
1. Introduction
Shape memory polymers (SMPs) respond to stimuli
such as temperature, electricity, pH, ionic strength
and light [1–4], and have many advantages like low
density, good shape recovery and easy processing
[5–9]. Thermally actuated SMPs have found broad
applications in actuators, smart textiles and coat-
ings, sporting goods [10, 11] and in biomedical
devices [12]. Recently, triple shape effect and two
way shape memory behavior which are largely
based on thermal triggering have also been sug-
gested. [13–15]. Excellent reviews have also been
published along with recent developments [6, 16,
17].
Molded flexible polyurethane foams are used in a
broad range of applications including transportation
seating and trim parts, packaging, furniture, and
novelty items. The greatest advantage is that the
foam is molded into the desired intricate shape and
the need for cutting is eliminated [18, 19]. If high
shape fixity and high shape recovery are endowed
to such foam products, precision molding with high
durability will be implemented.

Shape memory effects of polyurethane foam have
also been reported with regard to the thermome-
chanical properties [20, 21], laser-activated foam
device [22], effect of shape holding conditions [23],
and for biomedical application [24, 25] Most of
these studies use commercially available polyure -
thane foams. Consequently, the basic structure-prop-
erty relationships of the shape memory foam have
not been reported perhaps except those by the pres-
ent groups [26, 27].
In this work molded flexible polyurethane foams
have been synthesized from polypropylene glycol
(PPG) with various molecular weights (Mw) and
functionalities (f), and 2,4/2,6-toluene diisocyanate
with water as blowing agent. The reactivity, mechan-
ical and dynamic mechanical and shape memory
properties of the foams were analyzed along with
basic structure- property relationship of the foam.

2. Experimental
2.1. Raw materials
Two types of polypropylene glycol (PPG), viz. SR-
240 and GP-3000 (KPX, Korea) with different
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molecular weights (Mw) and functionalities (f) were
used. SR-240 has the number average molecular
weight (determined by gel permeation chromatog-
raphy) of 240, and functionality of 2, while f = 3 and
number average Mw = 3000 for GP-3000. The
Toluene diisocynate (TDI-80) was provided by
Dow Chemical whereas TA-350 as a cell-opener by
KPX Chemicals. The water used as chemical blow-
ing agent was distilled in our laboratory. L-626 (sil-
icon surfactant), A1 (bis(2-dimethylaminoethyl)
ether, amine catalyst) and methylene chloride (MC,
blowing catalysts) and T-9 (stannous octoate,
organometallic gelling catalyst) were provided by
Air Products (USA) and used as received.

2.2. Preparation of polyurethane foam
The flexible foams were synthesized by one-shot
method. All raw materials were first put into a
500 ml beaker and mixed for 20 s at 3000 rpm using
a dispersing turbine type impeller of 2.5 cm diame-
ter at 25°C and 70% relative humidity. Then the
mixtures were discharged to an open mold (200!
200!200 mm) and the foam cake was cured for
48 h at room temperature. The NCO index (iso-
cyanate equivalents/polyol equivalents) was fixed
at 1.00. We designed and synthesized six types of
molded flexible polyurethane foams having various
ratios of the two polyols giving different average
Mw and f values. The basic formulations are given in
Table 1.

2.3. Characterizations
Kinetics of the foam formation was followed by the
physical change of the properties. The cream time
corresponds to the start of bubble rise and hence
color of the mixture becomes creamlike from milk
due to the formation of foam bubbles. Rise time is
the starting point of stable network formation by
intensive formations of urethane and urea linkages

