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ABSTRACT 

The development of electrical control system faults can lead 

to increased mechanical component degradation, severe 

reduction of asset performance, and a direct increase in 

annual maintenance costs. This paper presents a highly 

accurate data driven classification system for the diagnosis 

of electrical control system faults, in particular, wind turbine 

pitch faults. Early diagnosis of these faults can enable 

operators to move from traditional corrective or time based 

maintenance policy towards a predictive maintenance 

strategy, whilst simultaneously mitigating risks and 
requiring no further capital expenditure. Our approach 

provides transparent, human-readable rules for maintenance 

operators which have been validated by an independent 

domain expert. Data from 8 wind turbines was collected 

every 10 minutes over a period of 28 months with 10 

attributes utilised to diagnose pitch faults. Three fault 

classes are identified: “no pitch fault”, “potential pitch fault” 

and “pitch fault established”. Of the turbines, 4 are used to 

train the system with a further 4 for validation. Repeated 

random sub-sampling of the majority fault class was used to 

reduce computational overheads whilst retaining 

information content and balancing the training and 
validation sets. A classification accuracy of 85.50% was 

achieved with 14 human readable rules generated via the 

RIPPER inductive rule learner. Of these rules, 11 were 

described as “useful and intuitive” by an independent 

domain-expert. An expert system was developed utilising 

the model along with domain knowledge, resulting in a 

pitch fault diagnostic accuracy of 87.05% along with a 

42.12% reduction in pitch fault alarms. 

1. INTRODUCTION 

Maintenance costs for wind energy represent between 20- 

25% of total asset cost, of which, up to 75% is due to 

unscheduled maintenance (WWEA, 2012). This deters 

future investment, increases the cost of wind energy and as 

such, reduces the long term economic viability of wind 

energy. As corrective maintenance can be up to 40 times 

more expensive than a proactive strategy (Hatch, 2004) 

there is the potential for significant cost savings on wind 

turbine operations and maintenance (O&M) costs. For this 

reason, maintenance is moving from a “fail and fix” reactive 

approach to maintenance, to a “predict and prevent” strategy 

for maintenance (Levrat, et al 2008). Maintenance savings 

of 20-25% can be achieved using condition based 
maintenance (CBM) (Djurdjanovic, et al 2003), this is 

echoed by Wu & Clements-Croome (2005) who have shown 

the potential for proactive maintenance actions to be 

performed at 10 times to 40 times less than respective 

corrective maintenance actions. However, uptake across all 

domains of prognostic technologies for the prediction of 

future failure modes has been slower than anticipated. It is 

believed that within the UK, CBM and prognostic 

technologies have only reached 10-20% penetration into 

industry (Moore & Starr, 2006). This is believed to be due 

to many factors, such as: the lack of transparency of some 

expert systems, the capital outlay required for data 
collection and analysis, the uncertainty and inaccuracy 

present within some techniques, staff training costs and no 

proven track record in similar domains. Whilst strategies 

such as reliability centred maintenance (RCM) can help 

optimise available maintenance resources, they are static in 

nature in that they do not take into account the current level 

of asset degradation or external conditions. This means that 

whilst cost savings can be made through RCM (Niu, et al 

2010), severe degradation is likely to go unnoticed for 

extended periods, causing secondary damage to auxiliary 

systems, reducing component efficiency and as a result, 
reduce overall return on investment for stakeholders. Due to 

as few as 20% of assets failing within the manufacturers 

prescribed times (Eti, et al. 2006), there is a need to move 

away from a static analysis towards a more dynamic, real-

time approach to maintenance. Currently, maintenance is 

often seen by senior management as a cost minimisation 

exercise, rather than an attempt to maximise benefit (Marais 
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& Saleh, 2009). This is due to the ease of quantifying the 

cost of maintenance, but not the benefit provided. This 

attitude towards maintenance means that most efforts to 

reduce annual maintenance expenditure result in a direct 

loss of availability or reduction in the quality of service 

provided (Gomez-Fernandez & Crespo-Marquez, 2009). 
Typically, condition based monitoring is performed using 

high frequency data – acoustic emissions and vibration data 

– collected for the remote diagnosis and prognosis of the 

gearbox, generator and main bearing (Crabtree, 2010). 

However, being able to establish and track the development 

of a fault over longer lengths of time through utilising low 

frequency data is interesting as it provides feedback into the 

maintenance planning and scheduling process, enabling the 

optimisation of available resources, thereby reducing annual 

maintenance costs. In this paper we present a new 

methodology for the development of a transparent expert 

system for the detection of wind turbine pitch faults utilising 
a data-intensive machine learning approach. This approach 

describes a classifier to determine the current condition of 

the pitch system on a wind turbine through analysis of low 

frequency SCADA data, and if a fault is observed within the 

pitch system, an expert system recommends the correct 

action to take depending upon its severity. Severe pitch 

faults requiring potential maintenance actions can then be 

presented to the maintenance operator whilst filtering out 

unnecessary information and reducing the cognitive load 

which is placed upon them. As the data utilised for this 

methodology is from a pre-existing SCADA system, no 
further sensors are required and no additional capital 

expenditure is incurred. This mitigates many of the risks 

associated with moving to a proactive maintenance strategy. 

