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Abstract. The impact of very short-lived (VSL) halogenated
source species on the ozone layer and surface erythemal
ultraviolet radiation (UVERY) is investigated in the context
of geo-engineering of climate by stratospheric sulfur injec-
tion. For a projected 2040 model atmosphere, considera-
tion of VSL halogens at their upper limit results in lower
ozone columns and higher UVERY due to geo-engineering
for nearly all seasons and latitudes, with UVERY rising by
12 % and 6 % in southern and northern high latitudes, re-
spectively. When VSL halogen sources are neglected, future
UVERY increases due to declines in ozone column are nearly
balanced by reductions of UVERY due to scattering by the
higher stratospheric aerosol burden in mid-latitudes. Consid-
eration of VSL sources at their upper limit tips the balance,
resulting in annual average increases in UVERY of up to 5 %
in mid and high latitudes. Therefore, VSL halogens should be
considered in models that assess the impact of stratospheric
sulfur injections on the ozone layer.

1 Introduction

A widely discussed geo-engineering approach considers the
continuous injection of sulfuric acid particles into the tropical
stratosphere, which results in an enhancement of the global
sulfate aerosol layer in the stratosphere (e.g.,Crutzen, 2006;
Wigley, 2006; Rasch et al., 2008a,b; Tilmes et al., 2009).
The resulting reduction of short-wave radiation due to geo-
engineering is expected to lower global temperatures, as ob-
served after major volcanic eruptions (Solomon et al., 2007).

Observations obtained following the eruption of
Mt. Pinatubo in June 1991 provide a basis for evalu-
ating the environmental effects of stratospheric sulfur
injection. Global cooling of about 0.5 K occurred after this
eruption (Soden et al., 2002; Solomon et al., 2007), along
with changes in precipitation patterns (Trenberth and Dai,
2007). In addition, a significant decrease of total column
ozone was observed in mid- and high latitudes within a year
after the eruption (Fahey et al., 1993; Solomon et al., 1996;
Portmann et al., 1996; Tabazadeh et al., 2002). Increased
ozone depletion is caused by faster rates of heterogeneous
(surface mediated) chemical reactions on stratospheric liquid
sulfate aerosols, supplied by the volcanic eruption. These re-
actions suppress the concentration of nitrogen oxides (NOx)
and enhance the abundance of chlorine monoxide (ClO) and
hydroperoxyl (HO2) (Fahey et al., 1993; Wennberg et al.,
1994; Solomon et al., 1996).

The stabilization of surface temperatures by geo-
engineering would require a continuous injection of sulfur
into the stratosphere to maintain a volcanic-like aerosol layer.
Such a permanent stratospheric aerosol layer could bring
about numerous other potential effects, such as a shift in the
Asian and African monsoons (e.g.,Robock et al., 2008). Our
focus is on the quantification of the perturbation to the ozone
layer and the amount of ultraviolet (UV) radiation reaching
the surface in response to stratospheric sulfur injections.

Prior studies have shown that a persistent stratospheric
aerosol layer can have a positive or negative impact on the
abundance of ozone, depending on altitude, latitude, time of
the year, and the amount of halogens in the stratosphere. In
the polar region during spring (austral spring for the Southern
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Hemisphere (SH)), ozone loss rates are projected to increase
significantly due to geo-engineering, as a result of increased
efficiency of ozone loss by halogen cycles. A delay in the re-
covery of the Antarctic ozone hole of 40 to 70 yr due to geo-
engineering was estimated, as well as a significant increase
in the amount of ozone depletion at high northern latitudes
through the end the 21st century, compared to background
stratospheric aerosol conditions (Tilmes et al., 2008). For
mid-latitudes, a decrease in the efficiency of ozone loss by
the NOx cycle at around 25 km altitude results in an increase
of ozone, whereas increased ClOx and HOx in the lower
stratosphere reduce ozone (Tilmes et al., 2009; Heckendorn
et al., 2009). The net effect of geo-engineering on column
ozone was estimated to range between−5 % (Heckendorn
et al., 2009) and +3 % (Tilmes et al., 2009) for low lati-
tudes. A large reduction of column ozone between 10–15 %
was calculated in these studies for high latitudes. Dynamical
changes also influence the response of stratospheric ozone to
geo-engineering (e.g.,Stenchikov et al., 2002; Tilmes et al.,
2009).