and crosslinkings by allophanate and biuret reac-
tions. The two characteristic times were measured
by a digital stop watch.
The density of the foam was measured according to
ASTM D 1622 with sample size of 30!30!30 mm
(width ! length ! thickness), and an average of at
least five measurements was taken to report. The
cell structure of the foam was studied with a polar-
ized optical microscope (POM) at a magnification
of 120. For the measurement, central part of the foam
was cryogenically fractured in liquid nitrogen. The
total number of cells was countered to report the
number average size of the cell. Dynamic mechani-
cal properties of the foam were measured using a
dynamic mechanical thermal analyzer (DMTA,
Rheometrics MK-IV) in tension mode. Samples
were heated from –100 to 150°C at 5°C/min, 10 Hz
and 2% strain.
Tensile properties of the foam were measured at
room temperature with an universal testing machine
(UTM, Lloyd, UK) at 2.00mm/min with the speci-
men dimension of 4!25!0.3 mm (width ! length !
thickness). To measure the compressive strength,
samples were cut into dimensions of 50!50!50 mm
(width ! length ! thickness) and placed between
metal plates and compressed to 50% of the original
thickness.
Shape memory properties were characterized using
a temperature controlled universal testing machine.
The sample was first heated to a loading tempera-
ture (Tg + 20°C) at 4°C/min before it was loaded to
a maximum strain (!m) of 100%, followed by cool-
ing to (Tg –"20°C) at a rate of 7°C/min under con-
stant strain. Then the sample was unloaded, giving
a substantial amount of shrinkage (!u) depending on
the molecular and shape parameters of the foam.
Then the sample was reheated to the loading tem-
perature (Tg + 20°C) to recover the strain, leaving a
substantial amount of permanent strain (!p). These
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Table 1. Formulations to synthesize the polyurethane foams, Tg, and G°n (unit: pphp)

pphp: part per hundred polyol

SR-240 GP-3000 TA-350 L-626 Water A1 T9 M.C TDI-80 Tg
[°C]

G°n·106)
[dyne/cm2]

S10 100 –

2 1 1.6 0.2 0.1 3

52.81 49.8 2.3
S08 80 20 47.06 39.6 3.6
S06 60 40 41.30 26.5 4.1
S04 40 60 35.64 –12.3 4.1
S02 20 80 29.92 –15.1 4.7
S00 – 100 24.21 –49.2 5.1



three steps complete one thermomechanical cycle
[28]. Shape fixity and shape recovery are defined
by Equations (1) and (2) respectively:

% shape fixity =  · 100                                   (1)

% shape recovery = · 100                              (2)

where !r = !u – !p is the recovered strain.

3. Results and discussion
3.1. Reactivity and foam density
Reactivity of the foaming reaction caused measur-
ing the cream time and rise time. Table 2 shows that
the two characteristic times monotonically increase
with the increases of average molecular weight and
functionality of the polyol mixture. This implies
that both gelling and blowing reactions become
slower. The reactivity decrease is primarily due to
the decreased concentration of OH group which
reacts with the isocyanate. This is seen from the
decreased amount of the diisocyanate used in
Table 1.
Typical POM morphologies of the foam are shown
in Figure 1 and the details are summarized in
Table 1 where the cell size increases from 0.3 (S10)
to 0.45 mm (S04) with increasing molecular weight
and functionality of the polyol. In accordance with
the increased cell size, foam density decreases from
about 59 (S10) to 52 (S04) [kg/m3] (Figure 2). The
smaller cell size with low Mw polyol is due to the
fast gelling reaction over the foaming reaction.

Then the cell becomes strong enough before it is
blown keeping the cell small. Density is a most
important parameter to control the mechanical
properties of the foam. The decreased foam density
is related to the decreased urethane group content
and glass transition temperature of the foam to be
discussed with the dynamic mechanical measure-
ments to follow.

3.2. Mechanical properties
It is seen that the tensile stress-strain curves are
almost linear regardless of polyol type (Figure 3).
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Figure 1. Typical POM morphologies of the foams (!120)

Figure 2. Density of the polyurethane foams

Figure 3. Tensile behaviors of the polyurethane foams

Table 2. Reactivity and cell size
S10 S08 S06 S04

Cream time [s] 9 11 14 18
Rise time [s] 189 200 219 235
Cell size [mm] 0.30 0.36 0.37 0.45



The initial modulus and break strength monotoni-
cally decrease with increasing molecular weight and
functionality of the polyol while keeping the elon-
gation at break almost constant. For example, the
modulus of S10 is over 72 while that of S04 is about
25 kPa. The decrease is mainly due to the decreased
Tg which on the other hand is introduced by the
high molecular weight polyol which provides high
chain flexibility and less urethane group. The two
factors contribute to the lower Tg of the foam. It is
mentioned that S02 and S00 showed insufficient
loading capability to measure at room temperature.
Figure 4 shows the compressive strength of the
foam. The strength at 50% deformation of the orig-
inal thickness was taken as the compressive strength
of the foam. As expected the compressive modulus
and strength decreases with increasing molecular
weight and functionality of the polyol. Only S10
shows compression yield, necking-like behavior
and strain hardening. It is noted that the compres-
sive strength of S10 is greater than the tensile

strength while those of others are lower than the
tensile strength when compared at the same defor-
mation (50%). This is an indication that the S10 is
in glassy state and others are in rubbery state.