2.  WIND TURBINE PITCH FAULTS 

Wind turbine pitch faults are deviation of the blade pitch 

angle from a predefined optimum for a given wind speed 

and are the most common fault mode to occur. As can be 

seen in Table 1, pitch faults account for over one third of all 

faults which are present within the SCADA system which 

are then presented to the maintenance operator. It is not 

uncommon for over 2,000 SCADA pitch fault alarms to 

occur over a year. However, less than 5% of these directly 
correlate to a maintenance action within the maintenance 

log; wasting available maintenance resources with undue 

inspection and analysis. As such, there is a need to develop 

a data-driven expert system to allow the encapsulation of the 

behaviours both during and immediately preceding a pitch 

fault so that maintenance operators can further understand 

the extent of the fault, the causation of the fault and the 

maintenance action required. Accurate identification of 

pitch faults is of particular interest to maintenance operators 

and decision makers, as these faults are often the result of 

the electrical control system, and not due to severe physical 
degradation of the pitch motors controlling the wind turbine 

blades. As such, when a pitch fault is identified, the 

potential exists to remotely reset the turbine pitch system. 

This enables the turbine to return to normal operating 

conditions, without the need for excessive downtime for the 

required inspection. As such the energy generation can be 

increased, with the potential risk of increased degradation 

on auxiliary components reduced. Should a mechanical fault 
be observed, this will then be diagnosed by the system 

presented in Section 4, enabling the effective scheduling and 

planning of maintenance activities. 

3. RELATED WORK 

Over recent years, interest in improving the efficiency of all 

aspects of the wind turbine life cycle has become of 

paramount importance to ensure a continued transition to a 

low carbon economy and ending the reliance on fossil fuels. 

As up to 25% of total cost is manifested as maintenance for 

a wind turbine, effective maintenance through condition 

based maintenance and proactive maintenance is essential to 

increasing global investment in wind energy, reducing 
energy prices to consumers and ensuring continued reliable 

operation as transitions are made to the smart grid (Massoud 

Amin & Wollenberg, 2005). Prognosis of the wind turbine 

enables 5 key benefits to be provided to the operator as 

stated in Hameed et al (2009). They are: 

1. The avoidance of premature failures - reducing 

secondary damage to components and also 

reducing catastrophic failures. 

2. A reduction in maintenance costs - by reducing 

catastrophic failures and optimising inspection 

intervals. 

3. The capability of remote diagnosis – essential due 

to the remote nature of offshore turbines. 

4. An increase in generation capacity - prognosis 

enables maintenance to be performed at low wind 

speed to ensure maximal utilisation. 

5. Optimised future designs - large quantities of data 

can be analysed to ensure new generation turbines 

are more reliable. 

Typically, condition monitoring on a wind turbine focuses 

on the high value components; the gearbox, generator and 

main bearing (Crabtree, 2010). Strong prognostic capability 

is prevalent within the literature. For example, the work 
done by Lin & Zuo (2003) and Rafiee et al (2010) use 

wavelet filters to provide condition based maintenance on 

these components. Also, Wang & Makis (2009) utilise 

statistical methods (such as autoregressive models) to 

achieve similar aims. However, these techniques require the 

installation of various additional sensors to each turbine to 

be monitored, which can be costly to the operator. For a full 

review of high frequency techniques, please see the work of 

Jardine et al (2006) and Hameed et al (2009). Techniques 

utilising low frequency data, such as SCADA data, do exist.  
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Sub-system Turbine 1 Turbine 2 

Pitch 4035 4130 

Weather 2775 2866 

Inverter 1438 1751 

Gearbox 504 374 

Yaw 316 385 

Communications 285 827 

Total 9353 10333 

Table 1. SCADA alarms aggregated by subsystem over a 28 

month period for 2 typical turbines. 

 

Work done by Kim et al (2011) has shown the electrical 

system of a wind turbine is the most prone to establishing a 

fault condition. It has been shown that low frequency 

SCADA data can be used in conjunction with both PCA and 

self-organising feature maps for fault classification. 

However, diagnosis to determine the turbine sub-assembly 

at fault is not performed. As such, whilst maintenance 

managers may know a turbine requires inspection, further 

manual analysis will be required to determine the cause of 

the fault. Chen (2011) utilises an artificial neural network 

for the automatic analysis of SCADA alarm data. This is 

utilised as a filter to determine which SCADA alarms are 
novel and warrant further analysis. Work done by Kusiak & 

Li (2011) has shown that a variety of data mining 

approaches (neural networks, ensembles of neural networks, 

the boosting tree algorithm, support vector machines and 

classification and regression trees) can be used to diagnose 

and prognose irregular wind turbine states. However, even 

when utilising many different data driven approaches, a low 

prognostic horizon (less than an hour) is achieved, and 

accuracy of the classification of fault instances ranges from 

40% to 71%. 

