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Abstract. An optimal approach reducing the population of
MeV electrons in the magnetosphere is presented. Under a
double resonance condition, whistler wave is simultaneously
in cyclotron resonance with keV and MeV electrons. The
injected whistler waves is first amplified by the background
keV electrons via loss-cone negative mass instability to be-
come effective in precipitating MeV electrons via cyclotron
resonance elevated chaotic scattering. The numerical results
show that a small amplitude whistler wave can be amplified
by more than 25 dB. The amplification factor reduces only
about 10 dB with a 30 dB increase of the initial wave inten-
sity. Use of an amplified whistler wave to scatter 1.5 MeV
electrons from an initial pitch angle of 86.5◦to a pitch angle
<50◦ is demonstrated. The ratio of the required wave mag-
netic field to the background magnetic field is calculated to
be about 8×10−4.

1 Introduction

In the magnetosphere, energetic electrons are trapped by the
Earth’s magnetic dipole field to undergo a bouncing motion
about the geomagnetic equator. Energetic electrons in the
MeV range have a strong impact on passing satellite systems.
Satellites are designed to survive a certain amount of radia-
tion (ionizing) dose accumulated during their lifetimes. Un-
expected enhancement of the radiation fluxes caused by, for
example, very strong solar storms, will significantly increase
the total radiation dose to the satellites. Consequently, the ra-
diation damage on active electronics and detectors of satellite
systems will accumulate faster than that designed for. As the
damage exceeds a threshold level, satellite systems become
incapable of performing their mission. It is essential to find
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ways which can mitigate unexpected radiation enhancement
to keep satellite systems less vulnerable.

Whistler waves can be ducted in an L-shell of the magne-
tosphere to continuously interact with the energetic electrons
trapped in the same L-shell. The motions of energetic elec-
trons are adversely affected by the wave fields which scatter
some of them into loss cones (Helliwell et al., 1973). In-
duced electron precipitation (Voss et al., 1984; Arnoldy and
Kintner, 1989; Imhof et al., 1994; Pradipta et al., 2007) by
whistler waves has been observed. The Doppler shifted elec-
tron cyclotron resonance interaction (Kennel and Petschek,
1966; Villalon and Burke, 1991; Albert, 2000) has been sug-
gested to be a likely electron precipitation mechanism. The
numerical results show that the electron cyclotron resonance
interaction can diffuse energetic electrons, with their initial
pitch angles close to the loss cone angle, into the loss cone,
via small angle scattering process (Albert, 2000). However,
the number of electrons resonant with the wave at a given
frequency is small. Moreover, the resonance condition is
anisotropic, which makes it difficult to explain the observa-
tion of precipitation events occurring simultaneously at ge-
omagnetic conjugate regions due to a single lightning flash
(Burgess and Inan, 1990).

The trajectories of trapped energetic electrons in the pres-
ence of whistler waves can become chaotic, subject to that
the whistler wave intensity (Faith et al., 1996, 1997a, b; Kuo
et al., 2004) and/or the initial electron energy (Khazanov et
al., 2008) exceed threshold levels. Once chaos occurs, many
of electrons can wander into both loss cones. This chaotic
(large angle) scattering process precipitates electrons to both
loss cones simultaneously. Cyclotron resonance can reduce
the threshold wave field for the commencement of chaos in
the electron trajectories.

Magnetospheric energetic electrons have an anisotropic
velocity distribution, which is potentially unstable to elec-
tromagnetic waves (Tsytovich and Stenflo, 1983). Indeed, it
has been observed (Helliwell et al., 1980; Helliwell and Inan,
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1982; Helliwell, 1983) that trapped energetic (keV) elec-
trons in the magnetosphere can significantly amplify whistler
waves. The anisotropic relativistic plasma can also excite
electromagnetic instability through the electron cyclotron
resonance interaction (Tsurutani and Smith, 1974; Nunn et
al., 1997; Trakhtengerts, 1999; Trakhtengerts et al., 2004).
VLF wave generation by energetic electrons is evidenced by
the natural event of chorus (Sazhin and Hayakawa, 1992) oc-
curring in the inner magnetosphere and by the appearance of
large amplitude whistler-mode waves in radiation belts (Cat-
tell et al., 2008). The experimental observations also indicate
some intrinsic differences between emission and amplifica-
tion processes. Chorus is basically discrete VLF emissions;
on the other hand, the amplitude of the amplified whistler
wave oscillates continuously in time.

The relativistic cyclotron resonance condition is a
quadratic equation in the electron momentum, thus, there ex-
ists a double resonance situation (Kuo et al., 2007), namely, a
whistler wave is simultaneously in cyclotron resonance with
the keV electrons and with the MeV electrons. This sug-
gests an optimal approach, which applies the chaotic scat-
tering process under a double resonance condition, for the
control of the population of MeV electrons trapped in the
magnetosphere. This approach first uses keV electrons (hav-
ing a loss-cone velocity distribution) to energize the incident
whistler waves, which become more effective to precipitate
MeV electrons into loss cones, via cyclotron resonance en-
hanced chaotic scattering.

In this paper, the theoretical basis of this optimal approach
is presented and the feasibility of the approach is examined.
In Sect. 2, the double cyclotron resonance mechanism is ex-
plained. In Sect. 3, the formulation of the nonlinear instabil-
ity theory is presented; a fifth order differential equation gov-
erning the temporal evolution of the whistler field amplitude
is derived. Numerical results are also presented. Section 4
devotes to the formulation and analysis of chaotic scattering.
An example of chaotic scattering under double cyclotron res-
onances is given in Sect. 5. Summary is presented in Sect. 6.

