a tive distribution functions of estimated CO emissions ver-

large fraction of the total burned area (15.8 %), but owing toSUS the fraction .Of elgments with fire activity are shown in
the sparse vegetation and light fuel loads of Nevada’s domiFig- 8. As described in Sect. 2.2.1, “elements” refers to the

nant ecosystems, ECO and ERn this state were only a array elementsk( ) of a particular spatio-temporal aggre-
few percent of thé domain wide emissions gate. From Fig. 8 it is readily apparent that a small fraction

of elements were responsible for the majority of total emis-
During our 6-year study period, fire activity exhibited sig- sjons. Atgaskmaas (k1) 50 %/90 % of total ECO originated
nificant intra-annual variability. Burning was largely lim-  from 29%/18 % of elements. The pattern is similar, though
ited to June—October. More than 90 % of estimated burnechot as extreme, af10km1a (k.1), 50%/90 % of total ECO
area, fuel consumption, and emissions occurred during thesgrose from 5 %/35 % of the elements. This result is consis-
months. This temporal pattern is consistent with that of wild- tent with previous findings that very large wildfires (burned
fire burned area reported in administrative records coverarea>100 knf) accounted for a substantial portion of burned

ing 2000-2010 (National Interagency Coordination Center,area in the western United States (Urbanski et. al, 2009a).
2011). The spatial distribution of monthly ECO during the
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Fig. 7. 25km grid cell maps of estimated monthly ECO (kg CO) summed over 2003 to 2008 and, in the lower right panel, plot of burned
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area and ECO fractions by month over 2003 to 2008. Maps are log scale.

3.2 Uncertainty

3.2.1 Annual domain wide

Uncertainty in the estimated annual burned area wa$6

quite different from that used here, it is worthwhile to exam-
ine the variability of the FLC combinations that provided our
best estimate. Figure 9a shows the annual, domain wide FLC
predicted by each fuel load — consumption model combina-
tion. For both fuel consumption models, the FCCS predicted

(Fig. 2a). Due to the large burned area for annual, domair-LC was always greatest and exceeded the FLM predictions
wide aggregation, the lower bound uncertainties were neveby 37 % to 189%. The choice of fuel consumption model
negative and were not truncated. In this absence of truncaFOFEM or CONSUME) had minimal impact (1 to 7 %) for
tion effects, the uncertainty bounds are symmetric. The unthe FCCS and resulted in only a modest 5 to 10 % difference
certainties in total, domain wide ECO, which were slightly for the FLM in all years except 2008.

skewed towards the upper bounds, ranged from 28% to The systemic difference between FCCS and FLM was

51 % (Fig. 2c). The asymmetry in thgco reflects the tail

much greater when forest cover types, which comprised 49 %

of the log-normal distribution for EFCO in non-forest fu- to 77 % of burned area annually, were examined separately.

els (Sect. 2.2.3). The uncertainty in estimated EBNb

The range of FLC predictions for all forested area burned

markedly larger and more skewed than that for ECO. Thewas 85% to 134% of the mean. The FCCS based FLC

upper bound fractional uncertainties in ERMspan 43 %—

was a factor of 2.1 to 4.6 times the FLM based predictions,

64 % and are 12-15 percentage points higher than those fawith the difference being greatest for the CONSUME based
ECO (Fig. 2d). This difference is due to the larger uncer-calculations. The FLM with the lowest fuel loading (FLM
tainty in EFPM5 compared with EFCO (Table 1). Frac- 011, 0.2 kg nt2) accounted for 58 % of the forested burned
tional uncertainties in the estimated fuel consumption werearea and its predominance was a substantial factor behind the
symmetric and ranged from 19 % to 47 % (Fig. 2b). Becausdarge difference in FLC predicted by the FCCS and FLM. For
the burned area uncertainty is small for annual, domain widea given fuel loading model, the FOFEM predictions always
aggregation, the uncertainty in fuel consumption results pri-exceeded those of CONSUME. The difference associated
marily from ug c. In the absence of independent data for with the fuel consumption model was 19 to 40 % for the FLM
evaluation, we have assumed that the mean and half-rangend<12 % for the FCCS. The FLC disparity for the FLM re-
of FLC predicted with the fuel load — consumption model sulted from differences in duff consumption. The average
combinations provided a reasonable estimate of true FLGuff consumption predicted by FOFEM was 74 % compared
and ug ¢, respectively. Given that the true FLC could be to 43 % predicted by CONSUME. The smaller FLC disparity
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Fraction of elements with fire Fig. 9. Estimated annual fuel load consumed (FLC) for different

combinations of mapped fuel loads and fuel consumption mod-
els, plotted with the following symbols: filled back symbols are
FCCS, empty red symbols are FLM, filled black triangles=FCCS
and FOFEM, filled black diamonds =FCCS and CONSUME, open
red squares =FLM and FOFEM, open red circles = FLM and CON-
SUME. The average of the four combinations is plotted with the
solid line and open black circles. Paita) is all cover types, panel
(b) is forest cover types, and pan@l) is non-forest cover types.
simulated using the FCCS was a consequence of the FCCBLC is plotted in units of kg m2 for clarity.