With the decline of stratospheric halogens (chlorine and
bromine) driven by continued adherence to the Montreal Pro-
tocol, the ozone layer is expected to recover by the end of
the century. Column ozone values are expected to exceed
pre-1980 values, due to the increase in the strength of the
Brewer-Dobson circulation driven by rising levels of green-
house gases (Oman et al., 2010; Eyring et al., 2010). The im-
pact of geo-engineering on ozone by mid-century is thought
to be moderate, because halogen levels will be lower and col-
umn ozone may rise due to this circulation change. How-
ever, prior model studies that investigated the sensitivity of
ozone to sulfate geo-engineering only considered the supply
of stratospheric halogens from the decomposition of long-
lived organic source gases (Tilmes et al., 2009; Heckendorn
et al., 2009).

The additional supply from very short-lived (VSL) bro-
mocarbons has been suggested to have a significant im-
pact in a volcanic-like stratospheric aerosol layer (Salaw-
itch et al., 2005; Feng et al., 2007). The largest contribu-
tion to Bry from VSL bromocarbons is likely due to di-
bromomethane (CH2Br2) and bromoform (CHBr3). These
species are produced by biogenic processes in the ocean
(e.g.,Quack and Wallace, 2003). The contribution of VSL
bromocarbons to the total stratospheric inorganic bromine
(BrVSL

y ) is estimated to range between 1 and 8 ppt (WMO,
2010, Tables 1–14) with an upper limit of 10 ppt. The need
for a significant contribution to stratospheric bromine from
VSL bromocarbons is also supported by the recent study of
Choi et al. (2012). Chlorine-containing VSL source gases
have both anthropogenic and natural sources (WMO, 2010,
Chapter 1, Sect. 1.3.1.1). Anthropogenic sources likely have
largest contributions from dichloromethane (CH2Cl2) and
tetrachloroethene (CCl2CCl2) from a variety of applications.
Anthropogenic sources constitute about two thirds of the to-
tal stratospheric inorganic chlorine source from VSL species

(ClVSL
y ) for present day conditions. The natural source is

dominated by bromochloromethane compounds produced by
oceanic, biogenic processes. The value for ClVSL

y is estimated
to range between 25 and 170 ppt (WMO, 2010, Tables 1–9).

Most models underestimate the amount of ozone depletion
observed following the eruption of Mt. Pinatubo.Salawitch
et al. (2005) showed this discrepancy could be resolved if
stratospheric halogens from the decomposition of VSL bro-
mocarbons were considered. Levels of bromine monoxide
(BrO) are enhanced in the lower stratosphere at all times
compared to a model that neglects VSL bromocarbons. Dur-
ing periods of enhanced volcanic aerosol loading, ClO in the
lower stratosphere is highly enhanced; this ClO then reacts
with BrO from VSL sources, providing an efficient means
for removal of stratospheric ozone (Salawitch et al., 2005).
The consideration of VSL halogens is therefore expected to
be important for geo-engineering studies given the large en-
hancement to the sulfate aerosol layer that would occur.

Our paper focuses on a case study that quantifies the
importance of stratospheric Bry and Cly from VSL source
species for a hypothetical future geo-engineered environ-
ment. Chemical conditions for year 2040 are used, since this
is about the time geo-engineering could potentially be ap-
plied. Furthermore, the role of VSL halogen species is ex-
pected to gain importance in the coming years, as strato-
spheric Bry and Cly from long-lived sources decline due to
the Montreal Protocol. The transport of halogen containing
VSL gases to the stratosphere might also rise in the future,
due to increases in tropical deep convection and alteration of
the oxidation capacity of the troposphere driven by climate
change (Hossaini et al., 2012). Year 2040 represents a pe-
riod when anthropogenic Bry and Cly are in decline, but have
not yet reached background levels (Fig. 5-3,Eyring et al.,
2010). Finally, changes in column ozone and aerosol are re-
lated to surface UV radiation, which has implications for hu-
man health and the well-being of the entire ecosystem. In
Sect.2, we describe the experimental design of the simula-
tions used. Section3 discusses changes in ozone abundances
due to geo-engineering. In Sect.4, we investigate changes
in UV radiation resulting from geo-engineering under fixed
dynamical conditions, using a radiative transfer model.