2 Relativistic effect for double cyclotron resonances

Cyclotron resonance is an effective process to enhance the
interaction between wave and charge particles and is essen-
tial to whistler wave amplification. Thus the possibility of a
double cyclotron resonance situation, under which the wave
is simultaneously in cyclotron resonances with keV electrons
for amplification and with MeV electrons to instigate precip-
itation, is explored in the following. The Doppler shifted
cyclotron resonance condition in the relativistic case is given
by

ω = �0/γ + kPz/γm (1)

whereγ =(1+P 2
⊥

/m2c2+P 2
z /m2c2)1/2 is the relativistic fac-

tor of the electron,P⊥=γmv⊥, Pz=γmvz, andk=ẑk is as-

sumed;ω<�0 for whistler waves;ω and�0=eB0/m are the
wave frequency and the nonrelativistic electron cyclotron fre-
quency. For a smallγ , i.e.,ω<�0/γ , the resonant electrons
are moving oppositely to the wave propagation direction.

Because of theγ dependence, this condition leads to a
quadratic equation forPz as

AP 2
z + 2BPz + C = 0

where A=(1–ω2/k2c2), B=m�0/k, and C=(m/k)2

[�2
0−ω2(1+P 2

⊥
/m2c2)]. This quadratic equation has

two real solutionsPz=[−B±(B2–AC)1/2]/A, subject to
the conditionB2

≥AC. The double solutions suggest that
the wave can be simultaneously resonant with two dif-
ferent groups of electrons. The coefficientsA and C of
the quadratic equation are positive becauseω/kc<1 and
�0/γ1,2>ω are considered; thus bothPz are negative, i.e.,
the two groups of electrons, which can resonantly interact
with the wave, move opposite to the propagation direction of
the wave.

3 Amplification of whistler waves

We are interested in wave amplification in time; moreover,
the amplification mainly proceeds in the region near the mag-
netic equator, inferred by the common static source region
of chorus to be near magnetic equator deduced from corre-
lated chorus elements of different frequency/time character-
istics measured by Cluster Wideband Data (WBD) receiver
(Breneman et al., 2007). Thus, the formulation can be sim-
plified by assuming a local uniform magnetic fieldB0=B0ẑ.
The electron plasma in the magnetosphere consists of three
components: 1) cold background (γ=γ0∼1), 2) energetic (in
keV range) electrons (γ=γ1), and 3) very energetic (in MeV
range) electrons (γ=γ2). The background electron plasma is
nonrelativistic (γ∼1) and determines the propagation char-
acteristics of the whistler wave, which has the dispersion re-
lation

ω = �0c
2k2/ω2

pb (2)

whereωpb=(4πnbe
2/m)1/2; nb is the background cold elec-

tron density.
Energetic electrons in keV range are weakly relativistic

(e.g., γ1∼1.1 for 50 keV electrons) and have considerable
densitynε to amplify whistler waves. These electrons have a
loss cone distribution given by

fε(P⊥, Pz) = 2πP⊥Fε(P⊥, Pz)

= nε(2π−1/2/j !)(1Pjε)
−(2j+3)P

2j+1
⊥

exp[−(P 2
⊥

+ P 2
z )/1P 2

jε]

= nεfε⊥(P⊥)fεz(Pz) (3)

where 1Pjε=[mTeε/(1/2+j /3)]1/2; Teε�Teb; subscriptsε

andb stand for “energetic” and “background”, respectively.

Nonlin. Processes Geophys., 15, 773–782, 2008 www.nonlin-processes-geophys.net/15/773/2008/



S. P. Kuo: Whistler wave-electron interaction in the magnetosphere 775

The distribution inPz is a Maxwellian having the form

fεz(Pz) = π−1/21P −1
jε exp(−P 2

z /1P 2
jε) (4)

and the distribution inP⊥ has a loss cone form

fε⊥(P⊥)=(2/j !)(1Pjε)
−(2j+2)P

2j+1
⊥

exp(−P 2
⊥
/1P 2

jε) (5)

In the following, an instability process to amplify whistler
waves by keV electrons having a loss cone momentum dis-
tribution in the magnetosphere is studied. The relativistic ef-
fect, through the Doppler shifted cyclotron resonance (Eq. 1),
provides essential nonlinearity for the phase bunching (Kuo
and Cheo, 1985) of those electrons in near cyclotron reso-
nant interaction with the wave. The bunched electrons then
excite the loss-cone negative mass instability for the wave
amplification (Kuo and Lee, 1986). Specifically, the reso-
nant interaction of a whistler wave with a particular group
of electrons in the magnetosphere will be formulated. Since
these electrons are practically collisionless, a single electron
system will be considered to first derive the resonant trajec-
tory equations for a single electron in the wave fields. This
derivation is presented in Appendix A. The results are then
averaged over the electron’s random phase angle (with re-
spect to the wave field) to obtain the collective effect for wave
amplification, which is described physically in Appendix B.

The collective result in electron-wave resonance inter-
action can be demonstrated through a phase average on
1ω=1ω0−(k2c2/ω−ω0)(γ1−γ10)/γ1, where 1ω0=ω−ω0
is the initial mismatch frequency andω0=�0/γ10−kvz0. In
carrying out phase average, energy conservation has to be
satisfied. The energy conservation equation is given by

1nεmc2d〈γ1〉ε/dt + ε0[(1 + εr)/2]dE2
0(t)/dt = 0 (6)

where 〈〉ε represents an average over the initial random
phases of those energetic electrons, which are involved
in (near) resonant interaction with the wave;1nε=N1–
N2∼=j−1/2nε[j

−1/2f ′

ε⊥(P⊥1)fεz(Pz1)−fε⊥(P⊥1)f
′
εz(Pz1)]