fuel load distribution. In aggregate the FCCS fuel loads for
the forested areas burned in our study had a larger fraction of
dead wood (48 %) compared to duff (41 %), which was oppo-between fuel loading models in 2003, 2004, and 2007 re-
site of the FLM (33 % dead wood, 51 % duff), and partially sulted largely from the burning of scrub-oak chaparral veg-
offset the duff consumption differences between FOFEM andetation in southern California. The supplemental FLM as-
CONSUME. signed to this vegetation type had a fuel load (FLM =3003,
In the case of non-forest cover types, there was no systenris€e Appendix B) twice that of the corresponding FCCS fuel
atic difference between the fuel loading models, while themodel (FCCS=2044). The persistent FLC differential be-
bias of the fuel consumption models was reversed from thatween fuel consumption models (CONSUMB-OFEM) re-
observed for forests with CONSUME FOFEM. The range sulted from differences in the shrub consumption algorithms
of FLC predictions was 23 % to 61 % of the mean. The FLC Of the models. The algorithm difference was amplified
difference due to the fuel consumption models was 18 % tdfor the supplemental FLM because the chaparral vegetation
21 % for the FLM and 4 % to 14 % for the FCCS. In 2003, types for this model had a larger fraction of their fuel load-
2004, and 2007 the FLC based on the FLM exceeded thég in the shrub fuel compared to the FCCS models which
FCCS based predictions by 30-60%. The large differencdended to have a larger surface fuel component.

Fig. 8. Cumulative Distribution Function of CO emitted versus
fraction of elements with fire. Pané) is for data aggregated to
Ax =10km andAr =1 day. Panelb) is for data aggregated to
Ax =25km andAr =30 day.
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0 _| 3.2.3 Sensitivity of uncertainty to model components
® . ;gzy The uncertainties in our emission estimates were quite large,
\ =10 dﬁy particularly at the finer scales. In an effort to identify the
o O 2 M 32;:“ most effective approach for reducing uncertainty in ECO and
A ;§ ~eo —_ EPM, 5 we conducted a simple sensitivity analysis. The ex-
\‘ ~ . ercise evaluated sensitivity Bkco andiigpwm, 5 to the model
oNm. TA__ . . .
\y =TT A— components by separately varying th:eUncertalrjty of each
Lg_ ° \ghg‘:_: - component by a factor of 0.3 to 1.7 and repeating the Monte
I EEEEE—"{ Carlo analysis across scalése, Ar (Sect. 2.2.7). Results
T 1 T T T of the analysis, presented using the sensitivity fagte ;,
10 50 100 200 are displayed versuax in Fig. 11 for Ar =1 day and
AX [km] At =30 day. At the scale of global modeling applications
© (Ax =50-200 km,At =1 week—1 month) the sensitivity of
~ e iieco andiiepm, s to the absolute uncertaintyy) in FLC
\ * 1day and A is similar (Figs. 11a and c) with both being more sen-
A . ?ﬂdggy sitive toup c thanua. However, due to the significant un-
w o .\'\ v 30 day certainty in EFPM s, iigpwm, 5 IS MOst sensitive to this model
A AV ° year component by a considerable margin. In contrast, the EFCO
15 °§' ::= — T T is well characterized and the uncertainty in ECO is relatively
g:gh u E: insensitive tatgrco.
0 _| I \_\:—8 Uncertainty in emissions at the scale of regional model-
e ing applications Ax < 25km, Ar <1 day) are most sensi-
T T T T tive to ua for both CO and PMs (Figs. 11b and d). The
10 50 100 200 fractional uncertainty in A increases rapidly with decreasing
AX [km] burned area (Sect. 2.2.3). At aggregation levels relevant for

regional modeling the absolute burned area in the elements
Fig. 10. Plots ofiigco (top panel) andigpp, ; (bottom panel) ver-  tends to be relatively small anck dominates the uncertainty
susAx for temporal aggregation okt =1 day, 5 day, 10 day, 30 In emissions.
day and 1 year.

4 Discussion

3.2.2 Variation of uncertainty with scale o .
4.1 Source contribution and variability

Biomass burning emission estimates are commonly em{orested land covered about 61 % of the total burned area
ployed for a wide-range of tasks and emission uncertain-gyer 2003 to 2008, with minimum and maximum contribu-
ties at the state level on an annual basis are not particularlyions of 49 % in 2006 and 77 % in 2004, respectively. Emis-
useful for assessing the appropriateness of an emission insions from forest fires dominated overall WF emissions, ac-
ventory for many applications. We have therefore estimatectounting for 85 % of emitted CO and 87 % of emitted P4
the uncertainties in our emission model across the range Oéeasonally, burned area peaked in July, while fuel consump-
spatial and temporal scales relevant to regional and globafion and emissions peaked in August. From 2003 to 2008,
atmospheric chemical transport model applications. As dis-34 9 of the total area burned occurred in July and 37 % of
cussed in Sect. 3.2.1, the emission estimates have skewed Uigtal CO was emitted in August (see Fig. 7). October was
certainty bounds, with the upper boundower bound. The  the only month where emissions from non-forest cover types
following analysis uses the larger, upper uncertainty bound. exceeded emissions from forests. This resulted from large ar-
The variation inieco anditepm, 5 With scale is displayed — eas of chaparral fires in central and southern California which
in Fig. 10. The uncertainty varies with spatial and temporalhad relatively heavy fuel loading.
aggregationfx, At) due the dependence of the burned area On an annual basis, region wide and state level fire emis-
fractional uncertaintyu(a) on fire size. In general, the true sions of CO and PMs were significant relative to emissions
burned area in an individual cell increases with, decreas-  from non-fire sources (Sect. 4.4). Fire emissions were heav-
ing the fractional uncertainty in the burned area estimate, andly concentrated both temporally and spatially. While fire
thusiigx decreases with increasingx. Similarly, at fixed  emissions occurred on 1915 days (87 % of total days) dur-
Ax, the true burned area tends to increase over time, anthg the study period, 13 % of total emissions occurred on 10
thusua, and hencé&gx decreases with increasinyy. days and 27 % of total emissions occurred on 30 days.
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Fig. 11. Sensitivity ofiieco (Aeco ;) andiigpm, s (AEPM, 5,;) 10 1o absolute uncertainties in the emission model componerts(FLC,

EF, Table 1).agx (X=CO or PM,5) is our figure of merit and is defined such that 50 % of total emissions (EX)are estimated with an
uncertainty less thaiagy (Sect. 2.2.7). Sensitivities are plotted verausfor temporal aggregation ok = 30 day (panel¢a) and(c)) and

At =1 day (panelgb) and(d)).