2 Experiemental design

The Whole Atmosphere Community Climate Model
(WACCM) Version 3548 (Garcia et al., 2007) is used
to investigate the impact of geo-engineering on ozone.
WACCM is a global model with 66 vertical levels from the
ground to 4.5× 10−6 hPa (approximately 140 km geometric
height). The vertical resolution is variable: 3.5 km above
65 km, 1.75 km around the stratopause (50 km), 1.1–1.4 km
in the lower stratosphere (below 30 km), and 1.1 km in the
troposphere (except near the ground where much higher ver-
tical resolution is used in the planetary boundary layer). The
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horizontal resolution is 1.9◦ × 2.5◦ (latitude× longitude).
The chemical module is based upon the 3-D chemical
transport Model of OZone and Related Tracers (MOZART),
Version 3 (Kinnison et al., 2007). WACCM includes a
detailed representation of the chemical and physical pro-
cesses in the troposphere through the lower thermosphere
(Garcia et al., 2007). The performance of WACCM has
been evaluated within the CCMVal-2 framework, showing
reasonably good agreement with observations important
for model representation of transport, photochemistry,
Upper Troposphere Lower Stratosphere (UTLS) processes,
and polar ozone loss (Eyring et al., 2010). To investigate
the chemical response of varying halogen levels in the
stratosphere, the same meteorological fields are prescribed
in several one-year simulations. Therefore, the impact of
dynamical differences between geo-engineering and baseline
simulations (as discussed inTilmes et al., 2009), or the effect
of dynamical feedbacks induced by VSL halogens, is not
quantified.

We select meteorological conditions and surface area den-
sities (SAD) of sulfuric acid aerosols of one year (year 2040)
from a geo-engineering simulation performed for the period
2020–2050 byTilmes et al.(2009). In that study, a fixed
amount of injected sulfur dioxide (SO2) was considered. The
sulfate distribution was taken fromRasch et al.(2008b),
who considered an injection of 2 TgS yr−1 of volcanic-sized
aerosols into a 2 km thick layer at 25 km altitude in the trop-
ics, between 10◦ N and 10◦ S. The prescribed model mete-
orology used in all simulations is comparable to ozone loss
conditions of a recently observed moderately cold Arctic po-
lar vortex between January and March, considering the av-
eraged potential for activated chlorine (PACl), as introduced
by Tilmes et al.(2007). However, the Arctic polar vortex per-
sists too long into April compared to recently observed con-
ditions. A larger PACl in comparison to observations might
result in an overestimation of chemical ozone loss in the Arc-
tic polar vortex in April in northern high latitudes (see Sup-
plement and Fig. S1 for further details).

The prescribed temperatures over Antarctica are slightly
lower than recently observed and stay cooler into December
compared to observations. Therefore, we also expect an over-
estimation of ozone loss in November and December com-
pared to observed Antarctic conditions in recent years. These
conditions might be reasonable for the geo-engineering sim-
ulations, assuming a potentially stronger and colder polar
vortex (Tilmes et al., 2009). A potential overestimation of
chemical ozone loss in northern and southern high latitudes
in late spring is expected to have little impact on chemical
changes in low and mid-latitudes due to geo-engineering and
VSL species in this study.

We show results for chemical conditions of the strato-
sphere representative of years 2000 and 2040 following the
CCMVal-2 definition (Eyring et al., 2006), including vari-
ous assumptions regarding the amount of stratospheric Bry
and Cly from VSL source gas species (BrVSL

y and ClVSL
y ).

The year 2000 simulation is used to represent the contempo-
rary atmosphere, for comparison to satellite observations of
BrO. The 2040 simulation is used to assess the impact of geo-
engineering on ozone and surface UV. Simulations are per-
formed for three scenarios that differ in the amount of BrVSL

y

and ClVSL
y . In the first case, denoted VSL= 0, bromine and

chlorine enter the stratosphere only from long-lived halocar-
bons. This is the common condition for most model simu-
lations within CCMVal-2 (Eyring et al., 2010). For the sec-
ond case, denoted VSL= 6, we artificially increase strato-
spheric Bry by 6 ppt throughout the stratosphere. The strato-
sphere is defined by the 100 ppb ozone isopleth, which rep-
resents the chemical tropopause. For the third case, we in-
crease stratospheric Bry by 10 ppt and Cly by 100 ppt, de-
noted as VSL= 10 + 100. The last case is meant to describe
the upper limit of stratospheric halogen abundance from VSL
sources. For all these cases, both baseline simulations (back-
ground SAD) and geo-engineering simulations (enhanced
SAD) were performed. A detailed justification for the three
different cases is based on previous literature and is discussed
in the Supplement.