4. METHODOLOGY 

SCADA data from 8 wind turbines was collected over a 

period of 28 months and sampled every 10 minutes, across 

190 channels. All of these wind turbines had pitch faults 

noted in their histories as assessed by their maintenance log 

book. There had been 243 recorded pitch faults across the 

28 months for the 8 turbines, ranging from 6 – 60 pitch 

faults per turbine (M = 30.38, SD = 16.16). In total, 999,944 

records were retrieved. This data was combined with 

SCADA alarm system data and maintenance log data to give 

a holistic overview of the condition of the turbine and so 

that pitch fault events could be analysed. Due to the inherent 

nature of the data acquisition, erroneous and missing values 

are common; these are manifested as implausible values, 

missing data and duplicate data. This is ascribed to 

malfunction of the sensors, mechanical systems, data 

collection systems and also imperfections within the 

SCADA system itself (Sainz, et al 2009). Due to these 

problems, the data must be cleansed before processing can 

take place. Both missing and duplicate values were 

removed; missing values cannot accurately describe the 

current state of the wind turbine, and duplicate values 

provide no additional information whilst simultaneously 

increasing computational overhead. Once this is complete, 

attribute selection is performed. Based upon the work of 

Chen et al (2011) and also Kusiak & Verma (2011), 8 

attributes were selected for their consistently strong 

performance for wind turbine pitch fault diagnosis. Chen et 

al (2011) presents an artificial neural network (ANN) 

approach to pitch fault diagnosis, however, the diagnosis 

accuracy (M = 42.07%; SD = 17.49%) is relatively poor and 

black box nature of the approach is difficult to interpret by 

both domain experts and maintenance operators. Whilst the 

work of Kusiak & Verma (2011) provides improved 

accuracy for the prediction of wind turbine pitch faults (M = 

76.70%; SD = 5.62%), the genetic algorithm used provides 

human readable rules which are not necessarily transparent 

(that is, easy to interpret by operators). As such, the 

attributes chosen for the model based upon the work in the 

literature (Chen et al., 2011 and Kusiak & Verma, 2011) 

were: 

 

 Average wind speed 

 Maximum wind speed 

 Blade 1 pitch motor torque maximum 

 Blade 2 pitch motor torque maximum 

 Average pitch motor torque 

 Blade 1 pitch angle average 

 Blade 2 pitch angle average 

 SCADA pitch fault alarm status 

 

In conjunction with these attributes, 2 additional derived 

parameters were utilised based upon the work of Chen et al 

(2011). These are: 

 

 The absolute difference in torque across pitch 

motors 

 The absolute difference in blade angle position 

 

These attributes were chosen as they fully encapsulate the 

current operating characteristics of the wind turbine pitch 

fault system. The feathering control strategy for variable 

pitch wind turbines is described in detail by Bianchi et al. 

(2006).  For a given wind speed, each blade should be set to 

a pre-determined pitch based upon the strategy employed by 

the individual turbine. The pitch of all the wind turbine 

blades should be identical, and as such, deviations in either 

pitch or torque across the blades can be used to identify the 

presence of a pitch fault. The wind speed and SCADA 

alarms status provide additional context to the classifier to 

aid in the classification accuracy. 
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Following this, the data was classified into three distinct 

groups; “No pitch fault”, “Potential pitch fault” and “Pitch 

fault established”. These represent the development of a 

fault over time within the wind turbine. By classifying the 

data in this way we can identify both the wind turbines 

which urgently require maintenance and also the turbines 

with a reduced remaining useful life (RUL). Maintenance 

logs were used to determine when pitch faults had been 

severe enough to warrant a maintenance action. 

 

The SCADA data from the 48 hours preceding this 

maintenance action was used to describe the “Pitch fault 

established” class. The SCADA data prior to this where the 

SCADA-alarm for the pitch fault was active was used to 

describe the “Potential pitch fault” class. Finally, all other 

data was used to describe the “no pitch fault” class. Annual 

maintenance costs can then be reduced utilising this 

classification; either by scheduling further turbines into 

existing maintenance actions, or by pre-emptively 

scheduling those which require maintenance before they 

become inaccessible to external factors. Repeated random 

sampling with 20 samples was utilised to remove the 

majority class bias inherent within the data. As “No pitch 

fault” was the dominant class and the turbine remains in this 

state for a prolonged period, a data-driven classifier would 

be stronger if it encapsulates this class well and ignores the 

pitch faults. However, as the aim of the system is the quality 

of the rules which describe the behaviour of the pitch faults, 

it is essential that this bias is removed so that the minority 

fault classes are encapsulated and characterised effectively. 

Within our data, the imbalance was typically between 125 to 

380 instances per fault instance. Whilst other minority 

oversampling techniques could have been used such as 

SMOTE, MSMOTE and FSMOTE (Garcia, et al 2012) no 

significant increase in rule accuracy was attained over using 

traditional repeated random sampling within our dataset. As 

such, the majority class was under sampled, and the 

minority class oversampled until the data was balanced. 

After the data had been pre-processed, the RIPPER 

propositional rule learning algorithm (Cohen & Singer, 

1999) was used to generate order independent, distinct 

encapsulations of explicit knowledge from the dataset. This 

technique was chosen due to its transparent, human-readable 

nature; ensuring trust was placed in the derived rules. An 

example of rules generated by the RIPPER algorithm can be 

seen in the appendix. Although other techniques such as 

artificial neural networks can achieve high quality 

classifications, their “black box” nature makes them 

difficult to extract meaningful rules from. Similarly, 

although techniques such as clustering and instance-based 

classification seem intuitive, the high-dimensionality of the 

dataset and high levels of noise present means that decision 

regions are non-convex in nature and neither a high level of 

accuracy nor good quality of rules can be extracted from the 

system. Decision tree algorithms could have been utilised, 

however, each rule generated cannot be understood 

independently from the system, and as such, can be difficult 

to extract and encapsulate as a single unit of knowledge. 

