

EFSA Journal 2013;11(9):3384

REASONED OPINION

Reasoned opinion on the modification of the existing MRL for folpet in table grapes ¹

European Food Safety Authority^{2,}

European Food Safety Authority (EFSA), Parma, Italy

ABSTRACT

In accordance with Article 6 of Regulation (EC) No 396/2005, Austria, hereafter referred to as the evaluating Member State (EMS), received an application from the company Makhteshim Agan Holding B.V. to modify the existing MRLs for the active substance folpet in table grapes. In order to accommodate for the intended uses of folpet on table grapes in Europe, the EMS proposed to raise the existing MRL in grapes to 3 mg/kg for folpet and phthalimide, expressed as folpet. The EMS drafted an evaluation report in accordance with Article 8 of Regulation (EC) No 396/2005, which was submitted to the European Commission and forwarded to EFSA. According to EFSA the data are sufficient to derive for table grapes a MRL proposal of 3 mg/kg or 4 mg/kg for the residue definition "folpet" and 5 mg/kg or 6 mg/kg for the residue definition "folpet" and phthalimide, expressed as folpet. The EMSA concludes that according to the internationally agreed methodology for estimation of the consumer exposure, the expected residues in table grapes do not result in an exposure exceeding the toxicological reference values and therefore is unlikely to pose a public health concern. However, the safety margin for the acute exposure is very narrow.

© European Food Safety Authority, 2013

KEY WORDS

Folpet, table grapes, MRL application, Regulation (EC) No 396/2005, consumer risk assessment, phthalimide fungicide, phthalimide

Available online: www.efsa.europa.eu/efsajournal

¹ On request from European Commission, Question No EFSA-Q-2013-00315, approved on 27 September 2013.

² Correspondence: <u>pesticides.mrl@efsa.europa.eu</u>

Suggested citation: European Food Safety Authority, 2013. Reasoned opinion on the modification of the existing MRL for folpet in table grapes . EFSA Journal 2013;11(9):3384, 27 pp. doi:10.2903/j.efsa.2013.3384

SUMMARY

In accordance with Article 6 of Regulation (EC) No 396/2005, Austria, hereafter referred to as the evaluating Member State (EMS), received an application from the company Makhteshim Agan Holding B.V. to modify the existing MRLs for the active substance folpet in table grapes. In order to accommodate for the intended uses of folpet on table grapes in Europe, the EMS proposed to raise the existing MRL in grapes to 3 mg/kg for folpet and to 5 mg/kg for folpet and phthalimide, expressed as folpet. The EMS drafted an evaluation report in accordance with Article 8 of Regulation (EC) No 396/2005, which was submitted to the European Commission and forwarded to EFSA on 2 April 2013.

EFSA bases its assessment on the evaluation report submitted by the EMS, the Draft Assessment Report (DAR) prepared by the rapporteur Member State Italy under Council Directive 91/414/EEC, the conclusion on the peer review of the pesticide risk assessment of the active substance folpet as well as the conclusions from previous EFSA reasoned opinions on folpet.

The toxicological profile of folpet was assessed in the framework of the peer review under Directive 91/414/EEC and the data were sufficient to derive an ADI of 0.1 mg/kg bw per day and an ARfD of 0.2 mg/kg bw. For the metabolite phthalimide which is observed in primary crops and which is extensively formed in processed commodities there is some evidence that the substance is of a lower toxicity compared with folpet. However, as no full toxicological data package was available, it was not possible to derive specific toxicological reference values. Therefore the peer review proposed to apply the toxicological reference values agreed for folpet also for phthalimide.

The metabolism of folpet in primary crops was investigated in grapes, avocado, tomato, potato and wheat. From these studies the peer review concluded to establish the residue definition for enforcement and risk assessment as "sum of folpet and phthalimide, expressed as folpet". For the use on table grapes, EFSA concludes that the metabolism of folpet in primary crops is sufficiently elucidated and no further metabolism data are necessary. The current residue definition for most plant products, including grapes, established in Regulation (EC) No 396/2005 is parent compound folpet. Pending the revision of the existing residue definition, EFSA derived a MRL proposal according to the existing and the proposed new residue definition. The latter MRL is to be taken into account when the residue definition is amended in the framework of the comprehensive review under Article 12(2) of the above cited Regulation.

EFSA concludes that the submitted supervised residue trials are sufficient to derive for table grapes a MRL proposal of 3 mg/kg or 4 mg/kg for the residue definition "folpet" and 5 mg/kg or 6 mg/kg for the residue definition "folpet and phthalimide, expressed as folpet". Adequate analytical enforcement methods are available to control the residues of folpet and phthalimide in the grapes.

Studies investigating the nature of folpet residues in processed commodities demonstrated that under processing conditions involving heat treatment the parent compound almost totally converts to phthalimide and to a certain extent to phthalic acid and phthalic anhydride. Therefore for processed commodities derived from grapes the residue definition for enforcement and risk assessment is defined as sum of folpet and phthalimide, expressed as folpet.

In the framework of the current application one study was submitted with grapes being processed to raisins. Another study was available from the peer review but residue data on phthalimide were not provided. Considering the limited number of studies available, the diverging results and the limited validity of the study where phthalimide was not quantified, EFSA is of the opinion that the data are not sufficient to derive reliable processing factor for raisins which can be recommended for inclusion in Annex VI of Regulation (EC) No 396/2005.

Grape is a permanent crop and therefore the investigations of residues in rotational crops are not required.

Since grapes and their by-products are normally not fed to livestock, the nature and magnitude of folpet residues in livestock was not assessed in the framework of this application.

The consumer risk assessment was performed with revision 2 of the EFSA Pesticide Residues Intake Model (PRIMo). The chronic exposure calculations performed in the framework of previous MRL applications were now updated to take into account the residues of folpet and phthalimide in table grapes from the new intended use.

No long-term consumer intake concerns were identified for any of the European diets incorporated in the EFSA PRIMo. The total calculated intake accounted for up to 81% of the ADI (DE child diet). The contribution of residues in table grapes to the total consumer exposure accounted for a maximum of 1.5% of the ADI (DE child diet). No acute consumer risk was identified in relation to the intended use on table grapes as the calculated maximum exposure in percentage of the ARfD was 93%. EFSA notes that the short term exposure related to table grapes exceeds the ARfD if grapes contain residues at the proposed MRL of 3 mg/kg or 4 mg/kg (for folpet), taking into account the variability factor of 3 and the conversion factor of 1.8 for the risk assessment residue definition. The acute exposure accounts for 106% ARfD and 141% ARfD for the respective MRL proposals for folpet.

EFSA concludes that, according to the internationally agreed methodology for estimation of the consumer exposure, the expected residues in table grapes do not result in an exposure exceeding the toxicological reference values and therefore is unlikely to pose a public health concern. However, the safety margin for the acute exposure is very narrow.

Thus EFSA proposes to amend the existing MRLs as reported in the summary table.

Code number ^(a)	Commodity	Existing EU MRL (mg/kg)	Proposed EU MRL (mg/kg)	Justification for the proposal
Enforceme	nt residue definition: F	olpet (Regulat	ion EC (No) 39	96/2005)
0151010	Table grapes	0.02*	3 or 4	The MRL proposals are sufficiently supported by data. The MRL of 4 mg/kg is derived using the OECD calculator. The MRL of 3 mg/kg was proposed by the EMS and can be considered as an alternative risk management option. EFSA notes that using the proposed MRLs as input values for the acute exposure calculation, the ARfD is exceeded.
		olpet and phin	-	ssed as folpet (EFSA, 2009)
0151010	Table grapes	-	5 or 6	The MRL proposals are sufficiently supported by data. The MRL of 6 mg/kg is derived using the OECD calculator. The MRL of 5 mg/kg was proposed by the EMS and can be considered as an alternative risk management option. EFSA notes that using the proposed MRLs as input values for the acute exposure calculation, the ARfD is exceeded.

Summary table

(a): According to Annex I of Regulation (EC) No 396/2005.

(*): Indicates that the MRL is set at the limit of analytical quantification.

TABLE OF CONTENTS

Abstract	1
Summary	2
Table of contents	4
Background	5
Terms of reference	5
The active substance and its use pattern	. 6
Assessment	7
1. Method of analysis	
1.1. Methods for enforcement of residues in food of plant origin	7
1.2. Methods for enforcement of residues in food of animal origin	7
2. Mammalian toxicology	7
3. Residues	8
3.1. Nature and magnitude of residues in plant	8
3.1.1. Primary crops	8
3.1.2. Rotational crops	
3.2. Nature and magnitude of residues in livestock	13
4. Consumer risk assessment	13
Conclusions and recommendations	16
References	18
Appendices	20
Appendix A. Good Agricultural Practice (GAPs)	20
Appendix B. Pesticide Residue Intake Model (PRIMo)	21
Appendix C. Existing EU maximum residue levels (MRLs)	23
Abbreviations	26

BACKGROUND

Regulation (EC) No $396/2005^3$ establishes the rules governing the setting of pesticide MRLs at European Union level. Article 6 of that Regulation lays down that any party having a legitimate interest or requesting an authorisation for the use of a plant protection product in accordance with Council Directive $91/414/\text{EEC}^4$, repealed by Regulation (EC) No $1107/2009^5$, shall submit to a Member State, when appropriate, an application to set or to modify a MRL in accordance with the provisions of Article 7 of that Regulation.

Austria, hereafter referred to as the evaluating Member State (EMS), received an application from the company Makhteshim Agan Holding B.V.⁶ to modify the existing MRLs for the active substance folpet in table grapes, blueberries and several stone fruits. This application was notified to the European Commission and EFSA, and was subsequently evaluated by the EMS in accordance with Article 8 of the Regulation. After completion, the evaluation report was submitted to the European Commission who forwarded the application, the evaluation report and the supporting dossier to EFSA on 2 April 2013.