Table 3. Annual sums of state level fuel consumption estimates (Gg dry vegetatidi gver 2003—2008.

State 2003 2004 2005 2006 2007 2008 Total  Contribfition
AZ 1027 711 932 536 356 277 3839 3.2%
CA 7685 1808 1292 4917 8882 4477 29060 24.3%
CcoO 411 277 338 256 166 419 1867 1.6%
ID 2366 214 3212 4096 15075 776 25738 21.5%
MT 8065 402 980 6991 9348 1075 26861 22.5%
NM 742 500 412 445 207 393 2699 2.3%
NV 84 151 926 1779 1177 565 4681 3.9%
OR 1714 321 791 1937 1976 831 7569 6.3%
uT 349 237 292 309 793 79 2059 1.7%
WA 1637 428 592 4324 521 350 7853 6.6 %
wy 1722 139 180 2241 1097 1859 7239 6.1%
TotaP 26279+27% 5292£36% 9766:31% 27119:27% 39710:19% 11240£47% 119406t 27 % 100.0%

2 Uncertainties ared. (see Sect. 2.2.45’. Contribution is the percent contribution of estimated fuel consumption in each state to the 6 year total.
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During these high activity episodes CO and PiMemis- (In Sect. 4.4 we do compare WFEI to a state level emission
sions from fires dominated other emission sources and likelynventory). However, a few studies report quantitative uncer-
played a significant role in regional air quality. tainty estimates for regional emissions that may be compared
with the uncertainties estimated in our study. The Global Fire
Emission Database version 3 (GFED3) (van der Werf et al.,
2010) is the only BB EI coinciding with our study region and
The fractional uncertainties in CO and BM emissions  period which provides a quantitative uncertainty estimate. In
(veco andugpm, ;) decreased with increasing scale due to the supplementary material, van der Werf et al. (2010) re-
the concurrent reduction of the relative error in the burnedport 15 relative uncertainties in the annual C emissions (EC;
area estimates. As the scale of aggregation increases tHeC =ECQ + ECO +ECH,) for CONUS (which they label
characteristic burned area of the elements increases as wels Temperate North America) ofc ~ 21 %. Neglecting un-
and there is a corresponding decrease of the relative error inertainties regarding the small fraction of combusted biomass
the burned area estimate. This dwindlmgwith increasing  C that is emitted in other forms (e.g., NMOC and carbona-
scale results in a reduction of the relative uncertainty in ECOceous aerosol), we compare theic with our relative uncer-
and EPM 5. tainty in annual fuel consumed (Table 3). In most years, the
At scales relevant to regional air quality modelimg= uncertainty in our estimate is larger, the ratio of uncertain-
10km, At = 1 day) WFEI estimates 50 % of total ECO with ties (ours/van der Werf) varies from 0.9-2.4. The sizeable
an uncertainty> 133 % and a like fraction of total EP)M is difference in uncertainty estimates results from the large un-
estimated with an uncertainty146 %. Uncertainty in the certainty we have ascribed to our fuel loading and fuel con-
burned areaun) drives the emission uncertainties at this sumption. The uncertainty in our FLC is 19 %—47 % and ac-
scale and reducinga would be the most effective approach counts for virtually all of the uncertainty in the annual, do-
for improving the emission estimates for regional modeling. main wide total fuel consumption estimates (Table 3). French
WFEI employs a burned area mapping algorithm designeckt al. (2004) reported annual BB carbon emissions for boreal
for near-real-time applications, such as supporting air qualityAlaska withugc estimated as 23 to 27 %, again about half
forecasting. Replacing this algorithm with a more sophisti- the uncertainty we estimate for WFEI. The African BB El
cated, non-real-time burned area mapping method, for exampublished by Liousse et al. (2010) reports a general inven-
ple a differenced normalized burn ratio (INBR) method, maytory relative uncertainty of 57 %, roughly comparable to the
reduce the uncertainty in WFEI for retrospective modeling uncertainty in annual, domain wide ERNIfor WFEI. Jain
studies. However, such methods are generally not suitablé2007) estimated the relative uncertainty in their BB El's CO
for time sensitive applications such as air quality forecastingemitted was 75 % for the US and Canada in 2000. The large
or the planning of scientific missions with research flights uncertainty in ECO reported by Jain (2007), about twice that

4.2 Uncertainty

during field experiments.

The uncertainty in WFEI ECO and ERM is significantly
reduced at the scale of global modeling applicatiots £
100 km, Ar = 30 day). Fifty percent of total emissions are
estimated with an uncertainty50 % for CO and< 64 % for

in the current study, reflects the large relative uncertainty the
author assigned to the burned area for North America. Jain
(2007) used ap of 45 % which we believe is large and may

not capture the decrease in relative error with increasing area
burned that is reported both here and in two previous studies

PMys. At this scale, the uncertainty in ECO is most sensi- that used satellite data for burned area (Giglio et al., 2010;
tive to uncertainties FLC, while the uncertainty in EF drives Urbanski, 2009a).