4.1. Ripper Algorithm 

The RIPPER algorithm (Cohen, 1995), is an extension to 

the IREP algorithm proposed by Fürnkranz and Widmer 

(1994), utilizing reduced error pruning (REP) used in 

decision tree algorithms. However, where the rule induction 

from decision trees is done in a breadth-first manner (as per 
C4.5), rule induction is performed in a depth-first manner.  

There are two main stages within the ripper algorithm as 

described by Cohen (1995). Firstly, the data is split into 

“growing” and “pruning” dataset, with two thirds typically 

used for growing. This is done by random partitioning of the 

data. After this, rules are grown. This is done by adding 

conditions to a rule (greedily) until it is 100% accurate (that 

is, it covers no negative instance in the growing dataset). 

This is done by maximizing Foil’s information gain 

criterion (Quinlan, 1990): 

                 
  

     
     

  

      
     (1) 

Where L is the condition to be added to R, t is the number of 

positive instances covered by R+L, p1 and p0 are the number 

of positive instances covered by R and R+L (respectively), 

and n1 and n0 are the number of negative instances covered 
by R and R+L (respectively). This favours rules which have 

high accuracy and cover many positive instances. 

Once the rule has been grown, it is pruned immediately. 

This is done within RIPPER by considering the removal of 

the final sequence of conditions from the rule that maximise 

rule value: 

                           
   

   
   (2) 

Where p is the number of examples in PrunePos covered by 

Rule and n is the number of examples in PruneNeg covered 

by Rule. This is done until no deletion increases the value of 

v* (Cohen, 1999).  

Once the rules have been generated, optimisation is 

performed. In this stage, for each rule which has been grown 

and pruned, two variants are produced; the replacement and 

the revision. The replacement is generated by growing and 

pruning a rule where the pruning stage is guided to 
maximize the accuracy of the entire rule base. The revision 

is generated by greedily adding conditions to the rule. The 

rule with the minimum descriptive length (of the original, 

revision or replacement rule) is then chosen for the final rule 

base. For completeness, the full pseudo-code for the 

RIPPER algorithm (Cohen, 1995) is presented in Figure 1 

(Alpaydin, 2004). 
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Figure 1. Pseudo-code of the RIPPER algorithm (Alpaydin, 
2004). 

4.2. Training and Validation Turbine Selection 

Of the 8 wind turbines, 4 were used for training with the 

remaining turbines used for validation. In order to ensure 

the robustness of the methodology against training turbine 

selection, all combinations of turbines for both training and 

validation were considered. In total, 70 combinations of 

varying training and validation turbines were created. These 

models created a Pareto surface compromising the trade-off 

between the number of rules and rule accuracy which were 

then presented to an independent domain expert. This allows 

for both a quantitative and qualitative analysis of these rules 

so that the causation and diagnosis of pitch faults could 

more effectively be understood. This enables operators to 

understand the underlying physical properties of pitch faults 

so that they can be trained or assisted to identify pitch faults 

before further damage occurs, which may lead to the turbine 

being shut down for corrective maintenance which is often 

expensive. 

5. RESULTS 

The RIPPER propositional rule learner was trained on 70 

models so that the robustness of the methodology could be 

ensured. Pruning of the rule set was enabled to reduce the 

quantity of rules to prevent potential cognitive overload, and 

was utilized in conjunction with four optimization iterations 
with three fold partitioning of the data. 

5.1. Robustness to data scarcity 

As can be seen in Table 2, the quantity of data available for 

training influences the accuracy of the system developed 

and also the size of the rule base. In addition to the analysis 

described in section 4 (on the full dataset), analysis was also 

carried out on 4, 8, 12, 16, 20 and 24 months of available 

data to determine the influence of the quantity of data on 

both classification accuracy and size of the rule base. 

Each analysis in Table 2 was performed on the full set of 70 

models generated by choosing each combination of the 8 

training and testing turbines. As such, in total 490 models 
were developed and assessed to analyse the robustness of 

the system to the quantity of training data which was 

available. 

With regards to model accuracy, a Pearson product-moment 

correlation was used to assess the relationship between 

mean classification accuracy attained and the quantity of 

data used. Preliminary analyses showed this relationship to 

be linear with both variables normally distributed, as 

assessed by Shaprio-Wilk test (p > .05), and there were no 

outliers. There was a strong positive association between 

classification accuracy and the quantity of data, r(7) = .91, p 
< .01. This is also the case for maximum classification 

accuracy; r(7) = .91, p < .01, and minimum accuracy 

attained, r(7) = .92, p < .01. 

This shows that there is a strong positive correlation 

between the quantity of data available for training and the 

accuracy of the RIPPER algorithm. As such, it was 

determined that as much data as is available should be 

utilised when performing rule extraction. It should be noted 

that the lower bound of classification accuracy increased by 

17.62% from utilising 4 months of data to using the entire 

data set (28 months), whereas the upper bound increased by 

1.68% over the same period. The mean accuracy increase 
was 3.48% over this period; however, the standard deviation 

of accuracies was reduced by 1.81% in this period. This 

indicates less sensitivity to the selection of wind turbines 

used for testing as more data to be available. This was to be 

expected. 