The application was included in the EFSA Register of Questions with the reference number EFSA-Q-2013-00315 and the following subject:

Folpet - Application to set new MRLs in table grapes, apricots, peaches, plums and blueberries.

Austria proposed to raise the existing MRLs of folpet from the limit of quantification at 0.02 mg/kg to 3 mg/kg in table grapes, 0.04 mg/kg in peaches and nectarines, 0.1 mg/kg in plums and 0.15 mg/kg in blueberries.

On 6 May 2013 some data requirements were identified, which prevented EFSA to start the assessment of the MRL application. As a result of these data requirements the applicant on 7 May 2013 withdrew the MRL application on peaches, apricots, plums and blueberries, leaving a valid application on the modification of existing MRLs for folpet in table grapes only.

EFSA proceeded with the assessment of the application and the evaluation report as required by Article 10 of the Regulation.

TERMS OF REFERENCE

In accordance with Article 10 of Regulation (EC) No 396/2005, EFSA shall, based on the evaluation report provided by the evaluating Member State, provide a reasoned opinion on the risks to the consumer associated with the application.

In accordance with Article 11 of that Regulation, the reasoned opinion shall be provided as soon as possible and at the latest within three months (which may be extended to six months where more detailed evaluations need to be carried out) from the date of receipt of the application. Where EFSA requests supplementary information, the time limit laid down shall be suspended until that information has been provided.

In this particular case the deadline for providing the reasoned opinion is 3 September 2013.

³ Regulation (EC) No 396/2005 of the Parliament and of the Council of 23 February 2005. OJ L 70, 16.03.2005, p. 1-16.

⁴ Council Directive 91/414/EEC of 15 July 1991. OJ L 230, 19.08.1991, p. 1-32.

⁵ Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009. OJ L 309, 24.11.2009, p. 1-50.

⁶ Malhteshim Agan Holding B.V., c/o Feinchemie Schwebda gMbH, Edmund Rumpler Str.6, 51149, Köln

THE ACTIVE SUBSTANCE AND ITS USE PATTERN

Folpet is the ISO common name for *N*-(trichloromethylthio) phthalimide (IUPAC). The chemical structure of the compound is herewith reported.

Molecular weight: 296.6

Folpet is a broad-spectrum contact fungicide belonging to the class of phthalimide fungicides. Folpet acts against many leaf diseases of cereals and fruit by binding to sulphur-hydrogen bonds and thus interfering with the respiratory process in fungi.

Folpet is an active substance which was evaluated according to Directive 91/414/EEC with Italy designated as rapporteur Member State (RMS). It was included in Annex I of this Directive by Directive 2007/5/EC⁷ which entered into force on 1 October 2007 for use as fungicide only. The representative uses evaluated in the peer review for Annex I inclusion were foliar applications to winter wheat, tomatoes and wine grapes. The Draft Assessment Report (DAR) of folpet has been peer reviewed by EFSA. The conclusion of EFSA was finalised on 24 April 2006 and was re-issued on 4 June 2009 (EFSA, 2009), following amendments in the sections of mammalian toxicology and residues concerning a modification of the acute reference dose (ARfD) for folpet.

The EU MRLs for folpet are established in Annexes II and IIIB of Regulation (EC) No 396/2005 (Appendix C). For pome fruits, strawberries, blackberries, raspberries, currants, gooseberries, tomatoes, beans (with and without pods) the residue definition for enforcement established in Regulation (EC) No 396/2005 is the sum of captan and folpet; for the remaining crops (including table grapes) the residue definition comprises the parent compound folpet only.

EFSA has issued two reasoned opinions on the modification of existing MRLs for folpet in wine grapes, garlic, tomatoes (EFSA, 2011a) and wine grapes (EFSA, 2012). The recommended MRLs for these crops were taken over in the EU legislation. The existing EU MRL for folpet in table grapes is set at the LOQ of 0.02 mg/kg. Codex Alimentarius has established a CXL of 10 mg/kg for table and wine grapes. The MRL review according to Article 12 of Regulation (EC) No 396/2005 is not yet finalized.

The intended GAP applied for in Germany, Austria, Romania, Luxembourg, Hungary, France, Italy, Spain, Portugal and Greece for which a modification of the existing MRLs is required refers to four foliar applications of a water dispersible granule formulation with an application rate of 1.6 kg/ha. The PHI is specified with 56 days. The details of the GAPs are given in Appendix A.

⁷ Commission Directive 2007/5/EC of 7 February 2007. OJ L 35, 08.02.2007, p. 11-17.

ASSESSMENT

EFSA bases its assessment on the evaluation report submitted by the EMS (Austria, 2013), the Draft Assessment Report (DAR) prepared under Council Directive 91/414/EEC (Italy, 2004), the conclusion on the peer review of the pesticide risk assessment of the active substance folpet (EFSA, 2009) as well as the conclusions from previous EFSA reasoned opinions on folpet (EFSA, 2011a, 2012). The assessment is performed in accordance with the legal provisions of the Uniform Principles for the Evaluation and the Authorisation of Plant Protection Products adopted by Commission Regulation (EU) No 546/2011⁸ and the currently applicable guidance documents relevant for the consumer risk assessment of pesticide residues (EC, 1996, 1997a, 1997b, 1997c, 1997d, 1997e, 1997f, 1997g, 2000, 2010a, 2010b, 2011; OECD, 2011).

1. Method of analysis

1.1. Methods for enforcement of residues in food of plant origin

Analytical methods for the determination of folpet residues in plant matrices (for the existing residue definition (parent folpet) and for the extended residue definition (sum of folpet and phthalimide⁹, expressed as folpet)) were assessed in the DAR (Italy, 2004), in the conclusion on the peer review under Directive 91/414/EEC (EFSA, 2009) and in the previously issued reasoned opinion on folpet (EFSA, 2011a).

It was concluded that for grapes (high water content matrix) sufficiently validated analytical methods for enforcing the MRL according to the current residue definition (i.e. folpet) are available (EFSA, 2011a). The LOQ for folpet achieved in routine monitoring in matrices with high water content is 0.05 mg/kg; the confirmatory method was successfully validated at the level of 0.01 mg/kg (EFSA, 2011a).

For the determination of phthalimide, the primary method was validated with an LOQ of 0.2 mg/kg and the ILV confirmed the LOQ of 0.05 mg/kg (EFSA, 2009). In the framework of the current application the applicant submitted new validation data of the analytical method for the determination of folpet and phthalimide in grapes. The EMS assessed the studies and concluded that folpet and phthalimide can be determined in grapes with GC/ECD and GC/MS methods, respectively, at the validated LOQ of 0.02 mg/kg for folpet and 0.05 mg/kg for phthalimide. The ILV and confirmatory methods confirm the applicability of this method to analyse phthalimide residues in grapes at the LOQ of 0.05 mg/kg.

EFSA concludes that sufficiently validated analytical methods are available to control residues of folpet and phthalimide in grapes.

1.2. Methods for enforcement of residues in food of animal origin

Analytical methods for the determination of residues in food of animal origin were not assessed in the current application, since grapes are normally not fed to livestock.

2. Mammalian toxicology

The toxicological profile of the active substance folpet was assessed in the framework of the peer review under Directive 91/414/EEC (EFSA, 2009). The data were sufficient to derive toxicological reference values for folpet which are compiled in Table 2-1.

⁸ Commission Regulation (EU) No 546/2011 of 10 June 2011. OJ L 155, 11.06.2011, p. 127-175.

⁹ Phthalimide:

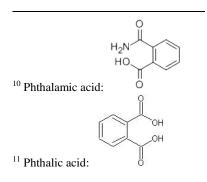
Mol. weight: 147.13

	Source	Year	Value	Study relied upon	Safety factor
Folpet					
ADI	EFSA	2009	0.1 mg/kg bw per day	52 weeks oral dog study	100
ARfD	EFSA	2009	0.2 mg/kg bw	teratogenicity study in rabbits	100

Table 2-1:	Overview of the	toxicological	reference values

For the metabolite phthalimide, which occurs to a certain extent in primary crops and which is extensively formed in processed commodities produced with a heating step, the experts agreed that the results of the existing studies demonstrate a lower toxicity compared with folpet. Phthalimide is not acutely toxic, its LD_{50} in mice is above 5 mg/kg bw, it is not mutagenic when tested in the multiple strains in the Ames Assey and it is not a developmental toxin; no effects were elicited at the maximum dose tested, *i.e.* 30 mg/kg bw per day. In addition, the data indicated that phthalimide does not have the potential to induce carcinogenic effects. However, since no full toxicological data package was available to derive specific toxicological reference values, the peer review concluded, as a worst case scenario, that the toxicological reference values agreed for folpet apply to the metabolite as well (EFSA, 2009).

EFSA concludes that assuming the same toxicity for phthalimide is a conservative assumption which contributes to the overall conservatism of the risk assessment to a high extent. It is recommended to reconsider this assumption in the framework of the MRL review under Article 12 of Regulation (EC) No 396/2005, desirably on the basis of additional toxicological studies which should be provided by the applicant to characterise and quantify the hazard of phthalimide unequivocally (EFSA, 2012).


3. Residues

3.1. Nature and magnitude of residues in plant

3.1.1. Primary crops

3.1.1.1. Nature of residues

The metabolism of folpet in primary crops (grapes, avocado, tomatoes, potatoes and wheat) was in detail reported in the previously issued reasoned opinion (EFSA, 2011a). The proposed metabolic pathway involved in a first step the formation of phthalimide and thiophosgene through release of the trichloromethylthio- side chain following cleavage of the N-S bond. Phthalimide is further hydrolysed to phthalamic acid¹⁰, phthalic acid¹¹ and related conjugates. The thiophosgene is assumed to be rapidly transformed into CO_2 and incorporated in natural plant components. It is noted that metabolites identified in the metabolism of folpet (*e.g.* phthalic acid, phthalamic acid, phthalimide) were also observed as metabolites resulting from the use of phosmet.