×(2γ1m1ω0/k)3; d〈γ1〉ε2/dt=−d〈γ1〉ε1/dt (i.e.,
〈cosφ〉ε2∼=−〈cosφ〉ε1 is assumed); εr=1+ω2

pb/ω�0 is
the dielectric function of background plasma responding to
the whistler wave and1nε (�nε�nb) is the net density of
energetic electrons transferring energy to the wave through
the resonant interaction with the wave. An integration of
Eq. (6) leads to

1nεmc2(〈γ1〉ε−〈γ10〉ε)=−ε0[(1+εr)/2][E2
0(t)−E2

0(0)]

With the aid of this relation, the average of
1ω=1ω0−(k2c2/ω−ω0)(γ1−γ10)/γ1 becomes

〈1ω〉 = 〈1ω0〉+(ω2
pb/�0)[ε0(1+εr)/2γ0

1nεmc2
][E2

0(t)−E2
0(0)] (7)

where the dispersion relationεr=(kc/ω)2 has been used;
〈1ω0〉=1/2 (〈1ω01〉–〈1ω02〉)∼〈1ω01〉. Since 〈1ω0〉<0,

Fig. 1. Temporal evolution of the amplitude of a whistler wave
propagating in the magnetosphere.

Eq. (7) indicates that the mismatch frequency|〈1ω〉| de-
creases as the wave amplitudeE0 increases, a positive feed-
back for energy transfer from resonant electrons to the wave.

The governing Eq. (C11) for the self-consistent field
amplitude E0(t) is now analyzed numerically. We first
normalize Eq. (C11) to a dimensionless form by intro-
ducing X=[ε0(εr–1)|〈1ω0〉| /4ωγ101nεmc2]1/2E0(t),
ξ=|〈1ω0〉|t , and g=(nε/1nε)(εr+1)ωω2

pb/�0(εr–1)

〈1ω0〉
2=(nε/1nε)(εr+1)(ω/〈1ω0〉)

2. The normalized
equation has the form

[d3
ξ −48Xfcd

2
ξ +(1+bX2

+48fsX)dξ ]X

=16[1−g(X2
−X2

0)]fc (8)

whereX0=X(0); fc= ∫
ξ
0 X(ξ ′)cosϕ(ξ , ξ ′)dξ ′ and

fs=–∫ξ
0 X(ξ ′)sinϕ(ξ , ξ ′)dξ ′; ϕ(ξ , ξ ′)= ∫

ξ
ξ ′

{1−2g[X2(ξ ′′)–X2
0]}dξ ′′; b=[41ω2

pεk
2c2/γ10(εr−1)

|〈1ω0〉|
3ω][(1+vz0ω/kc2)+3(ω�0/γ10k

2c2)–(9/4)α2
0

(ω�0/γ10k
2c2)2]∼=192[(εr+1)/(εr–1)](ωγ10/α2

0�0);
b andg are constant coefficients; Eq. (8) is subjected to the
initial conditions:X(0)=X0, dξX(0)=

√
3X0, d2

ξ X(0)=3X0.
The background parameters giveb=1440 and

g=2×107 (i.e., εr∼4 and|〈1ω0〉|/ω∼5×10−4); setting
X0=3.58×10−4, Eq. (8) is solved by an ODE solver. The re-
sult is presented in Fig. 1, showing the temporal evolution of
the field amplitudeE0(t). The dB-scale plot in Fig. 1 is for
a direct comparison with the early Siple experimental result
(Helliwell et al., 1980; Helliwell and Inan, 1982; Helliwell,
1983). In Siple experiments (Helliwell et al., 1980), injected
Siple signals of 3 kHz, propagating along theL∼=4 shell,
were often amplified by 10 to 30 dB and oscillated in time.
The numerical result presented in Fig. 1 also indicates that
whistler wave amplitude can indeed be amplified more than
25 dB by keV electrons through loss-cone negative mass
instability, and also oscillates in time in a similar fashion.
A good agreement between the numerical and experimental
results is obtained. It is worth to point out that the wave
amplitude oscillation feature observed in Siple experiments
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(a)

(b)

Fig. 2. (a) Wave amplitude verses time for four different incident
wave intensities and(b) amplitude gain G of amplified whistler
wave verses the incident wave intensity.

is different from the pattern of pulsations appearing in the
natural event of chorus, which has been simulated by the
quasi-periodic ELF/VLF generation model (Pasmanik et al.,
2004).

The dependence of the wave amplitude gainG=20 log
(E0m/Ein) on the density of energetic electrons is through the
parameterg in Eq. (8), whereE0m andEin are the maximum
amplitude of the amplified wave and the amplitude of the
incident wave;g∝(nε/1nε)(ω/〈1ω0〉)

2
∝nε/1n

5/3
ε ∝n

−2/3
ε .

The numerical analysis shows that (E0m/Ein)
2
∝nε, i.e., the

gainG increases linearly with the logarithm of the density of
energetic electrons.

It is noted that the field amplitudeEin of the incident
whistler wave in Fig. 1 is rather low (to be consistent with
that of previous experiments (Helliwell et al., 1980)). In
practical application for achieving significant electron pre-
cipitation, the incident wave field has to increase consider-
ably. Thus, it is important to realize how the gainG varies
with the incident wave intensity for a fixed background con-

dition, where the wave frequency is in the range to achieve
double cyclotron resonances. This is exemplified by con-
sidering a case with the following background conditions:
�0/ω=8, γ10=1.1, andεr=41; |〈1ω0〉|/ω∼1.287×10−3 and
v/c=0.417; settingv⊥/c=0.32, leads toα0=0.173,b=428,
andg=1.06×107. Presented in Fig. 2a are the plots of wave
intensity verse time for four different intensity levels of the
incident wave. As shown both the gain and the oscillat-
ing period of the wave intensity decrease as the initial wave
intensity increases. The gain functionG(Iin) is plotted in
Fig. 2b, whereIin is proportional toE2

in. It shows that with
a 30 dB increase ofIin, G reduces only about 10 dB; in other
words, the amplification process remains effective for a large
increase ofIin.