3.3. Dynamic mechanical properties
The dynamic mechanical properties of the foams
are given Figure 5 and Table 1 as a function of tem-
perature. It is seen that the Tg of the foam which is
seen in terms of tan# peak decreases and the peak
width broadens as the molecular weight and func-
tionality of the polyol increases. The peak tempera-
ture ranges from about –50°C (S00) to 50°C (S10).
Since the broad peak is an indication of broad damp-
ing and heterogeneity of the sample, lower molecu-
lar weight polyol augments the homogeneity of PU
by the increased more hydrogen bonding between
the urethane groups.
It is of interest to note that the glassy state modulus
decreases while the rubbery state modulus increases
with increasing molecular weight and functionality
of the polyol. The decreased glassy modulus is a
direct response of the decreased density of the foam.
Density should decrease with decreasing intermole-
cular force which in this case is the hydrogen bond-
ing between the urethane groups. On the other hand,
increasing rubbery modulus is due to the increased
crosslink density of the foam. Crosslink is intro-
duced mainly by the tri-functional polyol. It is also
introduced by the biuret reactions between the free
isocyanate and urea groups, as noted from the exis-
tence of the rubbery plateau for S10 having no tri-
functional polyol. Urea groups are introduced by
the foaming reaction between the free isocyanate
and water.
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Figure 4. Compressive behaviors of the polyurethane
foams

Figure 5. Dynamic mechanical properties of the polyurethane foams: storage modulus (a) and loss tangent (b)



It is noted that rubbery plateau modulus increases
as the functionality of the polyol increases in accor-
dance with the ideal rubber theory as shon by Equa-
tion (3) [29]:

                                                         (3)

where " is the density, R the gas constant, T the
absolute temperature and Mc the molecular weight
between the crosslinks. This implies that crosslink
introduced by the tri-functional polyol of high molec-
ular weight governs the rubbery state modulus while
in glassy state the secondary force mainly governs
the physical and mechanical properties of the foam.

3.4. Shape memory properties
Figure 6 shows the cyclic loading and unloading
behavior of the foam for the first four thermome-
chanical cycles. It is seen that the shape fixity
decreases from about 84 (S10) to 72% (S06) while
shape recovery increases from 52 (S10) to 63 %
(S06) with increasing molecular weight and func-
tionality of the polyol [27]. This indicates that
shape fixity depends on the glassy state modulus
and shape recovery on the rubbery state modulus.
This seems reasonable since shape is fixed during
cooling where the slope of cooling step is the glass
modulus [12] while the strain is recovered in rub-
bery state via the rubber elasticity which increases
with increasing crosslink density. It is worth men-
tioning that the elastic strain energy viz. the area
under the stress-strain curve is smaller with higher
molecular weight polyol, thus the retractive force is
maximum with S10. Regardless of polyol type, the
cyclic hysteresis, viz. the reduction of area upon
further cycling is mostly confined to the first cycle
implying most chain breakages and chain slips are
confined to the first cycle. However, it should be
mentioned that the cyclic hysteresis of the foam is
more serious than that of the elastomeric material
[5, 28] due to the physical breakage of the cell
structure, implying that foam is inherently more
vulnerable to chain breakage upon tensile loading
as compared with elastomeric materials.

4. Conclusions
The effects of molecular weight and functionality
of polyol on the properties of molded flexible

polyurethane foam were studied and the following
conclusions were drawn.
The cream time and rise time monotonically
increased with the increases of average molecular
weight of the polyol mixture due to the decreased
concentration of OH group.

Gºn 5
rRT
Mc

Gºn 5
rRT
Mc
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Figure 6. Thermomechanical cyclic behaviors of the poly -
urethane foams: (a) S10, (b) S08, (c) S06. N is the
number of cycle.



The glassy state properties of the foam mainly
depended on the urethane group content, i.e., lower
molecular weight polyol gave smaller cell size,
higher foam density, strength and glass modulus. On
the other hand, the rubbery state properties mainly
depended on the crosslink density of the poly -
urethane, i.e., high crosslink density of high molec-
ular weight of polyol gave high rubbery modulus
according to the rubber elasticity. Consequently,
high shape fixity of low molecular weight polyol is
due to the high glassy state modulus while the high
shape recovery of high molecular weight polyol due
to the great rubber elasticity.
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