During the peer review the experts concluded that phthalimide should be considered as having the same toxicological profile as folpet, unless differently proven, and agreed to establish the residue definition for enforcement and risk assessment as "*sum of folpet and phthalimide, expressed as folpet*" (EFSA, 2009).

For the use on table grapes, which belong to the group of fruits and fruiting vegetables, EFSA concludes that the metabolism of folpet is sufficiently elucidated. It is noted that the plant residue definition for enforcement currently established in Regulation (EC) No 396/2005 is folpet, with the exception of pome fruits, strawberries, blackberries, raspberries, currants, gooseberries, tomatoes, beans with and without pods, where it is defined as the sum of captan and folpet¹².

Pending a final decision on the residue definition for enforcement and risk assessment, EFSA will perform the consumer risk assessment according to the residue definition proposed in the EFSA conclusion, *i.e.* sum of folpet and phthalimide expressed as folpet, based on the assumption that phthalimide has the same toxicological properties as the parent compound folpet.

3.1.1.2. Magnitude of residues

The submitted residue trials on grapes were analysed for folpet and phthalimide separately. EFSA derived two MRL proposals - one for the existing enforcement residue definition according to Regulation (EC) No 396/2005 (folpet) and another one for the enforcement residue definition proposed by the peer review (folpet and phthalimide, expressed as folpet). To express phthalimide residues as folpet, a molecular weight ratio of 2.02 was applied¹³.

For the <u>NEU use</u> the applicant submitted in total eight residue trials on table grapes. Trials were performed in Germany and Hungary in 2010 and 2011. Two residue trials were disregarded by the EMS and EFSA due to a contamination, resulting in residue levels of 0.17 and 0.39 mg/kg of folpet in the control sample. Table grape is a minor crop in the NEU according to EU guidance document (EC, 2011) and thus the number of submitted residue trials is sufficient to derive a MRL proposal of 1.5 mg/kg for "folpet" and 2 mg/kg for "folpet and phthalimide, expressed as folpet".

For the <u>SEU use</u> the applicant submitted in total eight residue trials on table grapes. Trials were performed in Spain, Italy and France in 2008 and 2011. One residue trial was disregarded by the EMS since it was considered to be an outlier; sufficient explanation was provided, proving this decision. Table grape is a major crop in the SEU according to the EU guidance document (EC, 2011) and thus at least eight GAP compliant residue trials have to be submitted. Although one additional residue trial would be required, EFSA considered this as a minor data gap and derived a MRL proposal of 4 mg/kg for "folpet" and 6 mg/kg for "folpet and phthalimide, expressed as folpet". Since the margin between the highest residue and the MRL proposals was found to be rather wide, EFSA derived, on the basis of the previously used methodology (Rber and Rmax method), alternative MRL proposals of 3 mg/kg and 5 mg/kg for the two residue definitions to be considered by risk managers.

The results of the residue trials, the related risk assessment input values (highest residue, median residue, conversion factors) and the MRL proposals for both residue definitions are summarised in Table 3-1.

The storage stability of folpet in primary crops was investigated in the DAR under Directive 91/414/EEC (Italy, 2004). Additional studies were evaluated in support of the previous MRL application (EFSA, 2011a). Residues of folpet were found to be stable at \leq -18°C for up to 15 months in grapes. The storage stability study for phthalimide which was referred to in the previous EFSA reasoned opinion (EFSA, 2012) has now been finalized, demonstrating that phthalimide is stable in

¹² A combined enforcement residue definition comprising captan and folpet for these commodities causes problems for MRL enforcement. It is therefore recommended to set a separate residue definitions "captan" and "folpet" for these crops as soon as possible (EFSA, 2013).

¹³ MW folpet (296.6)/MW phthalimide (147.13)

grapes for at least 13 months in samples stored at -18°C (Austria, 2013). As the supervised residue trial samples were stored under conditions for which integrity of the samples was demonstrated, it is concluded that the residue data are valid with regard to storage stability.

According to the EMS, the analytical methods used to analyse the supervised residue trial samples have been sufficiently validated and were proven to be fit for the purpose (Austria, 2013).

Table 3-1: Overview of the available residues trials data

Commodity	Residue	Outdoor	Individual trial	results (mg/kg)	Median	Highest	MRL	Median	Comments
	region (a)	/Indoor	Enforcement	Risk assessment	residue (mg/kg) (b)	residue (mg/kg) (c)	proposal (mg/kg)	CF (d)	(e)
			egulation (EC) No 396/2005 f folpet and phthalimide, exp						
Table grapes	NEU	Outdoor	0.09; 0.17; 0.21; 0.22; 0.62; 0.75	0.19; 0.27; 0.47; 0.75; 0.73; 0.85	0.22	0.75	1.5	1.9	$\begin{array}{l} R_{ber} = 1.31 \\ R_{max} = 1.35 \\ MRL_{OECD} = 1.43/1.5 \end{array}$
Table grapes	SEU	Outdoor	<0.02; 0.32; 0.56; 1.0; 1.2; 1.4^{f} ; 1.5^{f}	$<0.12; 0.42; 1.0; 1.18; 2.19; 2.09^{f}; 2.85^{f}$	1.0	1.5	3 ^g or 4	1.8	R_{ber} =2.8 R_{max} =2.78 MRL _{OECD} = 3.1/4.0
			pet and phthalimide, express folpet and phthalimide, exp						
Table grapes	NEU	Outdoor	0.19; 0.27; 0.47; 0.73; 0.75; 0.85	0.19; 0.27; 0.47; 0.73; 0.75; 0.85	0.60	0.85	2	1.0	$\begin{array}{l} R_{ber} = 1.55 \\ R_{max} = 1.56 \\ MRL_{OECD} = 1.6/2.0 \end{array}$
Table grapes	SEU	Outdoor	$<0.12; 0.42; 1.0; 1.18; 2.09^{f}; 2.19; 2.85^{f}$	<0.12; 0.42; 1.0; 1.18; $2.09^{f}; 2.19; 2.85^{f}$	1.18	2.85	5 ^g or 6	1.0	R_{ber} =4.38 R_{max} =4.81 MRL _{OECD} = 5.4/6.0

(a): NEU (Northern and Central Europe), SEU (Southern Europe and Mediterranean), EU (i.e. indoor use) or Import (country code) (EC, 2011).

(b): Median value of the individual trial results according to the enforcement residue definition.

(c): Highest value of the individual trial results according to the enforcement residue definition.

(d): The median conversion factor for enforcement to risk assessment is obtained by calculating the median of the individual conversion factors for each residue trial.

(e): Statistical estimation of MRLs according to the EU methodology (Rber, Rmax; EC, 1997g) and unrounded/rounded values according to the OECD methodology (OECD, 2011).

(f): Residue value within a trial higher at a longer PHI of 69/70 days.

(g): Considering the high margin between the highest residues observed in residue trials and the MRL proposal derived with the OECD calculator, EFSA and the EMS derived alternative MRL proposals, based on the previously used calculation methodology. Risk managers should consider these proposals as possible alternatives.

3.1.1.3. Effect of industrial processing and/or household preparation

The effect of processing on the <u>nature</u> of folpet was investigated in studies performed at three test conditions representing pasteurization, baking/brewing/boiling and sterilization (20 minutes at 90°C, pH 4; 60 minutes at 100°C, pH 5; 20 minutes at 120°C, pH 6). The studies were reported in the framework of the previous EFSA reasoned opinion (EFSA, 2011a). Under representative processing conditions folpet was completely degraded forming phthalimide and phthalic acid as the major products. Phthalimide was formed predominantly under conditions of pasteurisation (92% AR) and seemed to be further converted into phthalic acid with increasing temperatures and pH (42% at 100C°, 81% at 120°C). Under conditions simulating sterilization (120°C, pH6), an unidentified product was found and attributed to phthalic anhydride¹⁴ (18% AR). It is assumed that phthalic anhydride is formed reversibly from phthalic acid by dehydration with heat, with both compounds being in chemical equilibrium depending on pH and temperature (EFSA, 2011a). The study demonstrated that the main compounds present after processing have also been identified as metabolites in the plant metabolism studies. EFSA therefore proposes for processed products to set the residue definition for enforcement and risk assessment as "*sum of folpet and phthalimide, expressed as folpet*", according to the proposals derived by the peer review.

In the framework of the current application, the applicant provided a processing study for raisins. The effect of drying of a grape sample taken form one SEU residue trial was investigated. The EMS calculated a processing factor by comparing the residues in raisins with the residues in grape bunches, including the stalks and stems. Since according to Regulation (EC) No 396/2005 the MRL applies to the berries without stalks and stems, the residues in the unprocessed berries need to be considered for deriving the processing factor. Using this approach, a processing factor of 0.54 is derived; the conversion factor for taking into account the residue definition for risk assessment is calculated to be 2.3.

Additional processing study with raisins has been assessed in the framework of the peer review which indicates a significant concentration of residues in dried grapes. The results, however, do not provide information on residues of phthalimide in grapes and raisins (EFSA, 2009). The study is thus of limited validity.

The results of these studies are presented in Table 3-2.

Processed commodity	Number of studies	Median PF ^(a)	Median CF ^(b)	Comments
Enforcement residue definit Risk assessment residue def folpet				egulation (EC) No 396/2005) folpet and phthalimide, expressed as
Table grape, raisins	2	3.2	-	PF derived by the peer review which does not consider residues of phthalimide (EFSA, 2009)
Table grapes, raisins	1	0.54	2.3 ^c	
folpet (EFSA, 2009)	· •			lpet and phthalimide, expressed as

¹⁴ Phthalic anhydride:

Processed commodity	Number of studies	Median PF ^(a)	Median CF ^(b)	Comments
Table grapes, raisins	1	0.9	1	

(a): The median processing factor is obtained by calculating the median of the individual processing factors of each processing study.