4 Formulation and analysis of chaotic scattering
process

Interaction between trapped energetic electrons (hundreds of
keV to MeV) and a large amplitude whistler wave is con-
sidered. These electrons are trapped by the magnetic mirror
of the geomagnetic field and bounce back and forth about
the geomagnetic equator. Since these electrons are practi-
cally collisionless, single particle approach will be adopted.
To simplify the formulation while retaining the essential
physics, the magnetic dipole field is modeled by a parabolic
scalar potential,ϕ=−mω2

bz
2/2e, superimposed over a uni-

form magnetic field,B0=B0ẑ, wherez is the distance from
the equatorial plane. This parabolic potential characterized
by a bounce frequencyωb simulates the mirror effect of the
magnetic dipole field (Ho et al., 1994). Justification for this
simplification of the background magnetic field configura-
tion is given in Appendix D.

4.1 Formulation

The total vector potential in the system, contributed by both
the wave and static fields, is given byA =Aw+ŷB0x, where
Aw, the vector potential of the whistler wave fields, is ex-
pressed explicitly to be

Aw = (B/k)[x̂ cos(kz − ωt) + ŷ sin(kz − ωt)] (9)

With both of the potentials given and letp be the canonical
momentum, the electron relativistic HamiltonianH (r , p), is
given by

H = c[(p + eA)2
+ m2c2

]
1/2 − eϕ (10)

This Hamiltonian yields trajectories in a six-dimensional
phase space. However, it can be simplified to reduce the de-
gree of freedom. The y-coordinate is cyclic,py=constant,
which can be set equal to zero without losing the generality.
We next transform the canonical coordinates (x, px) to a new
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pair (Q, P ) by introducing the generating function (Faith et
al., 1997a, b)

F1(x, Q, t) = 1/2m�0(x
2
+ Q2)cotωt − m�0xQcscωt (11)

Equation (11) is applied for the canonical transformation:
px=∂F1/∂x andP=−∂F1/∂Q, to determine the new coor-
dinates

P = px cosωt + m�0x sinωt,

Q = −(px/m�0) sinωt + x cosωt (12)

and the new Hamiltonian

K = H + ∂F1/∂t =

c
{
P 2

+ p2
z + (m�0Q)2

+ m2c2
+ (m�1/k)2

+ 2m(�1/k)[P coskz − m�0Q sinkz]}
1/2

+1/2mω2
bz

2
− 1/2ω(m�0Q

2
+ P 2/m�) (13)

where �1=eB/m. From Eq. (13), the Hamilton’s equa-
tions of motion, dr /dt=∇pK and dp/dt=−∇K, can be
derived. Use of the normalizations:k2K/mω2=K ′

→K,
kQ=Q′

→Q, kP/mω=P ′
→P , kz=z′

→z,
kpz/mω=p′

z→pz, �0/ω=�′

0→�0, �1/ω=�′

1→�1,
ωt=t ′→t , andωb/ω=ω′

b→ωb, we arrive at the normalized
relativistic equations of motion convenient for later numeri-
cal analysis:

dP/dt = −�0(�0/γ2 − 1)Q + (�0�1/γ2) sinz (14)

dQ/dt = (�0/γ2 − 1)(P/�0) + (�1/γ2) cosz (15)

dz/dt = pz/γ2 (16)

dpz/dt = −ω2
bz + (�1/γ2)(P sinz + �0Q cosz) (17)

whereγ2=(ω/kc)[(kc/ω)2+P 2+p2
z+�2

0Q
2
+�2

1+2�1(Pcosz–

�0Qsinz)]
1/2, is the relativistic factor;ω/kc, the normalized

phase velocity of whistler wave, will be taken to be1/2 in
the numerical analysis. This value of the phase velocity
corresponds quite well to the case of the magnetosphere.

SinceK, as given by Eq. (13), does not depend ont ex-
plicitly, it is a constant of motion, i.e.,dK/dt=∂K/∂t=0,
which reduces the degree of freedom of the system by one.
Thus the set of Eqs. (14–17) describes trajectories in a three-
dimensional space. A surface of section technique is used
to further reduce the three-dimensional continuous time sys-
tem to a two-dimensional map, where we can examine the
chaoticity of the system graphically.

4.2 Numerical analysis

The constant of the motion,K=constant, allows us to elim-
inate one of the four variables in Eqs. (14–17). In the fol-
lowing analysis, we choose to eliminate the variableP , i.e.,
Eq. (14). We also chooseQ=0 as the surface of section to

Fig. 3. Surface of section plot from the trajectories of four electrons
with initial energiesγ0=1.2 (in blue), 1.5 (in green), 2 (in orange),
and 3 (in red), and with the same initial pitch angleθ0=60◦ and
wave amplitude�1=0.08 in a system with�0=8 andωb=0.1. The
unperturbed trajectories (�1=0) represented by elliptical curves are
superimposed in the same plot.

project trajectories onto thez−pz plane or graphically de-
picting the chaoticity of the system. It is noted that for a
givenK, bothP anddQ/dt are double valued. Hence, the
surface of section is separated intodQ/dt<0 anddQ/dt>0
cases. We choose only to present thedQ/dt<0 case be-
cause the results of the two cases are mirror images of each
other. Equations (15–17) are integrated in time using a fifth
order Runge Kutta ODE solver. When the sign ofQ changes
from positive to negative between two time steps, the tra-
jectory between these two points is interpolated to theQ=0
plane, and the resulting point recorded. The time integra-
tion continues for about 1000 bounce periods. The initial
conditions (Q0, z0, P0, pz0) of Eqs. (15–17) are determined
as follows. Consider an electron having an initial energy
γ20 and pitch angleθ20 at equator, whereθ20=tan−1(P0/pz0),

and setQ0=0=z0, hence,γ20=1/2(4+P 2
0 +p2

z0)
1/2. We can

then obtain the remaining two initial conditionsP0=2(γ 2
20–

1)1/2sinθ20 andpzo=2(γ 2
20–1)1/2cosθ20. The trajectories of

different electrons represented by different initial energies
γ20 are examined by the surface of section technique. As
these electrons interact with the wave having normalized am-
plitude�1, the behavior of each trajectory, which is regular
or chaotic, is expected to depend strongly on two quantities,
the value ofγ20 and the wave amplitude represented by�1.