We further justify the use of values of 6 and 10 ppt for
BrVSL

y by comparing WACCM BrO for chemical conditions
in year 2000 to GOME total column BrO measured in April
and October 1997 (Chance, 1998), as shown in Fig.1. The
left hand side of this figure compares total column BrO from
GOME to stratospheric column BrO from WACCM. The dif-
ference between GOME and WACCM BrO shown in these
panels is much larger than the change in Bry from 1997 to
2000 due to halogen sources (e.g.,Eyring et al., 2010, Fig. 1-
21).

The right hand panels of Fig. 1 illustrate the sensitivity of
the comparison to tropospheric BrO and stratospheric BrVSL

y ,
neither of which is particularly well known. GOME BrO has
been adjusted to represent only the amount of BrO present
in the stratosphere, as a function of the assumed tropospheric
BrO burden (red lines). This adjustment, described bySalaw-
itch et al. (2005), is also outlined in the Supplement. The
black lines show WACCM stratospheric column BrO assum-
ing different values for BrVSL

y .
The best agreement between WACCM BrO and adjusted

GOME BrO is found assuming a tropospheric BrO abun-
dance of 1 ppt and BrVSL

y between 6 to 10 ppt (Fig.1, right
panels). The very high levels of BrO observed by GOME at
high latitudes during April 1997 are due to the spring-time
Arctic bromine explosion, as described byChance(1998).
We make no attempt to model high tropospheric BrO associ-
ated with this event because the surface release of BrO has no
bearing on our geo-engineering study. All latitudes for April
are shown in Fig.1 for completeness. However, the justifi-
cation of 6 to 10 ppt for BrVSL

y is based on comparisons be-
tween GOME and WACCM for latitudes south of 50◦ N in
April and for all latitudes in October.
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Fig. 1. Left panels: comparison of zonal average of total column BrO from GOME satellite observations in 1997 (Chance, 1998) (red lines)
to WACCM stratospheric column BrO (black lines) for the year 2000. Right panels: inferred stratospheric column BrO from GOME total
column adjusted for the presence of various amounts of tropospheric BrO (see text) (red lines, see legend) and zonal average of WACCM
stratospheric BrO column, assuming different levels of BrVSL

y (black lines; see legend). Top panels are for April and bottom panels for
October. Error bars on all curves reflect the longitudinal variability (standard deviation about the zonal, monthly mean). WACCM BrO is for
10:30 a.m., the equator crossing time of GOME.

3 Changes in ozone abundance

The effect of geo-engineering on ozone, derived using the
WACCM runs described above, is shown in Fig.2, and Ta-
ble 1. Figure2 shows the relative difference between model
ozone in year 2040 for two runs of WACCM, one with en-
hanced stratospheric sulfur and another with background lev-
els of stratospheric sulfur. Numerical values of absolute and
relative differences are given in Table S1. Negative values
indicate reductions of column ozone due to geo-engineering.
Results are shown in Fig.2 as a function of equivalent lat-
itude (defined to follow isopleths of constant potential vor-
ticity (PV)), which allows various dynamical regimes to be
readily apparent.

For the VSL= 0 simulation, geo-engineering causes col-
umn ozone in the polar vortex (60 to 90◦ equivalent lati-
tudes) for year 2040 to decrease by 8 % for the Northern
Hemisphere (NH) on average for the three months Febru-
ary, March, and April (FMA) and 10.5 % for the SH av-
eraging August, September, and October (ASO). These de-
pletions rise to 10 % and 13.5 % for the BrVSL

y = 10 ppt,

ClVSL
y =100 ppt case. The influence of geo-engineering on

NH polar ozone reported here is larger in all cases than that
discussed byTilmes et al.(2009). In contrast to earlier stud-
ies, where vortex temperatures between 2020–2050 are on

average biased high in the NH, we simulate conditions for a
longer-lasting moderately cold Arctic polar vortex. In high
latitudes in Southern Hemisphere (SH) summer (Novem-
ber, December, and January: NDJ), the relative difference
in ozone between geo-engineering and baseline simulation
for the VSL= 10 + 100 case is smaller than the difference
for the VSL= 0 case. The additional halogen loading for the
VSL = 10 + 100 geo-engineering case causes ozone loss to
reach very small values in the lower stratosphere in the long-
lasting Antarctic vortex in November and December and ad-
ditional ozone depletion due to increased aerosols is limited,
which is not the case for the VSL= 0 and VSL= 6 simula-
tions.