With regards to the size of the rule base, another Pearson 

product-moment correlation was used to assess the  
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 4 Months 8 Months 12 Months 16 Months 20 Months 24 Months Full Dataset 

Mean Accuracy 77.29% 77.92% 78.53% 78.37% 78.89% 78.91% 80.77% 

Max Accuracy 85.73% 86.18% 86.94% 86.53% 87.25% 87.73% 87.41% 

Min Accuracy 51.41% 59.11% 56.49% 65.74% 63.75% 66.39% 69.03% 

Accuracy (SD) 6.49% 5.72% 5.86% 5.15% 5.12% 5.32% 4.68% 

Mean Rule Base 7.57 rules 9.10 rules 10.94 rules 12.87 rules 13.57 rules 14.77 rules 16 rules 

Max Rule Base 15 rules 16 rules 23 rules 24 rules 32 rules 34 rules 38 rules 

Min Rule Base 3 rules 4 rules 4 rules 4 rules 5 rules 6 rules 6 rules 

Rule Base (SD) 2.42 rules 2.90 rules 4.10 rules 4.27 rules 4.76 rules 4.78 rules 5.77 rules 

Table 2. Robustness to data scarcity with descriptive statistics for classification accuracy and rule base size. 

 

relationship between mean rule base size and the quantity of 

data used. Preliminary analyses showed this relationship to 

be linear with both variables normally distributed, as 

assessed by Shaprio-Wilk test (p > .05), and there were no 

outliers. There was a very strong positive association 

between the size of the rule and the quantity of data, r(7) 
= .99, p < .01. This was also the case for the maximum size 

of the rule base, r(7) = .97, p < .01, and also the case for the 

minimum size of the rule base, r(7) = .97, p < .01. 

This correlation is to be expected based upon the behaviour 

of the RIPPER algorithm. However, due to this, a trade off 

does exist. Increasing the quantity of data available to the 

propositional rule learner would increase the quality of the 

classifier produced, but would also increase the quantity of 

rules generated for analysis. This is detailed below. 

5.2. Model selection 

Due to the higher mean accuracy and larger rule base 

variance attained by models utilising the full 28 months of 
data, this was chosen for further analysis. The accuracy of 

the classification for the full data models was in the range of 

69.03% - 87.41% (M = 80.77%; SD = 4.68%), with the 

number of rules generated by each model being in the range 

of 6 – 38 (M = 16; SD = 5.77). After removal of the models 

which were dominated by those with stronger classification 

accuracy but the same number of rules, 21 models were 

eligible to be presented to an independent domain expert 

and for critical analysis of the rules generated allowing for 

further understanding of wind turbine pitch fault behaviour. 

The 21 models developed had classification accuracy in the 
range of 69.99% - 87.41% (M = 82.70%; SD = 4.26%). 

Similarly, the quantity of rules generated were in the range 

of 6 – 38 (M = 16.5, SD = 7.65). A Pearson product-moment 

correlation was used to assess the relationship between 

classification accuracy and the number of rules generated by 

the model. Preliminary analyses showed the relationship to 

be linear with both variables normally distributed, as 

assessed by Shaprio-Wilk test (p > .05), and there were no 

outliers. There was no association between classification 

accuracy and the number of rules present, r(21) = .056, p 

> .05. This can clearly be seen in Figure 2. As such, it is 

beneficial to maintenance operators and decision makers 

that a smaller set of rules are analysed and understood. This 
enables a holistic understanding of the underlying behaviour 

and development of wind turbine pitch faults whilst 

reducing cognitive load and whilst providing comparable 

classification accuracy to the models with a larger rule base. 

Within the model selected, 14 rules were generated leading 

to an overall classification accuracy of 85.50%. For 

completeness, the knowledge base determined by the 

RIPPER algorithm has been included in the appendix. It can 

be noted that although a high classification accuracy has 

been attained in this model, it is still difficult to differentiate 

between no pitch fault existing and a pitch fault being 

present, with expert analysis required to certify 
classifications. 

As can be seen in Table 3, the Matthews Correlation 

Coefficient (MCC) (Matthews, 1975) for all classes is 

strong, showing high correlation between the learnt rules 

and the validation data. A substantial level of agreement 

was found between the developed model and the validation 

data (Cohen’s k = 0.78; p < .05). After deriving the 

classification, the 14 rules were presented to an independent 

domain expert so that qualitative and quantitative analysis 

could be performed. Due to the min-max normalization 

process during pre-processing, values had to be converted 
back to ensure they were human readable. Once this had 

been done, a full analysis was performed. 
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Class TP Rate FP Rate Precision Recall F-Measure MCC ROC PRC 

No Pitch Fault 0.81 0.12 0.77 0.81 0.79 0.68 0.91 0.74 

Potential Pitch Fault 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 

Pitch Fault Established 0.75 0.01 0.80 0.75 0.78 0.67 0.91 0.79 

Weighted Average 0.85 0.07 0.86 0.86 0.78 0.78 0.85 0.85 

Table 3. Descriptive statistics of the developed model. 

 

6. EVALUATION AND EXPLOITATION OF GENERATED 

RULES 

Due to the size of the knowledge base, it was practical to 

have the domain expert evaluate each rule individually. This 

is done as the expert can provide a context sensitive ground 

truth to the analysis, along with experience of situations and 
conditions which may not have been present within the 

training data. As domain experts have subjective opinions 

with regards to what constitutes interesting, novel and 

important, it is difficult to quantify these characteristics. 