(b): The median conversion factor for enforcement to risk assessment is obtained by calculating the median of the individual conversion factors of each processing study.

(c): The conversion factors are derived as a ratio of residues in processed commodity according to risk assessment residue definition/ residues in processed commodity according to enforcement residue definition

Considering the limited number of processing studies for raisins, the diverging results and the limited validity of the study where phthalimide was not quantified, EFSA is of the opinion that the data are not sufficient to derive reliable processing factor for raisins which can be recommended for inclusion in Annex VI of Regulation (EC) No 396/2005.

3.1.2. Rotational crops

Grape is a permanent crop and therefore the investigation of residues in rotational crops is not required.

3.2. Nature and magnitude of residues in livestock

Since grapes and their by-products are not normally fed to livestock, the nature and magnitude of folpet residues in livestock was not assessed in the framework of this application.

4. Consumer risk assessment

The consumer risk assessment was performed with revision 2 of the EFSA Pesticide Residues Intake Model (PRIMo). This exposure assessment model contains the relevant European food consumption data for different sub-groups of the EU population¹⁵ (EFSA, 2007).

For the chronic exposure assessment EFSA used the median residue value as derived from the residue trials on table grapes (Table 3-1). For wine grapes, tomatoes, onions and garlic, the median residue values were available from the previously issued EFSA reasoned opinions to refine the consumer exposure calculation (EFSA, 2011a, 2012).

For the crops for which the existing EU MRL is set above the LOQ for residue definition "folpet" (cherries, potatoes, cucurbits (inedible peel), kohlrabi, lettuce, barley, wheat, spinach and hops) a conversion factor (CF) of 1.5 was applied to account for residues of phthalimide and represents the highest median CF derived from the available residue data in plants (EFSA, 2011a). For those crops for which the MRL is established for the residue definition "captan and folpet" (pome fruit, strawberries, blackberries, raspberries, currants, gooseberries, beans (with pods), beans (without pods)), it was assumed that only residues of folpet are present in the crop; the conversion factor of 1.5 was applied to all these crops, except for currants, gooseberries, blackberries and raspberries where the MRL is based on the use of captan (EFSA, 2011b) and the application of a conversion factor would overestimate the actual residues of folpet in the crop. For the remaining commodities of plant origin the existing EU MRL at the LOQ was used as an input value. For animal commodities no EU MRLs are currently set, according to Regulation (EC) No 396/2005.

The model assumptions for the long-term exposure assessment are considered to be sufficiently conservative for a first tier exposure assessment, assuming that all food items consumed have been treated with the active substance under consideration. In reality, it is not likely that all food consumed

¹⁵ The calculation of the long-term exposure (chronic exposure) is based on the mean consumption data representative for 22 national diets collected from MS surveys plus 1 regional and 4 cluster diets from the WHO GEMS Food database; for the acute exposure assessment the most critical large portion consumption data from 19 national diets collected from MS surveys is used. The complete list of diets incorporated in EFSA PRIMo is given in its reference section (EFSA, 2007).

will contain residues at the MRL or at levels of the median residue values identified in supervised field trials. However, if this first tier exposure assessment does not exceed the toxicological reference value for long-term exposure (i.e. the ADI), a consumer health risk can be excluded with a high probability.

The acute exposure assessment was performed only with regard to table grapes assuming the consumption of a large portion of the food item as reported in the national food surveys, containing residues at the highest level as observed in supervised field trials. A variability factor accounting for the inhomogeneous distribution on the individual items consumed was included in the calculation, when required (EFSA, 2007).

The input values used for the dietary exposure calculation are summarised in Table 4-1.

Commodity	Chronic expos	ure assessment	Acute expos	sure assessment		
	Input value (mg/kg)	Comment	Input value (mg/kg)	Comment		
Risk assessment residue def	inition: Folpet and pl	hthalimide, expressed	as phthalimide			
Table grapes	1.18	Median residue (SEU use)	2.85	Highest residue (SEU use)		
Wine grapes	1.66	EFSA, 2012	Acute risk	assessment was		
Garlic, onions	0.12	EFSA, 2011a	table grapes.	y with regard to		
Tomatoes ^(a)	0.63	EFSA, 2011a				
Pome fruit ^(a)	4.5	MRL*CF	-			
Cherries	3	MRL*CF	-			
Strawberries ^(a)	4.5	MRL*CF	-			
Blackberries, raspberries ^(a)	10	MRL ^(b)	-			
Currants, gooseberries ^(a)	15	MRL ^(b)	-			
Potatoes	0.15	MRL*CF	-			
Cucurbits-inedible peel	1.5	MRL*CF	-			
Kohlrabi	0.075	MRL*CF	-			
Lettuce, barley, wheat, beans (with pods) ^(a) , beans (without pods) ^(a)	3	MRL*CF				
Spinach	15	MRL*CF	1			
Hops	225	MRL*CF	1			
Other commodities of plant origin	MRL (=LOQ)	See Appendix C				

Table 4-1: Input values for the consumer dietary exposure assessment

(a): The current MRL for these crops is expressed as sum of folpet and captan. For the risk assessment it is assumed that only residues of folpet are present on the crops

(b): The MRL values for these commodities are based on the use of captan (EFSA, 2011b). The conversion factor was not applied to the MRL as this would overestimate the actual residues of folpet.

The estimated exposure was then compared with the toxicological reference values derived for folpet (see Table 2-1). The results of the intake calculation are presented in Appendix B to this reasoned opinion.

No long-term consumer intake concerns were identified for any of the European diets incorporated in the EFSA PRIMo. The total calculated intake accounted for up to 81% of the ADI (DE child diet). The contribution of residues in table grapes to the total consumer exposure accounted for a maximum of 1.5% of the ADI (DE child diet). No acute consumer risk was identified in relation to the intended use on table grapes as the calculated maximum exposure in percentage of the ARfD was 93%.

EFSA notes that the short term exposure related to table grapes exceeds the ARfD if grapes contain residues at the proposed MRL of 3 mg/kg or 4 mg/kg (for folpet), taking into account the variability factor of 5 and the conversion factor of 1.8 for the risk assessment residue definition. The acute exposure accounts for 177% ARfD and 236% ARfD, respectively. In case the variability factor of 3 is used instead of 5, the acute exposure accounts for 106% ARfD and 141% ARfD for the respective MRL proposals for folpet.

EFSA concludes that, according to the internationally agreed methodology for estimation of the consumer exposure, the expected residues in table grapes do not result in an exposure exceeding the toxicological reference value and therefore is unlikely to pose a public health concern. However, the safety margin for the acute exposure is very narrow.

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

The toxicological profile of folpet was assessed in the framework of the peer review under Directive 91/414/EEC and the data were sufficient to derive an ADI of 0.1 mg/kg bw per day and an ARfD of 0.2 mg/kg bw. For the metabolite phthalimide which is observed in primary crops and which is extensively formed in processed commodities there is some evidence that the substance is of lower toxicity compared with folpet. However, as no full toxicological data package was available, it was not possible to derive specific toxicological reference values. Therefore the peer review proposed to apply the toxicological reference values agreed for folpet also for phthalimide.

The metabolism of folpet in primary crops was investigated in grapes, avocado, tomato, potato and wheat. From these studies the peer review concluded to establish the residue definition for enforcement and risk assessment as "sum of folpet and phthalimide, expressed as folpet". For the use on table grapes, EFSA concludes that the metabolism of folpet in primary crops is sufficiently elucidated and no further metabolism data are necessary. The current residue definition for most plant products, including grapes, established in Regulation (EC) No 396/2005 is parent compound folpet. Pending the revision of the existing residue definition. The latter MRL is to be taken into account when the residue definition is amended in the framework of the comprehensive review under Article 12(2) of the above cited Regulation.

EFSA concludes that the submitted supervised residue trials are sufficient to derive for table grapes a MRL proposal of 3 mg/kg or 4 mg/kg for the residue definition "folpet" and 5 mg/kg or 6 mg/kg for the residue definition "folpet and phthalimide, expressed as folpet". Adequate analytical enforcement methods are available to control the residues of folpet and phthalimide in the grapes.

Studies investigating the nature of folpet residues in processed commodities demonstrated that under processing conditions involving heat treatment the parent compound almost totally converts to phthalimide and to a certain extent to phthalic acid and phthalic anhydride. Therefore for processed commodities derived from grapes the residue definition for enforcement and risk assessment is defined as sum of folpet and phthalimide, expressed as folpet.

In the framework of the current application one study was submitted with grapes being processed to raisins. Another study was available from the peer review but residue data on phthalimide were not provided. Considering the limited number of studies available, the diverging results and the limited validity of the study where phthalimide was not quantified, EFSA is of the opinion that the data are not sufficient to derive reliable processing factor for raisins which can be recommended for inclusion in Annex VI of Regulation (EC) No 396/2005.

Grape is a permanent crop and therefore the investigations of residues in rotational crops are not required.

Since grapes and their by-products are normally not fed to livestock, the nature and magnitude of folpet residues in livestock was not assessed in the framework of this application.

The consumer risk assessment was performed with revision 2 of the EFSA Pesticide Residues Intake Model (PRIMo). For the chronic exposure assessment the calculations performed in the framework of the previous MRL applications were updated to take into account the residues of folpet and phthalimide in table grapes from the new intended use.

No long-term consumer intake concerns were identified for any of the European diets incorporated in the EFSA PRIMo. The total calculated intake accounted for up to 81% of the ADI (DE child diet). The contribution of residues in table grapes to the total consumer exposure accounted for a maximum of

1.5% of the ADI (DE child diet). No acute consumer risk was identified in relation to the intended use on table grapes as the calculated maximum exposure in percentage of the ARfD was 93%. EFSA notes that the short term exposure related to table grapes exceeds the ARfD if grapes contain residues at the proposed MRL of 3 mg/kg or 4 mg/kg (for folpet), taking into account the variability factor of 3 and the conversion factor of 1.8 for the risk assessment residue definition. The acute exposure accounts for 106% ARfD and 141% ARfD for the respective MRL proposals for folpet.