the uncertainty in PMs emissions. Refinement of EFB|

perhaps through the use of ecosystem specific EF rather thah3.2  Sensitivity

the simple cover type delineation currently implemented in

WFEI, could reduce EF uncertainty and efficiently improve Several published BB El include a cursory assessment of
EPM, 5. Compared to EFPW, EFCO is much better char- their inventory’s sensitivity to fuel loading and fuel consump-
acterized and reductions ift c would have the greatest im- tion. Because the estimated uncertainty in our annual, do-
pact on uncertainty in ECO at this scale. main wide FLC (19-47 %; Fig 9a) was based on different
combinations of mapped fuel loadings and fuel consumption
models (Sect. 2.2.2.2) we can gain some insight by compar-
ing our results with similar analysis in other studies. Zhang
et al. (2008) developed a near-real-time BB emission model
for CONUS. The model combines burned area information
The published biomass burning emission inventories (BB El)from the GOES WFEABBA and fuel loading maps based
that cover our study region and time period include agri-on their MODIS Vegetation Property-based Fuel Systems
cultural burning and are reported for broader domains (e.g(MVPFS) to estimate Pl emissions. They assessed the
CONUS or North America) and therefore direct comparisonsensitivity of their model emissions to fuel loading by run-
with the emissions estimates presented here is not possibla@ing their algorithm with a 1 km FCCS map (different from

4.3 Comparison against other BB emission inventories

4.3.1 Relative uncertainties

Atmos. Chem. Phys., 11, 12978300Q 2011 www.atmos-chem-phys.net/11/12973/2011/
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the mapping used in our study) substituted for MVPFS. The
annual CONUS wide estimates of ER¥based on the two
fuel loading maps differed by-16 % to +17 % over 2002— N
2005. This sensitivity of emissions on mapped fuel loading _
is considerably less than that observed in the current study, "
where independent of fuel consumption model, the choice of
mapped fuel loading resulted in a +37 % to +189 % differ-
ence in fuel consumed (which is proportional to ERY
The global model Fire Inventory from NCAR version 1.0
(FINNv1) (Wiedinmyer et al., 2011) estimates daily, BB ﬂ
emissions with a 1 km resolution using burned area derived
from MODIS active fire detections. The model is designed o l] B ﬂ l] ﬂ ﬂ -
to support both near-real-time and retrospective modeling ap- AZ CA CO ID MT NM NV OR UT WA WY
plications. A detailed assessment of the model’s uncertainty State
is not given, but the authors did explore the sensitivity of the
emission model to the choice in land cover maps. Chang- 2- 1.81 097 246 071 045 0.88 213 0.35 0.55 1.33 1.74
ing the FINNv1 land cover map resulted in a 20% change
in CO emissions in 2006 across CONUS, Mexico, and Cen- 7_ 9 - Kj‘gE'
tral America. Similar results for land cover map substitution
were reported for the precursor model of FINNv1 (Wiedin-
myer et al., 2006). In both studies, the substitution employed
the same the fuel loading model and fuel consumption algo-
rithm, and thus provides information only on the sensitivity
to the mapping of fuel models. This aspect of uncertainty — o_| ”
was not specifically addressed in our study.
Dh L ﬂh " A

4.4 Comparison versus 2005 national AZ CA CO ID MT NM NV OR UT WA WY

emission inventory State

600

113 0.57 199 042 026 052 1.4 021 032 0.81 0.99

| \WFEI

5?0

yr
4?0

3(|)0

CO emitted (Gg
2?0

1?0

PM2.5 emitted (Gg yr

o]

We compare our emission estimates with the United State§ig. 12. State level, 2005 wildland fire emissions from WFEI and
Environmental Protection Agency (USEPA) National Emis- NEI 2005 v2. Bars show annual sums of emit}ed CO (top panel)
sion Inventory (NEI) 2005 v2 (USEPA, 2011). NEI 2005 v2 ©F emitted PM 5 (bottom panel) in units of Gg yr-. The numbers
includes annual, state level estimates of CO and P&his- centred above each pair of bars and running across the top of each
sions for various sources including wildfires and prescribed'oIOt provide the WFEI to NEI emission ratios.

burning. In the following discussion NEI ‘WF emissions’
refers to the sum of emissions from wildfire and prescribed
burning reported in NEI 2005 v2 and excludes agricultural - 1g importance of WF emissions, as estimated by WFEI,
burning. “Non-WF emissions” refers to emission estimates;

> is examined with respect to other sources. We use “total
from NEI 2005 v2 for all non-WF sources (agriculture, dust, amissions” to refer to the sum of the NEI non-WF emis-

non-WF fire, fuel combustion, industrial processes, trans-jong and WF emissions estimated using WFEL. The follow-

portation, solvent, and miscellaneous). Figure 12 comparerchg analysis assumed annual non-WF emissions were con-

state level NEI WF emission es_tim_ates with our 2005 WFEI. stant over 2003—2008 and used NEI 2005 non-WF emissions.
In most states, the NEI WF emission estimates exceeded theparefore the inter-annual variability in the emission ratios

WFEI, and the ’\iE' 11 state sums were 119% larger for ECOytotal) results strictly from variability in fire activity. An-
(1698 GgCOyr= vs. 788169 COyr™) and 28 %1) larger for  ,ally, across the western United States, WF emissions were
EPMs (147 GgPMsyr—=vs. 117GgPMsyr—=). Dueto 3 5404 of total ECO and 839 % of total EBM In all years
the complex methodology and methods behind the NEI it isy,e \r/total emission ratio for PM was larger than that
difficult to identify the causes of the discrepancy. WFEI does;, co. Figure 13 shows the annuél, state level ratios of WE
notinclude canopy fuels and this likely contributes to the dif- o missjons to total emissions. The relative importance of WF
ference. Additionally, , the significant differential inthe ECO gissions was greatest in Idaho and Montana where fires ac-
and EPM 5 disparities indicates that the choice of EFs plays counted for a majority of ECO and EPM during active fire
arole. years. In most states, WF ERBMwas significant during ac-
tive fires years comprising 30—40 % of total emissions. Even
in California, a state with large non-WF pollution sources,
WF contributed 20 % or more of total ER in most years.

www.atmos-chem-phys.net/11/12973/2011/ Atmos. Chem. Phys., 11, 1P3083-2011
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Table 4. Annual sums of state level CO emission estimates (Gg C®)yover 2003—2008.