However, various artefacts are present within the rule-base 

which is expected given the nature of the classification. To 

assess the quality of the rules, a 56- item questionnaire was 

presented to an independent domain expert who has over 6 

years wind turbine diagnostic and prognostic experience 

within academia. This questionnaire contained a 5-point 

Likert response scale ranging from 1 (Not intuitive, useful, 
clear or interesting) to 5 (Highly intuitive, useful, clear or 

interesting). There were 4 questions presented per rule 

generated from the model, assessing whether or not the rule 

was intuitive, useful, clear and interesting 

The results of this analysis can be seen in Table 4. As can be 

seen in Table 4, an average response of 2.89 was recorded; 

indicating that the rules are typically not particularly 

intuitive, clear, useful or interesting. This was unexpected. 

Rules were often regarded as just as useful (M = 2.79) as 

intuitive (M = 2.71). This is likely due to the nature of the 

complex nature of the underlying pitch faults. By having the 

independent domain expert drive the discussion it was found  
that of the 14 rules, 11 of the rules were deemed 

“interesting” and warranted further analysis. 

After performing this analysis, the independent domain 

expert was then presented with a further 13 rules, taken 

from the work of Kusiak & Verma (2011). To remove 

potential bias, the expert was not informed of the origin of 

either set of rules. A 52-item questionnaire was used 

containing a 5-point Likert scale from 1 (Not intuitive, 

useful, clear or interesting) to 5 (Highly intuitive, useful, 

clear or interesting). This was to provide an objective 

analysis of the intuitiveness, usefulness, clearness and 
interestingness. 

Initially, the expert could not understand the rules due to 

their format and abstract nature, however, after some time, 

analysis could be performed. The comparative analysis 

showed that whilst the rules were found to be less intuitive 

(M = 1.53; SD = 0.63) and clear (M = 1.46; SD = 0.49), they 

were still regarded as somewhat useful (M = 2.23; SD = 

0.79) and interesting (M = 2.07; SD = 0.61). When 

questioned regarding this, the expert responded that as long 

as the rules were accurate and accountable, they could be 
disseminated at a later date. As such, it was determined that 

an expert system should be developed to aid maintenance 

operators with enquiries and to handle the large quantities of 

data present within the system. 

6.1. Rule sensitivity to wind turbine location 

As different geographical locations have inherently distinct 

operating conditions, it is expected that the accuracy of the 

expert system would be reduced when applying the rules to 

similar wind turbines in a different location. As such, a new 

expert system would have to be developed for each wind 

farm as described by the methodology described in Section 
4. In order to assess the impact of the geographical location 

on the accuracy of the rules, data was collected from an 

additional turbine in the same manner as the previous 

turbines and was located at a different wind farm within the 

same country. The wind turbine also had 28 months of 

SCADA data available, with 3 pitch faults recorded in the 

historical maintenance log. This wind farm was subject to 

different external conditions due to being located in a 

different region. 

Validation of the selected model on this additional wind 

turbine yielded a classification accuracy of 68.68%; 

somewhat lower than the 85.50% accuracy of the original 
model. The model was able to identify 2 of the 3 pitch faults 

which had been recorded in the maintenance log; giving a 

diagnostic accuracy of 66.67%.  

 
Figure 2. Dominant model classification accuracy plotted 

against the number of rules generated in each model. No 

strong correlation existed (r(21) = 0.06, p > .05). 
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7. EXPERT SYSTEM DEVELOPMENT 

Due to the strong classification gained from the model, an 

expert system was developed to aid maintenance managers 

and decision makers so that available resources could be 

optimized. Due to the often inaccessible nature of offshore 

wind turbines, predicting failures can significantly reduce 
operations and maintenance (OM) costs, thereby increasing 

the competitive nature of wind energy. The model 

developed in Section 4 was combined with domain 

knowledge (meta-data) elicited from the independent 

domain expert to reduce the high dimensionality of the 

SCADA data and provide filtering. This was done so that 

the maintenance operator did not have to analyse 190 

channels of data coming from over 40 wind turbines per 

farm, every 10 minutes. In order to assist the operator or 

decision maker in their role, the expert system must aid their 

ability to perform analysis and make decisions based upon 

relevant information. These decisions become more difficult 
due to various stressors which exist in the working 

environment. Kontogiannis & Kossiavelou (1999) identify 

these stressors as: 

• Environmental stressors: 

o Noise 

o Temperature 

o Vibrations 

• Task complexity stressors: 

o Time Pressure 

o Workload 

o Uncertainty 
o Threat/High error consequences 

o Negative feedback 

• Group and organisational stressors: 

o Occupational stress 

o Shift/continuous work 

o Lack of team cohesion 

o Communication problems 

 

Due to the nature of the domain, the expert system aims to 

reduce task complexity stressors. Specifically, reducing time 

pressure by providing automated analysis and reducing 

workload by reducing the initial quantity of information 
presented to the operator per wind turbine. The expert stated 

that typically, SCADA-alarms for pitch fault are noisy, and 

only when constant irregularities are noticed over an 

extended period, is maintenance considered on the turbine. 

 

This is typically due to imperfections within the SCADA 

system itself causing duplicate, missing and implausible 

values to be recorded (Sainz, et al 2009). Also, as SCADA 

data quickly accumulates to create large and unmanageable 

volumes of data, attempts to deduce the current state of a 

wind turbine can be severely hindered (Zaher, et al 2009), it 
is therefore essential that this data can be adequately filtered 

in an automated manner. 