EFSA concludes that, according to the internationally agreed methodology for estimation of the consumer exposure, the expected residues in table grapes do not result in an exposure exceeding the toxicological reference values and therefore is unlikely to pose a public health concern. However, the safety margin for the acute exposure is very narrow.

Code number ^(a)	Commodity	Existing EU MRL (mg/kg)	Proposed EU MRL (mg/kg)	Justification for the proposal
Enforceme	ent residue definition: Fo	olpet (Regulati	on EC (No) 396	5/2005)
0151010	Table grapes	0.02*	3 or 4	The MRL proposals are sufficiently supported by data. The MRL of 4 mg/kg is derived using the OECD calculator. The MRL of 3 mg/kg was proposed by the EMS and can be considered as an alternative risk management option. EFSA notes that using the proposed MRLs as input values for the acute exposure calculation, the ARfD is exceeded.
Enforceme	nt residue definition: Fo	olpet and phtha	alimide, express	ed as folpet (EFSA, 2009)
0151010	Table grapes	-	5 or 6	The MRL proposals are sufficiently supported by data. The MRL of 6 mg/kg is derived using the OECD calculator. The MRL of 5 mg/kg was proposed by the EMS and can be considered as an alternative risk management option. EFSA notes that using the proposed MRLs as input values for the acute exposure calculation, the ARfD is exceeded.

RECOMMENDATIONS

(a): According to Annex I of Regulation (EC) No 396/2005.

(*): Indicates that the MRL is set at the limit of analytical quantification.

References

- Austria, 2013. Evaluation report on the setting of MRLs for folpet in table grapes, blueberries and several stone fruits prepared by the evaluating Member State Austria under Article 8 of Regulation (EC) No 396/2005, 25 March 2013, 45 pp.
- EC (European Commission), 1996. Appendix G. Livestock Feeding Studies. 7031/VI/95-rev.4.
- EC (European Commission), 1997a. Appendix A. Metabolism and distribution in plants. 7028/IV/95-rev.3.
- EC (European Commission), 1997b. Appendix B. General recommendations for the design, preparation and realisation of residue trials. Annex 2. Classification of (minor) crops not listed in the Appendix of Council Directive 90/642/EEC. 7029/VI/95-rev.6.
- EC (European Commission), 1997c. Appendix C. Testing of plant protection products in rotational crops. 7524/VI/95-rev.2.
- EC (European Commission), 1997d. Appendix E. Processing studies. 7035/VI/95-rev.5.
- EC (European Commission), 1997e. Appendix F. Metabolism and distribution in domestic animals. 7030/VI/95-rev.3.
- EC (European Commission), 1997f. Appendix H. Storage stability of residue samples. 7032/VI/95-rev.5.
- EC (European Commission), 1997g. Appendix I. Calculation of maximum residue level and safety intervals. 7039/VI/95.
- EC (European Commission), 2000. Residue analytical methods. For pre-registration data requirement for Annex II (part A, section 4) and Annex III (part A, section 5 of Directive 91/414). SANCO/3029/99-rev.4.
- EC (European Commission), 2010a. Classes to be used for the setting of EU pesticide Maximum Residue Levels (MRLs). SANCO 10634/2010 Rev. 0, finalised in the Standing Committee on the Food Chain and Animal Health at its meeting of 23-24 March 2010.
- EC (European Commission), 2010b. Residue analytical methods. For post-registration control. SANCO/825/00-rev.8.1.
- EC (European Commission), 2011. Appendix D. Guidelines on comparability, extrapolation, group tolerances and data requirements for setting MRLs. 7525/VI/95-rev.9.
- EC (European Commission), 2006. Review report for the active substance folpet. Finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 29 September 2006 in view of the inclusion of folpet in Annex I of Council Directive 91/414/EEC. SANCO/10032/2006-rev.4, September 2006, 8 pp.
- EFSA (European Food Safety Authority), 2009. Conclusion on the peer review of the pesticide risk assessment of the active substance folpet. EFSA Scientific Report (2009) 297, 1-80.
- EFSA (European Food Safety Authority), 2007. Reasoned opinion on the potential chronic and acute risk to consumers health arising from proposed temporary EU MRLs.
- EFSA (European Food Safety Authority), 2011a. Reasoned opinion on the modification of the existing MRL(s) for folpet in wine grapes, garlic and tomatoes prepared by EFSA Pesticide Risk Assessment Peer Review (PRAPeR) Unit. EFSA Journal 2011;9(9):2391, 40 pp.
- EFSA (European Food Safety Authority), 2011b. Reasoned opinion on the modification of the existing MRLs for captan in certain berries prepared by EFSA Pesticide Risk Assessment Peer Review (PRAPeR) Unit. EFSA Journal 2011;9(11):2452, 31 pp.
- EFSA (European Food Safety Authority), 2012. Reasoned opinion on the modification of the existing MRL for folpet in wine grapes. EFSA Journal 2012; 10(6):2769, 31 pp.

- EFSA (European Food Safety Authority), 2013. The 2010 European Union Report on Pesticide Residues in Food. EFSA Journal 2013;11(3):3130. [808 pp.] doi:10.2903/j.efsa.2013.3130. Available online: www.efsa.europa.eu/efsajournal
- Italy, 2004. Draft assessment report on the active substance folpet prepared by the rapporteur Member State Italy in the framework of Council Directive 91/414/EEC, June 2004.
- Meier U, 2001. Growth Stages of mono- and dicotyledonous plants. BBCH Monograph, 2nd Ed., Federal Biological Research Centre of Agriculture and Forest. Braunschweig, Germany.
- OECD (Organisation for Economic Co-operation and Development), 2011. OECD MRL Calculator: spreadsheet for single data set and spreadsheet for multiple data set, 2 March 2011. In: Pesticide Publications/Publications on Pesticide Residues.

APPENDICES

Appendix A. Good Agricultural Practice (GAPs)

Crop	Member	F	Pest or	Form	ulation		Application			Applicat	ion rate per t	reatment	PHI	Remarks
and/or	State or	G	group of pests	type	conc.	method kind	growth stage &	number	interval	kg as/hL	water	kg a.s./ha	(days)	
situation	Country	or	controlled		of a.s.		season	min max	min max	min max	L/ha	min max		
				(1 0		(f - h)	(j)	(1)			min max			
(a)		(b)	(c)	(d - f)	(i)			(k)					(1)	(m)
Table	NEU (DE, AT, RO, LU, HU)		Downy mildew (Plasmopara viticola)	WG	80%	Airblast spray; directing spray upwards/sidew ays	Shoot emergence to before ripening BBCH 14-79	4	7	0.16	1000	1.6	56	Total seasonal
grapes	SEU (FR, IT, ES, PT, EL)		Red fire disease (<i>Pseudopeziza</i> tracheiphila)	WG	80%	Airblast spray; directing spray upwards/sidew ays	Shoot emergence to before ripening BBCH 14-79	4	7-10	0.16	400-1000	1.6	56	application rate 6.4 kg a.s./ha

Remarks: (a) For crops, EU or other classifications, e.g. Codex, should be used; where relevant, the use situation should be described (e.g. fumigation of a structure)

(b) Outdoor or field use (F), glasshouse application (G) or indoor application (I)

(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds

(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)

(e) GCPF Technical Monograph No 2, 4th Ed., 1999 or other codes, e.g. OECD/CIPAC, should be used

(f) All abbreviations used must be explained

(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench

(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plants - type of equipment used must be indicated

(i) g/kg or g/l

 Growth stage at last treatment (Growth stages of mono-and dicotyledonous plants. BBCH Monograph, 2nd Ed., 2001), including where relevant, information on season at time of application

(k) The minimum and maximum number of application possible under practical conditions of use must be provided

(l) PHI - minimum pre-harvest interval

(m) Remarks may include: Extent of use/economic importance/restrictions (i.e. feeding, grazing)

Appendix B. Pesticide Residue Intake Model (PRIMO)

		Folpet					Frepar	e workbook for refine calculations	-u
		Status of the active	substance:	Included	Code no.				
		LOQ (mg/kg bw):			proposed LOQ:				
			Toxic	ological en	d points				
		ADI (mg/kg bw/day)):	0.1	ARfD (mg/kg bw):	0.2	Undo	refined calculations	
		Source of ADI:		EFSA	Source of ARfD:	EFSA			
		Year of evaluation:		2009	Year of evaluation:	2009			
ssessment nerfo	rmed for the residue definition" Fo	lpet and phthalm	ide expressed as	s folnet"	•				
ssessment peno		· ·	Chronic risk a		nt - refined ca	alculations			
					e) in % of ADI				
				. 0	n - maximum				
				8	81				
		No of diets excee	ding ADI:		-				
Highest calculated		Highest contributor			2nd contributor to		3rd contributor to		pTMRLs
TMDI values in %		to MS diet	Commodity /		MS diet	Commodity /	MS diet	Commodity /	LOQ
of ADI	MS Diet	(in % of ADI)	group of commoditie	S	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities	(in % of
81	DE child	54.3	Apples		12.3	Wheat	3.1	Spinach	
61	NL child	28.5	Apples		14.2	Wheat	5.6	Spinach	
	WHO Cluster diet B	25.6	Wheat		4.5	Apples	3.0	Gooseberries	
	FR toddler	11.8	Apples		10.6	Spinach	7.9	Wheat	
	DK child	16.5	Wheat		10.5	Apples	3.0	Pears	
	IT kids/toddler		Wheat		4.0	Apples	1.6	Pears	
	IE adult		Wheat		3.7	Barley	3.7	Apples	
	WHO cluster diet D	19.5	Wheat		3.0	Apples	0.7	Barley	
	WHO cluster diet E FR infant	11.8 11.3	Wheat		3.8	Apples	2.7	Wine grapes	
		-	Apples			Spinach		Beans (with pods)	
	UK Toddler ES child	11.8 13.3	Wheat Wheat		7.7	Apples Apples	2.0	Currants (red, black and white) Pears	
	PT General population		Wheat		4.7	Apples	4.1	Wine grapes	
	IT adult		Wheat		3.6	Apples	1.4	Spinach	
	FR all population		Wheat		6.6	Wine grapes	2.1	Apples	
21	WHO Cluster diet F	10.8	Wheat		3.0	Apples	1.8	Barley	
21	SE general population 90th percentile		Wheat		4.7	Apples	1.5	Pears	
20	NL general	6.2	Wheat		5.3	Apples	2.1	Spinach	
20	WHO regional European diet	8.9	Wheat		3.0	Apples	1.1	Lettuce	
20	UK Infant	7.9	Wheat		7.0	Apples	1.1	Pears	
19	ES adult	7.0	Wheat		3.5	Apples	1.6	Lettuce	
14	LT adult	8.4	Apples		3.2	Wheat	0.7	Pears	
	UK vegetarian		Wheat		2.7	Apples	1.4	Wine grapes	
14	DK adult	6.0	Wheat		3.5	Apples	2.3	Wine grapes	
13	PL general population	9.2	Apples		1.3	Pears	0.6	Gooseberries	
	UK Adult	5.0	Wheat		1.8	Apples	1.8	Wine grapes	
8	FI adult	3.0	Wheat		1.8	Apples	1.1	Currants (red, black and white)	
Conclusion:		1							
	pretical Maximum Daily Intakes (TMDI), t							1	