State 2003 2004 2005 2006 2007 2008 Total ~ Contribfition
AZ 88 61 77 46 31 24 327 3.4%
CA 587 143 106 386 696 381 2298 24.0%
co 35 23 29 21 14 34 156 1.6%
ID 185 17 244 311 1177 61 1996 20.9%
MT 662 33 81 555 794 80 2204 23.1%
NM 64 43 35 39 18 34 233 2.4%
NV 7 12 76 123 83 43 344 3.6%
OR 143 26 62 149 156 67 602 6.3%
uT 29 20 24 25 63 7 168 1.8%
WA 134 35 46 366 40 27 647 6.8%
WY 136 10 14 182 88 158 587 6.1%
TotaP 21167350 43614500 78873L00 2084733, 310775300 923731%  9455TI>% 100.0%

@ Uncertainties ared. (see Sect. 2.2.65’. Contribution is the percent contribution of estimated ECO in each state to the 6 year total.

Table 5. Annual sums of state level P\ emission estimates (Gg RPMyr—1 ) over 2003—2008.

State 2003 2004 2005 2006 2007 2008 Total ~ Contribfition
AZ 13 9 12 7 5 4 50 35%
CA 85 21 16 56 102 58 337 23.9%
co 5 4 4 3 2 5 24 1.7%
ID 27 2 35 45 172 9 290 20.6%
MT 99 5 12 82 120 11 329 23.3%
NM 10 7 5 6 3 5 36 25%
NV 1 2 11 17 12 6 49 3.4%
OR 22 4 9 21 23 10 89 6.3%
ut 4 3 4 4 9 1 25 1.8%
WA 20 5 7 55 6 4 97 6.9%
wy 20 1 2 27 13 24 87 6.2%
TotaP 31373900 6575000 11773000 30273900 454153 13g'E3%  1389730% 100.0%

a Uncertinaties aredl (see Sect. 2.2.6§. Contribution is the percent contribution of estimated ERMh each state to the 6 year total.

Assuming non-WF emissions were distributed evenly acrosgliction error could not be used to quantify the uncertainty
the months of the year, ERM from WF in July, August, and  in the FLM and FCCS fuel loadings. Without data for a true
September of 2006 and 2007 accounted for more than half oérror assessment, we were limited to the less than optimal ap-
domain wide emissions in each month. In 2003 and 2007, inproach of taking the range of FLM and FCCS as an estimate
tense fire seasons in southern California resulted in #PM of the uncertainty. Furthermore, we were unable to assess
from WF accounting for 56 % and 47 % of total domain wide the mapping error and could not include this source of uncer-

emissions during October. tainty in our analysis. We anticipate future access to a large
fuel loading dataset that will enable a true quantification of
4.5 Future developments the error in the mapping of the FLM and FCCS and their fuel

loading prediction error. The acquisition of an appropriate

Our assessment of WFEI neglected, in some cases necessiyel loading data set will enable a true quantification of the
ily, several key aspects of the model uncertainty related tcefrors in each fuel loading model and their mapping. Such
fuel loading, fuel consumption, and EFs. In the case of fuelan effort would provide a proper estimation of the true un-
loading and fuel consumption we lack adequate error infor-certainty in both the FCCS and FLM mapped fuel loads and
mation regarding input data. Due to the lack of appropri- POssibly identify which product is most accurate over differ-
ate fuels data, a statistical sample of the fuel loading pre£ntregions of the domain. While determining the uncertainty
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forest or non-forest classification used in this study may sig-

S| e nificantly reduceiiex. While iieco was relatively insensi-
M g gggg tive to ugrco, this will not be the case when the model is
@ O 2007 expanded to include the emissions of additional compounds
O 2008 which have less well characterized EF (e.g., NMOC). WFEI
8 §¢ is designed to include the broad of range compounds (e.g.
m 5 NMOC, nitrogen oxides) emitted by WF (see Akagi et al.,
=12 2011). The emission intensities of most compounds vary
o with combustion phase (flaming or smoldering). Fuel type
hﬂ} J } Jﬂh Ij:: and fuel condition, fire type, and meteorological conditions
all impact the characteristics of fuel combustion (Anderson,
a- - — } = .ﬂﬂ Hﬂ]'ﬂﬂ“ 1983; Albini, 1976; Rothermel, 1972). Modified combustion
Az CAco b T OR LT WA Y efficiency (MCE) is a measure of the relative contributions
of flaming and smoldering combustion, and the emission in-
. ®m 2003 tensities of many compounds are proportional to MCE (see
_ - gggg for example Burling et al., 2010). The dataset used to pro-
° O 2006 vide EFCO and EFPW5 includes MCE and can be used to
s o oo estimate EFs for a wide range of NMOC using NMOC-MCE
2 relationships in the literature.
% %g_ However, our study used an emission factor dataset that
L z was heavily biased towards prescribed fires, the combustion
. characteristics (and hence the MCE) of which may not be
o] representative of the wildfires which dominate emissions in
Hﬁ }J } Hﬂ} the western United States. This issue is critical, because
o i]]ﬂ i .ﬂﬂ many of the highly reactive NMOC emitted by WFs are a
AZ CA CO ID MT NM NV OR UT WA WY strong function of MCE. Sufficient emission data are not
State currently available to characterize the MCE typical of wild-

fires in the dominant vegetation types of the western United
States. NMOC emission estimates based on currently avail-
able MCE data may result in a significant systematic error.
Due to the lack of existing wildfire data this source of er-
ror could not be addressed in our study. However, an ongo-
o i ing field research project (JFSP, 2008) is collecting emission
in this manner would provide a more robust result, the values, o oo\ rements from wildfires in the western United States
of urLc would not necessarily be reduced relative to thoseand in the near future we will use these data to update WFEI
estimated with the ensemble approach applied in this study.With improved EFs, including MCE based EFs for NMOC.