We now use surface of section approach to characterize
the interaction of a 3 kHz whistler wave with energetic elec-
trons inL=3.3 shell. The parameters of the system are nor-
malized to be�0=8 andωb=0.1. The dependence of the
chaoticity of the system on the electron energy, i.e.,γ20, is
examined by mapping the trajectories of four electrons hav-
ing γ20=1.2, 1.5, 2, and 3, in the same surface of section
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Fig. 4. Temporal evolution of the pitch angle of a 1.5 MeV elec-
tron interacting with a whistler wave at Doppler shifted cyclotron
resonance. Plots A and B correspond to wave magnetic field
B1=7×10−4 B0 and 8.1×10−4B0 cases, respectively.

plot. Presented in Fig. 3 is the one corresponding to�1=0.08
(1% of the background magnetic field) and the same initial
pitch angleθ20=60◦. The elliptical curves in Fig. 3 represent
the unperturbed trajectories (�1=0 case), which are super-
imposed in the plot for a comparison. As shown, the tra-
jectories forγ20=1.5, 2, and 3 are mapped in a large phase
space region, suggesting the occurrence of significant chaotic
pitch angle scattering. Indeed, it is found that the electron
equatorial pitch angleθ , in the three chaotic cases, can be-
come as low as that less than 30◦. However, the trajectory
in γ20=1.2 case remains regular, demonstrating that the elec-
tron energy is important to the type of motion the electron
undergoes. The wave amplitude required causing an elec-
tron trajectory to become chaotic is lower for those elec-
trons with energy>100 keV. This confirms that one can use
the lower energy (<100 kev) electrons to amplify whistler
waves, which become more effective in precipitating higher
energy (>1 MeV) electrons.

5 Double cyclotron resonances for effective precipita-
tion of MeV electrons by whistler waves

A wave resonant with MeV electrons (γ=γ2) satisfies a res-
onance condition, similar to that given by Eq. (1),

ω = �0/γ2 + kPz2/γ2m (18)

We now find the initial conditions of electrons such that
Eqs. (1) and (18) can be satisfied simultaneously. The re-
lationships and notations to be applied are first introduced as
follows: �0∝L−3; ωpb∝L−3/2; ωb∝(1−γ −2

2 )−1/2�0/L is

the bounce frequency of MeV electrons;n∼=(ω2
pb/ω�0)

1/2 is
the index of refraction of the background cold plasma on the
whistler wave;L is the number of earth radii, i.e.,L value of
a magnetic flux tube;θ1=tan−1(j)1/2 is the initial pitch an-
gle of keV electrons which contribute to wave amplification,
thus cosθ1=1/(1+j)1/2; γ1∼1.1 is the relativistic factor of
∼50 keV electrons;θ2 is the initial pitch angle of MeV elec-
trons which are being precipitated; the normalized phase ve-
locity of the waveV =vp/c=(�0/ωp)ξ−1/2, whereξ=�0/ω.

With the aid of some known background parameters:
nb∼280 cm−3 at L=4.9, B0∼0.25 Gauss atL=1, and
ωb/�0∼(1/3)×10−2 for γ2=3 and L=2, we can obtain
the functional dependence of the background parameters
on L asωpb=2π×1.63×106/L3/2, �0=2π×7×105/L3, and
ωb/�0=(ωb/ω)/(�0/ω)=7.07×10−3 (1–γ −2

2 )−1/2/L. The
resonance conditions (1) and (18) and the dispersion relation
lead to

�0/ω=γ2+n(γ 2
2 −1)1/2 cosθ2=ξ=γ1+n(γ 2

1 −1)1/2 cosθ1 (19)

n=2.33L3/2ξ1/2
=2.33L3/2

[γ2+n(γ 2
2 −1)1/2 cosθ2]

1/2 (20)

Equation (19) leads ton=(γ2–γ1)/[(γ 2
1 –1)1/2cosθ1–(γ 2

2 –
1)1/2cosθ2], which is then used to re-express Eq. (19) as

�0/ω→�0 = [γ2(γ
2
1 − 1)1/2 cosθ1 − γ1(γ

2
2 − 1)1/2

cosθ2]/[(γ
2
1 −1)1/2 cosθ1−(γ 2

2 −1)1/2 cosθ2]

Equations (19) and (20) are solved to yield

cosθ2 = 1/2[(γ
2
1 − 1)/(γ 2

2 − 1)]1/2

×{(γ2/γ1 + 1) cosθ1 − (γ2/γ1 − 1)[cos2 θ1

+4γ1/5.43L3(γ 2
1 − 1)]1/2

} (21)

The normalized (toω) bounce frequency of electrons
and normalized (to c) phase velocity of the wave
are given by ωb=7.07×10−3 (1–γ −2

2 )−1/2�0/L and

V =0.432L−3/2�
−1/2
0 .

We now consider theγ2=4 case that precipitates 1.5 MeV
electrons. From Eq. (21),θ2=86.5◦. We then have
�0=8.6038, V =0.0517, and ωb=2.945×10−2. Equa-
tions (15) to (17) are now integrated numerically to evaluate
the pitch angle scattering, resulting from the wave-electron
resonance interaction. Presented in Fig. 4 is a result that dou-
ble resonance condition is satisfied.