In mid- and low latitudes, the VSL= 0 simulation re-
sults in ozone changes due to geo-engineering that are
small and for some latitudes and seasons positive: i.e., in
some instances, geo-engineering leads to more ozone. How-
ever, when VSL halogens are considered, geo-engineering is
found to decrease column ozone at almost all latitudes and
for nearly all seasons. For instance, a 0.65 % increase in col-
umn ozone is computed for 30 to 60◦ N during ASO in year
2040 if VSL= 0; the BrVSL

y = 10 ppt and ClVSL
y = 100 ppt

case leads to a 1.5 % decrease in column ozone for this
time and location. Further, in northern mid-latitudes in sum-
mer (May, June, and July: MJJ), the decrease of column
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Fig. 2. Relative difference of column ozone between geo-engineering and baseline model results for four seasons (different panels). All
calculations are for year 2040. Different values of VSL halogens are considered: BrVSL

y and ClVSL
y both= 0 (black), BrVSL

y = 6 ppt and

ClVSL
y = 0 (red), and BrVSL

y = 10 ppt and ClVSL
y = 100 ppt (blue). Results are shown as a function of equivalent latitude.

ozone due to geo-engineering is doubled (from approxi-
mately 1.5 % to 4 %) for BrVSL

y = 10 ppt and ClVSL
y = 100 ppt

in comparison to VSL= 0.
With increasing levels of stratospheric BrVSL

y , BrOx and
ClOx ozone loss rates gain more importance in mid- and high
latitudes (see Supplement and Fig. S2 for further details).
The increase of ozone loss rates is especially apparent in the
lower stratosphere in high polar latitudes in spring, where the
BrOx + ClOx ozone loss cycle dominates. BrOx + ClOx loss
rates double if geo-engineering aerosols are considered. Ad-
ditional stratospheric BrVSL

y of 10 ppt and ClVSL
y of 100 ppt

result in about 3 times larger ozone loss rates compared to
a baseline simulation between 10 and 15 km. An apprecia-
ble impact of enhanced Bry is also found in mid-latitudes
in summer, a time when the ozone column is smallest. En-
hanced heterogeneous reactions amplify the HOx, BrOx and
ClOx cycles in the lower stratosphere whereas NOx ozone
rates stay constant for different VSL cases. The most im-
portant cycle in summer mid- and high latitudes is the HOx
cycle. The influence of geo-engineering on HOx ozone loss
rates increases by about 75 % if BrVSL

y is assumed to be 6 ppt
or larger compared to VSL= 0 at around 12 km in northern
high latitudes.

4 Changes in UV radiation

Decreasing column ozone as a result of enhanced strato-
spheric sulfate aerosols increases the amount of UV radia-

tion reaching Earth’s surface (e.g.,Micheletti et al., 2003),
which can harm human health by leading to skin cancer
and eye damage. Increased UV can also harm terrestrial and
aquatic ecosystems (UNEP, 2005). On the other hand, in-
creased scattering by stratospheric sulfate aerosols can alter
the radiation path lengths, increasing the diffuse-to-direct ra-
tio of surface UV (Zeng et al., 1994). A large burden of sul-
fate aerosols due to geo-engineering, everything else being
equal, can reduce the amount of incoming UV radiation due
to enhanced scattering. A decrease in the production of tropo-
spheric O(1D) by O3 photolysis, due to attenuation of actinic
flux in the 290–330 nm wavelength region by stratospheric
aerosol, led to a drop in modeled OH and an observed in-
crease of CH4 and CO within 6 months after the Mt. Pinatubo
volcanic eruption (Dlugokencky et al., 1996). A rise of the
diffuse-to-direct ratio of surface UV following Pinatubo may
have increased canopy photosynthesis and the land carbon
sink (Mercado et al., 2009).

The radiative transfer model TUV (Tropospheric Ultravio-
let and Visible) (Madronich and Flocke, 1997) is used to cal-
culate surface UV radiation for all the simulations described
above. The model calculates spectral irradiances from the
simulated column ozone values over full diurnal cycles for
each day of the year to capture the influence of changing so-
lar zenith angle. Model irradiance is converted to monthly
means, following the method ofLee-Taylor et al.(2010).
Irradiance is then multiplied by the human erythema (skin-
reddening) spectrum (McKinlay and Diffey, 1987) (also used

www.atmos-chem-phys.net/12/10945/2012/ Atmos. Chem. Phys., 12, 10945–10955, 2012
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Table 1.Absolute and relative (in brackets) changes of column ozone in DU (%), between geo-engineering and baseline model simulations
for varying stratospheric bromine from VSL species for the year 2000 and 2040, averaged for different latitude bands and for different
seasons.