	Acute	sk assessment	/cmidren	- renned calc	ulations		Acute r	isk assessment	/ adults / gene	rai population	 refined calculations 	
_	The second state as a		4.040									
+		essment is based on the								K 1.1 11	· · · · · · · · · · · · · · · · · · ·	
		ty the calculation is base of the less base for the less		t reported MS cons	umption per kg bw	and the correspon	iding unit weight fro	m the MS with the c	ritical consumption.	If no data on the un	it weight was available from that	MS an average
		ulation, the variability fac										
-		ulations, the variability fa					formed with a varia	bilty factor of 3.				
-	Threshold MRL is	the calculated residue	level which woul	d leads to an expos	ure equivalent to 1	00 % of the ARfD.	1			1		
	No of commodition is exceeded (IES	es for which ARfD/ADI TI 1):		No of commodition ARfD/ADI is exce			No of commoditi ARfD/ADI is exce			No of commoditie	es for which ARfD/ADI is 2):	
	IESTI 1	*)	**)	IESTI 2	*)	**)	IESTI 1	*)	**)	IESTI 2	*)	**)
	Highest % of ARfD/ADI	Commodities	pTMRL/ threshold MRL (mg/kg)	Highest % of ARfD/ADI	Commodities	pTMRL/ threshold MRL (ma/ka)	Highest % of ARfD/ADI	Commodities	pTMRL/ threshold MRL (mg/kg)	Highest % of ARfD/ADI	Commodities	pTMRL threshold f (mg/kg
-	93	Table grapes	2.85 / -	93	Table grapes	2.85 / -	45	Table grapes	2.85 / -	45	Table grapes	2.85 /
Î	No of critical MR	_s (IESTI 1)					No of critical MR					
Ì	is exceeded:						ARfD/ADI is exce	eded:				
			***)						***)			
	Highest % of ARfD/ADI	Processed commodities	pTMRL/ threshold MRL (mg/kg)				Highest % of ARfD/ADI	Processed commodities	pTMRL/ threshold MRL (mg/kg)			
	**) pTMRL: provision	e IESTI calculations are onal temporary MRL onal temporary MRL for			If the ARID is exce	eeded for more that	n 5 commodities, a	III IES II values > 90%	6 of ARtD are report	ed.		
	Conclusion:											
	For Folpet IESTI 1	and IESTI 2 were calcula	ated for food con	modities for which	pTMRLs were subr	mitted and for whic	h consumption dat	a are available.				
	No exceedance of	the ARfD/ADI was identi	fied for any unpre	ocessed commodity	<i>.</i>							
-												

Appendix C. Existing EU maximum residue levels (MRLs)

(Pesticides - Web Version - EU MRLs (Pesticides - Web Version - EU MRLs (File created on 09/09/2013 13:50))

Code number	Groups and examples of individual products to which the MRLs apply	Folpet (R)	Code number	Groups and examples of individual products to which the MRLs apply	Folpet (R)	Code number	Groups and examples of individual products to which the MRLs apply	Folpet (R)	Code number	Groups and examples of individual products to which the MRLs apply	Folpet (R)
100000	1. FRUIT FRESH OR			mirabelle, sloe, red date/Chinese		161050	Carambola (Bilimbi)	0,02*		eddoe/Japanese taro, tannia)	
	FROZEN NUTS			date/Chinese jujube (Ziziphus		161060	Persimmon	0,02*	212020	Sweet potatoes	0,02*
110000	(i) Citrus fruit	0,02*		zizyphus))		161070	Jambolan (java plum) (Java	0,02*	212030	Yams (Potato bean/yam bean,	0,02*
110010	Grapefruit (Shaddocks, pomelos,	0,02*	140990	Others	0,02*		apple/water apple, pomerac, rose			Mexican yam bean)	
	sweeties, tangelo (except		150000	(v) Berries & small fruit			apple, Brazilean cherry, Surinam		212040	Arrowroot	0,02*
	mineola), ugli and other hybrids)		151000	(a) Table and wine grapes			cherry/grumichama (Eugenia		212990	Others	0,02*
110020	Oranges (Bergamot, bitter	0,02*	151010	Table grapes	0,02*	1 (1000	uniflora))	0.02*	213000	(c) Other root and tuber	0,02*
	orange, chinotto and other hybrids)		151020	Wine grapes	10	161990	Others	0,02*		vegetables except sugar beet	
110030	1	0,02*	152000	(b) Strawberries	3	162000	(b) Inedible peel, small		213010	Beetroot	0,02*
110050	Lemons (Citron, lemon, Buddha's hand (Citrus medica	0,02**	153000	(c) Cane fruit		162010	Kiwi	0,02*	213020	Carrots	0,02*
	var. sarcodactvlis))		153010	Blackberries	10	162020	Lychee (Litchi) (Pulasan,	0,02*	213030	Celeriac	0,02*
110040	Limes	0,02*	153020	Dewberries (Loganberries,	0,02*		rambutan/hairy litchi, longan, mangosteen, langsat, salak)		213040	Horseradish (Angelica roots,	0,02*
110040	Mandarins (Clementine,	0.02*		tayberries, boysenberries,		162030	Passion fruit	0,02*	212050	lovage roots, gentiana roots)	0.02*
110050	tangerine, mineola and other	0,02		cloudberries and other Rubus		162030	Prickly pear (cactus fruit)	0.02*	213050	Jerusalem artichokes (Crosne)	0,02*
	hybrids tangor (Citrus reticulata x		153030	hybrids)	10	162040	Star apple	0.02*	213060	Parsnips	0,02*
	sinensis))		153030	Raspberries (Wineberries, arctic bramble/raspberry, (Rubus	10	162050	American persimmon (Virginia	0,02*	213070	Parsley root	0,02*
110990	Others	0.02*		arcticus), nectar raspberries		162060	kaki) (Black sapote, white sapote,	0,02*	213080	Radishes (Black radish, Japanese	0,02*
120000	(ii) Tree nuts	0,02*		(Rubus arcticus x Rubus idaeus))			green sapote, canistel/yellow			radish, small radish and similar	
120000	Almonds	0,02*	153990	Others	0,02*		sapote, mammey sapote)			varieties, tiger nut (Cyperus	
120010	Brazil nuts	0,02*	154000	(d) Other small fruit & berries	0,02	162990	Others	0,02*	213090	esculentus)) Salsify (Scorzonera, Spanish	0.02*
120020	Cashew nuts	0,02*	154010	Blueberries (Bilberries)	0.02*	163000	(c) Inedible peel, large	0.02*	213090	salsify (Scorzonera, Spanish salsify/Spanish oysterplant, edible	0,02*
120030	Chestnuts	0,02*	154010	Cranberries (Cowberries/red	0,02*	163010	Avocados	0,02*		burdock)	
120050	Coconuts	0.02*	134020	bilberries (V. vitis-idaea))	0,02	163020	Bananas (Dwarf banana, plantain,	0.02*	213100	Swedes	0,02*
120060	Hazelnuts (Filbert)	0.02*	154030	Currants (red, black and white)	15	105020	apple banana)	0,02	213100	Turnips	0.02*
120070	Macadamia	0.02*	154040	Gooseberries (Including hybrids	15	163030	Mangoes	0.02*	213990	Others	0,02*
120080	Pecans	0,02*	15-10-10	with other Ribes species)	15	163040	Papaya	0.02*	220000	(ii) Bulb vegetables	0,02
120090	Pine nuts	0.02*	154050	Rose hips	0,02*	163050	Pomegranate	0,02*	220000	Garlic	0,1
120100	Pistachios	0,02*	154060	Mulberries (Arbutus berry)	0,02*	163060	Cherimoya (Custard apple, sugar	0,02*	220010	Onions (Other bulb onions,	0,1
120110	Walnuts	0,02*	154070	Azarole (mediteranean medlar)	0,02*		apple/sweetsop, ilama (Annona	-,	220020	silverskin onions)	0,1
120990	Others	0,02*	101070	(Kiwiberry (Actinidia arguta))	0,02		diversifolia) and other medium		220030	Shallots	0,02*
130000	(iii) Pome fruit	3	154080	Elderberries (Black	0,02*		sized Annonaceae fruits)		220030	Spring onions and welsh onions	0.02*
130010	Apples (Crab apple)	3		chokeberry/appleberry, mountain	ŕ	163070	Guava (Red pitaya/dragon fruit	0,02*	2200.0	(Other green onions and similar	0,02
130020	Pears (Oriental pear)	3		ash, buckthorn/sea sallowthorn,			(Hylocereus undatus))			varieties)	
130030	Quinces	3		hawthorn, serviceberries, and		163080	Pineapples	0,02*	220990	Others	0,02*
130040	Medlar	3		other treebenries)		163090	Bread fruit (Jackfruit)	0,02*	230000	(iii) Fruiting vegetables	, ,
130050	Loquat	3	154990	Others	0,02*	163100	Durian	0,02*	231000	(a) Solanacea	
130990	Others	3	160000	(vi) Miscellaneous fruit	0,02*	163110	Soursop (guanabana)	0,02*	231010	Tomatoes (Cherry tomatoes,	3
140000	(iv) Stone fruit		161000	(a) Edible peel	0,02*	163990	Others	0,02*		Physalis spp., gojiberry,	
140010	Apricots	0,02*	161010	Dates	0,02*	200000	2. VEGETABLES FRESH OR		1	wolfberry (Lycium barbarum and	
140020	Cherries (Sweet cherries, sour	2	161020	Figs	0,02*		FROZEN			L. chinense), tree tomato)	
1.0020	cherries)	-	161030	Table olives	0,02*	210000	(i) Root and tuber vegetables		231020	Peppers (Chilli peppers)	0,02*
140030	Peaches (Nectarines and similar	0,02*	161040	Kumquats (Marumi kumquats,	0,02*	211000	(a) Potatoes	0,1	231030	Aubergines (egg plants) (Pepino,	0,02*
	hybrids)	-,		nagami kumquats, limequats		212000	(b) Tropical root and tuber	0,02*	1	antroewa/white eggplant (S.	
140040	Plums (Damson, greengage,	0,02*		(Citrus aurantifolia x Fortunella			vegetables			macrocarpon))	
				spp.))		212010	Cassava (Dasheen,	0,02*	231040	Okra (lady's fingers)	0,02*