As shown, with�1=6×10−3 (i.e., the wave magnetic
field B1=7×10−4B0), the electron trajectory is chaotic but
the pitch angle (plot A) of the scattered electron remains
larger than 60◦. However, as the wave magnetic fieldB1
increases slightly to 8.1×10−4B0 (i.e., �1=7×10−3), sig-
nificantly large pitch angle scattering occurs. As shown,
electron is scattered to a pitch angle<50◦ (plot B),
less than the loss cone angle. The required wave mag-
netic field amplitude is calculated to be about 0.08% (i.e.,
�1/�0=0.007/8.6038=0.0008) of the background magnetic
filed. This is an example that a whistler wave, with proper
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parameters, can be amplified by the keV electrons and si-
multaneously scatters MeV electrons, both processes via the
cyclotron resonance interaction. The results show that cy-
clotron resonant interaction reduces the required field ampli-
tude, for achieving effective chaotic scattering, by a factor
more than 20. On the other hand, the required interaction
time is also increased by an order of magnitude.

6 Summary

Small pitch angle scatterings in cyclotron resonance interac-
tion with a whistler wave can diffuse MeV electrons, with
pitch angles close to the loss cone angle, into loss cones (Al-
bert, 2000). On the other hand, it will need a chaotic scatter-
ing process to precipitate those deeply trapped electrons; the
wave field has to exceed a threshold (Kuo et al., 2004).

Amplification of whistler wave by (tens of keV) energetic
electrons in the magnetosphere through loss-cone negative
mass instability is studied. The theory is formulated and the
numerical result is shown to agree well with the experimental
result, both qualitatively and quantitatively. Such amplifica-
tion reduces considerably the required field intensity of the
incident whistler wave for the purpose of precipitating MeV
electrons in the magnetosphere.

The feasibility to invoke a double cyclotron resonance sit-
uation for an optimal approach to reduce the population of
MeV electrons trapped in the magnetosphere is then demon-
strated. In this approach, the wave is first amplified by (tens
of keV) energetic electrons; once the wave field exceeds
the threshold for the commencement of chaos, cyclotron
resonance-enhanced chaotic scattering can precipitate deeply
trapped MeV electrons into loss cones. The numerical re-
sults demonstrate that a 1.5 MeV electron can be scattered
from an initial pitch angle of 86.5◦ to a pitch angle<50◦ by
a whistler wave with the magnetic field amplitude of 0.08 %
of the background magnetic field, which is about 20 times
smaller than that without invoking cyclotron resonance. This
percentage converts to about 3100 pT atL=2, and 200 pT at
L=5, which reduce to 550 pT and 36 pT, respectively, after
taking advantage of the 15 dB gain.

Finally, it should be pointed out that this optimal approach,
relying on electron cyclotron resonance interaction, requires
that the wave have a broad frequency spectrum, so that a con-
siderable fraction of the very energetic electrons can be pre-
cipitated simultaneously.

Appendix A

Resonant trajectory equations

The equations for the electron motion in a dc magnetic field
ẑB0 and right-hand circularly polarized wave fieldsE andB

are given by

dr/dt = p/γ1m (A1)

dp/dt = −e[E + v × (B + ẑB0)] (A2)

mc2dγ1/dt = eE · v (A3)

where γ1=(1+p2/m2c2)1/2, p=γ1mv, and the
whistler wave fields E and B are E=E0(t)û and
B=(k/ω)E0(t)v̂; û=[x̂cos(kz−ωt)−ŷsin(kz−ωt)] and
v̂=[x̂ sin(kz−ωt)+ŷcos(kz−ωt)]; ω andk are related by the
whistler wave dispersion relationω=�0k

2c2/ω2
pb given in

Eq. (2);ε0 is the free-space permitivity.
When the wave frequencyω is near the Doppler shifted

electron cyclotron frequency,ω∼=�0/γ1−kvz, the electron
trajectory is mainly governed by the cyclotron resonance in-
teraction. After removing all the fast oscillating components
in the Lorentz force, Eqs. (A1–A3) reduce to a set of self-
consistent governing equations for the slowly time varying
functionsγ1, v⊥, vz and8 (Kuo and Cheo, 1985)

dα/dt = −(k/�0)(eE0/m)(1 + kvz/ω) cosφ (A4)

dφ/dt=−1ω+(k/�0)(eE0/m)(1+kvz/ω)α−1 sinφ (A5)

dvz/dt=(�0/k)(eE0/mc2)(α/γ 2
1 )(kc2/ω+vz) cosφ (A6)

dγ1/dt = −(�0/k)(eE0/mc2)(α/γ1) cosφ (A7)

where α=kv⊥/�0 and φ=kz0+[20+8(t)]− ∫
t
0 1ω′dt ′;

1ω=1ω0+�0(γ1−γ10)/γ1γ10+k(vz−vz0), 1ω0=ω−ω0,
and ω0=�0/γ10−kvz0; 20=tan−1(vy0/vx0), 8 accounts
for the phase shift in the electron gyration due to
interaction with the wave fields,γ10 is the initial rel-
ativistic factor of the resonant electrons. The ratio
of Eqs. (A6) and (A7) leads to an invariant relation
γ1(kc2/ω+vz)=const.=γ10(kc2/ω+vz0), which is used to
obtain 1ω=1ω0−(k2c2/ω−ω0)(γ1−γ10)/γ1. It is noted
that k2c2/ω−ω0>0 for whistler waves considered in the
present case, i.e.,1ω increases as electron loses energy to
the wave and vice versa.