Season Region Year VSL= 0 VSL= 6 +Cly = 100

ANN 60–90◦ N 2000 −15.89 (−4.46) −21.94 (−6.26) −27.03 (−7.83)
2040 −9.74 (−2.52) −15.57 (−4.08) −20.59 (−5.48)

30–60◦ N 2000 −4.48 (−1.35) −8.26 (−2.52) −11.71 (−3.61)
2040 0.00 ( 0.00) −3.32 (−0.97) −6.41 (−1.89)

30–60◦ S 2000 −7.30 (−2.48) −10.25 (−3.54) −12.67 (−4.45)
2040 −3.15 (−1.02) −5.90 (−1.93) −8.19 (−2.72)

60–90◦ S 2000 −14.24 (−5.74) −16.73 (−6.96) −18.47 (−7.91)
2040 −13.82 (−4.83) −16.42 (−5.93) −18.15 (−6.77)

FMA 60–90◦ N 2000 −31.37 (−8.47) −37.16 (−10.26) −42.19 (−11.93)
2040 −24.44 (−5.79) −30.75 (−7.43) −36.71 (−9.07)

30–60◦ N 2000 −6.03 (−1.65) −10.27 (−2.84) −14.64 (−4.09)
2040 −1.20 (−0.31) −4.86 (−1.28) −8.81 (−2.34)

30–60◦ S 2000 −3.18 (−1.13) −6.16 (−2.21) −8.80 (−3.19)
2040 −0.15 (−0.05) −2.74 (−0.94) −5.01 (−1.74)

60–90◦ S 2000 −7.33 (−2.63) −13.12 (−4.78) −17.83 (−6.59)
2040 −2.79 (−0.93) −7.70 (−2.62) −11.77 (−4.05)

MJJ 60–90◦ N 2000 −18.20 (−5.41) −26.17 (−7.91) −32.57 (−10.00)
2040 −12.30 (−3.48) −20.25 (−5.82) −26.65 (−7.77)

30–60◦ N 2000 −6.64 (−2.13) −11.06 (−3.58) −14.90 (−4.88)
2040 −2.15 (−0.66) −6.27 (−1.96) −9.84 (−3.11)

30–60◦ S 2000 −8.67 (−2.80) −13.17 (−4.33) −16.98 (−5.70)
2040 −1.90 (−0.58) −5.59 (−1.75) −8.93 (−2.84)

60–90◦ S 2000 −15.93 (−5.78) −21.87 (−8.21) −26.35 (−10.23)
2040 −7.08 (−2.32) −12.23 (−4.11) −16.44 (−5.67)

ASO 60–90◦ N 2000 −8.16 (−2.58) −15.11 (−4.86) −20.79 (−6.79)
2040 −1.53 (−0.47) −7.69 (−2.38) −12.66 (−3.97)

30–60◦ N 2000 −3.20 (−1.05) −7.26 (−2.42) −10.63 (−3.59)
2040 2.03 ( 0.65) −1.56 (−0.50) −4.53 (−1.48)

30–60◦ S 2000 −13.63 (−4.46) −16.62 (−5.58) −18.75 (−6.44)
2040 −7.71 (−2.37) −11.03 (−3.47) −13.59 (−4.38)

60–90◦ S 2000 −26.04 (−14.62) −23.75 (−14.39) −21.24 (−13.80)
2040 −33.27 (−13.44) −33.06 (−14.42) −31.89 (−15.02)

NDJ 60–90◦ N 2000 −6.06 (−1.65) −11.14 (−3.07) −15.46 (−4.31)
2040 0.42 ( 0.11) −3.78 (−0.97) −7.46 (−1.93)

30–60◦ N 2000 −2.78 (−0.85) −6.01 (−1.85) −8.78 (−2.73)
2040 1.91 ( 0.56) −0.79 (−0.23) −3.17 (−0.94)

30–60◦ S 2000 −7.81 (−2.70) −9.26 (−3.26) −10.27 (−3.66)
2040 −6.33 (−2.07) −7.98 (−2.65) −9.02 (−3.05)

60–90◦ S 2000 −14.59 (−6.50) −12.78 (−5.85) −11.03 (−5.18)
2040 −25.60 (−9.51) −23.59 (−9.15) −21.02 (−8.49)

for the calculation of the UV index). The weighted spectrum,
termed UVERY, has units of kJ m−2 day−1.