Code	Groups and examples of	Folpet (R)
number	individual products to which	
221000	the MRLs apply	0.02*
231990	Others	0,02*
232000	(b) Cucurbits — edible peel	0,02*
232010	Cucumbers	0,02*
232020	Gherkins	0,02*
232030	Courgettes (Summer squash,	0,02*
	marrow (patisson), lauki (Lagenaria siceraria), chayote,	
	sopropo/bitter melon, snake	
	gourd, angled luffa/teroi)	
232990	Others	0,02*
233000	(c) Cucurbits-inedible peel	1
233010	Melons (Kiwano)	1
233020	Pumpkins (Winter squash,	1
255020	marrow (late variety))	1
233030	Watermelons	1
233990	Others	1
234000	(d) Sweet corn (Baby corn)	0,02*
239000	(e) Other fruiting vegetables	0,02*
240000	(iv) Brassica vegetables	
241000	(a) Flowering brassica	0,02*
241010	Broccoli (Calabrese, Broccoli	0,02*
	raab, Chinese broccoli)	· ·
241020	Cauliflower	0,02*
241990	Others	0,02*
242000	(b) Head brassica	0,02*
242010	Brussels sprouts	0,02*
242020	Head cabbage (Pointed head	0,02*
	cabbage, red cabbage, savoy	
	cabbage, white cabbage)	
242990	Others	0,02*
243000	(c) Leafy brassica	0,02*
243010	Chinese cabbage (Indian or	0,02*
	Chinese) mustard, pak choi,	
	Chinese flat cabbage/ai goo choi),	
	choi sum, Peking cabbage/pe- tsai)	
243020	Kale (Borecole/curly kale,	0,02*
243020	collards, Portuguese Kale,	0,02*
	Portuguese cabbage, cow	
	cabbage)	
243990	Others	0,02*
244000	(d) Kohlrabi	0,05
250000	(v) Leaf vegetables & fresh herbs	,
251000	(a) Lettuce and other salad plants	
	including Brassicacea	
251010	Lamb's lettuce (Italian corn salad)	0,02*
251020	Lettuce (Head lettuce, lollo rosso	2
	(cutting lettuce), iceberg lettuce,	
	romaine (cos) lettuce)	
251030	Scarole (broad-leaf endive) (Wild	0,02*

Code	Groups and examples of	Folpet (R)
number	individual products to which	rouper (K)
number	the MRLs apply	
	chicory, red-leaved chicory,	
	radicchio, curly leaf endive, sugar	
	loaf (C. endivia var. crispum/C.	
	intybus var. foliosum), dandelion	
	greens)	
251040	Cress (Mung bean sprouts, alfalfa	0,02*
251040	sprouts)	0,02
251050	Land cress	0.02*
251060	Rocket, Rucola (Wild rocket	0,02*
	(Diplotaxis spp.))	ŕ
251070	Red mustard	0,02*
251080	Leaves and sprouts of Brassica	0,02*
	spp, including turnip greens	
	(Mizuna, leaves of peas and	
	radish and other babyleaf crops,	
	including brassica crops (crops	
	harvested up to 8 true leaf stage),	
	kohlrabi leaves)	
251990	Others	0,02*
252000	(b) Spinach & similar (leaves)	
252010	Spinach (New Zealand spinach,	10
	amaranthus spinach (pak-khom,	
	tampara), tajer leaves,	
	bitterblad/bitawiri)	
252020	Purslane (Winter	0,02*
	purslane/miner's lettuce, garden	
	purslane, common purslane,	
	sorrel, glassworth, agretti (Salsola	
	soda))	
252030	Beet leaves (chard) (Leaves of	0,02*
252000	beetroot)	0.02*
252990	Others	0,02*
253000	(c) Vine leaves (grape leaves)	0,02*
	(Malabar nightshade, banana	
	leaves, climbing wattle (Acacia	
254000	pennata))	0.02*
254000	(d) Water cress (Morning	0,02*
	glory/Chinese convolvulus/water convolvulus/water	
	spinach/kangkung (Ipomea	
	aquatica), water clover, water	
	mimosa)	
255000	(e) Witloof	0,02*
256000	(f) Herbs	0.02*
256010	Chervil	0,02*
256020	Chives	0,02*
256030	Celery leaves (Fennel leaves,	0,02*
200000	coriander leaves, dill leaves,	0,02
	caraway leaves, lovage, angelica,	
	sweet cisely and other Apiacea	
	leaves, culantro/stinking/long	
	00	

1

Code	Groups and examples of	Folpet (R)
number	individual products to which	-
	the MRLs apply	
	coriander/stink weed (Eryngium	
	foetidum))	
256040	Parsley (leaves of root parsley)	0,02*
256050	Sage (Winter savory, summer	0,02*
	savory, Borago officinalis leaves)	
256060	Rosemary	0,02*
256070	Thyme (Marjoram, oregano)	0,02*
256080	Basil (Balm leaves, mint,	0,02*
	peppermint, holy basil, sweet	
	basil, hairy basil, edible flowers	
	(marigold flower and others),	
	pennywort, wild betel leaf, curry	
25.000	leaves)	0.02*
256090	Bay leaves (laurel) (Lemon grass)	0,02*
256100	Tarragon (Hyssop)	0,02*
256990	Others	0,02*
260000	(vi) Legume vegetables (fresh)	
260010	Beans (with pods) (Green	2
	bean/French beans/snap beans,	
	scarlet runner bean, slicing bean,	
	yard long beans, guar beans, soya	
260020	beans)	2
260020	Beans (without pods) (Broad	2
	beans, flageolets, jack bean, lima	
260030	bean, cowpea) Peas (with pods)	0,02*
200050	Peas (with pods) (Mangetout/sugar peas/snow	0,02*
	(Mangelou/sugar peas/snow peas)	
260040	Peas (without pods) (Garden pea,	0,02*
200040	green pea, chickpea)	0,02
260050	Lentils	0,02*
260990	Others	0,02*
270000	(vii) Stem vegetables (fresh)	0,02*
270000	Asparagus	0,02*
270010	Cardoons (Borago officinalis	0,02*
270020	stems)	0,02
270030	Celery	0,02*
270030	Fennel	0,02*
270040	Globe artichokes (Banana flower)	0,02*
270050	Leek	0,02*
270000	Rhubarb	0,02*
270070	Bamboo shoots	0,02*
270030	Palm hearts	0,02*
270990	Others	0,02*
280000	(viii) Fungi	0,02*
280000	Cultivated fungi (Common	0,02*
200010	mushroom, oyster mushroom,	0,02
	shiitake, fungus mycelium	
	(vegetative parts))	
280020	Wild fungi (Chanterelle, truffle,	0,02*
200020		0,02

Modification of the existing MRLs for folpet in table grapes

Code number	Groups and examples of individual products to which the MRLs apply	Folpet (R
	morel, cep)	
280990	Others	0,02*
290000	(ix) Sea weeds	· · · ·
300000	3. PULSES, DRY	0,02*
300010	Beans (Broad beans, navy beans,	0,02*
	flageolets, jack beans, lima beans, field beans, cowpeas)	- / -
300020	Lentils	0,02*
300030	Peas (Chickpeas, field peas, chickling vetch)	0,02*
300040	Lupins	0,02*
300990	Others	0,02*
400000	4. OILSEEDS AND OILFRUITS	0,02*
401000	(i) Oilseeds	0,02*
401010	Linseed	0,02*
401020	Peanuts	0,02*
401030	Poppy seed	0,02*
401040	Sesame seed	0,02*
401050	Sunflower seed	0,02*
401060	Rape seed (Bird rapeseed, turnip rape)	0,02*
401070	Soya bean	0,02*
401080	Mustard seed	0,02*
401090	Cotton seed	0,02*
401100	Pumpkin seeds (Other seeds of Cucurbitaceae)	0,02*
401110	Safflower	0,02*
401120	Borage (Purple viper's bugloss/Canary flower (Echium plantagineum), Com Gromwell (Buglossoides arvensis))	0,02*
401130	Gold of pleasure	0,02*
401140	Hempseed	0,02*
401150	Castor bean	0,02*
401990	Others	0,02*
402000	(ii) Oilfruits	0,02*
402010	Olives for oil production	0,02*
402020	Palm nuts (palmoil kernels)	0,02*
402030	Palmfruit	0,02*
402040	Kapok	0,02*
402990	Others	0,02*
500000	5. CEREALS	
500010	Barley	2
500020	Buckwheat (Amaranthus, quinoa)	0,02*
500030	Maize	0,02*
500040	Millet (Foxtail millet, teff, finger millet, pearl millet)	0,02*
500050	Oats	0,02*