Appendix B

Collective effect

The keV electron plasma has a loss-cone distribution given
by Eq. (3) and its distribution inPz is yet a Maxwellian given
by Eq. (4) and shown in Fig. B1. Only a fraction of total
electrons, e.g., in the two shade regions in Fig. B1, are close
to Doppler shifted cyclotron resonance with the wave. In
fact, the wave is experiencing cyclotron damping to the elec-
trons which are initially at exact cyclotron resonance with the
wave, i.e.,1ω0=0. On the other hand, the wave can exchange
energy with other electrons having a mismatch frequency
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Fig. B1. Momentum distribution of energetic electrons and the re-
gions close to cyclotron resonant interaction with the wave.

1ω0 slightly different from zero. Depending on the initial
phases of those electrons, the interaction can cause them ei-
ther to gain energy from, or lose energy to, the wave, initially.
In region 1,1ω01<0, one half of the electrons will lose en-
ergy to the wave initially, those electrons also reduce the mis-
match frequency in the interaction (becauseγ1−γ10<0); it
results in the increase of the interaction period of losing en-
ergy to the wave. The other half of the electrons, which gain
energy from the wave initially, will increase their mismatch
frequencies (becauseγ1−γ10>0) and reduce the interaction
period of gaining energy from the wave. Therefore, those
electrons with1ω01<0 will lose energy to the wave on aver-
age.

For those electrons in region 2 with1ω0=1ω02>0, the
above dynamic interaction process is reversed; on average,
those electrons will gain energy from the wave. Using
the definition1ω0=ω−ω0=ω−�0/γ10+kvz0, 1ω01<1ω02
leads tovz01<vz02, which indicates that there are more elec-
trons in the1ω01<0 region than in the1ω02>0 region (i.e.,
N1>N2 as shown in Fig. B1). Overall, the wave will gain
energy from electrons and be amplified.

Appendix C

Phase average relations and the governing
equation of the wave amplitude

The wave equation governs the self-consistent wave field

[c2∂2/∂z2
− ∂2/∂t2

]E = ε−1
0 ∂(Je + Jp)/∂t (C1)

where Je=−enbve is the linear current density induced
by the wave fields in the background plasma with
ve=−(eE0/m�0)v̂ andJp, the induced polarization current
density associated with the resonant electrons, is given by

Jp = −e[N1〈(x̂vx + ŷvy)〉ε1 + eN2〈(x̂vx + ŷvy)〉ε2]

= −e{N1〈{ûv⊥ cosφ + v̂v⊥ sinφ}〉ε1 + N2〈{ûv⊥ cosφ

+v̂v⊥ sinφ}〉ε2}

= ûJpc + v̂Jps (C2)

where Jpc=−e1nε(�0/k)〈(α/γ1)cosφ〉ε1∼=-P1〈cosφ〉ε1,
and Jps=−e2nε(�0/k)〈(α/γ1)sinφ〉ε1∼=−P2〈sinφ〉ε1;
nε=(N1+N2)/2 andP2=2nεe(�0/k)(α0/γ10);
〈sinφ〉ε2∼=〈sinφ〉ε1 is assumed.

Comparing Eq. (6) with the average of Eq. (A7), leads
to 〈(α/γ )cosφ〉ε=(k/1nεe�0)[ε0(1+εr)]dtE0, which is ap-
proximated to be

〈cosφ〉ε
∼= [ε0(1 + εr)/P1]dtE0 (C3)

whereP1=1nεe(�0/k)(α0/γ0) and the notationdt=d/dt is
used.

SubstituteE=E0(t)û in Eq. (C1) and with the aid of
Eq. (C2) and the dispersion relationεr=1+ω2

p/ω�=k2c2/ω2,
Eq. (C1) is reduced to

d2
t E0 ∼= −ε−1

0 (dtJpc − ωJps) (C4)

ω(1 + εr)dtE0 ∼= −ε−1
0 (dtJps + ωJpc) (C5)

Using the relationJpc=−ε0(1+εr) dt E0, Eq. (C5) reduces
to dtJps

∼=0, i.e., 〈(dtφ)cosφ〉ε1∼=0, which, with the aid of
Eq. (A6), leads to the relation

sE0〈sin 2φ〉ε1 ∼= 2〈1ω0〉〈cosφ〉ε1 (C6)

wheres=(k/�0)(e/m)(1+kvz0/ω)α−1
0 , and Eq. (C4) reduces

to Jps=−(ε0εr /ω)d2
t E0, which leads to

〈sinφ〉ε1 = (ε0εr/ωP2)d
2
t E0 (C7)

Furthermore, with the aid of Eqs. (C7), (A4) and (A5) can be
combined to obtain

sE0〈cos 2φ〉ε1 ∼= ω(P2/P1)(1 + ε−1
r )〈sinφ〉ε1 (C8)

Jpc is the source current density of the radiation; it is usually
governed by a second order differential equation. Introduc-
ing the relation

d2
t 〈(α/γ1) cosφ〉 = −〈[(α/γ1)d

2
t φ+2dt (α/γ1)dtφ] sinφ〉

−〈[(α/γ1)(dtφ)2
−d2

t (α/γ1)] cosφ〉(C9)

With the aid of Eqs. (A4–A7), the right hand side terms of
Eq. (C9) can be expressed explicitly in terms of the function
E0(t) and its integrals and derivatives as follows

〈(α/γ1)(d
2
t φ) sinφ〉 ∼= (α0/γ10)(s/2)

{
dtE0(1 − 〈cos 2φ〉)

−(A0E0/2)(Ic〈sinφ〉 + Is〈cosφ〉)

+s[1 + (α2
0/2)(1 + vz0ω/kc2)]E2

0〈cosφ〉 − [〈1ω0〉

+α2
0ω(1 + kvz0/ω) ] E0〈sin 2φ〉

}
〈2[dt (α/γ1)](dtφ) sinφ)〉 ∼= (α0/2γ10)(s − b1α0/γ

2
10)