In addition to better characterizing the uncertainty of \whjle WFEI was assessed only for the western United
WFEI, the magnitude of the uncertainties may be reducedsates in this study, it is designed for CONUS. A future as-

by improving the model components. The burned area mapsessment of WFEI will include coverage for all of CONUS.
ping currently employed in WFEI was designed to provide

near-real-time emission estimates for operational applica-
tions such as air quality forecasting. For regional scale applis  conclusions
cations not requiring near-real time daia,and henceégco
andiiepwm, 5, could be reduced by implementing a differenced We have presented a WF emission inventory (WFEI) for
burn ratio method for mapping burned area (e.qg. Giglio et al. the western United States from 2003 to 2008. The emis-
2009). This change in WFEI would be particularly benefi- sion model used to produce WFEI may be used to forecast
cial for regional scale modeling applications where the un-and evaluate the impact of wildfires on regional air quality.
certainty in emissions is dominated by. Examples of such  WFEI is based on our MODIS Direct Broadcast burned area
applications are retrospective atmospheric chemical transpofhapping algorithm that enables near-real-time emission esti-
model simulations that quantify the contribution of wildfires mates that are needed to support air quality forecasting. The
to air quality or investigate the role of fires in regional climate uncertainty in the inventory estimates of CO and 2\ mis-
forcing. sions have been quantified across spatial and temporal scales
Reducing the uncertainty in EFB)d would reduce relevant to regional and global modeling applications. The
liEPM, 5, €specially for global modeling applications. In gen- sensitivity of the WFEI uncertainties to emission model com-
eral, employing ecosystem specific EFs rather than the broagonents was evaluated to identify algorithm modifications

Fig. 13. Annual, state level ratio of WF emissions (from WFEI) to
total emissions (WF +non-WF NEI). Top panel is ECO ratio and
bottom panel is EPM5 ratio.

www.atmos-chem-phys.net/11/12973/2011/ Atmos. Chem. Phys., 11, 1P30(83-2011



12994 S. P. Urbanski et al.: The wildland fire emission inventory

likely to be most effective for reducing the inventory uncer- be reported at these scales. We employed a figure of merit,
tainty for various applications. which we called the half mass uncertainty, which is useful
Wildland fires in the western United States burned an av-for evaluating uncertainty in the El across spatio-temporal
erage of 10 742 kAyr—! from 2003—-2008, with extremes of scales. However, estimating uncertainties in BB El is diffi-
3622 knt in 2004 and 19352 kAin 2007. The estimated cult. Often the appropriate data is not available to fully eval-
annual CO emitted by these fires ranged from 436 G ir uate all components of emission models. Lacking satisfac-
2004 to 3107 Gg yr! in 2007. The uncertainty in annual CO tory data, unorthodox methods are often required to estimate
emitted was 28 % to 51 %. The estimated annuaj B Ehmis- uncertainty, and even with significant effort the resulting un-
sions ranged from 65 Ggyt (2004) to 454 Ggyr! (2007).  certainty estimates may themselves be fairly uncertain. As a
The uncertainty in annual EP varied from 43% to 64 %. result, many BB El report only annual uncertainties for large
Annual fire emissions were significant compared to otherregions and provide only a limited sensitivity analysis. Nev-
emission sources as estimated in the USEPA NEI 2005 v2. lrertheless, we believe that using a figure of merit similar to the
the peak fire year of 2007, domain wide total fire emissionshalf mass uncertainty employed in our study to evaluate the
were~20 % of total ECO and- 39 % of total EPM 5. Dur- uncertainty in BB El across pertinent spatio-temporal scales
ing the months with the greatest fire activity, fires accountedwould provide modelers and policy makers with improved
for the majority of CO and PMs emitted across the entire guidance on the use of the inventories as well as facilitate the
study region. development of improved BB EI with better characterized
Uncertainty in ECO and EPM25 varied strongly with uncertainties.
the spatial and temporal scale because the fractional un-
certainty in burned area decreased rapidly with increasing
Ax and/or At. Sensitivity of the uncertainty in ECO and Appendix A
EPM,5 to the emission model components depended on
scale. At scales relevant to regional modeling applicationsEvaluation of MODIS burned area
(Ax=10km, At = 1 day) WFEI estimated 50% of total mapping algorithm
ECO with an uncertainty 133 % and half of total EPlk
was estimated with an uncertaintyl46 %. Uncertainty in  In this study we defined the burned area uncertainty as the
the burned area,) dominated the emission uncertainties at €rror cone expected to contain approximately 68 % of the
this scale and reducings would be the most effective ap- “ground truth” burned area values of which the MODIS
proach for improving emission estimates for regional mod-burned area mapping algorithm is a measurement. This def-
eling. WFEI employs a burned area mapping algorithm de-inition of uncertainty provides a coverage comparable to
signed for near-real-time applications, such as supporting ajthat of a standard uncertainty for normally distributed data
quality forecasting. Replacing this algorithm with a more so- (i-e. coverage o~68% for 1r). Following Urbanski et
phisticated, “non-operational” burned area mapping methodl. (2009a) and Giglio et al. (2010), we employed an em-

may reduce the uncertainty in WFEI for retrospective mod-pirical error estimation approach to identify this error cone.
eling studies. The empirical error function (Egq. Al) describes the uncer-