In Fig. 3, we illustrate the difference of annual averaged
UVERY resulting only from changes of column ozone due
to geo-engineering for different levels of BrVSL

y and ClVSL
y .

Seasonal and local changes in UVERY are much larger, for
instance in spring at the location of the polar vortex. Any
effects of changing cloudiness are not considered, as the re-

sponse of cloudiness to geo-engineering cannot be forecast
reliably. The impact on UVERY, due to scattering by strato-
spheric sulfate aerosols is discussed further below.

The inclusion of additional levels of enhanced halogens in
the stratosphere results in a decrease of column ozone and an
increase of UVERY. In case of VSL= 0 the impact of geo-
engineering on UVERY is between±2 % in low and mid-
latitudes and slightly negative equatorward of±45◦ for the
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Fig. 3. Relative changes of UV radiation weighted for human ery-
thema (skin-reddening) due to geo-engineering, for projected chem-
ical conditions in year 2040. Changes are the result of differences
in column ozone between the geo-engineering and the baseline sim-
ulation. The additional amount of stratospheric bromine from VSL
halogens is assumed to be zero (top) and BrVSL

y = 6 ppt (middle)

and BrVSL
y = 10 ppt, ClVSL

y = 100 ppt (bottom). The white line rep-
resents the zero contour.

year 2040 (Fig.3, top). On the other hand, UVERY increases
towards the poles by up to 7 % in northern high latitudes
and by more than 10 % for southern high latitudes. For the
BrVSL

y = 6 ppt simulation (Fig.3, middle), UVERY increases
by up to 4 % between 45 and 60◦ N for 2040 compared to the
baseline simulation. Further, reduced column ozone in the

tropics assuming BrVSL
y = 10 ppt, ClVSL

y = 100 ppt changes
the sign of UVERY from a slight decrease of≈ 0–2 % for
VSL = 0 to an increase of≈ 0–2 % (Fig.3, bottom). For the
VSL = 10 + 100 case, we further find a significant increase
of UVERY in mid- and high latitudes reaching up to 6 % and
over 12 %, respectively, compared to the baseline simulation.

We now quantify the impact of increased scattering by
stratospheric sulfate aerosols on UVERY (see Fig.4). An in-
crease in optical depth increases the radiation path lengths
and therefore the diffuse-to-direct ratio of surface UV. The
aerosol optical depth for baseline and geo-engineering sim-
ulations is calculated directly from the SAD of the different
model simulations, using the TUV model. We use an extinc-
tion efficiency of∼ 1.9 calculated from Mie scattering over
300 to 320 nm assuming an effective radius of 0.43 microns
(consistent with what was assumed inRasch et al.(2008b)).
Depending on season and latitude, UV changes due to geo-
engineering are reduced by a maximum of 2–3 % (Fig.4,
dotted lines). At high latitudes for seasons when solar zenith
angle is large, increased scattering results in a slight increase
in UVERY.

The combined effect on UVERY due to changes in column
ozone and aerosol scattering induced by geo-engineering is
shown by the solid lines in Fig.4. The left panel shows
results for the BrVSL

y =0 case and the right panel for the

BrVSL
y = 10 ppt, ClVSL

y = 100 ppt simulation. For low lati-
tudes changes in UVERY are negative for all cases consid-
ered. The most obvious difference between VSL= 0 and
VSL = 10 + 100 is found for spring and fall in mid- and high
latitudes. For example, for ASO in northern mid-latitudes
and for FMA in southern mid-latitudes, the impact of geo-
engineering on UVERY has increased from near zero for
VLS = 0 to a≈ 5 % increase for VLS= 10 + 100. The rela-
tive impact of aerosol scattering is small in winter and spring
high latitudes, where changes in ozone control the changes
in UVERY as a result of geo-engineering.

For comparison, the decline in TOMS ozone column data
between the decades 1979–1989 and 1990–2000 resulted in
an increase of 2 to 7 % for UVERY between 30 and 60◦ N
and an increase of more than 10 % in southern high latitudes
for clear sky conditions (Lee-Taylor and Madronich, 2007;
McPeters et al., 1996; Herman, 2010). These changes were
caused by the increase of CFCs in the stratosphere. When
VSL halogens are consider in the model, geo-engineering
might lead to a similar impact on column ozone and thus
UVERY in 2040.