[2〈1ω0〉E0〈sin 2φ〉 + A0E0(Ic〈sinφ〉

+Is〈cosφ〉) − sE2
0〈cosφ〉 ]

〈(α/γ1)(dtφ)2 cosφ〉 ∼= (α0/γ10)
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[〈1ω0〉

2
+ s2E2

0/4 + (A2
0/4)(I2

c + I2
s )]〈cosφ〉

+(A0/2)(〈1ω〉 + 〈1ω0〉)Ic − (sA0E0/2)

(Ic〈sinφ〉 + Is〈cosφ〉) − sE0〈1ω0〉〈sin 2φ〉

+〈1ω0〉A0(Ic〈cos 2φ〉 + Is〈sin 2φ〉)
}

〈[d2
t (α/γ1)] cosφ〉 ∼= −(α0/2γ10)

{
(s − bα0/γ

2
10)

[dtE0(1 + 〈cos 2φ〉) + (A0E0/2)(Ic〈sinφ〉

+Is〈cosφ〉) − 1/2(s − 9b1α0/γ
2
10)E

2
0〈cosφ〉

+E0〈1ω0〉〈sin 2φ〉] + (3s2α2
0/2)

(1 + vz0ω/kc2)E2
0〈cosφ〉

}
(C10)

whereA0=(ω2
pb/�0) (b1α0/γ 2

10), b1=(�0/k)

(e/mc2); Ic= ∫
t
0 E0(t

′)cos〈1φ(t−t ′)〉ε1dt ′ and
Is=∫

t
0 E0(t

′)sin〈1φ(t−t ′)〉ε1dt ′; 〈1φ(t−t ′)〉ε1=
− ∫

t
t ′
〈1ω(τ)〉ε1dτ=−〈1ω0〉 ∫

t
t ′ {1+(ω2

pb/�0〈1ω0〉)

[ε0(1+εr)/2γ101nεmc2] [E2
0(τ )–E2

0(0)]}dτ ; the dispersion
relationk2c2/ω–ω∼=ω2

pb/�0 is used; the higher order terms
〈cos3φ〉ε1 and 〈sin3φ〉ε1 are neglected and the approxima-
tions 〈cos(φ−φ′)〉ε1∼=cos〈(φ−φ′)〉ε1∼=cos〈1φ(t−t ′)〉ε1 and
〈sin(φ−φ′)〉ε1∼=sin〈(φ−φ′)〉ε1∼=sin〈1φ(t−t ′)〉ε1 are used in
the derivation.

With the aid of the phase average relations (C3) and (C6–
C10), the source terms on the right hand side of Eq. (C1)
can be expressed explicitly in terms of the self-consistent
field amplitudeE0(t) and its derivatives and integrations. In
essence, this is a procedure to combine the three first order
differential Eqs. (A4) to (A6) to the wave Eq. (C1). It leads
to a differential-integral equation forE0 (Kuo et al., 2004)

[d3
t + 20d2

t + (1ω2
+ C)dt ]E0 =

a0{1+(nε/1nε)(ω
2
pb/�0〈1ω0〉)[ε0(1+εr)/4γ101nεmc2

]

×[E2
0(t) − E2

0(0)]}
t

∫
0
E0(t

′) cos〈1φ(t − t ′)〉ε1dt ′ (C11)

wheredt stands ford/dt ; 0∼=–[3εr /8 (1+εr)]
(b1α0/γ 2

10)×(A0E0Ic/ω) and 1ω2
=〈1ω0〉

2
+α2

0{s2

[(1+vz0ω/kc2)+3(ω/kc)2(1+kvz0/ω)–
(9/4)α2

0(ω/kc)4(1+kvz0/ω)2]E2
0–ω〈1ω0〉(1+kvz0/ω)}–

(3b1α0/4γ 2
10–2〈1ω0〉

2/sE2
0)A0IsE0;

C=[1ω2
pε/(1+εr)γ10][(1+kvz0/ω)–1/2(�0α0/γ10kc)2], a0=–

[1ω2
pε�

2
0〈1ω0〉α

2
0/(1+εr)γ

3
10ω], and 1ω2

pε=1nεe
2/mε0.

In essence, Eq. (C11) is a fifth order ordinary differential
equation (ODE). It is linearized to obtain the relation
|〈1ω0〉|

3
=1ω2

pε�
2
0α

2
0/16(1+εr)γ

3
10ω for determining

|〈1ω0〉|.

Appendix D

Modeling a magnetic dipole field:

The geomagnetic field localized around the electron guiding
center resembles a parabolic mirror field. This mirror field
may be expressed in local cylindrical coordinates (r, θ , z) as

Bg = B0[1 + (z2
− r2/2)/L2

]ẑ − (B0zr/L
2)r̂

whereL is the scale length of the magnetic field andBg

satisfies both∇·Bg=0 and∇×Bg=0 as required. The z-
component of the equation of motion of an electron gyrating
about the z-axis in this mirror magnetic field is given by

dvz/dt = d2z/dt2
= evθBgr/m = −∂(µBgz)/∂z

= −eB0zrvθ/mL2
= −µB0z/mL2

= −ω2
bz

where µ=mv2
θ0/2B0 is the magnetic dipole moment of

the electron; vθ0=vθ (z=0) and Bgz
∼=B0 is assumed;

r=rL=(vθ0/vθ )rL0 is equal to the Larmour radius;
rL0=mvθ0/eB0 is the electron Larmour radius at equa-
tor; andωb=(µB0/mL2)1/2 is the bounce frequency and is
assumed to be a constant. Thus a parabolic potential may be
used to simulate the mirroring effect of a magnetic dipole
field. The approximations thatωb=const. andBgz

∼=B0 are
justified as long as the magnetic momentµ varies slowly in
time, andz2/L2 andr2/L2

�1.
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