The uncertainty in WFEI ECO and EPM was signifi-  tainty in the MODIS burned area measurement as a function
cantly less at the scale of global modeling applicatians &  of burned area. In Eq. (A1), x is the 25 k25 km gridded
100 km, Ar = 30 day). Fifty percent of total emissions were MODIS burned area measurement artdis the variance in
estimated with an uncertainty50 % for CO and< 64 % for ~ of the error in x.
PM_s. At this scale, the uncertainty in ECO was most sen-
sitive to uncertainties in fuel loading consumed (FLC) while o2 =bx (A1)
the uncertainty in EF dominated the ERMuncertainty. Re-
finement of EFPM5, perhaps through the use of ecosystem A total of 46 325 kmx 25 km grid cells were used to evaluate
specific EF, rather than the simple cover type delineation curEqg Al. Details of the data used and its preparation are pro-
rently implemented in WFEI, could reduce EF uncertainty vided in Sect. 2.2.3. The coefficient in Eq. (Al) was evalu-
and efficiently improve EPMs. Compared to EFPE, ated as follows: 1) the MODIS burned area (x) and measure-
EFCO is much better characterized and reductionsrire ment error (=MTBS “ground truth” —x), ordered by the value
would have the greatest impact on uncertainty in ECO at thif x, were assigned to 4310-member bins, 2) the Winsorized
scale. variance (trim=0.1) of the erronf,ock) and the mean of x
Our analysis indicates that “headline”, aggregate uncer{xpjock) Were calculated for blocks of 30 x-error data point
tainties (e.g. annual, CONUS) reported for BB EI may be pair using a gliding window of 3 bins, providing a total of
misleading for evaluating and interpreting the results of mod-41 evaluation blocks, %ock was regressed againgtioek
eling applications that employ the emission estimates. ldeusing ordinary least squares regression to estimate the slope,
ally, BB El should be evaluated across the scales for whichb. The fit Ofabzlock is shown in Fig. A1 and the value of the
they are intended to be used and the EIl uncertainty shouldlope and fit statistics are provided in the Fig. A1 caption.
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tainty bounds and when a coverage factor of 1.65 is applied,
87 % of the “ground truth” values are enveloped by the result-
ing uncertainty bounds (Fig. A2). In addition to providing
the intended coverage, the empirical uncertainty cone cap-
tures the variability of the measurement error across the ob-
servations. The error equation was applied to the aggregated
MODIS burned area data for all temporal and spatial scales
(gax.ar (k,1)), providing theo (A) describing the error dis-
tribution used in the Monte Carlo simulations (Sect. 2.2.3).

Appendix B

Supplemental FLM

Yook (km?) (log scale)

This appendix describes the six herbaceous and shrub fuel
loading models that were constructed to supplement the

Fig. A1. Empirical error function for MODIS burned area measure- FLM. While these six fuel loading models have been labeled
ment. The x-axis is the average MODIS measured burned area fOFsuppIementaI FLM", they were developed using a philoso-

blocks of 30 grid cells (25 knx 25 km) in log scale. Tthe y-axis is

phy very different from that embodied in the FLM. The sup-

the variance of the measurement error for each block. The analySif)lemental FLM fuelbeds are organized according to vegeta-

used 41 blocks. Ordinary least squares regression with the inte

cept forced to zero yielded a coefficient value of b =5.03 kmith
a coefficient of determination of = 0.87.

Residuals (km?)

T T T T T T T T
1 2 5 10 20 50 100 200
MODIS burned area Iog(kmz)

Fig. A2. Plot of burned area residuals (residuals=MTBS “ground
truth” — MODIS burned area) versus the burned area (open cir-

cles).The x-axis is log scale. The dashed (solid) curve s

(+£1.65%) as estimated with the empirical error function, Eq. (A1)
with b=5.03kn?. The b (1.650) uncertainty envelopes 70 %

(87 %) of the residuals.

The error predicted with Eq. (Alpf) provides a mean-

ingful measure of the uncertainty in the MODIS burned area 6.
across the span of “ground truth” burned area values. The
empirical uncertainty satisfies our uncertainty definition by

fion type while the FLM fuelbeds are classified based on the

anticipated fire effects. The development of the supplemental
FLM can be summarized as follows:

1. Identify burned pixels with a non-forest FLM code
(39 % of burned pixels in our study).

2. Assign the burned pixels with a non-forest FLM code
the FCCS code of that pixel

3. Assign recoded FLM pixels a vegetation type based on
the Society of Range Management (SRM) cover type
associated with each FCCS fuelbed.

4. Generalize the SRM based vegetation types into six
classes which serve as the supplemental FLM:
— Sage brush
— Generic interior shrub
— Generic interior grassland
— Coastal sage shrub
— Chamise chaparral
— Ceanothus mixed chaparral

5. Select sites from the Natural Fuels Photo Series to rep-
resent the 6 vegetation types

Create fuel loadings for the supplemental FLM using
the median fuel loadings of the appropriate Natural Fu-
els Photo Series sites

providing coverage comparable to that of a standard uncer-

tainty for normally distributed data (i.e. coverage-o68 %
for 10, and~ 90 % for 1.6%) (Fig. A2). Seventy percent of

Table B1 provides details of the data used to develop the sup-
plemental FLM and Table B2 gives the supplemental FLM

the “ground truth” burned area values fall within the uncer- fuel loading values used in this study.

www.atmos-chem-phys.net/11/12973/2011/
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Table B1. Supplemental FLM.