Question N M SD 

Intuitive 14 2.71 1.09 

Useful 14 2.79 0.93 

Clear 14 3.00 1.00 

Interesting 14 3.07 0.96 

Table 4. Independent domain expert evaluation. 

As such, based upon the expert-knowledge, a threshold was 

set that should either the “Potential pitch fault” or “Pitch 

fault established” classification be active for over 90 

minutes, an alert would be sent to the maintenance operator. 

90 minutes was deemed by the expert to be the minimum 

length of time an alarm was active before action would be 
taken and was used as a filter to reduce the noise of the 

SCADA system. Lower values would increase the noise 

within the expert system whereas higher values may miss 

the potential development of pitch faults. This, therefore, 

reduces the quantity of SCADA alarms presented to the 

maintenance operator, whilst still presenting those which 

warranted further investigation. 

This reduces the potential cognitive overload of the 

maintenance operator, allowing for their analysis to be 

focused on the wind turbines which are current exhibiting 

potential pitch fault state. This optimises the available 
maintenance resources by reducing the time spent analysing 

large quantities of false-positive alarms provided from 

SCADA system. With regards to the imperfections within 

the SCADA system, a threshold was also set for missing 

and implausible values. As missing data cannot fully 

encapsulate the current operating condition of the wind 

turbine, it would be difficult to establish if the fault was 

caused by either a mechanical fault on the turbine, an 

electrical fault on the turbine or an electrical fault on the 

SCADA system. As such, 90 minutes of continuous 

operation in this state provides an alert to the maintenance 

operator, as above. A similar strategy is employed for 
implausible data, with expert defined maximum and 

minimum values for each attribute. Should a single attribute 

fall outside of this pre-defined range for a full 90 minutes, 

the operator is also alerted to this. 

It should also be noted that one of the alarms on a separate 

turbine (outside of the training and test data) was active for 

over 100 days continually. Clearly this is undesirable and 

hinders the efforts of maintenance managers and decision 

makers to correctly diagnose and both plan and schedule 

maintenance. 

As such, the ability to correctly filter and classify SCADA-
data so that the false-positive instances such as this do not 

occur is essential. In the best case, these false-positive 

instances are simply a minor hindrance and require further 

manual analysis by the maintenance operator to determine if 

a turbine warrants inspection. In the worst case, they 

provide a basis for maintenance actions which may not be 

required. In an offshore situation, these un-necessary 

maintenance actions can be expensive due to the equipment  
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Turbine Pitch Fault 

Alarm Time 

Number of Pitch 

Alarms 

Number of 

Maintenance 

Jobs 

Expert System 

Alarms 

Expert System 

Time Active 

01 15.46 days 193 25 97 10.06 

02 17.68 days 222 25 106 12.72 

03 12.04 days 27 26 75 8.45 

04 19.64 days 215 9 138 9.84 

Table 5. Comparison of Expert System against SCADA-Alarm system 
 

and skills required, and as such, can potentially account for 

a large portion of maintenance expenditure. 

8. EVALUATION OF EXPERT SYSTEM 

In order to assess the validity of the expert system 

developed, historical SCADA-data from 4 wind turbines 

was used to determine the number of maintenance alerts 

issued in comparison to the on-board SCADA-alarm 

system. The validation turbines were independent of those 

used within the training model, and were located in the same 

geographical location as the turbines used for the model 
development and training. 

As can be seen in Table 5, in each of the 4 wind turbines 

analysed, a reduction in the number of alarms generated was 

observed compared to the turbines integrated SCADA alarm 

system. This was between 35.80% - 52.26% (M = 44.69%; 

SD = 6.62%), effectively reducing the workload of the 

maintenance operator when analysing data to diagnose 

potential pitch faults. Similarly, this was the case for active 

alarm time; the reduction was between 28.06% - 49.90% (M 

= 35.68%; SD = 8.60%). This, again, reduces the quantity of 

information the maintenance operator has to manage. It is 
worth noting that although 85 pitch maintenance actions 

were undertaken over the 28 month period in which this 

historical data was analysed, 11 of these maintenance 

actions were not detected by the expert system. This is 

mainly due to malfunction of the sensors, mechanical 

systems, and the data collection systems; Of the 11 

instances, 7 occurred when data acquisition failed for an 

extended period. Due to the design of the expert system, 

missing data does not fully encapsulate the correct turbine 

condition, and as such, the accuracy is significantly reduced. 

It is believed that the remaining 4 cases are partly due to 

time-based preventive maintenance which may not have had 
sufficient basis for action based upon the observed SCADA-

data 

9. CONCLUSIONS 

In this paper we have presented a robust, accurate expert 

system for the classification and detection of wind turbine 

pitch faults, as validated by the 85.50% classification 

accuracy achieved. Transparent, human readable rules were 

extracted, analysed and verified by an independent domain 

expert enabling trust in the expert system one of the key 

barriers to wide scale adoption of CBM technology. These 

rules were found to be more intuitive than other rules within 

the literature, and provided the basis for an expert system to 

aid maintenance operators and decision makers. The number 

of SCADA alarms was reduced by an average of 44.68%, 

with a mean reduction of active alarm time by 35.68%. The 

developed expert system reduced the potential cognitive 

load on maintenance operators and decision makers by 

significantly reducing the number of alarms presented to 

them. This frees maintenance resources, enabling a 

reduction in annual maintenance costs whilst retaining an 
equal quality of service. Additionally, no further capital 

expenditure was necessary due to using pre-existing 

technological capability. A diagnostic accuracy of 87.05% is 

achieved in the system, although it is believed that this 

could be further increased should more reliable sensor 

technology become available. Our methodology provided a 

robust strategy to classify SCADA data as having no pitch 

fault, an established pitch fault or a potential pitch fault. 