Code	Groups and examples of	Folpet (R)
number	individual products to which	/
	the MRLs apply	
500060	Rice (Indian/wild rice (Zizania	0,02*
	aquatica))	
500070	Rye	0,02*
500080	Sorghum	0,02*
500090	Wheat (Spelt, triticale)	2
500990	Others (Canary grass seeds (Phalaris canariensis))	0,02*
600000	6. TEA, COFFEE, HERBAL INFUSIONS AND COCOA	0,05*
610000	(i) Tea	0,05*
620000	(ii) Coffee beans	0,05*
630000	(iii) Herbal infusions (dried)	0,05*
631000	(a) Flowers	0,05*
631010	Camomille flowers	0,05*
631020	Hybiscus flowers	0,05*
631030	Rose petals	0,05*
631040	Jasmine flowers (Elderflowers (Sambucus nigra))	0,05*
631050	Lime (linden)	0,05*
631990	Others	0,05*
632000	b) Leaves	0,05*
632010	Strawberry leaves	0,05*
632020	Rooibos leaves (Ginkgo leaves)	0,05*
632030	Maté	0,05*
632990	Others	0,05*
633000	(c) Roots	0,05*
633010	Valerian root	0,05*
633020	Ginseng root	0,05*
633990	Others	0,05*
639000	(d) Other herbal infusions	0,05*
640000	(iv) Cocoabeans (fermented or dried)	0,05*
650000	(v) Carob (st johns bread)	0,05*
700000	7. HOPS (dried)	150
800000	8. SPICES	0,05*
810000	(i) Seeds	0,05*
810010	Anise	0,05*
810020	Black caraway	0,05*
810030	Celery seed (Lovage seed)	0,05*
810040	Coriander seed	0,05*
810050	Cumin seed	0,05*
810060	Dill seed	0,05*
810070	Fennel seed	0,05*
810080	Fenugreek	0,05*
810090	Nutmeg	0,05*
810990	Others	0,05*
820000	(ii) Fruits and berries	0,05*
820010	Allspice	0,05*
820020	Sichuan pepper (Anise pepper, Japan pepper)	0,05*

Code	Groups and examples of	Folpet (R)
number	individual products to which	• · ·
	the MRLs apply	
820030	Caraway	0,05*
820040	Cardamom	0,05*
820050	Juniper berries	0,05*
820060	Pepper, black, green and white	0,05*
	(Long pepper, pink pepper)	
820070	Vanilla pods	0,05*
820080	Tamarind	0,05*
820990	Others	0,05*
830000	(iii) Bark	0,05*
830010	Cinnamon (Cassia)	0,05*
830990	Others	0,05*
840000	(iv) Roots or thizome	0,05*
840010	Liquorice	0,05*
840020	Ginger	0,05*
840030	Turmeric (Curcuma)	0,05*
840040	Horseradish	0,05*
840990	Others	0,05*
850000	(v) Buds	0,05*
850010	Cloves	0,05*
850020	Capers	0,05*
850990	Others	0,05*
860000	(vi) Flower stigma	0,05*
860010	Saffron	0,05*
860990	Others	0,05*
870000	(vii) Aril	0,05*
870010	Mace	0,05*
870990	Others	0,05*
900000	9. SUGAR PLANTS	0,02*
900010	Sugar beet (root)	0,02*
900020	Sugar cane	0,02*
900030	Chicory roots	0,02*
900990	Others	0,02*
1000000	10. PRODUCTS OF ANIMAL	
	ORIGIN-TERRESTRIAL	
	ANIMALS	
1010000	(i) Tissue	
1011000	(a) Swine	
1011010	Muscle	
1011020	Fat	
1011030	Liver	
1011040	Kidney	
1011050	Edible offal	
1011990	Others	
1012000	(b) Bovine	
1012010	Muscle	
1012020	Fat	
1012030	Liver	
1012040	Kidney	
1012050	Edible offal	

Cuouma and aroumlas of	Folnet (P)
	Folpet (R)
Fat	
Liver	
Kidney	
Edible offal	
Others	
(d) Goat	
Muscle	
Fat	
Liver	
Kidney	
Edible offal	
Others	
(e) Horses, asses, mules or hinnies	
Muscle	
Fat	
Liver	
Kidney	
Edible offal	
Others	
(f) Poultry -chicken, geese, duck,	
turkey and Guinea fowl-, ostrich,	
pigeon	
Chicken	
	Liver Kidney Edible offal Others (d) Goat Muscle Fat Liver Kidney Edible offal Others (e) Horses, asses, mules or hinnies Muscle Fat Liver Kidney Edible offal Others (f) Poultry -chicken, geese, duck, turkey and Guinea fowl-, ostrich, pigeon Muscle Fat Liver Kidney Edible offal Others (g) Other farm animals (Rabbit, kangaroo, deer) Muscle Fat Liver Kidney Edible offal Others (ii) Milk Cattle Sheep Goat Horse Others (iii) Bird eggs

Code number	Groups and examples of individual products to which the MRLs apply	Folpet (R)
1030030	Goose	
1030040	Quail	
1030990	Others	
1040000	(iv) Honey (Royal jelly, pollen, honey comb with honey (comb honey))	
1050000	(v) Amphibians and reptiles(Frog legs, crocodiles)	
1060000	(vi) Snails	
1070000	(vii) Other terrestrial animal products (Wild game)	
	cates lower limit of a primination	nalytical
(R): The	enforcement residue definit	ition for

(c) The enforcement residue deminion for the following codes is " the sum of captan and folpet": 0130000; 0152000; 0153010; 0153030; 0154030; 0154040; 0231010; 0260010.

ABBREVIATIONS

ADI	acceptable daily intake
ARfD	acute reference dose
a.s.	active substance
AT	Austria
BBCH	growth stages of mono- and dicotyledonous plants
bw	body weight
CF	conversion factor for enforcement residue definition to risk assessment residue definition
CXL	Codex Maximum Residue Limit (Codex MRL)
DAR	Draft Assessment Report
DE	Germany
EC	European Community
EFSA	European Food Safety Authority
EL	Greece
EMS	evaluating Member State
ES	Spain
EU	European Union
FR	France
GAP	good agricultural practice
GC-ECD	gas chromatography with electron capture detector
GC-MS	gas chromatography with mass spectrometry detector
GC-MS GCPF	gas chromatography with mass spectrometry detector Global Crop Protection Federation (former GIFAP)
GCPF	Global Crop Protection Federation (former GIFAP)
GCPF ha	Global Crop Protection Federation (former GIFAP) hectare
GCPF ha hL	Global Crop Protection Federation (former GIFAP) hectare hectolitre
GCPF ha hL HU	Global Crop Protection Federation (former GIFAP) hectare hectolitre Hungary
GCPF ha hL HU ILV	Global Crop Protection Federation (former GIFAP) hectare hectolitre Hungary independent laboratory validation
GCPF ha hL HU ILV ISO	Global Crop Protection Federation (former GIFAP) hectare hectolitre Hungary independent laboratory validation International Organisation for Standardisation
GCPF ha hL HU ILV ISO IT	Global Crop Protection Federation (former GIFAP) hectare hectolitre Hungary independent laboratory validation International Organisation for Standardisation Italy
GCPF ha hL HU ILV ISO IT IUPAC	Global Crop Protection Federation (former GIFAP) hectare hectolitre Hungary independent laboratory validation International Organisation for Standardisation Italy International Union of Pure and Applied Chemistry
GCPF ha hL HU ILV ISO IT IUPAC LOQ	Global Crop Protection Federation (former GIFAP) hectare hectolitre Hungary independent laboratory validation International Organisation for Standardisation Italy International Union of Pure and Applied Chemistry limit of quantification
GCPF ha hL HU ILV ISO IT IUPAC LOQ MRL	Global Crop Protection Federation (former GIFAP) hectare hectolitre Hungary independent laboratory validation International Organisation for Standardisation Italy International Union of Pure and Applied Chemistry limit of quantification maximum residue level
GCPF ha hL HU ILV ISO IT IUPAC LOQ MRL MS	Global Crop Protection Federation (former GIFAP) hectare hectolitre Hungary independent laboratory validation International Organisation for Standardisation Italy International Union of Pure and Applied Chemistry limit of quantification maximum residue level Member States
GCPF ha hL HU ILV ISO IT IUPAC LOQ MRL MS NEU	Global Crop Protection Federation (former GIFAP)hectarehectolitreHungaryindependent laboratory validationInternational Organisation for StandardisationItalyInternational Union of Pure and Applied Chemistrylimit of quantificationmaximum residue levelMember Statesnorthern European Union

PHI	pre-harvest interval
PRIMo	(EFSA) Pesticide Residues Intake Model
PT	Portugal
R _{ber}	statistical calculation of the MRL by using a non-parametric method
R _{max}	statistical calculation of the MRL by using a parametric method
RD	residue definition
RMS	rapporteur Member State
RO	Romania
SEU	Southern European Union
WG	water dispersible granule