S. P. Urbanski et al.: The wildland fire emission inventory

Supplemental FLM

Percent of Dominant FCCS fuelbed

Natural Fuels Photo

burned Seried
pixels

Sage brush 69.2% Sagebrush shrubland Vol. | SBO3;
Vol. IV SWSB 02—
11; Vol. X SG
01-11; Vol. XI
EOSG 05-12

Generic interior 2.5% Turbinella oak — Mountain Vol. | WJ 01-03;

shrubland mahogany shrubland SB 01, 02, 04,
Vol. Il GO 02; 03;
Vol. IV SWSB 01;
PJ 01-03; Vol. VII
MCS 10; \ol. Xl
EOSG 02, 04

Generic interior 12.8% Bluebunch wheatgrass— Vol. | BG 01-04;

grassland Bluegrass grassland Vol. Xl EOSG 01,
03

Coastalsage shrub  1.1% Coastal sage shrubland Vol. IV CH 01-03

Chamise chaparral  5.6% Chamise chaparral Vol. IV CH 04-09

shrubland
Ceanothus mixed 8.8% Scrub oak — Chapatrral Vol. IV CH 10-16

chaparral

shrubland

*References: Vol. | Ottmar et al. (1998), Vol. lll Ottmar et al. (2000a), Vol. IV Ottmar et al. (2000b), Vol. VII Ottmar et al. (2004), Vol. X Ottmar et al. (2007b), Vol. XI Natural
Fuels Digital Photo Series (2011).

Table B2. Supplemental FLM fuel loadings by fuel class.

Supplemental FLM

Fuel Loading (kg dry vegetation

Litter Fine Woody Herbaceous Shrub
Debris

Sage brush 0.04 0.05 0.04 0.33
Generic interior shrubland 0.03 0.02 0.06 0.17
Generic interior grassland 0.07 0.0 0.24 0.0
Coastal sage shrub 1.66 0.0 0.0 2.15
Chamise chaparral 0.0 0.0 0.0 2.88
Ceanothus mixed chaparral 0.0 0.0 0.0 8.67

Appendix C

Potential emissions from canopy consumption

loading for burned pixels was assigned using the mapped
FCCS fuel loading models. It was then assumed that 25 %
of the canopy fuels were consumed at each burned pixel and
emissions of CO and Py4 were calculated using the forest
cover typeugrx from Table 1 (89 g CO kg dry veg. burnet

and 13.3gPMs kg dry veg. burned!). The choice of 25 %

for canopy fuel consumption is completely arbitrary. These
calculations are presented for illustrative purposes and are
not intended to be a “best estimate” of canopy fuel consump-
tion. Results of this calculation and a comparison versus
non-canopy emissions are provided in Table C1. Canopy
fuel consumption of 25% results in emissions that are on
the order of 10 % of the base emissions (i.e. emissions from
the consumption of from surface and ground fuels, Tables 4
and 5). Extrapolation of the results in Table C1 suggests that
canopy consumption of 50 % could increase the base emis-
sions by close to 25%. This exercise shows that consump-

The methods used in this study could not identify the occur-jgn of canopy fuels will not dominate annual, domain wide

rence of crown fire or reliably simulate canopy fuel consump-emissions. However, canopy fuel consumption could make a
tion. However, it is informative to provide guidance on the n4n_negiligible contribution to overall emissions.

potential magnitude of canopy fuel consumption relative to

the consumption of surface and ground fuels that were con-
sidered in this study. Therefore, we conducted a simple cal-

culation of canopy fuel consumption. Pre-fire canopy fuel

Atmos. Chem. Phys., 11, 12978300Q 2011
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Table C1. Estimate of annual CO and P emitted from 25 % data, J. Appl. Remote. Sens., 2, doi:10.1117/1.2948785, 1-24,

consumption of forest canopy foliage in the western United States. 2008. L . ) . ) i
Anderson, H. E.: Predicting wind-driven wildland fire size and

shape, Research Paper INT-305, USDA Forest Service, Inter-

Emissions from Emissions from Canopy to mountain Forest and Range Experiment Station, Ogden, UT,
canopy fuels non-canopy fuels non-canopy 26 1083
(Ggyr (Ggyr L emission ratio Pp-, : )
Brown, J. K., Marsden, M. M., Ryan, K. C., and Reinhardt, E. D.:
Year CO  PMs co PM: 5 CO  PMps Predicting duff and woody fuel consumed by prescribed fire in
2003 228 35 2116 313 0.11 0.11 the northern Rocky Mountains, Research Paper INT-337, USDA,
2004 60 9 436 65 0.14 0.14 Intermountain Forest and Range Experiment Station Forest Ser-
2005 104 169 788 117 013 014 vice, 23 pp., available athttp://www.treesearch.fs.fed.us/pubs/
2006 236 36 2084 302 0.11 0.12 32531 1985.
2007 387 59 3107 454 0.12 0.13 . o
2008 128 20 923 138 0.14 0.14 Burling, I. R., Yokelson, R. J., Griffith, D. W. T., Johnson, T. J.,

\eres, P., Roberts, J. M., Warneke, C., Urbanski, S. P., Rear-
don, J., Weise, D. R., Hao, W. M., and de Gouw, J.: Labora-
tory measurements of trace gas emissions from biomass burn-
ing of fuel types from the southeastern and southwestern United
S | ial related hi States, Atmos. Chem. Phys., 10, 11115-1180,10.5194/acp-
upplementary material related to this 10-11115-20102010

article is available online at: Carlson, J. D., Burgan, R. E., Engle, D. M., and Greenfield, J.
http://www.atmos-chem-phys.net/11/12973/2011/ R.: The Oklahoma Fire Danger Model: An operational tool for
acp-11-12973-2011-supplement.zip mesoscale fire danger rating in Oklahoma, Int. J. Wildland Fire,
11, 183-191, 2002.
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