5 Conclusions

Prior studies have shown that enhanced sulfate aerosols in
the stratosphere from geo-engineering will result in a signif-
icant decrease of column ozone for present day (Heckendorn
et al., 2009) and future conditions (Tilmes et al., 2008, 2009).
Previous model studies only considered long-lived halogen
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Fig. 4. Changes in UVERY as a result of geo-engineering, assuming volcanic-sized aerosols for the year 2040, based on changes of column
ozone only (dashed lines), changes due to the enhanced volcanic-sized aerosol scattering only (dotted lines), and, consideration of both
column ozone changes and enhanced aerosol scattering (solid). Results are shown for four seasons, noontime conditions averaged over
10 degrees latitude bands. We consider simulations with two different amounts of VSL halogen species in the stratosphere (VSL= 0: left
column, BrVSL

y = 10 ppt and ClVSL
y = 100 ppt: right column).

sources. We show that the consideration of VSL halogen
source species, in a geo-engineering calculation focused on
the year 2040, leads to larger decreases in column ozone for
nearly all seasons, at nearly all latitudes. The largest relative
impact of VSL halogen sources is found for northern mid-
and high latitudes in summer, where the additional Bry and

Cly from VSL sources leads to column ozone decreases of
up to 4 % compared to a geo-engineering simulation that ne-
glects VSL halogens.

Changes in column ozone and stratospheric aerosol con-
tent due to geo-engineering will impact erythemal UV radia-
tion reaching the surface (UVERY). A calculation considering
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the upper limit of additional Bry and Cly from VSL source
species, and only the effect of ozone on UVERY, results in
a 12 % annual increase in UVERY in the SH high latitudes
and up to 6 % in NH high latitudes due to geo-engineering.
Considering the impact of scattering from geo-engineering
aerosols we find a reduction of UVERY by about 2 to 3 %
for most latitudes and seasons. Considering the combinded
effects on UVERY of ozone and aerosol scattering under-
lines the importance of VSL halogen sources: for spring and
fall in mid- and high latitudes, the effect of geo-engineering
on UVERY switches from neutral (a balance between the in-
crease due to ozone depletion and a decrease due to aerosol
scattering) to a rise of≈ 5 %. In this case, the UVERY in-
crease due to ozone depletion driven by VSL halogens ex-
ceeds UVERY decrease due to aerosol scattering. Upon con-
sideration of VSL halogens, we find that geo-engineering due
to sulfate injection could result, for year 2040, in an increase
of UVERY comparable to levels observed during the 1979 to
2000 time period, due to peak levels of CFCs and other ozone
depleting substances.

We have investigated one specific meteorological situation
for all simulations, which aids the interpretation of the model
output, but also means interannual temperature variations are
not considered. Such variations can lead to large differences
of chemical ozone loss in winter and spring at northern high
latitudes. The impact of VSL halogens would be smaller for
a warmer Arctic winter than considered here and larger for
colder winters. Further, the long-lasting SH polar vortex in
our simulation likely results in an overestimation of the an-
nual column ozone reduction in southern high latitudes. For
the other latitudes, however, precise temperature is likely to
be less important. We have also not considered changes in
stratospheric dynamics induced by the VSL halogen driven
loss of ozone, which could be important and should be quan-
tified in future studies.

Simplified assumptions were also made regarding the lo-
cation and size distribution of the geo-engineered strato-
spheric aerosol layer. Large uncertainties exist on these mat-
ters, which strongly depend on the emission strategy and
composition of the injected particles (Heckendorn et al.,
2009; Pierce et al., 2010; Niemeier et al., 2010). Smaller par-
ticles enhance the rate of heterogeneous reactions and there-
fore amplify ozone-destroying cycles. Larger particles expe-
rience faster gravitational settling and may result in a heat-
ing of the tropical tropopause, driving strong reduction of
column ozone (Heckendorn et al., 2009). Finally, VSL halo-
gen species have an impact on the tropospheric ozone budget
(Saiz-Lopez et al., 2012), which we have also not considered.

In summary, this study reveals the importance of consid-
ering BrVSL

y when quantifying the impact of geo-engineering
on ozone and surface UV, which is one example that stresses
the need for a deeper understanding of atmospheric pro-
cesses, should geo-engineeing be considered to counteract
climate change.

Supplementary material related to this article is
available online at:http://www.atmos-chem-phys.net/12/
10945/2012/acp-12-10945-2012-supplement.pdf.
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