This provides a means to both condition based maintenance 

and proactive maintenance strategies. By performing remote 

diagnosis through the expert system, the opportunity for 
remote maintenance arises due to the nature of the electrical 

system. In some cases, resetting the control system remedies 

the existing electrical fault, increasing availability whilst 

reducing unnecessary maintenance inspections and 

mitigating the associated costs. By understanding the 

severity of the fault through the expert system classification, 

maintenance managers can make informed decisions 

regarding the most appropriate course of action. 

Future work will look to utilise statistical techniques to 

reduce the quantity of data required for accurate 

classification. Whilst 4 months of data provided an average 

classification of 77.29%, had no historical pitch fault data 
been available, the expert system would not have been able 

to encapsulate the pitch fault behaviour and would not be fit 

for purpose. Thus, the expert system would not be effective. 

As such, the use of suspension histories to classify normal 

operating behaviour through utilising robust statistical 

methods would be more appropriate in these circumstances. 

This would remove the need for fault data present within the 

training data, providing a strategy for the prognosis and 

diagnosis of new wind turbines. 
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APPENDIX 

For completeness, the 14 rules learnt by the RIPPER 

algorithm are presented here. This represents the knowledge 

base of the expert system. 

1. If Alarm is Not Active, and Difference Between Blade 

Angles is ≤ 18.32 degrees Then Pitch Fault Established. 

2. If Alarm is Not Active, and Difference Between Blade 

Angles is ≤ 18.56 degrees, and Wind Speed ≥ 7.11 m/s 

Then Pitch Fault Established. 

3. If Blade 1 Pitch Motor Torque Maximum ≥ 14.81 kN 

but ≤ 30.13 kN, and Blade 2 Angle ≥ -12.52 degrees, 

and Wind Speed ≥ 7.69 m/s, and Then Pitch Fault 

Established. 

4. If Blade 1 Pitch Motor Torque Maximum ≥ 15.59 kN 

but ≤ 24.35 kN, and Blade 1 Angle ≥ 95.52 degrees, 

and Wind Speed ≥ 6.73 m/s, and Difference Between 

Pitch Motor Torques ≤ 41.0 kN Then Pitch Fault 

Established. 

5. If Blade 2 Angle ≤ -0.28 degrees, and Blade 1 Angle ≥ 

0.52 degrees, and Wind Speed ≥ 6.44m/s, and Average 

Pitch Motor Torque ≤ 9.67 kN Then Pitch Fault 

Established. 

6. If Blade 2 Angle ≤ -0.28 degrees, and Blade 1 Angle ≥ -

19.74 degrees, and Average Pitch Motor Torque ≤ 

10.22 kN, and Wind Speed ≥ 7.42 m/s Then Pitch Fault 

Established. 

7. If Blade 2 Angle ≤ -0.35 degrees, and Blade 1 Angle ≥ -

17.13degrees, and Wind Speed ≥ 6.11 m/s, and 

Difference Between Pitch Motor Torques ≤ 1.08 kN, 
and Average Pitch Motor Torque ≤ 11.58 kN Then 

Pitch Fault Established. 

8. If Blade 2 Angle ≤ -2.85 degrees, and Blade 1 Angle ≥ -

17.13 degrees, and Wind Speed ≥ 7.34 m/s, and 

Average Pitch Motor Torque ≤ 13.44 kN, Then Pitch 

Fault Established. 

9. If Blade 2 Angle ≤ -2.85 degrees, and Blade 1 Angle ≥ -

17.14 degrees, and Wind Speed ≥ 6.19 m/s, and Blade 2 

Pitch Motor Torque Maximum ≤ 21.91 kN, and Wind 

Speed ≥ 6.81 m/s Then Pitch Fault Established. 

10. If Blade 2 Angle ≤ -2.98 degrees, and Blade 1 Angle ≥ -

17.23 degrees, and Difference Between Pitch Motor 
Torques ≥ 2.35 kN, and Average Pitch Motor Torque ≤ 

10.53 kN, and Wind Speed ≥ 6.56m/s, and Blade 2 

Pitch Motor Torque Maximum ≤ 25.02 kN, and 

Difference Between Blade Angles is ≥ 18.7 degrees 

Then Pitch Fault Established. 

11. If Blade 2 Angle ≤ -3.02 degrees, and Blade 1 Angle ≥ -

23.33 degrees, and Wind Speed ≥ 8.25 m/s Then Pitch 

Fault Established. 

12. If Blade 1 Pitch Motor Torque Maximum ≥ 22.58 kN, 

and Blade 1 Angle ≥ -17.24 degrees, and Wind Speed ≥ 

5.80 m/s, and Average Pitch Motor Torque ≤ 10.22 kN, 

and Blade 2 Angle ≥ -19.08 degrees Then Pitch Fault 

Established. 

13. If Blade 2 Angle ≥ 4.50 degrees Then Potential Pitch 
Fault Exists. 

14. Otherwise, No Pitch Fault Is Present. 
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